]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/md/raid1.c
media: imx7-media-csi: Use devm_platform_ioremap_resource()
[linux.git] / drivers / md / raid1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32
33 #include <trace/events/block.h>
34
35 #include "md.h"
36 #include "raid1.h"
37 #include "md-bitmap.h"
38
39 #define UNSUPPORTED_MDDEV_FLAGS         \
40         ((1L << MD_HAS_JOURNAL) |       \
41          (1L << MD_JOURNAL_CLEAN) |     \
42          (1L << MD_HAS_PPL) |           \
43          (1L << MD_HAS_MULTIPLE_PPLS))
44
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define NR_RAID1_BIOS 256
49
50 /* when we get a read error on a read-only array, we redirect to another
51  * device without failing the first device, or trying to over-write to
52  * correct the read error.  To keep track of bad blocks on a per-bio
53  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54  */
55 #define IO_BLOCKED ((struct bio *)1)
56 /* When we successfully write to a known bad-block, we need to remove the
57  * bad-block marking which must be done from process context.  So we record
58  * the success by setting devs[n].bio to IO_MADE_GOOD
59  */
60 #define IO_MADE_GOOD ((struct bio *)2)
61
62 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63
64 /* When there are this many requests queue to be written by
65  * the raid1 thread, we become 'congested' to provide back-pressure
66  * for writeback.
67  */
68 static int max_queued_requests = 1024;
69
70 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
71 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
72
73 #define raid1_log(md, fmt, args...)                             \
74         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
75
76 #include "raid1-10.c"
77
78 /*
79  * for resync bio, r1bio pointer can be retrieved from the per-bio
80  * 'struct resync_pages'.
81  */
82 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
83 {
84         return get_resync_pages(bio)->raid_bio;
85 }
86
87 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
88 {
89         struct pool_info *pi = data;
90         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
91
92         /* allocate a r1bio with room for raid_disks entries in the bios array */
93         return kzalloc(size, gfp_flags);
94 }
95
96 static void r1bio_pool_free(void *r1_bio, void *data)
97 {
98         kfree(r1_bio);
99 }
100
101 #define RESYNC_DEPTH 32
102 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
103 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
104 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
105 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
106 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
107
108 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110         struct pool_info *pi = data;
111         struct r1bio *r1_bio;
112         struct bio *bio;
113         int need_pages;
114         int j;
115         struct resync_pages *rps;
116
117         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
118         if (!r1_bio)
119                 return NULL;
120
121         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
122                             gfp_flags);
123         if (!rps)
124                 goto out_free_r1bio;
125
126         /*
127          * Allocate bios : 1 for reading, n-1 for writing
128          */
129         for (j = pi->raid_disks ; j-- ; ) {
130                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131                 if (!bio)
132                         goto out_free_bio;
133                 r1_bio->bios[j] = bio;
134         }
135         /*
136          * Allocate RESYNC_PAGES data pages and attach them to
137          * the first bio.
138          * If this is a user-requested check/repair, allocate
139          * RESYNC_PAGES for each bio.
140          */
141         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
142                 need_pages = pi->raid_disks;
143         else
144                 need_pages = 1;
145         for (j = 0; j < pi->raid_disks; j++) {
146                 struct resync_pages *rp = &rps[j];
147
148                 bio = r1_bio->bios[j];
149
150                 if (j < need_pages) {
151                         if (resync_alloc_pages(rp, gfp_flags))
152                                 goto out_free_pages;
153                 } else {
154                         memcpy(rp, &rps[0], sizeof(*rp));
155                         resync_get_all_pages(rp);
156                 }
157
158                 rp->raid_bio = r1_bio;
159                 bio->bi_private = rp;
160         }
161
162         r1_bio->master_bio = NULL;
163
164         return r1_bio;
165
166 out_free_pages:
167         while (--j >= 0)
168                 resync_free_pages(&rps[j]);
169
170 out_free_bio:
171         while (++j < pi->raid_disks)
172                 bio_put(r1_bio->bios[j]);
173         kfree(rps);
174
175 out_free_r1bio:
176         r1bio_pool_free(r1_bio, data);
177         return NULL;
178 }
179
180 static void r1buf_pool_free(void *__r1_bio, void *data)
181 {
182         struct pool_info *pi = data;
183         int i;
184         struct r1bio *r1bio = __r1_bio;
185         struct resync_pages *rp = NULL;
186
187         for (i = pi->raid_disks; i--; ) {
188                 rp = get_resync_pages(r1bio->bios[i]);
189                 resync_free_pages(rp);
190                 bio_put(r1bio->bios[i]);
191         }
192
193         /* resync pages array stored in the 1st bio's .bi_private */
194         kfree(rp);
195
196         r1bio_pool_free(r1bio, data);
197 }
198
199 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
200 {
201         int i;
202
203         for (i = 0; i < conf->raid_disks * 2; i++) {
204                 struct bio **bio = r1_bio->bios + i;
205                 if (!BIO_SPECIAL(*bio))
206                         bio_put(*bio);
207                 *bio = NULL;
208         }
209 }
210
211 static void free_r1bio(struct r1bio *r1_bio)
212 {
213         struct r1conf *conf = r1_bio->mddev->private;
214
215         put_all_bios(conf, r1_bio);
216         mempool_free(r1_bio, &conf->r1bio_pool);
217 }
218
219 static void put_buf(struct r1bio *r1_bio)
220 {
221         struct r1conf *conf = r1_bio->mddev->private;
222         sector_t sect = r1_bio->sector;
223         int i;
224
225         for (i = 0; i < conf->raid_disks * 2; i++) {
226                 struct bio *bio = r1_bio->bios[i];
227                 if (bio->bi_end_io)
228                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
229         }
230
231         mempool_free(r1_bio, &conf->r1buf_pool);
232
233         lower_barrier(conf, sect);
234 }
235
236 static void reschedule_retry(struct r1bio *r1_bio)
237 {
238         unsigned long flags;
239         struct mddev *mddev = r1_bio->mddev;
240         struct r1conf *conf = mddev->private;
241         int idx;
242
243         idx = sector_to_idx(r1_bio->sector);
244         spin_lock_irqsave(&conf->device_lock, flags);
245         list_add(&r1_bio->retry_list, &conf->retry_list);
246         atomic_inc(&conf->nr_queued[idx]);
247         spin_unlock_irqrestore(&conf->device_lock, flags);
248
249         wake_up(&conf->wait_barrier);
250         md_wakeup_thread(mddev->thread);
251 }
252
253 /*
254  * raid_end_bio_io() is called when we have finished servicing a mirrored
255  * operation and are ready to return a success/failure code to the buffer
256  * cache layer.
257  */
258 static void call_bio_endio(struct r1bio *r1_bio)
259 {
260         struct bio *bio = r1_bio->master_bio;
261         struct r1conf *conf = r1_bio->mddev->private;
262
263         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
264                 bio->bi_status = BLK_STS_IOERR;
265
266         bio_endio(bio);
267         /*
268          * Wake up any possible resync thread that waits for the device
269          * to go idle.
270          */
271         allow_barrier(conf, r1_bio->sector);
272 }
273
274 static void raid_end_bio_io(struct r1bio *r1_bio)
275 {
276         struct bio *bio = r1_bio->master_bio;
277
278         /* if nobody has done the final endio yet, do it now */
279         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
280                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
281                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
282                          (unsigned long long) bio->bi_iter.bi_sector,
283                          (unsigned long long) bio_end_sector(bio) - 1);
284
285                 call_bio_endio(r1_bio);
286         }
287         free_r1bio(r1_bio);
288 }
289
290 /*
291  * Update disk head position estimator based on IRQ completion info.
292  */
293 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
294 {
295         struct r1conf *conf = r1_bio->mddev->private;
296
297         conf->mirrors[disk].head_position =
298                 r1_bio->sector + (r1_bio->sectors);
299 }
300
301 /*
302  * Find the disk number which triggered given bio
303  */
304 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
305 {
306         int mirror;
307         struct r1conf *conf = r1_bio->mddev->private;
308         int raid_disks = conf->raid_disks;
309
310         for (mirror = 0; mirror < raid_disks * 2; mirror++)
311                 if (r1_bio->bios[mirror] == bio)
312                         break;
313
314         BUG_ON(mirror == raid_disks * 2);
315         update_head_pos(mirror, r1_bio);
316
317         return mirror;
318 }
319
320 static void raid1_end_read_request(struct bio *bio)
321 {
322         int uptodate = !bio->bi_status;
323         struct r1bio *r1_bio = bio->bi_private;
324         struct r1conf *conf = r1_bio->mddev->private;
325         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
326
327         /*
328          * this branch is our 'one mirror IO has finished' event handler:
329          */
330         update_head_pos(r1_bio->read_disk, r1_bio);
331
332         if (uptodate)
333                 set_bit(R1BIO_Uptodate, &r1_bio->state);
334         else if (test_bit(FailFast, &rdev->flags) &&
335                  test_bit(R1BIO_FailFast, &r1_bio->state))
336                 /* This was a fail-fast read so we definitely
337                  * want to retry */
338                 ;
339         else {
340                 /* If all other devices have failed, we want to return
341                  * the error upwards rather than fail the last device.
342                  * Here we redefine "uptodate" to mean "Don't want to retry"
343                  */
344                 unsigned long flags;
345                 spin_lock_irqsave(&conf->device_lock, flags);
346                 if (r1_bio->mddev->degraded == conf->raid_disks ||
347                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
348                      test_bit(In_sync, &rdev->flags)))
349                         uptodate = 1;
350                 spin_unlock_irqrestore(&conf->device_lock, flags);
351         }
352
353         if (uptodate) {
354                 raid_end_bio_io(r1_bio);
355                 rdev_dec_pending(rdev, conf->mddev);
356         } else {
357                 /*
358                  * oops, read error:
359                  */
360                 char b[BDEVNAME_SIZE];
361                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
362                                    mdname(conf->mddev),
363                                    bdevname(rdev->bdev, b),
364                                    (unsigned long long)r1_bio->sector);
365                 set_bit(R1BIO_ReadError, &r1_bio->state);
366                 reschedule_retry(r1_bio);
367                 /* don't drop the reference on read_disk yet */
368         }
369 }
370
371 static void close_write(struct r1bio *r1_bio)
372 {
373         /* it really is the end of this request */
374         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
375                 bio_free_pages(r1_bio->behind_master_bio);
376                 bio_put(r1_bio->behind_master_bio);
377                 r1_bio->behind_master_bio = NULL;
378         }
379         /* clear the bitmap if all writes complete successfully */
380         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381                            r1_bio->sectors,
382                            !test_bit(R1BIO_Degraded, &r1_bio->state),
383                            test_bit(R1BIO_BehindIO, &r1_bio->state));
384         md_write_end(r1_bio->mddev);
385 }
386
387 static void r1_bio_write_done(struct r1bio *r1_bio)
388 {
389         if (!atomic_dec_and_test(&r1_bio->remaining))
390                 return;
391
392         if (test_bit(R1BIO_WriteError, &r1_bio->state))
393                 reschedule_retry(r1_bio);
394         else {
395                 close_write(r1_bio);
396                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397                         reschedule_retry(r1_bio);
398                 else
399                         raid_end_bio_io(r1_bio);
400         }
401 }
402
403 static void raid1_end_write_request(struct bio *bio)
404 {
405         struct r1bio *r1_bio = bio->bi_private;
406         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407         struct r1conf *conf = r1_bio->mddev->private;
408         struct bio *to_put = NULL;
409         int mirror = find_bio_disk(r1_bio, bio);
410         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
411         bool discard_error;
412
413         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
414
415         /*
416          * 'one mirror IO has finished' event handler:
417          */
418         if (bio->bi_status && !discard_error) {
419                 set_bit(WriteErrorSeen, &rdev->flags);
420                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
421                         set_bit(MD_RECOVERY_NEEDED, &
422                                 conf->mddev->recovery);
423
424                 if (test_bit(FailFast, &rdev->flags) &&
425                     (bio->bi_opf & MD_FAILFAST) &&
426                     /* We never try FailFast to WriteMostly devices */
427                     !test_bit(WriteMostly, &rdev->flags)) {
428                         md_error(r1_bio->mddev, rdev);
429                         if (!test_bit(Faulty, &rdev->flags))
430                                 /* This is the only remaining device,
431                                  * We need to retry the write without
432                                  * FailFast
433                                  */
434                                 set_bit(R1BIO_WriteError, &r1_bio->state);
435                         else {
436                                 /* Finished with this branch */
437                                 r1_bio->bios[mirror] = NULL;
438                                 to_put = bio;
439                         }
440                 } else
441                         set_bit(R1BIO_WriteError, &r1_bio->state);
442         } else {
443                 /*
444                  * Set R1BIO_Uptodate in our master bio, so that we
445                  * will return a good error code for to the higher
446                  * levels even if IO on some other mirrored buffer
447                  * fails.
448                  *
449                  * The 'master' represents the composite IO operation
450                  * to user-side. So if something waits for IO, then it
451                  * will wait for the 'master' bio.
452                  */
453                 sector_t first_bad;
454                 int bad_sectors;
455
456                 r1_bio->bios[mirror] = NULL;
457                 to_put = bio;
458                 /*
459                  * Do not set R1BIO_Uptodate if the current device is
460                  * rebuilding or Faulty. This is because we cannot use
461                  * such device for properly reading the data back (we could
462                  * potentially use it, if the current write would have felt
463                  * before rdev->recovery_offset, but for simplicity we don't
464                  * check this here.
465                  */
466                 if (test_bit(In_sync, &rdev->flags) &&
467                     !test_bit(Faulty, &rdev->flags))
468                         set_bit(R1BIO_Uptodate, &r1_bio->state);
469
470                 /* Maybe we can clear some bad blocks. */
471                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
472                                 &first_bad, &bad_sectors) && !discard_error) {
473                         r1_bio->bios[mirror] = IO_MADE_GOOD;
474                         set_bit(R1BIO_MadeGood, &r1_bio->state);
475                 }
476         }
477
478         if (behind) {
479                 if (test_bit(WriteMostly, &rdev->flags))
480                         atomic_dec(&r1_bio->behind_remaining);
481
482                 /*
483                  * In behind mode, we ACK the master bio once the I/O
484                  * has safely reached all non-writemostly
485                  * disks. Setting the Returned bit ensures that this
486                  * gets done only once -- we don't ever want to return
487                  * -EIO here, instead we'll wait
488                  */
489                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
490                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
491                         /* Maybe we can return now */
492                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
493                                 struct bio *mbio = r1_bio->master_bio;
494                                 pr_debug("raid1: behind end write sectors"
495                                          " %llu-%llu\n",
496                                          (unsigned long long) mbio->bi_iter.bi_sector,
497                                          (unsigned long long) bio_end_sector(mbio) - 1);
498                                 call_bio_endio(r1_bio);
499                         }
500                 }
501         }
502         if (r1_bio->bios[mirror] == NULL)
503                 rdev_dec_pending(rdev, conf->mddev);
504
505         /*
506          * Let's see if all mirrored write operations have finished
507          * already.
508          */
509         r1_bio_write_done(r1_bio);
510
511         if (to_put)
512                 bio_put(to_put);
513 }
514
515 static sector_t align_to_barrier_unit_end(sector_t start_sector,
516                                           sector_t sectors)
517 {
518         sector_t len;
519
520         WARN_ON(sectors == 0);
521         /*
522          * len is the number of sectors from start_sector to end of the
523          * barrier unit which start_sector belongs to.
524          */
525         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
526               start_sector;
527
528         if (len > sectors)
529                 len = sectors;
530
531         return len;
532 }
533
534 /*
535  * This routine returns the disk from which the requested read should
536  * be done. There is a per-array 'next expected sequential IO' sector
537  * number - if this matches on the next IO then we use the last disk.
538  * There is also a per-disk 'last know head position' sector that is
539  * maintained from IRQ contexts, both the normal and the resync IO
540  * completion handlers update this position correctly. If there is no
541  * perfect sequential match then we pick the disk whose head is closest.
542  *
543  * If there are 2 mirrors in the same 2 devices, performance degrades
544  * because position is mirror, not device based.
545  *
546  * The rdev for the device selected will have nr_pending incremented.
547  */
548 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
549 {
550         const sector_t this_sector = r1_bio->sector;
551         int sectors;
552         int best_good_sectors;
553         int best_disk, best_dist_disk, best_pending_disk;
554         int has_nonrot_disk;
555         int disk;
556         sector_t best_dist;
557         unsigned int min_pending;
558         struct md_rdev *rdev;
559         int choose_first;
560         int choose_next_idle;
561
562         rcu_read_lock();
563         /*
564          * Check if we can balance. We can balance on the whole
565          * device if no resync is going on, or below the resync window.
566          * We take the first readable disk when above the resync window.
567          */
568  retry:
569         sectors = r1_bio->sectors;
570         best_disk = -1;
571         best_dist_disk = -1;
572         best_dist = MaxSector;
573         best_pending_disk = -1;
574         min_pending = UINT_MAX;
575         best_good_sectors = 0;
576         has_nonrot_disk = 0;
577         choose_next_idle = 0;
578         clear_bit(R1BIO_FailFast, &r1_bio->state);
579
580         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
581             (mddev_is_clustered(conf->mddev) &&
582             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
583                     this_sector + sectors)))
584                 choose_first = 1;
585         else
586                 choose_first = 0;
587
588         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
589                 sector_t dist;
590                 sector_t first_bad;
591                 int bad_sectors;
592                 unsigned int pending;
593                 bool nonrot;
594
595                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
596                 if (r1_bio->bios[disk] == IO_BLOCKED
597                     || rdev == NULL
598                     || test_bit(Faulty, &rdev->flags))
599                         continue;
600                 if (!test_bit(In_sync, &rdev->flags) &&
601                     rdev->recovery_offset < this_sector + sectors)
602                         continue;
603                 if (test_bit(WriteMostly, &rdev->flags)) {
604                         /* Don't balance among write-mostly, just
605                          * use the first as a last resort */
606                         if (best_dist_disk < 0) {
607                                 if (is_badblock(rdev, this_sector, sectors,
608                                                 &first_bad, &bad_sectors)) {
609                                         if (first_bad <= this_sector)
610                                                 /* Cannot use this */
611                                                 continue;
612                                         best_good_sectors = first_bad - this_sector;
613                                 } else
614                                         best_good_sectors = sectors;
615                                 best_dist_disk = disk;
616                                 best_pending_disk = disk;
617                         }
618                         continue;
619                 }
620                 /* This is a reasonable device to use.  It might
621                  * even be best.
622                  */
623                 if (is_badblock(rdev, this_sector, sectors,
624                                 &first_bad, &bad_sectors)) {
625                         if (best_dist < MaxSector)
626                                 /* already have a better device */
627                                 continue;
628                         if (first_bad <= this_sector) {
629                                 /* cannot read here. If this is the 'primary'
630                                  * device, then we must not read beyond
631                                  * bad_sectors from another device..
632                                  */
633                                 bad_sectors -= (this_sector - first_bad);
634                                 if (choose_first && sectors > bad_sectors)
635                                         sectors = bad_sectors;
636                                 if (best_good_sectors > sectors)
637                                         best_good_sectors = sectors;
638
639                         } else {
640                                 sector_t good_sectors = first_bad - this_sector;
641                                 if (good_sectors > best_good_sectors) {
642                                         best_good_sectors = good_sectors;
643                                         best_disk = disk;
644                                 }
645                                 if (choose_first)
646                                         break;
647                         }
648                         continue;
649                 } else {
650                         if ((sectors > best_good_sectors) && (best_disk >= 0))
651                                 best_disk = -1;
652                         best_good_sectors = sectors;
653                 }
654
655                 if (best_disk >= 0)
656                         /* At least two disks to choose from so failfast is OK */
657                         set_bit(R1BIO_FailFast, &r1_bio->state);
658
659                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
660                 has_nonrot_disk |= nonrot;
661                 pending = atomic_read(&rdev->nr_pending);
662                 dist = abs(this_sector - conf->mirrors[disk].head_position);
663                 if (choose_first) {
664                         best_disk = disk;
665                         break;
666                 }
667                 /* Don't change to another disk for sequential reads */
668                 if (conf->mirrors[disk].next_seq_sect == this_sector
669                     || dist == 0) {
670                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
671                         struct raid1_info *mirror = &conf->mirrors[disk];
672
673                         best_disk = disk;
674                         /*
675                          * If buffered sequential IO size exceeds optimal
676                          * iosize, check if there is idle disk. If yes, choose
677                          * the idle disk. read_balance could already choose an
678                          * idle disk before noticing it's a sequential IO in
679                          * this disk. This doesn't matter because this disk
680                          * will idle, next time it will be utilized after the
681                          * first disk has IO size exceeds optimal iosize. In
682                          * this way, iosize of the first disk will be optimal
683                          * iosize at least. iosize of the second disk might be
684                          * small, but not a big deal since when the second disk
685                          * starts IO, the first disk is likely still busy.
686                          */
687                         if (nonrot && opt_iosize > 0 &&
688                             mirror->seq_start != MaxSector &&
689                             mirror->next_seq_sect > opt_iosize &&
690                             mirror->next_seq_sect - opt_iosize >=
691                             mirror->seq_start) {
692                                 choose_next_idle = 1;
693                                 continue;
694                         }
695                         break;
696                 }
697
698                 if (choose_next_idle)
699                         continue;
700
701                 if (min_pending > pending) {
702                         min_pending = pending;
703                         best_pending_disk = disk;
704                 }
705
706                 if (dist < best_dist) {
707                         best_dist = dist;
708                         best_dist_disk = disk;
709                 }
710         }
711
712         /*
713          * If all disks are rotational, choose the closest disk. If any disk is
714          * non-rotational, choose the disk with less pending request even the
715          * disk is rotational, which might/might not be optimal for raids with
716          * mixed ratation/non-rotational disks depending on workload.
717          */
718         if (best_disk == -1) {
719                 if (has_nonrot_disk || min_pending == 0)
720                         best_disk = best_pending_disk;
721                 else
722                         best_disk = best_dist_disk;
723         }
724
725         if (best_disk >= 0) {
726                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
727                 if (!rdev)
728                         goto retry;
729                 atomic_inc(&rdev->nr_pending);
730                 sectors = best_good_sectors;
731
732                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
733                         conf->mirrors[best_disk].seq_start = this_sector;
734
735                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
736         }
737         rcu_read_unlock();
738         *max_sectors = sectors;
739
740         return best_disk;
741 }
742
743 static int raid1_congested(struct mddev *mddev, int bits)
744 {
745         struct r1conf *conf = mddev->private;
746         int i, ret = 0;
747
748         if ((bits & (1 << WB_async_congested)) &&
749             conf->pending_count >= max_queued_requests)
750                 return 1;
751
752         rcu_read_lock();
753         for (i = 0; i < conf->raid_disks * 2; i++) {
754                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
755                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
756                         struct request_queue *q = bdev_get_queue(rdev->bdev);
757
758                         BUG_ON(!q);
759
760                         /* Note the '|| 1' - when read_balance prefers
761                          * non-congested targets, it can be removed
762                          */
763                         if ((bits & (1 << WB_async_congested)) || 1)
764                                 ret |= bdi_congested(q->backing_dev_info, bits);
765                         else
766                                 ret &= bdi_congested(q->backing_dev_info, bits);
767                 }
768         }
769         rcu_read_unlock();
770         return ret;
771 }
772
773 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
774 {
775         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
776         md_bitmap_unplug(conf->mddev->bitmap);
777         wake_up(&conf->wait_barrier);
778
779         while (bio) { /* submit pending writes */
780                 struct bio *next = bio->bi_next;
781                 struct md_rdev *rdev = (void *)bio->bi_disk;
782                 bio->bi_next = NULL;
783                 bio_set_dev(bio, rdev->bdev);
784                 if (test_bit(Faulty, &rdev->flags)) {
785                         bio_io_error(bio);
786                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
787                                     !blk_queue_discard(bio->bi_disk->queue)))
788                         /* Just ignore it */
789                         bio_endio(bio);
790                 else
791                         generic_make_request(bio);
792                 bio = next;
793         }
794 }
795
796 static void flush_pending_writes(struct r1conf *conf)
797 {
798         /* Any writes that have been queued but are awaiting
799          * bitmap updates get flushed here.
800          */
801         spin_lock_irq(&conf->device_lock);
802
803         if (conf->pending_bio_list.head) {
804                 struct blk_plug plug;
805                 struct bio *bio;
806
807                 bio = bio_list_get(&conf->pending_bio_list);
808                 conf->pending_count = 0;
809                 spin_unlock_irq(&conf->device_lock);
810
811                 /*
812                  * As this is called in a wait_event() loop (see freeze_array),
813                  * current->state might be TASK_UNINTERRUPTIBLE which will
814                  * cause a warning when we prepare to wait again.  As it is
815                  * rare that this path is taken, it is perfectly safe to force
816                  * us to go around the wait_event() loop again, so the warning
817                  * is a false-positive.  Silence the warning by resetting
818                  * thread state
819                  */
820                 __set_current_state(TASK_RUNNING);
821                 blk_start_plug(&plug);
822                 flush_bio_list(conf, bio);
823                 blk_finish_plug(&plug);
824         } else
825                 spin_unlock_irq(&conf->device_lock);
826 }
827
828 /* Barriers....
829  * Sometimes we need to suspend IO while we do something else,
830  * either some resync/recovery, or reconfigure the array.
831  * To do this we raise a 'barrier'.
832  * The 'barrier' is a counter that can be raised multiple times
833  * to count how many activities are happening which preclude
834  * normal IO.
835  * We can only raise the barrier if there is no pending IO.
836  * i.e. if nr_pending == 0.
837  * We choose only to raise the barrier if no-one is waiting for the
838  * barrier to go down.  This means that as soon as an IO request
839  * is ready, no other operations which require a barrier will start
840  * until the IO request has had a chance.
841  *
842  * So: regular IO calls 'wait_barrier'.  When that returns there
843  *    is no backgroup IO happening,  It must arrange to call
844  *    allow_barrier when it has finished its IO.
845  * backgroup IO calls must call raise_barrier.  Once that returns
846  *    there is no normal IO happeing.  It must arrange to call
847  *    lower_barrier when the particular background IO completes.
848  */
849 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
850 {
851         int idx = sector_to_idx(sector_nr);
852
853         spin_lock_irq(&conf->resync_lock);
854
855         /* Wait until no block IO is waiting */
856         wait_event_lock_irq(conf->wait_barrier,
857                             !atomic_read(&conf->nr_waiting[idx]),
858                             conf->resync_lock);
859
860         /* block any new IO from starting */
861         atomic_inc(&conf->barrier[idx]);
862         /*
863          * In raise_barrier() we firstly increase conf->barrier[idx] then
864          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
865          * increase conf->nr_pending[idx] then check conf->barrier[idx].
866          * A memory barrier here to make sure conf->nr_pending[idx] won't
867          * be fetched before conf->barrier[idx] is increased. Otherwise
868          * there will be a race between raise_barrier() and _wait_barrier().
869          */
870         smp_mb__after_atomic();
871
872         /* For these conditions we must wait:
873          * A: while the array is in frozen state
874          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
875          *    existing in corresponding I/O barrier bucket.
876          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
877          *    max resync count which allowed on current I/O barrier bucket.
878          */
879         wait_event_lock_irq(conf->wait_barrier,
880                             (!conf->array_frozen &&
881                              !atomic_read(&conf->nr_pending[idx]) &&
882                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
883                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
884                             conf->resync_lock);
885
886         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
887                 atomic_dec(&conf->barrier[idx]);
888                 spin_unlock_irq(&conf->resync_lock);
889                 wake_up(&conf->wait_barrier);
890                 return -EINTR;
891         }
892
893         atomic_inc(&conf->nr_sync_pending);
894         spin_unlock_irq(&conf->resync_lock);
895
896         return 0;
897 }
898
899 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
900 {
901         int idx = sector_to_idx(sector_nr);
902
903         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
904
905         atomic_dec(&conf->barrier[idx]);
906         atomic_dec(&conf->nr_sync_pending);
907         wake_up(&conf->wait_barrier);
908 }
909
910 static void _wait_barrier(struct r1conf *conf, int idx)
911 {
912         /*
913          * We need to increase conf->nr_pending[idx] very early here,
914          * then raise_barrier() can be blocked when it waits for
915          * conf->nr_pending[idx] to be 0. Then we can avoid holding
916          * conf->resync_lock when there is no barrier raised in same
917          * barrier unit bucket. Also if the array is frozen, I/O
918          * should be blocked until array is unfrozen.
919          */
920         atomic_inc(&conf->nr_pending[idx]);
921         /*
922          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
923          * check conf->barrier[idx]. In raise_barrier() we firstly increase
924          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
925          * barrier is necessary here to make sure conf->barrier[idx] won't be
926          * fetched before conf->nr_pending[idx] is increased. Otherwise there
927          * will be a race between _wait_barrier() and raise_barrier().
928          */
929         smp_mb__after_atomic();
930
931         /*
932          * Don't worry about checking two atomic_t variables at same time
933          * here. If during we check conf->barrier[idx], the array is
934          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
935          * 0, it is safe to return and make the I/O continue. Because the
936          * array is frozen, all I/O returned here will eventually complete
937          * or be queued, no race will happen. See code comment in
938          * frozen_array().
939          */
940         if (!READ_ONCE(conf->array_frozen) &&
941             !atomic_read(&conf->barrier[idx]))
942                 return;
943
944         /*
945          * After holding conf->resync_lock, conf->nr_pending[idx]
946          * should be decreased before waiting for barrier to drop.
947          * Otherwise, we may encounter a race condition because
948          * raise_barrer() might be waiting for conf->nr_pending[idx]
949          * to be 0 at same time.
950          */
951         spin_lock_irq(&conf->resync_lock);
952         atomic_inc(&conf->nr_waiting[idx]);
953         atomic_dec(&conf->nr_pending[idx]);
954         /*
955          * In case freeze_array() is waiting for
956          * get_unqueued_pending() == extra
957          */
958         wake_up(&conf->wait_barrier);
959         /* Wait for the barrier in same barrier unit bucket to drop. */
960         wait_event_lock_irq(conf->wait_barrier,
961                             !conf->array_frozen &&
962                              !atomic_read(&conf->barrier[idx]),
963                             conf->resync_lock);
964         atomic_inc(&conf->nr_pending[idx]);
965         atomic_dec(&conf->nr_waiting[idx]);
966         spin_unlock_irq(&conf->resync_lock);
967 }
968
969 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
970 {
971         int idx = sector_to_idx(sector_nr);
972
973         /*
974          * Very similar to _wait_barrier(). The difference is, for read
975          * I/O we don't need wait for sync I/O, but if the whole array
976          * is frozen, the read I/O still has to wait until the array is
977          * unfrozen. Since there is no ordering requirement with
978          * conf->barrier[idx] here, memory barrier is unnecessary as well.
979          */
980         atomic_inc(&conf->nr_pending[idx]);
981
982         if (!READ_ONCE(conf->array_frozen))
983                 return;
984
985         spin_lock_irq(&conf->resync_lock);
986         atomic_inc(&conf->nr_waiting[idx]);
987         atomic_dec(&conf->nr_pending[idx]);
988         /*
989          * In case freeze_array() is waiting for
990          * get_unqueued_pending() == extra
991          */
992         wake_up(&conf->wait_barrier);
993         /* Wait for array to be unfrozen */
994         wait_event_lock_irq(conf->wait_barrier,
995                             !conf->array_frozen,
996                             conf->resync_lock);
997         atomic_inc(&conf->nr_pending[idx]);
998         atomic_dec(&conf->nr_waiting[idx]);
999         spin_unlock_irq(&conf->resync_lock);
1000 }
1001
1002 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1003 {
1004         int idx = sector_to_idx(sector_nr);
1005
1006         _wait_barrier(conf, idx);
1007 }
1008
1009 static void _allow_barrier(struct r1conf *conf, int idx)
1010 {
1011         atomic_dec(&conf->nr_pending[idx]);
1012         wake_up(&conf->wait_barrier);
1013 }
1014
1015 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1016 {
1017         int idx = sector_to_idx(sector_nr);
1018
1019         _allow_barrier(conf, idx);
1020 }
1021
1022 /* conf->resync_lock should be held */
1023 static int get_unqueued_pending(struct r1conf *conf)
1024 {
1025         int idx, ret;
1026
1027         ret = atomic_read(&conf->nr_sync_pending);
1028         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1029                 ret += atomic_read(&conf->nr_pending[idx]) -
1030                         atomic_read(&conf->nr_queued[idx]);
1031
1032         return ret;
1033 }
1034
1035 static void freeze_array(struct r1conf *conf, int extra)
1036 {
1037         /* Stop sync I/O and normal I/O and wait for everything to
1038          * go quiet.
1039          * This is called in two situations:
1040          * 1) management command handlers (reshape, remove disk, quiesce).
1041          * 2) one normal I/O request failed.
1042
1043          * After array_frozen is set to 1, new sync IO will be blocked at
1044          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1045          * or wait_read_barrier(). The flying I/Os will either complete or be
1046          * queued. When everything goes quite, there are only queued I/Os left.
1047
1048          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1049          * barrier bucket index which this I/O request hits. When all sync and
1050          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1051          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1052          * in handle_read_error(), we may call freeze_array() before trying to
1053          * fix the read error. In this case, the error read I/O is not queued,
1054          * so get_unqueued_pending() == 1.
1055          *
1056          * Therefore before this function returns, we need to wait until
1057          * get_unqueued_pendings(conf) gets equal to extra. For
1058          * normal I/O context, extra is 1, in rested situations extra is 0.
1059          */
1060         spin_lock_irq(&conf->resync_lock);
1061         conf->array_frozen = 1;
1062         raid1_log(conf->mddev, "wait freeze");
1063         wait_event_lock_irq_cmd(
1064                 conf->wait_barrier,
1065                 get_unqueued_pending(conf) == extra,
1066                 conf->resync_lock,
1067                 flush_pending_writes(conf));
1068         spin_unlock_irq(&conf->resync_lock);
1069 }
1070 static void unfreeze_array(struct r1conf *conf)
1071 {
1072         /* reverse the effect of the freeze */
1073         spin_lock_irq(&conf->resync_lock);
1074         conf->array_frozen = 0;
1075         spin_unlock_irq(&conf->resync_lock);
1076         wake_up(&conf->wait_barrier);
1077 }
1078
1079 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1080                                            struct bio *bio)
1081 {
1082         int size = bio->bi_iter.bi_size;
1083         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1084         int i = 0;
1085         struct bio *behind_bio = NULL;
1086
1087         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1088         if (!behind_bio)
1089                 return;
1090
1091         /* discard op, we don't support writezero/writesame yet */
1092         if (!bio_has_data(bio)) {
1093                 behind_bio->bi_iter.bi_size = size;
1094                 goto skip_copy;
1095         }
1096
1097         behind_bio->bi_write_hint = bio->bi_write_hint;
1098
1099         while (i < vcnt && size) {
1100                 struct page *page;
1101                 int len = min_t(int, PAGE_SIZE, size);
1102
1103                 page = alloc_page(GFP_NOIO);
1104                 if (unlikely(!page))
1105                         goto free_pages;
1106
1107                 bio_add_page(behind_bio, page, len, 0);
1108
1109                 size -= len;
1110                 i++;
1111         }
1112
1113         bio_copy_data(behind_bio, bio);
1114 skip_copy:
1115         r1_bio->behind_master_bio = behind_bio;
1116         set_bit(R1BIO_BehindIO, &r1_bio->state);
1117
1118         return;
1119
1120 free_pages:
1121         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1122                  bio->bi_iter.bi_size);
1123         bio_free_pages(behind_bio);
1124         bio_put(behind_bio);
1125 }
1126
1127 struct raid1_plug_cb {
1128         struct blk_plug_cb      cb;
1129         struct bio_list         pending;
1130         int                     pending_cnt;
1131 };
1132
1133 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1134 {
1135         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1136                                                   cb);
1137         struct mddev *mddev = plug->cb.data;
1138         struct r1conf *conf = mddev->private;
1139         struct bio *bio;
1140
1141         if (from_schedule || current->bio_list) {
1142                 spin_lock_irq(&conf->device_lock);
1143                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1144                 conf->pending_count += plug->pending_cnt;
1145                 spin_unlock_irq(&conf->device_lock);
1146                 wake_up(&conf->wait_barrier);
1147                 md_wakeup_thread(mddev->thread);
1148                 kfree(plug);
1149                 return;
1150         }
1151
1152         /* we aren't scheduling, so we can do the write-out directly. */
1153         bio = bio_list_get(&plug->pending);
1154         flush_bio_list(conf, bio);
1155         kfree(plug);
1156 }
1157
1158 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1159 {
1160         r1_bio->master_bio = bio;
1161         r1_bio->sectors = bio_sectors(bio);
1162         r1_bio->state = 0;
1163         r1_bio->mddev = mddev;
1164         r1_bio->sector = bio->bi_iter.bi_sector;
1165 }
1166
1167 static inline struct r1bio *
1168 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1169 {
1170         struct r1conf *conf = mddev->private;
1171         struct r1bio *r1_bio;
1172
1173         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1174         /* Ensure no bio records IO_BLOCKED */
1175         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1176         init_r1bio(r1_bio, mddev, bio);
1177         return r1_bio;
1178 }
1179
1180 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1181                                int max_read_sectors, struct r1bio *r1_bio)
1182 {
1183         struct r1conf *conf = mddev->private;
1184         struct raid1_info *mirror;
1185         struct bio *read_bio;
1186         struct bitmap *bitmap = mddev->bitmap;
1187         const int op = bio_op(bio);
1188         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1189         int max_sectors;
1190         int rdisk;
1191         bool print_msg = !!r1_bio;
1192         char b[BDEVNAME_SIZE];
1193
1194         /*
1195          * If r1_bio is set, we are blocking the raid1d thread
1196          * so there is a tiny risk of deadlock.  So ask for
1197          * emergency memory if needed.
1198          */
1199         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1200
1201         if (print_msg) {
1202                 /* Need to get the block device name carefully */
1203                 struct md_rdev *rdev;
1204                 rcu_read_lock();
1205                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1206                 if (rdev)
1207                         bdevname(rdev->bdev, b);
1208                 else
1209                         strcpy(b, "???");
1210                 rcu_read_unlock();
1211         }
1212
1213         /*
1214          * Still need barrier for READ in case that whole
1215          * array is frozen.
1216          */
1217         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1218
1219         if (!r1_bio)
1220                 r1_bio = alloc_r1bio(mddev, bio);
1221         else
1222                 init_r1bio(r1_bio, mddev, bio);
1223         r1_bio->sectors = max_read_sectors;
1224
1225         /*
1226          * make_request() can abort the operation when read-ahead is being
1227          * used and no empty request is available.
1228          */
1229         rdisk = read_balance(conf, r1_bio, &max_sectors);
1230
1231         if (rdisk < 0) {
1232                 /* couldn't find anywhere to read from */
1233                 if (print_msg) {
1234                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1235                                             mdname(mddev),
1236                                             b,
1237                                             (unsigned long long)r1_bio->sector);
1238                 }
1239                 raid_end_bio_io(r1_bio);
1240                 return;
1241         }
1242         mirror = conf->mirrors + rdisk;
1243
1244         if (print_msg)
1245                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1246                                     mdname(mddev),
1247                                     (unsigned long long)r1_bio->sector,
1248                                     bdevname(mirror->rdev->bdev, b));
1249
1250         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1251             bitmap) {
1252                 /*
1253                  * Reading from a write-mostly device must take care not to
1254                  * over-take any writes that are 'behind'
1255                  */
1256                 raid1_log(mddev, "wait behind writes");
1257                 wait_event(bitmap->behind_wait,
1258                            atomic_read(&bitmap->behind_writes) == 0);
1259         }
1260
1261         if (max_sectors < bio_sectors(bio)) {
1262                 struct bio *split = bio_split(bio, max_sectors,
1263                                               gfp, &conf->bio_split);
1264                 bio_chain(split, bio);
1265                 generic_make_request(bio);
1266                 bio = split;
1267                 r1_bio->master_bio = bio;
1268                 r1_bio->sectors = max_sectors;
1269         }
1270
1271         r1_bio->read_disk = rdisk;
1272
1273         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1274
1275         r1_bio->bios[rdisk] = read_bio;
1276
1277         read_bio->bi_iter.bi_sector = r1_bio->sector +
1278                 mirror->rdev->data_offset;
1279         bio_set_dev(read_bio, mirror->rdev->bdev);
1280         read_bio->bi_end_io = raid1_end_read_request;
1281         bio_set_op_attrs(read_bio, op, do_sync);
1282         if (test_bit(FailFast, &mirror->rdev->flags) &&
1283             test_bit(R1BIO_FailFast, &r1_bio->state))
1284                 read_bio->bi_opf |= MD_FAILFAST;
1285         read_bio->bi_private = r1_bio;
1286
1287         if (mddev->gendisk)
1288                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1289                                 disk_devt(mddev->gendisk), r1_bio->sector);
1290
1291         generic_make_request(read_bio);
1292 }
1293
1294 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1295                                 int max_write_sectors)
1296 {
1297         struct r1conf *conf = mddev->private;
1298         struct r1bio *r1_bio;
1299         int i, disks;
1300         struct bitmap *bitmap = mddev->bitmap;
1301         unsigned long flags;
1302         struct md_rdev *blocked_rdev;
1303         struct blk_plug_cb *cb;
1304         struct raid1_plug_cb *plug = NULL;
1305         int first_clone;
1306         int max_sectors;
1307
1308         if (mddev_is_clustered(mddev) &&
1309              md_cluster_ops->area_resyncing(mddev, WRITE,
1310                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1311
1312                 DEFINE_WAIT(w);
1313                 for (;;) {
1314                         prepare_to_wait(&conf->wait_barrier,
1315                                         &w, TASK_IDLE);
1316                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1317                                                         bio->bi_iter.bi_sector,
1318                                                         bio_end_sector(bio)))
1319                                 break;
1320                         schedule();
1321                 }
1322                 finish_wait(&conf->wait_barrier, &w);
1323         }
1324
1325         /*
1326          * Register the new request and wait if the reconstruction
1327          * thread has put up a bar for new requests.
1328          * Continue immediately if no resync is active currently.
1329          */
1330         wait_barrier(conf, bio->bi_iter.bi_sector);
1331
1332         r1_bio = alloc_r1bio(mddev, bio);
1333         r1_bio->sectors = max_write_sectors;
1334
1335         if (conf->pending_count >= max_queued_requests) {
1336                 md_wakeup_thread(mddev->thread);
1337                 raid1_log(mddev, "wait queued");
1338                 wait_event(conf->wait_barrier,
1339                            conf->pending_count < max_queued_requests);
1340         }
1341         /* first select target devices under rcu_lock and
1342          * inc refcount on their rdev.  Record them by setting
1343          * bios[x] to bio
1344          * If there are known/acknowledged bad blocks on any device on
1345          * which we have seen a write error, we want to avoid writing those
1346          * blocks.
1347          * This potentially requires several writes to write around
1348          * the bad blocks.  Each set of writes gets it's own r1bio
1349          * with a set of bios attached.
1350          */
1351
1352         disks = conf->raid_disks * 2;
1353  retry_write:
1354         blocked_rdev = NULL;
1355         rcu_read_lock();
1356         max_sectors = r1_bio->sectors;
1357         for (i = 0;  i < disks; i++) {
1358                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1359                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1360                         atomic_inc(&rdev->nr_pending);
1361                         blocked_rdev = rdev;
1362                         break;
1363                 }
1364                 r1_bio->bios[i] = NULL;
1365                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1366                         if (i < conf->raid_disks)
1367                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1368                         continue;
1369                 }
1370
1371                 atomic_inc(&rdev->nr_pending);
1372                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1373                         sector_t first_bad;
1374                         int bad_sectors;
1375                         int is_bad;
1376
1377                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1378                                              &first_bad, &bad_sectors);
1379                         if (is_bad < 0) {
1380                                 /* mustn't write here until the bad block is
1381                                  * acknowledged*/
1382                                 set_bit(BlockedBadBlocks, &rdev->flags);
1383                                 blocked_rdev = rdev;
1384                                 break;
1385                         }
1386                         if (is_bad && first_bad <= r1_bio->sector) {
1387                                 /* Cannot write here at all */
1388                                 bad_sectors -= (r1_bio->sector - first_bad);
1389                                 if (bad_sectors < max_sectors)
1390                                         /* mustn't write more than bad_sectors
1391                                          * to other devices yet
1392                                          */
1393                                         max_sectors = bad_sectors;
1394                                 rdev_dec_pending(rdev, mddev);
1395                                 /* We don't set R1BIO_Degraded as that
1396                                  * only applies if the disk is
1397                                  * missing, so it might be re-added,
1398                                  * and we want to know to recover this
1399                                  * chunk.
1400                                  * In this case the device is here,
1401                                  * and the fact that this chunk is not
1402                                  * in-sync is recorded in the bad
1403                                  * block log
1404                                  */
1405                                 continue;
1406                         }
1407                         if (is_bad) {
1408                                 int good_sectors = first_bad - r1_bio->sector;
1409                                 if (good_sectors < max_sectors)
1410                                         max_sectors = good_sectors;
1411                         }
1412                 }
1413                 r1_bio->bios[i] = bio;
1414         }
1415         rcu_read_unlock();
1416
1417         if (unlikely(blocked_rdev)) {
1418                 /* Wait for this device to become unblocked */
1419                 int j;
1420
1421                 for (j = 0; j < i; j++)
1422                         if (r1_bio->bios[j])
1423                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1424                 r1_bio->state = 0;
1425                 allow_barrier(conf, bio->bi_iter.bi_sector);
1426                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1427                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1428                 wait_barrier(conf, bio->bi_iter.bi_sector);
1429                 goto retry_write;
1430         }
1431
1432         if (max_sectors < bio_sectors(bio)) {
1433                 struct bio *split = bio_split(bio, max_sectors,
1434                                               GFP_NOIO, &conf->bio_split);
1435                 bio_chain(split, bio);
1436                 generic_make_request(bio);
1437                 bio = split;
1438                 r1_bio->master_bio = bio;
1439                 r1_bio->sectors = max_sectors;
1440         }
1441
1442         atomic_set(&r1_bio->remaining, 1);
1443         atomic_set(&r1_bio->behind_remaining, 0);
1444
1445         first_clone = 1;
1446
1447         for (i = 0; i < disks; i++) {
1448                 struct bio *mbio = NULL;
1449                 if (!r1_bio->bios[i])
1450                         continue;
1451
1452
1453                 if (first_clone) {
1454                         /* do behind I/O ?
1455                          * Not if there are too many, or cannot
1456                          * allocate memory, or a reader on WriteMostly
1457                          * is waiting for behind writes to flush */
1458                         if (bitmap &&
1459                             (atomic_read(&bitmap->behind_writes)
1460                              < mddev->bitmap_info.max_write_behind) &&
1461                             !waitqueue_active(&bitmap->behind_wait)) {
1462                                 alloc_behind_master_bio(r1_bio, bio);
1463                         }
1464
1465                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1466                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1467                         first_clone = 0;
1468                 }
1469
1470                 if (r1_bio->behind_master_bio)
1471                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1472                                               GFP_NOIO, &mddev->bio_set);
1473                 else
1474                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1475
1476                 if (r1_bio->behind_master_bio) {
1477                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1478                                 atomic_inc(&r1_bio->behind_remaining);
1479                 }
1480
1481                 r1_bio->bios[i] = mbio;
1482
1483                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1484                                    conf->mirrors[i].rdev->data_offset);
1485                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1486                 mbio->bi_end_io = raid1_end_write_request;
1487                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1488                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1489                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1490                     conf->raid_disks - mddev->degraded > 1)
1491                         mbio->bi_opf |= MD_FAILFAST;
1492                 mbio->bi_private = r1_bio;
1493
1494                 atomic_inc(&r1_bio->remaining);
1495
1496                 if (mddev->gendisk)
1497                         trace_block_bio_remap(mbio->bi_disk->queue,
1498                                               mbio, disk_devt(mddev->gendisk),
1499                                               r1_bio->sector);
1500                 /* flush_pending_writes() needs access to the rdev so...*/
1501                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1502
1503                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1504                 if (cb)
1505                         plug = container_of(cb, struct raid1_plug_cb, cb);
1506                 else
1507                         plug = NULL;
1508                 if (plug) {
1509                         bio_list_add(&plug->pending, mbio);
1510                         plug->pending_cnt++;
1511                 } else {
1512                         spin_lock_irqsave(&conf->device_lock, flags);
1513                         bio_list_add(&conf->pending_bio_list, mbio);
1514                         conf->pending_count++;
1515                         spin_unlock_irqrestore(&conf->device_lock, flags);
1516                         md_wakeup_thread(mddev->thread);
1517                 }
1518         }
1519
1520         r1_bio_write_done(r1_bio);
1521
1522         /* In case raid1d snuck in to freeze_array */
1523         wake_up(&conf->wait_barrier);
1524 }
1525
1526 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1527 {
1528         sector_t sectors;
1529
1530         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1531                 md_flush_request(mddev, bio);
1532                 return true;
1533         }
1534
1535         /*
1536          * There is a limit to the maximum size, but
1537          * the read/write handler might find a lower limit
1538          * due to bad blocks.  To avoid multiple splits,
1539          * we pass the maximum number of sectors down
1540          * and let the lower level perform the split.
1541          */
1542         sectors = align_to_barrier_unit_end(
1543                 bio->bi_iter.bi_sector, bio_sectors(bio));
1544
1545         if (bio_data_dir(bio) == READ)
1546                 raid1_read_request(mddev, bio, sectors, NULL);
1547         else {
1548                 if (!md_write_start(mddev,bio))
1549                         return false;
1550                 raid1_write_request(mddev, bio, sectors);
1551         }
1552         return true;
1553 }
1554
1555 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1556 {
1557         struct r1conf *conf = mddev->private;
1558         int i;
1559
1560         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1561                    conf->raid_disks - mddev->degraded);
1562         rcu_read_lock();
1563         for (i = 0; i < conf->raid_disks; i++) {
1564                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1565                 seq_printf(seq, "%s",
1566                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1567         }
1568         rcu_read_unlock();
1569         seq_printf(seq, "]");
1570 }
1571
1572 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1573 {
1574         char b[BDEVNAME_SIZE];
1575         struct r1conf *conf = mddev->private;
1576         unsigned long flags;
1577
1578         /*
1579          * If it is not operational, then we have already marked it as dead
1580          * else if it is the last working disks, ignore the error, let the
1581          * next level up know.
1582          * else mark the drive as failed
1583          */
1584         spin_lock_irqsave(&conf->device_lock, flags);
1585         if (test_bit(In_sync, &rdev->flags)
1586             && (conf->raid_disks - mddev->degraded) == 1) {
1587                 /*
1588                  * Don't fail the drive, act as though we were just a
1589                  * normal single drive.
1590                  * However don't try a recovery from this drive as
1591                  * it is very likely to fail.
1592                  */
1593                 conf->recovery_disabled = mddev->recovery_disabled;
1594                 spin_unlock_irqrestore(&conf->device_lock, flags);
1595                 return;
1596         }
1597         set_bit(Blocked, &rdev->flags);
1598         if (test_and_clear_bit(In_sync, &rdev->flags))
1599                 mddev->degraded++;
1600         set_bit(Faulty, &rdev->flags);
1601         spin_unlock_irqrestore(&conf->device_lock, flags);
1602         /*
1603          * if recovery is running, make sure it aborts.
1604          */
1605         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1606         set_mask_bits(&mddev->sb_flags, 0,
1607                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1608         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1609                 "md/raid1:%s: Operation continuing on %d devices.\n",
1610                 mdname(mddev), bdevname(rdev->bdev, b),
1611                 mdname(mddev), conf->raid_disks - mddev->degraded);
1612 }
1613
1614 static void print_conf(struct r1conf *conf)
1615 {
1616         int i;
1617
1618         pr_debug("RAID1 conf printout:\n");
1619         if (!conf) {
1620                 pr_debug("(!conf)\n");
1621                 return;
1622         }
1623         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1624                  conf->raid_disks);
1625
1626         rcu_read_lock();
1627         for (i = 0; i < conf->raid_disks; i++) {
1628                 char b[BDEVNAME_SIZE];
1629                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1630                 if (rdev)
1631                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1632                                  i, !test_bit(In_sync, &rdev->flags),
1633                                  !test_bit(Faulty, &rdev->flags),
1634                                  bdevname(rdev->bdev,b));
1635         }
1636         rcu_read_unlock();
1637 }
1638
1639 static void close_sync(struct r1conf *conf)
1640 {
1641         int idx;
1642
1643         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1644                 _wait_barrier(conf, idx);
1645                 _allow_barrier(conf, idx);
1646         }
1647
1648         mempool_exit(&conf->r1buf_pool);
1649 }
1650
1651 static int raid1_spare_active(struct mddev *mddev)
1652 {
1653         int i;
1654         struct r1conf *conf = mddev->private;
1655         int count = 0;
1656         unsigned long flags;
1657
1658         /*
1659          * Find all failed disks within the RAID1 configuration
1660          * and mark them readable.
1661          * Called under mddev lock, so rcu protection not needed.
1662          * device_lock used to avoid races with raid1_end_read_request
1663          * which expects 'In_sync' flags and ->degraded to be consistent.
1664          */
1665         spin_lock_irqsave(&conf->device_lock, flags);
1666         for (i = 0; i < conf->raid_disks; i++) {
1667                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1668                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1669                 if (repl
1670                     && !test_bit(Candidate, &repl->flags)
1671                     && repl->recovery_offset == MaxSector
1672                     && !test_bit(Faulty, &repl->flags)
1673                     && !test_and_set_bit(In_sync, &repl->flags)) {
1674                         /* replacement has just become active */
1675                         if (!rdev ||
1676                             !test_and_clear_bit(In_sync, &rdev->flags))
1677                                 count++;
1678                         if (rdev) {
1679                                 /* Replaced device not technically
1680                                  * faulty, but we need to be sure
1681                                  * it gets removed and never re-added
1682                                  */
1683                                 set_bit(Faulty, &rdev->flags);
1684                                 sysfs_notify_dirent_safe(
1685                                         rdev->sysfs_state);
1686                         }
1687                 }
1688                 if (rdev
1689                     && rdev->recovery_offset == MaxSector
1690                     && !test_bit(Faulty, &rdev->flags)
1691                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1692                         count++;
1693                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1694                 }
1695         }
1696         mddev->degraded -= count;
1697         spin_unlock_irqrestore(&conf->device_lock, flags);
1698
1699         print_conf(conf);
1700         return count;
1701 }
1702
1703 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1704 {
1705         struct r1conf *conf = mddev->private;
1706         int err = -EEXIST;
1707         int mirror = 0;
1708         struct raid1_info *p;
1709         int first = 0;
1710         int last = conf->raid_disks - 1;
1711
1712         if (mddev->recovery_disabled == conf->recovery_disabled)
1713                 return -EBUSY;
1714
1715         if (md_integrity_add_rdev(rdev, mddev))
1716                 return -ENXIO;
1717
1718         if (rdev->raid_disk >= 0)
1719                 first = last = rdev->raid_disk;
1720
1721         /*
1722          * find the disk ... but prefer rdev->saved_raid_disk
1723          * if possible.
1724          */
1725         if (rdev->saved_raid_disk >= 0 &&
1726             rdev->saved_raid_disk >= first &&
1727             rdev->saved_raid_disk < conf->raid_disks &&
1728             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1729                 first = last = rdev->saved_raid_disk;
1730
1731         for (mirror = first; mirror <= last; mirror++) {
1732                 p = conf->mirrors+mirror;
1733                 if (!p->rdev) {
1734
1735                         if (mddev->gendisk)
1736                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1737                                                   rdev->data_offset << 9);
1738
1739                         p->head_position = 0;
1740                         rdev->raid_disk = mirror;
1741                         err = 0;
1742                         /* As all devices are equivalent, we don't need a full recovery
1743                          * if this was recently any drive of the array
1744                          */
1745                         if (rdev->saved_raid_disk < 0)
1746                                 conf->fullsync = 1;
1747                         rcu_assign_pointer(p->rdev, rdev);
1748                         break;
1749                 }
1750                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1751                     p[conf->raid_disks].rdev == NULL) {
1752                         /* Add this device as a replacement */
1753                         clear_bit(In_sync, &rdev->flags);
1754                         set_bit(Replacement, &rdev->flags);
1755                         rdev->raid_disk = mirror;
1756                         err = 0;
1757                         conf->fullsync = 1;
1758                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1759                         break;
1760                 }
1761         }
1762         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1763                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1764         print_conf(conf);
1765         return err;
1766 }
1767
1768 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1769 {
1770         struct r1conf *conf = mddev->private;
1771         int err = 0;
1772         int number = rdev->raid_disk;
1773         struct raid1_info *p = conf->mirrors + number;
1774
1775         if (rdev != p->rdev)
1776                 p = conf->mirrors + conf->raid_disks + number;
1777
1778         print_conf(conf);
1779         if (rdev == p->rdev) {
1780                 if (test_bit(In_sync, &rdev->flags) ||
1781                     atomic_read(&rdev->nr_pending)) {
1782                         err = -EBUSY;
1783                         goto abort;
1784                 }
1785                 /* Only remove non-faulty devices if recovery
1786                  * is not possible.
1787                  */
1788                 if (!test_bit(Faulty, &rdev->flags) &&
1789                     mddev->recovery_disabled != conf->recovery_disabled &&
1790                     mddev->degraded < conf->raid_disks) {
1791                         err = -EBUSY;
1792                         goto abort;
1793                 }
1794                 p->rdev = NULL;
1795                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1796                         synchronize_rcu();
1797                         if (atomic_read(&rdev->nr_pending)) {
1798                                 /* lost the race, try later */
1799                                 err = -EBUSY;
1800                                 p->rdev = rdev;
1801                                 goto abort;
1802                         }
1803                 }
1804                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1805                         /* We just removed a device that is being replaced.
1806                          * Move down the replacement.  We drain all IO before
1807                          * doing this to avoid confusion.
1808                          */
1809                         struct md_rdev *repl =
1810                                 conf->mirrors[conf->raid_disks + number].rdev;
1811                         freeze_array(conf, 0);
1812                         if (atomic_read(&repl->nr_pending)) {
1813                                 /* It means that some queued IO of retry_list
1814                                  * hold repl. Thus, we cannot set replacement
1815                                  * as NULL, avoiding rdev NULL pointer
1816                                  * dereference in sync_request_write and
1817                                  * handle_write_finished.
1818                                  */
1819                                 err = -EBUSY;
1820                                 unfreeze_array(conf);
1821                                 goto abort;
1822                         }
1823                         clear_bit(Replacement, &repl->flags);
1824                         p->rdev = repl;
1825                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1826                         unfreeze_array(conf);
1827                 }
1828
1829                 clear_bit(WantReplacement, &rdev->flags);
1830                 err = md_integrity_register(mddev);
1831         }
1832 abort:
1833
1834         print_conf(conf);
1835         return err;
1836 }
1837
1838 static void end_sync_read(struct bio *bio)
1839 {
1840         struct r1bio *r1_bio = get_resync_r1bio(bio);
1841
1842         update_head_pos(r1_bio->read_disk, r1_bio);
1843
1844         /*
1845          * we have read a block, now it needs to be re-written,
1846          * or re-read if the read failed.
1847          * We don't do much here, just schedule handling by raid1d
1848          */
1849         if (!bio->bi_status)
1850                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1851
1852         if (atomic_dec_and_test(&r1_bio->remaining))
1853                 reschedule_retry(r1_bio);
1854 }
1855
1856 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1857 {
1858         sector_t sync_blocks = 0;
1859         sector_t s = r1_bio->sector;
1860         long sectors_to_go = r1_bio->sectors;
1861
1862         /* make sure these bits don't get cleared. */
1863         do {
1864                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1865                 s += sync_blocks;
1866                 sectors_to_go -= sync_blocks;
1867         } while (sectors_to_go > 0);
1868 }
1869
1870 static void end_sync_write(struct bio *bio)
1871 {
1872         int uptodate = !bio->bi_status;
1873         struct r1bio *r1_bio = get_resync_r1bio(bio);
1874         struct mddev *mddev = r1_bio->mddev;
1875         struct r1conf *conf = mddev->private;
1876         sector_t first_bad;
1877         int bad_sectors;
1878         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1879
1880         if (!uptodate) {
1881                 abort_sync_write(mddev, r1_bio);
1882                 set_bit(WriteErrorSeen, &rdev->flags);
1883                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1884                         set_bit(MD_RECOVERY_NEEDED, &
1885                                 mddev->recovery);
1886                 set_bit(R1BIO_WriteError, &r1_bio->state);
1887         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1888                                &first_bad, &bad_sectors) &&
1889                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1890                                 r1_bio->sector,
1891                                 r1_bio->sectors,
1892                                 &first_bad, &bad_sectors)
1893                 )
1894                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1895
1896         if (atomic_dec_and_test(&r1_bio->remaining)) {
1897                 int s = r1_bio->sectors;
1898                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1899                     test_bit(R1BIO_WriteError, &r1_bio->state))
1900                         reschedule_retry(r1_bio);
1901                 else {
1902                         put_buf(r1_bio);
1903                         md_done_sync(mddev, s, uptodate);
1904                 }
1905         }
1906 }
1907
1908 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1909                             int sectors, struct page *page, int rw)
1910 {
1911         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1912                 /* success */
1913                 return 1;
1914         if (rw == WRITE) {
1915                 set_bit(WriteErrorSeen, &rdev->flags);
1916                 if (!test_and_set_bit(WantReplacement,
1917                                       &rdev->flags))
1918                         set_bit(MD_RECOVERY_NEEDED, &
1919                                 rdev->mddev->recovery);
1920         }
1921         /* need to record an error - either for the block or the device */
1922         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1923                 md_error(rdev->mddev, rdev);
1924         return 0;
1925 }
1926
1927 static int fix_sync_read_error(struct r1bio *r1_bio)
1928 {
1929         /* Try some synchronous reads of other devices to get
1930          * good data, much like with normal read errors.  Only
1931          * read into the pages we already have so we don't
1932          * need to re-issue the read request.
1933          * We don't need to freeze the array, because being in an
1934          * active sync request, there is no normal IO, and
1935          * no overlapping syncs.
1936          * We don't need to check is_badblock() again as we
1937          * made sure that anything with a bad block in range
1938          * will have bi_end_io clear.
1939          */
1940         struct mddev *mddev = r1_bio->mddev;
1941         struct r1conf *conf = mddev->private;
1942         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1943         struct page **pages = get_resync_pages(bio)->pages;
1944         sector_t sect = r1_bio->sector;
1945         int sectors = r1_bio->sectors;
1946         int idx = 0;
1947         struct md_rdev *rdev;
1948
1949         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1950         if (test_bit(FailFast, &rdev->flags)) {
1951                 /* Don't try recovering from here - just fail it
1952                  * ... unless it is the last working device of course */
1953                 md_error(mddev, rdev);
1954                 if (test_bit(Faulty, &rdev->flags))
1955                         /* Don't try to read from here, but make sure
1956                          * put_buf does it's thing
1957                          */
1958                         bio->bi_end_io = end_sync_write;
1959         }
1960
1961         while(sectors) {
1962                 int s = sectors;
1963                 int d = r1_bio->read_disk;
1964                 int success = 0;
1965                 int start;
1966
1967                 if (s > (PAGE_SIZE>>9))
1968                         s = PAGE_SIZE >> 9;
1969                 do {
1970                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1971                                 /* No rcu protection needed here devices
1972                                  * can only be removed when no resync is
1973                                  * active, and resync is currently active
1974                                  */
1975                                 rdev = conf->mirrors[d].rdev;
1976                                 if (sync_page_io(rdev, sect, s<<9,
1977                                                  pages[idx],
1978                                                  REQ_OP_READ, 0, false)) {
1979                                         success = 1;
1980                                         break;
1981                                 }
1982                         }
1983                         d++;
1984                         if (d == conf->raid_disks * 2)
1985                                 d = 0;
1986                 } while (!success && d != r1_bio->read_disk);
1987
1988                 if (!success) {
1989                         char b[BDEVNAME_SIZE];
1990                         int abort = 0;
1991                         /* Cannot read from anywhere, this block is lost.
1992                          * Record a bad block on each device.  If that doesn't
1993                          * work just disable and interrupt the recovery.
1994                          * Don't fail devices as that won't really help.
1995                          */
1996                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1997                                             mdname(mddev), bio_devname(bio, b),
1998                                             (unsigned long long)r1_bio->sector);
1999                         for (d = 0; d < conf->raid_disks * 2; d++) {
2000                                 rdev = conf->mirrors[d].rdev;
2001                                 if (!rdev || test_bit(Faulty, &rdev->flags))
2002                                         continue;
2003                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
2004                                         abort = 1;
2005                         }
2006                         if (abort) {
2007                                 conf->recovery_disabled =
2008                                         mddev->recovery_disabled;
2009                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2010                                 md_done_sync(mddev, r1_bio->sectors, 0);
2011                                 put_buf(r1_bio);
2012                                 return 0;
2013                         }
2014                         /* Try next page */
2015                         sectors -= s;
2016                         sect += s;
2017                         idx++;
2018                         continue;
2019                 }
2020
2021                 start = d;
2022                 /* write it back and re-read */
2023                 while (d != r1_bio->read_disk) {
2024                         if (d == 0)
2025                                 d = conf->raid_disks * 2;
2026                         d--;
2027                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2028                                 continue;
2029                         rdev = conf->mirrors[d].rdev;
2030                         if (r1_sync_page_io(rdev, sect, s,
2031                                             pages[idx],
2032                                             WRITE) == 0) {
2033                                 r1_bio->bios[d]->bi_end_io = NULL;
2034                                 rdev_dec_pending(rdev, mddev);
2035                         }
2036                 }
2037                 d = start;
2038                 while (d != r1_bio->read_disk) {
2039                         if (d == 0)
2040                                 d = conf->raid_disks * 2;
2041                         d--;
2042                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2043                                 continue;
2044                         rdev = conf->mirrors[d].rdev;
2045                         if (r1_sync_page_io(rdev, sect, s,
2046                                             pages[idx],
2047                                             READ) != 0)
2048                                 atomic_add(s, &rdev->corrected_errors);
2049                 }
2050                 sectors -= s;
2051                 sect += s;
2052                 idx ++;
2053         }
2054         set_bit(R1BIO_Uptodate, &r1_bio->state);
2055         bio->bi_status = 0;
2056         return 1;
2057 }
2058
2059 static void process_checks(struct r1bio *r1_bio)
2060 {
2061         /* We have read all readable devices.  If we haven't
2062          * got the block, then there is no hope left.
2063          * If we have, then we want to do a comparison
2064          * and skip the write if everything is the same.
2065          * If any blocks failed to read, then we need to
2066          * attempt an over-write
2067          */
2068         struct mddev *mddev = r1_bio->mddev;
2069         struct r1conf *conf = mddev->private;
2070         int primary;
2071         int i;
2072         int vcnt;
2073
2074         /* Fix variable parts of all bios */
2075         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2076         for (i = 0; i < conf->raid_disks * 2; i++) {
2077                 blk_status_t status;
2078                 struct bio *b = r1_bio->bios[i];
2079                 struct resync_pages *rp = get_resync_pages(b);
2080                 if (b->bi_end_io != end_sync_read)
2081                         continue;
2082                 /* fixup the bio for reuse, but preserve errno */
2083                 status = b->bi_status;
2084                 bio_reset(b);
2085                 b->bi_status = status;
2086                 b->bi_iter.bi_sector = r1_bio->sector +
2087                         conf->mirrors[i].rdev->data_offset;
2088                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2089                 b->bi_end_io = end_sync_read;
2090                 rp->raid_bio = r1_bio;
2091                 b->bi_private = rp;
2092
2093                 /* initialize bvec table again */
2094                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2095         }
2096         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2097                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2098                     !r1_bio->bios[primary]->bi_status) {
2099                         r1_bio->bios[primary]->bi_end_io = NULL;
2100                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2101                         break;
2102                 }
2103         r1_bio->read_disk = primary;
2104         for (i = 0; i < conf->raid_disks * 2; i++) {
2105                 int j = 0;
2106                 struct bio *pbio = r1_bio->bios[primary];
2107                 struct bio *sbio = r1_bio->bios[i];
2108                 blk_status_t status = sbio->bi_status;
2109                 struct page **ppages = get_resync_pages(pbio)->pages;
2110                 struct page **spages = get_resync_pages(sbio)->pages;
2111                 struct bio_vec *bi;
2112                 int page_len[RESYNC_PAGES] = { 0 };
2113                 struct bvec_iter_all iter_all;
2114
2115                 if (sbio->bi_end_io != end_sync_read)
2116                         continue;
2117                 /* Now we can 'fixup' the error value */
2118                 sbio->bi_status = 0;
2119
2120                 bio_for_each_segment_all(bi, sbio, iter_all)
2121                         page_len[j++] = bi->bv_len;
2122
2123                 if (!status) {
2124                         for (j = vcnt; j-- ; ) {
2125                                 if (memcmp(page_address(ppages[j]),
2126                                            page_address(spages[j]),
2127                                            page_len[j]))
2128                                         break;
2129                         }
2130                 } else
2131                         j = 0;
2132                 if (j >= 0)
2133                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2134                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2135                               && !status)) {
2136                         /* No need to write to this device. */
2137                         sbio->bi_end_io = NULL;
2138                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2139                         continue;
2140                 }
2141
2142                 bio_copy_data(sbio, pbio);
2143         }
2144 }
2145
2146 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2147 {
2148         struct r1conf *conf = mddev->private;
2149         int i;
2150         int disks = conf->raid_disks * 2;
2151         struct bio *wbio;
2152
2153         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2154                 /* ouch - failed to read all of that. */
2155                 if (!fix_sync_read_error(r1_bio))
2156                         return;
2157
2158         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2159                 process_checks(r1_bio);
2160
2161         /*
2162          * schedule writes
2163          */
2164         atomic_set(&r1_bio->remaining, 1);
2165         for (i = 0; i < disks ; i++) {
2166                 wbio = r1_bio->bios[i];
2167                 if (wbio->bi_end_io == NULL ||
2168                     (wbio->bi_end_io == end_sync_read &&
2169                      (i == r1_bio->read_disk ||
2170                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2171                         continue;
2172                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2173                         abort_sync_write(mddev, r1_bio);
2174                         continue;
2175                 }
2176
2177                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2178                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2179                         wbio->bi_opf |= MD_FAILFAST;
2180
2181                 wbio->bi_end_io = end_sync_write;
2182                 atomic_inc(&r1_bio->remaining);
2183                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2184
2185                 generic_make_request(wbio);
2186         }
2187
2188         if (atomic_dec_and_test(&r1_bio->remaining)) {
2189                 /* if we're here, all write(s) have completed, so clean up */
2190                 int s = r1_bio->sectors;
2191                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2192                     test_bit(R1BIO_WriteError, &r1_bio->state))
2193                         reschedule_retry(r1_bio);
2194                 else {
2195                         put_buf(r1_bio);
2196                         md_done_sync(mddev, s, 1);
2197                 }
2198         }
2199 }
2200
2201 /*
2202  * This is a kernel thread which:
2203  *
2204  *      1.      Retries failed read operations on working mirrors.
2205  *      2.      Updates the raid superblock when problems encounter.
2206  *      3.      Performs writes following reads for array synchronising.
2207  */
2208
2209 static void fix_read_error(struct r1conf *conf, int read_disk,
2210                            sector_t sect, int sectors)
2211 {
2212         struct mddev *mddev = conf->mddev;
2213         while(sectors) {
2214                 int s = sectors;
2215                 int d = read_disk;
2216                 int success = 0;
2217                 int start;
2218                 struct md_rdev *rdev;
2219
2220                 if (s > (PAGE_SIZE>>9))
2221                         s = PAGE_SIZE >> 9;
2222
2223                 do {
2224                         sector_t first_bad;
2225                         int bad_sectors;
2226
2227                         rcu_read_lock();
2228                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2229                         if (rdev &&
2230                             (test_bit(In_sync, &rdev->flags) ||
2231                              (!test_bit(Faulty, &rdev->flags) &&
2232                               rdev->recovery_offset >= sect + s)) &&
2233                             is_badblock(rdev, sect, s,
2234                                         &first_bad, &bad_sectors) == 0) {
2235                                 atomic_inc(&rdev->nr_pending);
2236                                 rcu_read_unlock();
2237                                 if (sync_page_io(rdev, sect, s<<9,
2238                                          conf->tmppage, REQ_OP_READ, 0, false))
2239                                         success = 1;
2240                                 rdev_dec_pending(rdev, mddev);
2241                                 if (success)
2242                                         break;
2243                         } else
2244                                 rcu_read_unlock();
2245                         d++;
2246                         if (d == conf->raid_disks * 2)
2247                                 d = 0;
2248                 } while (!success && d != read_disk);
2249
2250                 if (!success) {
2251                         /* Cannot read from anywhere - mark it bad */
2252                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2253                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2254                                 md_error(mddev, rdev);
2255                         break;
2256                 }
2257                 /* write it back and re-read */
2258                 start = d;
2259                 while (d != read_disk) {
2260                         if (d==0)
2261                                 d = conf->raid_disks * 2;
2262                         d--;
2263                         rcu_read_lock();
2264                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2265                         if (rdev &&
2266                             !test_bit(Faulty, &rdev->flags)) {
2267                                 atomic_inc(&rdev->nr_pending);
2268                                 rcu_read_unlock();
2269                                 r1_sync_page_io(rdev, sect, s,
2270                                                 conf->tmppage, WRITE);
2271                                 rdev_dec_pending(rdev, mddev);
2272                         } else
2273                                 rcu_read_unlock();
2274                 }
2275                 d = start;
2276                 while (d != read_disk) {
2277                         char b[BDEVNAME_SIZE];
2278                         if (d==0)
2279                                 d = conf->raid_disks * 2;
2280                         d--;
2281                         rcu_read_lock();
2282                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2283                         if (rdev &&
2284                             !test_bit(Faulty, &rdev->flags)) {
2285                                 atomic_inc(&rdev->nr_pending);
2286                                 rcu_read_unlock();
2287                                 if (r1_sync_page_io(rdev, sect, s,
2288                                                     conf->tmppage, READ)) {
2289                                         atomic_add(s, &rdev->corrected_errors);
2290                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2291                                                 mdname(mddev), s,
2292                                                 (unsigned long long)(sect +
2293                                                                      rdev->data_offset),
2294                                                 bdevname(rdev->bdev, b));
2295                                 }
2296                                 rdev_dec_pending(rdev, mddev);
2297                         } else
2298                                 rcu_read_unlock();
2299                 }
2300                 sectors -= s;
2301                 sect += s;
2302         }
2303 }
2304
2305 static int narrow_write_error(struct r1bio *r1_bio, int i)
2306 {
2307         struct mddev *mddev = r1_bio->mddev;
2308         struct r1conf *conf = mddev->private;
2309         struct md_rdev *rdev = conf->mirrors[i].rdev;
2310
2311         /* bio has the data to be written to device 'i' where
2312          * we just recently had a write error.
2313          * We repeatedly clone the bio and trim down to one block,
2314          * then try the write.  Where the write fails we record
2315          * a bad block.
2316          * It is conceivable that the bio doesn't exactly align with
2317          * blocks.  We must handle this somehow.
2318          *
2319          * We currently own a reference on the rdev.
2320          */
2321
2322         int block_sectors;
2323         sector_t sector;
2324         int sectors;
2325         int sect_to_write = r1_bio->sectors;
2326         int ok = 1;
2327
2328         if (rdev->badblocks.shift < 0)
2329                 return 0;
2330
2331         block_sectors = roundup(1 << rdev->badblocks.shift,
2332                                 bdev_logical_block_size(rdev->bdev) >> 9);
2333         sector = r1_bio->sector;
2334         sectors = ((sector + block_sectors)
2335                    & ~(sector_t)(block_sectors - 1))
2336                 - sector;
2337
2338         while (sect_to_write) {
2339                 struct bio *wbio;
2340                 if (sectors > sect_to_write)
2341                         sectors = sect_to_write;
2342                 /* Write at 'sector' for 'sectors'*/
2343
2344                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2345                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2346                                               GFP_NOIO,
2347                                               &mddev->bio_set);
2348                 } else {
2349                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2350                                               &mddev->bio_set);
2351                 }
2352
2353                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2354                 wbio->bi_iter.bi_sector = r1_bio->sector;
2355                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2356
2357                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2358                 wbio->bi_iter.bi_sector += rdev->data_offset;
2359                 bio_set_dev(wbio, rdev->bdev);
2360
2361                 if (submit_bio_wait(wbio) < 0)
2362                         /* failure! */
2363                         ok = rdev_set_badblocks(rdev, sector,
2364                                                 sectors, 0)
2365                                 && ok;
2366
2367                 bio_put(wbio);
2368                 sect_to_write -= sectors;
2369                 sector += sectors;
2370                 sectors = block_sectors;
2371         }
2372         return ok;
2373 }
2374
2375 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2376 {
2377         int m;
2378         int s = r1_bio->sectors;
2379         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2380                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2381                 struct bio *bio = r1_bio->bios[m];
2382                 if (bio->bi_end_io == NULL)
2383                         continue;
2384                 if (!bio->bi_status &&
2385                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2386                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2387                 }
2388                 if (bio->bi_status &&
2389                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2390                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2391                                 md_error(conf->mddev, rdev);
2392                 }
2393         }
2394         put_buf(r1_bio);
2395         md_done_sync(conf->mddev, s, 1);
2396 }
2397
2398 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2399 {
2400         int m, idx;
2401         bool fail = false;
2402
2403         for (m = 0; m < conf->raid_disks * 2 ; m++)
2404                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2405                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2406                         rdev_clear_badblocks(rdev,
2407                                              r1_bio->sector,
2408                                              r1_bio->sectors, 0);
2409                         rdev_dec_pending(rdev, conf->mddev);
2410                 } else if (r1_bio->bios[m] != NULL) {
2411                         /* This drive got a write error.  We need to
2412                          * narrow down and record precise write
2413                          * errors.
2414                          */
2415                         fail = true;
2416                         if (!narrow_write_error(r1_bio, m)) {
2417                                 md_error(conf->mddev,
2418                                          conf->mirrors[m].rdev);
2419                                 /* an I/O failed, we can't clear the bitmap */
2420                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2421                         }
2422                         rdev_dec_pending(conf->mirrors[m].rdev,
2423                                          conf->mddev);
2424                 }
2425         if (fail) {
2426                 spin_lock_irq(&conf->device_lock);
2427                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2428                 idx = sector_to_idx(r1_bio->sector);
2429                 atomic_inc(&conf->nr_queued[idx]);
2430                 spin_unlock_irq(&conf->device_lock);
2431                 /*
2432                  * In case freeze_array() is waiting for condition
2433                  * get_unqueued_pending() == extra to be true.
2434                  */
2435                 wake_up(&conf->wait_barrier);
2436                 md_wakeup_thread(conf->mddev->thread);
2437         } else {
2438                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2439                         close_write(r1_bio);
2440                 raid_end_bio_io(r1_bio);
2441         }
2442 }
2443
2444 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2445 {
2446         struct mddev *mddev = conf->mddev;
2447         struct bio *bio;
2448         struct md_rdev *rdev;
2449
2450         clear_bit(R1BIO_ReadError, &r1_bio->state);
2451         /* we got a read error. Maybe the drive is bad.  Maybe just
2452          * the block and we can fix it.
2453          * We freeze all other IO, and try reading the block from
2454          * other devices.  When we find one, we re-write
2455          * and check it that fixes the read error.
2456          * This is all done synchronously while the array is
2457          * frozen
2458          */
2459
2460         bio = r1_bio->bios[r1_bio->read_disk];
2461         bio_put(bio);
2462         r1_bio->bios[r1_bio->read_disk] = NULL;
2463
2464         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2465         if (mddev->ro == 0
2466             && !test_bit(FailFast, &rdev->flags)) {
2467                 freeze_array(conf, 1);
2468                 fix_read_error(conf, r1_bio->read_disk,
2469                                r1_bio->sector, r1_bio->sectors);
2470                 unfreeze_array(conf);
2471         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2472                 md_error(mddev, rdev);
2473         } else {
2474                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2475         }
2476
2477         rdev_dec_pending(rdev, conf->mddev);
2478         allow_barrier(conf, r1_bio->sector);
2479         bio = r1_bio->master_bio;
2480
2481         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2482         r1_bio->state = 0;
2483         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2484 }
2485
2486 static void raid1d(struct md_thread *thread)
2487 {
2488         struct mddev *mddev = thread->mddev;
2489         struct r1bio *r1_bio;
2490         unsigned long flags;
2491         struct r1conf *conf = mddev->private;
2492         struct list_head *head = &conf->retry_list;
2493         struct blk_plug plug;
2494         int idx;
2495
2496         md_check_recovery(mddev);
2497
2498         if (!list_empty_careful(&conf->bio_end_io_list) &&
2499             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2500                 LIST_HEAD(tmp);
2501                 spin_lock_irqsave(&conf->device_lock, flags);
2502                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2503                         list_splice_init(&conf->bio_end_io_list, &tmp);
2504                 spin_unlock_irqrestore(&conf->device_lock, flags);
2505                 while (!list_empty(&tmp)) {
2506                         r1_bio = list_first_entry(&tmp, struct r1bio,
2507                                                   retry_list);
2508                         list_del(&r1_bio->retry_list);
2509                         idx = sector_to_idx(r1_bio->sector);
2510                         atomic_dec(&conf->nr_queued[idx]);
2511                         if (mddev->degraded)
2512                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2513                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2514                                 close_write(r1_bio);
2515                         raid_end_bio_io(r1_bio);
2516                 }
2517         }
2518
2519         blk_start_plug(&plug);
2520         for (;;) {
2521
2522                 flush_pending_writes(conf);
2523
2524                 spin_lock_irqsave(&conf->device_lock, flags);
2525                 if (list_empty(head)) {
2526                         spin_unlock_irqrestore(&conf->device_lock, flags);
2527                         break;
2528                 }
2529                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2530                 list_del(head->prev);
2531                 idx = sector_to_idx(r1_bio->sector);
2532                 atomic_dec(&conf->nr_queued[idx]);
2533                 spin_unlock_irqrestore(&conf->device_lock, flags);
2534
2535                 mddev = r1_bio->mddev;
2536                 conf = mddev->private;
2537                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2538                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2539                             test_bit(R1BIO_WriteError, &r1_bio->state))
2540                                 handle_sync_write_finished(conf, r1_bio);
2541                         else
2542                                 sync_request_write(mddev, r1_bio);
2543                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2544                            test_bit(R1BIO_WriteError, &r1_bio->state))
2545                         handle_write_finished(conf, r1_bio);
2546                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2547                         handle_read_error(conf, r1_bio);
2548                 else
2549                         WARN_ON_ONCE(1);
2550
2551                 cond_resched();
2552                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2553                         md_check_recovery(mddev);
2554         }
2555         blk_finish_plug(&plug);
2556 }
2557
2558 static int init_resync(struct r1conf *conf)
2559 {
2560         int buffs;
2561
2562         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2563         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2564
2565         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2566                             r1buf_pool_free, conf->poolinfo);
2567 }
2568
2569 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2570 {
2571         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2572         struct resync_pages *rps;
2573         struct bio *bio;
2574         int i;
2575
2576         for (i = conf->poolinfo->raid_disks; i--; ) {
2577                 bio = r1bio->bios[i];
2578                 rps = bio->bi_private;
2579                 bio_reset(bio);
2580                 bio->bi_private = rps;
2581         }
2582         r1bio->master_bio = NULL;
2583         return r1bio;
2584 }
2585
2586 /*
2587  * perform a "sync" on one "block"
2588  *
2589  * We need to make sure that no normal I/O request - particularly write
2590  * requests - conflict with active sync requests.
2591  *
2592  * This is achieved by tracking pending requests and a 'barrier' concept
2593  * that can be installed to exclude normal IO requests.
2594  */
2595
2596 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2597                                    int *skipped)
2598 {
2599         struct r1conf *conf = mddev->private;
2600         struct r1bio *r1_bio;
2601         struct bio *bio;
2602         sector_t max_sector, nr_sectors;
2603         int disk = -1;
2604         int i;
2605         int wonly = -1;
2606         int write_targets = 0, read_targets = 0;
2607         sector_t sync_blocks;
2608         int still_degraded = 0;
2609         int good_sectors = RESYNC_SECTORS;
2610         int min_bad = 0; /* number of sectors that are bad in all devices */
2611         int idx = sector_to_idx(sector_nr);
2612         int page_idx = 0;
2613
2614         if (!mempool_initialized(&conf->r1buf_pool))
2615                 if (init_resync(conf))
2616                         return 0;
2617
2618         max_sector = mddev->dev_sectors;
2619         if (sector_nr >= max_sector) {
2620                 /* If we aborted, we need to abort the
2621                  * sync on the 'current' bitmap chunk (there will
2622                  * only be one in raid1 resync.
2623                  * We can find the current addess in mddev->curr_resync
2624                  */
2625                 if (mddev->curr_resync < max_sector) /* aborted */
2626                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2627                                            &sync_blocks, 1);
2628                 else /* completed sync */
2629                         conf->fullsync = 0;
2630
2631                 md_bitmap_close_sync(mddev->bitmap);
2632                 close_sync(conf);
2633
2634                 if (mddev_is_clustered(mddev)) {
2635                         conf->cluster_sync_low = 0;
2636                         conf->cluster_sync_high = 0;
2637                 }
2638                 return 0;
2639         }
2640
2641         if (mddev->bitmap == NULL &&
2642             mddev->recovery_cp == MaxSector &&
2643             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2644             conf->fullsync == 0) {
2645                 *skipped = 1;
2646                 return max_sector - sector_nr;
2647         }
2648         /* before building a request, check if we can skip these blocks..
2649          * This call the bitmap_start_sync doesn't actually record anything
2650          */
2651         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2652             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2653                 /* We can skip this block, and probably several more */
2654                 *skipped = 1;
2655                 return sync_blocks;
2656         }
2657
2658         /*
2659          * If there is non-resync activity waiting for a turn, then let it
2660          * though before starting on this new sync request.
2661          */
2662         if (atomic_read(&conf->nr_waiting[idx]))
2663                 schedule_timeout_uninterruptible(1);
2664
2665         /* we are incrementing sector_nr below. To be safe, we check against
2666          * sector_nr + two times RESYNC_SECTORS
2667          */
2668
2669         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2670                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2671
2672
2673         if (raise_barrier(conf, sector_nr))
2674                 return 0;
2675
2676         r1_bio = raid1_alloc_init_r1buf(conf);
2677
2678         rcu_read_lock();
2679         /*
2680          * If we get a correctably read error during resync or recovery,
2681          * we might want to read from a different device.  So we
2682          * flag all drives that could conceivably be read from for READ,
2683          * and any others (which will be non-In_sync devices) for WRITE.
2684          * If a read fails, we try reading from something else for which READ
2685          * is OK.
2686          */
2687
2688         r1_bio->mddev = mddev;
2689         r1_bio->sector = sector_nr;
2690         r1_bio->state = 0;
2691         set_bit(R1BIO_IsSync, &r1_bio->state);
2692         /* make sure good_sectors won't go across barrier unit boundary */
2693         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2694
2695         for (i = 0; i < conf->raid_disks * 2; i++) {
2696                 struct md_rdev *rdev;
2697                 bio = r1_bio->bios[i];
2698
2699                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2700                 if (rdev == NULL ||
2701                     test_bit(Faulty, &rdev->flags)) {
2702                         if (i < conf->raid_disks)
2703                                 still_degraded = 1;
2704                 } else if (!test_bit(In_sync, &rdev->flags)) {
2705                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2706                         bio->bi_end_io = end_sync_write;
2707                         write_targets ++;
2708                 } else {
2709                         /* may need to read from here */
2710                         sector_t first_bad = MaxSector;
2711                         int bad_sectors;
2712
2713                         if (is_badblock(rdev, sector_nr, good_sectors,
2714                                         &first_bad, &bad_sectors)) {
2715                                 if (first_bad > sector_nr)
2716                                         good_sectors = first_bad - sector_nr;
2717                                 else {
2718                                         bad_sectors -= (sector_nr - first_bad);
2719                                         if (min_bad == 0 ||
2720                                             min_bad > bad_sectors)
2721                                                 min_bad = bad_sectors;
2722                                 }
2723                         }
2724                         if (sector_nr < first_bad) {
2725                                 if (test_bit(WriteMostly, &rdev->flags)) {
2726                                         if (wonly < 0)
2727                                                 wonly = i;
2728                                 } else {
2729                                         if (disk < 0)
2730                                                 disk = i;
2731                                 }
2732                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2733                                 bio->bi_end_io = end_sync_read;
2734                                 read_targets++;
2735                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2736                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2737                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2738                                 /*
2739                                  * The device is suitable for reading (InSync),
2740                                  * but has bad block(s) here. Let's try to correct them,
2741                                  * if we are doing resync or repair. Otherwise, leave
2742                                  * this device alone for this sync request.
2743                                  */
2744                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2745                                 bio->bi_end_io = end_sync_write;
2746                                 write_targets++;
2747                         }
2748                 }
2749                 if (bio->bi_end_io) {
2750                         atomic_inc(&rdev->nr_pending);
2751                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2752                         bio_set_dev(bio, rdev->bdev);
2753                         if (test_bit(FailFast, &rdev->flags))
2754                                 bio->bi_opf |= MD_FAILFAST;
2755                 }
2756         }
2757         rcu_read_unlock();
2758         if (disk < 0)
2759                 disk = wonly;
2760         r1_bio->read_disk = disk;
2761
2762         if (read_targets == 0 && min_bad > 0) {
2763                 /* These sectors are bad on all InSync devices, so we
2764                  * need to mark them bad on all write targets
2765                  */
2766                 int ok = 1;
2767                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2768                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2769                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2770                                 ok = rdev_set_badblocks(rdev, sector_nr,
2771                                                         min_bad, 0
2772                                         ) && ok;
2773                         }
2774                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2775                 *skipped = 1;
2776                 put_buf(r1_bio);
2777
2778                 if (!ok) {
2779                         /* Cannot record the badblocks, so need to
2780                          * abort the resync.
2781                          * If there are multiple read targets, could just
2782                          * fail the really bad ones ???
2783                          */
2784                         conf->recovery_disabled = mddev->recovery_disabled;
2785                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2786                         return 0;
2787                 } else
2788                         return min_bad;
2789
2790         }
2791         if (min_bad > 0 && min_bad < good_sectors) {
2792                 /* only resync enough to reach the next bad->good
2793                  * transition */
2794                 good_sectors = min_bad;
2795         }
2796
2797         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2798                 /* extra read targets are also write targets */
2799                 write_targets += read_targets-1;
2800
2801         if (write_targets == 0 || read_targets == 0) {
2802                 /* There is nowhere to write, so all non-sync
2803                  * drives must be failed - so we are finished
2804                  */
2805                 sector_t rv;
2806                 if (min_bad > 0)
2807                         max_sector = sector_nr + min_bad;
2808                 rv = max_sector - sector_nr;
2809                 *skipped = 1;
2810                 put_buf(r1_bio);
2811                 return rv;
2812         }
2813
2814         if (max_sector > mddev->resync_max)
2815                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2816         if (max_sector > sector_nr + good_sectors)
2817                 max_sector = sector_nr + good_sectors;
2818         nr_sectors = 0;
2819         sync_blocks = 0;
2820         do {
2821                 struct page *page;
2822                 int len = PAGE_SIZE;
2823                 if (sector_nr + (len>>9) > max_sector)
2824                         len = (max_sector - sector_nr) << 9;
2825                 if (len == 0)
2826                         break;
2827                 if (sync_blocks == 0) {
2828                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2829                                                   &sync_blocks, still_degraded) &&
2830                             !conf->fullsync &&
2831                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2832                                 break;
2833                         if ((len >> 9) > sync_blocks)
2834                                 len = sync_blocks<<9;
2835                 }
2836
2837                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2838                         struct resync_pages *rp;
2839
2840                         bio = r1_bio->bios[i];
2841                         rp = get_resync_pages(bio);
2842                         if (bio->bi_end_io) {
2843                                 page = resync_fetch_page(rp, page_idx);
2844
2845                                 /*
2846                                  * won't fail because the vec table is big
2847                                  * enough to hold all these pages
2848                                  */
2849                                 bio_add_page(bio, page, len, 0);
2850                         }
2851                 }
2852                 nr_sectors += len>>9;
2853                 sector_nr += len>>9;
2854                 sync_blocks -= (len>>9);
2855         } while (++page_idx < RESYNC_PAGES);
2856
2857         r1_bio->sectors = nr_sectors;
2858
2859         if (mddev_is_clustered(mddev) &&
2860                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2861                 conf->cluster_sync_low = mddev->curr_resync_completed;
2862                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2863                 /* Send resync message */
2864                 md_cluster_ops->resync_info_update(mddev,
2865                                 conf->cluster_sync_low,
2866                                 conf->cluster_sync_high);
2867         }
2868
2869         /* For a user-requested sync, we read all readable devices and do a
2870          * compare
2871          */
2872         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2873                 atomic_set(&r1_bio->remaining, read_targets);
2874                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2875                         bio = r1_bio->bios[i];
2876                         if (bio->bi_end_io == end_sync_read) {
2877                                 read_targets--;
2878                                 md_sync_acct_bio(bio, nr_sectors);
2879                                 if (read_targets == 1)
2880                                         bio->bi_opf &= ~MD_FAILFAST;
2881                                 generic_make_request(bio);
2882                         }
2883                 }
2884         } else {
2885                 atomic_set(&r1_bio->remaining, 1);
2886                 bio = r1_bio->bios[r1_bio->read_disk];
2887                 md_sync_acct_bio(bio, nr_sectors);
2888                 if (read_targets == 1)
2889                         bio->bi_opf &= ~MD_FAILFAST;
2890                 generic_make_request(bio);
2891
2892         }
2893         return nr_sectors;
2894 }
2895
2896 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2897 {
2898         if (sectors)
2899                 return sectors;
2900
2901         return mddev->dev_sectors;
2902 }
2903
2904 static struct r1conf *setup_conf(struct mddev *mddev)
2905 {
2906         struct r1conf *conf;
2907         int i;
2908         struct raid1_info *disk;
2909         struct md_rdev *rdev;
2910         int err = -ENOMEM;
2911
2912         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2913         if (!conf)
2914                 goto abort;
2915
2916         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2917                                    sizeof(atomic_t), GFP_KERNEL);
2918         if (!conf->nr_pending)
2919                 goto abort;
2920
2921         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2922                                    sizeof(atomic_t), GFP_KERNEL);
2923         if (!conf->nr_waiting)
2924                 goto abort;
2925
2926         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2927                                   sizeof(atomic_t), GFP_KERNEL);
2928         if (!conf->nr_queued)
2929                 goto abort;
2930
2931         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2932                                 sizeof(atomic_t), GFP_KERNEL);
2933         if (!conf->barrier)
2934                 goto abort;
2935
2936         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2937                                             mddev->raid_disks, 2),
2938                                 GFP_KERNEL);
2939         if (!conf->mirrors)
2940                 goto abort;
2941
2942         conf->tmppage = alloc_page(GFP_KERNEL);
2943         if (!conf->tmppage)
2944                 goto abort;
2945
2946         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2947         if (!conf->poolinfo)
2948                 goto abort;
2949         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2950         err = mempool_init(&conf->r1bio_pool, NR_RAID1_BIOS, r1bio_pool_alloc,
2951                            r1bio_pool_free, conf->poolinfo);
2952         if (err)
2953                 goto abort;
2954
2955         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2956         if (err)
2957                 goto abort;
2958
2959         conf->poolinfo->mddev = mddev;
2960
2961         err = -EINVAL;
2962         spin_lock_init(&conf->device_lock);
2963         rdev_for_each(rdev, mddev) {
2964                 int disk_idx = rdev->raid_disk;
2965                 if (disk_idx >= mddev->raid_disks
2966                     || disk_idx < 0)
2967                         continue;
2968                 if (test_bit(Replacement, &rdev->flags))
2969                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2970                 else
2971                         disk = conf->mirrors + disk_idx;
2972
2973                 if (disk->rdev)
2974                         goto abort;
2975                 disk->rdev = rdev;
2976                 disk->head_position = 0;
2977                 disk->seq_start = MaxSector;
2978         }
2979         conf->raid_disks = mddev->raid_disks;
2980         conf->mddev = mddev;
2981         INIT_LIST_HEAD(&conf->retry_list);
2982         INIT_LIST_HEAD(&conf->bio_end_io_list);
2983
2984         spin_lock_init(&conf->resync_lock);
2985         init_waitqueue_head(&conf->wait_barrier);
2986
2987         bio_list_init(&conf->pending_bio_list);
2988         conf->pending_count = 0;
2989         conf->recovery_disabled = mddev->recovery_disabled - 1;
2990
2991         err = -EIO;
2992         for (i = 0; i < conf->raid_disks * 2; i++) {
2993
2994                 disk = conf->mirrors + i;
2995
2996                 if (i < conf->raid_disks &&
2997                     disk[conf->raid_disks].rdev) {
2998                         /* This slot has a replacement. */
2999                         if (!disk->rdev) {
3000                                 /* No original, just make the replacement
3001                                  * a recovering spare
3002                                  */
3003                                 disk->rdev =
3004                                         disk[conf->raid_disks].rdev;
3005                                 disk[conf->raid_disks].rdev = NULL;
3006                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3007                                 /* Original is not in_sync - bad */
3008                                 goto abort;
3009                 }
3010
3011                 if (!disk->rdev ||
3012                     !test_bit(In_sync, &disk->rdev->flags)) {
3013                         disk->head_position = 0;
3014                         if (disk->rdev &&
3015                             (disk->rdev->saved_raid_disk < 0))
3016                                 conf->fullsync = 1;
3017                 }
3018         }
3019
3020         err = -ENOMEM;
3021         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3022         if (!conf->thread)
3023                 goto abort;
3024
3025         return conf;
3026
3027  abort:
3028         if (conf) {
3029                 mempool_exit(&conf->r1bio_pool);
3030                 kfree(conf->mirrors);
3031                 safe_put_page(conf->tmppage);
3032                 kfree(conf->poolinfo);
3033                 kfree(conf->nr_pending);
3034                 kfree(conf->nr_waiting);
3035                 kfree(conf->nr_queued);
3036                 kfree(conf->barrier);
3037                 bioset_exit(&conf->bio_split);
3038                 kfree(conf);
3039         }
3040         return ERR_PTR(err);
3041 }
3042
3043 static void raid1_free(struct mddev *mddev, void *priv);
3044 static int raid1_run(struct mddev *mddev)
3045 {
3046         struct r1conf *conf;
3047         int i;
3048         struct md_rdev *rdev;
3049         int ret;
3050         bool discard_supported = false;
3051
3052         if (mddev->level != 1) {
3053                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3054                         mdname(mddev), mddev->level);
3055                 return -EIO;
3056         }
3057         if (mddev->reshape_position != MaxSector) {
3058                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3059                         mdname(mddev));
3060                 return -EIO;
3061         }
3062         if (mddev_init_writes_pending(mddev) < 0)
3063                 return -ENOMEM;
3064         /*
3065          * copy the already verified devices into our private RAID1
3066          * bookkeeping area. [whatever we allocate in run(),
3067          * should be freed in raid1_free()]
3068          */
3069         if (mddev->private == NULL)
3070                 conf = setup_conf(mddev);
3071         else
3072                 conf = mddev->private;
3073
3074         if (IS_ERR(conf))
3075                 return PTR_ERR(conf);
3076
3077         if (mddev->queue) {
3078                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3079                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3080         }
3081
3082         rdev_for_each(rdev, mddev) {
3083                 if (!mddev->gendisk)
3084                         continue;
3085                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3086                                   rdev->data_offset << 9);
3087                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3088                         discard_supported = true;
3089         }
3090
3091         mddev->degraded = 0;
3092         for (i=0; i < conf->raid_disks; i++)
3093                 if (conf->mirrors[i].rdev == NULL ||
3094                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3095                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3096                         mddev->degraded++;
3097
3098         if (conf->raid_disks - mddev->degraded == 1)
3099                 mddev->recovery_cp = MaxSector;
3100
3101         if (mddev->recovery_cp != MaxSector)
3102                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3103                         mdname(mddev));
3104         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3105                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3106                 mddev->raid_disks);
3107
3108         /*
3109          * Ok, everything is just fine now
3110          */
3111         mddev->thread = conf->thread;
3112         conf->thread = NULL;
3113         mddev->private = conf;
3114         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3115
3116         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3117
3118         if (mddev->queue) {
3119                 if (discard_supported)
3120                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3121                                                 mddev->queue);
3122                 else
3123                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3124                                                   mddev->queue);
3125         }
3126
3127         ret =  md_integrity_register(mddev);
3128         if (ret) {
3129                 md_unregister_thread(&mddev->thread);
3130                 raid1_free(mddev, conf);
3131         }
3132         return ret;
3133 }
3134
3135 static void raid1_free(struct mddev *mddev, void *priv)
3136 {
3137         struct r1conf *conf = priv;
3138
3139         mempool_exit(&conf->r1bio_pool);
3140         kfree(conf->mirrors);
3141         safe_put_page(conf->tmppage);
3142         kfree(conf->poolinfo);
3143         kfree(conf->nr_pending);
3144         kfree(conf->nr_waiting);
3145         kfree(conf->nr_queued);
3146         kfree(conf->barrier);
3147         bioset_exit(&conf->bio_split);
3148         kfree(conf);
3149 }
3150
3151 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3152 {
3153         /* no resync is happening, and there is enough space
3154          * on all devices, so we can resize.
3155          * We need to make sure resync covers any new space.
3156          * If the array is shrinking we should possibly wait until
3157          * any io in the removed space completes, but it hardly seems
3158          * worth it.
3159          */
3160         sector_t newsize = raid1_size(mddev, sectors, 0);
3161         if (mddev->external_size &&
3162             mddev->array_sectors > newsize)
3163                 return -EINVAL;
3164         if (mddev->bitmap) {
3165                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3166                 if (ret)
3167                         return ret;
3168         }
3169         md_set_array_sectors(mddev, newsize);
3170         if (sectors > mddev->dev_sectors &&
3171             mddev->recovery_cp > mddev->dev_sectors) {
3172                 mddev->recovery_cp = mddev->dev_sectors;
3173                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3174         }
3175         mddev->dev_sectors = sectors;
3176         mddev->resync_max_sectors = sectors;
3177         return 0;
3178 }
3179
3180 static int raid1_reshape(struct mddev *mddev)
3181 {
3182         /* We need to:
3183          * 1/ resize the r1bio_pool
3184          * 2/ resize conf->mirrors
3185          *
3186          * We allocate a new r1bio_pool if we can.
3187          * Then raise a device barrier and wait until all IO stops.
3188          * Then resize conf->mirrors and swap in the new r1bio pool.
3189          *
3190          * At the same time, we "pack" the devices so that all the missing
3191          * devices have the higher raid_disk numbers.
3192          */
3193         mempool_t newpool, oldpool;
3194         struct pool_info *newpoolinfo;
3195         struct raid1_info *newmirrors;
3196         struct r1conf *conf = mddev->private;
3197         int cnt, raid_disks;
3198         unsigned long flags;
3199         int d, d2;
3200         int ret;
3201
3202         memset(&newpool, 0, sizeof(newpool));
3203         memset(&oldpool, 0, sizeof(oldpool));
3204
3205         /* Cannot change chunk_size, layout, or level */
3206         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3207             mddev->layout != mddev->new_layout ||
3208             mddev->level != mddev->new_level) {
3209                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3210                 mddev->new_layout = mddev->layout;
3211                 mddev->new_level = mddev->level;
3212                 return -EINVAL;
3213         }
3214
3215         if (!mddev_is_clustered(mddev))
3216                 md_allow_write(mddev);
3217
3218         raid_disks = mddev->raid_disks + mddev->delta_disks;
3219
3220         if (raid_disks < conf->raid_disks) {
3221                 cnt=0;
3222                 for (d= 0; d < conf->raid_disks; d++)
3223                         if (conf->mirrors[d].rdev)
3224                                 cnt++;
3225                 if (cnt > raid_disks)
3226                         return -EBUSY;
3227         }
3228
3229         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3230         if (!newpoolinfo)
3231                 return -ENOMEM;
3232         newpoolinfo->mddev = mddev;
3233         newpoolinfo->raid_disks = raid_disks * 2;
3234
3235         ret = mempool_init(&newpool, NR_RAID1_BIOS, r1bio_pool_alloc,
3236                            r1bio_pool_free, newpoolinfo);
3237         if (ret) {
3238                 kfree(newpoolinfo);
3239                 return ret;
3240         }
3241         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3242                                          raid_disks, 2),
3243                              GFP_KERNEL);
3244         if (!newmirrors) {
3245                 kfree(newpoolinfo);
3246                 mempool_exit(&newpool);
3247                 return -ENOMEM;
3248         }
3249
3250         freeze_array(conf, 0);
3251
3252         /* ok, everything is stopped */
3253         oldpool = conf->r1bio_pool;
3254         conf->r1bio_pool = newpool;
3255
3256         for (d = d2 = 0; d < conf->raid_disks; d++) {
3257                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3258                 if (rdev && rdev->raid_disk != d2) {
3259                         sysfs_unlink_rdev(mddev, rdev);
3260                         rdev->raid_disk = d2;
3261                         sysfs_unlink_rdev(mddev, rdev);
3262                         if (sysfs_link_rdev(mddev, rdev))
3263                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3264                                         mdname(mddev), rdev->raid_disk);
3265                 }
3266                 if (rdev)
3267                         newmirrors[d2++].rdev = rdev;
3268         }
3269         kfree(conf->mirrors);
3270         conf->mirrors = newmirrors;
3271         kfree(conf->poolinfo);
3272         conf->poolinfo = newpoolinfo;
3273
3274         spin_lock_irqsave(&conf->device_lock, flags);
3275         mddev->degraded += (raid_disks - conf->raid_disks);
3276         spin_unlock_irqrestore(&conf->device_lock, flags);
3277         conf->raid_disks = mddev->raid_disks = raid_disks;
3278         mddev->delta_disks = 0;
3279
3280         unfreeze_array(conf);
3281
3282         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3283         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3284         md_wakeup_thread(mddev->thread);
3285
3286         mempool_exit(&oldpool);
3287         return 0;
3288 }
3289
3290 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3291 {
3292         struct r1conf *conf = mddev->private;
3293
3294         if (quiesce)
3295                 freeze_array(conf, 0);
3296         else
3297                 unfreeze_array(conf);
3298 }
3299
3300 static void *raid1_takeover(struct mddev *mddev)
3301 {
3302         /* raid1 can take over:
3303          *  raid5 with 2 devices, any layout or chunk size
3304          */
3305         if (mddev->level == 5 && mddev->raid_disks == 2) {
3306                 struct r1conf *conf;
3307                 mddev->new_level = 1;
3308                 mddev->new_layout = 0;
3309                 mddev->new_chunk_sectors = 0;
3310                 conf = setup_conf(mddev);
3311                 if (!IS_ERR(conf)) {
3312                         /* Array must appear to be quiesced */
3313                         conf->array_frozen = 1;
3314                         mddev_clear_unsupported_flags(mddev,
3315                                 UNSUPPORTED_MDDEV_FLAGS);
3316                 }
3317                 return conf;
3318         }
3319         return ERR_PTR(-EINVAL);
3320 }
3321
3322 static struct md_personality raid1_personality =
3323 {
3324         .name           = "raid1",
3325         .level          = 1,
3326         .owner          = THIS_MODULE,
3327         .make_request   = raid1_make_request,
3328         .run            = raid1_run,
3329         .free           = raid1_free,
3330         .status         = raid1_status,
3331         .error_handler  = raid1_error,
3332         .hot_add_disk   = raid1_add_disk,
3333         .hot_remove_disk= raid1_remove_disk,
3334         .spare_active   = raid1_spare_active,
3335         .sync_request   = raid1_sync_request,
3336         .resize         = raid1_resize,
3337         .size           = raid1_size,
3338         .check_reshape  = raid1_reshape,
3339         .quiesce        = raid1_quiesce,
3340         .takeover       = raid1_takeover,
3341         .congested      = raid1_congested,
3342 };
3343
3344 static int __init raid_init(void)
3345 {
3346         return register_md_personality(&raid1_personality);
3347 }
3348
3349 static void raid_exit(void)
3350 {
3351         unregister_md_personality(&raid1_personality);
3352 }
3353
3354 module_init(raid_init);
3355 module_exit(raid_exit);
3356 MODULE_LICENSE("GPL");
3357 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3358 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3359 MODULE_ALIAS("md-raid1");
3360 MODULE_ALIAS("md-level-1");
3361
3362 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);