]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/md/raid1.c
md/raid1: get rid of extra blank line and space
[linux.git] / drivers / md / raid1.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid1.c : Multiple Devices driver for Linux
4  *
5  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6  *
7  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8  *
9  * RAID-1 management functions.
10  *
11  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12  *
13  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
14  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15  *
16  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
17  * bitmapped intelligence in resync:
18  *
19  *      - bitmap marked during normal i/o
20  *      - bitmap used to skip nondirty blocks during sync
21  *
22  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
23  * - persistent bitmap code
24  */
25
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/blkdev.h>
29 #include <linux/module.h>
30 #include <linux/seq_file.h>
31 #include <linux/ratelimit.h>
32
33 #include <trace/events/block.h>
34
35 #include "md.h"
36 #include "raid1.h"
37 #include "md-bitmap.h"
38
39 #define UNSUPPORTED_MDDEV_FLAGS         \
40         ((1L << MD_HAS_JOURNAL) |       \
41          (1L << MD_JOURNAL_CLEAN) |     \
42          (1L << MD_HAS_PPL) |           \
43          (1L << MD_HAS_MULTIPLE_PPLS))
44
45 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
46 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
47
48 #define raid1_log(md, fmt, args...)                             \
49         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
50
51 #include "raid1-10.c"
52
53 /*
54  * for resync bio, r1bio pointer can be retrieved from the per-bio
55  * 'struct resync_pages'.
56  */
57 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
58 {
59         return get_resync_pages(bio)->raid_bio;
60 }
61
62 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
63 {
64         struct pool_info *pi = data;
65         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
66
67         /* allocate a r1bio with room for raid_disks entries in the bios array */
68         return kzalloc(size, gfp_flags);
69 }
70
71 static void r1bio_pool_free(void *r1_bio, void *data)
72 {
73         kfree(r1_bio);
74 }
75
76 #define RESYNC_DEPTH 32
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
79 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
80 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
81 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
82
83 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
84 {
85         struct pool_info *pi = data;
86         struct r1bio *r1_bio;
87         struct bio *bio;
88         int need_pages;
89         int j;
90         struct resync_pages *rps;
91
92         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93         if (!r1_bio)
94                 return NULL;
95
96         rps = kmalloc_array(pi->raid_disks, sizeof(struct resync_pages),
97                             gfp_flags);
98         if (!rps)
99                 goto out_free_r1bio;
100
101         /*
102          * Allocate bios : 1 for reading, n-1 for writing
103          */
104         for (j = pi->raid_disks ; j-- ; ) {
105                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
106                 if (!bio)
107                         goto out_free_bio;
108                 r1_bio->bios[j] = bio;
109         }
110         /*
111          * Allocate RESYNC_PAGES data pages and attach them to
112          * the first bio.
113          * If this is a user-requested check/repair, allocate
114          * RESYNC_PAGES for each bio.
115          */
116         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
117                 need_pages = pi->raid_disks;
118         else
119                 need_pages = 1;
120         for (j = 0; j < pi->raid_disks; j++) {
121                 struct resync_pages *rp = &rps[j];
122
123                 bio = r1_bio->bios[j];
124
125                 if (j < need_pages) {
126                         if (resync_alloc_pages(rp, gfp_flags))
127                                 goto out_free_pages;
128                 } else {
129                         memcpy(rp, &rps[0], sizeof(*rp));
130                         resync_get_all_pages(rp);
131                 }
132
133                 rp->raid_bio = r1_bio;
134                 bio->bi_private = rp;
135         }
136
137         r1_bio->master_bio = NULL;
138
139         return r1_bio;
140
141 out_free_pages:
142         while (--j >= 0)
143                 resync_free_pages(&rps[j]);
144
145 out_free_bio:
146         while (++j < pi->raid_disks)
147                 bio_put(r1_bio->bios[j]);
148         kfree(rps);
149
150 out_free_r1bio:
151         r1bio_pool_free(r1_bio, data);
152         return NULL;
153 }
154
155 static void r1buf_pool_free(void *__r1_bio, void *data)
156 {
157         struct pool_info *pi = data;
158         int i;
159         struct r1bio *r1bio = __r1_bio;
160         struct resync_pages *rp = NULL;
161
162         for (i = pi->raid_disks; i--; ) {
163                 rp = get_resync_pages(r1bio->bios[i]);
164                 resync_free_pages(rp);
165                 bio_put(r1bio->bios[i]);
166         }
167
168         /* resync pages array stored in the 1st bio's .bi_private */
169         kfree(rp);
170
171         r1bio_pool_free(r1bio, data);
172 }
173
174 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
175 {
176         int i;
177
178         for (i = 0; i < conf->raid_disks * 2; i++) {
179                 struct bio **bio = r1_bio->bios + i;
180                 if (!BIO_SPECIAL(*bio))
181                         bio_put(*bio);
182                 *bio = NULL;
183         }
184 }
185
186 static void free_r1bio(struct r1bio *r1_bio)
187 {
188         struct r1conf *conf = r1_bio->mddev->private;
189
190         put_all_bios(conf, r1_bio);
191         mempool_free(r1_bio, &conf->r1bio_pool);
192 }
193
194 static void put_buf(struct r1bio *r1_bio)
195 {
196         struct r1conf *conf = r1_bio->mddev->private;
197         sector_t sect = r1_bio->sector;
198         int i;
199
200         for (i = 0; i < conf->raid_disks * 2; i++) {
201                 struct bio *bio = r1_bio->bios[i];
202                 if (bio->bi_end_io)
203                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
204         }
205
206         mempool_free(r1_bio, &conf->r1buf_pool);
207
208         lower_barrier(conf, sect);
209 }
210
211 static void reschedule_retry(struct r1bio *r1_bio)
212 {
213         unsigned long flags;
214         struct mddev *mddev = r1_bio->mddev;
215         struct r1conf *conf = mddev->private;
216         int idx;
217
218         idx = sector_to_idx(r1_bio->sector);
219         spin_lock_irqsave(&conf->device_lock, flags);
220         list_add(&r1_bio->retry_list, &conf->retry_list);
221         atomic_inc(&conf->nr_queued[idx]);
222         spin_unlock_irqrestore(&conf->device_lock, flags);
223
224         wake_up(&conf->wait_barrier);
225         md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235         struct bio *bio = r1_bio->master_bio;
236         struct r1conf *conf = r1_bio->mddev->private;
237
238         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
239                 bio->bi_status = BLK_STS_IOERR;
240
241         bio_endio(bio);
242         /*
243          * Wake up any possible resync thread that waits for the device
244          * to go idle.
245          */
246         allow_barrier(conf, r1_bio->sector);
247 }
248
249 static void raid_end_bio_io(struct r1bio *r1_bio)
250 {
251         struct bio *bio = r1_bio->master_bio;
252
253         /* if nobody has done the final endio yet, do it now */
254         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
255                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
256                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
257                          (unsigned long long) bio->bi_iter.bi_sector,
258                          (unsigned long long) bio_end_sector(bio) - 1);
259
260                 call_bio_endio(r1_bio);
261         }
262         free_r1bio(r1_bio);
263 }
264
265 /*
266  * Update disk head position estimator based on IRQ completion info.
267  */
268 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
269 {
270         struct r1conf *conf = r1_bio->mddev->private;
271
272         conf->mirrors[disk].head_position =
273                 r1_bio->sector + (r1_bio->sectors);
274 }
275
276 /*
277  * Find the disk number which triggered given bio
278  */
279 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
280 {
281         int mirror;
282         struct r1conf *conf = r1_bio->mddev->private;
283         int raid_disks = conf->raid_disks;
284
285         for (mirror = 0; mirror < raid_disks * 2; mirror++)
286                 if (r1_bio->bios[mirror] == bio)
287                         break;
288
289         BUG_ON(mirror == raid_disks * 2);
290         update_head_pos(mirror, r1_bio);
291
292         return mirror;
293 }
294
295 static void raid1_end_read_request(struct bio *bio)
296 {
297         int uptodate = !bio->bi_status;
298         struct r1bio *r1_bio = bio->bi_private;
299         struct r1conf *conf = r1_bio->mddev->private;
300         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
301
302         /*
303          * this branch is our 'one mirror IO has finished' event handler:
304          */
305         update_head_pos(r1_bio->read_disk, r1_bio);
306
307         if (uptodate)
308                 set_bit(R1BIO_Uptodate, &r1_bio->state);
309         else if (test_bit(FailFast, &rdev->flags) &&
310                  test_bit(R1BIO_FailFast, &r1_bio->state))
311                 /* This was a fail-fast read so we definitely
312                  * want to retry */
313                 ;
314         else {
315                 /* If all other devices have failed, we want to return
316                  * the error upwards rather than fail the last device.
317                  * Here we redefine "uptodate" to mean "Don't want to retry"
318                  */
319                 unsigned long flags;
320                 spin_lock_irqsave(&conf->device_lock, flags);
321                 if (r1_bio->mddev->degraded == conf->raid_disks ||
322                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
323                      test_bit(In_sync, &rdev->flags)))
324                         uptodate = 1;
325                 spin_unlock_irqrestore(&conf->device_lock, flags);
326         }
327
328         if (uptodate) {
329                 raid_end_bio_io(r1_bio);
330                 rdev_dec_pending(rdev, conf->mddev);
331         } else {
332                 /*
333                  * oops, read error:
334                  */
335                 char b[BDEVNAME_SIZE];
336                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
337                                    mdname(conf->mddev),
338                                    bdevname(rdev->bdev, b),
339                                    (unsigned long long)r1_bio->sector);
340                 set_bit(R1BIO_ReadError, &r1_bio->state);
341                 reschedule_retry(r1_bio);
342                 /* don't drop the reference on read_disk yet */
343         }
344 }
345
346 static void close_write(struct r1bio *r1_bio)
347 {
348         /* it really is the end of this request */
349         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
350                 bio_free_pages(r1_bio->behind_master_bio);
351                 bio_put(r1_bio->behind_master_bio);
352                 r1_bio->behind_master_bio = NULL;
353         }
354         /* clear the bitmap if all writes complete successfully */
355         md_bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
356                            r1_bio->sectors,
357                            !test_bit(R1BIO_Degraded, &r1_bio->state),
358                            test_bit(R1BIO_BehindIO, &r1_bio->state));
359         md_write_end(r1_bio->mddev);
360 }
361
362 static void r1_bio_write_done(struct r1bio *r1_bio)
363 {
364         if (!atomic_dec_and_test(&r1_bio->remaining))
365                 return;
366
367         if (test_bit(R1BIO_WriteError, &r1_bio->state))
368                 reschedule_retry(r1_bio);
369         else {
370                 close_write(r1_bio);
371                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
372                         reschedule_retry(r1_bio);
373                 else
374                         raid_end_bio_io(r1_bio);
375         }
376 }
377
378 static void raid1_end_write_request(struct bio *bio)
379 {
380         struct r1bio *r1_bio = bio->bi_private;
381         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
382         struct r1conf *conf = r1_bio->mddev->private;
383         struct bio *to_put = NULL;
384         int mirror = find_bio_disk(r1_bio, bio);
385         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
386         bool discard_error;
387
388         discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
389
390         /*
391          * 'one mirror IO has finished' event handler:
392          */
393         if (bio->bi_status && !discard_error) {
394                 set_bit(WriteErrorSeen, &rdev->flags);
395                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
396                         set_bit(MD_RECOVERY_NEEDED, &
397                                 conf->mddev->recovery);
398
399                 if (test_bit(FailFast, &rdev->flags) &&
400                     (bio->bi_opf & MD_FAILFAST) &&
401                     /* We never try FailFast to WriteMostly devices */
402                     !test_bit(WriteMostly, &rdev->flags)) {
403                         md_error(r1_bio->mddev, rdev);
404                         if (!test_bit(Faulty, &rdev->flags))
405                                 /* This is the only remaining device,
406                                  * We need to retry the write without
407                                  * FailFast
408                                  */
409                                 set_bit(R1BIO_WriteError, &r1_bio->state);
410                         else {
411                                 /* Finished with this branch */
412                                 r1_bio->bios[mirror] = NULL;
413                                 to_put = bio;
414                         }
415                 } else
416                         set_bit(R1BIO_WriteError, &r1_bio->state);
417         } else {
418                 /*
419                  * Set R1BIO_Uptodate in our master bio, so that we
420                  * will return a good error code for to the higher
421                  * levels even if IO on some other mirrored buffer
422                  * fails.
423                  *
424                  * The 'master' represents the composite IO operation
425                  * to user-side. So if something waits for IO, then it
426                  * will wait for the 'master' bio.
427                  */
428                 sector_t first_bad;
429                 int bad_sectors;
430
431                 r1_bio->bios[mirror] = NULL;
432                 to_put = bio;
433                 /*
434                  * Do not set R1BIO_Uptodate if the current device is
435                  * rebuilding or Faulty. This is because we cannot use
436                  * such device for properly reading the data back (we could
437                  * potentially use it, if the current write would have felt
438                  * before rdev->recovery_offset, but for simplicity we don't
439                  * check this here.
440                  */
441                 if (test_bit(In_sync, &rdev->flags) &&
442                     !test_bit(Faulty, &rdev->flags))
443                         set_bit(R1BIO_Uptodate, &r1_bio->state);
444
445                 /* Maybe we can clear some bad blocks. */
446                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
447                                 &first_bad, &bad_sectors) && !discard_error) {
448                         r1_bio->bios[mirror] = IO_MADE_GOOD;
449                         set_bit(R1BIO_MadeGood, &r1_bio->state);
450                 }
451         }
452
453         if (behind) {
454                 if (test_bit(WriteMostly, &rdev->flags))
455                         atomic_dec(&r1_bio->behind_remaining);
456
457                 /*
458                  * In behind mode, we ACK the master bio once the I/O
459                  * has safely reached all non-writemostly
460                  * disks. Setting the Returned bit ensures that this
461                  * gets done only once -- we don't ever want to return
462                  * -EIO here, instead we'll wait
463                  */
464                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
465                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
466                         /* Maybe we can return now */
467                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
468                                 struct bio *mbio = r1_bio->master_bio;
469                                 pr_debug("raid1: behind end write sectors"
470                                          " %llu-%llu\n",
471                                          (unsigned long long) mbio->bi_iter.bi_sector,
472                                          (unsigned long long) bio_end_sector(mbio) - 1);
473                                 call_bio_endio(r1_bio);
474                         }
475                 }
476         }
477         if (r1_bio->bios[mirror] == NULL)
478                 rdev_dec_pending(rdev, conf->mddev);
479
480         /*
481          * Let's see if all mirrored write operations have finished
482          * already.
483          */
484         r1_bio_write_done(r1_bio);
485
486         if (to_put)
487                 bio_put(to_put);
488 }
489
490 static sector_t align_to_barrier_unit_end(sector_t start_sector,
491                                           sector_t sectors)
492 {
493         sector_t len;
494
495         WARN_ON(sectors == 0);
496         /*
497          * len is the number of sectors from start_sector to end of the
498          * barrier unit which start_sector belongs to.
499          */
500         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
501               start_sector;
502
503         if (len > sectors)
504                 len = sectors;
505
506         return len;
507 }
508
509 /*
510  * This routine returns the disk from which the requested read should
511  * be done. There is a per-array 'next expected sequential IO' sector
512  * number - if this matches on the next IO then we use the last disk.
513  * There is also a per-disk 'last know head position' sector that is
514  * maintained from IRQ contexts, both the normal and the resync IO
515  * completion handlers update this position correctly. If there is no
516  * perfect sequential match then we pick the disk whose head is closest.
517  *
518  * If there are 2 mirrors in the same 2 devices, performance degrades
519  * because position is mirror, not device based.
520  *
521  * The rdev for the device selected will have nr_pending incremented.
522  */
523 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
524 {
525         const sector_t this_sector = r1_bio->sector;
526         int sectors;
527         int best_good_sectors;
528         int best_disk, best_dist_disk, best_pending_disk;
529         int has_nonrot_disk;
530         int disk;
531         sector_t best_dist;
532         unsigned int min_pending;
533         struct md_rdev *rdev;
534         int choose_first;
535         int choose_next_idle;
536
537         rcu_read_lock();
538         /*
539          * Check if we can balance. We can balance on the whole
540          * device if no resync is going on, or below the resync window.
541          * We take the first readable disk when above the resync window.
542          */
543  retry:
544         sectors = r1_bio->sectors;
545         best_disk = -1;
546         best_dist_disk = -1;
547         best_dist = MaxSector;
548         best_pending_disk = -1;
549         min_pending = UINT_MAX;
550         best_good_sectors = 0;
551         has_nonrot_disk = 0;
552         choose_next_idle = 0;
553         clear_bit(R1BIO_FailFast, &r1_bio->state);
554
555         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
556             (mddev_is_clustered(conf->mddev) &&
557             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
558                     this_sector + sectors)))
559                 choose_first = 1;
560         else
561                 choose_first = 0;
562
563         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
564                 sector_t dist;
565                 sector_t first_bad;
566                 int bad_sectors;
567                 unsigned int pending;
568                 bool nonrot;
569
570                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
571                 if (r1_bio->bios[disk] == IO_BLOCKED
572                     || rdev == NULL
573                     || test_bit(Faulty, &rdev->flags))
574                         continue;
575                 if (!test_bit(In_sync, &rdev->flags) &&
576                     rdev->recovery_offset < this_sector + sectors)
577                         continue;
578                 if (test_bit(WriteMostly, &rdev->flags)) {
579                         /* Don't balance among write-mostly, just
580                          * use the first as a last resort */
581                         if (best_dist_disk < 0) {
582                                 if (is_badblock(rdev, this_sector, sectors,
583                                                 &first_bad, &bad_sectors)) {
584                                         if (first_bad <= this_sector)
585                                                 /* Cannot use this */
586                                                 continue;
587                                         best_good_sectors = first_bad - this_sector;
588                                 } else
589                                         best_good_sectors = sectors;
590                                 best_dist_disk = disk;
591                                 best_pending_disk = disk;
592                         }
593                         continue;
594                 }
595                 /* This is a reasonable device to use.  It might
596                  * even be best.
597                  */
598                 if (is_badblock(rdev, this_sector, sectors,
599                                 &first_bad, &bad_sectors)) {
600                         if (best_dist < MaxSector)
601                                 /* already have a better device */
602                                 continue;
603                         if (first_bad <= this_sector) {
604                                 /* cannot read here. If this is the 'primary'
605                                  * device, then we must not read beyond
606                                  * bad_sectors from another device..
607                                  */
608                                 bad_sectors -= (this_sector - first_bad);
609                                 if (choose_first && sectors > bad_sectors)
610                                         sectors = bad_sectors;
611                                 if (best_good_sectors > sectors)
612                                         best_good_sectors = sectors;
613
614                         } else {
615                                 sector_t good_sectors = first_bad - this_sector;
616                                 if (good_sectors > best_good_sectors) {
617                                         best_good_sectors = good_sectors;
618                                         best_disk = disk;
619                                 }
620                                 if (choose_first)
621                                         break;
622                         }
623                         continue;
624                 } else {
625                         if ((sectors > best_good_sectors) && (best_disk >= 0))
626                                 best_disk = -1;
627                         best_good_sectors = sectors;
628                 }
629
630                 if (best_disk >= 0)
631                         /* At least two disks to choose from so failfast is OK */
632                         set_bit(R1BIO_FailFast, &r1_bio->state);
633
634                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
635                 has_nonrot_disk |= nonrot;
636                 pending = atomic_read(&rdev->nr_pending);
637                 dist = abs(this_sector - conf->mirrors[disk].head_position);
638                 if (choose_first) {
639                         best_disk = disk;
640                         break;
641                 }
642                 /* Don't change to another disk for sequential reads */
643                 if (conf->mirrors[disk].next_seq_sect == this_sector
644                     || dist == 0) {
645                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
646                         struct raid1_info *mirror = &conf->mirrors[disk];
647
648                         best_disk = disk;
649                         /*
650                          * If buffered sequential IO size exceeds optimal
651                          * iosize, check if there is idle disk. If yes, choose
652                          * the idle disk. read_balance could already choose an
653                          * idle disk before noticing it's a sequential IO in
654                          * this disk. This doesn't matter because this disk
655                          * will idle, next time it will be utilized after the
656                          * first disk has IO size exceeds optimal iosize. In
657                          * this way, iosize of the first disk will be optimal
658                          * iosize at least. iosize of the second disk might be
659                          * small, but not a big deal since when the second disk
660                          * starts IO, the first disk is likely still busy.
661                          */
662                         if (nonrot && opt_iosize > 0 &&
663                             mirror->seq_start != MaxSector &&
664                             mirror->next_seq_sect > opt_iosize &&
665                             mirror->next_seq_sect - opt_iosize >=
666                             mirror->seq_start) {
667                                 choose_next_idle = 1;
668                                 continue;
669                         }
670                         break;
671                 }
672
673                 if (choose_next_idle)
674                         continue;
675
676                 if (min_pending > pending) {
677                         min_pending = pending;
678                         best_pending_disk = disk;
679                 }
680
681                 if (dist < best_dist) {
682                         best_dist = dist;
683                         best_dist_disk = disk;
684                 }
685         }
686
687         /*
688          * If all disks are rotational, choose the closest disk. If any disk is
689          * non-rotational, choose the disk with less pending request even the
690          * disk is rotational, which might/might not be optimal for raids with
691          * mixed ratation/non-rotational disks depending on workload.
692          */
693         if (best_disk == -1) {
694                 if (has_nonrot_disk || min_pending == 0)
695                         best_disk = best_pending_disk;
696                 else
697                         best_disk = best_dist_disk;
698         }
699
700         if (best_disk >= 0) {
701                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
702                 if (!rdev)
703                         goto retry;
704                 atomic_inc(&rdev->nr_pending);
705                 sectors = best_good_sectors;
706
707                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
708                         conf->mirrors[best_disk].seq_start = this_sector;
709
710                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
711         }
712         rcu_read_unlock();
713         *max_sectors = sectors;
714
715         return best_disk;
716 }
717
718 static int raid1_congested(struct mddev *mddev, int bits)
719 {
720         struct r1conf *conf = mddev->private;
721         int i, ret = 0;
722
723         if ((bits & (1 << WB_async_congested)) &&
724             conf->pending_count >= max_queued_requests)
725                 return 1;
726
727         rcu_read_lock();
728         for (i = 0; i < conf->raid_disks * 2; i++) {
729                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
730                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
731                         struct request_queue *q = bdev_get_queue(rdev->bdev);
732
733                         BUG_ON(!q);
734
735                         /* Note the '|| 1' - when read_balance prefers
736                          * non-congested targets, it can be removed
737                          */
738                         if ((bits & (1 << WB_async_congested)) || 1)
739                                 ret |= bdi_congested(q->backing_dev_info, bits);
740                         else
741                                 ret &= bdi_congested(q->backing_dev_info, bits);
742                 }
743         }
744         rcu_read_unlock();
745         return ret;
746 }
747
748 static void flush_bio_list(struct r1conf *conf, struct bio *bio)
749 {
750         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
751         md_bitmap_unplug(conf->mddev->bitmap);
752         wake_up(&conf->wait_barrier);
753
754         while (bio) { /* submit pending writes */
755                 struct bio *next = bio->bi_next;
756                 struct md_rdev *rdev = (void *)bio->bi_disk;
757                 bio->bi_next = NULL;
758                 bio_set_dev(bio, rdev->bdev);
759                 if (test_bit(Faulty, &rdev->flags)) {
760                         bio_io_error(bio);
761                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
762                                     !blk_queue_discard(bio->bi_disk->queue)))
763                         /* Just ignore it */
764                         bio_endio(bio);
765                 else
766                         generic_make_request(bio);
767                 bio = next;
768         }
769 }
770
771 static void flush_pending_writes(struct r1conf *conf)
772 {
773         /* Any writes that have been queued but are awaiting
774          * bitmap updates get flushed here.
775          */
776         spin_lock_irq(&conf->device_lock);
777
778         if (conf->pending_bio_list.head) {
779                 struct blk_plug plug;
780                 struct bio *bio;
781
782                 bio = bio_list_get(&conf->pending_bio_list);
783                 conf->pending_count = 0;
784                 spin_unlock_irq(&conf->device_lock);
785
786                 /*
787                  * As this is called in a wait_event() loop (see freeze_array),
788                  * current->state might be TASK_UNINTERRUPTIBLE which will
789                  * cause a warning when we prepare to wait again.  As it is
790                  * rare that this path is taken, it is perfectly safe to force
791                  * us to go around the wait_event() loop again, so the warning
792                  * is a false-positive.  Silence the warning by resetting
793                  * thread state
794                  */
795                 __set_current_state(TASK_RUNNING);
796                 blk_start_plug(&plug);
797                 flush_bio_list(conf, bio);
798                 blk_finish_plug(&plug);
799         } else
800                 spin_unlock_irq(&conf->device_lock);
801 }
802
803 /* Barriers....
804  * Sometimes we need to suspend IO while we do something else,
805  * either some resync/recovery, or reconfigure the array.
806  * To do this we raise a 'barrier'.
807  * The 'barrier' is a counter that can be raised multiple times
808  * to count how many activities are happening which preclude
809  * normal IO.
810  * We can only raise the barrier if there is no pending IO.
811  * i.e. if nr_pending == 0.
812  * We choose only to raise the barrier if no-one is waiting for the
813  * barrier to go down.  This means that as soon as an IO request
814  * is ready, no other operations which require a barrier will start
815  * until the IO request has had a chance.
816  *
817  * So: regular IO calls 'wait_barrier'.  When that returns there
818  *    is no backgroup IO happening,  It must arrange to call
819  *    allow_barrier when it has finished its IO.
820  * backgroup IO calls must call raise_barrier.  Once that returns
821  *    there is no normal IO happeing.  It must arrange to call
822  *    lower_barrier when the particular background IO completes.
823  */
824 static sector_t raise_barrier(struct r1conf *conf, sector_t sector_nr)
825 {
826         int idx = sector_to_idx(sector_nr);
827
828         spin_lock_irq(&conf->resync_lock);
829
830         /* Wait until no block IO is waiting */
831         wait_event_lock_irq(conf->wait_barrier,
832                             !atomic_read(&conf->nr_waiting[idx]),
833                             conf->resync_lock);
834
835         /* block any new IO from starting */
836         atomic_inc(&conf->barrier[idx]);
837         /*
838          * In raise_barrier() we firstly increase conf->barrier[idx] then
839          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
840          * increase conf->nr_pending[idx] then check conf->barrier[idx].
841          * A memory barrier here to make sure conf->nr_pending[idx] won't
842          * be fetched before conf->barrier[idx] is increased. Otherwise
843          * there will be a race between raise_barrier() and _wait_barrier().
844          */
845         smp_mb__after_atomic();
846
847         /* For these conditions we must wait:
848          * A: while the array is in frozen state
849          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
850          *    existing in corresponding I/O barrier bucket.
851          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
852          *    max resync count which allowed on current I/O barrier bucket.
853          */
854         wait_event_lock_irq(conf->wait_barrier,
855                             (!conf->array_frozen &&
856                              !atomic_read(&conf->nr_pending[idx]) &&
857                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH) ||
858                                 test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery),
859                             conf->resync_lock);
860
861         if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
862                 atomic_dec(&conf->barrier[idx]);
863                 spin_unlock_irq(&conf->resync_lock);
864                 wake_up(&conf->wait_barrier);
865                 return -EINTR;
866         }
867
868         atomic_inc(&conf->nr_sync_pending);
869         spin_unlock_irq(&conf->resync_lock);
870
871         return 0;
872 }
873
874 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
875 {
876         int idx = sector_to_idx(sector_nr);
877
878         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
879
880         atomic_dec(&conf->barrier[idx]);
881         atomic_dec(&conf->nr_sync_pending);
882         wake_up(&conf->wait_barrier);
883 }
884
885 static void _wait_barrier(struct r1conf *conf, int idx)
886 {
887         /*
888          * We need to increase conf->nr_pending[idx] very early here,
889          * then raise_barrier() can be blocked when it waits for
890          * conf->nr_pending[idx] to be 0. Then we can avoid holding
891          * conf->resync_lock when there is no barrier raised in same
892          * barrier unit bucket. Also if the array is frozen, I/O
893          * should be blocked until array is unfrozen.
894          */
895         atomic_inc(&conf->nr_pending[idx]);
896         /*
897          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
898          * check conf->barrier[idx]. In raise_barrier() we firstly increase
899          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
900          * barrier is necessary here to make sure conf->barrier[idx] won't be
901          * fetched before conf->nr_pending[idx] is increased. Otherwise there
902          * will be a race between _wait_barrier() and raise_barrier().
903          */
904         smp_mb__after_atomic();
905
906         /*
907          * Don't worry about checking two atomic_t variables at same time
908          * here. If during we check conf->barrier[idx], the array is
909          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
910          * 0, it is safe to return and make the I/O continue. Because the
911          * array is frozen, all I/O returned here will eventually complete
912          * or be queued, no race will happen. See code comment in
913          * frozen_array().
914          */
915         if (!READ_ONCE(conf->array_frozen) &&
916             !atomic_read(&conf->barrier[idx]))
917                 return;
918
919         /*
920          * After holding conf->resync_lock, conf->nr_pending[idx]
921          * should be decreased before waiting for barrier to drop.
922          * Otherwise, we may encounter a race condition because
923          * raise_barrer() might be waiting for conf->nr_pending[idx]
924          * to be 0 at same time.
925          */
926         spin_lock_irq(&conf->resync_lock);
927         atomic_inc(&conf->nr_waiting[idx]);
928         atomic_dec(&conf->nr_pending[idx]);
929         /*
930          * In case freeze_array() is waiting for
931          * get_unqueued_pending() == extra
932          */
933         wake_up(&conf->wait_barrier);
934         /* Wait for the barrier in same barrier unit bucket to drop. */
935         wait_event_lock_irq(conf->wait_barrier,
936                             !conf->array_frozen &&
937                              !atomic_read(&conf->barrier[idx]),
938                             conf->resync_lock);
939         atomic_inc(&conf->nr_pending[idx]);
940         atomic_dec(&conf->nr_waiting[idx]);
941         spin_unlock_irq(&conf->resync_lock);
942 }
943
944 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
945 {
946         int idx = sector_to_idx(sector_nr);
947
948         /*
949          * Very similar to _wait_barrier(). The difference is, for read
950          * I/O we don't need wait for sync I/O, but if the whole array
951          * is frozen, the read I/O still has to wait until the array is
952          * unfrozen. Since there is no ordering requirement with
953          * conf->barrier[idx] here, memory barrier is unnecessary as well.
954          */
955         atomic_inc(&conf->nr_pending[idx]);
956
957         if (!READ_ONCE(conf->array_frozen))
958                 return;
959
960         spin_lock_irq(&conf->resync_lock);
961         atomic_inc(&conf->nr_waiting[idx]);
962         atomic_dec(&conf->nr_pending[idx]);
963         /*
964          * In case freeze_array() is waiting for
965          * get_unqueued_pending() == extra
966          */
967         wake_up(&conf->wait_barrier);
968         /* Wait for array to be unfrozen */
969         wait_event_lock_irq(conf->wait_barrier,
970                             !conf->array_frozen,
971                             conf->resync_lock);
972         atomic_inc(&conf->nr_pending[idx]);
973         atomic_dec(&conf->nr_waiting[idx]);
974         spin_unlock_irq(&conf->resync_lock);
975 }
976
977 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
978 {
979         int idx = sector_to_idx(sector_nr);
980
981         _wait_barrier(conf, idx);
982 }
983
984 static void _allow_barrier(struct r1conf *conf, int idx)
985 {
986         atomic_dec(&conf->nr_pending[idx]);
987         wake_up(&conf->wait_barrier);
988 }
989
990 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
991 {
992         int idx = sector_to_idx(sector_nr);
993
994         _allow_barrier(conf, idx);
995 }
996
997 /* conf->resync_lock should be held */
998 static int get_unqueued_pending(struct r1conf *conf)
999 {
1000         int idx, ret;
1001
1002         ret = atomic_read(&conf->nr_sync_pending);
1003         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1004                 ret += atomic_read(&conf->nr_pending[idx]) -
1005                         atomic_read(&conf->nr_queued[idx]);
1006
1007         return ret;
1008 }
1009
1010 static void freeze_array(struct r1conf *conf, int extra)
1011 {
1012         /* Stop sync I/O and normal I/O and wait for everything to
1013          * go quiet.
1014          * This is called in two situations:
1015          * 1) management command handlers (reshape, remove disk, quiesce).
1016          * 2) one normal I/O request failed.
1017
1018          * After array_frozen is set to 1, new sync IO will be blocked at
1019          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1020          * or wait_read_barrier(). The flying I/Os will either complete or be
1021          * queued. When everything goes quite, there are only queued I/Os left.
1022
1023          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1024          * barrier bucket index which this I/O request hits. When all sync and
1025          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1026          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1027          * in handle_read_error(), we may call freeze_array() before trying to
1028          * fix the read error. In this case, the error read I/O is not queued,
1029          * so get_unqueued_pending() == 1.
1030          *
1031          * Therefore before this function returns, we need to wait until
1032          * get_unqueued_pendings(conf) gets equal to extra. For
1033          * normal I/O context, extra is 1, in rested situations extra is 0.
1034          */
1035         spin_lock_irq(&conf->resync_lock);
1036         conf->array_frozen = 1;
1037         raid1_log(conf->mddev, "wait freeze");
1038         wait_event_lock_irq_cmd(
1039                 conf->wait_barrier,
1040                 get_unqueued_pending(conf) == extra,
1041                 conf->resync_lock,
1042                 flush_pending_writes(conf));
1043         spin_unlock_irq(&conf->resync_lock);
1044 }
1045 static void unfreeze_array(struct r1conf *conf)
1046 {
1047         /* reverse the effect of the freeze */
1048         spin_lock_irq(&conf->resync_lock);
1049         conf->array_frozen = 0;
1050         spin_unlock_irq(&conf->resync_lock);
1051         wake_up(&conf->wait_barrier);
1052 }
1053
1054 static void alloc_behind_master_bio(struct r1bio *r1_bio,
1055                                            struct bio *bio)
1056 {
1057         int size = bio->bi_iter.bi_size;
1058         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1059         int i = 0;
1060         struct bio *behind_bio = NULL;
1061
1062         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1063         if (!behind_bio)
1064                 return;
1065
1066         /* discard op, we don't support writezero/writesame yet */
1067         if (!bio_has_data(bio)) {
1068                 behind_bio->bi_iter.bi_size = size;
1069                 goto skip_copy;
1070         }
1071
1072         behind_bio->bi_write_hint = bio->bi_write_hint;
1073
1074         while (i < vcnt && size) {
1075                 struct page *page;
1076                 int len = min_t(int, PAGE_SIZE, size);
1077
1078                 page = alloc_page(GFP_NOIO);
1079                 if (unlikely(!page))
1080                         goto free_pages;
1081
1082                 bio_add_page(behind_bio, page, len, 0);
1083
1084                 size -= len;
1085                 i++;
1086         }
1087
1088         bio_copy_data(behind_bio, bio);
1089 skip_copy:
1090         r1_bio->behind_master_bio = behind_bio;
1091         set_bit(R1BIO_BehindIO, &r1_bio->state);
1092
1093         return;
1094
1095 free_pages:
1096         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1097                  bio->bi_iter.bi_size);
1098         bio_free_pages(behind_bio);
1099         bio_put(behind_bio);
1100 }
1101
1102 struct raid1_plug_cb {
1103         struct blk_plug_cb      cb;
1104         struct bio_list         pending;
1105         int                     pending_cnt;
1106 };
1107
1108 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1109 {
1110         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1111                                                   cb);
1112         struct mddev *mddev = plug->cb.data;
1113         struct r1conf *conf = mddev->private;
1114         struct bio *bio;
1115
1116         if (from_schedule || current->bio_list) {
1117                 spin_lock_irq(&conf->device_lock);
1118                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1119                 conf->pending_count += plug->pending_cnt;
1120                 spin_unlock_irq(&conf->device_lock);
1121                 wake_up(&conf->wait_barrier);
1122                 md_wakeup_thread(mddev->thread);
1123                 kfree(plug);
1124                 return;
1125         }
1126
1127         /* we aren't scheduling, so we can do the write-out directly. */
1128         bio = bio_list_get(&plug->pending);
1129         flush_bio_list(conf, bio);
1130         kfree(plug);
1131 }
1132
1133 static void init_r1bio(struct r1bio *r1_bio, struct mddev *mddev, struct bio *bio)
1134 {
1135         r1_bio->master_bio = bio;
1136         r1_bio->sectors = bio_sectors(bio);
1137         r1_bio->state = 0;
1138         r1_bio->mddev = mddev;
1139         r1_bio->sector = bio->bi_iter.bi_sector;
1140 }
1141
1142 static inline struct r1bio *
1143 alloc_r1bio(struct mddev *mddev, struct bio *bio)
1144 {
1145         struct r1conf *conf = mddev->private;
1146         struct r1bio *r1_bio;
1147
1148         r1_bio = mempool_alloc(&conf->r1bio_pool, GFP_NOIO);
1149         /* Ensure no bio records IO_BLOCKED */
1150         memset(r1_bio->bios, 0, conf->raid_disks * sizeof(r1_bio->bios[0]));
1151         init_r1bio(r1_bio, mddev, bio);
1152         return r1_bio;
1153 }
1154
1155 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1156                                int max_read_sectors, struct r1bio *r1_bio)
1157 {
1158         struct r1conf *conf = mddev->private;
1159         struct raid1_info *mirror;
1160         struct bio *read_bio;
1161         struct bitmap *bitmap = mddev->bitmap;
1162         const int op = bio_op(bio);
1163         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1164         int max_sectors;
1165         int rdisk;
1166         bool print_msg = !!r1_bio;
1167         char b[BDEVNAME_SIZE];
1168
1169         /*
1170          * If r1_bio is set, we are blocking the raid1d thread
1171          * so there is a tiny risk of deadlock.  So ask for
1172          * emergency memory if needed.
1173          */
1174         gfp_t gfp = r1_bio ? (GFP_NOIO | __GFP_HIGH) : GFP_NOIO;
1175
1176         if (print_msg) {
1177                 /* Need to get the block device name carefully */
1178                 struct md_rdev *rdev;
1179                 rcu_read_lock();
1180                 rdev = rcu_dereference(conf->mirrors[r1_bio->read_disk].rdev);
1181                 if (rdev)
1182                         bdevname(rdev->bdev, b);
1183                 else
1184                         strcpy(b, "???");
1185                 rcu_read_unlock();
1186         }
1187
1188         /*
1189          * Still need barrier for READ in case that whole
1190          * array is frozen.
1191          */
1192         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1193
1194         if (!r1_bio)
1195                 r1_bio = alloc_r1bio(mddev, bio);
1196         else
1197                 init_r1bio(r1_bio, mddev, bio);
1198         r1_bio->sectors = max_read_sectors;
1199
1200         /*
1201          * make_request() can abort the operation when read-ahead is being
1202          * used and no empty request is available.
1203          */
1204         rdisk = read_balance(conf, r1_bio, &max_sectors);
1205
1206         if (rdisk < 0) {
1207                 /* couldn't find anywhere to read from */
1208                 if (print_msg) {
1209                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1210                                             mdname(mddev),
1211                                             b,
1212                                             (unsigned long long)r1_bio->sector);
1213                 }
1214                 raid_end_bio_io(r1_bio);
1215                 return;
1216         }
1217         mirror = conf->mirrors + rdisk;
1218
1219         if (print_msg)
1220                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1221                                     mdname(mddev),
1222                                     (unsigned long long)r1_bio->sector,
1223                                     bdevname(mirror->rdev->bdev, b));
1224
1225         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1226             bitmap) {
1227                 /*
1228                  * Reading from a write-mostly device must take care not to
1229                  * over-take any writes that are 'behind'
1230                  */
1231                 raid1_log(mddev, "wait behind writes");
1232                 wait_event(bitmap->behind_wait,
1233                            atomic_read(&bitmap->behind_writes) == 0);
1234         }
1235
1236         if (max_sectors < bio_sectors(bio)) {
1237                 struct bio *split = bio_split(bio, max_sectors,
1238                                               gfp, &conf->bio_split);
1239                 bio_chain(split, bio);
1240                 generic_make_request(bio);
1241                 bio = split;
1242                 r1_bio->master_bio = bio;
1243                 r1_bio->sectors = max_sectors;
1244         }
1245
1246         r1_bio->read_disk = rdisk;
1247
1248         read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1249
1250         r1_bio->bios[rdisk] = read_bio;
1251
1252         read_bio->bi_iter.bi_sector = r1_bio->sector +
1253                 mirror->rdev->data_offset;
1254         bio_set_dev(read_bio, mirror->rdev->bdev);
1255         read_bio->bi_end_io = raid1_end_read_request;
1256         bio_set_op_attrs(read_bio, op, do_sync);
1257         if (test_bit(FailFast, &mirror->rdev->flags) &&
1258             test_bit(R1BIO_FailFast, &r1_bio->state))
1259                 read_bio->bi_opf |= MD_FAILFAST;
1260         read_bio->bi_private = r1_bio;
1261
1262         if (mddev->gendisk)
1263                 trace_block_bio_remap(read_bio->bi_disk->queue, read_bio,
1264                                 disk_devt(mddev->gendisk), r1_bio->sector);
1265
1266         generic_make_request(read_bio);
1267 }
1268
1269 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1270                                 int max_write_sectors)
1271 {
1272         struct r1conf *conf = mddev->private;
1273         struct r1bio *r1_bio;
1274         int i, disks;
1275         struct bitmap *bitmap = mddev->bitmap;
1276         unsigned long flags;
1277         struct md_rdev *blocked_rdev;
1278         struct blk_plug_cb *cb;
1279         struct raid1_plug_cb *plug = NULL;
1280         int first_clone;
1281         int max_sectors;
1282
1283         if (mddev_is_clustered(mddev) &&
1284              md_cluster_ops->area_resyncing(mddev, WRITE,
1285                      bio->bi_iter.bi_sector, bio_end_sector(bio))) {
1286
1287                 DEFINE_WAIT(w);
1288                 for (;;) {
1289                         prepare_to_wait(&conf->wait_barrier,
1290                                         &w, TASK_IDLE);
1291                         if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1292                                                         bio->bi_iter.bi_sector,
1293                                                         bio_end_sector(bio)))
1294                                 break;
1295                         schedule();
1296                 }
1297                 finish_wait(&conf->wait_barrier, &w);
1298         }
1299
1300         /*
1301          * Register the new request and wait if the reconstruction
1302          * thread has put up a bar for new requests.
1303          * Continue immediately if no resync is active currently.
1304          */
1305         wait_barrier(conf, bio->bi_iter.bi_sector);
1306
1307         r1_bio = alloc_r1bio(mddev, bio);
1308         r1_bio->sectors = max_write_sectors;
1309
1310         if (conf->pending_count >= max_queued_requests) {
1311                 md_wakeup_thread(mddev->thread);
1312                 raid1_log(mddev, "wait queued");
1313                 wait_event(conf->wait_barrier,
1314                            conf->pending_count < max_queued_requests);
1315         }
1316         /* first select target devices under rcu_lock and
1317          * inc refcount on their rdev.  Record them by setting
1318          * bios[x] to bio
1319          * If there are known/acknowledged bad blocks on any device on
1320          * which we have seen a write error, we want to avoid writing those
1321          * blocks.
1322          * This potentially requires several writes to write around
1323          * the bad blocks.  Each set of writes gets it's own r1bio
1324          * with a set of bios attached.
1325          */
1326
1327         disks = conf->raid_disks * 2;
1328  retry_write:
1329         blocked_rdev = NULL;
1330         rcu_read_lock();
1331         max_sectors = r1_bio->sectors;
1332         for (i = 0;  i < disks; i++) {
1333                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1334                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1335                         atomic_inc(&rdev->nr_pending);
1336                         blocked_rdev = rdev;
1337                         break;
1338                 }
1339                 r1_bio->bios[i] = NULL;
1340                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1341                         if (i < conf->raid_disks)
1342                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1343                         continue;
1344                 }
1345
1346                 atomic_inc(&rdev->nr_pending);
1347                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1348                         sector_t first_bad;
1349                         int bad_sectors;
1350                         int is_bad;
1351
1352                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1353                                              &first_bad, &bad_sectors);
1354                         if (is_bad < 0) {
1355                                 /* mustn't write here until the bad block is
1356                                  * acknowledged*/
1357                                 set_bit(BlockedBadBlocks, &rdev->flags);
1358                                 blocked_rdev = rdev;
1359                                 break;
1360                         }
1361                         if (is_bad && first_bad <= r1_bio->sector) {
1362                                 /* Cannot write here at all */
1363                                 bad_sectors -= (r1_bio->sector - first_bad);
1364                                 if (bad_sectors < max_sectors)
1365                                         /* mustn't write more than bad_sectors
1366                                          * to other devices yet
1367                                          */
1368                                         max_sectors = bad_sectors;
1369                                 rdev_dec_pending(rdev, mddev);
1370                                 /* We don't set R1BIO_Degraded as that
1371                                  * only applies if the disk is
1372                                  * missing, so it might be re-added,
1373                                  * and we want to know to recover this
1374                                  * chunk.
1375                                  * In this case the device is here,
1376                                  * and the fact that this chunk is not
1377                                  * in-sync is recorded in the bad
1378                                  * block log
1379                                  */
1380                                 continue;
1381                         }
1382                         if (is_bad) {
1383                                 int good_sectors = first_bad - r1_bio->sector;
1384                                 if (good_sectors < max_sectors)
1385                                         max_sectors = good_sectors;
1386                         }
1387                 }
1388                 r1_bio->bios[i] = bio;
1389         }
1390         rcu_read_unlock();
1391
1392         if (unlikely(blocked_rdev)) {
1393                 /* Wait for this device to become unblocked */
1394                 int j;
1395
1396                 for (j = 0; j < i; j++)
1397                         if (r1_bio->bios[j])
1398                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1399                 r1_bio->state = 0;
1400                 allow_barrier(conf, bio->bi_iter.bi_sector);
1401                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1402                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1403                 wait_barrier(conf, bio->bi_iter.bi_sector);
1404                 goto retry_write;
1405         }
1406
1407         if (max_sectors < bio_sectors(bio)) {
1408                 struct bio *split = bio_split(bio, max_sectors,
1409                                               GFP_NOIO, &conf->bio_split);
1410                 bio_chain(split, bio);
1411                 generic_make_request(bio);
1412                 bio = split;
1413                 r1_bio->master_bio = bio;
1414                 r1_bio->sectors = max_sectors;
1415         }
1416
1417         atomic_set(&r1_bio->remaining, 1);
1418         atomic_set(&r1_bio->behind_remaining, 0);
1419
1420         first_clone = 1;
1421
1422         for (i = 0; i < disks; i++) {
1423                 struct bio *mbio = NULL;
1424                 if (!r1_bio->bios[i])
1425                         continue;
1426
1427                 if (first_clone) {
1428                         /* do behind I/O ?
1429                          * Not if there are too many, or cannot
1430                          * allocate memory, or a reader on WriteMostly
1431                          * is waiting for behind writes to flush */
1432                         if (bitmap &&
1433                             (atomic_read(&bitmap->behind_writes)
1434                              < mddev->bitmap_info.max_write_behind) &&
1435                             !waitqueue_active(&bitmap->behind_wait)) {
1436                                 alloc_behind_master_bio(r1_bio, bio);
1437                         }
1438
1439                         md_bitmap_startwrite(bitmap, r1_bio->sector, r1_bio->sectors,
1440                                              test_bit(R1BIO_BehindIO, &r1_bio->state));
1441                         first_clone = 0;
1442                 }
1443
1444                 if (r1_bio->behind_master_bio)
1445                         mbio = bio_clone_fast(r1_bio->behind_master_bio,
1446                                               GFP_NOIO, &mddev->bio_set);
1447                 else
1448                         mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1449
1450                 if (r1_bio->behind_master_bio) {
1451                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1452                                 atomic_inc(&r1_bio->behind_remaining);
1453                 }
1454
1455                 r1_bio->bios[i] = mbio;
1456
1457                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1458                                    conf->mirrors[i].rdev->data_offset);
1459                 bio_set_dev(mbio, conf->mirrors[i].rdev->bdev);
1460                 mbio->bi_end_io = raid1_end_write_request;
1461                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1462                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1463                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1464                     conf->raid_disks - mddev->degraded > 1)
1465                         mbio->bi_opf |= MD_FAILFAST;
1466                 mbio->bi_private = r1_bio;
1467
1468                 atomic_inc(&r1_bio->remaining);
1469
1470                 if (mddev->gendisk)
1471                         trace_block_bio_remap(mbio->bi_disk->queue,
1472                                               mbio, disk_devt(mddev->gendisk),
1473                                               r1_bio->sector);
1474                 /* flush_pending_writes() needs access to the rdev so...*/
1475                 mbio->bi_disk = (void *)conf->mirrors[i].rdev;
1476
1477                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1478                 if (cb)
1479                         plug = container_of(cb, struct raid1_plug_cb, cb);
1480                 else
1481                         plug = NULL;
1482                 if (plug) {
1483                         bio_list_add(&plug->pending, mbio);
1484                         plug->pending_cnt++;
1485                 } else {
1486                         spin_lock_irqsave(&conf->device_lock, flags);
1487                         bio_list_add(&conf->pending_bio_list, mbio);
1488                         conf->pending_count++;
1489                         spin_unlock_irqrestore(&conf->device_lock, flags);
1490                         md_wakeup_thread(mddev->thread);
1491                 }
1492         }
1493
1494         r1_bio_write_done(r1_bio);
1495
1496         /* In case raid1d snuck in to freeze_array */
1497         wake_up(&conf->wait_barrier);
1498 }
1499
1500 static bool raid1_make_request(struct mddev *mddev, struct bio *bio)
1501 {
1502         sector_t sectors;
1503
1504         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1505                 md_flush_request(mddev, bio);
1506                 return true;
1507         }
1508
1509         /*
1510          * There is a limit to the maximum size, but
1511          * the read/write handler might find a lower limit
1512          * due to bad blocks.  To avoid multiple splits,
1513          * we pass the maximum number of sectors down
1514          * and let the lower level perform the split.
1515          */
1516         sectors = align_to_barrier_unit_end(
1517                 bio->bi_iter.bi_sector, bio_sectors(bio));
1518
1519         if (bio_data_dir(bio) == READ)
1520                 raid1_read_request(mddev, bio, sectors, NULL);
1521         else {
1522                 if (!md_write_start(mddev,bio))
1523                         return false;
1524                 raid1_write_request(mddev, bio, sectors);
1525         }
1526         return true;
1527 }
1528
1529 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1530 {
1531         struct r1conf *conf = mddev->private;
1532         int i;
1533
1534         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1535                    conf->raid_disks - mddev->degraded);
1536         rcu_read_lock();
1537         for (i = 0; i < conf->raid_disks; i++) {
1538                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1539                 seq_printf(seq, "%s",
1540                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1541         }
1542         rcu_read_unlock();
1543         seq_printf(seq, "]");
1544 }
1545
1546 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1547 {
1548         char b[BDEVNAME_SIZE];
1549         struct r1conf *conf = mddev->private;
1550         unsigned long flags;
1551
1552         /*
1553          * If it is not operational, then we have already marked it as dead
1554          * else if it is the last working disks, ignore the error, let the
1555          * next level up know.
1556          * else mark the drive as failed
1557          */
1558         spin_lock_irqsave(&conf->device_lock, flags);
1559         if (test_bit(In_sync, &rdev->flags)
1560             && (conf->raid_disks - mddev->degraded) == 1) {
1561                 /*
1562                  * Don't fail the drive, act as though we were just a
1563                  * normal single drive.
1564                  * However don't try a recovery from this drive as
1565                  * it is very likely to fail.
1566                  */
1567                 conf->recovery_disabled = mddev->recovery_disabled;
1568                 spin_unlock_irqrestore(&conf->device_lock, flags);
1569                 return;
1570         }
1571         set_bit(Blocked, &rdev->flags);
1572         if (test_and_clear_bit(In_sync, &rdev->flags))
1573                 mddev->degraded++;
1574         set_bit(Faulty, &rdev->flags);
1575         spin_unlock_irqrestore(&conf->device_lock, flags);
1576         /*
1577          * if recovery is running, make sure it aborts.
1578          */
1579         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1580         set_mask_bits(&mddev->sb_flags, 0,
1581                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1582         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1583                 "md/raid1:%s: Operation continuing on %d devices.\n",
1584                 mdname(mddev), bdevname(rdev->bdev, b),
1585                 mdname(mddev), conf->raid_disks - mddev->degraded);
1586 }
1587
1588 static void print_conf(struct r1conf *conf)
1589 {
1590         int i;
1591
1592         pr_debug("RAID1 conf printout:\n");
1593         if (!conf) {
1594                 pr_debug("(!conf)\n");
1595                 return;
1596         }
1597         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1598                  conf->raid_disks);
1599
1600         rcu_read_lock();
1601         for (i = 0; i < conf->raid_disks; i++) {
1602                 char b[BDEVNAME_SIZE];
1603                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1604                 if (rdev)
1605                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1606                                  i, !test_bit(In_sync, &rdev->flags),
1607                                  !test_bit(Faulty, &rdev->flags),
1608                                  bdevname(rdev->bdev,b));
1609         }
1610         rcu_read_unlock();
1611 }
1612
1613 static void close_sync(struct r1conf *conf)
1614 {
1615         int idx;
1616
1617         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++) {
1618                 _wait_barrier(conf, idx);
1619                 _allow_barrier(conf, idx);
1620         }
1621
1622         mempool_exit(&conf->r1buf_pool);
1623 }
1624
1625 static int raid1_spare_active(struct mddev *mddev)
1626 {
1627         int i;
1628         struct r1conf *conf = mddev->private;
1629         int count = 0;
1630         unsigned long flags;
1631
1632         /*
1633          * Find all failed disks within the RAID1 configuration
1634          * and mark them readable.
1635          * Called under mddev lock, so rcu protection not needed.
1636          * device_lock used to avoid races with raid1_end_read_request
1637          * which expects 'In_sync' flags and ->degraded to be consistent.
1638          */
1639         spin_lock_irqsave(&conf->device_lock, flags);
1640         for (i = 0; i < conf->raid_disks; i++) {
1641                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1642                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1643                 if (repl
1644                     && !test_bit(Candidate, &repl->flags)
1645                     && repl->recovery_offset == MaxSector
1646                     && !test_bit(Faulty, &repl->flags)
1647                     && !test_and_set_bit(In_sync, &repl->flags)) {
1648                         /* replacement has just become active */
1649                         if (!rdev ||
1650                             !test_and_clear_bit(In_sync, &rdev->flags))
1651                                 count++;
1652                         if (rdev) {
1653                                 /* Replaced device not technically
1654                                  * faulty, but we need to be sure
1655                                  * it gets removed and never re-added
1656                                  */
1657                                 set_bit(Faulty, &rdev->flags);
1658                                 sysfs_notify_dirent_safe(
1659                                         rdev->sysfs_state);
1660                         }
1661                 }
1662                 if (rdev
1663                     && rdev->recovery_offset == MaxSector
1664                     && !test_bit(Faulty, &rdev->flags)
1665                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1666                         count++;
1667                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1668                 }
1669         }
1670         mddev->degraded -= count;
1671         spin_unlock_irqrestore(&conf->device_lock, flags);
1672
1673         print_conf(conf);
1674         return count;
1675 }
1676
1677 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1678 {
1679         struct r1conf *conf = mddev->private;
1680         int err = -EEXIST;
1681         int mirror = 0;
1682         struct raid1_info *p;
1683         int first = 0;
1684         int last = conf->raid_disks - 1;
1685
1686         if (mddev->recovery_disabled == conf->recovery_disabled)
1687                 return -EBUSY;
1688
1689         if (md_integrity_add_rdev(rdev, mddev))
1690                 return -ENXIO;
1691
1692         if (rdev->raid_disk >= 0)
1693                 first = last = rdev->raid_disk;
1694
1695         /*
1696          * find the disk ... but prefer rdev->saved_raid_disk
1697          * if possible.
1698          */
1699         if (rdev->saved_raid_disk >= 0 &&
1700             rdev->saved_raid_disk >= first &&
1701             rdev->saved_raid_disk < conf->raid_disks &&
1702             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1703                 first = last = rdev->saved_raid_disk;
1704
1705         for (mirror = first; mirror <= last; mirror++) {
1706                 p = conf->mirrors + mirror;
1707                 if (!p->rdev) {
1708                         if (mddev->gendisk)
1709                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1710                                                   rdev->data_offset << 9);
1711
1712                         p->head_position = 0;
1713                         rdev->raid_disk = mirror;
1714                         err = 0;
1715                         /* As all devices are equivalent, we don't need a full recovery
1716                          * if this was recently any drive of the array
1717                          */
1718                         if (rdev->saved_raid_disk < 0)
1719                                 conf->fullsync = 1;
1720                         rcu_assign_pointer(p->rdev, rdev);
1721                         break;
1722                 }
1723                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1724                     p[conf->raid_disks].rdev == NULL) {
1725                         /* Add this device as a replacement */
1726                         clear_bit(In_sync, &rdev->flags);
1727                         set_bit(Replacement, &rdev->flags);
1728                         rdev->raid_disk = mirror;
1729                         err = 0;
1730                         conf->fullsync = 1;
1731                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1732                         break;
1733                 }
1734         }
1735         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1736                 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1737         print_conf(conf);
1738         return err;
1739 }
1740
1741 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1742 {
1743         struct r1conf *conf = mddev->private;
1744         int err = 0;
1745         int number = rdev->raid_disk;
1746         struct raid1_info *p = conf->mirrors + number;
1747
1748         if (rdev != p->rdev)
1749                 p = conf->mirrors + conf->raid_disks + number;
1750
1751         print_conf(conf);
1752         if (rdev == p->rdev) {
1753                 if (test_bit(In_sync, &rdev->flags) ||
1754                     atomic_read(&rdev->nr_pending)) {
1755                         err = -EBUSY;
1756                         goto abort;
1757                 }
1758                 /* Only remove non-faulty devices if recovery
1759                  * is not possible.
1760                  */
1761                 if (!test_bit(Faulty, &rdev->flags) &&
1762                     mddev->recovery_disabled != conf->recovery_disabled &&
1763                     mddev->degraded < conf->raid_disks) {
1764                         err = -EBUSY;
1765                         goto abort;
1766                 }
1767                 p->rdev = NULL;
1768                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1769                         synchronize_rcu();
1770                         if (atomic_read(&rdev->nr_pending)) {
1771                                 /* lost the race, try later */
1772                                 err = -EBUSY;
1773                                 p->rdev = rdev;
1774                                 goto abort;
1775                         }
1776                 }
1777                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1778                         /* We just removed a device that is being replaced.
1779                          * Move down the replacement.  We drain all IO before
1780                          * doing this to avoid confusion.
1781                          */
1782                         struct md_rdev *repl =
1783                                 conf->mirrors[conf->raid_disks + number].rdev;
1784                         freeze_array(conf, 0);
1785                         if (atomic_read(&repl->nr_pending)) {
1786                                 /* It means that some queued IO of retry_list
1787                                  * hold repl. Thus, we cannot set replacement
1788                                  * as NULL, avoiding rdev NULL pointer
1789                                  * dereference in sync_request_write and
1790                                  * handle_write_finished.
1791                                  */
1792                                 err = -EBUSY;
1793                                 unfreeze_array(conf);
1794                                 goto abort;
1795                         }
1796                         clear_bit(Replacement, &repl->flags);
1797                         p->rdev = repl;
1798                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1799                         unfreeze_array(conf);
1800                 }
1801
1802                 clear_bit(WantReplacement, &rdev->flags);
1803                 err = md_integrity_register(mddev);
1804         }
1805 abort:
1806
1807         print_conf(conf);
1808         return err;
1809 }
1810
1811 static void end_sync_read(struct bio *bio)
1812 {
1813         struct r1bio *r1_bio = get_resync_r1bio(bio);
1814
1815         update_head_pos(r1_bio->read_disk, r1_bio);
1816
1817         /*
1818          * we have read a block, now it needs to be re-written,
1819          * or re-read if the read failed.
1820          * We don't do much here, just schedule handling by raid1d
1821          */
1822         if (!bio->bi_status)
1823                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1824
1825         if (atomic_dec_and_test(&r1_bio->remaining))
1826                 reschedule_retry(r1_bio);
1827 }
1828
1829 static void abort_sync_write(struct mddev *mddev, struct r1bio *r1_bio)
1830 {
1831         sector_t sync_blocks = 0;
1832         sector_t s = r1_bio->sector;
1833         long sectors_to_go = r1_bio->sectors;
1834
1835         /* make sure these bits don't get cleared. */
1836         do {
1837                 md_bitmap_end_sync(mddev->bitmap, s, &sync_blocks, 1);
1838                 s += sync_blocks;
1839                 sectors_to_go -= sync_blocks;
1840         } while (sectors_to_go > 0);
1841 }
1842
1843 static void end_sync_write(struct bio *bio)
1844 {
1845         int uptodate = !bio->bi_status;
1846         struct r1bio *r1_bio = get_resync_r1bio(bio);
1847         struct mddev *mddev = r1_bio->mddev;
1848         struct r1conf *conf = mddev->private;
1849         sector_t first_bad;
1850         int bad_sectors;
1851         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1852
1853         if (!uptodate) {
1854                 abort_sync_write(mddev, r1_bio);
1855                 set_bit(WriteErrorSeen, &rdev->flags);
1856                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1857                         set_bit(MD_RECOVERY_NEEDED, &
1858                                 mddev->recovery);
1859                 set_bit(R1BIO_WriteError, &r1_bio->state);
1860         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1861                                &first_bad, &bad_sectors) &&
1862                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1863                                 r1_bio->sector,
1864                                 r1_bio->sectors,
1865                                 &first_bad, &bad_sectors)
1866                 )
1867                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1868
1869         if (atomic_dec_and_test(&r1_bio->remaining)) {
1870                 int s = r1_bio->sectors;
1871                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1872                     test_bit(R1BIO_WriteError, &r1_bio->state))
1873                         reschedule_retry(r1_bio);
1874                 else {
1875                         put_buf(r1_bio);
1876                         md_done_sync(mddev, s, uptodate);
1877                 }
1878         }
1879 }
1880
1881 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1882                             int sectors, struct page *page, int rw)
1883 {
1884         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1885                 /* success */
1886                 return 1;
1887         if (rw == WRITE) {
1888                 set_bit(WriteErrorSeen, &rdev->flags);
1889                 if (!test_and_set_bit(WantReplacement,
1890                                       &rdev->flags))
1891                         set_bit(MD_RECOVERY_NEEDED, &
1892                                 rdev->mddev->recovery);
1893         }
1894         /* need to record an error - either for the block or the device */
1895         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1896                 md_error(rdev->mddev, rdev);
1897         return 0;
1898 }
1899
1900 static int fix_sync_read_error(struct r1bio *r1_bio)
1901 {
1902         /* Try some synchronous reads of other devices to get
1903          * good data, much like with normal read errors.  Only
1904          * read into the pages we already have so we don't
1905          * need to re-issue the read request.
1906          * We don't need to freeze the array, because being in an
1907          * active sync request, there is no normal IO, and
1908          * no overlapping syncs.
1909          * We don't need to check is_badblock() again as we
1910          * made sure that anything with a bad block in range
1911          * will have bi_end_io clear.
1912          */
1913         struct mddev *mddev = r1_bio->mddev;
1914         struct r1conf *conf = mddev->private;
1915         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1916         struct page **pages = get_resync_pages(bio)->pages;
1917         sector_t sect = r1_bio->sector;
1918         int sectors = r1_bio->sectors;
1919         int idx = 0;
1920         struct md_rdev *rdev;
1921
1922         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1923         if (test_bit(FailFast, &rdev->flags)) {
1924                 /* Don't try recovering from here - just fail it
1925                  * ... unless it is the last working device of course */
1926                 md_error(mddev, rdev);
1927                 if (test_bit(Faulty, &rdev->flags))
1928                         /* Don't try to read from here, but make sure
1929                          * put_buf does it's thing
1930                          */
1931                         bio->bi_end_io = end_sync_write;
1932         }
1933
1934         while(sectors) {
1935                 int s = sectors;
1936                 int d = r1_bio->read_disk;
1937                 int success = 0;
1938                 int start;
1939
1940                 if (s > (PAGE_SIZE>>9))
1941                         s = PAGE_SIZE >> 9;
1942                 do {
1943                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1944                                 /* No rcu protection needed here devices
1945                                  * can only be removed when no resync is
1946                                  * active, and resync is currently active
1947                                  */
1948                                 rdev = conf->mirrors[d].rdev;
1949                                 if (sync_page_io(rdev, sect, s<<9,
1950                                                  pages[idx],
1951                                                  REQ_OP_READ, 0, false)) {
1952                                         success = 1;
1953                                         break;
1954                                 }
1955                         }
1956                         d++;
1957                         if (d == conf->raid_disks * 2)
1958                                 d = 0;
1959                 } while (!success && d != r1_bio->read_disk);
1960
1961                 if (!success) {
1962                         char b[BDEVNAME_SIZE];
1963                         int abort = 0;
1964                         /* Cannot read from anywhere, this block is lost.
1965                          * Record a bad block on each device.  If that doesn't
1966                          * work just disable and interrupt the recovery.
1967                          * Don't fail devices as that won't really help.
1968                          */
1969                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1970                                             mdname(mddev), bio_devname(bio, b),
1971                                             (unsigned long long)r1_bio->sector);
1972                         for (d = 0; d < conf->raid_disks * 2; d++) {
1973                                 rdev = conf->mirrors[d].rdev;
1974                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1975                                         continue;
1976                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1977                                         abort = 1;
1978                         }
1979                         if (abort) {
1980                                 conf->recovery_disabled =
1981                                         mddev->recovery_disabled;
1982                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1983                                 md_done_sync(mddev, r1_bio->sectors, 0);
1984                                 put_buf(r1_bio);
1985                                 return 0;
1986                         }
1987                         /* Try next page */
1988                         sectors -= s;
1989                         sect += s;
1990                         idx++;
1991                         continue;
1992                 }
1993
1994                 start = d;
1995                 /* write it back and re-read */
1996                 while (d != r1_bio->read_disk) {
1997                         if (d == 0)
1998                                 d = conf->raid_disks * 2;
1999                         d--;
2000                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2001                                 continue;
2002                         rdev = conf->mirrors[d].rdev;
2003                         if (r1_sync_page_io(rdev, sect, s,
2004                                             pages[idx],
2005                                             WRITE) == 0) {
2006                                 r1_bio->bios[d]->bi_end_io = NULL;
2007                                 rdev_dec_pending(rdev, mddev);
2008                         }
2009                 }
2010                 d = start;
2011                 while (d != r1_bio->read_disk) {
2012                         if (d == 0)
2013                                 d = conf->raid_disks * 2;
2014                         d--;
2015                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2016                                 continue;
2017                         rdev = conf->mirrors[d].rdev;
2018                         if (r1_sync_page_io(rdev, sect, s,
2019                                             pages[idx],
2020                                             READ) != 0)
2021                                 atomic_add(s, &rdev->corrected_errors);
2022                 }
2023                 sectors -= s;
2024                 sect += s;
2025                 idx ++;
2026         }
2027         set_bit(R1BIO_Uptodate, &r1_bio->state);
2028         bio->bi_status = 0;
2029         return 1;
2030 }
2031
2032 static void process_checks(struct r1bio *r1_bio)
2033 {
2034         /* We have read all readable devices.  If we haven't
2035          * got the block, then there is no hope left.
2036          * If we have, then we want to do a comparison
2037          * and skip the write if everything is the same.
2038          * If any blocks failed to read, then we need to
2039          * attempt an over-write
2040          */
2041         struct mddev *mddev = r1_bio->mddev;
2042         struct r1conf *conf = mddev->private;
2043         int primary;
2044         int i;
2045         int vcnt;
2046
2047         /* Fix variable parts of all bios */
2048         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2049         for (i = 0; i < conf->raid_disks * 2; i++) {
2050                 blk_status_t status;
2051                 struct bio *b = r1_bio->bios[i];
2052                 struct resync_pages *rp = get_resync_pages(b);
2053                 if (b->bi_end_io != end_sync_read)
2054                         continue;
2055                 /* fixup the bio for reuse, but preserve errno */
2056                 status = b->bi_status;
2057                 bio_reset(b);
2058                 b->bi_status = status;
2059                 b->bi_iter.bi_sector = r1_bio->sector +
2060                         conf->mirrors[i].rdev->data_offset;
2061                 bio_set_dev(b, conf->mirrors[i].rdev->bdev);
2062                 b->bi_end_io = end_sync_read;
2063                 rp->raid_bio = r1_bio;
2064                 b->bi_private = rp;
2065
2066                 /* initialize bvec table again */
2067                 md_bio_reset_resync_pages(b, rp, r1_bio->sectors << 9);
2068         }
2069         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2070                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2071                     !r1_bio->bios[primary]->bi_status) {
2072                         r1_bio->bios[primary]->bi_end_io = NULL;
2073                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2074                         break;
2075                 }
2076         r1_bio->read_disk = primary;
2077         for (i = 0; i < conf->raid_disks * 2; i++) {
2078                 int j = 0;
2079                 struct bio *pbio = r1_bio->bios[primary];
2080                 struct bio *sbio = r1_bio->bios[i];
2081                 blk_status_t status = sbio->bi_status;
2082                 struct page **ppages = get_resync_pages(pbio)->pages;
2083                 struct page **spages = get_resync_pages(sbio)->pages;
2084                 struct bio_vec *bi;
2085                 int page_len[RESYNC_PAGES] = { 0 };
2086                 struct bvec_iter_all iter_all;
2087
2088                 if (sbio->bi_end_io != end_sync_read)
2089                         continue;
2090                 /* Now we can 'fixup' the error value */
2091                 sbio->bi_status = 0;
2092
2093                 bio_for_each_segment_all(bi, sbio, iter_all)
2094                         page_len[j++] = bi->bv_len;
2095
2096                 if (!status) {
2097                         for (j = vcnt; j-- ; ) {
2098                                 if (memcmp(page_address(ppages[j]),
2099                                            page_address(spages[j]),
2100                                            page_len[j]))
2101                                         break;
2102                         }
2103                 } else
2104                         j = 0;
2105                 if (j >= 0)
2106                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2107                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2108                               && !status)) {
2109                         /* No need to write to this device. */
2110                         sbio->bi_end_io = NULL;
2111                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2112                         continue;
2113                 }
2114
2115                 bio_copy_data(sbio, pbio);
2116         }
2117 }
2118
2119 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2120 {
2121         struct r1conf *conf = mddev->private;
2122         int i;
2123         int disks = conf->raid_disks * 2;
2124         struct bio *wbio;
2125
2126         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2127                 /* ouch - failed to read all of that. */
2128                 if (!fix_sync_read_error(r1_bio))
2129                         return;
2130
2131         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2132                 process_checks(r1_bio);
2133
2134         /*
2135          * schedule writes
2136          */
2137         atomic_set(&r1_bio->remaining, 1);
2138         for (i = 0; i < disks ; i++) {
2139                 wbio = r1_bio->bios[i];
2140                 if (wbio->bi_end_io == NULL ||
2141                     (wbio->bi_end_io == end_sync_read &&
2142                      (i == r1_bio->read_disk ||
2143                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2144                         continue;
2145                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags)) {
2146                         abort_sync_write(mddev, r1_bio);
2147                         continue;
2148                 }
2149
2150                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2151                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2152                         wbio->bi_opf |= MD_FAILFAST;
2153
2154                 wbio->bi_end_io = end_sync_write;
2155                 atomic_inc(&r1_bio->remaining);
2156                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2157
2158                 generic_make_request(wbio);
2159         }
2160
2161         if (atomic_dec_and_test(&r1_bio->remaining)) {
2162                 /* if we're here, all write(s) have completed, so clean up */
2163                 int s = r1_bio->sectors;
2164                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2165                     test_bit(R1BIO_WriteError, &r1_bio->state))
2166                         reschedule_retry(r1_bio);
2167                 else {
2168                         put_buf(r1_bio);
2169                         md_done_sync(mddev, s, 1);
2170                 }
2171         }
2172 }
2173
2174 /*
2175  * This is a kernel thread which:
2176  *
2177  *      1.      Retries failed read operations on working mirrors.
2178  *      2.      Updates the raid superblock when problems encounter.
2179  *      3.      Performs writes following reads for array synchronising.
2180  */
2181
2182 static void fix_read_error(struct r1conf *conf, int read_disk,
2183                            sector_t sect, int sectors)
2184 {
2185         struct mddev *mddev = conf->mddev;
2186         while(sectors) {
2187                 int s = sectors;
2188                 int d = read_disk;
2189                 int success = 0;
2190                 int start;
2191                 struct md_rdev *rdev;
2192
2193                 if (s > (PAGE_SIZE>>9))
2194                         s = PAGE_SIZE >> 9;
2195
2196                 do {
2197                         sector_t first_bad;
2198                         int bad_sectors;
2199
2200                         rcu_read_lock();
2201                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2202                         if (rdev &&
2203                             (test_bit(In_sync, &rdev->flags) ||
2204                              (!test_bit(Faulty, &rdev->flags) &&
2205                               rdev->recovery_offset >= sect + s)) &&
2206                             is_badblock(rdev, sect, s,
2207                                         &first_bad, &bad_sectors) == 0) {
2208                                 atomic_inc(&rdev->nr_pending);
2209                                 rcu_read_unlock();
2210                                 if (sync_page_io(rdev, sect, s<<9,
2211                                          conf->tmppage, REQ_OP_READ, 0, false))
2212                                         success = 1;
2213                                 rdev_dec_pending(rdev, mddev);
2214                                 if (success)
2215                                         break;
2216                         } else
2217                                 rcu_read_unlock();
2218                         d++;
2219                         if (d == conf->raid_disks * 2)
2220                                 d = 0;
2221                 } while (!success && d != read_disk);
2222
2223                 if (!success) {
2224                         /* Cannot read from anywhere - mark it bad */
2225                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2226                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2227                                 md_error(mddev, rdev);
2228                         break;
2229                 }
2230                 /* write it back and re-read */
2231                 start = d;
2232                 while (d != read_disk) {
2233                         if (d==0)
2234                                 d = conf->raid_disks * 2;
2235                         d--;
2236                         rcu_read_lock();
2237                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2238                         if (rdev &&
2239                             !test_bit(Faulty, &rdev->flags)) {
2240                                 atomic_inc(&rdev->nr_pending);
2241                                 rcu_read_unlock();
2242                                 r1_sync_page_io(rdev, sect, s,
2243                                                 conf->tmppage, WRITE);
2244                                 rdev_dec_pending(rdev, mddev);
2245                         } else
2246                                 rcu_read_unlock();
2247                 }
2248                 d = start;
2249                 while (d != read_disk) {
2250                         char b[BDEVNAME_SIZE];
2251                         if (d==0)
2252                                 d = conf->raid_disks * 2;
2253                         d--;
2254                         rcu_read_lock();
2255                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2256                         if (rdev &&
2257                             !test_bit(Faulty, &rdev->flags)) {
2258                                 atomic_inc(&rdev->nr_pending);
2259                                 rcu_read_unlock();
2260                                 if (r1_sync_page_io(rdev, sect, s,
2261                                                     conf->tmppage, READ)) {
2262                                         atomic_add(s, &rdev->corrected_errors);
2263                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2264                                                 mdname(mddev), s,
2265                                                 (unsigned long long)(sect +
2266                                                                      rdev->data_offset),
2267                                                 bdevname(rdev->bdev, b));
2268                                 }
2269                                 rdev_dec_pending(rdev, mddev);
2270                         } else
2271                                 rcu_read_unlock();
2272                 }
2273                 sectors -= s;
2274                 sect += s;
2275         }
2276 }
2277
2278 static int narrow_write_error(struct r1bio *r1_bio, int i)
2279 {
2280         struct mddev *mddev = r1_bio->mddev;
2281         struct r1conf *conf = mddev->private;
2282         struct md_rdev *rdev = conf->mirrors[i].rdev;
2283
2284         /* bio has the data to be written to device 'i' where
2285          * we just recently had a write error.
2286          * We repeatedly clone the bio and trim down to one block,
2287          * then try the write.  Where the write fails we record
2288          * a bad block.
2289          * It is conceivable that the bio doesn't exactly align with
2290          * blocks.  We must handle this somehow.
2291          *
2292          * We currently own a reference on the rdev.
2293          */
2294
2295         int block_sectors;
2296         sector_t sector;
2297         int sectors;
2298         int sect_to_write = r1_bio->sectors;
2299         int ok = 1;
2300
2301         if (rdev->badblocks.shift < 0)
2302                 return 0;
2303
2304         block_sectors = roundup(1 << rdev->badblocks.shift,
2305                                 bdev_logical_block_size(rdev->bdev) >> 9);
2306         sector = r1_bio->sector;
2307         sectors = ((sector + block_sectors)
2308                    & ~(sector_t)(block_sectors - 1))
2309                 - sector;
2310
2311         while (sect_to_write) {
2312                 struct bio *wbio;
2313                 if (sectors > sect_to_write)
2314                         sectors = sect_to_write;
2315                 /* Write at 'sector' for 'sectors'*/
2316
2317                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2318                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2319                                               GFP_NOIO,
2320                                               &mddev->bio_set);
2321                 } else {
2322                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2323                                               &mddev->bio_set);
2324                 }
2325
2326                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2327                 wbio->bi_iter.bi_sector = r1_bio->sector;
2328                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2329
2330                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2331                 wbio->bi_iter.bi_sector += rdev->data_offset;
2332                 bio_set_dev(wbio, rdev->bdev);
2333
2334                 if (submit_bio_wait(wbio) < 0)
2335                         /* failure! */
2336                         ok = rdev_set_badblocks(rdev, sector,
2337                                                 sectors, 0)
2338                                 && ok;
2339
2340                 bio_put(wbio);
2341                 sect_to_write -= sectors;
2342                 sector += sectors;
2343                 sectors = block_sectors;
2344         }
2345         return ok;
2346 }
2347
2348 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2349 {
2350         int m;
2351         int s = r1_bio->sectors;
2352         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2353                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2354                 struct bio *bio = r1_bio->bios[m];
2355                 if (bio->bi_end_io == NULL)
2356                         continue;
2357                 if (!bio->bi_status &&
2358                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2359                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2360                 }
2361                 if (bio->bi_status &&
2362                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2363                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2364                                 md_error(conf->mddev, rdev);
2365                 }
2366         }
2367         put_buf(r1_bio);
2368         md_done_sync(conf->mddev, s, 1);
2369 }
2370
2371 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2372 {
2373         int m, idx;
2374         bool fail = false;
2375
2376         for (m = 0; m < conf->raid_disks * 2 ; m++)
2377                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2378                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2379                         rdev_clear_badblocks(rdev,
2380                                              r1_bio->sector,
2381                                              r1_bio->sectors, 0);
2382                         rdev_dec_pending(rdev, conf->mddev);
2383                 } else if (r1_bio->bios[m] != NULL) {
2384                         /* This drive got a write error.  We need to
2385                          * narrow down and record precise write
2386                          * errors.
2387                          */
2388                         fail = true;
2389                         if (!narrow_write_error(r1_bio, m)) {
2390                                 md_error(conf->mddev,
2391                                          conf->mirrors[m].rdev);
2392                                 /* an I/O failed, we can't clear the bitmap */
2393                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2394                         }
2395                         rdev_dec_pending(conf->mirrors[m].rdev,
2396                                          conf->mddev);
2397                 }
2398         if (fail) {
2399                 spin_lock_irq(&conf->device_lock);
2400                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2401                 idx = sector_to_idx(r1_bio->sector);
2402                 atomic_inc(&conf->nr_queued[idx]);
2403                 spin_unlock_irq(&conf->device_lock);
2404                 /*
2405                  * In case freeze_array() is waiting for condition
2406                  * get_unqueued_pending() == extra to be true.
2407                  */
2408                 wake_up(&conf->wait_barrier);
2409                 md_wakeup_thread(conf->mddev->thread);
2410         } else {
2411                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2412                         close_write(r1_bio);
2413                 raid_end_bio_io(r1_bio);
2414         }
2415 }
2416
2417 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2418 {
2419         struct mddev *mddev = conf->mddev;
2420         struct bio *bio;
2421         struct md_rdev *rdev;
2422
2423         clear_bit(R1BIO_ReadError, &r1_bio->state);
2424         /* we got a read error. Maybe the drive is bad.  Maybe just
2425          * the block and we can fix it.
2426          * We freeze all other IO, and try reading the block from
2427          * other devices.  When we find one, we re-write
2428          * and check it that fixes the read error.
2429          * This is all done synchronously while the array is
2430          * frozen
2431          */
2432
2433         bio = r1_bio->bios[r1_bio->read_disk];
2434         bio_put(bio);
2435         r1_bio->bios[r1_bio->read_disk] = NULL;
2436
2437         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2438         if (mddev->ro == 0
2439             && !test_bit(FailFast, &rdev->flags)) {
2440                 freeze_array(conf, 1);
2441                 fix_read_error(conf, r1_bio->read_disk,
2442                                r1_bio->sector, r1_bio->sectors);
2443                 unfreeze_array(conf);
2444         } else if (mddev->ro == 0 && test_bit(FailFast, &rdev->flags)) {
2445                 md_error(mddev, rdev);
2446         } else {
2447                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2448         }
2449
2450         rdev_dec_pending(rdev, conf->mddev);
2451         allow_barrier(conf, r1_bio->sector);
2452         bio = r1_bio->master_bio;
2453
2454         /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2455         r1_bio->state = 0;
2456         raid1_read_request(mddev, bio, r1_bio->sectors, r1_bio);
2457 }
2458
2459 static void raid1d(struct md_thread *thread)
2460 {
2461         struct mddev *mddev = thread->mddev;
2462         struct r1bio *r1_bio;
2463         unsigned long flags;
2464         struct r1conf *conf = mddev->private;
2465         struct list_head *head = &conf->retry_list;
2466         struct blk_plug plug;
2467         int idx;
2468
2469         md_check_recovery(mddev);
2470
2471         if (!list_empty_careful(&conf->bio_end_io_list) &&
2472             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2473                 LIST_HEAD(tmp);
2474                 spin_lock_irqsave(&conf->device_lock, flags);
2475                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2476                         list_splice_init(&conf->bio_end_io_list, &tmp);
2477                 spin_unlock_irqrestore(&conf->device_lock, flags);
2478                 while (!list_empty(&tmp)) {
2479                         r1_bio = list_first_entry(&tmp, struct r1bio,
2480                                                   retry_list);
2481                         list_del(&r1_bio->retry_list);
2482                         idx = sector_to_idx(r1_bio->sector);
2483                         atomic_dec(&conf->nr_queued[idx]);
2484                         if (mddev->degraded)
2485                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2486                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2487                                 close_write(r1_bio);
2488                         raid_end_bio_io(r1_bio);
2489                 }
2490         }
2491
2492         blk_start_plug(&plug);
2493         for (;;) {
2494
2495                 flush_pending_writes(conf);
2496
2497                 spin_lock_irqsave(&conf->device_lock, flags);
2498                 if (list_empty(head)) {
2499                         spin_unlock_irqrestore(&conf->device_lock, flags);
2500                         break;
2501                 }
2502                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2503                 list_del(head->prev);
2504                 idx = sector_to_idx(r1_bio->sector);
2505                 atomic_dec(&conf->nr_queued[idx]);
2506                 spin_unlock_irqrestore(&conf->device_lock, flags);
2507
2508                 mddev = r1_bio->mddev;
2509                 conf = mddev->private;
2510                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2511                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2512                             test_bit(R1BIO_WriteError, &r1_bio->state))
2513                                 handle_sync_write_finished(conf, r1_bio);
2514                         else
2515                                 sync_request_write(mddev, r1_bio);
2516                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2517                            test_bit(R1BIO_WriteError, &r1_bio->state))
2518                         handle_write_finished(conf, r1_bio);
2519                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2520                         handle_read_error(conf, r1_bio);
2521                 else
2522                         WARN_ON_ONCE(1);
2523
2524                 cond_resched();
2525                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2526                         md_check_recovery(mddev);
2527         }
2528         blk_finish_plug(&plug);
2529 }
2530
2531 static int init_resync(struct r1conf *conf)
2532 {
2533         int buffs;
2534
2535         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2536         BUG_ON(mempool_initialized(&conf->r1buf_pool));
2537
2538         return mempool_init(&conf->r1buf_pool, buffs, r1buf_pool_alloc,
2539                             r1buf_pool_free, conf->poolinfo);
2540 }
2541
2542 static struct r1bio *raid1_alloc_init_r1buf(struct r1conf *conf)
2543 {
2544         struct r1bio *r1bio = mempool_alloc(&conf->r1buf_pool, GFP_NOIO);
2545         struct resync_pages *rps;
2546         struct bio *bio;
2547         int i;
2548
2549         for (i = conf->poolinfo->raid_disks; i--; ) {
2550                 bio = r1bio->bios[i];
2551                 rps = bio->bi_private;
2552                 bio_reset(bio);
2553                 bio->bi_private = rps;
2554         }
2555         r1bio->master_bio = NULL;
2556         return r1bio;
2557 }
2558
2559 /*
2560  * perform a "sync" on one "block"
2561  *
2562  * We need to make sure that no normal I/O request - particularly write
2563  * requests - conflict with active sync requests.
2564  *
2565  * This is achieved by tracking pending requests and a 'barrier' concept
2566  * that can be installed to exclude normal IO requests.
2567  */
2568
2569 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2570                                    int *skipped)
2571 {
2572         struct r1conf *conf = mddev->private;
2573         struct r1bio *r1_bio;
2574         struct bio *bio;
2575         sector_t max_sector, nr_sectors;
2576         int disk = -1;
2577         int i;
2578         int wonly = -1;
2579         int write_targets = 0, read_targets = 0;
2580         sector_t sync_blocks;
2581         int still_degraded = 0;
2582         int good_sectors = RESYNC_SECTORS;
2583         int min_bad = 0; /* number of sectors that are bad in all devices */
2584         int idx = sector_to_idx(sector_nr);
2585         int page_idx = 0;
2586
2587         if (!mempool_initialized(&conf->r1buf_pool))
2588                 if (init_resync(conf))
2589                         return 0;
2590
2591         max_sector = mddev->dev_sectors;
2592         if (sector_nr >= max_sector) {
2593                 /* If we aborted, we need to abort the
2594                  * sync on the 'current' bitmap chunk (there will
2595                  * only be one in raid1 resync.
2596                  * We can find the current addess in mddev->curr_resync
2597                  */
2598                 if (mddev->curr_resync < max_sector) /* aborted */
2599                         md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2600                                            &sync_blocks, 1);
2601                 else /* completed sync */
2602                         conf->fullsync = 0;
2603
2604                 md_bitmap_close_sync(mddev->bitmap);
2605                 close_sync(conf);
2606
2607                 if (mddev_is_clustered(mddev)) {
2608                         conf->cluster_sync_low = 0;
2609                         conf->cluster_sync_high = 0;
2610                 }
2611                 return 0;
2612         }
2613
2614         if (mddev->bitmap == NULL &&
2615             mddev->recovery_cp == MaxSector &&
2616             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2617             conf->fullsync == 0) {
2618                 *skipped = 1;
2619                 return max_sector - sector_nr;
2620         }
2621         /* before building a request, check if we can skip these blocks..
2622          * This call the bitmap_start_sync doesn't actually record anything
2623          */
2624         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2625             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2626                 /* We can skip this block, and probably several more */
2627                 *skipped = 1;
2628                 return sync_blocks;
2629         }
2630
2631         /*
2632          * If there is non-resync activity waiting for a turn, then let it
2633          * though before starting on this new sync request.
2634          */
2635         if (atomic_read(&conf->nr_waiting[idx]))
2636                 schedule_timeout_uninterruptible(1);
2637
2638         /* we are incrementing sector_nr below. To be safe, we check against
2639          * sector_nr + two times RESYNC_SECTORS
2640          */
2641
2642         md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2643                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2644
2645
2646         if (raise_barrier(conf, sector_nr))
2647                 return 0;
2648
2649         r1_bio = raid1_alloc_init_r1buf(conf);
2650
2651         rcu_read_lock();
2652         /*
2653          * If we get a correctably read error during resync or recovery,
2654          * we might want to read from a different device.  So we
2655          * flag all drives that could conceivably be read from for READ,
2656          * and any others (which will be non-In_sync devices) for WRITE.
2657          * If a read fails, we try reading from something else for which READ
2658          * is OK.
2659          */
2660
2661         r1_bio->mddev = mddev;
2662         r1_bio->sector = sector_nr;
2663         r1_bio->state = 0;
2664         set_bit(R1BIO_IsSync, &r1_bio->state);
2665         /* make sure good_sectors won't go across barrier unit boundary */
2666         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2667
2668         for (i = 0; i < conf->raid_disks * 2; i++) {
2669                 struct md_rdev *rdev;
2670                 bio = r1_bio->bios[i];
2671
2672                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2673                 if (rdev == NULL ||
2674                     test_bit(Faulty, &rdev->flags)) {
2675                         if (i < conf->raid_disks)
2676                                 still_degraded = 1;
2677                 } else if (!test_bit(In_sync, &rdev->flags)) {
2678                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2679                         bio->bi_end_io = end_sync_write;
2680                         write_targets ++;
2681                 } else {
2682                         /* may need to read from here */
2683                         sector_t first_bad = MaxSector;
2684                         int bad_sectors;
2685
2686                         if (is_badblock(rdev, sector_nr, good_sectors,
2687                                         &first_bad, &bad_sectors)) {
2688                                 if (first_bad > sector_nr)
2689                                         good_sectors = first_bad - sector_nr;
2690                                 else {
2691                                         bad_sectors -= (sector_nr - first_bad);
2692                                         if (min_bad == 0 ||
2693                                             min_bad > bad_sectors)
2694                                                 min_bad = bad_sectors;
2695                                 }
2696                         }
2697                         if (sector_nr < first_bad) {
2698                                 if (test_bit(WriteMostly, &rdev->flags)) {
2699                                         if (wonly < 0)
2700                                                 wonly = i;
2701                                 } else {
2702                                         if (disk < 0)
2703                                                 disk = i;
2704                                 }
2705                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2706                                 bio->bi_end_io = end_sync_read;
2707                                 read_targets++;
2708                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2709                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2710                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2711                                 /*
2712                                  * The device is suitable for reading (InSync),
2713                                  * but has bad block(s) here. Let's try to correct them,
2714                                  * if we are doing resync or repair. Otherwise, leave
2715                                  * this device alone for this sync request.
2716                                  */
2717                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2718                                 bio->bi_end_io = end_sync_write;
2719                                 write_targets++;
2720                         }
2721                 }
2722                 if (bio->bi_end_io) {
2723                         atomic_inc(&rdev->nr_pending);
2724                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2725                         bio_set_dev(bio, rdev->bdev);
2726                         if (test_bit(FailFast, &rdev->flags))
2727                                 bio->bi_opf |= MD_FAILFAST;
2728                 }
2729         }
2730         rcu_read_unlock();
2731         if (disk < 0)
2732                 disk = wonly;
2733         r1_bio->read_disk = disk;
2734
2735         if (read_targets == 0 && min_bad > 0) {
2736                 /* These sectors are bad on all InSync devices, so we
2737                  * need to mark them bad on all write targets
2738                  */
2739                 int ok = 1;
2740                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2741                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2742                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2743                                 ok = rdev_set_badblocks(rdev, sector_nr,
2744                                                         min_bad, 0
2745                                         ) && ok;
2746                         }
2747                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2748                 *skipped = 1;
2749                 put_buf(r1_bio);
2750
2751                 if (!ok) {
2752                         /* Cannot record the badblocks, so need to
2753                          * abort the resync.
2754                          * If there are multiple read targets, could just
2755                          * fail the really bad ones ???
2756                          */
2757                         conf->recovery_disabled = mddev->recovery_disabled;
2758                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2759                         return 0;
2760                 } else
2761                         return min_bad;
2762
2763         }
2764         if (min_bad > 0 && min_bad < good_sectors) {
2765                 /* only resync enough to reach the next bad->good
2766                  * transition */
2767                 good_sectors = min_bad;
2768         }
2769
2770         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2771                 /* extra read targets are also write targets */
2772                 write_targets += read_targets-1;
2773
2774         if (write_targets == 0 || read_targets == 0) {
2775                 /* There is nowhere to write, so all non-sync
2776                  * drives must be failed - so we are finished
2777                  */
2778                 sector_t rv;
2779                 if (min_bad > 0)
2780                         max_sector = sector_nr + min_bad;
2781                 rv = max_sector - sector_nr;
2782                 *skipped = 1;
2783                 put_buf(r1_bio);
2784                 return rv;
2785         }
2786
2787         if (max_sector > mddev->resync_max)
2788                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2789         if (max_sector > sector_nr + good_sectors)
2790                 max_sector = sector_nr + good_sectors;
2791         nr_sectors = 0;
2792         sync_blocks = 0;
2793         do {
2794                 struct page *page;
2795                 int len = PAGE_SIZE;
2796                 if (sector_nr + (len>>9) > max_sector)
2797                         len = (max_sector - sector_nr) << 9;
2798                 if (len == 0)
2799                         break;
2800                 if (sync_blocks == 0) {
2801                         if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
2802                                                   &sync_blocks, still_degraded) &&
2803                             !conf->fullsync &&
2804                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2805                                 break;
2806                         if ((len >> 9) > sync_blocks)
2807                                 len = sync_blocks<<9;
2808                 }
2809
2810                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2811                         struct resync_pages *rp;
2812
2813                         bio = r1_bio->bios[i];
2814                         rp = get_resync_pages(bio);
2815                         if (bio->bi_end_io) {
2816                                 page = resync_fetch_page(rp, page_idx);
2817
2818                                 /*
2819                                  * won't fail because the vec table is big
2820                                  * enough to hold all these pages
2821                                  */
2822                                 bio_add_page(bio, page, len, 0);
2823                         }
2824                 }
2825                 nr_sectors += len>>9;
2826                 sector_nr += len>>9;
2827                 sync_blocks -= (len>>9);
2828         } while (++page_idx < RESYNC_PAGES);
2829
2830         r1_bio->sectors = nr_sectors;
2831
2832         if (mddev_is_clustered(mddev) &&
2833                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2834                 conf->cluster_sync_low = mddev->curr_resync_completed;
2835                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2836                 /* Send resync message */
2837                 md_cluster_ops->resync_info_update(mddev,
2838                                 conf->cluster_sync_low,
2839                                 conf->cluster_sync_high);
2840         }
2841
2842         /* For a user-requested sync, we read all readable devices and do a
2843          * compare
2844          */
2845         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2846                 atomic_set(&r1_bio->remaining, read_targets);
2847                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2848                         bio = r1_bio->bios[i];
2849                         if (bio->bi_end_io == end_sync_read) {
2850                                 read_targets--;
2851                                 md_sync_acct_bio(bio, nr_sectors);
2852                                 if (read_targets == 1)
2853                                         bio->bi_opf &= ~MD_FAILFAST;
2854                                 generic_make_request(bio);
2855                         }
2856                 }
2857         } else {
2858                 atomic_set(&r1_bio->remaining, 1);
2859                 bio = r1_bio->bios[r1_bio->read_disk];
2860                 md_sync_acct_bio(bio, nr_sectors);
2861                 if (read_targets == 1)
2862                         bio->bi_opf &= ~MD_FAILFAST;
2863                 generic_make_request(bio);
2864         }
2865         return nr_sectors;
2866 }
2867
2868 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2869 {
2870         if (sectors)
2871                 return sectors;
2872
2873         return mddev->dev_sectors;
2874 }
2875
2876 static struct r1conf *setup_conf(struct mddev *mddev)
2877 {
2878         struct r1conf *conf;
2879         int i;
2880         struct raid1_info *disk;
2881         struct md_rdev *rdev;
2882         int err = -ENOMEM;
2883
2884         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2885         if (!conf)
2886                 goto abort;
2887
2888         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2889                                    sizeof(atomic_t), GFP_KERNEL);
2890         if (!conf->nr_pending)
2891                 goto abort;
2892
2893         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2894                                    sizeof(atomic_t), GFP_KERNEL);
2895         if (!conf->nr_waiting)
2896                 goto abort;
2897
2898         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2899                                   sizeof(atomic_t), GFP_KERNEL);
2900         if (!conf->nr_queued)
2901                 goto abort;
2902
2903         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2904                                 sizeof(atomic_t), GFP_KERNEL);
2905         if (!conf->barrier)
2906                 goto abort;
2907
2908         conf->mirrors = kzalloc(array3_size(sizeof(struct raid1_info),
2909                                             mddev->raid_disks, 2),
2910                                 GFP_KERNEL);
2911         if (!conf->mirrors)
2912                 goto abort;
2913
2914         conf->tmppage = alloc_page(GFP_KERNEL);
2915         if (!conf->tmppage)
2916                 goto abort;
2917
2918         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2919         if (!conf->poolinfo)
2920                 goto abort;
2921         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2922         err = mempool_init(&conf->r1bio_pool, NR_RAID_BIOS, r1bio_pool_alloc,
2923                            r1bio_pool_free, conf->poolinfo);
2924         if (err)
2925                 goto abort;
2926
2927         err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
2928         if (err)
2929                 goto abort;
2930
2931         conf->poolinfo->mddev = mddev;
2932
2933         err = -EINVAL;
2934         spin_lock_init(&conf->device_lock);
2935         rdev_for_each(rdev, mddev) {
2936                 int disk_idx = rdev->raid_disk;
2937                 if (disk_idx >= mddev->raid_disks
2938                     || disk_idx < 0)
2939                         continue;
2940                 if (test_bit(Replacement, &rdev->flags))
2941                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2942                 else
2943                         disk = conf->mirrors + disk_idx;
2944
2945                 if (disk->rdev)
2946                         goto abort;
2947                 disk->rdev = rdev;
2948                 disk->head_position = 0;
2949                 disk->seq_start = MaxSector;
2950         }
2951         conf->raid_disks = mddev->raid_disks;
2952         conf->mddev = mddev;
2953         INIT_LIST_HEAD(&conf->retry_list);
2954         INIT_LIST_HEAD(&conf->bio_end_io_list);
2955
2956         spin_lock_init(&conf->resync_lock);
2957         init_waitqueue_head(&conf->wait_barrier);
2958
2959         bio_list_init(&conf->pending_bio_list);
2960         conf->pending_count = 0;
2961         conf->recovery_disabled = mddev->recovery_disabled - 1;
2962
2963         err = -EIO;
2964         for (i = 0; i < conf->raid_disks * 2; i++) {
2965
2966                 disk = conf->mirrors + i;
2967
2968                 if (i < conf->raid_disks &&
2969                     disk[conf->raid_disks].rdev) {
2970                         /* This slot has a replacement. */
2971                         if (!disk->rdev) {
2972                                 /* No original, just make the replacement
2973                                  * a recovering spare
2974                                  */
2975                                 disk->rdev =
2976                                         disk[conf->raid_disks].rdev;
2977                                 disk[conf->raid_disks].rdev = NULL;
2978                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2979                                 /* Original is not in_sync - bad */
2980                                 goto abort;
2981                 }
2982
2983                 if (!disk->rdev ||
2984                     !test_bit(In_sync, &disk->rdev->flags)) {
2985                         disk->head_position = 0;
2986                         if (disk->rdev &&
2987                             (disk->rdev->saved_raid_disk < 0))
2988                                 conf->fullsync = 1;
2989                 }
2990         }
2991
2992         err = -ENOMEM;
2993         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2994         if (!conf->thread)
2995                 goto abort;
2996
2997         return conf;
2998
2999  abort:
3000         if (conf) {
3001                 mempool_exit(&conf->r1bio_pool);
3002                 kfree(conf->mirrors);
3003                 safe_put_page(conf->tmppage);
3004                 kfree(conf->poolinfo);
3005                 kfree(conf->nr_pending);
3006                 kfree(conf->nr_waiting);
3007                 kfree(conf->nr_queued);
3008                 kfree(conf->barrier);
3009                 bioset_exit(&conf->bio_split);
3010                 kfree(conf);
3011         }
3012         return ERR_PTR(err);
3013 }
3014
3015 static void raid1_free(struct mddev *mddev, void *priv);
3016 static int raid1_run(struct mddev *mddev)
3017 {
3018         struct r1conf *conf;
3019         int i;
3020         struct md_rdev *rdev;
3021         int ret;
3022         bool discard_supported = false;
3023
3024         if (mddev->level != 1) {
3025                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3026                         mdname(mddev), mddev->level);
3027                 return -EIO;
3028         }
3029         if (mddev->reshape_position != MaxSector) {
3030                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3031                         mdname(mddev));
3032                 return -EIO;
3033         }
3034         if (mddev_init_writes_pending(mddev) < 0)
3035                 return -ENOMEM;
3036         /*
3037          * copy the already verified devices into our private RAID1
3038          * bookkeeping area. [whatever we allocate in run(),
3039          * should be freed in raid1_free()]
3040          */
3041         if (mddev->private == NULL)
3042                 conf = setup_conf(mddev);
3043         else
3044                 conf = mddev->private;
3045
3046         if (IS_ERR(conf))
3047                 return PTR_ERR(conf);
3048
3049         if (mddev->queue) {
3050                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3051                 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3052         }
3053
3054         rdev_for_each(rdev, mddev) {
3055                 if (!mddev->gendisk)
3056                         continue;
3057                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3058                                   rdev->data_offset << 9);
3059                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3060                         discard_supported = true;
3061         }
3062
3063         mddev->degraded = 0;
3064         for (i = 0; i < conf->raid_disks; i++)
3065                 if (conf->mirrors[i].rdev == NULL ||
3066                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3067                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3068                         mddev->degraded++;
3069
3070         if (conf->raid_disks - mddev->degraded == 1)
3071                 mddev->recovery_cp = MaxSector;
3072
3073         if (mddev->recovery_cp != MaxSector)
3074                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3075                         mdname(mddev));
3076         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3077                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3078                 mddev->raid_disks);
3079
3080         /*
3081          * Ok, everything is just fine now
3082          */
3083         mddev->thread = conf->thread;
3084         conf->thread = NULL;
3085         mddev->private = conf;
3086         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3087
3088         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3089
3090         if (mddev->queue) {
3091                 if (discard_supported)
3092                         blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3093                                                 mddev->queue);
3094                 else
3095                         blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3096                                                   mddev->queue);
3097         }
3098
3099         ret = md_integrity_register(mddev);
3100         if (ret) {
3101                 md_unregister_thread(&mddev->thread);
3102                 raid1_free(mddev, conf);
3103         }
3104         return ret;
3105 }
3106
3107 static void raid1_free(struct mddev *mddev, void *priv)
3108 {
3109         struct r1conf *conf = priv;
3110
3111         mempool_exit(&conf->r1bio_pool);
3112         kfree(conf->mirrors);
3113         safe_put_page(conf->tmppage);
3114         kfree(conf->poolinfo);
3115         kfree(conf->nr_pending);
3116         kfree(conf->nr_waiting);
3117         kfree(conf->nr_queued);
3118         kfree(conf->barrier);
3119         bioset_exit(&conf->bio_split);
3120         kfree(conf);
3121 }
3122
3123 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3124 {
3125         /* no resync is happening, and there is enough space
3126          * on all devices, so we can resize.
3127          * We need to make sure resync covers any new space.
3128          * If the array is shrinking we should possibly wait until
3129          * any io in the removed space completes, but it hardly seems
3130          * worth it.
3131          */
3132         sector_t newsize = raid1_size(mddev, sectors, 0);
3133         if (mddev->external_size &&
3134             mddev->array_sectors > newsize)
3135                 return -EINVAL;
3136         if (mddev->bitmap) {
3137                 int ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
3138                 if (ret)
3139                         return ret;
3140         }
3141         md_set_array_sectors(mddev, newsize);
3142         if (sectors > mddev->dev_sectors &&
3143             mddev->recovery_cp > mddev->dev_sectors) {
3144                 mddev->recovery_cp = mddev->dev_sectors;
3145                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3146         }
3147         mddev->dev_sectors = sectors;
3148         mddev->resync_max_sectors = sectors;
3149         return 0;
3150 }
3151
3152 static int raid1_reshape(struct mddev *mddev)
3153 {
3154         /* We need to:
3155          * 1/ resize the r1bio_pool
3156          * 2/ resize conf->mirrors
3157          *
3158          * We allocate a new r1bio_pool if we can.
3159          * Then raise a device barrier and wait until all IO stops.
3160          * Then resize conf->mirrors and swap in the new r1bio pool.
3161          *
3162          * At the same time, we "pack" the devices so that all the missing
3163          * devices have the higher raid_disk numbers.
3164          */
3165         mempool_t newpool, oldpool;
3166         struct pool_info *newpoolinfo;
3167         struct raid1_info *newmirrors;
3168         struct r1conf *conf = mddev->private;
3169         int cnt, raid_disks;
3170         unsigned long flags;
3171         int d, d2;
3172         int ret;
3173
3174         memset(&newpool, 0, sizeof(newpool));
3175         memset(&oldpool, 0, sizeof(oldpool));
3176
3177         /* Cannot change chunk_size, layout, or level */
3178         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3179             mddev->layout != mddev->new_layout ||
3180             mddev->level != mddev->new_level) {
3181                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3182                 mddev->new_layout = mddev->layout;
3183                 mddev->new_level = mddev->level;
3184                 return -EINVAL;
3185         }
3186
3187         if (!mddev_is_clustered(mddev))
3188                 md_allow_write(mddev);
3189
3190         raid_disks = mddev->raid_disks + mddev->delta_disks;
3191
3192         if (raid_disks < conf->raid_disks) {
3193                 cnt=0;
3194                 for (d= 0; d < conf->raid_disks; d++)
3195                         if (conf->mirrors[d].rdev)
3196                                 cnt++;
3197                 if (cnt > raid_disks)
3198                         return -EBUSY;
3199         }
3200
3201         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3202         if (!newpoolinfo)
3203                 return -ENOMEM;
3204         newpoolinfo->mddev = mddev;
3205         newpoolinfo->raid_disks = raid_disks * 2;
3206
3207         ret = mempool_init(&newpool, NR_RAID_BIOS, r1bio_pool_alloc,
3208                            r1bio_pool_free, newpoolinfo);
3209         if (ret) {
3210                 kfree(newpoolinfo);
3211                 return ret;
3212         }
3213         newmirrors = kzalloc(array3_size(sizeof(struct raid1_info),
3214                                          raid_disks, 2),
3215                              GFP_KERNEL);
3216         if (!newmirrors) {
3217                 kfree(newpoolinfo);
3218                 mempool_exit(&newpool);
3219                 return -ENOMEM;
3220         }
3221
3222         freeze_array(conf, 0);
3223
3224         /* ok, everything is stopped */
3225         oldpool = conf->r1bio_pool;
3226         conf->r1bio_pool = newpool;
3227
3228         for (d = d2 = 0; d < conf->raid_disks; d++) {
3229                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3230                 if (rdev && rdev->raid_disk != d2) {
3231                         sysfs_unlink_rdev(mddev, rdev);
3232                         rdev->raid_disk = d2;
3233                         sysfs_unlink_rdev(mddev, rdev);
3234                         if (sysfs_link_rdev(mddev, rdev))
3235                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3236                                         mdname(mddev), rdev->raid_disk);
3237                 }
3238                 if (rdev)
3239                         newmirrors[d2++].rdev = rdev;
3240         }
3241         kfree(conf->mirrors);
3242         conf->mirrors = newmirrors;
3243         kfree(conf->poolinfo);
3244         conf->poolinfo = newpoolinfo;
3245
3246         spin_lock_irqsave(&conf->device_lock, flags);
3247         mddev->degraded += (raid_disks - conf->raid_disks);
3248         spin_unlock_irqrestore(&conf->device_lock, flags);
3249         conf->raid_disks = mddev->raid_disks = raid_disks;
3250         mddev->delta_disks = 0;
3251
3252         unfreeze_array(conf);
3253
3254         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3255         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3256         md_wakeup_thread(mddev->thread);
3257
3258         mempool_exit(&oldpool);
3259         return 0;
3260 }
3261
3262 static void raid1_quiesce(struct mddev *mddev, int quiesce)
3263 {
3264         struct r1conf *conf = mddev->private;
3265
3266         if (quiesce)
3267                 freeze_array(conf, 0);
3268         else
3269                 unfreeze_array(conf);
3270 }
3271
3272 static void *raid1_takeover(struct mddev *mddev)
3273 {
3274         /* raid1 can take over:
3275          *  raid5 with 2 devices, any layout or chunk size
3276          */
3277         if (mddev->level == 5 && mddev->raid_disks == 2) {
3278                 struct r1conf *conf;
3279                 mddev->new_level = 1;
3280                 mddev->new_layout = 0;
3281                 mddev->new_chunk_sectors = 0;
3282                 conf = setup_conf(mddev);
3283                 if (!IS_ERR(conf)) {
3284                         /* Array must appear to be quiesced */
3285                         conf->array_frozen = 1;
3286                         mddev_clear_unsupported_flags(mddev,
3287                                 UNSUPPORTED_MDDEV_FLAGS);
3288                 }
3289                 return conf;
3290         }
3291         return ERR_PTR(-EINVAL);
3292 }
3293
3294 static struct md_personality raid1_personality =
3295 {
3296         .name           = "raid1",
3297         .level          = 1,
3298         .owner          = THIS_MODULE,
3299         .make_request   = raid1_make_request,
3300         .run            = raid1_run,
3301         .free           = raid1_free,
3302         .status         = raid1_status,
3303         .error_handler  = raid1_error,
3304         .hot_add_disk   = raid1_add_disk,
3305         .hot_remove_disk= raid1_remove_disk,
3306         .spare_active   = raid1_spare_active,
3307         .sync_request   = raid1_sync_request,
3308         .resize         = raid1_resize,
3309         .size           = raid1_size,
3310         .check_reshape  = raid1_reshape,
3311         .quiesce        = raid1_quiesce,
3312         .takeover       = raid1_takeover,
3313         .congested      = raid1_congested,
3314 };
3315
3316 static int __init raid_init(void)
3317 {
3318         return register_md_personality(&raid1_personality);
3319 }
3320
3321 static void raid_exit(void)
3322 {
3323         unregister_md_personality(&raid1_personality);
3324 }
3325
3326 module_init(raid_init);
3327 module_exit(raid_exit);
3328 MODULE_LICENSE("GPL");
3329 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3330 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3331 MODULE_ALIAS("md-raid1");
3332 MODULE_ALIAS("md-level-1");
3333
3334 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);