]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/md/dm-thin.c
treewide: Use array_size() in vmalloc()
[linux.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238         bool out_of_data_space:1;
239
240         struct dm_bio_prison *prison;
241         struct dm_kcopyd_client *copier;
242
243         struct workqueue_struct *wq;
244         struct throttle throttle;
245         struct work_struct worker;
246         struct delayed_work waker;
247         struct delayed_work no_space_timeout;
248
249         unsigned long last_commit_jiffies;
250         unsigned ref_count;
251
252         spinlock_t lock;
253         struct bio_list deferred_flush_bios;
254         struct list_head prepared_mappings;
255         struct list_head prepared_discards;
256         struct list_head prepared_discards_pt2;
257         struct list_head active_thins;
258
259         struct dm_deferred_set *shared_read_ds;
260         struct dm_deferred_set *all_io_ds;
261
262         struct dm_thin_new_mapping *next_mapping;
263         mempool_t mapping_pool;
264
265         process_bio_fn process_bio;
266         process_bio_fn process_discard;
267
268         process_cell_fn process_cell;
269         process_cell_fn process_discard_cell;
270
271         process_mapping_fn process_prepared_mapping;
272         process_mapping_fn process_prepared_discard;
273         process_mapping_fn process_prepared_discard_pt2;
274
275         struct dm_bio_prison_cell **cell_sort_array;
276 };
277
278 static enum pool_mode get_pool_mode(struct pool *pool);
279 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280
281 /*
282  * Target context for a pool.
283  */
284 struct pool_c {
285         struct dm_target *ti;
286         struct pool *pool;
287         struct dm_dev *data_dev;
288         struct dm_dev *metadata_dev;
289         struct dm_target_callbacks callbacks;
290
291         dm_block_t low_water_blocks;
292         struct pool_features requested_pf; /* Features requested during table load */
293         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
294 };
295
296 /*
297  * Target context for a thin.
298  */
299 struct thin_c {
300         struct list_head list;
301         struct dm_dev *pool_dev;
302         struct dm_dev *origin_dev;
303         sector_t origin_size;
304         dm_thin_id dev_id;
305
306         struct pool *pool;
307         struct dm_thin_device *td;
308         struct mapped_device *thin_md;
309
310         bool requeue_mode:1;
311         spinlock_t lock;
312         struct list_head deferred_cells;
313         struct bio_list deferred_bio_list;
314         struct bio_list retry_on_resume_list;
315         struct rb_root sort_bio_list; /* sorted list of deferred bios */
316
317         /*
318          * Ensures the thin is not destroyed until the worker has finished
319          * iterating the active_thins list.
320          */
321         atomic_t refcount;
322         struct completion can_destroy;
323 };
324
325 /*----------------------------------------------------------------*/
326
327 static bool block_size_is_power_of_two(struct pool *pool)
328 {
329         return pool->sectors_per_block_shift >= 0;
330 }
331
332 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333 {
334         return block_size_is_power_of_two(pool) ?
335                 (b << pool->sectors_per_block_shift) :
336                 (b * pool->sectors_per_block);
337 }
338
339 /*----------------------------------------------------------------*/
340
341 struct discard_op {
342         struct thin_c *tc;
343         struct blk_plug plug;
344         struct bio *parent_bio;
345         struct bio *bio;
346 };
347
348 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349 {
350         BUG_ON(!parent);
351
352         op->tc = tc;
353         blk_start_plug(&op->plug);
354         op->parent_bio = parent;
355         op->bio = NULL;
356 }
357
358 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359 {
360         struct thin_c *tc = op->tc;
361         sector_t s = block_to_sectors(tc->pool, data_b);
362         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363
364         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365                                       GFP_NOWAIT, 0, &op->bio);
366 }
367
368 static void end_discard(struct discard_op *op, int r)
369 {
370         if (op->bio) {
371                 /*
372                  * Even if one of the calls to issue_discard failed, we
373                  * need to wait for the chain to complete.
374                  */
375                 bio_chain(op->bio, op->parent_bio);
376                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377                 submit_bio(op->bio);
378         }
379
380         blk_finish_plug(&op->plug);
381
382         /*
383          * Even if r is set, there could be sub discards in flight that we
384          * need to wait for.
385          */
386         if (r && !op->parent_bio->bi_status)
387                 op->parent_bio->bi_status = errno_to_blk_status(r);
388         bio_endio(op->parent_bio);
389 }
390
391 /*----------------------------------------------------------------*/
392
393 /*
394  * wake_worker() is used when new work is queued and when pool_resume is
395  * ready to continue deferred IO processing.
396  */
397 static void wake_worker(struct pool *pool)
398 {
399         queue_work(pool->wq, &pool->worker);
400 }
401
402 /*----------------------------------------------------------------*/
403
404 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405                       struct dm_bio_prison_cell **cell_result)
406 {
407         int r;
408         struct dm_bio_prison_cell *cell_prealloc;
409
410         /*
411          * Allocate a cell from the prison's mempool.
412          * This might block but it can't fail.
413          */
414         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415
416         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417         if (r)
418                 /*
419                  * We reused an old cell; we can get rid of
420                  * the new one.
421                  */
422                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423
424         return r;
425 }
426
427 static void cell_release(struct pool *pool,
428                          struct dm_bio_prison_cell *cell,
429                          struct bio_list *bios)
430 {
431         dm_cell_release(pool->prison, cell, bios);
432         dm_bio_prison_free_cell(pool->prison, cell);
433 }
434
435 static void cell_visit_release(struct pool *pool,
436                                void (*fn)(void *, struct dm_bio_prison_cell *),
437                                void *context,
438                                struct dm_bio_prison_cell *cell)
439 {
440         dm_cell_visit_release(pool->prison, fn, context, cell);
441         dm_bio_prison_free_cell(pool->prison, cell);
442 }
443
444 static void cell_release_no_holder(struct pool *pool,
445                                    struct dm_bio_prison_cell *cell,
446                                    struct bio_list *bios)
447 {
448         dm_cell_release_no_holder(pool->prison, cell, bios);
449         dm_bio_prison_free_cell(pool->prison, cell);
450 }
451
452 static void cell_error_with_code(struct pool *pool,
453                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
454 {
455         dm_cell_error(pool->prison, cell, error_code);
456         dm_bio_prison_free_cell(pool->prison, cell);
457 }
458
459 static blk_status_t get_pool_io_error_code(struct pool *pool)
460 {
461         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
462 }
463
464 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465 {
466         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
467 }
468
469 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
470 {
471         cell_error_with_code(pool, cell, 0);
472 }
473
474 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
475 {
476         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
477 }
478
479 /*----------------------------------------------------------------*/
480
481 /*
482  * A global list of pools that uses a struct mapped_device as a key.
483  */
484 static struct dm_thin_pool_table {
485         struct mutex mutex;
486         struct list_head pools;
487 } dm_thin_pool_table;
488
489 static void pool_table_init(void)
490 {
491         mutex_init(&dm_thin_pool_table.mutex);
492         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
493 }
494
495 static void pool_table_exit(void)
496 {
497         mutex_destroy(&dm_thin_pool_table.mutex);
498 }
499
500 static void __pool_table_insert(struct pool *pool)
501 {
502         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
503         list_add(&pool->list, &dm_thin_pool_table.pools);
504 }
505
506 static void __pool_table_remove(struct pool *pool)
507 {
508         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
509         list_del(&pool->list);
510 }
511
512 static struct pool *__pool_table_lookup(struct mapped_device *md)
513 {
514         struct pool *pool = NULL, *tmp;
515
516         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
517
518         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
519                 if (tmp->pool_md == md) {
520                         pool = tmp;
521                         break;
522                 }
523         }
524
525         return pool;
526 }
527
528 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
529 {
530         struct pool *pool = NULL, *tmp;
531
532         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
533
534         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
535                 if (tmp->md_dev == md_dev) {
536                         pool = tmp;
537                         break;
538                 }
539         }
540
541         return pool;
542 }
543
544 /*----------------------------------------------------------------*/
545
546 struct dm_thin_endio_hook {
547         struct thin_c *tc;
548         struct dm_deferred_entry *shared_read_entry;
549         struct dm_deferred_entry *all_io_entry;
550         struct dm_thin_new_mapping *overwrite_mapping;
551         struct rb_node rb_node;
552         struct dm_bio_prison_cell *cell;
553 };
554
555 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
556 {
557         bio_list_merge(bios, master);
558         bio_list_init(master);
559 }
560
561 static void error_bio_list(struct bio_list *bios, blk_status_t error)
562 {
563         struct bio *bio;
564
565         while ((bio = bio_list_pop(bios))) {
566                 bio->bi_status = error;
567                 bio_endio(bio);
568         }
569 }
570
571 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
572                 blk_status_t error)
573 {
574         struct bio_list bios;
575         unsigned long flags;
576
577         bio_list_init(&bios);
578
579         spin_lock_irqsave(&tc->lock, flags);
580         __merge_bio_list(&bios, master);
581         spin_unlock_irqrestore(&tc->lock, flags);
582
583         error_bio_list(&bios, error);
584 }
585
586 static void requeue_deferred_cells(struct thin_c *tc)
587 {
588         struct pool *pool = tc->pool;
589         unsigned long flags;
590         struct list_head cells;
591         struct dm_bio_prison_cell *cell, *tmp;
592
593         INIT_LIST_HEAD(&cells);
594
595         spin_lock_irqsave(&tc->lock, flags);
596         list_splice_init(&tc->deferred_cells, &cells);
597         spin_unlock_irqrestore(&tc->lock, flags);
598
599         list_for_each_entry_safe(cell, tmp, &cells, user_list)
600                 cell_requeue(pool, cell);
601 }
602
603 static void requeue_io(struct thin_c *tc)
604 {
605         struct bio_list bios;
606         unsigned long flags;
607
608         bio_list_init(&bios);
609
610         spin_lock_irqsave(&tc->lock, flags);
611         __merge_bio_list(&bios, &tc->deferred_bio_list);
612         __merge_bio_list(&bios, &tc->retry_on_resume_list);
613         spin_unlock_irqrestore(&tc->lock, flags);
614
615         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
616         requeue_deferred_cells(tc);
617 }
618
619 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
620 {
621         struct thin_c *tc;
622
623         rcu_read_lock();
624         list_for_each_entry_rcu(tc, &pool->active_thins, list)
625                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
626         rcu_read_unlock();
627 }
628
629 static void error_retry_list(struct pool *pool)
630 {
631         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
632 }
633
634 /*
635  * This section of code contains the logic for processing a thin device's IO.
636  * Much of the code depends on pool object resources (lists, workqueues, etc)
637  * but most is exclusively called from the thin target rather than the thin-pool
638  * target.
639  */
640
641 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
642 {
643         struct pool *pool = tc->pool;
644         sector_t block_nr = bio->bi_iter.bi_sector;
645
646         if (block_size_is_power_of_two(pool))
647                 block_nr >>= pool->sectors_per_block_shift;
648         else
649                 (void) sector_div(block_nr, pool->sectors_per_block);
650
651         return block_nr;
652 }
653
654 /*
655  * Returns the _complete_ blocks that this bio covers.
656  */
657 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
658                                 dm_block_t *begin, dm_block_t *end)
659 {
660         struct pool *pool = tc->pool;
661         sector_t b = bio->bi_iter.bi_sector;
662         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
663
664         b += pool->sectors_per_block - 1ull; /* so we round up */
665
666         if (block_size_is_power_of_two(pool)) {
667                 b >>= pool->sectors_per_block_shift;
668                 e >>= pool->sectors_per_block_shift;
669         } else {
670                 (void) sector_div(b, pool->sectors_per_block);
671                 (void) sector_div(e, pool->sectors_per_block);
672         }
673
674         if (e < b)
675                 /* Can happen if the bio is within a single block. */
676                 e = b;
677
678         *begin = b;
679         *end = e;
680 }
681
682 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
683 {
684         struct pool *pool = tc->pool;
685         sector_t bi_sector = bio->bi_iter.bi_sector;
686
687         bio_set_dev(bio, tc->pool_dev->bdev);
688         if (block_size_is_power_of_two(pool))
689                 bio->bi_iter.bi_sector =
690                         (block << pool->sectors_per_block_shift) |
691                         (bi_sector & (pool->sectors_per_block - 1));
692         else
693                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
694                                  sector_div(bi_sector, pool->sectors_per_block);
695 }
696
697 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
698 {
699         bio_set_dev(bio, tc->origin_dev->bdev);
700 }
701
702 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
703 {
704         return op_is_flush(bio->bi_opf) &&
705                 dm_thin_changed_this_transaction(tc->td);
706 }
707
708 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
709 {
710         struct dm_thin_endio_hook *h;
711
712         if (bio_op(bio) == REQ_OP_DISCARD)
713                 return;
714
715         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
716         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
717 }
718
719 static void issue(struct thin_c *tc, struct bio *bio)
720 {
721         struct pool *pool = tc->pool;
722         unsigned long flags;
723
724         if (!bio_triggers_commit(tc, bio)) {
725                 generic_make_request(bio);
726                 return;
727         }
728
729         /*
730          * Complete bio with an error if earlier I/O caused changes to
731          * the metadata that can't be committed e.g, due to I/O errors
732          * on the metadata device.
733          */
734         if (dm_thin_aborted_changes(tc->td)) {
735                 bio_io_error(bio);
736                 return;
737         }
738
739         /*
740          * Batch together any bios that trigger commits and then issue a
741          * single commit for them in process_deferred_bios().
742          */
743         spin_lock_irqsave(&pool->lock, flags);
744         bio_list_add(&pool->deferred_flush_bios, bio);
745         spin_unlock_irqrestore(&pool->lock, flags);
746 }
747
748 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
749 {
750         remap_to_origin(tc, bio);
751         issue(tc, bio);
752 }
753
754 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
755                             dm_block_t block)
756 {
757         remap(tc, bio, block);
758         issue(tc, bio);
759 }
760
761 /*----------------------------------------------------------------*/
762
763 /*
764  * Bio endio functions.
765  */
766 struct dm_thin_new_mapping {
767         struct list_head list;
768
769         bool pass_discard:1;
770         bool maybe_shared:1;
771
772         /*
773          * Track quiescing, copying and zeroing preparation actions.  When this
774          * counter hits zero the block is prepared and can be inserted into the
775          * btree.
776          */
777         atomic_t prepare_actions;
778
779         blk_status_t status;
780         struct thin_c *tc;
781         dm_block_t virt_begin, virt_end;
782         dm_block_t data_block;
783         struct dm_bio_prison_cell *cell;
784
785         /*
786          * If the bio covers the whole area of a block then we can avoid
787          * zeroing or copying.  Instead this bio is hooked.  The bio will
788          * still be in the cell, so care has to be taken to avoid issuing
789          * the bio twice.
790          */
791         struct bio *bio;
792         bio_end_io_t *saved_bi_end_io;
793 };
794
795 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
796 {
797         struct pool *pool = m->tc->pool;
798
799         if (atomic_dec_and_test(&m->prepare_actions)) {
800                 list_add_tail(&m->list, &pool->prepared_mappings);
801                 wake_worker(pool);
802         }
803 }
804
805 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
806 {
807         unsigned long flags;
808         struct pool *pool = m->tc->pool;
809
810         spin_lock_irqsave(&pool->lock, flags);
811         __complete_mapping_preparation(m);
812         spin_unlock_irqrestore(&pool->lock, flags);
813 }
814
815 static void copy_complete(int read_err, unsigned long write_err, void *context)
816 {
817         struct dm_thin_new_mapping *m = context;
818
819         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
820         complete_mapping_preparation(m);
821 }
822
823 static void overwrite_endio(struct bio *bio)
824 {
825         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
826         struct dm_thin_new_mapping *m = h->overwrite_mapping;
827
828         bio->bi_end_io = m->saved_bi_end_io;
829
830         m->status = bio->bi_status;
831         complete_mapping_preparation(m);
832 }
833
834 /*----------------------------------------------------------------*/
835
836 /*
837  * Workqueue.
838  */
839
840 /*
841  * Prepared mapping jobs.
842  */
843
844 /*
845  * This sends the bios in the cell, except the original holder, back
846  * to the deferred_bios list.
847  */
848 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
849 {
850         struct pool *pool = tc->pool;
851         unsigned long flags;
852
853         spin_lock_irqsave(&tc->lock, flags);
854         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
855         spin_unlock_irqrestore(&tc->lock, flags);
856
857         wake_worker(pool);
858 }
859
860 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
861
862 struct remap_info {
863         struct thin_c *tc;
864         struct bio_list defer_bios;
865         struct bio_list issue_bios;
866 };
867
868 static void __inc_remap_and_issue_cell(void *context,
869                                        struct dm_bio_prison_cell *cell)
870 {
871         struct remap_info *info = context;
872         struct bio *bio;
873
874         while ((bio = bio_list_pop(&cell->bios))) {
875                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
876                         bio_list_add(&info->defer_bios, bio);
877                 else {
878                         inc_all_io_entry(info->tc->pool, bio);
879
880                         /*
881                          * We can't issue the bios with the bio prison lock
882                          * held, so we add them to a list to issue on
883                          * return from this function.
884                          */
885                         bio_list_add(&info->issue_bios, bio);
886                 }
887         }
888 }
889
890 static void inc_remap_and_issue_cell(struct thin_c *tc,
891                                      struct dm_bio_prison_cell *cell,
892                                      dm_block_t block)
893 {
894         struct bio *bio;
895         struct remap_info info;
896
897         info.tc = tc;
898         bio_list_init(&info.defer_bios);
899         bio_list_init(&info.issue_bios);
900
901         /*
902          * We have to be careful to inc any bios we're about to issue
903          * before the cell is released, and avoid a race with new bios
904          * being added to the cell.
905          */
906         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
907                            &info, cell);
908
909         while ((bio = bio_list_pop(&info.defer_bios)))
910                 thin_defer_bio(tc, bio);
911
912         while ((bio = bio_list_pop(&info.issue_bios)))
913                 remap_and_issue(info.tc, bio, block);
914 }
915
916 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
917 {
918         cell_error(m->tc->pool, m->cell);
919         list_del(&m->list);
920         mempool_free(m, &m->tc->pool->mapping_pool);
921 }
922
923 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
924 {
925         struct thin_c *tc = m->tc;
926         struct pool *pool = tc->pool;
927         struct bio *bio = m->bio;
928         int r;
929
930         if (m->status) {
931                 cell_error(pool, m->cell);
932                 goto out;
933         }
934
935         /*
936          * Commit the prepared block into the mapping btree.
937          * Any I/O for this block arriving after this point will get
938          * remapped to it directly.
939          */
940         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
941         if (r) {
942                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
943                 cell_error(pool, m->cell);
944                 goto out;
945         }
946
947         /*
948          * Release any bios held while the block was being provisioned.
949          * If we are processing a write bio that completely covers the block,
950          * we already processed it so can ignore it now when processing
951          * the bios in the cell.
952          */
953         if (bio) {
954                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
955                 bio_endio(bio);
956         } else {
957                 inc_all_io_entry(tc->pool, m->cell->holder);
958                 remap_and_issue(tc, m->cell->holder, m->data_block);
959                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
960         }
961
962 out:
963         list_del(&m->list);
964         mempool_free(m, &pool->mapping_pool);
965 }
966
967 /*----------------------------------------------------------------*/
968
969 static void free_discard_mapping(struct dm_thin_new_mapping *m)
970 {
971         struct thin_c *tc = m->tc;
972         if (m->cell)
973                 cell_defer_no_holder(tc, m->cell);
974         mempool_free(m, &tc->pool->mapping_pool);
975 }
976
977 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
978 {
979         bio_io_error(m->bio);
980         free_discard_mapping(m);
981 }
982
983 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
984 {
985         bio_endio(m->bio);
986         free_discard_mapping(m);
987 }
988
989 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
990 {
991         int r;
992         struct thin_c *tc = m->tc;
993
994         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
995         if (r) {
996                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
997                 bio_io_error(m->bio);
998         } else
999                 bio_endio(m->bio);
1000
1001         cell_defer_no_holder(tc, m->cell);
1002         mempool_free(m, &tc->pool->mapping_pool);
1003 }
1004
1005 /*----------------------------------------------------------------*/
1006
1007 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1008                                                    struct bio *discard_parent)
1009 {
1010         /*
1011          * We've already unmapped this range of blocks, but before we
1012          * passdown we have to check that these blocks are now unused.
1013          */
1014         int r = 0;
1015         bool used = true;
1016         struct thin_c *tc = m->tc;
1017         struct pool *pool = tc->pool;
1018         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1019         struct discard_op op;
1020
1021         begin_discard(&op, tc, discard_parent);
1022         while (b != end) {
1023                 /* find start of unmapped run */
1024                 for (; b < end; b++) {
1025                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1026                         if (r)
1027                                 goto out;
1028
1029                         if (!used)
1030                                 break;
1031                 }
1032
1033                 if (b == end)
1034                         break;
1035
1036                 /* find end of run */
1037                 for (e = b + 1; e != end; e++) {
1038                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1039                         if (r)
1040                                 goto out;
1041
1042                         if (used)
1043                                 break;
1044                 }
1045
1046                 r = issue_discard(&op, b, e);
1047                 if (r)
1048                         goto out;
1049
1050                 b = e;
1051         }
1052 out:
1053         end_discard(&op, r);
1054 }
1055
1056 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1057 {
1058         unsigned long flags;
1059         struct pool *pool = m->tc->pool;
1060
1061         spin_lock_irqsave(&pool->lock, flags);
1062         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1063         spin_unlock_irqrestore(&pool->lock, flags);
1064         wake_worker(pool);
1065 }
1066
1067 static void passdown_endio(struct bio *bio)
1068 {
1069         /*
1070          * It doesn't matter if the passdown discard failed, we still want
1071          * to unmap (we ignore err).
1072          */
1073         queue_passdown_pt2(bio->bi_private);
1074         bio_put(bio);
1075 }
1076
1077 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1078 {
1079         int r;
1080         struct thin_c *tc = m->tc;
1081         struct pool *pool = tc->pool;
1082         struct bio *discard_parent;
1083         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1084
1085         /*
1086          * Only this thread allocates blocks, so we can be sure that the
1087          * newly unmapped blocks will not be allocated before the end of
1088          * the function.
1089          */
1090         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1091         if (r) {
1092                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1093                 bio_io_error(m->bio);
1094                 cell_defer_no_holder(tc, m->cell);
1095                 mempool_free(m, &pool->mapping_pool);
1096                 return;
1097         }
1098
1099         /*
1100          * Increment the unmapped blocks.  This prevents a race between the
1101          * passdown io and reallocation of freed blocks.
1102          */
1103         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1104         if (r) {
1105                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1106                 bio_io_error(m->bio);
1107                 cell_defer_no_holder(tc, m->cell);
1108                 mempool_free(m, &pool->mapping_pool);
1109                 return;
1110         }
1111
1112         discard_parent = bio_alloc(GFP_NOIO, 1);
1113         if (!discard_parent) {
1114                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1115                        dm_device_name(tc->pool->pool_md));
1116                 queue_passdown_pt2(m);
1117
1118         } else {
1119                 discard_parent->bi_end_io = passdown_endio;
1120                 discard_parent->bi_private = m;
1121
1122                 if (m->maybe_shared)
1123                         passdown_double_checking_shared_status(m, discard_parent);
1124                 else {
1125                         struct discard_op op;
1126
1127                         begin_discard(&op, tc, discard_parent);
1128                         r = issue_discard(&op, m->data_block, data_end);
1129                         end_discard(&op, r);
1130                 }
1131         }
1132 }
1133
1134 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1135 {
1136         int r;
1137         struct thin_c *tc = m->tc;
1138         struct pool *pool = tc->pool;
1139
1140         /*
1141          * The passdown has completed, so now we can decrement all those
1142          * unmapped blocks.
1143          */
1144         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1145                                    m->data_block + (m->virt_end - m->virt_begin));
1146         if (r) {
1147                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1148                 bio_io_error(m->bio);
1149         } else
1150                 bio_endio(m->bio);
1151
1152         cell_defer_no_holder(tc, m->cell);
1153         mempool_free(m, &pool->mapping_pool);
1154 }
1155
1156 static void process_prepared(struct pool *pool, struct list_head *head,
1157                              process_mapping_fn *fn)
1158 {
1159         unsigned long flags;
1160         struct list_head maps;
1161         struct dm_thin_new_mapping *m, *tmp;
1162
1163         INIT_LIST_HEAD(&maps);
1164         spin_lock_irqsave(&pool->lock, flags);
1165         list_splice_init(head, &maps);
1166         spin_unlock_irqrestore(&pool->lock, flags);
1167
1168         list_for_each_entry_safe(m, tmp, &maps, list)
1169                 (*fn)(m);
1170 }
1171
1172 /*
1173  * Deferred bio jobs.
1174  */
1175 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1176 {
1177         return bio->bi_iter.bi_size ==
1178                 (pool->sectors_per_block << SECTOR_SHIFT);
1179 }
1180
1181 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1182 {
1183         return (bio_data_dir(bio) == WRITE) &&
1184                 io_overlaps_block(pool, bio);
1185 }
1186
1187 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1188                                bio_end_io_t *fn)
1189 {
1190         *save = bio->bi_end_io;
1191         bio->bi_end_io = fn;
1192 }
1193
1194 static int ensure_next_mapping(struct pool *pool)
1195 {
1196         if (pool->next_mapping)
1197                 return 0;
1198
1199         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1200
1201         return pool->next_mapping ? 0 : -ENOMEM;
1202 }
1203
1204 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1205 {
1206         struct dm_thin_new_mapping *m = pool->next_mapping;
1207
1208         BUG_ON(!pool->next_mapping);
1209
1210         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1211         INIT_LIST_HEAD(&m->list);
1212         m->bio = NULL;
1213
1214         pool->next_mapping = NULL;
1215
1216         return m;
1217 }
1218
1219 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1220                     sector_t begin, sector_t end)
1221 {
1222         int r;
1223         struct dm_io_region to;
1224
1225         to.bdev = tc->pool_dev->bdev;
1226         to.sector = begin;
1227         to.count = end - begin;
1228
1229         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1230         if (r < 0) {
1231                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1232                 copy_complete(1, 1, m);
1233         }
1234 }
1235
1236 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1237                                       dm_block_t data_begin,
1238                                       struct dm_thin_new_mapping *m)
1239 {
1240         struct pool *pool = tc->pool;
1241         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1242
1243         h->overwrite_mapping = m;
1244         m->bio = bio;
1245         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1246         inc_all_io_entry(pool, bio);
1247         remap_and_issue(tc, bio, data_begin);
1248 }
1249
1250 /*
1251  * A partial copy also needs to zero the uncopied region.
1252  */
1253 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1254                           struct dm_dev *origin, dm_block_t data_origin,
1255                           dm_block_t data_dest,
1256                           struct dm_bio_prison_cell *cell, struct bio *bio,
1257                           sector_t len)
1258 {
1259         int r;
1260         struct pool *pool = tc->pool;
1261         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1262
1263         m->tc = tc;
1264         m->virt_begin = virt_block;
1265         m->virt_end = virt_block + 1u;
1266         m->data_block = data_dest;
1267         m->cell = cell;
1268
1269         /*
1270          * quiesce action + copy action + an extra reference held for the
1271          * duration of this function (we may need to inc later for a
1272          * partial zero).
1273          */
1274         atomic_set(&m->prepare_actions, 3);
1275
1276         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1277                 complete_mapping_preparation(m); /* already quiesced */
1278
1279         /*
1280          * IO to pool_dev remaps to the pool target's data_dev.
1281          *
1282          * If the whole block of data is being overwritten, we can issue the
1283          * bio immediately. Otherwise we use kcopyd to clone the data first.
1284          */
1285         if (io_overwrites_block(pool, bio))
1286                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1287         else {
1288                 struct dm_io_region from, to;
1289
1290                 from.bdev = origin->bdev;
1291                 from.sector = data_origin * pool->sectors_per_block;
1292                 from.count = len;
1293
1294                 to.bdev = tc->pool_dev->bdev;
1295                 to.sector = data_dest * pool->sectors_per_block;
1296                 to.count = len;
1297
1298                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1299                                    0, copy_complete, m);
1300                 if (r < 0) {
1301                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1302                         copy_complete(1, 1, m);
1303
1304                         /*
1305                          * We allow the zero to be issued, to simplify the
1306                          * error path.  Otherwise we'd need to start
1307                          * worrying about decrementing the prepare_actions
1308                          * counter.
1309                          */
1310                 }
1311
1312                 /*
1313                  * Do we need to zero a tail region?
1314                  */
1315                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1316                         atomic_inc(&m->prepare_actions);
1317                         ll_zero(tc, m,
1318                                 data_dest * pool->sectors_per_block + len,
1319                                 (data_dest + 1) * pool->sectors_per_block);
1320                 }
1321         }
1322
1323         complete_mapping_preparation(m); /* drop our ref */
1324 }
1325
1326 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1327                                    dm_block_t data_origin, dm_block_t data_dest,
1328                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1329 {
1330         schedule_copy(tc, virt_block, tc->pool_dev,
1331                       data_origin, data_dest, cell, bio,
1332                       tc->pool->sectors_per_block);
1333 }
1334
1335 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1336                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1337                           struct bio *bio)
1338 {
1339         struct pool *pool = tc->pool;
1340         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1341
1342         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1343         m->tc = tc;
1344         m->virt_begin = virt_block;
1345         m->virt_end = virt_block + 1u;
1346         m->data_block = data_block;
1347         m->cell = cell;
1348
1349         /*
1350          * If the whole block of data is being overwritten or we are not
1351          * zeroing pre-existing data, we can issue the bio immediately.
1352          * Otherwise we use kcopyd to zero the data first.
1353          */
1354         if (pool->pf.zero_new_blocks) {
1355                 if (io_overwrites_block(pool, bio))
1356                         remap_and_issue_overwrite(tc, bio, data_block, m);
1357                 else
1358                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1359                                 (data_block + 1) * pool->sectors_per_block);
1360         } else
1361                 process_prepared_mapping(m);
1362 }
1363
1364 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1365                                    dm_block_t data_dest,
1366                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1367 {
1368         struct pool *pool = tc->pool;
1369         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1370         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1371
1372         if (virt_block_end <= tc->origin_size)
1373                 schedule_copy(tc, virt_block, tc->origin_dev,
1374                               virt_block, data_dest, cell, bio,
1375                               pool->sectors_per_block);
1376
1377         else if (virt_block_begin < tc->origin_size)
1378                 schedule_copy(tc, virt_block, tc->origin_dev,
1379                               virt_block, data_dest, cell, bio,
1380                               tc->origin_size - virt_block_begin);
1381
1382         else
1383                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1384 }
1385
1386 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1387
1388 static void check_for_space(struct pool *pool)
1389 {
1390         int r;
1391         dm_block_t nr_free;
1392
1393         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1394                 return;
1395
1396         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1397         if (r)
1398                 return;
1399
1400         if (nr_free)
1401                 set_pool_mode(pool, PM_WRITE);
1402 }
1403
1404 /*
1405  * A non-zero return indicates read_only or fail_io mode.
1406  * Many callers don't care about the return value.
1407  */
1408 static int commit(struct pool *pool)
1409 {
1410         int r;
1411
1412         if (get_pool_mode(pool) >= PM_READ_ONLY)
1413                 return -EINVAL;
1414
1415         r = dm_pool_commit_metadata(pool->pmd);
1416         if (r)
1417                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1418         else
1419                 check_for_space(pool);
1420
1421         return r;
1422 }
1423
1424 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1425 {
1426         unsigned long flags;
1427
1428         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1429                 DMWARN("%s: reached low water mark for data device: sending event.",
1430                        dm_device_name(pool->pool_md));
1431                 spin_lock_irqsave(&pool->lock, flags);
1432                 pool->low_water_triggered = true;
1433                 spin_unlock_irqrestore(&pool->lock, flags);
1434                 dm_table_event(pool->ti->table);
1435         }
1436 }
1437
1438 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1439 {
1440         int r;
1441         dm_block_t free_blocks;
1442         struct pool *pool = tc->pool;
1443
1444         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1445                 return -EINVAL;
1446
1447         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1448         if (r) {
1449                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1450                 return r;
1451         }
1452
1453         check_low_water_mark(pool, free_blocks);
1454
1455         if (!free_blocks) {
1456                 /*
1457                  * Try to commit to see if that will free up some
1458                  * more space.
1459                  */
1460                 r = commit(pool);
1461                 if (r)
1462                         return r;
1463
1464                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1465                 if (r) {
1466                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1467                         return r;
1468                 }
1469
1470                 if (!free_blocks) {
1471                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1472                         return -ENOSPC;
1473                 }
1474         }
1475
1476         r = dm_pool_alloc_data_block(pool->pmd, result);
1477         if (r) {
1478                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1479                 return r;
1480         }
1481
1482         return 0;
1483 }
1484
1485 /*
1486  * If we have run out of space, queue bios until the device is
1487  * resumed, presumably after having been reloaded with more space.
1488  */
1489 static void retry_on_resume(struct bio *bio)
1490 {
1491         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1492         struct thin_c *tc = h->tc;
1493         unsigned long flags;
1494
1495         spin_lock_irqsave(&tc->lock, flags);
1496         bio_list_add(&tc->retry_on_resume_list, bio);
1497         spin_unlock_irqrestore(&tc->lock, flags);
1498 }
1499
1500 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1501 {
1502         enum pool_mode m = get_pool_mode(pool);
1503
1504         switch (m) {
1505         case PM_WRITE:
1506                 /* Shouldn't get here */
1507                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1508                 return BLK_STS_IOERR;
1509
1510         case PM_OUT_OF_DATA_SPACE:
1511                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1512
1513         case PM_READ_ONLY:
1514         case PM_FAIL:
1515                 return BLK_STS_IOERR;
1516         default:
1517                 /* Shouldn't get here */
1518                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1519                 return BLK_STS_IOERR;
1520         }
1521 }
1522
1523 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1524 {
1525         blk_status_t error = should_error_unserviceable_bio(pool);
1526
1527         if (error) {
1528                 bio->bi_status = error;
1529                 bio_endio(bio);
1530         } else
1531                 retry_on_resume(bio);
1532 }
1533
1534 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1535 {
1536         struct bio *bio;
1537         struct bio_list bios;
1538         blk_status_t error;
1539
1540         error = should_error_unserviceable_bio(pool);
1541         if (error) {
1542                 cell_error_with_code(pool, cell, error);
1543                 return;
1544         }
1545
1546         bio_list_init(&bios);
1547         cell_release(pool, cell, &bios);
1548
1549         while ((bio = bio_list_pop(&bios)))
1550                 retry_on_resume(bio);
1551 }
1552
1553 static void process_discard_cell_no_passdown(struct thin_c *tc,
1554                                              struct dm_bio_prison_cell *virt_cell)
1555 {
1556         struct pool *pool = tc->pool;
1557         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1558
1559         /*
1560          * We don't need to lock the data blocks, since there's no
1561          * passdown.  We only lock data blocks for allocation and breaking sharing.
1562          */
1563         m->tc = tc;
1564         m->virt_begin = virt_cell->key.block_begin;
1565         m->virt_end = virt_cell->key.block_end;
1566         m->cell = virt_cell;
1567         m->bio = virt_cell->holder;
1568
1569         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1570                 pool->process_prepared_discard(m);
1571 }
1572
1573 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1574                                  struct bio *bio)
1575 {
1576         struct pool *pool = tc->pool;
1577
1578         int r;
1579         bool maybe_shared;
1580         struct dm_cell_key data_key;
1581         struct dm_bio_prison_cell *data_cell;
1582         struct dm_thin_new_mapping *m;
1583         dm_block_t virt_begin, virt_end, data_begin;
1584
1585         while (begin != end) {
1586                 r = ensure_next_mapping(pool);
1587                 if (r)
1588                         /* we did our best */
1589                         return;
1590
1591                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1592                                               &data_begin, &maybe_shared);
1593                 if (r)
1594                         /*
1595                          * Silently fail, letting any mappings we've
1596                          * created complete.
1597                          */
1598                         break;
1599
1600                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1601                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1602                         /* contention, we'll give up with this range */
1603                         begin = virt_end;
1604                         continue;
1605                 }
1606
1607                 /*
1608                  * IO may still be going to the destination block.  We must
1609                  * quiesce before we can do the removal.
1610                  */
1611                 m = get_next_mapping(pool);
1612                 m->tc = tc;
1613                 m->maybe_shared = maybe_shared;
1614                 m->virt_begin = virt_begin;
1615                 m->virt_end = virt_end;
1616                 m->data_block = data_begin;
1617                 m->cell = data_cell;
1618                 m->bio = bio;
1619
1620                 /*
1621                  * The parent bio must not complete before sub discard bios are
1622                  * chained to it (see end_discard's bio_chain)!
1623                  *
1624                  * This per-mapping bi_remaining increment is paired with
1625                  * the implicit decrement that occurs via bio_endio() in
1626                  * end_discard().
1627                  */
1628                 bio_inc_remaining(bio);
1629                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1630                         pool->process_prepared_discard(m);
1631
1632                 begin = virt_end;
1633         }
1634 }
1635
1636 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1637 {
1638         struct bio *bio = virt_cell->holder;
1639         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1640
1641         /*
1642          * The virt_cell will only get freed once the origin bio completes.
1643          * This means it will remain locked while all the individual
1644          * passdown bios are in flight.
1645          */
1646         h->cell = virt_cell;
1647         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1648
1649         /*
1650          * We complete the bio now, knowing that the bi_remaining field
1651          * will prevent completion until the sub range discards have
1652          * completed.
1653          */
1654         bio_endio(bio);
1655 }
1656
1657 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1658 {
1659         dm_block_t begin, end;
1660         struct dm_cell_key virt_key;
1661         struct dm_bio_prison_cell *virt_cell;
1662
1663         get_bio_block_range(tc, bio, &begin, &end);
1664         if (begin == end) {
1665                 /*
1666                  * The discard covers less than a block.
1667                  */
1668                 bio_endio(bio);
1669                 return;
1670         }
1671
1672         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1673         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1674                 /*
1675                  * Potential starvation issue: We're relying on the
1676                  * fs/application being well behaved, and not trying to
1677                  * send IO to a region at the same time as discarding it.
1678                  * If they do this persistently then it's possible this
1679                  * cell will never be granted.
1680                  */
1681                 return;
1682
1683         tc->pool->process_discard_cell(tc, virt_cell);
1684 }
1685
1686 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1687                           struct dm_cell_key *key,
1688                           struct dm_thin_lookup_result *lookup_result,
1689                           struct dm_bio_prison_cell *cell)
1690 {
1691         int r;
1692         dm_block_t data_block;
1693         struct pool *pool = tc->pool;
1694
1695         r = alloc_data_block(tc, &data_block);
1696         switch (r) {
1697         case 0:
1698                 schedule_internal_copy(tc, block, lookup_result->block,
1699                                        data_block, cell, bio);
1700                 break;
1701
1702         case -ENOSPC:
1703                 retry_bios_on_resume(pool, cell);
1704                 break;
1705
1706         default:
1707                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1708                             __func__, r);
1709                 cell_error(pool, cell);
1710                 break;
1711         }
1712 }
1713
1714 static void __remap_and_issue_shared_cell(void *context,
1715                                           struct dm_bio_prison_cell *cell)
1716 {
1717         struct remap_info *info = context;
1718         struct bio *bio;
1719
1720         while ((bio = bio_list_pop(&cell->bios))) {
1721                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1722                     bio_op(bio) == REQ_OP_DISCARD)
1723                         bio_list_add(&info->defer_bios, bio);
1724                 else {
1725                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1726
1727                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1728                         inc_all_io_entry(info->tc->pool, bio);
1729                         bio_list_add(&info->issue_bios, bio);
1730                 }
1731         }
1732 }
1733
1734 static void remap_and_issue_shared_cell(struct thin_c *tc,
1735                                         struct dm_bio_prison_cell *cell,
1736                                         dm_block_t block)
1737 {
1738         struct bio *bio;
1739         struct remap_info info;
1740
1741         info.tc = tc;
1742         bio_list_init(&info.defer_bios);
1743         bio_list_init(&info.issue_bios);
1744
1745         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1746                            &info, cell);
1747
1748         while ((bio = bio_list_pop(&info.defer_bios)))
1749                 thin_defer_bio(tc, bio);
1750
1751         while ((bio = bio_list_pop(&info.issue_bios)))
1752                 remap_and_issue(tc, bio, block);
1753 }
1754
1755 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1756                                dm_block_t block,
1757                                struct dm_thin_lookup_result *lookup_result,
1758                                struct dm_bio_prison_cell *virt_cell)
1759 {
1760         struct dm_bio_prison_cell *data_cell;
1761         struct pool *pool = tc->pool;
1762         struct dm_cell_key key;
1763
1764         /*
1765          * If cell is already occupied, then sharing is already in the process
1766          * of being broken so we have nothing further to do here.
1767          */
1768         build_data_key(tc->td, lookup_result->block, &key);
1769         if (bio_detain(pool, &key, bio, &data_cell)) {
1770                 cell_defer_no_holder(tc, virt_cell);
1771                 return;
1772         }
1773
1774         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1775                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1776                 cell_defer_no_holder(tc, virt_cell);
1777         } else {
1778                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1779
1780                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1781                 inc_all_io_entry(pool, bio);
1782                 remap_and_issue(tc, bio, lookup_result->block);
1783
1784                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1785                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1786         }
1787 }
1788
1789 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1790                             struct dm_bio_prison_cell *cell)
1791 {
1792         int r;
1793         dm_block_t data_block;
1794         struct pool *pool = tc->pool;
1795
1796         /*
1797          * Remap empty bios (flushes) immediately, without provisioning.
1798          */
1799         if (!bio->bi_iter.bi_size) {
1800                 inc_all_io_entry(pool, bio);
1801                 cell_defer_no_holder(tc, cell);
1802
1803                 remap_and_issue(tc, bio, 0);
1804                 return;
1805         }
1806
1807         /*
1808          * Fill read bios with zeroes and complete them immediately.
1809          */
1810         if (bio_data_dir(bio) == READ) {
1811                 zero_fill_bio(bio);
1812                 cell_defer_no_holder(tc, cell);
1813                 bio_endio(bio);
1814                 return;
1815         }
1816
1817         r = alloc_data_block(tc, &data_block);
1818         switch (r) {
1819         case 0:
1820                 if (tc->origin_dev)
1821                         schedule_external_copy(tc, block, data_block, cell, bio);
1822                 else
1823                         schedule_zero(tc, block, data_block, cell, bio);
1824                 break;
1825
1826         case -ENOSPC:
1827                 retry_bios_on_resume(pool, cell);
1828                 break;
1829
1830         default:
1831                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1832                             __func__, r);
1833                 cell_error(pool, cell);
1834                 break;
1835         }
1836 }
1837
1838 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1839 {
1840         int r;
1841         struct pool *pool = tc->pool;
1842         struct bio *bio = cell->holder;
1843         dm_block_t block = get_bio_block(tc, bio);
1844         struct dm_thin_lookup_result lookup_result;
1845
1846         if (tc->requeue_mode) {
1847                 cell_requeue(pool, cell);
1848                 return;
1849         }
1850
1851         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1852         switch (r) {
1853         case 0:
1854                 if (lookup_result.shared)
1855                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1856                 else {
1857                         inc_all_io_entry(pool, bio);
1858                         remap_and_issue(tc, bio, lookup_result.block);
1859                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1860                 }
1861                 break;
1862
1863         case -ENODATA:
1864                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1865                         inc_all_io_entry(pool, bio);
1866                         cell_defer_no_holder(tc, cell);
1867
1868                         if (bio_end_sector(bio) <= tc->origin_size)
1869                                 remap_to_origin_and_issue(tc, bio);
1870
1871                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1872                                 zero_fill_bio(bio);
1873                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1874                                 remap_to_origin_and_issue(tc, bio);
1875
1876                         } else {
1877                                 zero_fill_bio(bio);
1878                                 bio_endio(bio);
1879                         }
1880                 } else
1881                         provision_block(tc, bio, block, cell);
1882                 break;
1883
1884         default:
1885                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1886                             __func__, r);
1887                 cell_defer_no_holder(tc, cell);
1888                 bio_io_error(bio);
1889                 break;
1890         }
1891 }
1892
1893 static void process_bio(struct thin_c *tc, struct bio *bio)
1894 {
1895         struct pool *pool = tc->pool;
1896         dm_block_t block = get_bio_block(tc, bio);
1897         struct dm_bio_prison_cell *cell;
1898         struct dm_cell_key key;
1899
1900         /*
1901          * If cell is already occupied, then the block is already
1902          * being provisioned so we have nothing further to do here.
1903          */
1904         build_virtual_key(tc->td, block, &key);
1905         if (bio_detain(pool, &key, bio, &cell))
1906                 return;
1907
1908         process_cell(tc, cell);
1909 }
1910
1911 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1912                                     struct dm_bio_prison_cell *cell)
1913 {
1914         int r;
1915         int rw = bio_data_dir(bio);
1916         dm_block_t block = get_bio_block(tc, bio);
1917         struct dm_thin_lookup_result lookup_result;
1918
1919         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1920         switch (r) {
1921         case 0:
1922                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1923                         handle_unserviceable_bio(tc->pool, bio);
1924                         if (cell)
1925                                 cell_defer_no_holder(tc, cell);
1926                 } else {
1927                         inc_all_io_entry(tc->pool, bio);
1928                         remap_and_issue(tc, bio, lookup_result.block);
1929                         if (cell)
1930                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1931                 }
1932                 break;
1933
1934         case -ENODATA:
1935                 if (cell)
1936                         cell_defer_no_holder(tc, cell);
1937                 if (rw != READ) {
1938                         handle_unserviceable_bio(tc->pool, bio);
1939                         break;
1940                 }
1941
1942                 if (tc->origin_dev) {
1943                         inc_all_io_entry(tc->pool, bio);
1944                         remap_to_origin_and_issue(tc, bio);
1945                         break;
1946                 }
1947
1948                 zero_fill_bio(bio);
1949                 bio_endio(bio);
1950                 break;
1951
1952         default:
1953                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1954                             __func__, r);
1955                 if (cell)
1956                         cell_defer_no_holder(tc, cell);
1957                 bio_io_error(bio);
1958                 break;
1959         }
1960 }
1961
1962 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1963 {
1964         __process_bio_read_only(tc, bio, NULL);
1965 }
1966
1967 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1968 {
1969         __process_bio_read_only(tc, cell->holder, cell);
1970 }
1971
1972 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1973 {
1974         bio_endio(bio);
1975 }
1976
1977 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1978 {
1979         bio_io_error(bio);
1980 }
1981
1982 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1983 {
1984         cell_success(tc->pool, cell);
1985 }
1986
1987 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1988 {
1989         cell_error(tc->pool, cell);
1990 }
1991
1992 /*
1993  * FIXME: should we also commit due to size of transaction, measured in
1994  * metadata blocks?
1995  */
1996 static int need_commit_due_to_time(struct pool *pool)
1997 {
1998         return !time_in_range(jiffies, pool->last_commit_jiffies,
1999                               pool->last_commit_jiffies + COMMIT_PERIOD);
2000 }
2001
2002 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2003 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2004
2005 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2006 {
2007         struct rb_node **rbp, *parent;
2008         struct dm_thin_endio_hook *pbd;
2009         sector_t bi_sector = bio->bi_iter.bi_sector;
2010
2011         rbp = &tc->sort_bio_list.rb_node;
2012         parent = NULL;
2013         while (*rbp) {
2014                 parent = *rbp;
2015                 pbd = thin_pbd(parent);
2016
2017                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2018                         rbp = &(*rbp)->rb_left;
2019                 else
2020                         rbp = &(*rbp)->rb_right;
2021         }
2022
2023         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2024         rb_link_node(&pbd->rb_node, parent, rbp);
2025         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2026 }
2027
2028 static void __extract_sorted_bios(struct thin_c *tc)
2029 {
2030         struct rb_node *node;
2031         struct dm_thin_endio_hook *pbd;
2032         struct bio *bio;
2033
2034         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2035                 pbd = thin_pbd(node);
2036                 bio = thin_bio(pbd);
2037
2038                 bio_list_add(&tc->deferred_bio_list, bio);
2039                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2040         }
2041
2042         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2043 }
2044
2045 static void __sort_thin_deferred_bios(struct thin_c *tc)
2046 {
2047         struct bio *bio;
2048         struct bio_list bios;
2049
2050         bio_list_init(&bios);
2051         bio_list_merge(&bios, &tc->deferred_bio_list);
2052         bio_list_init(&tc->deferred_bio_list);
2053
2054         /* Sort deferred_bio_list using rb-tree */
2055         while ((bio = bio_list_pop(&bios)))
2056                 __thin_bio_rb_add(tc, bio);
2057
2058         /*
2059          * Transfer the sorted bios in sort_bio_list back to
2060          * deferred_bio_list to allow lockless submission of
2061          * all bios.
2062          */
2063         __extract_sorted_bios(tc);
2064 }
2065
2066 static void process_thin_deferred_bios(struct thin_c *tc)
2067 {
2068         struct pool *pool = tc->pool;
2069         unsigned long flags;
2070         struct bio *bio;
2071         struct bio_list bios;
2072         struct blk_plug plug;
2073         unsigned count = 0;
2074
2075         if (tc->requeue_mode) {
2076                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2077                                 BLK_STS_DM_REQUEUE);
2078                 return;
2079         }
2080
2081         bio_list_init(&bios);
2082
2083         spin_lock_irqsave(&tc->lock, flags);
2084
2085         if (bio_list_empty(&tc->deferred_bio_list)) {
2086                 spin_unlock_irqrestore(&tc->lock, flags);
2087                 return;
2088         }
2089
2090         __sort_thin_deferred_bios(tc);
2091
2092         bio_list_merge(&bios, &tc->deferred_bio_list);
2093         bio_list_init(&tc->deferred_bio_list);
2094
2095         spin_unlock_irqrestore(&tc->lock, flags);
2096
2097         blk_start_plug(&plug);
2098         while ((bio = bio_list_pop(&bios))) {
2099                 /*
2100                  * If we've got no free new_mapping structs, and processing
2101                  * this bio might require one, we pause until there are some
2102                  * prepared mappings to process.
2103                  */
2104                 if (ensure_next_mapping(pool)) {
2105                         spin_lock_irqsave(&tc->lock, flags);
2106                         bio_list_add(&tc->deferred_bio_list, bio);
2107                         bio_list_merge(&tc->deferred_bio_list, &bios);
2108                         spin_unlock_irqrestore(&tc->lock, flags);
2109                         break;
2110                 }
2111
2112                 if (bio_op(bio) == REQ_OP_DISCARD)
2113                         pool->process_discard(tc, bio);
2114                 else
2115                         pool->process_bio(tc, bio);
2116
2117                 if ((count++ & 127) == 0) {
2118                         throttle_work_update(&pool->throttle);
2119                         dm_pool_issue_prefetches(pool->pmd);
2120                 }
2121         }
2122         blk_finish_plug(&plug);
2123 }
2124
2125 static int cmp_cells(const void *lhs, const void *rhs)
2126 {
2127         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2128         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2129
2130         BUG_ON(!lhs_cell->holder);
2131         BUG_ON(!rhs_cell->holder);
2132
2133         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2134                 return -1;
2135
2136         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2137                 return 1;
2138
2139         return 0;
2140 }
2141
2142 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2143 {
2144         unsigned count = 0;
2145         struct dm_bio_prison_cell *cell, *tmp;
2146
2147         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2148                 if (count >= CELL_SORT_ARRAY_SIZE)
2149                         break;
2150
2151                 pool->cell_sort_array[count++] = cell;
2152                 list_del(&cell->user_list);
2153         }
2154
2155         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2156
2157         return count;
2158 }
2159
2160 static void process_thin_deferred_cells(struct thin_c *tc)
2161 {
2162         struct pool *pool = tc->pool;
2163         unsigned long flags;
2164         struct list_head cells;
2165         struct dm_bio_prison_cell *cell;
2166         unsigned i, j, count;
2167
2168         INIT_LIST_HEAD(&cells);
2169
2170         spin_lock_irqsave(&tc->lock, flags);
2171         list_splice_init(&tc->deferred_cells, &cells);
2172         spin_unlock_irqrestore(&tc->lock, flags);
2173
2174         if (list_empty(&cells))
2175                 return;
2176
2177         do {
2178                 count = sort_cells(tc->pool, &cells);
2179
2180                 for (i = 0; i < count; i++) {
2181                         cell = pool->cell_sort_array[i];
2182                         BUG_ON(!cell->holder);
2183
2184                         /*
2185                          * If we've got no free new_mapping structs, and processing
2186                          * this bio might require one, we pause until there are some
2187                          * prepared mappings to process.
2188                          */
2189                         if (ensure_next_mapping(pool)) {
2190                                 for (j = i; j < count; j++)
2191                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2192
2193                                 spin_lock_irqsave(&tc->lock, flags);
2194                                 list_splice(&cells, &tc->deferred_cells);
2195                                 spin_unlock_irqrestore(&tc->lock, flags);
2196                                 return;
2197                         }
2198
2199                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2200                                 pool->process_discard_cell(tc, cell);
2201                         else
2202                                 pool->process_cell(tc, cell);
2203                 }
2204         } while (!list_empty(&cells));
2205 }
2206
2207 static void thin_get(struct thin_c *tc);
2208 static void thin_put(struct thin_c *tc);
2209
2210 /*
2211  * We can't hold rcu_read_lock() around code that can block.  So we
2212  * find a thin with the rcu lock held; bump a refcount; then drop
2213  * the lock.
2214  */
2215 static struct thin_c *get_first_thin(struct pool *pool)
2216 {
2217         struct thin_c *tc = NULL;
2218
2219         rcu_read_lock();
2220         if (!list_empty(&pool->active_thins)) {
2221                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2222                 thin_get(tc);
2223         }
2224         rcu_read_unlock();
2225
2226         return tc;
2227 }
2228
2229 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2230 {
2231         struct thin_c *old_tc = tc;
2232
2233         rcu_read_lock();
2234         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2235                 thin_get(tc);
2236                 thin_put(old_tc);
2237                 rcu_read_unlock();
2238                 return tc;
2239         }
2240         thin_put(old_tc);
2241         rcu_read_unlock();
2242
2243         return NULL;
2244 }
2245
2246 static void process_deferred_bios(struct pool *pool)
2247 {
2248         unsigned long flags;
2249         struct bio *bio;
2250         struct bio_list bios;
2251         struct thin_c *tc;
2252
2253         tc = get_first_thin(pool);
2254         while (tc) {
2255                 process_thin_deferred_cells(tc);
2256                 process_thin_deferred_bios(tc);
2257                 tc = get_next_thin(pool, tc);
2258         }
2259
2260         /*
2261          * If there are any deferred flush bios, we must commit
2262          * the metadata before issuing them.
2263          */
2264         bio_list_init(&bios);
2265         spin_lock_irqsave(&pool->lock, flags);
2266         bio_list_merge(&bios, &pool->deferred_flush_bios);
2267         bio_list_init(&pool->deferred_flush_bios);
2268         spin_unlock_irqrestore(&pool->lock, flags);
2269
2270         if (bio_list_empty(&bios) &&
2271             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2272                 return;
2273
2274         if (commit(pool)) {
2275                 while ((bio = bio_list_pop(&bios)))
2276                         bio_io_error(bio);
2277                 return;
2278         }
2279         pool->last_commit_jiffies = jiffies;
2280
2281         while ((bio = bio_list_pop(&bios)))
2282                 generic_make_request(bio);
2283 }
2284
2285 static void do_worker(struct work_struct *ws)
2286 {
2287         struct pool *pool = container_of(ws, struct pool, worker);
2288
2289         throttle_work_start(&pool->throttle);
2290         dm_pool_issue_prefetches(pool->pmd);
2291         throttle_work_update(&pool->throttle);
2292         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2293         throttle_work_update(&pool->throttle);
2294         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2295         throttle_work_update(&pool->throttle);
2296         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2297         throttle_work_update(&pool->throttle);
2298         process_deferred_bios(pool);
2299         throttle_work_complete(&pool->throttle);
2300 }
2301
2302 /*
2303  * We want to commit periodically so that not too much
2304  * unwritten data builds up.
2305  */
2306 static void do_waker(struct work_struct *ws)
2307 {
2308         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2309         wake_worker(pool);
2310         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2311 }
2312
2313 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2314
2315 /*
2316  * We're holding onto IO to allow userland time to react.  After the
2317  * timeout either the pool will have been resized (and thus back in
2318  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2319  */
2320 static void do_no_space_timeout(struct work_struct *ws)
2321 {
2322         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2323                                          no_space_timeout);
2324
2325         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2326                 pool->pf.error_if_no_space = true;
2327                 notify_of_pool_mode_change_to_oods(pool);
2328                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2329         }
2330 }
2331
2332 /*----------------------------------------------------------------*/
2333
2334 struct pool_work {
2335         struct work_struct worker;
2336         struct completion complete;
2337 };
2338
2339 static struct pool_work *to_pool_work(struct work_struct *ws)
2340 {
2341         return container_of(ws, struct pool_work, worker);
2342 }
2343
2344 static void pool_work_complete(struct pool_work *pw)
2345 {
2346         complete(&pw->complete);
2347 }
2348
2349 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2350                            void (*fn)(struct work_struct *))
2351 {
2352         INIT_WORK_ONSTACK(&pw->worker, fn);
2353         init_completion(&pw->complete);
2354         queue_work(pool->wq, &pw->worker);
2355         wait_for_completion(&pw->complete);
2356 }
2357
2358 /*----------------------------------------------------------------*/
2359
2360 struct noflush_work {
2361         struct pool_work pw;
2362         struct thin_c *tc;
2363 };
2364
2365 static struct noflush_work *to_noflush(struct work_struct *ws)
2366 {
2367         return container_of(to_pool_work(ws), struct noflush_work, pw);
2368 }
2369
2370 static void do_noflush_start(struct work_struct *ws)
2371 {
2372         struct noflush_work *w = to_noflush(ws);
2373         w->tc->requeue_mode = true;
2374         requeue_io(w->tc);
2375         pool_work_complete(&w->pw);
2376 }
2377
2378 static void do_noflush_stop(struct work_struct *ws)
2379 {
2380         struct noflush_work *w = to_noflush(ws);
2381         w->tc->requeue_mode = false;
2382         pool_work_complete(&w->pw);
2383 }
2384
2385 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2386 {
2387         struct noflush_work w;
2388
2389         w.tc = tc;
2390         pool_work_wait(&w.pw, tc->pool, fn);
2391 }
2392
2393 /*----------------------------------------------------------------*/
2394
2395 static enum pool_mode get_pool_mode(struct pool *pool)
2396 {
2397         return pool->pf.mode;
2398 }
2399
2400 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2401 {
2402         dm_table_event(pool->ti->table);
2403         DMINFO("%s: switching pool to %s mode",
2404                dm_device_name(pool->pool_md), new_mode);
2405 }
2406
2407 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2408 {
2409         if (!pool->pf.error_if_no_space)
2410                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2411         else
2412                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2413 }
2414
2415 static bool passdown_enabled(struct pool_c *pt)
2416 {
2417         return pt->adjusted_pf.discard_passdown;
2418 }
2419
2420 static void set_discard_callbacks(struct pool *pool)
2421 {
2422         struct pool_c *pt = pool->ti->private;
2423
2424         if (passdown_enabled(pt)) {
2425                 pool->process_discard_cell = process_discard_cell_passdown;
2426                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2427                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2428         } else {
2429                 pool->process_discard_cell = process_discard_cell_no_passdown;
2430                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2431         }
2432 }
2433
2434 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2435 {
2436         struct pool_c *pt = pool->ti->private;
2437         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2438         enum pool_mode old_mode = get_pool_mode(pool);
2439         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2440
2441         /*
2442          * Never allow the pool to transition to PM_WRITE mode if user
2443          * intervention is required to verify metadata and data consistency.
2444          */
2445         if (new_mode == PM_WRITE && needs_check) {
2446                 DMERR("%s: unable to switch pool to write mode until repaired.",
2447                       dm_device_name(pool->pool_md));
2448                 if (old_mode != new_mode)
2449                         new_mode = old_mode;
2450                 else
2451                         new_mode = PM_READ_ONLY;
2452         }
2453         /*
2454          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2455          * not going to recover without a thin_repair.  So we never let the
2456          * pool move out of the old mode.
2457          */
2458         if (old_mode == PM_FAIL)
2459                 new_mode = old_mode;
2460
2461         switch (new_mode) {
2462         case PM_FAIL:
2463                 if (old_mode != new_mode)
2464                         notify_of_pool_mode_change(pool, "failure");
2465                 dm_pool_metadata_read_only(pool->pmd);
2466                 pool->process_bio = process_bio_fail;
2467                 pool->process_discard = process_bio_fail;
2468                 pool->process_cell = process_cell_fail;
2469                 pool->process_discard_cell = process_cell_fail;
2470                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2471                 pool->process_prepared_discard = process_prepared_discard_fail;
2472
2473                 error_retry_list(pool);
2474                 break;
2475
2476         case PM_READ_ONLY:
2477                 if (old_mode != new_mode)
2478                         notify_of_pool_mode_change(pool, "read-only");
2479                 dm_pool_metadata_read_only(pool->pmd);
2480                 pool->process_bio = process_bio_read_only;
2481                 pool->process_discard = process_bio_success;
2482                 pool->process_cell = process_cell_read_only;
2483                 pool->process_discard_cell = process_cell_success;
2484                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2485                 pool->process_prepared_discard = process_prepared_discard_success;
2486
2487                 error_retry_list(pool);
2488                 break;
2489
2490         case PM_OUT_OF_DATA_SPACE:
2491                 /*
2492                  * Ideally we'd never hit this state; the low water mark
2493                  * would trigger userland to extend the pool before we
2494                  * completely run out of data space.  However, many small
2495                  * IOs to unprovisioned space can consume data space at an
2496                  * alarming rate.  Adjust your low water mark if you're
2497                  * frequently seeing this mode.
2498                  */
2499                 if (old_mode != new_mode)
2500                         notify_of_pool_mode_change_to_oods(pool);
2501                 pool->out_of_data_space = true;
2502                 pool->process_bio = process_bio_read_only;
2503                 pool->process_discard = process_discard_bio;
2504                 pool->process_cell = process_cell_read_only;
2505                 pool->process_prepared_mapping = process_prepared_mapping;
2506                 set_discard_callbacks(pool);
2507
2508                 if (!pool->pf.error_if_no_space && no_space_timeout)
2509                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2510                 break;
2511
2512         case PM_WRITE:
2513                 if (old_mode != new_mode)
2514                         notify_of_pool_mode_change(pool, "write");
2515                 pool->out_of_data_space = false;
2516                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2517                 dm_pool_metadata_read_write(pool->pmd);
2518                 pool->process_bio = process_bio;
2519                 pool->process_discard = process_discard_bio;
2520                 pool->process_cell = process_cell;
2521                 pool->process_prepared_mapping = process_prepared_mapping;
2522                 set_discard_callbacks(pool);
2523                 break;
2524         }
2525
2526         pool->pf.mode = new_mode;
2527         /*
2528          * The pool mode may have changed, sync it so bind_control_target()
2529          * doesn't cause an unexpected mode transition on resume.
2530          */
2531         pt->adjusted_pf.mode = new_mode;
2532 }
2533
2534 static void abort_transaction(struct pool *pool)
2535 {
2536         const char *dev_name = dm_device_name(pool->pool_md);
2537
2538         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2539         if (dm_pool_abort_metadata(pool->pmd)) {
2540                 DMERR("%s: failed to abort metadata transaction", dev_name);
2541                 set_pool_mode(pool, PM_FAIL);
2542         }
2543
2544         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2545                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2546                 set_pool_mode(pool, PM_FAIL);
2547         }
2548 }
2549
2550 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2551 {
2552         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2553                     dm_device_name(pool->pool_md), op, r);
2554
2555         abort_transaction(pool);
2556         set_pool_mode(pool, PM_READ_ONLY);
2557 }
2558
2559 /*----------------------------------------------------------------*/
2560
2561 /*
2562  * Mapping functions.
2563  */
2564
2565 /*
2566  * Called only while mapping a thin bio to hand it over to the workqueue.
2567  */
2568 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2569 {
2570         unsigned long flags;
2571         struct pool *pool = tc->pool;
2572
2573         spin_lock_irqsave(&tc->lock, flags);
2574         bio_list_add(&tc->deferred_bio_list, bio);
2575         spin_unlock_irqrestore(&tc->lock, flags);
2576
2577         wake_worker(pool);
2578 }
2579
2580 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2581 {
2582         struct pool *pool = tc->pool;
2583
2584         throttle_lock(&pool->throttle);
2585         thin_defer_bio(tc, bio);
2586         throttle_unlock(&pool->throttle);
2587 }
2588
2589 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2590 {
2591         unsigned long flags;
2592         struct pool *pool = tc->pool;
2593
2594         throttle_lock(&pool->throttle);
2595         spin_lock_irqsave(&tc->lock, flags);
2596         list_add_tail(&cell->user_list, &tc->deferred_cells);
2597         spin_unlock_irqrestore(&tc->lock, flags);
2598         throttle_unlock(&pool->throttle);
2599
2600         wake_worker(pool);
2601 }
2602
2603 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2604 {
2605         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2606
2607         h->tc = tc;
2608         h->shared_read_entry = NULL;
2609         h->all_io_entry = NULL;
2610         h->overwrite_mapping = NULL;
2611         h->cell = NULL;
2612 }
2613
2614 /*
2615  * Non-blocking function called from the thin target's map function.
2616  */
2617 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2618 {
2619         int r;
2620         struct thin_c *tc = ti->private;
2621         dm_block_t block = get_bio_block(tc, bio);
2622         struct dm_thin_device *td = tc->td;
2623         struct dm_thin_lookup_result result;
2624         struct dm_bio_prison_cell *virt_cell, *data_cell;
2625         struct dm_cell_key key;
2626
2627         thin_hook_bio(tc, bio);
2628
2629         if (tc->requeue_mode) {
2630                 bio->bi_status = BLK_STS_DM_REQUEUE;
2631                 bio_endio(bio);
2632                 return DM_MAPIO_SUBMITTED;
2633         }
2634
2635         if (get_pool_mode(tc->pool) == PM_FAIL) {
2636                 bio_io_error(bio);
2637                 return DM_MAPIO_SUBMITTED;
2638         }
2639
2640         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2641                 thin_defer_bio_with_throttle(tc, bio);
2642                 return DM_MAPIO_SUBMITTED;
2643         }
2644
2645         /*
2646          * We must hold the virtual cell before doing the lookup, otherwise
2647          * there's a race with discard.
2648          */
2649         build_virtual_key(tc->td, block, &key);
2650         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2651                 return DM_MAPIO_SUBMITTED;
2652
2653         r = dm_thin_find_block(td, block, 0, &result);
2654
2655         /*
2656          * Note that we defer readahead too.
2657          */
2658         switch (r) {
2659         case 0:
2660                 if (unlikely(result.shared)) {
2661                         /*
2662                          * We have a race condition here between the
2663                          * result.shared value returned by the lookup and
2664                          * snapshot creation, which may cause new
2665                          * sharing.
2666                          *
2667                          * To avoid this always quiesce the origin before
2668                          * taking the snap.  You want to do this anyway to
2669                          * ensure a consistent application view
2670                          * (i.e. lockfs).
2671                          *
2672                          * More distant ancestors are irrelevant. The
2673                          * shared flag will be set in their case.
2674                          */
2675                         thin_defer_cell(tc, virt_cell);
2676                         return DM_MAPIO_SUBMITTED;
2677                 }
2678
2679                 build_data_key(tc->td, result.block, &key);
2680                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2681                         cell_defer_no_holder(tc, virt_cell);
2682                         return DM_MAPIO_SUBMITTED;
2683                 }
2684
2685                 inc_all_io_entry(tc->pool, bio);
2686                 cell_defer_no_holder(tc, data_cell);
2687                 cell_defer_no_holder(tc, virt_cell);
2688
2689                 remap(tc, bio, result.block);
2690                 return DM_MAPIO_REMAPPED;
2691
2692         case -ENODATA:
2693         case -EWOULDBLOCK:
2694                 thin_defer_cell(tc, virt_cell);
2695                 return DM_MAPIO_SUBMITTED;
2696
2697         default:
2698                 /*
2699                  * Must always call bio_io_error on failure.
2700                  * dm_thin_find_block can fail with -EINVAL if the
2701                  * pool is switched to fail-io mode.
2702                  */
2703                 bio_io_error(bio);
2704                 cell_defer_no_holder(tc, virt_cell);
2705                 return DM_MAPIO_SUBMITTED;
2706         }
2707 }
2708
2709 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2710 {
2711         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2712         struct request_queue *q;
2713
2714         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2715                 return 1;
2716
2717         q = bdev_get_queue(pt->data_dev->bdev);
2718         return bdi_congested(q->backing_dev_info, bdi_bits);
2719 }
2720
2721 static void requeue_bios(struct pool *pool)
2722 {
2723         unsigned long flags;
2724         struct thin_c *tc;
2725
2726         rcu_read_lock();
2727         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2728                 spin_lock_irqsave(&tc->lock, flags);
2729                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2730                 bio_list_init(&tc->retry_on_resume_list);
2731                 spin_unlock_irqrestore(&tc->lock, flags);
2732         }
2733         rcu_read_unlock();
2734 }
2735
2736 /*----------------------------------------------------------------
2737  * Binding of control targets to a pool object
2738  *--------------------------------------------------------------*/
2739 static bool data_dev_supports_discard(struct pool_c *pt)
2740 {
2741         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2742
2743         return q && blk_queue_discard(q);
2744 }
2745
2746 static bool is_factor(sector_t block_size, uint32_t n)
2747 {
2748         return !sector_div(block_size, n);
2749 }
2750
2751 /*
2752  * If discard_passdown was enabled verify that the data device
2753  * supports discards.  Disable discard_passdown if not.
2754  */
2755 static void disable_passdown_if_not_supported(struct pool_c *pt)
2756 {
2757         struct pool *pool = pt->pool;
2758         struct block_device *data_bdev = pt->data_dev->bdev;
2759         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2760         const char *reason = NULL;
2761         char buf[BDEVNAME_SIZE];
2762
2763         if (!pt->adjusted_pf.discard_passdown)
2764                 return;
2765
2766         if (!data_dev_supports_discard(pt))
2767                 reason = "discard unsupported";
2768
2769         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2770                 reason = "max discard sectors smaller than a block";
2771
2772         if (reason) {
2773                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2774                 pt->adjusted_pf.discard_passdown = false;
2775         }
2776 }
2777
2778 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2779 {
2780         struct pool_c *pt = ti->private;
2781
2782         /*
2783          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2784          */
2785         enum pool_mode old_mode = get_pool_mode(pool);
2786         enum pool_mode new_mode = pt->adjusted_pf.mode;
2787
2788         /*
2789          * Don't change the pool's mode until set_pool_mode() below.
2790          * Otherwise the pool's process_* function pointers may
2791          * not match the desired pool mode.
2792          */
2793         pt->adjusted_pf.mode = old_mode;
2794
2795         pool->ti = ti;
2796         pool->pf = pt->adjusted_pf;
2797         pool->low_water_blocks = pt->low_water_blocks;
2798
2799         set_pool_mode(pool, new_mode);
2800
2801         return 0;
2802 }
2803
2804 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2805 {
2806         if (pool->ti == ti)
2807                 pool->ti = NULL;
2808 }
2809
2810 /*----------------------------------------------------------------
2811  * Pool creation
2812  *--------------------------------------------------------------*/
2813 /* Initialize pool features. */
2814 static void pool_features_init(struct pool_features *pf)
2815 {
2816         pf->mode = PM_WRITE;
2817         pf->zero_new_blocks = true;
2818         pf->discard_enabled = true;
2819         pf->discard_passdown = true;
2820         pf->error_if_no_space = false;
2821 }
2822
2823 static void __pool_destroy(struct pool *pool)
2824 {
2825         __pool_table_remove(pool);
2826
2827         vfree(pool->cell_sort_array);
2828         if (dm_pool_metadata_close(pool->pmd) < 0)
2829                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2830
2831         dm_bio_prison_destroy(pool->prison);
2832         dm_kcopyd_client_destroy(pool->copier);
2833
2834         if (pool->wq)
2835                 destroy_workqueue(pool->wq);
2836
2837         if (pool->next_mapping)
2838                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2839         mempool_exit(&pool->mapping_pool);
2840         dm_deferred_set_destroy(pool->shared_read_ds);
2841         dm_deferred_set_destroy(pool->all_io_ds);
2842         kfree(pool);
2843 }
2844
2845 static struct kmem_cache *_new_mapping_cache;
2846
2847 static struct pool *pool_create(struct mapped_device *pool_md,
2848                                 struct block_device *metadata_dev,
2849                                 unsigned long block_size,
2850                                 int read_only, char **error)
2851 {
2852         int r;
2853         void *err_p;
2854         struct pool *pool;
2855         struct dm_pool_metadata *pmd;
2856         bool format_device = read_only ? false : true;
2857
2858         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2859         if (IS_ERR(pmd)) {
2860                 *error = "Error creating metadata object";
2861                 return (struct pool *)pmd;
2862         }
2863
2864         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2865         if (!pool) {
2866                 *error = "Error allocating memory for pool";
2867                 err_p = ERR_PTR(-ENOMEM);
2868                 goto bad_pool;
2869         }
2870
2871         pool->pmd = pmd;
2872         pool->sectors_per_block = block_size;
2873         if (block_size & (block_size - 1))
2874                 pool->sectors_per_block_shift = -1;
2875         else
2876                 pool->sectors_per_block_shift = __ffs(block_size);
2877         pool->low_water_blocks = 0;
2878         pool_features_init(&pool->pf);
2879         pool->prison = dm_bio_prison_create();
2880         if (!pool->prison) {
2881                 *error = "Error creating pool's bio prison";
2882                 err_p = ERR_PTR(-ENOMEM);
2883                 goto bad_prison;
2884         }
2885
2886         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2887         if (IS_ERR(pool->copier)) {
2888                 r = PTR_ERR(pool->copier);
2889                 *error = "Error creating pool's kcopyd client";
2890                 err_p = ERR_PTR(r);
2891                 goto bad_kcopyd_client;
2892         }
2893
2894         /*
2895          * Create singlethreaded workqueue that will service all devices
2896          * that use this metadata.
2897          */
2898         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2899         if (!pool->wq) {
2900                 *error = "Error creating pool's workqueue";
2901                 err_p = ERR_PTR(-ENOMEM);
2902                 goto bad_wq;
2903         }
2904
2905         throttle_init(&pool->throttle);
2906         INIT_WORK(&pool->worker, do_worker);
2907         INIT_DELAYED_WORK(&pool->waker, do_waker);
2908         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2909         spin_lock_init(&pool->lock);
2910         bio_list_init(&pool->deferred_flush_bios);
2911         INIT_LIST_HEAD(&pool->prepared_mappings);
2912         INIT_LIST_HEAD(&pool->prepared_discards);
2913         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2914         INIT_LIST_HEAD(&pool->active_thins);
2915         pool->low_water_triggered = false;
2916         pool->suspended = true;
2917         pool->out_of_data_space = false;
2918
2919         pool->shared_read_ds = dm_deferred_set_create();
2920         if (!pool->shared_read_ds) {
2921                 *error = "Error creating pool's shared read deferred set";
2922                 err_p = ERR_PTR(-ENOMEM);
2923                 goto bad_shared_read_ds;
2924         }
2925
2926         pool->all_io_ds = dm_deferred_set_create();
2927         if (!pool->all_io_ds) {
2928                 *error = "Error creating pool's all io deferred set";
2929                 err_p = ERR_PTR(-ENOMEM);
2930                 goto bad_all_io_ds;
2931         }
2932
2933         pool->next_mapping = NULL;
2934         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
2935                                    _new_mapping_cache);
2936         if (r) {
2937                 *error = "Error creating pool's mapping mempool";
2938                 err_p = ERR_PTR(r);
2939                 goto bad_mapping_pool;
2940         }
2941
2942         pool->cell_sort_array =
2943                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
2944                                    sizeof(*pool->cell_sort_array)));
2945         if (!pool->cell_sort_array) {
2946                 *error = "Error allocating cell sort array";
2947                 err_p = ERR_PTR(-ENOMEM);
2948                 goto bad_sort_array;
2949         }
2950
2951         pool->ref_count = 1;
2952         pool->last_commit_jiffies = jiffies;
2953         pool->pool_md = pool_md;
2954         pool->md_dev = metadata_dev;
2955         __pool_table_insert(pool);
2956
2957         return pool;
2958
2959 bad_sort_array:
2960         mempool_exit(&pool->mapping_pool);
2961 bad_mapping_pool:
2962         dm_deferred_set_destroy(pool->all_io_ds);
2963 bad_all_io_ds:
2964         dm_deferred_set_destroy(pool->shared_read_ds);
2965 bad_shared_read_ds:
2966         destroy_workqueue(pool->wq);
2967 bad_wq:
2968         dm_kcopyd_client_destroy(pool->copier);
2969 bad_kcopyd_client:
2970         dm_bio_prison_destroy(pool->prison);
2971 bad_prison:
2972         kfree(pool);
2973 bad_pool:
2974         if (dm_pool_metadata_close(pmd))
2975                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2976
2977         return err_p;
2978 }
2979
2980 static void __pool_inc(struct pool *pool)
2981 {
2982         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2983         pool->ref_count++;
2984 }
2985
2986 static void __pool_dec(struct pool *pool)
2987 {
2988         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2989         BUG_ON(!pool->ref_count);
2990         if (!--pool->ref_count)
2991                 __pool_destroy(pool);
2992 }
2993
2994 static struct pool *__pool_find(struct mapped_device *pool_md,
2995                                 struct block_device *metadata_dev,
2996                                 unsigned long block_size, int read_only,
2997                                 char **error, int *created)
2998 {
2999         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3000
3001         if (pool) {
3002                 if (pool->pool_md != pool_md) {
3003                         *error = "metadata device already in use by a pool";
3004                         return ERR_PTR(-EBUSY);
3005                 }
3006                 __pool_inc(pool);
3007
3008         } else {
3009                 pool = __pool_table_lookup(pool_md);
3010                 if (pool) {
3011                         if (pool->md_dev != metadata_dev) {
3012                                 *error = "different pool cannot replace a pool";
3013                                 return ERR_PTR(-EINVAL);
3014                         }
3015                         __pool_inc(pool);
3016
3017                 } else {
3018                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3019                         *created = 1;
3020                 }
3021         }
3022
3023         return pool;
3024 }
3025
3026 /*----------------------------------------------------------------
3027  * Pool target methods
3028  *--------------------------------------------------------------*/
3029 static void pool_dtr(struct dm_target *ti)
3030 {
3031         struct pool_c *pt = ti->private;
3032
3033         mutex_lock(&dm_thin_pool_table.mutex);
3034
3035         unbind_control_target(pt->pool, ti);
3036         __pool_dec(pt->pool);
3037         dm_put_device(ti, pt->metadata_dev);
3038         dm_put_device(ti, pt->data_dev);
3039         kfree(pt);
3040
3041         mutex_unlock(&dm_thin_pool_table.mutex);
3042 }
3043
3044 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3045                                struct dm_target *ti)
3046 {
3047         int r;
3048         unsigned argc;
3049         const char *arg_name;
3050
3051         static const struct dm_arg _args[] = {
3052                 {0, 4, "Invalid number of pool feature arguments"},
3053         };
3054
3055         /*
3056          * No feature arguments supplied.
3057          */
3058         if (!as->argc)
3059                 return 0;
3060
3061         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3062         if (r)
3063                 return -EINVAL;
3064
3065         while (argc && !r) {
3066                 arg_name = dm_shift_arg(as);
3067                 argc--;
3068
3069                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3070                         pf->zero_new_blocks = false;
3071
3072                 else if (!strcasecmp(arg_name, "ignore_discard"))
3073                         pf->discard_enabled = false;
3074
3075                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3076                         pf->discard_passdown = false;
3077
3078                 else if (!strcasecmp(arg_name, "read_only"))
3079                         pf->mode = PM_READ_ONLY;
3080
3081                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3082                         pf->error_if_no_space = true;
3083
3084                 else {
3085                         ti->error = "Unrecognised pool feature requested";
3086                         r = -EINVAL;
3087                         break;
3088                 }
3089         }
3090
3091         return r;
3092 }
3093
3094 static void metadata_low_callback(void *context)
3095 {
3096         struct pool *pool = context;
3097
3098         DMWARN("%s: reached low water mark for metadata device: sending event.",
3099                dm_device_name(pool->pool_md));
3100
3101         dm_table_event(pool->ti->table);
3102 }
3103
3104 static sector_t get_dev_size(struct block_device *bdev)
3105 {
3106         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3107 }
3108
3109 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3110 {
3111         sector_t metadata_dev_size = get_dev_size(bdev);
3112         char buffer[BDEVNAME_SIZE];
3113
3114         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3115                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3116                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3117 }
3118
3119 static sector_t get_metadata_dev_size(struct block_device *bdev)
3120 {
3121         sector_t metadata_dev_size = get_dev_size(bdev);
3122
3123         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3124                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3125
3126         return metadata_dev_size;
3127 }
3128
3129 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3130 {
3131         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3132
3133         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3134
3135         return metadata_dev_size;
3136 }
3137
3138 /*
3139  * When a metadata threshold is crossed a dm event is triggered, and
3140  * userland should respond by growing the metadata device.  We could let
3141  * userland set the threshold, like we do with the data threshold, but I'm
3142  * not sure they know enough to do this well.
3143  */
3144 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3145 {
3146         /*
3147          * 4M is ample for all ops with the possible exception of thin
3148          * device deletion which is harmless if it fails (just retry the
3149          * delete after you've grown the device).
3150          */
3151         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3152         return min((dm_block_t)1024ULL /* 4M */, quarter);
3153 }
3154
3155 /*
3156  * thin-pool <metadata dev> <data dev>
3157  *           <data block size (sectors)>
3158  *           <low water mark (blocks)>
3159  *           [<#feature args> [<arg>]*]
3160  *
3161  * Optional feature arguments are:
3162  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3163  *           ignore_discard: disable discard
3164  *           no_discard_passdown: don't pass discards down to the data device
3165  *           read_only: Don't allow any changes to be made to the pool metadata.
3166  *           error_if_no_space: error IOs, instead of queueing, if no space.
3167  */
3168 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3169 {
3170         int r, pool_created = 0;
3171         struct pool_c *pt;
3172         struct pool *pool;
3173         struct pool_features pf;
3174         struct dm_arg_set as;
3175         struct dm_dev *data_dev;
3176         unsigned long block_size;
3177         dm_block_t low_water_blocks;
3178         struct dm_dev *metadata_dev;
3179         fmode_t metadata_mode;
3180
3181         /*
3182          * FIXME Remove validation from scope of lock.
3183          */
3184         mutex_lock(&dm_thin_pool_table.mutex);
3185
3186         if (argc < 4) {
3187                 ti->error = "Invalid argument count";
3188                 r = -EINVAL;
3189                 goto out_unlock;
3190         }
3191
3192         as.argc = argc;
3193         as.argv = argv;
3194
3195         /*
3196          * Set default pool features.
3197          */
3198         pool_features_init(&pf);
3199
3200         dm_consume_args(&as, 4);
3201         r = parse_pool_features(&as, &pf, ti);
3202         if (r)
3203                 goto out_unlock;
3204
3205         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3206         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3207         if (r) {
3208                 ti->error = "Error opening metadata block device";
3209                 goto out_unlock;
3210         }
3211         warn_if_metadata_device_too_big(metadata_dev->bdev);
3212
3213         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3214         if (r) {
3215                 ti->error = "Error getting data device";
3216                 goto out_metadata;
3217         }
3218
3219         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3220             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3221             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3222             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3223                 ti->error = "Invalid block size";
3224                 r = -EINVAL;
3225                 goto out;
3226         }
3227
3228         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3229                 ti->error = "Invalid low water mark";
3230                 r = -EINVAL;
3231                 goto out;
3232         }
3233
3234         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3235         if (!pt) {
3236                 r = -ENOMEM;
3237                 goto out;
3238         }
3239
3240         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3241                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3242         if (IS_ERR(pool)) {
3243                 r = PTR_ERR(pool);
3244                 goto out_free_pt;
3245         }
3246
3247         /*
3248          * 'pool_created' reflects whether this is the first table load.
3249          * Top level discard support is not allowed to be changed after
3250          * initial load.  This would require a pool reload to trigger thin
3251          * device changes.
3252          */
3253         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3254                 ti->error = "Discard support cannot be disabled once enabled";
3255                 r = -EINVAL;
3256                 goto out_flags_changed;
3257         }
3258
3259         pt->pool = pool;
3260         pt->ti = ti;
3261         pt->metadata_dev = metadata_dev;
3262         pt->data_dev = data_dev;
3263         pt->low_water_blocks = low_water_blocks;
3264         pt->adjusted_pf = pt->requested_pf = pf;
3265         ti->num_flush_bios = 1;
3266
3267         /*
3268          * Only need to enable discards if the pool should pass
3269          * them down to the data device.  The thin device's discard
3270          * processing will cause mappings to be removed from the btree.
3271          */
3272         if (pf.discard_enabled && pf.discard_passdown) {
3273                 ti->num_discard_bios = 1;
3274
3275                 /*
3276                  * Setting 'discards_supported' circumvents the normal
3277                  * stacking of discard limits (this keeps the pool and
3278                  * thin devices' discard limits consistent).
3279                  */
3280                 ti->discards_supported = true;
3281         }
3282         ti->private = pt;
3283
3284         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3285                                                 calc_metadata_threshold(pt),
3286                                                 metadata_low_callback,
3287                                                 pool);
3288         if (r)
3289                 goto out_flags_changed;
3290
3291         pt->callbacks.congested_fn = pool_is_congested;
3292         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3293
3294         mutex_unlock(&dm_thin_pool_table.mutex);
3295
3296         return 0;
3297
3298 out_flags_changed:
3299         __pool_dec(pool);
3300 out_free_pt:
3301         kfree(pt);
3302 out:
3303         dm_put_device(ti, data_dev);
3304 out_metadata:
3305         dm_put_device(ti, metadata_dev);
3306 out_unlock:
3307         mutex_unlock(&dm_thin_pool_table.mutex);
3308
3309         return r;
3310 }
3311
3312 static int pool_map(struct dm_target *ti, struct bio *bio)
3313 {
3314         int r;
3315         struct pool_c *pt = ti->private;
3316         struct pool *pool = pt->pool;
3317         unsigned long flags;
3318
3319         /*
3320          * As this is a singleton target, ti->begin is always zero.
3321          */
3322         spin_lock_irqsave(&pool->lock, flags);
3323         bio_set_dev(bio, pt->data_dev->bdev);
3324         r = DM_MAPIO_REMAPPED;
3325         spin_unlock_irqrestore(&pool->lock, flags);
3326
3327         return r;
3328 }
3329
3330 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3331 {
3332         int r;
3333         struct pool_c *pt = ti->private;
3334         struct pool *pool = pt->pool;
3335         sector_t data_size = ti->len;
3336         dm_block_t sb_data_size;
3337
3338         *need_commit = false;
3339
3340         (void) sector_div(data_size, pool->sectors_per_block);
3341
3342         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3343         if (r) {
3344                 DMERR("%s: failed to retrieve data device size",
3345                       dm_device_name(pool->pool_md));
3346                 return r;
3347         }
3348
3349         if (data_size < sb_data_size) {
3350                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3351                       dm_device_name(pool->pool_md),
3352                       (unsigned long long)data_size, sb_data_size);
3353                 return -EINVAL;
3354
3355         } else if (data_size > sb_data_size) {
3356                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3357                         DMERR("%s: unable to grow the data device until repaired.",
3358                               dm_device_name(pool->pool_md));
3359                         return 0;
3360                 }
3361
3362                 if (sb_data_size)
3363                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3364                                dm_device_name(pool->pool_md),
3365                                sb_data_size, (unsigned long long)data_size);
3366                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3367                 if (r) {
3368                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3369                         return r;
3370                 }
3371
3372                 *need_commit = true;
3373         }
3374
3375         return 0;
3376 }
3377
3378 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3379 {
3380         int r;
3381         struct pool_c *pt = ti->private;
3382         struct pool *pool = pt->pool;
3383         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3384
3385         *need_commit = false;
3386
3387         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3388
3389         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3390         if (r) {
3391                 DMERR("%s: failed to retrieve metadata device size",
3392                       dm_device_name(pool->pool_md));
3393                 return r;
3394         }
3395
3396         if (metadata_dev_size < sb_metadata_dev_size) {
3397                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3398                       dm_device_name(pool->pool_md),
3399                       metadata_dev_size, sb_metadata_dev_size);
3400                 return -EINVAL;
3401
3402         } else if (metadata_dev_size > sb_metadata_dev_size) {
3403                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3404                         DMERR("%s: unable to grow the metadata device until repaired.",
3405                               dm_device_name(pool->pool_md));
3406                         return 0;
3407                 }
3408
3409                 warn_if_metadata_device_too_big(pool->md_dev);
3410                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3411                        dm_device_name(pool->pool_md),
3412                        sb_metadata_dev_size, metadata_dev_size);
3413                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3414                 if (r) {
3415                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3416                         return r;
3417                 }
3418
3419                 *need_commit = true;
3420         }
3421
3422         return 0;
3423 }
3424
3425 /*
3426  * Retrieves the number of blocks of the data device from
3427  * the superblock and compares it to the actual device size,
3428  * thus resizing the data device in case it has grown.
3429  *
3430  * This both copes with opening preallocated data devices in the ctr
3431  * being followed by a resume
3432  * -and-
3433  * calling the resume method individually after userspace has
3434  * grown the data device in reaction to a table event.
3435  */
3436 static int pool_preresume(struct dm_target *ti)
3437 {
3438         int r;
3439         bool need_commit1, need_commit2;
3440         struct pool_c *pt = ti->private;
3441         struct pool *pool = pt->pool;
3442
3443         /*
3444          * Take control of the pool object.
3445          */
3446         r = bind_control_target(pool, ti);
3447         if (r)
3448                 return r;
3449
3450         r = maybe_resize_data_dev(ti, &need_commit1);
3451         if (r)
3452                 return r;
3453
3454         r = maybe_resize_metadata_dev(ti, &need_commit2);
3455         if (r)
3456                 return r;
3457
3458         if (need_commit1 || need_commit2)
3459                 (void) commit(pool);
3460
3461         return 0;
3462 }
3463
3464 static void pool_suspend_active_thins(struct pool *pool)
3465 {
3466         struct thin_c *tc;
3467
3468         /* Suspend all active thin devices */
3469         tc = get_first_thin(pool);
3470         while (tc) {
3471                 dm_internal_suspend_noflush(tc->thin_md);
3472                 tc = get_next_thin(pool, tc);
3473         }
3474 }
3475
3476 static void pool_resume_active_thins(struct pool *pool)
3477 {
3478         struct thin_c *tc;
3479
3480         /* Resume all active thin devices */
3481         tc = get_first_thin(pool);
3482         while (tc) {
3483                 dm_internal_resume(tc->thin_md);
3484                 tc = get_next_thin(pool, tc);
3485         }
3486 }
3487
3488 static void pool_resume(struct dm_target *ti)
3489 {
3490         struct pool_c *pt = ti->private;
3491         struct pool *pool = pt->pool;
3492         unsigned long flags;
3493
3494         /*
3495          * Must requeue active_thins' bios and then resume
3496          * active_thins _before_ clearing 'suspend' flag.
3497          */
3498         requeue_bios(pool);
3499         pool_resume_active_thins(pool);
3500
3501         spin_lock_irqsave(&pool->lock, flags);
3502         pool->low_water_triggered = false;
3503         pool->suspended = false;
3504         spin_unlock_irqrestore(&pool->lock, flags);
3505
3506         do_waker(&pool->waker.work);
3507 }
3508
3509 static void pool_presuspend(struct dm_target *ti)
3510 {
3511         struct pool_c *pt = ti->private;
3512         struct pool *pool = pt->pool;
3513         unsigned long flags;
3514
3515         spin_lock_irqsave(&pool->lock, flags);
3516         pool->suspended = true;
3517         spin_unlock_irqrestore(&pool->lock, flags);
3518
3519         pool_suspend_active_thins(pool);
3520 }
3521
3522 static void pool_presuspend_undo(struct dm_target *ti)
3523 {
3524         struct pool_c *pt = ti->private;
3525         struct pool *pool = pt->pool;
3526         unsigned long flags;
3527
3528         pool_resume_active_thins(pool);
3529
3530         spin_lock_irqsave(&pool->lock, flags);
3531         pool->suspended = false;
3532         spin_unlock_irqrestore(&pool->lock, flags);
3533 }
3534
3535 static void pool_postsuspend(struct dm_target *ti)
3536 {
3537         struct pool_c *pt = ti->private;
3538         struct pool *pool = pt->pool;
3539
3540         cancel_delayed_work_sync(&pool->waker);
3541         cancel_delayed_work_sync(&pool->no_space_timeout);
3542         flush_workqueue(pool->wq);
3543         (void) commit(pool);
3544 }
3545
3546 static int check_arg_count(unsigned argc, unsigned args_required)
3547 {
3548         if (argc != args_required) {
3549                 DMWARN("Message received with %u arguments instead of %u.",
3550                        argc, args_required);
3551                 return -EINVAL;
3552         }
3553
3554         return 0;
3555 }
3556
3557 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3558 {
3559         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3560             *dev_id <= MAX_DEV_ID)
3561                 return 0;
3562
3563         if (warning)
3564                 DMWARN("Message received with invalid device id: %s", arg);
3565
3566         return -EINVAL;
3567 }
3568
3569 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3570 {
3571         dm_thin_id dev_id;
3572         int r;
3573
3574         r = check_arg_count(argc, 2);
3575         if (r)
3576                 return r;
3577
3578         r = read_dev_id(argv[1], &dev_id, 1);
3579         if (r)
3580                 return r;
3581
3582         r = dm_pool_create_thin(pool->pmd, dev_id);
3583         if (r) {
3584                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3585                        argv[1]);
3586                 return r;
3587         }
3588
3589         return 0;
3590 }
3591
3592 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3593 {
3594         dm_thin_id dev_id;
3595         dm_thin_id origin_dev_id;
3596         int r;
3597
3598         r = check_arg_count(argc, 3);
3599         if (r)
3600                 return r;
3601
3602         r = read_dev_id(argv[1], &dev_id, 1);
3603         if (r)
3604                 return r;
3605
3606         r = read_dev_id(argv[2], &origin_dev_id, 1);
3607         if (r)
3608                 return r;
3609
3610         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3611         if (r) {
3612                 DMWARN("Creation of new snapshot %s of device %s failed.",
3613                        argv[1], argv[2]);
3614                 return r;
3615         }
3616
3617         return 0;
3618 }
3619
3620 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3621 {
3622         dm_thin_id dev_id;
3623         int r;
3624
3625         r = check_arg_count(argc, 2);
3626         if (r)
3627                 return r;
3628
3629         r = read_dev_id(argv[1], &dev_id, 1);
3630         if (r)
3631                 return r;
3632
3633         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3634         if (r)
3635                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3636
3637         return r;
3638 }
3639
3640 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3641 {
3642         dm_thin_id old_id, new_id;
3643         int r;
3644
3645         r = check_arg_count(argc, 3);
3646         if (r)
3647                 return r;
3648
3649         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3650                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3651                 return -EINVAL;
3652         }
3653
3654         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3655                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3656                 return -EINVAL;
3657         }
3658
3659         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3660         if (r) {
3661                 DMWARN("Failed to change transaction id from %s to %s.",
3662                        argv[1], argv[2]);
3663                 return r;
3664         }
3665
3666         return 0;
3667 }
3668
3669 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3670 {
3671         int r;
3672
3673         r = check_arg_count(argc, 1);
3674         if (r)
3675                 return r;
3676
3677         (void) commit(pool);
3678
3679         r = dm_pool_reserve_metadata_snap(pool->pmd);
3680         if (r)
3681                 DMWARN("reserve_metadata_snap message failed.");
3682
3683         return r;
3684 }
3685
3686 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3687 {
3688         int r;
3689
3690         r = check_arg_count(argc, 1);
3691         if (r)
3692                 return r;
3693
3694         r = dm_pool_release_metadata_snap(pool->pmd);
3695         if (r)
3696                 DMWARN("release_metadata_snap message failed.");
3697
3698         return r;
3699 }
3700
3701 /*
3702  * Messages supported:
3703  *   create_thin        <dev_id>
3704  *   create_snap        <dev_id> <origin_id>
3705  *   delete             <dev_id>
3706  *   set_transaction_id <current_trans_id> <new_trans_id>
3707  *   reserve_metadata_snap
3708  *   release_metadata_snap
3709  */
3710 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3711                         char *result, unsigned maxlen)
3712 {
3713         int r = -EINVAL;
3714         struct pool_c *pt = ti->private;
3715         struct pool *pool = pt->pool;
3716
3717         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3718                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3719                       dm_device_name(pool->pool_md));
3720                 return -EOPNOTSUPP;
3721         }
3722
3723         if (!strcasecmp(argv[0], "create_thin"))
3724                 r = process_create_thin_mesg(argc, argv, pool);
3725
3726         else if (!strcasecmp(argv[0], "create_snap"))
3727                 r = process_create_snap_mesg(argc, argv, pool);
3728
3729         else if (!strcasecmp(argv[0], "delete"))
3730                 r = process_delete_mesg(argc, argv, pool);
3731
3732         else if (!strcasecmp(argv[0], "set_transaction_id"))
3733                 r = process_set_transaction_id_mesg(argc, argv, pool);
3734
3735         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3736                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3737
3738         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3739                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3740
3741         else
3742                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3743
3744         if (!r)
3745                 (void) commit(pool);
3746
3747         return r;
3748 }
3749
3750 static void emit_flags(struct pool_features *pf, char *result,
3751                        unsigned sz, unsigned maxlen)
3752 {
3753         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3754                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3755                 pf->error_if_no_space;
3756         DMEMIT("%u ", count);
3757
3758         if (!pf->zero_new_blocks)
3759                 DMEMIT("skip_block_zeroing ");
3760
3761         if (!pf->discard_enabled)
3762                 DMEMIT("ignore_discard ");
3763
3764         if (!pf->discard_passdown)
3765                 DMEMIT("no_discard_passdown ");
3766
3767         if (pf->mode == PM_READ_ONLY)
3768                 DMEMIT("read_only ");
3769
3770         if (pf->error_if_no_space)
3771                 DMEMIT("error_if_no_space ");
3772 }
3773
3774 /*
3775  * Status line is:
3776  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3777  *    <used data sectors>/<total data sectors> <held metadata root>
3778  *    <pool mode> <discard config> <no space config> <needs_check>
3779  */
3780 static void pool_status(struct dm_target *ti, status_type_t type,
3781                         unsigned status_flags, char *result, unsigned maxlen)
3782 {
3783         int r;
3784         unsigned sz = 0;
3785         uint64_t transaction_id;
3786         dm_block_t nr_free_blocks_data;
3787         dm_block_t nr_free_blocks_metadata;
3788         dm_block_t nr_blocks_data;
3789         dm_block_t nr_blocks_metadata;
3790         dm_block_t held_root;
3791         char buf[BDEVNAME_SIZE];
3792         char buf2[BDEVNAME_SIZE];
3793         struct pool_c *pt = ti->private;
3794         struct pool *pool = pt->pool;
3795
3796         switch (type) {
3797         case STATUSTYPE_INFO:
3798                 if (get_pool_mode(pool) == PM_FAIL) {
3799                         DMEMIT("Fail");
3800                         break;
3801                 }
3802
3803                 /* Commit to ensure statistics aren't out-of-date */
3804                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3805                         (void) commit(pool);
3806
3807                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3808                 if (r) {
3809                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3810                               dm_device_name(pool->pool_md), r);
3811                         goto err;
3812                 }
3813
3814                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3815                 if (r) {
3816                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3817                               dm_device_name(pool->pool_md), r);
3818                         goto err;
3819                 }
3820
3821                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3822                 if (r) {
3823                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3824                               dm_device_name(pool->pool_md), r);
3825                         goto err;
3826                 }
3827
3828                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3829                 if (r) {
3830                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3831                               dm_device_name(pool->pool_md), r);
3832                         goto err;
3833                 }
3834
3835                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3836                 if (r) {
3837                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3838                               dm_device_name(pool->pool_md), r);
3839                         goto err;
3840                 }
3841
3842                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3843                 if (r) {
3844                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3845                               dm_device_name(pool->pool_md), r);
3846                         goto err;
3847                 }
3848
3849                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3850                        (unsigned long long)transaction_id,
3851                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3852                        (unsigned long long)nr_blocks_metadata,
3853                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3854                        (unsigned long long)nr_blocks_data);
3855
3856                 if (held_root)
3857                         DMEMIT("%llu ", held_root);
3858                 else
3859                         DMEMIT("- ");
3860
3861                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3862                         DMEMIT("out_of_data_space ");
3863                 else if (pool->pf.mode == PM_READ_ONLY)
3864                         DMEMIT("ro ");
3865                 else
3866                         DMEMIT("rw ");
3867
3868                 if (!pool->pf.discard_enabled)
3869                         DMEMIT("ignore_discard ");
3870                 else if (pool->pf.discard_passdown)
3871                         DMEMIT("discard_passdown ");
3872                 else
3873                         DMEMIT("no_discard_passdown ");
3874
3875                 if (pool->pf.error_if_no_space)
3876                         DMEMIT("error_if_no_space ");
3877                 else
3878                         DMEMIT("queue_if_no_space ");
3879
3880                 if (dm_pool_metadata_needs_check(pool->pmd))
3881                         DMEMIT("needs_check ");
3882                 else
3883                         DMEMIT("- ");
3884
3885                 break;
3886
3887         case STATUSTYPE_TABLE:
3888                 DMEMIT("%s %s %lu %llu ",
3889                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3890                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3891                        (unsigned long)pool->sectors_per_block,
3892                        (unsigned long long)pt->low_water_blocks);
3893                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3894                 break;
3895         }
3896         return;
3897
3898 err:
3899         DMEMIT("Error");
3900 }
3901
3902 static int pool_iterate_devices(struct dm_target *ti,
3903                                 iterate_devices_callout_fn fn, void *data)
3904 {
3905         struct pool_c *pt = ti->private;
3906
3907         return fn(ti, pt->data_dev, 0, ti->len, data);
3908 }
3909
3910 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3911 {
3912         struct pool_c *pt = ti->private;
3913         struct pool *pool = pt->pool;
3914         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3915
3916         /*
3917          * If max_sectors is smaller than pool->sectors_per_block adjust it
3918          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3919          * This is especially beneficial when the pool's data device is a RAID
3920          * device that has a full stripe width that matches pool->sectors_per_block
3921          * -- because even though partial RAID stripe-sized IOs will be issued to a
3922          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3923          *    boundary.. which avoids additional partial RAID stripe writes cascading
3924          */
3925         if (limits->max_sectors < pool->sectors_per_block) {
3926                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3927                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3928                                 limits->max_sectors--;
3929                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3930                 }
3931         }
3932
3933         /*
3934          * If the system-determined stacked limits are compatible with the
3935          * pool's blocksize (io_opt is a factor) do not override them.
3936          */
3937         if (io_opt_sectors < pool->sectors_per_block ||
3938             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3939                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3940                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3941                 else
3942                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3943                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3944         }
3945
3946         /*
3947          * pt->adjusted_pf is a staging area for the actual features to use.
3948          * They get transferred to the live pool in bind_control_target()
3949          * called from pool_preresume().
3950          */
3951         if (!pt->adjusted_pf.discard_enabled) {
3952                 /*
3953                  * Must explicitly disallow stacking discard limits otherwise the
3954                  * block layer will stack them if pool's data device has support.
3955                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3956                  * user to see that, so make sure to set all discard limits to 0.
3957                  */
3958                 limits->discard_granularity = 0;
3959                 return;
3960         }
3961
3962         disable_passdown_if_not_supported(pt);
3963
3964         /*
3965          * The pool uses the same discard limits as the underlying data
3966          * device.  DM core has already set this up.
3967          */
3968 }
3969
3970 static struct target_type pool_target = {
3971         .name = "thin-pool",
3972         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3973                     DM_TARGET_IMMUTABLE,
3974         .version = {1, 19, 0},
3975         .module = THIS_MODULE,
3976         .ctr = pool_ctr,
3977         .dtr = pool_dtr,
3978         .map = pool_map,
3979         .presuspend = pool_presuspend,
3980         .presuspend_undo = pool_presuspend_undo,
3981         .postsuspend = pool_postsuspend,
3982         .preresume = pool_preresume,
3983         .resume = pool_resume,
3984         .message = pool_message,
3985         .status = pool_status,
3986         .iterate_devices = pool_iterate_devices,
3987         .io_hints = pool_io_hints,
3988 };
3989
3990 /*----------------------------------------------------------------
3991  * Thin target methods
3992  *--------------------------------------------------------------*/
3993 static void thin_get(struct thin_c *tc)
3994 {
3995         atomic_inc(&tc->refcount);
3996 }
3997
3998 static void thin_put(struct thin_c *tc)
3999 {
4000         if (atomic_dec_and_test(&tc->refcount))
4001                 complete(&tc->can_destroy);
4002 }
4003
4004 static void thin_dtr(struct dm_target *ti)
4005 {
4006         struct thin_c *tc = ti->private;
4007         unsigned long flags;
4008
4009         spin_lock_irqsave(&tc->pool->lock, flags);
4010         list_del_rcu(&tc->list);
4011         spin_unlock_irqrestore(&tc->pool->lock, flags);
4012         synchronize_rcu();
4013
4014         thin_put(tc);
4015         wait_for_completion(&tc->can_destroy);
4016
4017         mutex_lock(&dm_thin_pool_table.mutex);
4018
4019         __pool_dec(tc->pool);
4020         dm_pool_close_thin_device(tc->td);
4021         dm_put_device(ti, tc->pool_dev);
4022         if (tc->origin_dev)
4023                 dm_put_device(ti, tc->origin_dev);
4024         kfree(tc);
4025
4026         mutex_unlock(&dm_thin_pool_table.mutex);
4027 }
4028
4029 /*
4030  * Thin target parameters:
4031  *
4032  * <pool_dev> <dev_id> [origin_dev]
4033  *
4034  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4035  * dev_id: the internal device identifier
4036  * origin_dev: a device external to the pool that should act as the origin
4037  *
4038  * If the pool device has discards disabled, they get disabled for the thin
4039  * device as well.
4040  */
4041 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4042 {
4043         int r;
4044         struct thin_c *tc;
4045         struct dm_dev *pool_dev, *origin_dev;
4046         struct mapped_device *pool_md;
4047         unsigned long flags;
4048
4049         mutex_lock(&dm_thin_pool_table.mutex);
4050
4051         if (argc != 2 && argc != 3) {
4052                 ti->error = "Invalid argument count";
4053                 r = -EINVAL;
4054                 goto out_unlock;
4055         }
4056
4057         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4058         if (!tc) {
4059                 ti->error = "Out of memory";
4060                 r = -ENOMEM;
4061                 goto out_unlock;
4062         }
4063         tc->thin_md = dm_table_get_md(ti->table);
4064         spin_lock_init(&tc->lock);
4065         INIT_LIST_HEAD(&tc->deferred_cells);
4066         bio_list_init(&tc->deferred_bio_list);
4067         bio_list_init(&tc->retry_on_resume_list);
4068         tc->sort_bio_list = RB_ROOT;
4069
4070         if (argc == 3) {
4071                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4072                 if (r) {
4073                         ti->error = "Error opening origin device";
4074                         goto bad_origin_dev;
4075                 }
4076                 tc->origin_dev = origin_dev;
4077         }
4078
4079         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4080         if (r) {
4081                 ti->error = "Error opening pool device";
4082                 goto bad_pool_dev;
4083         }
4084         tc->pool_dev = pool_dev;
4085
4086         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4087                 ti->error = "Invalid device id";
4088                 r = -EINVAL;
4089                 goto bad_common;
4090         }
4091
4092         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4093         if (!pool_md) {
4094                 ti->error = "Couldn't get pool mapped device";
4095                 r = -EINVAL;
4096                 goto bad_common;
4097         }
4098
4099         tc->pool = __pool_table_lookup(pool_md);
4100         if (!tc->pool) {
4101                 ti->error = "Couldn't find pool object";
4102                 r = -EINVAL;
4103                 goto bad_pool_lookup;
4104         }
4105         __pool_inc(tc->pool);
4106
4107         if (get_pool_mode(tc->pool) == PM_FAIL) {
4108                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4109                 r = -EINVAL;
4110                 goto bad_pool;
4111         }
4112
4113         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4114         if (r) {
4115                 ti->error = "Couldn't open thin internal device";
4116                 goto bad_pool;
4117         }
4118
4119         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4120         if (r)
4121                 goto bad;
4122
4123         ti->num_flush_bios = 1;
4124         ti->flush_supported = true;
4125         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4126
4127         /* In case the pool supports discards, pass them on. */
4128         if (tc->pool->pf.discard_enabled) {
4129                 ti->discards_supported = true;
4130                 ti->num_discard_bios = 1;
4131                 ti->split_discard_bios = false;
4132         }
4133
4134         mutex_unlock(&dm_thin_pool_table.mutex);
4135
4136         spin_lock_irqsave(&tc->pool->lock, flags);
4137         if (tc->pool->suspended) {
4138                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4139                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4140                 ti->error = "Unable to activate thin device while pool is suspended";
4141                 r = -EINVAL;
4142                 goto bad;
4143         }
4144         atomic_set(&tc->refcount, 1);
4145         init_completion(&tc->can_destroy);
4146         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4147         spin_unlock_irqrestore(&tc->pool->lock, flags);
4148         /*
4149          * This synchronize_rcu() call is needed here otherwise we risk a
4150          * wake_worker() call finding no bios to process (because the newly
4151          * added tc isn't yet visible).  So this reduces latency since we
4152          * aren't then dependent on the periodic commit to wake_worker().
4153          */
4154         synchronize_rcu();
4155
4156         dm_put(pool_md);
4157
4158         return 0;
4159
4160 bad:
4161         dm_pool_close_thin_device(tc->td);
4162 bad_pool:
4163         __pool_dec(tc->pool);
4164 bad_pool_lookup:
4165         dm_put(pool_md);
4166 bad_common:
4167         dm_put_device(ti, tc->pool_dev);
4168 bad_pool_dev:
4169         if (tc->origin_dev)
4170                 dm_put_device(ti, tc->origin_dev);
4171 bad_origin_dev:
4172         kfree(tc);
4173 out_unlock:
4174         mutex_unlock(&dm_thin_pool_table.mutex);
4175
4176         return r;
4177 }
4178
4179 static int thin_map(struct dm_target *ti, struct bio *bio)
4180 {
4181         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4182
4183         return thin_bio_map(ti, bio);
4184 }
4185
4186 static int thin_endio(struct dm_target *ti, struct bio *bio,
4187                 blk_status_t *err)
4188 {
4189         unsigned long flags;
4190         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4191         struct list_head work;
4192         struct dm_thin_new_mapping *m, *tmp;
4193         struct pool *pool = h->tc->pool;
4194
4195         if (h->shared_read_entry) {
4196                 INIT_LIST_HEAD(&work);
4197                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4198
4199                 spin_lock_irqsave(&pool->lock, flags);
4200                 list_for_each_entry_safe(m, tmp, &work, list) {
4201                         list_del(&m->list);
4202                         __complete_mapping_preparation(m);
4203                 }
4204                 spin_unlock_irqrestore(&pool->lock, flags);
4205         }
4206
4207         if (h->all_io_entry) {
4208                 INIT_LIST_HEAD(&work);
4209                 dm_deferred_entry_dec(h->all_io_entry, &work);
4210                 if (!list_empty(&work)) {
4211                         spin_lock_irqsave(&pool->lock, flags);
4212                         list_for_each_entry_safe(m, tmp, &work, list)
4213                                 list_add_tail(&m->list, &pool->prepared_discards);
4214                         spin_unlock_irqrestore(&pool->lock, flags);
4215                         wake_worker(pool);
4216                 }
4217         }
4218
4219         if (h->cell)
4220                 cell_defer_no_holder(h->tc, h->cell);
4221
4222         return DM_ENDIO_DONE;
4223 }
4224
4225 static void thin_presuspend(struct dm_target *ti)
4226 {
4227         struct thin_c *tc = ti->private;
4228
4229         if (dm_noflush_suspending(ti))
4230                 noflush_work(tc, do_noflush_start);
4231 }
4232
4233 static void thin_postsuspend(struct dm_target *ti)
4234 {
4235         struct thin_c *tc = ti->private;
4236
4237         /*
4238          * The dm_noflush_suspending flag has been cleared by now, so
4239          * unfortunately we must always run this.
4240          */
4241         noflush_work(tc, do_noflush_stop);
4242 }
4243
4244 static int thin_preresume(struct dm_target *ti)
4245 {
4246         struct thin_c *tc = ti->private;
4247
4248         if (tc->origin_dev)
4249                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4250
4251         return 0;
4252 }
4253
4254 /*
4255  * <nr mapped sectors> <highest mapped sector>
4256  */
4257 static void thin_status(struct dm_target *ti, status_type_t type,
4258                         unsigned status_flags, char *result, unsigned maxlen)
4259 {
4260         int r;
4261         ssize_t sz = 0;
4262         dm_block_t mapped, highest;
4263         char buf[BDEVNAME_SIZE];
4264         struct thin_c *tc = ti->private;
4265
4266         if (get_pool_mode(tc->pool) == PM_FAIL) {
4267                 DMEMIT("Fail");
4268                 return;
4269         }
4270
4271         if (!tc->td)
4272                 DMEMIT("-");
4273         else {
4274                 switch (type) {
4275                 case STATUSTYPE_INFO:
4276                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4277                         if (r) {
4278                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4279                                 goto err;
4280                         }
4281
4282                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4283                         if (r < 0) {
4284                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4285                                 goto err;
4286                         }
4287
4288                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4289                         if (r)
4290                                 DMEMIT("%llu", ((highest + 1) *
4291                                                 tc->pool->sectors_per_block) - 1);
4292                         else
4293                                 DMEMIT("-");
4294                         break;
4295
4296                 case STATUSTYPE_TABLE:
4297                         DMEMIT("%s %lu",
4298                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4299                                (unsigned long) tc->dev_id);
4300                         if (tc->origin_dev)
4301                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4302                         break;
4303                 }
4304         }
4305
4306         return;
4307
4308 err:
4309         DMEMIT("Error");
4310 }
4311
4312 static int thin_iterate_devices(struct dm_target *ti,
4313                                 iterate_devices_callout_fn fn, void *data)
4314 {
4315         sector_t blocks;
4316         struct thin_c *tc = ti->private;
4317         struct pool *pool = tc->pool;
4318
4319         /*
4320          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4321          * we follow a more convoluted path through to the pool's target.
4322          */
4323         if (!pool->ti)
4324                 return 0;       /* nothing is bound */
4325
4326         blocks = pool->ti->len;
4327         (void) sector_div(blocks, pool->sectors_per_block);
4328         if (blocks)
4329                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4330
4331         return 0;
4332 }
4333
4334 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4335 {
4336         struct thin_c *tc = ti->private;
4337         struct pool *pool = tc->pool;
4338
4339         if (!pool->pf.discard_enabled)
4340                 return;
4341
4342         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4343         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4344 }
4345
4346 static struct target_type thin_target = {
4347         .name = "thin",
4348         .version = {1, 19, 0},
4349         .module = THIS_MODULE,
4350         .ctr = thin_ctr,
4351         .dtr = thin_dtr,
4352         .map = thin_map,
4353         .end_io = thin_endio,
4354         .preresume = thin_preresume,
4355         .presuspend = thin_presuspend,
4356         .postsuspend = thin_postsuspend,
4357         .status = thin_status,
4358         .iterate_devices = thin_iterate_devices,
4359         .io_hints = thin_io_hints,
4360 };
4361
4362 /*----------------------------------------------------------------*/
4363
4364 static int __init dm_thin_init(void)
4365 {
4366         int r = -ENOMEM;
4367
4368         pool_table_init();
4369
4370         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4371         if (!_new_mapping_cache)
4372                 return r;
4373
4374         r = dm_register_target(&thin_target);
4375         if (r)
4376                 goto bad_new_mapping_cache;
4377
4378         r = dm_register_target(&pool_target);
4379         if (r)
4380                 goto bad_thin_target;
4381
4382         return 0;
4383
4384 bad_thin_target:
4385         dm_unregister_target(&thin_target);
4386 bad_new_mapping_cache:
4387         kmem_cache_destroy(_new_mapping_cache);
4388
4389         return r;
4390 }
4391
4392 static void dm_thin_exit(void)
4393 {
4394         dm_unregister_target(&thin_target);
4395         dm_unregister_target(&pool_target);
4396
4397         kmem_cache_destroy(_new_mapping_cache);
4398
4399         pool_table_exit();
4400 }
4401
4402 module_init(dm_thin_init);
4403 module_exit(dm_thin_exit);
4404
4405 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4406 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4407
4408 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4409 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4410 MODULE_LICENSE("GPL");