]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/md/dm-verity-target.c
Merge tag 'v5.4-rockchip-dts64-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / md / dm-verity-target.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21
22 #define DM_MSG_PREFIX                   "verity"
23
24 #define DM_VERITY_ENV_LENGTH            42
25 #define DM_VERITY_ENV_VAR_NAME          "DM_VERITY_ERR_BLOCK_NR"
26
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29 #define DM_VERITY_MAX_CORRUPTED_ERRS    100
30
31 #define DM_VERITY_OPT_LOGGING           "ignore_corruption"
32 #define DM_VERITY_OPT_RESTART           "restart_on_corruption"
33 #define DM_VERITY_OPT_IGN_ZEROES        "ignore_zero_blocks"
34 #define DM_VERITY_OPT_AT_MOST_ONCE      "check_at_most_once"
35
36 #define DM_VERITY_OPTS_MAX              (2 + DM_VERITY_OPTS_FEC)
37
38 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
39
40 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
41
42 struct dm_verity_prefetch_work {
43         struct work_struct work;
44         struct dm_verity *v;
45         sector_t block;
46         unsigned n_blocks;
47 };
48
49 /*
50  * Auxiliary structure appended to each dm-bufio buffer. If the value
51  * hash_verified is nonzero, hash of the block has been verified.
52  *
53  * The variable hash_verified is set to 0 when allocating the buffer, then
54  * it can be changed to 1 and it is never reset to 0 again.
55  *
56  * There is no lock around this value, a race condition can at worst cause
57  * that multiple processes verify the hash of the same buffer simultaneously
58  * and write 1 to hash_verified simultaneously.
59  * This condition is harmless, so we don't need locking.
60  */
61 struct buffer_aux {
62         int hash_verified;
63 };
64
65 /*
66  * Initialize struct buffer_aux for a freshly created buffer.
67  */
68 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
69 {
70         struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
71
72         aux->hash_verified = 0;
73 }
74
75 /*
76  * Translate input sector number to the sector number on the target device.
77  */
78 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
79 {
80         return v->data_start + dm_target_offset(v->ti, bi_sector);
81 }
82
83 /*
84  * Return hash position of a specified block at a specified tree level
85  * (0 is the lowest level).
86  * The lowest "hash_per_block_bits"-bits of the result denote hash position
87  * inside a hash block. The remaining bits denote location of the hash block.
88  */
89 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
90                                          int level)
91 {
92         return block >> (level * v->hash_per_block_bits);
93 }
94
95 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
96                                 const u8 *data, size_t len,
97                                 struct crypto_wait *wait)
98 {
99         struct scatterlist sg;
100
101         if (likely(!is_vmalloc_addr(data))) {
102                 sg_init_one(&sg, data, len);
103                 ahash_request_set_crypt(req, &sg, NULL, len);
104                 return crypto_wait_req(crypto_ahash_update(req), wait);
105         } else {
106                 do {
107                         int r;
108                         size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
109                         flush_kernel_vmap_range((void *)data, this_step);
110                         sg_init_table(&sg, 1);
111                         sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
112                         ahash_request_set_crypt(req, &sg, NULL, this_step);
113                         r = crypto_wait_req(crypto_ahash_update(req), wait);
114                         if (unlikely(r))
115                                 return r;
116                         data += this_step;
117                         len -= this_step;
118                 } while (len);
119                 return 0;
120         }
121 }
122
123 /*
124  * Wrapper for crypto_ahash_init, which handles verity salting.
125  */
126 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
127                                 struct crypto_wait *wait)
128 {
129         int r;
130
131         ahash_request_set_tfm(req, v->tfm);
132         ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
133                                         CRYPTO_TFM_REQ_MAY_BACKLOG,
134                                         crypto_req_done, (void *)wait);
135         crypto_init_wait(wait);
136
137         r = crypto_wait_req(crypto_ahash_init(req), wait);
138
139         if (unlikely(r < 0)) {
140                 DMERR("crypto_ahash_init failed: %d", r);
141                 return r;
142         }
143
144         if (likely(v->salt_size && (v->version >= 1)))
145                 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
146
147         return r;
148 }
149
150 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
151                              u8 *digest, struct crypto_wait *wait)
152 {
153         int r;
154
155         if (unlikely(v->salt_size && (!v->version))) {
156                 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
157
158                 if (r < 0) {
159                         DMERR("verity_hash_final failed updating salt: %d", r);
160                         goto out;
161                 }
162         }
163
164         ahash_request_set_crypt(req, NULL, digest, 0);
165         r = crypto_wait_req(crypto_ahash_final(req), wait);
166 out:
167         return r;
168 }
169
170 int verity_hash(struct dm_verity *v, struct ahash_request *req,
171                 const u8 *data, size_t len, u8 *digest)
172 {
173         int r;
174         struct crypto_wait wait;
175
176         r = verity_hash_init(v, req, &wait);
177         if (unlikely(r < 0))
178                 goto out;
179
180         r = verity_hash_update(v, req, data, len, &wait);
181         if (unlikely(r < 0))
182                 goto out;
183
184         r = verity_hash_final(v, req, digest, &wait);
185
186 out:
187         return r;
188 }
189
190 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
191                                  sector_t *hash_block, unsigned *offset)
192 {
193         sector_t position = verity_position_at_level(v, block, level);
194         unsigned idx;
195
196         *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
197
198         if (!offset)
199                 return;
200
201         idx = position & ((1 << v->hash_per_block_bits) - 1);
202         if (!v->version)
203                 *offset = idx * v->digest_size;
204         else
205                 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
206 }
207
208 /*
209  * Handle verification errors.
210  */
211 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
212                              unsigned long long block)
213 {
214         char verity_env[DM_VERITY_ENV_LENGTH];
215         char *envp[] = { verity_env, NULL };
216         const char *type_str = "";
217         struct mapped_device *md = dm_table_get_md(v->ti->table);
218
219         /* Corruption should be visible in device status in all modes */
220         v->hash_failed = 1;
221
222         if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
223                 goto out;
224
225         v->corrupted_errs++;
226
227         switch (type) {
228         case DM_VERITY_BLOCK_TYPE_DATA:
229                 type_str = "data";
230                 break;
231         case DM_VERITY_BLOCK_TYPE_METADATA:
232                 type_str = "metadata";
233                 break;
234         default:
235                 BUG();
236         }
237
238         DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
239                     type_str, block);
240
241         if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
242                 DMERR("%s: reached maximum errors", v->data_dev->name);
243
244         snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
245                 DM_VERITY_ENV_VAR_NAME, type, block);
246
247         kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
248
249 out:
250         if (v->mode == DM_VERITY_MODE_LOGGING)
251                 return 0;
252
253         if (v->mode == DM_VERITY_MODE_RESTART)
254                 kernel_restart("dm-verity device corrupted");
255
256         return 1;
257 }
258
259 /*
260  * Verify hash of a metadata block pertaining to the specified data block
261  * ("block" argument) at a specified level ("level" argument).
262  *
263  * On successful return, verity_io_want_digest(v, io) contains the hash value
264  * for a lower tree level or for the data block (if we're at the lowest level).
265  *
266  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
267  * If "skip_unverified" is false, unverified buffer is hashed and verified
268  * against current value of verity_io_want_digest(v, io).
269  */
270 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
271                                sector_t block, int level, bool skip_unverified,
272                                u8 *want_digest)
273 {
274         struct dm_buffer *buf;
275         struct buffer_aux *aux;
276         u8 *data;
277         int r;
278         sector_t hash_block;
279         unsigned offset;
280
281         verity_hash_at_level(v, block, level, &hash_block, &offset);
282
283         data = dm_bufio_read(v->bufio, hash_block, &buf);
284         if (IS_ERR(data))
285                 return PTR_ERR(data);
286
287         aux = dm_bufio_get_aux_data(buf);
288
289         if (!aux->hash_verified) {
290                 if (skip_unverified) {
291                         r = 1;
292                         goto release_ret_r;
293                 }
294
295                 r = verity_hash(v, verity_io_hash_req(v, io),
296                                 data, 1 << v->hash_dev_block_bits,
297                                 verity_io_real_digest(v, io));
298                 if (unlikely(r < 0))
299                         goto release_ret_r;
300
301                 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
302                                   v->digest_size) == 0))
303                         aux->hash_verified = 1;
304                 else if (verity_fec_decode(v, io,
305                                            DM_VERITY_BLOCK_TYPE_METADATA,
306                                            hash_block, data, NULL) == 0)
307                         aux->hash_verified = 1;
308                 else if (verity_handle_err(v,
309                                            DM_VERITY_BLOCK_TYPE_METADATA,
310                                            hash_block)) {
311                         r = -EIO;
312                         goto release_ret_r;
313                 }
314         }
315
316         data += offset;
317         memcpy(want_digest, data, v->digest_size);
318         r = 0;
319
320 release_ret_r:
321         dm_bufio_release(buf);
322         return r;
323 }
324
325 /*
326  * Find a hash for a given block, write it to digest and verify the integrity
327  * of the hash tree if necessary.
328  */
329 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
330                           sector_t block, u8 *digest, bool *is_zero)
331 {
332         int r = 0, i;
333
334         if (likely(v->levels)) {
335                 /*
336                  * First, we try to get the requested hash for
337                  * the current block. If the hash block itself is
338                  * verified, zero is returned. If it isn't, this
339                  * function returns 1 and we fall back to whole
340                  * chain verification.
341                  */
342                 r = verity_verify_level(v, io, block, 0, true, digest);
343                 if (likely(r <= 0))
344                         goto out;
345         }
346
347         memcpy(digest, v->root_digest, v->digest_size);
348
349         for (i = v->levels - 1; i >= 0; i--) {
350                 r = verity_verify_level(v, io, block, i, false, digest);
351                 if (unlikely(r))
352                         goto out;
353         }
354 out:
355         if (!r && v->zero_digest)
356                 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
357         else
358                 *is_zero = false;
359
360         return r;
361 }
362
363 /*
364  * Calculates the digest for the given bio
365  */
366 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
367                                struct bvec_iter *iter, struct crypto_wait *wait)
368 {
369         unsigned int todo = 1 << v->data_dev_block_bits;
370         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
371         struct scatterlist sg;
372         struct ahash_request *req = verity_io_hash_req(v, io);
373
374         do {
375                 int r;
376                 unsigned int len;
377                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
378
379                 sg_init_table(&sg, 1);
380
381                 len = bv.bv_len;
382
383                 if (likely(len >= todo))
384                         len = todo;
385                 /*
386                  * Operating on a single page at a time looks suboptimal
387                  * until you consider the typical block size is 4,096B.
388                  * Going through this loops twice should be very rare.
389                  */
390                 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
391                 ahash_request_set_crypt(req, &sg, NULL, len);
392                 r = crypto_wait_req(crypto_ahash_update(req), wait);
393
394                 if (unlikely(r < 0)) {
395                         DMERR("verity_for_io_block crypto op failed: %d", r);
396                         return r;
397                 }
398
399                 bio_advance_iter(bio, iter, len);
400                 todo -= len;
401         } while (todo);
402
403         return 0;
404 }
405
406 /*
407  * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
408  * starting from iter.
409  */
410 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
411                         struct bvec_iter *iter,
412                         int (*process)(struct dm_verity *v,
413                                        struct dm_verity_io *io, u8 *data,
414                                        size_t len))
415 {
416         unsigned todo = 1 << v->data_dev_block_bits;
417         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
418
419         do {
420                 int r;
421                 u8 *page;
422                 unsigned len;
423                 struct bio_vec bv = bio_iter_iovec(bio, *iter);
424
425                 page = kmap_atomic(bv.bv_page);
426                 len = bv.bv_len;
427
428                 if (likely(len >= todo))
429                         len = todo;
430
431                 r = process(v, io, page + bv.bv_offset, len);
432                 kunmap_atomic(page);
433
434                 if (r < 0)
435                         return r;
436
437                 bio_advance_iter(bio, iter, len);
438                 todo -= len;
439         } while (todo);
440
441         return 0;
442 }
443
444 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
445                           u8 *data, size_t len)
446 {
447         memset(data, 0, len);
448         return 0;
449 }
450
451 /*
452  * Moves the bio iter one data block forward.
453  */
454 static inline void verity_bv_skip_block(struct dm_verity *v,
455                                         struct dm_verity_io *io,
456                                         struct bvec_iter *iter)
457 {
458         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
459
460         bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
461 }
462
463 /*
464  * Verify one "dm_verity_io" structure.
465  */
466 static int verity_verify_io(struct dm_verity_io *io)
467 {
468         bool is_zero;
469         struct dm_verity *v = io->v;
470         struct bvec_iter start;
471         unsigned b;
472         struct crypto_wait wait;
473
474         for (b = 0; b < io->n_blocks; b++) {
475                 int r;
476                 sector_t cur_block = io->block + b;
477                 struct ahash_request *req = verity_io_hash_req(v, io);
478
479                 if (v->validated_blocks &&
480                     likely(test_bit(cur_block, v->validated_blocks))) {
481                         verity_bv_skip_block(v, io, &io->iter);
482                         continue;
483                 }
484
485                 r = verity_hash_for_block(v, io, cur_block,
486                                           verity_io_want_digest(v, io),
487                                           &is_zero);
488                 if (unlikely(r < 0))
489                         return r;
490
491                 if (is_zero) {
492                         /*
493                          * If we expect a zero block, don't validate, just
494                          * return zeros.
495                          */
496                         r = verity_for_bv_block(v, io, &io->iter,
497                                                 verity_bv_zero);
498                         if (unlikely(r < 0))
499                                 return r;
500
501                         continue;
502                 }
503
504                 r = verity_hash_init(v, req, &wait);
505                 if (unlikely(r < 0))
506                         return r;
507
508                 start = io->iter;
509                 r = verity_for_io_block(v, io, &io->iter, &wait);
510                 if (unlikely(r < 0))
511                         return r;
512
513                 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
514                                         &wait);
515                 if (unlikely(r < 0))
516                         return r;
517
518                 if (likely(memcmp(verity_io_real_digest(v, io),
519                                   verity_io_want_digest(v, io), v->digest_size) == 0)) {
520                         if (v->validated_blocks)
521                                 set_bit(cur_block, v->validated_blocks);
522                         continue;
523                 }
524                 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
525                                            cur_block, NULL, &start) == 0)
526                         continue;
527                 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
528                                            cur_block))
529                         return -EIO;
530         }
531
532         return 0;
533 }
534
535 /*
536  * End one "io" structure with a given error.
537  */
538 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
539 {
540         struct dm_verity *v = io->v;
541         struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
542
543         bio->bi_end_io = io->orig_bi_end_io;
544         bio->bi_status = status;
545
546         verity_fec_finish_io(io);
547
548         bio_endio(bio);
549 }
550
551 static void verity_work(struct work_struct *w)
552 {
553         struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
554
555         verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
556 }
557
558 static void verity_end_io(struct bio *bio)
559 {
560         struct dm_verity_io *io = bio->bi_private;
561
562         if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
563                 verity_finish_io(io, bio->bi_status);
564                 return;
565         }
566
567         INIT_WORK(&io->work, verity_work);
568         queue_work(io->v->verify_wq, &io->work);
569 }
570
571 /*
572  * Prefetch buffers for the specified io.
573  * The root buffer is not prefetched, it is assumed that it will be cached
574  * all the time.
575  */
576 static void verity_prefetch_io(struct work_struct *work)
577 {
578         struct dm_verity_prefetch_work *pw =
579                 container_of(work, struct dm_verity_prefetch_work, work);
580         struct dm_verity *v = pw->v;
581         int i;
582
583         for (i = v->levels - 2; i >= 0; i--) {
584                 sector_t hash_block_start;
585                 sector_t hash_block_end;
586                 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
587                 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
588                 if (!i) {
589                         unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
590
591                         cluster >>= v->data_dev_block_bits;
592                         if (unlikely(!cluster))
593                                 goto no_prefetch_cluster;
594
595                         if (unlikely(cluster & (cluster - 1)))
596                                 cluster = 1 << __fls(cluster);
597
598                         hash_block_start &= ~(sector_t)(cluster - 1);
599                         hash_block_end |= cluster - 1;
600                         if (unlikely(hash_block_end >= v->hash_blocks))
601                                 hash_block_end = v->hash_blocks - 1;
602                 }
603 no_prefetch_cluster:
604                 dm_bufio_prefetch(v->bufio, hash_block_start,
605                                   hash_block_end - hash_block_start + 1);
606         }
607
608         kfree(pw);
609 }
610
611 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
612 {
613         struct dm_verity_prefetch_work *pw;
614
615         pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
616                 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
617
618         if (!pw)
619                 return;
620
621         INIT_WORK(&pw->work, verity_prefetch_io);
622         pw->v = v;
623         pw->block = io->block;
624         pw->n_blocks = io->n_blocks;
625         queue_work(v->verify_wq, &pw->work);
626 }
627
628 /*
629  * Bio map function. It allocates dm_verity_io structure and bio vector and
630  * fills them. Then it issues prefetches and the I/O.
631  */
632 static int verity_map(struct dm_target *ti, struct bio *bio)
633 {
634         struct dm_verity *v = ti->private;
635         struct dm_verity_io *io;
636
637         bio_set_dev(bio, v->data_dev->bdev);
638         bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
639
640         if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
641             ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
642                 DMERR_LIMIT("unaligned io");
643                 return DM_MAPIO_KILL;
644         }
645
646         if (bio_end_sector(bio) >>
647             (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
648                 DMERR_LIMIT("io out of range");
649                 return DM_MAPIO_KILL;
650         }
651
652         if (bio_data_dir(bio) == WRITE)
653                 return DM_MAPIO_KILL;
654
655         io = dm_per_bio_data(bio, ti->per_io_data_size);
656         io->v = v;
657         io->orig_bi_end_io = bio->bi_end_io;
658         io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
659         io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
660
661         bio->bi_end_io = verity_end_io;
662         bio->bi_private = io;
663         io->iter = bio->bi_iter;
664
665         verity_fec_init_io(io);
666
667         verity_submit_prefetch(v, io);
668
669         generic_make_request(bio);
670
671         return DM_MAPIO_SUBMITTED;
672 }
673
674 /*
675  * Status: V (valid) or C (corruption found)
676  */
677 static void verity_status(struct dm_target *ti, status_type_t type,
678                           unsigned status_flags, char *result, unsigned maxlen)
679 {
680         struct dm_verity *v = ti->private;
681         unsigned args = 0;
682         unsigned sz = 0;
683         unsigned x;
684
685         switch (type) {
686         case STATUSTYPE_INFO:
687                 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
688                 break;
689         case STATUSTYPE_TABLE:
690                 DMEMIT("%u %s %s %u %u %llu %llu %s ",
691                         v->version,
692                         v->data_dev->name,
693                         v->hash_dev->name,
694                         1 << v->data_dev_block_bits,
695                         1 << v->hash_dev_block_bits,
696                         (unsigned long long)v->data_blocks,
697                         (unsigned long long)v->hash_start,
698                         v->alg_name
699                         );
700                 for (x = 0; x < v->digest_size; x++)
701                         DMEMIT("%02x", v->root_digest[x]);
702                 DMEMIT(" ");
703                 if (!v->salt_size)
704                         DMEMIT("-");
705                 else
706                         for (x = 0; x < v->salt_size; x++)
707                                 DMEMIT("%02x", v->salt[x]);
708                 if (v->mode != DM_VERITY_MODE_EIO)
709                         args++;
710                 if (verity_fec_is_enabled(v))
711                         args += DM_VERITY_OPTS_FEC;
712                 if (v->zero_digest)
713                         args++;
714                 if (v->validated_blocks)
715                         args++;
716                 if (!args)
717                         return;
718                 DMEMIT(" %u", args);
719                 if (v->mode != DM_VERITY_MODE_EIO) {
720                         DMEMIT(" ");
721                         switch (v->mode) {
722                         case DM_VERITY_MODE_LOGGING:
723                                 DMEMIT(DM_VERITY_OPT_LOGGING);
724                                 break;
725                         case DM_VERITY_MODE_RESTART:
726                                 DMEMIT(DM_VERITY_OPT_RESTART);
727                                 break;
728                         default:
729                                 BUG();
730                         }
731                 }
732                 if (v->zero_digest)
733                         DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
734                 if (v->validated_blocks)
735                         DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
736                 sz = verity_fec_status_table(v, sz, result, maxlen);
737                 break;
738         }
739 }
740
741 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
742 {
743         struct dm_verity *v = ti->private;
744
745         *bdev = v->data_dev->bdev;
746
747         if (v->data_start ||
748             ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
749                 return 1;
750         return 0;
751 }
752
753 static int verity_iterate_devices(struct dm_target *ti,
754                                   iterate_devices_callout_fn fn, void *data)
755 {
756         struct dm_verity *v = ti->private;
757
758         return fn(ti, v->data_dev, v->data_start, ti->len, data);
759 }
760
761 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
762 {
763         struct dm_verity *v = ti->private;
764
765         if (limits->logical_block_size < 1 << v->data_dev_block_bits)
766                 limits->logical_block_size = 1 << v->data_dev_block_bits;
767
768         if (limits->physical_block_size < 1 << v->data_dev_block_bits)
769                 limits->physical_block_size = 1 << v->data_dev_block_bits;
770
771         blk_limits_io_min(limits, limits->logical_block_size);
772 }
773
774 static void verity_dtr(struct dm_target *ti)
775 {
776         struct dm_verity *v = ti->private;
777
778         if (v->verify_wq)
779                 destroy_workqueue(v->verify_wq);
780
781         if (v->bufio)
782                 dm_bufio_client_destroy(v->bufio);
783
784         kvfree(v->validated_blocks);
785         kfree(v->salt);
786         kfree(v->root_digest);
787         kfree(v->zero_digest);
788
789         if (v->tfm)
790                 crypto_free_ahash(v->tfm);
791
792         kfree(v->alg_name);
793
794         if (v->hash_dev)
795                 dm_put_device(ti, v->hash_dev);
796
797         if (v->data_dev)
798                 dm_put_device(ti, v->data_dev);
799
800         verity_fec_dtr(v);
801
802         kfree(v);
803 }
804
805 static int verity_alloc_most_once(struct dm_verity *v)
806 {
807         struct dm_target *ti = v->ti;
808
809         /* the bitset can only handle INT_MAX blocks */
810         if (v->data_blocks > INT_MAX) {
811                 ti->error = "device too large to use check_at_most_once";
812                 return -E2BIG;
813         }
814
815         v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
816                                        sizeof(unsigned long),
817                                        GFP_KERNEL);
818         if (!v->validated_blocks) {
819                 ti->error = "failed to allocate bitset for check_at_most_once";
820                 return -ENOMEM;
821         }
822
823         return 0;
824 }
825
826 static int verity_alloc_zero_digest(struct dm_verity *v)
827 {
828         int r = -ENOMEM;
829         struct ahash_request *req;
830         u8 *zero_data;
831
832         v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
833
834         if (!v->zero_digest)
835                 return r;
836
837         req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
838
839         if (!req)
840                 return r; /* verity_dtr will free zero_digest */
841
842         zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
843
844         if (!zero_data)
845                 goto out;
846
847         r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
848                         v->zero_digest);
849
850 out:
851         kfree(req);
852         kfree(zero_data);
853
854         return r;
855 }
856
857 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v)
858 {
859         int r;
860         unsigned argc;
861         struct dm_target *ti = v->ti;
862         const char *arg_name;
863
864         static const struct dm_arg _args[] = {
865                 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
866         };
867
868         r = dm_read_arg_group(_args, as, &argc, &ti->error);
869         if (r)
870                 return -EINVAL;
871
872         if (!argc)
873                 return 0;
874
875         do {
876                 arg_name = dm_shift_arg(as);
877                 argc--;
878
879                 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
880                         v->mode = DM_VERITY_MODE_LOGGING;
881                         continue;
882
883                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
884                         v->mode = DM_VERITY_MODE_RESTART;
885                         continue;
886
887                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
888                         r = verity_alloc_zero_digest(v);
889                         if (r) {
890                                 ti->error = "Cannot allocate zero digest";
891                                 return r;
892                         }
893                         continue;
894
895                 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
896                         r = verity_alloc_most_once(v);
897                         if (r)
898                                 return r;
899                         continue;
900
901                 } else if (verity_is_fec_opt_arg(arg_name)) {
902                         r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
903                         if (r)
904                                 return r;
905                         continue;
906                 }
907
908                 ti->error = "Unrecognized verity feature request";
909                 return -EINVAL;
910         } while (argc && !r);
911
912         return r;
913 }
914
915 /*
916  * Target parameters:
917  *      <version>       The current format is version 1.
918  *                      Vsn 0 is compatible with original Chromium OS releases.
919  *      <data device>
920  *      <hash device>
921  *      <data block size>
922  *      <hash block size>
923  *      <the number of data blocks>
924  *      <hash start block>
925  *      <algorithm>
926  *      <digest>
927  *      <salt>          Hex string or "-" if no salt.
928  */
929 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
930 {
931         struct dm_verity *v;
932         struct dm_arg_set as;
933         unsigned int num;
934         unsigned long long num_ll;
935         int r;
936         int i;
937         sector_t hash_position;
938         char dummy;
939
940         v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
941         if (!v) {
942                 ti->error = "Cannot allocate verity structure";
943                 return -ENOMEM;
944         }
945         ti->private = v;
946         v->ti = ti;
947
948         r = verity_fec_ctr_alloc(v);
949         if (r)
950                 goto bad;
951
952         if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
953                 ti->error = "Device must be readonly";
954                 r = -EINVAL;
955                 goto bad;
956         }
957
958         if (argc < 10) {
959                 ti->error = "Not enough arguments";
960                 r = -EINVAL;
961                 goto bad;
962         }
963
964         if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
965             num > 1) {
966                 ti->error = "Invalid version";
967                 r = -EINVAL;
968                 goto bad;
969         }
970         v->version = num;
971
972         r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
973         if (r) {
974                 ti->error = "Data device lookup failed";
975                 goto bad;
976         }
977
978         r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
979         if (r) {
980                 ti->error = "Hash device lookup failed";
981                 goto bad;
982         }
983
984         if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
985             !num || (num & (num - 1)) ||
986             num < bdev_logical_block_size(v->data_dev->bdev) ||
987             num > PAGE_SIZE) {
988                 ti->error = "Invalid data device block size";
989                 r = -EINVAL;
990                 goto bad;
991         }
992         v->data_dev_block_bits = __ffs(num);
993
994         if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
995             !num || (num & (num - 1)) ||
996             num < bdev_logical_block_size(v->hash_dev->bdev) ||
997             num > INT_MAX) {
998                 ti->error = "Invalid hash device block size";
999                 r = -EINVAL;
1000                 goto bad;
1001         }
1002         v->hash_dev_block_bits = __ffs(num);
1003
1004         if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1005             (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1006             >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1007                 ti->error = "Invalid data blocks";
1008                 r = -EINVAL;
1009                 goto bad;
1010         }
1011         v->data_blocks = num_ll;
1012
1013         if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1014                 ti->error = "Data device is too small";
1015                 r = -EINVAL;
1016                 goto bad;
1017         }
1018
1019         if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1020             (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1021             >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1022                 ti->error = "Invalid hash start";
1023                 r = -EINVAL;
1024                 goto bad;
1025         }
1026         v->hash_start = num_ll;
1027
1028         v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1029         if (!v->alg_name) {
1030                 ti->error = "Cannot allocate algorithm name";
1031                 r = -ENOMEM;
1032                 goto bad;
1033         }
1034
1035         v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1036         if (IS_ERR(v->tfm)) {
1037                 ti->error = "Cannot initialize hash function";
1038                 r = PTR_ERR(v->tfm);
1039                 v->tfm = NULL;
1040                 goto bad;
1041         }
1042
1043         /*
1044          * dm-verity performance can vary greatly depending on which hash
1045          * algorithm implementation is used.  Help people debug performance
1046          * problems by logging the ->cra_driver_name.
1047          */
1048         DMINFO("%s using implementation \"%s\"", v->alg_name,
1049                crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1050
1051         v->digest_size = crypto_ahash_digestsize(v->tfm);
1052         if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1053                 ti->error = "Digest size too big";
1054                 r = -EINVAL;
1055                 goto bad;
1056         }
1057         v->ahash_reqsize = sizeof(struct ahash_request) +
1058                 crypto_ahash_reqsize(v->tfm);
1059
1060         v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1061         if (!v->root_digest) {
1062                 ti->error = "Cannot allocate root digest";
1063                 r = -ENOMEM;
1064                 goto bad;
1065         }
1066         if (strlen(argv[8]) != v->digest_size * 2 ||
1067             hex2bin(v->root_digest, argv[8], v->digest_size)) {
1068                 ti->error = "Invalid root digest";
1069                 r = -EINVAL;
1070                 goto bad;
1071         }
1072
1073         if (strcmp(argv[9], "-")) {
1074                 v->salt_size = strlen(argv[9]) / 2;
1075                 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1076                 if (!v->salt) {
1077                         ti->error = "Cannot allocate salt";
1078                         r = -ENOMEM;
1079                         goto bad;
1080                 }
1081                 if (strlen(argv[9]) != v->salt_size * 2 ||
1082                     hex2bin(v->salt, argv[9], v->salt_size)) {
1083                         ti->error = "Invalid salt";
1084                         r = -EINVAL;
1085                         goto bad;
1086                 }
1087         }
1088
1089         argv += 10;
1090         argc -= 10;
1091
1092         /* Optional parameters */
1093         if (argc) {
1094                 as.argc = argc;
1095                 as.argv = argv;
1096
1097                 r = verity_parse_opt_args(&as, v);
1098                 if (r < 0)
1099                         goto bad;
1100         }
1101
1102         v->hash_per_block_bits =
1103                 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1104
1105         v->levels = 0;
1106         if (v->data_blocks)
1107                 while (v->hash_per_block_bits * v->levels < 64 &&
1108                        (unsigned long long)(v->data_blocks - 1) >>
1109                        (v->hash_per_block_bits * v->levels))
1110                         v->levels++;
1111
1112         if (v->levels > DM_VERITY_MAX_LEVELS) {
1113                 ti->error = "Too many tree levels";
1114                 r = -E2BIG;
1115                 goto bad;
1116         }
1117
1118         hash_position = v->hash_start;
1119         for (i = v->levels - 1; i >= 0; i--) {
1120                 sector_t s;
1121                 v->hash_level_block[i] = hash_position;
1122                 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1123                                         >> ((i + 1) * v->hash_per_block_bits);
1124                 if (hash_position + s < hash_position) {
1125                         ti->error = "Hash device offset overflow";
1126                         r = -E2BIG;
1127                         goto bad;
1128                 }
1129                 hash_position += s;
1130         }
1131         v->hash_blocks = hash_position;
1132
1133         v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1134                 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1135                 dm_bufio_alloc_callback, NULL);
1136         if (IS_ERR(v->bufio)) {
1137                 ti->error = "Cannot initialize dm-bufio";
1138                 r = PTR_ERR(v->bufio);
1139                 v->bufio = NULL;
1140                 goto bad;
1141         }
1142
1143         if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1144                 ti->error = "Hash device is too small";
1145                 r = -E2BIG;
1146                 goto bad;
1147         }
1148
1149         /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1150         v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1151         if (!v->verify_wq) {
1152                 ti->error = "Cannot allocate workqueue";
1153                 r = -ENOMEM;
1154                 goto bad;
1155         }
1156
1157         ti->per_io_data_size = sizeof(struct dm_verity_io) +
1158                                 v->ahash_reqsize + v->digest_size * 2;
1159
1160         r = verity_fec_ctr(v);
1161         if (r)
1162                 goto bad;
1163
1164         ti->per_io_data_size = roundup(ti->per_io_data_size,
1165                                        __alignof__(struct dm_verity_io));
1166
1167         return 0;
1168
1169 bad:
1170         verity_dtr(ti);
1171
1172         return r;
1173 }
1174
1175 static struct target_type verity_target = {
1176         .name           = "verity",
1177         .version        = {1, 4, 0},
1178         .module         = THIS_MODULE,
1179         .ctr            = verity_ctr,
1180         .dtr            = verity_dtr,
1181         .map            = verity_map,
1182         .status         = verity_status,
1183         .prepare_ioctl  = verity_prepare_ioctl,
1184         .iterate_devices = verity_iterate_devices,
1185         .io_hints       = verity_io_hints,
1186 };
1187
1188 static int __init dm_verity_init(void)
1189 {
1190         int r;
1191
1192         r = dm_register_target(&verity_target);
1193         if (r < 0)
1194                 DMERR("register failed %d", r);
1195
1196         return r;
1197 }
1198
1199 static void __exit dm_verity_exit(void)
1200 {
1201         dm_unregister_target(&verity_target);
1202 }
1203
1204 module_init(dm_verity_init);
1205 module_exit(dm_verity_exit);
1206
1207 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1208 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1209 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1210 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1211 MODULE_LICENSE("GPL");