]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/md/raid1.c
94f1d754aa09ba80068817712000059461d5c6b3
[linux.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include <linux/sched/signal.h>
41
42 #include <trace/events/block.h>
43
44 #include "md.h"
45 #include "raid1.h"
46 #include "bitmap.h"
47
48 #define UNSUPPORTED_MDDEV_FLAGS         \
49         ((1L << MD_HAS_JOURNAL) |       \
50          (1L << MD_JOURNAL_CLEAN) |     \
51          (1L << MD_HAS_PPL))
52
53 /*
54  * Number of guaranteed r1bios in case of extreme VM load:
55  */
56 #define NR_RAID1_BIOS 256
57
58 /* when we get a read error on a read-only array, we redirect to another
59  * device without failing the first device, or trying to over-write to
60  * correct the read error.  To keep track of bad blocks on a per-bio
61  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
62  */
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65  * bad-block marking which must be done from process context.  So we record
66  * the success by setting devs[n].bio to IO_MADE_GOOD
67  */
68 #define IO_MADE_GOOD ((struct bio *)2)
69
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
71
72 /* When there are this many requests queue to be written by
73  * the raid1 thread, we become 'congested' to provide back-pressure
74  * for writeback.
75  */
76 static int max_queued_requests = 1024;
77
78 static void allow_barrier(struct r1conf *conf, sector_t sector_nr);
79 static void lower_barrier(struct r1conf *conf, sector_t sector_nr);
80
81 #define raid1_log(md, fmt, args...)                             \
82         do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
83
84 /*
85  * 'strct resync_pages' stores actual pages used for doing the resync
86  *  IO, and it is per-bio, so make .bi_private points to it.
87  */
88 static inline struct resync_pages *get_resync_pages(struct bio *bio)
89 {
90         return bio->bi_private;
91 }
92
93 /*
94  * for resync bio, r1bio pointer can be retrieved from the per-bio
95  * 'struct resync_pages'.
96  */
97 static inline struct r1bio *get_resync_r1bio(struct bio *bio)
98 {
99         return get_resync_pages(bio)->raid_bio;
100 }
101
102 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104         struct pool_info *pi = data;
105         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
106
107         /* allocate a r1bio with room for raid_disks entries in the bios array */
108         return kzalloc(size, gfp_flags);
109 }
110
111 static void r1bio_pool_free(void *r1_bio, void *data)
112 {
113         kfree(r1_bio);
114 }
115
116 #define RESYNC_DEPTH 32
117 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
118 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
119 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
120 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
121 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
122
123 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
124 {
125         struct pool_info *pi = data;
126         struct r1bio *r1_bio;
127         struct bio *bio;
128         int need_pages;
129         int j;
130         struct resync_pages *rps;
131
132         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
133         if (!r1_bio)
134                 return NULL;
135
136         rps = kmalloc(sizeof(struct resync_pages) * pi->raid_disks,
137                       gfp_flags);
138         if (!rps)
139                 goto out_free_r1bio;
140
141         /*
142          * Allocate bios : 1 for reading, n-1 for writing
143          */
144         for (j = pi->raid_disks ; j-- ; ) {
145                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146                 if (!bio)
147                         goto out_free_bio;
148                 r1_bio->bios[j] = bio;
149         }
150         /*
151          * Allocate RESYNC_PAGES data pages and attach them to
152          * the first bio.
153          * If this is a user-requested check/repair, allocate
154          * RESYNC_PAGES for each bio.
155          */
156         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
157                 need_pages = pi->raid_disks;
158         else
159                 need_pages = 1;
160         for (j = 0; j < pi->raid_disks; j++) {
161                 struct resync_pages *rp = &rps[j];
162
163                 bio = r1_bio->bios[j];
164
165                 if (j < need_pages) {
166                         if (resync_alloc_pages(rp, gfp_flags))
167                                 goto out_free_pages;
168                 } else {
169                         memcpy(rp, &rps[0], sizeof(*rp));
170                         resync_get_all_pages(rp);
171                 }
172
173                 rp->idx = 0;
174                 rp->raid_bio = r1_bio;
175                 bio->bi_private = rp;
176         }
177
178         r1_bio->master_bio = NULL;
179
180         return r1_bio;
181
182 out_free_pages:
183         while (--j >= 0)
184                 resync_free_pages(&rps[j]);
185
186 out_free_bio:
187         while (++j < pi->raid_disks)
188                 bio_put(r1_bio->bios[j]);
189         kfree(rps);
190
191 out_free_r1bio:
192         r1bio_pool_free(r1_bio, data);
193         return NULL;
194 }
195
196 static void r1buf_pool_free(void *__r1_bio, void *data)
197 {
198         struct pool_info *pi = data;
199         int i;
200         struct r1bio *r1bio = __r1_bio;
201         struct resync_pages *rp = NULL;
202
203         for (i = pi->raid_disks; i--; ) {
204                 rp = get_resync_pages(r1bio->bios[i]);
205                 resync_free_pages(rp);
206                 bio_put(r1bio->bios[i]);
207         }
208
209         /* resync pages array stored in the 1st bio's .bi_private */
210         kfree(rp);
211
212         r1bio_pool_free(r1bio, data);
213 }
214
215 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
216 {
217         int i;
218
219         for (i = 0; i < conf->raid_disks * 2; i++) {
220                 struct bio **bio = r1_bio->bios + i;
221                 if (!BIO_SPECIAL(*bio))
222                         bio_put(*bio);
223                 *bio = NULL;
224         }
225 }
226
227 static void free_r1bio(struct r1bio *r1_bio)
228 {
229         struct r1conf *conf = r1_bio->mddev->private;
230
231         put_all_bios(conf, r1_bio);
232         mempool_free(r1_bio, conf->r1bio_pool);
233 }
234
235 static void put_buf(struct r1bio *r1_bio)
236 {
237         struct r1conf *conf = r1_bio->mddev->private;
238         sector_t sect = r1_bio->sector;
239         int i;
240
241         for (i = 0; i < conf->raid_disks * 2; i++) {
242                 struct bio *bio = r1_bio->bios[i];
243                 if (bio->bi_end_io)
244                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
245         }
246
247         mempool_free(r1_bio, conf->r1buf_pool);
248
249         lower_barrier(conf, sect);
250 }
251
252 static void reschedule_retry(struct r1bio *r1_bio)
253 {
254         unsigned long flags;
255         struct mddev *mddev = r1_bio->mddev;
256         struct r1conf *conf = mddev->private;
257         int idx;
258
259         idx = sector_to_idx(r1_bio->sector);
260         spin_lock_irqsave(&conf->device_lock, flags);
261         list_add(&r1_bio->retry_list, &conf->retry_list);
262         atomic_inc(&conf->nr_queued[idx]);
263         spin_unlock_irqrestore(&conf->device_lock, flags);
264
265         wake_up(&conf->wait_barrier);
266         md_wakeup_thread(mddev->thread);
267 }
268
269 /*
270  * raid_end_bio_io() is called when we have finished servicing a mirrored
271  * operation and are ready to return a success/failure code to the buffer
272  * cache layer.
273  */
274 static void call_bio_endio(struct r1bio *r1_bio)
275 {
276         struct bio *bio = r1_bio->master_bio;
277         struct r1conf *conf = r1_bio->mddev->private;
278
279         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
280                 bio->bi_error = -EIO;
281
282         bio_endio(bio);
283         /*
284          * Wake up any possible resync thread that waits for the device
285          * to go idle.
286          */
287         allow_barrier(conf, r1_bio->sector);
288 }
289
290 static void raid_end_bio_io(struct r1bio *r1_bio)
291 {
292         struct bio *bio = r1_bio->master_bio;
293
294         /* if nobody has done the final endio yet, do it now */
295         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
296                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
297                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
298                          (unsigned long long) bio->bi_iter.bi_sector,
299                          (unsigned long long) bio_end_sector(bio) - 1);
300
301                 call_bio_endio(r1_bio);
302         }
303         free_r1bio(r1_bio);
304 }
305
306 /*
307  * Update disk head position estimator based on IRQ completion info.
308  */
309 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
310 {
311         struct r1conf *conf = r1_bio->mddev->private;
312
313         conf->mirrors[disk].head_position =
314                 r1_bio->sector + (r1_bio->sectors);
315 }
316
317 /*
318  * Find the disk number which triggered given bio
319  */
320 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
321 {
322         int mirror;
323         struct r1conf *conf = r1_bio->mddev->private;
324         int raid_disks = conf->raid_disks;
325
326         for (mirror = 0; mirror < raid_disks * 2; mirror++)
327                 if (r1_bio->bios[mirror] == bio)
328                         break;
329
330         BUG_ON(mirror == raid_disks * 2);
331         update_head_pos(mirror, r1_bio);
332
333         return mirror;
334 }
335
336 static void raid1_end_read_request(struct bio *bio)
337 {
338         int uptodate = !bio->bi_error;
339         struct r1bio *r1_bio = bio->bi_private;
340         struct r1conf *conf = r1_bio->mddev->private;
341         struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
342
343         /*
344          * this branch is our 'one mirror IO has finished' event handler:
345          */
346         update_head_pos(r1_bio->read_disk, r1_bio);
347
348         if (uptodate)
349                 set_bit(R1BIO_Uptodate, &r1_bio->state);
350         else if (test_bit(FailFast, &rdev->flags) &&
351                  test_bit(R1BIO_FailFast, &r1_bio->state))
352                 /* This was a fail-fast read so we definitely
353                  * want to retry */
354                 ;
355         else {
356                 /* If all other devices have failed, we want to return
357                  * the error upwards rather than fail the last device.
358                  * Here we redefine "uptodate" to mean "Don't want to retry"
359                  */
360                 unsigned long flags;
361                 spin_lock_irqsave(&conf->device_lock, flags);
362                 if (r1_bio->mddev->degraded == conf->raid_disks ||
363                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
364                      test_bit(In_sync, &rdev->flags)))
365                         uptodate = 1;
366                 spin_unlock_irqrestore(&conf->device_lock, flags);
367         }
368
369         if (uptodate) {
370                 raid_end_bio_io(r1_bio);
371                 rdev_dec_pending(rdev, conf->mddev);
372         } else {
373                 /*
374                  * oops, read error:
375                  */
376                 char b[BDEVNAME_SIZE];
377                 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
378                                    mdname(conf->mddev),
379                                    bdevname(rdev->bdev, b),
380                                    (unsigned long long)r1_bio->sector);
381                 set_bit(R1BIO_ReadError, &r1_bio->state);
382                 reschedule_retry(r1_bio);
383                 /* don't drop the reference on read_disk yet */
384         }
385 }
386
387 static void close_write(struct r1bio *r1_bio)
388 {
389         /* it really is the end of this request */
390         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
391                 bio_free_pages(r1_bio->behind_master_bio);
392                 bio_put(r1_bio->behind_master_bio);
393                 r1_bio->behind_master_bio = NULL;
394         }
395         /* clear the bitmap if all writes complete successfully */
396         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
397                         r1_bio->sectors,
398                         !test_bit(R1BIO_Degraded, &r1_bio->state),
399                         test_bit(R1BIO_BehindIO, &r1_bio->state));
400         md_write_end(r1_bio->mddev);
401 }
402
403 static void r1_bio_write_done(struct r1bio *r1_bio)
404 {
405         if (!atomic_dec_and_test(&r1_bio->remaining))
406                 return;
407
408         if (test_bit(R1BIO_WriteError, &r1_bio->state))
409                 reschedule_retry(r1_bio);
410         else {
411                 close_write(r1_bio);
412                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
413                         reschedule_retry(r1_bio);
414                 else
415                         raid_end_bio_io(r1_bio);
416         }
417 }
418
419 static void raid1_end_write_request(struct bio *bio)
420 {
421         struct r1bio *r1_bio = bio->bi_private;
422         int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
423         struct r1conf *conf = r1_bio->mddev->private;
424         struct bio *to_put = NULL;
425         int mirror = find_bio_disk(r1_bio, bio);
426         struct md_rdev *rdev = conf->mirrors[mirror].rdev;
427         bool discard_error;
428
429         discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
430
431         /*
432          * 'one mirror IO has finished' event handler:
433          */
434         if (bio->bi_error && !discard_error) {
435                 set_bit(WriteErrorSeen, &rdev->flags);
436                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437                         set_bit(MD_RECOVERY_NEEDED, &
438                                 conf->mddev->recovery);
439
440                 if (test_bit(FailFast, &rdev->flags) &&
441                     (bio->bi_opf & MD_FAILFAST) &&
442                     /* We never try FailFast to WriteMostly devices */
443                     !test_bit(WriteMostly, &rdev->flags)) {
444                         md_error(r1_bio->mddev, rdev);
445                         if (!test_bit(Faulty, &rdev->flags))
446                                 /* This is the only remaining device,
447                                  * We need to retry the write without
448                                  * FailFast
449                                  */
450                                 set_bit(R1BIO_WriteError, &r1_bio->state);
451                         else {
452                                 /* Finished with this branch */
453                                 r1_bio->bios[mirror] = NULL;
454                                 to_put = bio;
455                         }
456                 } else
457                         set_bit(R1BIO_WriteError, &r1_bio->state);
458         } else {
459                 /*
460                  * Set R1BIO_Uptodate in our master bio, so that we
461                  * will return a good error code for to the higher
462                  * levels even if IO on some other mirrored buffer
463                  * fails.
464                  *
465                  * The 'master' represents the composite IO operation
466                  * to user-side. So if something waits for IO, then it
467                  * will wait for the 'master' bio.
468                  */
469                 sector_t first_bad;
470                 int bad_sectors;
471
472                 r1_bio->bios[mirror] = NULL;
473                 to_put = bio;
474                 /*
475                  * Do not set R1BIO_Uptodate if the current device is
476                  * rebuilding or Faulty. This is because we cannot use
477                  * such device for properly reading the data back (we could
478                  * potentially use it, if the current write would have felt
479                  * before rdev->recovery_offset, but for simplicity we don't
480                  * check this here.
481                  */
482                 if (test_bit(In_sync, &rdev->flags) &&
483                     !test_bit(Faulty, &rdev->flags))
484                         set_bit(R1BIO_Uptodate, &r1_bio->state);
485
486                 /* Maybe we can clear some bad blocks. */
487                 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
488                                 &first_bad, &bad_sectors) && !discard_error) {
489                         r1_bio->bios[mirror] = IO_MADE_GOOD;
490                         set_bit(R1BIO_MadeGood, &r1_bio->state);
491                 }
492         }
493
494         if (behind) {
495                 /* we release behind master bio when all write are done */
496                 if (r1_bio->behind_master_bio == bio)
497                         to_put = NULL;
498
499                 if (test_bit(WriteMostly, &rdev->flags))
500                         atomic_dec(&r1_bio->behind_remaining);
501
502                 /*
503                  * In behind mode, we ACK the master bio once the I/O
504                  * has safely reached all non-writemostly
505                  * disks. Setting the Returned bit ensures that this
506                  * gets done only once -- we don't ever want to return
507                  * -EIO here, instead we'll wait
508                  */
509                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
510                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
511                         /* Maybe we can return now */
512                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
513                                 struct bio *mbio = r1_bio->master_bio;
514                                 pr_debug("raid1: behind end write sectors"
515                                          " %llu-%llu\n",
516                                          (unsigned long long) mbio->bi_iter.bi_sector,
517                                          (unsigned long long) bio_end_sector(mbio) - 1);
518                                 call_bio_endio(r1_bio);
519                         }
520                 }
521         }
522         if (r1_bio->bios[mirror] == NULL)
523                 rdev_dec_pending(rdev, conf->mddev);
524
525         /*
526          * Let's see if all mirrored write operations have finished
527          * already.
528          */
529         r1_bio_write_done(r1_bio);
530
531         if (to_put)
532                 bio_put(to_put);
533 }
534
535 static sector_t align_to_barrier_unit_end(sector_t start_sector,
536                                           sector_t sectors)
537 {
538         sector_t len;
539
540         WARN_ON(sectors == 0);
541         /*
542          * len is the number of sectors from start_sector to end of the
543          * barrier unit which start_sector belongs to.
544          */
545         len = round_up(start_sector + 1, BARRIER_UNIT_SECTOR_SIZE) -
546               start_sector;
547
548         if (len > sectors)
549                 len = sectors;
550
551         return len;
552 }
553
554 /*
555  * This routine returns the disk from which the requested read should
556  * be done. There is a per-array 'next expected sequential IO' sector
557  * number - if this matches on the next IO then we use the last disk.
558  * There is also a per-disk 'last know head position' sector that is
559  * maintained from IRQ contexts, both the normal and the resync IO
560  * completion handlers update this position correctly. If there is no
561  * perfect sequential match then we pick the disk whose head is closest.
562  *
563  * If there are 2 mirrors in the same 2 devices, performance degrades
564  * because position is mirror, not device based.
565  *
566  * The rdev for the device selected will have nr_pending incremented.
567  */
568 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
569 {
570         const sector_t this_sector = r1_bio->sector;
571         int sectors;
572         int best_good_sectors;
573         int best_disk, best_dist_disk, best_pending_disk;
574         int has_nonrot_disk;
575         int disk;
576         sector_t best_dist;
577         unsigned int min_pending;
578         struct md_rdev *rdev;
579         int choose_first;
580         int choose_next_idle;
581
582         rcu_read_lock();
583         /*
584          * Check if we can balance. We can balance on the whole
585          * device if no resync is going on, or below the resync window.
586          * We take the first readable disk when above the resync window.
587          */
588  retry:
589         sectors = r1_bio->sectors;
590         best_disk = -1;
591         best_dist_disk = -1;
592         best_dist = MaxSector;
593         best_pending_disk = -1;
594         min_pending = UINT_MAX;
595         best_good_sectors = 0;
596         has_nonrot_disk = 0;
597         choose_next_idle = 0;
598         clear_bit(R1BIO_FailFast, &r1_bio->state);
599
600         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
601             (mddev_is_clustered(conf->mddev) &&
602             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
603                     this_sector + sectors)))
604                 choose_first = 1;
605         else
606                 choose_first = 0;
607
608         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
609                 sector_t dist;
610                 sector_t first_bad;
611                 int bad_sectors;
612                 unsigned int pending;
613                 bool nonrot;
614
615                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
616                 if (r1_bio->bios[disk] == IO_BLOCKED
617                     || rdev == NULL
618                     || test_bit(Faulty, &rdev->flags))
619                         continue;
620                 if (!test_bit(In_sync, &rdev->flags) &&
621                     rdev->recovery_offset < this_sector + sectors)
622                         continue;
623                 if (test_bit(WriteMostly, &rdev->flags)) {
624                         /* Don't balance among write-mostly, just
625                          * use the first as a last resort */
626                         if (best_dist_disk < 0) {
627                                 if (is_badblock(rdev, this_sector, sectors,
628                                                 &first_bad, &bad_sectors)) {
629                                         if (first_bad <= this_sector)
630                                                 /* Cannot use this */
631                                                 continue;
632                                         best_good_sectors = first_bad - this_sector;
633                                 } else
634                                         best_good_sectors = sectors;
635                                 best_dist_disk = disk;
636                                 best_pending_disk = disk;
637                         }
638                         continue;
639                 }
640                 /* This is a reasonable device to use.  It might
641                  * even be best.
642                  */
643                 if (is_badblock(rdev, this_sector, sectors,
644                                 &first_bad, &bad_sectors)) {
645                         if (best_dist < MaxSector)
646                                 /* already have a better device */
647                                 continue;
648                         if (first_bad <= this_sector) {
649                                 /* cannot read here. If this is the 'primary'
650                                  * device, then we must not read beyond
651                                  * bad_sectors from another device..
652                                  */
653                                 bad_sectors -= (this_sector - first_bad);
654                                 if (choose_first && sectors > bad_sectors)
655                                         sectors = bad_sectors;
656                                 if (best_good_sectors > sectors)
657                                         best_good_sectors = sectors;
658
659                         } else {
660                                 sector_t good_sectors = first_bad - this_sector;
661                                 if (good_sectors > best_good_sectors) {
662                                         best_good_sectors = good_sectors;
663                                         best_disk = disk;
664                                 }
665                                 if (choose_first)
666                                         break;
667                         }
668                         continue;
669                 } else
670                         best_good_sectors = sectors;
671
672                 if (best_disk >= 0)
673                         /* At least two disks to choose from so failfast is OK */
674                         set_bit(R1BIO_FailFast, &r1_bio->state);
675
676                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
677                 has_nonrot_disk |= nonrot;
678                 pending = atomic_read(&rdev->nr_pending);
679                 dist = abs(this_sector - conf->mirrors[disk].head_position);
680                 if (choose_first) {
681                         best_disk = disk;
682                         break;
683                 }
684                 /* Don't change to another disk for sequential reads */
685                 if (conf->mirrors[disk].next_seq_sect == this_sector
686                     || dist == 0) {
687                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
688                         struct raid1_info *mirror = &conf->mirrors[disk];
689
690                         best_disk = disk;
691                         /*
692                          * If buffered sequential IO size exceeds optimal
693                          * iosize, check if there is idle disk. If yes, choose
694                          * the idle disk. read_balance could already choose an
695                          * idle disk before noticing it's a sequential IO in
696                          * this disk. This doesn't matter because this disk
697                          * will idle, next time it will be utilized after the
698                          * first disk has IO size exceeds optimal iosize. In
699                          * this way, iosize of the first disk will be optimal
700                          * iosize at least. iosize of the second disk might be
701                          * small, but not a big deal since when the second disk
702                          * starts IO, the first disk is likely still busy.
703                          */
704                         if (nonrot && opt_iosize > 0 &&
705                             mirror->seq_start != MaxSector &&
706                             mirror->next_seq_sect > opt_iosize &&
707                             mirror->next_seq_sect - opt_iosize >=
708                             mirror->seq_start) {
709                                 choose_next_idle = 1;
710                                 continue;
711                         }
712                         break;
713                 }
714
715                 if (choose_next_idle)
716                         continue;
717
718                 if (min_pending > pending) {
719                         min_pending = pending;
720                         best_pending_disk = disk;
721                 }
722
723                 if (dist < best_dist) {
724                         best_dist = dist;
725                         best_dist_disk = disk;
726                 }
727         }
728
729         /*
730          * If all disks are rotational, choose the closest disk. If any disk is
731          * non-rotational, choose the disk with less pending request even the
732          * disk is rotational, which might/might not be optimal for raids with
733          * mixed ratation/non-rotational disks depending on workload.
734          */
735         if (best_disk == -1) {
736                 if (has_nonrot_disk || min_pending == 0)
737                         best_disk = best_pending_disk;
738                 else
739                         best_disk = best_dist_disk;
740         }
741
742         if (best_disk >= 0) {
743                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
744                 if (!rdev)
745                         goto retry;
746                 atomic_inc(&rdev->nr_pending);
747                 sectors = best_good_sectors;
748
749                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
750                         conf->mirrors[best_disk].seq_start = this_sector;
751
752                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
753         }
754         rcu_read_unlock();
755         *max_sectors = sectors;
756
757         return best_disk;
758 }
759
760 static int raid1_congested(struct mddev *mddev, int bits)
761 {
762         struct r1conf *conf = mddev->private;
763         int i, ret = 0;
764
765         if ((bits & (1 << WB_async_congested)) &&
766             conf->pending_count >= max_queued_requests)
767                 return 1;
768
769         rcu_read_lock();
770         for (i = 0; i < conf->raid_disks * 2; i++) {
771                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
772                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
773                         struct request_queue *q = bdev_get_queue(rdev->bdev);
774
775                         BUG_ON(!q);
776
777                         /* Note the '|| 1' - when read_balance prefers
778                          * non-congested targets, it can be removed
779                          */
780                         if ((bits & (1 << WB_async_congested)) || 1)
781                                 ret |= bdi_congested(q->backing_dev_info, bits);
782                         else
783                                 ret &= bdi_congested(q->backing_dev_info, bits);
784                 }
785         }
786         rcu_read_unlock();
787         return ret;
788 }
789
790 static void flush_pending_writes(struct r1conf *conf)
791 {
792         /* Any writes that have been queued but are awaiting
793          * bitmap updates get flushed here.
794          */
795         spin_lock_irq(&conf->device_lock);
796
797         if (conf->pending_bio_list.head) {
798                 struct bio *bio;
799                 bio = bio_list_get(&conf->pending_bio_list);
800                 conf->pending_count = 0;
801                 spin_unlock_irq(&conf->device_lock);
802                 /* flush any pending bitmap writes to
803                  * disk before proceeding w/ I/O */
804                 bitmap_unplug(conf->mddev->bitmap);
805                 wake_up(&conf->wait_barrier);
806
807                 while (bio) { /* submit pending writes */
808                         struct bio *next = bio->bi_next;
809                         struct md_rdev *rdev = (void*)bio->bi_bdev;
810                         bio->bi_next = NULL;
811                         bio->bi_bdev = rdev->bdev;
812                         if (test_bit(Faulty, &rdev->flags)) {
813                                 bio->bi_error = -EIO;
814                                 bio_endio(bio);
815                         } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
816                                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
817                                 /* Just ignore it */
818                                 bio_endio(bio);
819                         else
820                                 generic_make_request(bio);
821                         bio = next;
822                 }
823         } else
824                 spin_unlock_irq(&conf->device_lock);
825 }
826
827 /* Barriers....
828  * Sometimes we need to suspend IO while we do something else,
829  * either some resync/recovery, or reconfigure the array.
830  * To do this we raise a 'barrier'.
831  * The 'barrier' is a counter that can be raised multiple times
832  * to count how many activities are happening which preclude
833  * normal IO.
834  * We can only raise the barrier if there is no pending IO.
835  * i.e. if nr_pending == 0.
836  * We choose only to raise the barrier if no-one is waiting for the
837  * barrier to go down.  This means that as soon as an IO request
838  * is ready, no other operations which require a barrier will start
839  * until the IO request has had a chance.
840  *
841  * So: regular IO calls 'wait_barrier'.  When that returns there
842  *    is no backgroup IO happening,  It must arrange to call
843  *    allow_barrier when it has finished its IO.
844  * backgroup IO calls must call raise_barrier.  Once that returns
845  *    there is no normal IO happeing.  It must arrange to call
846  *    lower_barrier when the particular background IO completes.
847  */
848 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
849 {
850         int idx = sector_to_idx(sector_nr);
851
852         spin_lock_irq(&conf->resync_lock);
853
854         /* Wait until no block IO is waiting */
855         wait_event_lock_irq(conf->wait_barrier,
856                             !atomic_read(&conf->nr_waiting[idx]),
857                             conf->resync_lock);
858
859         /* block any new IO from starting */
860         atomic_inc(&conf->barrier[idx]);
861         /*
862          * In raise_barrier() we firstly increase conf->barrier[idx] then
863          * check conf->nr_pending[idx]. In _wait_barrier() we firstly
864          * increase conf->nr_pending[idx] then check conf->barrier[idx].
865          * A memory barrier here to make sure conf->nr_pending[idx] won't
866          * be fetched before conf->barrier[idx] is increased. Otherwise
867          * there will be a race between raise_barrier() and _wait_barrier().
868          */
869         smp_mb__after_atomic();
870
871         /* For these conditions we must wait:
872          * A: while the array is in frozen state
873          * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
874          *    existing in corresponding I/O barrier bucket.
875          * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
876          *    max resync count which allowed on current I/O barrier bucket.
877          */
878         wait_event_lock_irq(conf->wait_barrier,
879                             !conf->array_frozen &&
880                              !atomic_read(&conf->nr_pending[idx]) &&
881                              atomic_read(&conf->barrier[idx]) < RESYNC_DEPTH,
882                             conf->resync_lock);
883
884         atomic_inc(&conf->nr_pending[idx]);
885         spin_unlock_irq(&conf->resync_lock);
886 }
887
888 static void lower_barrier(struct r1conf *conf, sector_t sector_nr)
889 {
890         int idx = sector_to_idx(sector_nr);
891
892         BUG_ON(atomic_read(&conf->barrier[idx]) <= 0);
893
894         atomic_dec(&conf->barrier[idx]);
895         atomic_dec(&conf->nr_pending[idx]);
896         wake_up(&conf->wait_barrier);
897 }
898
899 static void _wait_barrier(struct r1conf *conf, int idx)
900 {
901         /*
902          * We need to increase conf->nr_pending[idx] very early here,
903          * then raise_barrier() can be blocked when it waits for
904          * conf->nr_pending[idx] to be 0. Then we can avoid holding
905          * conf->resync_lock when there is no barrier raised in same
906          * barrier unit bucket. Also if the array is frozen, I/O
907          * should be blocked until array is unfrozen.
908          */
909         atomic_inc(&conf->nr_pending[idx]);
910         /*
911          * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
912          * check conf->barrier[idx]. In raise_barrier() we firstly increase
913          * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
914          * barrier is necessary here to make sure conf->barrier[idx] won't be
915          * fetched before conf->nr_pending[idx] is increased. Otherwise there
916          * will be a race between _wait_barrier() and raise_barrier().
917          */
918         smp_mb__after_atomic();
919
920         /*
921          * Don't worry about checking two atomic_t variables at same time
922          * here. If during we check conf->barrier[idx], the array is
923          * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
924          * 0, it is safe to return and make the I/O continue. Because the
925          * array is frozen, all I/O returned here will eventually complete
926          * or be queued, no race will happen. See code comment in
927          * frozen_array().
928          */
929         if (!READ_ONCE(conf->array_frozen) &&
930             !atomic_read(&conf->barrier[idx]))
931                 return;
932
933         /*
934          * After holding conf->resync_lock, conf->nr_pending[idx]
935          * should be decreased before waiting for barrier to drop.
936          * Otherwise, we may encounter a race condition because
937          * raise_barrer() might be waiting for conf->nr_pending[idx]
938          * to be 0 at same time.
939          */
940         spin_lock_irq(&conf->resync_lock);
941         atomic_inc(&conf->nr_waiting[idx]);
942         atomic_dec(&conf->nr_pending[idx]);
943         /*
944          * In case freeze_array() is waiting for
945          * get_unqueued_pending() == extra
946          */
947         wake_up(&conf->wait_barrier);
948         /* Wait for the barrier in same barrier unit bucket to drop. */
949         wait_event_lock_irq(conf->wait_barrier,
950                             !conf->array_frozen &&
951                              !atomic_read(&conf->barrier[idx]),
952                             conf->resync_lock);
953         atomic_inc(&conf->nr_pending[idx]);
954         atomic_dec(&conf->nr_waiting[idx]);
955         spin_unlock_irq(&conf->resync_lock);
956 }
957
958 static void wait_read_barrier(struct r1conf *conf, sector_t sector_nr)
959 {
960         int idx = sector_to_idx(sector_nr);
961
962         /*
963          * Very similar to _wait_barrier(). The difference is, for read
964          * I/O we don't need wait for sync I/O, but if the whole array
965          * is frozen, the read I/O still has to wait until the array is
966          * unfrozen. Since there is no ordering requirement with
967          * conf->barrier[idx] here, memory barrier is unnecessary as well.
968          */
969         atomic_inc(&conf->nr_pending[idx]);
970
971         if (!READ_ONCE(conf->array_frozen))
972                 return;
973
974         spin_lock_irq(&conf->resync_lock);
975         atomic_inc(&conf->nr_waiting[idx]);
976         atomic_dec(&conf->nr_pending[idx]);
977         /*
978          * In case freeze_array() is waiting for
979          * get_unqueued_pending() == extra
980          */
981         wake_up(&conf->wait_barrier);
982         /* Wait for array to be unfrozen */
983         wait_event_lock_irq(conf->wait_barrier,
984                             !conf->array_frozen,
985                             conf->resync_lock);
986         atomic_inc(&conf->nr_pending[idx]);
987         atomic_dec(&conf->nr_waiting[idx]);
988         spin_unlock_irq(&conf->resync_lock);
989 }
990
991 static void inc_pending(struct r1conf *conf, sector_t bi_sector)
992 {
993         /* The current request requires multiple r1_bio, so
994          * we need to increment the pending count, and the corresponding
995          * window count.
996          */
997         int idx = sector_to_idx(bi_sector);
998         atomic_inc(&conf->nr_pending[idx]);
999 }
1000
1001 static void wait_barrier(struct r1conf *conf, sector_t sector_nr)
1002 {
1003         int idx = sector_to_idx(sector_nr);
1004
1005         _wait_barrier(conf, idx);
1006 }
1007
1008 static void wait_all_barriers(struct r1conf *conf)
1009 {
1010         int idx;
1011
1012         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1013                 _wait_barrier(conf, idx);
1014 }
1015
1016 static void _allow_barrier(struct r1conf *conf, int idx)
1017 {
1018         atomic_dec(&conf->nr_pending[idx]);
1019         wake_up(&conf->wait_barrier);
1020 }
1021
1022 static void allow_barrier(struct r1conf *conf, sector_t sector_nr)
1023 {
1024         int idx = sector_to_idx(sector_nr);
1025
1026         _allow_barrier(conf, idx);
1027 }
1028
1029 static void allow_all_barriers(struct r1conf *conf)
1030 {
1031         int idx;
1032
1033         for (idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1034                 _allow_barrier(conf, idx);
1035 }
1036
1037 /* conf->resync_lock should be held */
1038 static int get_unqueued_pending(struct r1conf *conf)
1039 {
1040         int idx, ret;
1041
1042         for (ret = 0, idx = 0; idx < BARRIER_BUCKETS_NR; idx++)
1043                 ret += atomic_read(&conf->nr_pending[idx]) -
1044                         atomic_read(&conf->nr_queued[idx]);
1045
1046         return ret;
1047 }
1048
1049 static void freeze_array(struct r1conf *conf, int extra)
1050 {
1051         /* Stop sync I/O and normal I/O and wait for everything to
1052          * go quiet.
1053          * This is called in two situations:
1054          * 1) management command handlers (reshape, remove disk, quiesce).
1055          * 2) one normal I/O request failed.
1056
1057          * After array_frozen is set to 1, new sync IO will be blocked at
1058          * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1059          * or wait_read_barrier(). The flying I/Os will either complete or be
1060          * queued. When everything goes quite, there are only queued I/Os left.
1061
1062          * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1063          * barrier bucket index which this I/O request hits. When all sync and
1064          * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1065          * of all conf->nr_queued[]. But normal I/O failure is an exception,
1066          * in handle_read_error(), we may call freeze_array() before trying to
1067          * fix the read error. In this case, the error read I/O is not queued,
1068          * so get_unqueued_pending() == 1.
1069          *
1070          * Therefore before this function returns, we need to wait until
1071          * get_unqueued_pendings(conf) gets equal to extra. For
1072          * normal I/O context, extra is 1, in rested situations extra is 0.
1073          */
1074         spin_lock_irq(&conf->resync_lock);
1075         conf->array_frozen = 1;
1076         raid1_log(conf->mddev, "wait freeze");
1077         wait_event_lock_irq_cmd(
1078                 conf->wait_barrier,
1079                 get_unqueued_pending(conf) == extra,
1080                 conf->resync_lock,
1081                 flush_pending_writes(conf));
1082         spin_unlock_irq(&conf->resync_lock);
1083 }
1084 static void unfreeze_array(struct r1conf *conf)
1085 {
1086         /* reverse the effect of the freeze */
1087         spin_lock_irq(&conf->resync_lock);
1088         conf->array_frozen = 0;
1089         spin_unlock_irq(&conf->resync_lock);
1090         wake_up(&conf->wait_barrier);
1091 }
1092
1093 static struct bio *alloc_behind_master_bio(struct r1bio *r1_bio,
1094                                            struct bio *bio,
1095                                            int offset, int size)
1096 {
1097         unsigned vcnt = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1098         int i = 0;
1099         struct bio *behind_bio = NULL;
1100
1101         behind_bio = bio_alloc_mddev(GFP_NOIO, vcnt, r1_bio->mddev);
1102         if (!behind_bio)
1103                 goto fail;
1104
1105         /* discard op, we don't support writezero/writesame yet */
1106         if (!bio_has_data(bio))
1107                 goto skip_copy;
1108
1109         while (i < vcnt && size) {
1110                 struct page *page;
1111                 int len = min_t(int, PAGE_SIZE, size);
1112
1113                 page = alloc_page(GFP_NOIO);
1114                 if (unlikely(!page))
1115                         goto free_pages;
1116
1117                 bio_add_page(behind_bio, page, len, 0);
1118
1119                 size -= len;
1120                 i++;
1121         }
1122
1123         bio_copy_data_partial(behind_bio, bio, offset,
1124                               behind_bio->bi_iter.bi_size);
1125 skip_copy:
1126         r1_bio->behind_master_bio = behind_bio;;
1127         set_bit(R1BIO_BehindIO, &r1_bio->state);
1128
1129         return behind_bio;
1130
1131 free_pages:
1132         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1133                  bio->bi_iter.bi_size);
1134         bio_free_pages(behind_bio);
1135 fail:
1136         return behind_bio;
1137 }
1138
1139 struct raid1_plug_cb {
1140         struct blk_plug_cb      cb;
1141         struct bio_list         pending;
1142         int                     pending_cnt;
1143 };
1144
1145 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1146 {
1147         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1148                                                   cb);
1149         struct mddev *mddev = plug->cb.data;
1150         struct r1conf *conf = mddev->private;
1151         struct bio *bio;
1152
1153         if (from_schedule || current->bio_list) {
1154                 spin_lock_irq(&conf->device_lock);
1155                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1156                 conf->pending_count += plug->pending_cnt;
1157                 spin_unlock_irq(&conf->device_lock);
1158                 wake_up(&conf->wait_barrier);
1159                 md_wakeup_thread(mddev->thread);
1160                 kfree(plug);
1161                 return;
1162         }
1163
1164         /* we aren't scheduling, so we can do the write-out directly. */
1165         bio = bio_list_get(&plug->pending);
1166         bitmap_unplug(mddev->bitmap);
1167         wake_up(&conf->wait_barrier);
1168
1169         while (bio) { /* submit pending writes */
1170                 struct bio *next = bio->bi_next;
1171                 struct md_rdev *rdev = (void*)bio->bi_bdev;
1172                 bio->bi_next = NULL;
1173                 bio->bi_bdev = rdev->bdev;
1174                 if (test_bit(Faulty, &rdev->flags)) {
1175                         bio->bi_error = -EIO;
1176                         bio_endio(bio);
1177                 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1178                                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1179                         /* Just ignore it */
1180                         bio_endio(bio);
1181                 else
1182                         generic_make_request(bio);
1183                 bio = next;
1184         }
1185         kfree(plug);
1186 }
1187
1188 static inline struct r1bio *
1189 alloc_r1bio(struct mddev *mddev, struct bio *bio, sector_t sectors_handled)
1190 {
1191         struct r1conf *conf = mddev->private;
1192         struct r1bio *r1_bio;
1193
1194         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1195
1196         r1_bio->master_bio = bio;
1197         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1198         r1_bio->state = 0;
1199         r1_bio->mddev = mddev;
1200         r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1201
1202         return r1_bio;
1203 }
1204
1205 static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1206                                int max_read_sectors)
1207 {
1208         struct r1conf *conf = mddev->private;
1209         struct raid1_info *mirror;
1210         struct r1bio *r1_bio;
1211         struct bio *read_bio;
1212         struct bitmap *bitmap = mddev->bitmap;
1213         const int op = bio_op(bio);
1214         const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1215         int max_sectors;
1216         int rdisk;
1217
1218         /*
1219          * Still need barrier for READ in case that whole
1220          * array is frozen.
1221          */
1222         wait_read_barrier(conf, bio->bi_iter.bi_sector);
1223
1224         r1_bio = alloc_r1bio(mddev, bio, 0);
1225         r1_bio->sectors = max_read_sectors;
1226
1227         /*
1228          * make_request() can abort the operation when read-ahead is being
1229          * used and no empty request is available.
1230          */
1231         rdisk = read_balance(conf, r1_bio, &max_sectors);
1232
1233         if (rdisk < 0) {
1234                 /* couldn't find anywhere to read from */
1235                 raid_end_bio_io(r1_bio);
1236                 return;
1237         }
1238         mirror = conf->mirrors + rdisk;
1239
1240         if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1241             bitmap) {
1242                 /*
1243                  * Reading from a write-mostly device must take care not to
1244                  * over-take any writes that are 'behind'
1245                  */
1246                 raid1_log(mddev, "wait behind writes");
1247                 wait_event(bitmap->behind_wait,
1248                            atomic_read(&bitmap->behind_writes) == 0);
1249         }
1250
1251         if (max_sectors < bio_sectors(bio)) {
1252                 struct bio *split = bio_split(bio, max_sectors,
1253                                               GFP_NOIO, conf->bio_split);
1254                 bio_chain(split, bio);
1255                 generic_make_request(bio);
1256                 bio = split;
1257                 r1_bio->master_bio = bio;
1258                 r1_bio->sectors = max_sectors;
1259         }
1260
1261         r1_bio->read_disk = rdisk;
1262
1263         read_bio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1264
1265         r1_bio->bios[rdisk] = read_bio;
1266
1267         read_bio->bi_iter.bi_sector = r1_bio->sector +
1268                 mirror->rdev->data_offset;
1269         read_bio->bi_bdev = mirror->rdev->bdev;
1270         read_bio->bi_end_io = raid1_end_read_request;
1271         bio_set_op_attrs(read_bio, op, do_sync);
1272         if (test_bit(FailFast, &mirror->rdev->flags) &&
1273             test_bit(R1BIO_FailFast, &r1_bio->state))
1274                 read_bio->bi_opf |= MD_FAILFAST;
1275         read_bio->bi_private = r1_bio;
1276
1277         if (mddev->gendisk)
1278                 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1279                                       read_bio, disk_devt(mddev->gendisk),
1280                                       r1_bio->sector);
1281
1282         generic_make_request(read_bio);
1283 }
1284
1285 static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1286                                 int max_write_sectors)
1287 {
1288         struct r1conf *conf = mddev->private;
1289         struct r1bio *r1_bio;
1290         int i, disks;
1291         struct bitmap *bitmap = mddev->bitmap;
1292         unsigned long flags;
1293         struct md_rdev *blocked_rdev;
1294         struct blk_plug_cb *cb;
1295         struct raid1_plug_cb *plug = NULL;
1296         int first_clone;
1297         int max_sectors;
1298
1299         /*
1300          * Register the new request and wait if the reconstruction
1301          * thread has put up a bar for new requests.
1302          * Continue immediately if no resync is active currently.
1303          */
1304
1305         md_write_start(mddev, bio); /* wait on superblock update early */
1306
1307         if ((bio_end_sector(bio) > mddev->suspend_lo &&
1308             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1309             (mddev_is_clustered(mddev) &&
1310              md_cluster_ops->area_resyncing(mddev, WRITE,
1311                      bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1312
1313                 /*
1314                  * As the suspend_* range is controlled by userspace, we want
1315                  * an interruptible wait.
1316                  */
1317                 DEFINE_WAIT(w);
1318                 for (;;) {
1319                         flush_signals(current);
1320                         prepare_to_wait(&conf->wait_barrier,
1321                                         &w, TASK_INTERRUPTIBLE);
1322                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1323                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1324                             (mddev_is_clustered(mddev) &&
1325                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1326                                      bio->bi_iter.bi_sector,
1327                                      bio_end_sector(bio))))
1328                                 break;
1329                         schedule();
1330                 }
1331                 finish_wait(&conf->wait_barrier, &w);
1332         }
1333         wait_barrier(conf, bio->bi_iter.bi_sector);
1334
1335         r1_bio = alloc_r1bio(mddev, bio, 0);
1336         r1_bio->sectors = max_write_sectors;
1337
1338         if (conf->pending_count >= max_queued_requests) {
1339                 md_wakeup_thread(mddev->thread);
1340                 raid1_log(mddev, "wait queued");
1341                 wait_event(conf->wait_barrier,
1342                            conf->pending_count < max_queued_requests);
1343         }
1344         /* first select target devices under rcu_lock and
1345          * inc refcount on their rdev.  Record them by setting
1346          * bios[x] to bio
1347          * If there are known/acknowledged bad blocks on any device on
1348          * which we have seen a write error, we want to avoid writing those
1349          * blocks.
1350          * This potentially requires several writes to write around
1351          * the bad blocks.  Each set of writes gets it's own r1bio
1352          * with a set of bios attached.
1353          */
1354
1355         disks = conf->raid_disks * 2;
1356  retry_write:
1357         blocked_rdev = NULL;
1358         rcu_read_lock();
1359         max_sectors = r1_bio->sectors;
1360         for (i = 0;  i < disks; i++) {
1361                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1362                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1363                         atomic_inc(&rdev->nr_pending);
1364                         blocked_rdev = rdev;
1365                         break;
1366                 }
1367                 r1_bio->bios[i] = NULL;
1368                 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1369                         if (i < conf->raid_disks)
1370                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1371                         continue;
1372                 }
1373
1374                 atomic_inc(&rdev->nr_pending);
1375                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1376                         sector_t first_bad;
1377                         int bad_sectors;
1378                         int is_bad;
1379
1380                         is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
1381                                              &first_bad, &bad_sectors);
1382                         if (is_bad < 0) {
1383                                 /* mustn't write here until the bad block is
1384                                  * acknowledged*/
1385                                 set_bit(BlockedBadBlocks, &rdev->flags);
1386                                 blocked_rdev = rdev;
1387                                 break;
1388                         }
1389                         if (is_bad && first_bad <= r1_bio->sector) {
1390                                 /* Cannot write here at all */
1391                                 bad_sectors -= (r1_bio->sector - first_bad);
1392                                 if (bad_sectors < max_sectors)
1393                                         /* mustn't write more than bad_sectors
1394                                          * to other devices yet
1395                                          */
1396                                         max_sectors = bad_sectors;
1397                                 rdev_dec_pending(rdev, mddev);
1398                                 /* We don't set R1BIO_Degraded as that
1399                                  * only applies if the disk is
1400                                  * missing, so it might be re-added,
1401                                  * and we want to know to recover this
1402                                  * chunk.
1403                                  * In this case the device is here,
1404                                  * and the fact that this chunk is not
1405                                  * in-sync is recorded in the bad
1406                                  * block log
1407                                  */
1408                                 continue;
1409                         }
1410                         if (is_bad) {
1411                                 int good_sectors = first_bad - r1_bio->sector;
1412                                 if (good_sectors < max_sectors)
1413                                         max_sectors = good_sectors;
1414                         }
1415                 }
1416                 r1_bio->bios[i] = bio;
1417         }
1418         rcu_read_unlock();
1419
1420         if (unlikely(blocked_rdev)) {
1421                 /* Wait for this device to become unblocked */
1422                 int j;
1423
1424                 for (j = 0; j < i; j++)
1425                         if (r1_bio->bios[j])
1426                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1427                 r1_bio->state = 0;
1428                 allow_barrier(conf, bio->bi_iter.bi_sector);
1429                 raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1430                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1431                 wait_barrier(conf, bio->bi_iter.bi_sector);
1432                 goto retry_write;
1433         }
1434
1435         if (max_sectors < bio_sectors(bio)) {
1436                 struct bio *split = bio_split(bio, max_sectors,
1437                                               GFP_NOIO, conf->bio_split);
1438                 bio_chain(split, bio);
1439                 generic_make_request(bio);
1440                 bio = split;
1441                 r1_bio->master_bio = bio;
1442                 r1_bio->sectors = max_sectors;
1443         }
1444
1445         atomic_set(&r1_bio->remaining, 1);
1446         atomic_set(&r1_bio->behind_remaining, 0);
1447
1448         first_clone = 1;
1449
1450         for (i = 0; i < disks; i++) {
1451                 struct bio *mbio = NULL;
1452                 if (!r1_bio->bios[i])
1453                         continue;
1454
1455
1456                 if (first_clone) {
1457                         /* do behind I/O ?
1458                          * Not if there are too many, or cannot
1459                          * allocate memory, or a reader on WriteMostly
1460                          * is waiting for behind writes to flush */
1461                         if (bitmap &&
1462                             (atomic_read(&bitmap->behind_writes)
1463                              < mddev->bitmap_info.max_write_behind) &&
1464                             !waitqueue_active(&bitmap->behind_wait)) {
1465                                 mbio = alloc_behind_master_bio(r1_bio, bio,
1466                                                                0,
1467                                                                max_sectors << 9);
1468                         }
1469
1470                         bitmap_startwrite(bitmap, r1_bio->sector,
1471                                           r1_bio->sectors,
1472                                           test_bit(R1BIO_BehindIO,
1473                                                    &r1_bio->state));
1474                         first_clone = 0;
1475                 }
1476
1477                 if (!mbio) {
1478                         if (r1_bio->behind_master_bio)
1479                                 mbio = bio_clone_fast(r1_bio->behind_master_bio,
1480                                                       GFP_NOIO,
1481                                                       mddev->bio_set);
1482                         else
1483                                 mbio = bio_clone_fast(bio, GFP_NOIO, mddev->bio_set);
1484                 }
1485
1486                 if (r1_bio->behind_master_bio) {
1487                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1488                                 atomic_inc(&r1_bio->behind_remaining);
1489                 }
1490
1491                 r1_bio->bios[i] = mbio;
1492
1493                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1494                                    conf->mirrors[i].rdev->data_offset);
1495                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1496                 mbio->bi_end_io = raid1_end_write_request;
1497                 mbio->bi_opf = bio_op(bio) | (bio->bi_opf & (REQ_SYNC | REQ_FUA));
1498                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1499                     !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1500                     conf->raid_disks - mddev->degraded > 1)
1501                         mbio->bi_opf |= MD_FAILFAST;
1502                 mbio->bi_private = r1_bio;
1503
1504                 atomic_inc(&r1_bio->remaining);
1505
1506                 if (mddev->gendisk)
1507                         trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1508                                               mbio, disk_devt(mddev->gendisk),
1509                                               r1_bio->sector);
1510                 /* flush_pending_writes() needs access to the rdev so...*/
1511                 mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1512
1513                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1514                 if (cb)
1515                         plug = container_of(cb, struct raid1_plug_cb, cb);
1516                 else
1517                         plug = NULL;
1518                 spin_lock_irqsave(&conf->device_lock, flags);
1519                 if (plug) {
1520                         bio_list_add(&plug->pending, mbio);
1521                         plug->pending_cnt++;
1522                 } else {
1523                         bio_list_add(&conf->pending_bio_list, mbio);
1524                         conf->pending_count++;
1525                 }
1526                 spin_unlock_irqrestore(&conf->device_lock, flags);
1527                 if (!plug)
1528                         md_wakeup_thread(mddev->thread);
1529         }
1530
1531         r1_bio_write_done(r1_bio);
1532
1533         /* In case raid1d snuck in to freeze_array */
1534         wake_up(&conf->wait_barrier);
1535 }
1536
1537 static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1538 {
1539         sector_t sectors;
1540
1541         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1542                 md_flush_request(mddev, bio);
1543                 return;
1544         }
1545
1546         /*
1547          * There is a limit to the maximum size, but
1548          * the read/write handler might find a lower limit
1549          * due to bad blocks.  To avoid multiple splits,
1550          * we pass the maximum number of sectors down
1551          * and let the lower level perform the split.
1552          */
1553         sectors = align_to_barrier_unit_end(
1554                 bio->bi_iter.bi_sector, bio_sectors(bio));
1555
1556         if (bio_data_dir(bio) == READ)
1557                 raid1_read_request(mddev, bio, sectors);
1558         else
1559                 raid1_write_request(mddev, bio, sectors);
1560 }
1561
1562 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1563 {
1564         struct r1conf *conf = mddev->private;
1565         int i;
1566
1567         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1568                    conf->raid_disks - mddev->degraded);
1569         rcu_read_lock();
1570         for (i = 0; i < conf->raid_disks; i++) {
1571                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1572                 seq_printf(seq, "%s",
1573                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1574         }
1575         rcu_read_unlock();
1576         seq_printf(seq, "]");
1577 }
1578
1579 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1580 {
1581         char b[BDEVNAME_SIZE];
1582         struct r1conf *conf = mddev->private;
1583         unsigned long flags;
1584
1585         /*
1586          * If it is not operational, then we have already marked it as dead
1587          * else if it is the last working disks, ignore the error, let the
1588          * next level up know.
1589          * else mark the drive as failed
1590          */
1591         spin_lock_irqsave(&conf->device_lock, flags);
1592         if (test_bit(In_sync, &rdev->flags)
1593             && (conf->raid_disks - mddev->degraded) == 1) {
1594                 /*
1595                  * Don't fail the drive, act as though we were just a
1596                  * normal single drive.
1597                  * However don't try a recovery from this drive as
1598                  * it is very likely to fail.
1599                  */
1600                 conf->recovery_disabled = mddev->recovery_disabled;
1601                 spin_unlock_irqrestore(&conf->device_lock, flags);
1602                 return;
1603         }
1604         set_bit(Blocked, &rdev->flags);
1605         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1606                 mddev->degraded++;
1607                 set_bit(Faulty, &rdev->flags);
1608         } else
1609                 set_bit(Faulty, &rdev->flags);
1610         spin_unlock_irqrestore(&conf->device_lock, flags);
1611         /*
1612          * if recovery is running, make sure it aborts.
1613          */
1614         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1615         set_mask_bits(&mddev->sb_flags, 0,
1616                       BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1617         pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1618                 "md/raid1:%s: Operation continuing on %d devices.\n",
1619                 mdname(mddev), bdevname(rdev->bdev, b),
1620                 mdname(mddev), conf->raid_disks - mddev->degraded);
1621 }
1622
1623 static void print_conf(struct r1conf *conf)
1624 {
1625         int i;
1626
1627         pr_debug("RAID1 conf printout:\n");
1628         if (!conf) {
1629                 pr_debug("(!conf)\n");
1630                 return;
1631         }
1632         pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1633                  conf->raid_disks);
1634
1635         rcu_read_lock();
1636         for (i = 0; i < conf->raid_disks; i++) {
1637                 char b[BDEVNAME_SIZE];
1638                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1639                 if (rdev)
1640                         pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1641                                  i, !test_bit(In_sync, &rdev->flags),
1642                                  !test_bit(Faulty, &rdev->flags),
1643                                  bdevname(rdev->bdev,b));
1644         }
1645         rcu_read_unlock();
1646 }
1647
1648 static void close_sync(struct r1conf *conf)
1649 {
1650         wait_all_barriers(conf);
1651         allow_all_barriers(conf);
1652
1653         mempool_destroy(conf->r1buf_pool);
1654         conf->r1buf_pool = NULL;
1655 }
1656
1657 static int raid1_spare_active(struct mddev *mddev)
1658 {
1659         int i;
1660         struct r1conf *conf = mddev->private;
1661         int count = 0;
1662         unsigned long flags;
1663
1664         /*
1665          * Find all failed disks within the RAID1 configuration
1666          * and mark them readable.
1667          * Called under mddev lock, so rcu protection not needed.
1668          * device_lock used to avoid races with raid1_end_read_request
1669          * which expects 'In_sync' flags and ->degraded to be consistent.
1670          */
1671         spin_lock_irqsave(&conf->device_lock, flags);
1672         for (i = 0; i < conf->raid_disks; i++) {
1673                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1674                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1675                 if (repl
1676                     && !test_bit(Candidate, &repl->flags)
1677                     && repl->recovery_offset == MaxSector
1678                     && !test_bit(Faulty, &repl->flags)
1679                     && !test_and_set_bit(In_sync, &repl->flags)) {
1680                         /* replacement has just become active */
1681                         if (!rdev ||
1682                             !test_and_clear_bit(In_sync, &rdev->flags))
1683                                 count++;
1684                         if (rdev) {
1685                                 /* Replaced device not technically
1686                                  * faulty, but we need to be sure
1687                                  * it gets removed and never re-added
1688                                  */
1689                                 set_bit(Faulty, &rdev->flags);
1690                                 sysfs_notify_dirent_safe(
1691                                         rdev->sysfs_state);
1692                         }
1693                 }
1694                 if (rdev
1695                     && rdev->recovery_offset == MaxSector
1696                     && !test_bit(Faulty, &rdev->flags)
1697                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1698                         count++;
1699                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1700                 }
1701         }
1702         mddev->degraded -= count;
1703         spin_unlock_irqrestore(&conf->device_lock, flags);
1704
1705         print_conf(conf);
1706         return count;
1707 }
1708
1709 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1710 {
1711         struct r1conf *conf = mddev->private;
1712         int err = -EEXIST;
1713         int mirror = 0;
1714         struct raid1_info *p;
1715         int first = 0;
1716         int last = conf->raid_disks - 1;
1717
1718         if (mddev->recovery_disabled == conf->recovery_disabled)
1719                 return -EBUSY;
1720
1721         if (md_integrity_add_rdev(rdev, mddev))
1722                 return -ENXIO;
1723
1724         if (rdev->raid_disk >= 0)
1725                 first = last = rdev->raid_disk;
1726
1727         /*
1728          * find the disk ... but prefer rdev->saved_raid_disk
1729          * if possible.
1730          */
1731         if (rdev->saved_raid_disk >= 0 &&
1732             rdev->saved_raid_disk >= first &&
1733             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1734                 first = last = rdev->saved_raid_disk;
1735
1736         for (mirror = first; mirror <= last; mirror++) {
1737                 p = conf->mirrors+mirror;
1738                 if (!p->rdev) {
1739
1740                         if (mddev->gendisk)
1741                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1742                                                   rdev->data_offset << 9);
1743
1744                         p->head_position = 0;
1745                         rdev->raid_disk = mirror;
1746                         err = 0;
1747                         /* As all devices are equivalent, we don't need a full recovery
1748                          * if this was recently any drive of the array
1749                          */
1750                         if (rdev->saved_raid_disk < 0)
1751                                 conf->fullsync = 1;
1752                         rcu_assign_pointer(p->rdev, rdev);
1753                         break;
1754                 }
1755                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1756                     p[conf->raid_disks].rdev == NULL) {
1757                         /* Add this device as a replacement */
1758                         clear_bit(In_sync, &rdev->flags);
1759                         set_bit(Replacement, &rdev->flags);
1760                         rdev->raid_disk = mirror;
1761                         err = 0;
1762                         conf->fullsync = 1;
1763                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1764                         break;
1765                 }
1766         }
1767         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1768                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1769         print_conf(conf);
1770         return err;
1771 }
1772
1773 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1774 {
1775         struct r1conf *conf = mddev->private;
1776         int err = 0;
1777         int number = rdev->raid_disk;
1778         struct raid1_info *p = conf->mirrors + number;
1779
1780         if (rdev != p->rdev)
1781                 p = conf->mirrors + conf->raid_disks + number;
1782
1783         print_conf(conf);
1784         if (rdev == p->rdev) {
1785                 if (test_bit(In_sync, &rdev->flags) ||
1786                     atomic_read(&rdev->nr_pending)) {
1787                         err = -EBUSY;
1788                         goto abort;
1789                 }
1790                 /* Only remove non-faulty devices if recovery
1791                  * is not possible.
1792                  */
1793                 if (!test_bit(Faulty, &rdev->flags) &&
1794                     mddev->recovery_disabled != conf->recovery_disabled &&
1795                     mddev->degraded < conf->raid_disks) {
1796                         err = -EBUSY;
1797                         goto abort;
1798                 }
1799                 p->rdev = NULL;
1800                 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1801                         synchronize_rcu();
1802                         if (atomic_read(&rdev->nr_pending)) {
1803                                 /* lost the race, try later */
1804                                 err = -EBUSY;
1805                                 p->rdev = rdev;
1806                                 goto abort;
1807                         }
1808                 }
1809                 if (conf->mirrors[conf->raid_disks + number].rdev) {
1810                         /* We just removed a device that is being replaced.
1811                          * Move down the replacement.  We drain all IO before
1812                          * doing this to avoid confusion.
1813                          */
1814                         struct md_rdev *repl =
1815                                 conf->mirrors[conf->raid_disks + number].rdev;
1816                         freeze_array(conf, 0);
1817                         clear_bit(Replacement, &repl->flags);
1818                         p->rdev = repl;
1819                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1820                         unfreeze_array(conf);
1821                         clear_bit(WantReplacement, &rdev->flags);
1822                 } else
1823                         clear_bit(WantReplacement, &rdev->flags);
1824                 err = md_integrity_register(mddev);
1825         }
1826 abort:
1827
1828         print_conf(conf);
1829         return err;
1830 }
1831
1832 static void end_sync_read(struct bio *bio)
1833 {
1834         struct r1bio *r1_bio = get_resync_r1bio(bio);
1835
1836         update_head_pos(r1_bio->read_disk, r1_bio);
1837
1838         /*
1839          * we have read a block, now it needs to be re-written,
1840          * or re-read if the read failed.
1841          * We don't do much here, just schedule handling by raid1d
1842          */
1843         if (!bio->bi_error)
1844                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1845
1846         if (atomic_dec_and_test(&r1_bio->remaining))
1847                 reschedule_retry(r1_bio);
1848 }
1849
1850 static void end_sync_write(struct bio *bio)
1851 {
1852         int uptodate = !bio->bi_error;
1853         struct r1bio *r1_bio = get_resync_r1bio(bio);
1854         struct mddev *mddev = r1_bio->mddev;
1855         struct r1conf *conf = mddev->private;
1856         sector_t first_bad;
1857         int bad_sectors;
1858         struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1859
1860         if (!uptodate) {
1861                 sector_t sync_blocks = 0;
1862                 sector_t s = r1_bio->sector;
1863                 long sectors_to_go = r1_bio->sectors;
1864                 /* make sure these bits doesn't get cleared. */
1865                 do {
1866                         bitmap_end_sync(mddev->bitmap, s,
1867                                         &sync_blocks, 1);
1868                         s += sync_blocks;
1869                         sectors_to_go -= sync_blocks;
1870                 } while (sectors_to_go > 0);
1871                 set_bit(WriteErrorSeen, &rdev->flags);
1872                 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1873                         set_bit(MD_RECOVERY_NEEDED, &
1874                                 mddev->recovery);
1875                 set_bit(R1BIO_WriteError, &r1_bio->state);
1876         } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1877                                &first_bad, &bad_sectors) &&
1878                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1879                                 r1_bio->sector,
1880                                 r1_bio->sectors,
1881                                 &first_bad, &bad_sectors)
1882                 )
1883                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1884
1885         if (atomic_dec_and_test(&r1_bio->remaining)) {
1886                 int s = r1_bio->sectors;
1887                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1888                     test_bit(R1BIO_WriteError, &r1_bio->state))
1889                         reschedule_retry(r1_bio);
1890                 else {
1891                         put_buf(r1_bio);
1892                         md_done_sync(mddev, s, uptodate);
1893                 }
1894         }
1895 }
1896
1897 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1898                             int sectors, struct page *page, int rw)
1899 {
1900         if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1901                 /* success */
1902                 return 1;
1903         if (rw == WRITE) {
1904                 set_bit(WriteErrorSeen, &rdev->flags);
1905                 if (!test_and_set_bit(WantReplacement,
1906                                       &rdev->flags))
1907                         set_bit(MD_RECOVERY_NEEDED, &
1908                                 rdev->mddev->recovery);
1909         }
1910         /* need to record an error - either for the block or the device */
1911         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1912                 md_error(rdev->mddev, rdev);
1913         return 0;
1914 }
1915
1916 static int fix_sync_read_error(struct r1bio *r1_bio)
1917 {
1918         /* Try some synchronous reads of other devices to get
1919          * good data, much like with normal read errors.  Only
1920          * read into the pages we already have so we don't
1921          * need to re-issue the read request.
1922          * We don't need to freeze the array, because being in an
1923          * active sync request, there is no normal IO, and
1924          * no overlapping syncs.
1925          * We don't need to check is_badblock() again as we
1926          * made sure that anything with a bad block in range
1927          * will have bi_end_io clear.
1928          */
1929         struct mddev *mddev = r1_bio->mddev;
1930         struct r1conf *conf = mddev->private;
1931         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1932         struct page **pages = get_resync_pages(bio)->pages;
1933         sector_t sect = r1_bio->sector;
1934         int sectors = r1_bio->sectors;
1935         int idx = 0;
1936         struct md_rdev *rdev;
1937
1938         rdev = conf->mirrors[r1_bio->read_disk].rdev;
1939         if (test_bit(FailFast, &rdev->flags)) {
1940                 /* Don't try recovering from here - just fail it
1941                  * ... unless it is the last working device of course */
1942                 md_error(mddev, rdev);
1943                 if (test_bit(Faulty, &rdev->flags))
1944                         /* Don't try to read from here, but make sure
1945                          * put_buf does it's thing
1946                          */
1947                         bio->bi_end_io = end_sync_write;
1948         }
1949
1950         while(sectors) {
1951                 int s = sectors;
1952                 int d = r1_bio->read_disk;
1953                 int success = 0;
1954                 int start;
1955
1956                 if (s > (PAGE_SIZE>>9))
1957                         s = PAGE_SIZE >> 9;
1958                 do {
1959                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1960                                 /* No rcu protection needed here devices
1961                                  * can only be removed when no resync is
1962                                  * active, and resync is currently active
1963                                  */
1964                                 rdev = conf->mirrors[d].rdev;
1965                                 if (sync_page_io(rdev, sect, s<<9,
1966                                                  pages[idx],
1967                                                  REQ_OP_READ, 0, false)) {
1968                                         success = 1;
1969                                         break;
1970                                 }
1971                         }
1972                         d++;
1973                         if (d == conf->raid_disks * 2)
1974                                 d = 0;
1975                 } while (!success && d != r1_bio->read_disk);
1976
1977                 if (!success) {
1978                         char b[BDEVNAME_SIZE];
1979                         int abort = 0;
1980                         /* Cannot read from anywhere, this block is lost.
1981                          * Record a bad block on each device.  If that doesn't
1982                          * work just disable and interrupt the recovery.
1983                          * Don't fail devices as that won't really help.
1984                          */
1985                         pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1986                                             mdname(mddev),
1987                                             bdevname(bio->bi_bdev, b),
1988                                             (unsigned long long)r1_bio->sector);
1989                         for (d = 0; d < conf->raid_disks * 2; d++) {
1990                                 rdev = conf->mirrors[d].rdev;
1991                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1992                                         continue;
1993                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1994                                         abort = 1;
1995                         }
1996                         if (abort) {
1997                                 conf->recovery_disabled =
1998                                         mddev->recovery_disabled;
1999                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2000                                 md_done_sync(mddev, r1_bio->sectors, 0);
2001                                 put_buf(r1_bio);
2002                                 return 0;
2003                         }
2004                         /* Try next page */
2005                         sectors -= s;
2006                         sect += s;
2007                         idx++;
2008                         continue;
2009                 }
2010
2011                 start = d;
2012                 /* write it back and re-read */
2013                 while (d != r1_bio->read_disk) {
2014                         if (d == 0)
2015                                 d = conf->raid_disks * 2;
2016                         d--;
2017                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2018                                 continue;
2019                         rdev = conf->mirrors[d].rdev;
2020                         if (r1_sync_page_io(rdev, sect, s,
2021                                             pages[idx],
2022                                             WRITE) == 0) {
2023                                 r1_bio->bios[d]->bi_end_io = NULL;
2024                                 rdev_dec_pending(rdev, mddev);
2025                         }
2026                 }
2027                 d = start;
2028                 while (d != r1_bio->read_disk) {
2029                         if (d == 0)
2030                                 d = conf->raid_disks * 2;
2031                         d--;
2032                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
2033                                 continue;
2034                         rdev = conf->mirrors[d].rdev;
2035                         if (r1_sync_page_io(rdev, sect, s,
2036                                             pages[idx],
2037                                             READ) != 0)
2038                                 atomic_add(s, &rdev->corrected_errors);
2039                 }
2040                 sectors -= s;
2041                 sect += s;
2042                 idx ++;
2043         }
2044         set_bit(R1BIO_Uptodate, &r1_bio->state);
2045         bio->bi_error = 0;
2046         return 1;
2047 }
2048
2049 static void process_checks(struct r1bio *r1_bio)
2050 {
2051         /* We have read all readable devices.  If we haven't
2052          * got the block, then there is no hope left.
2053          * If we have, then we want to do a comparison
2054          * and skip the write if everything is the same.
2055          * If any blocks failed to read, then we need to
2056          * attempt an over-write
2057          */
2058         struct mddev *mddev = r1_bio->mddev;
2059         struct r1conf *conf = mddev->private;
2060         int primary;
2061         int i;
2062         int vcnt;
2063
2064         /* Fix variable parts of all bios */
2065         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
2066         for (i = 0; i < conf->raid_disks * 2; i++) {
2067                 int j;
2068                 int size;
2069                 int error;
2070                 struct bio_vec *bi;
2071                 struct bio *b = r1_bio->bios[i];
2072                 struct resync_pages *rp = get_resync_pages(b);
2073                 if (b->bi_end_io != end_sync_read)
2074                         continue;
2075                 /* fixup the bio for reuse, but preserve errno */
2076                 error = b->bi_error;
2077                 bio_reset(b);
2078                 b->bi_error = error;
2079                 b->bi_vcnt = vcnt;
2080                 b->bi_iter.bi_size = r1_bio->sectors << 9;
2081                 b->bi_iter.bi_sector = r1_bio->sector +
2082                         conf->mirrors[i].rdev->data_offset;
2083                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
2084                 b->bi_end_io = end_sync_read;
2085                 rp->raid_bio = r1_bio;
2086                 b->bi_private = rp;
2087
2088                 size = b->bi_iter.bi_size;
2089                 bio_for_each_segment_all(bi, b, j) {
2090                         bi->bv_offset = 0;
2091                         if (size > PAGE_SIZE)
2092                                 bi->bv_len = PAGE_SIZE;
2093                         else
2094                                 bi->bv_len = size;
2095                         size -= PAGE_SIZE;
2096                 }
2097         }
2098         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2099                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2100                     !r1_bio->bios[primary]->bi_error) {
2101                         r1_bio->bios[primary]->bi_end_io = NULL;
2102                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2103                         break;
2104                 }
2105         r1_bio->read_disk = primary;
2106         for (i = 0; i < conf->raid_disks * 2; i++) {
2107                 int j;
2108                 struct bio *pbio = r1_bio->bios[primary];
2109                 struct bio *sbio = r1_bio->bios[i];
2110                 int error = sbio->bi_error;
2111                 struct page **ppages = get_resync_pages(pbio)->pages;
2112                 struct page **spages = get_resync_pages(sbio)->pages;
2113                 struct bio_vec *bi;
2114                 int page_len[RESYNC_PAGES] = { 0 };
2115
2116                 if (sbio->bi_end_io != end_sync_read)
2117                         continue;
2118                 /* Now we can 'fixup' the error value */
2119                 sbio->bi_error = 0;
2120
2121                 bio_for_each_segment_all(bi, sbio, j)
2122                         page_len[j] = bi->bv_len;
2123
2124                 if (!error) {
2125                         for (j = vcnt; j-- ; ) {
2126                                 if (memcmp(page_address(ppages[j]),
2127                                            page_address(spages[j]),
2128                                            page_len[j]))
2129                                         break;
2130                         }
2131                 } else
2132                         j = 0;
2133                 if (j >= 0)
2134                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2135                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2136                               && !error)) {
2137                         /* No need to write to this device. */
2138                         sbio->bi_end_io = NULL;
2139                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2140                         continue;
2141                 }
2142
2143                 bio_copy_data(sbio, pbio);
2144         }
2145 }
2146
2147 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2148 {
2149         struct r1conf *conf = mddev->private;
2150         int i;
2151         int disks = conf->raid_disks * 2;
2152         struct bio *bio, *wbio;
2153
2154         bio = r1_bio->bios[r1_bio->read_disk];
2155
2156         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2157                 /* ouch - failed to read all of that. */
2158                 if (!fix_sync_read_error(r1_bio))
2159                         return;
2160
2161         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2162                 process_checks(r1_bio);
2163
2164         /*
2165          * schedule writes
2166          */
2167         atomic_set(&r1_bio->remaining, 1);
2168         for (i = 0; i < disks ; i++) {
2169                 wbio = r1_bio->bios[i];
2170                 if (wbio->bi_end_io == NULL ||
2171                     (wbio->bi_end_io == end_sync_read &&
2172                      (i == r1_bio->read_disk ||
2173                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2174                         continue;
2175                 if (test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2176                         continue;
2177
2178                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2179                 if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2180                         wbio->bi_opf |= MD_FAILFAST;
2181
2182                 wbio->bi_end_io = end_sync_write;
2183                 atomic_inc(&r1_bio->remaining);
2184                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2185
2186                 generic_make_request(wbio);
2187         }
2188
2189         if (atomic_dec_and_test(&r1_bio->remaining)) {
2190                 /* if we're here, all write(s) have completed, so clean up */
2191                 int s = r1_bio->sectors;
2192                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2193                     test_bit(R1BIO_WriteError, &r1_bio->state))
2194                         reschedule_retry(r1_bio);
2195                 else {
2196                         put_buf(r1_bio);
2197                         md_done_sync(mddev, s, 1);
2198                 }
2199         }
2200 }
2201
2202 /*
2203  * This is a kernel thread which:
2204  *
2205  *      1.      Retries failed read operations on working mirrors.
2206  *      2.      Updates the raid superblock when problems encounter.
2207  *      3.      Performs writes following reads for array synchronising.
2208  */
2209
2210 static void fix_read_error(struct r1conf *conf, int read_disk,
2211                            sector_t sect, int sectors)
2212 {
2213         struct mddev *mddev = conf->mddev;
2214         while(sectors) {
2215                 int s = sectors;
2216                 int d = read_disk;
2217                 int success = 0;
2218                 int start;
2219                 struct md_rdev *rdev;
2220
2221                 if (s > (PAGE_SIZE>>9))
2222                         s = PAGE_SIZE >> 9;
2223
2224                 do {
2225                         sector_t first_bad;
2226                         int bad_sectors;
2227
2228                         rcu_read_lock();
2229                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2230                         if (rdev &&
2231                             (test_bit(In_sync, &rdev->flags) ||
2232                              (!test_bit(Faulty, &rdev->flags) &&
2233                               rdev->recovery_offset >= sect + s)) &&
2234                             is_badblock(rdev, sect, s,
2235                                         &first_bad, &bad_sectors) == 0) {
2236                                 atomic_inc(&rdev->nr_pending);
2237                                 rcu_read_unlock();
2238                                 if (sync_page_io(rdev, sect, s<<9,
2239                                          conf->tmppage, REQ_OP_READ, 0, false))
2240                                         success = 1;
2241                                 rdev_dec_pending(rdev, mddev);
2242                                 if (success)
2243                                         break;
2244                         } else
2245                                 rcu_read_unlock();
2246                         d++;
2247                         if (d == conf->raid_disks * 2)
2248                                 d = 0;
2249                 } while (!success && d != read_disk);
2250
2251                 if (!success) {
2252                         /* Cannot read from anywhere - mark it bad */
2253                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2254                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2255                                 md_error(mddev, rdev);
2256                         break;
2257                 }
2258                 /* write it back and re-read */
2259                 start = d;
2260                 while (d != read_disk) {
2261                         if (d==0)
2262                                 d = conf->raid_disks * 2;
2263                         d--;
2264                         rcu_read_lock();
2265                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2266                         if (rdev &&
2267                             !test_bit(Faulty, &rdev->flags)) {
2268                                 atomic_inc(&rdev->nr_pending);
2269                                 rcu_read_unlock();
2270                                 r1_sync_page_io(rdev, sect, s,
2271                                                 conf->tmppage, WRITE);
2272                                 rdev_dec_pending(rdev, mddev);
2273                         } else
2274                                 rcu_read_unlock();
2275                 }
2276                 d = start;
2277                 while (d != read_disk) {
2278                         char b[BDEVNAME_SIZE];
2279                         if (d==0)
2280                                 d = conf->raid_disks * 2;
2281                         d--;
2282                         rcu_read_lock();
2283                         rdev = rcu_dereference(conf->mirrors[d].rdev);
2284                         if (rdev &&
2285                             !test_bit(Faulty, &rdev->flags)) {
2286                                 atomic_inc(&rdev->nr_pending);
2287                                 rcu_read_unlock();
2288                                 if (r1_sync_page_io(rdev, sect, s,
2289                                                     conf->tmppage, READ)) {
2290                                         atomic_add(s, &rdev->corrected_errors);
2291                                         pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2292                                                 mdname(mddev), s,
2293                                                 (unsigned long long)(sect +
2294                                                                      rdev->data_offset),
2295                                                 bdevname(rdev->bdev, b));
2296                                 }
2297                                 rdev_dec_pending(rdev, mddev);
2298                         } else
2299                                 rcu_read_unlock();
2300                 }
2301                 sectors -= s;
2302                 sect += s;
2303         }
2304 }
2305
2306 static int narrow_write_error(struct r1bio *r1_bio, int i)
2307 {
2308         struct mddev *mddev = r1_bio->mddev;
2309         struct r1conf *conf = mddev->private;
2310         struct md_rdev *rdev = conf->mirrors[i].rdev;
2311
2312         /* bio has the data to be written to device 'i' where
2313          * we just recently had a write error.
2314          * We repeatedly clone the bio and trim down to one block,
2315          * then try the write.  Where the write fails we record
2316          * a bad block.
2317          * It is conceivable that the bio doesn't exactly align with
2318          * blocks.  We must handle this somehow.
2319          *
2320          * We currently own a reference on the rdev.
2321          */
2322
2323         int block_sectors;
2324         sector_t sector;
2325         int sectors;
2326         int sect_to_write = r1_bio->sectors;
2327         int ok = 1;
2328
2329         if (rdev->badblocks.shift < 0)
2330                 return 0;
2331
2332         block_sectors = roundup(1 << rdev->badblocks.shift,
2333                                 bdev_logical_block_size(rdev->bdev) >> 9);
2334         sector = r1_bio->sector;
2335         sectors = ((sector + block_sectors)
2336                    & ~(sector_t)(block_sectors - 1))
2337                 - sector;
2338
2339         while (sect_to_write) {
2340                 struct bio *wbio;
2341                 if (sectors > sect_to_write)
2342                         sectors = sect_to_write;
2343                 /* Write at 'sector' for 'sectors'*/
2344
2345                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2346                         wbio = bio_clone_fast(r1_bio->behind_master_bio,
2347                                               GFP_NOIO,
2348                                               mddev->bio_set);
2349                         /* We really need a _all clone */
2350                         wbio->bi_iter = (struct bvec_iter){ 0 };
2351                 } else {
2352                         wbio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2353                                               mddev->bio_set);
2354                 }
2355
2356                 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2357                 wbio->bi_iter.bi_sector = r1_bio->sector;
2358                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2359
2360                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2361                 wbio->bi_iter.bi_sector += rdev->data_offset;
2362                 wbio->bi_bdev = rdev->bdev;
2363
2364                 if (submit_bio_wait(wbio) < 0)
2365                         /* failure! */
2366                         ok = rdev_set_badblocks(rdev, sector,
2367                                                 sectors, 0)
2368                                 && ok;
2369
2370                 bio_put(wbio);
2371                 sect_to_write -= sectors;
2372                 sector += sectors;
2373                 sectors = block_sectors;
2374         }
2375         return ok;
2376 }
2377
2378 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2379 {
2380         int m;
2381         int s = r1_bio->sectors;
2382         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2383                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2384                 struct bio *bio = r1_bio->bios[m];
2385                 if (bio->bi_end_io == NULL)
2386                         continue;
2387                 if (!bio->bi_error &&
2388                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2389                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2390                 }
2391                 if (bio->bi_error &&
2392                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2393                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2394                                 md_error(conf->mddev, rdev);
2395                 }
2396         }
2397         put_buf(r1_bio);
2398         md_done_sync(conf->mddev, s, 1);
2399 }
2400
2401 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2402 {
2403         int m, idx;
2404         bool fail = false;
2405
2406         for (m = 0; m < conf->raid_disks * 2 ; m++)
2407                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2408                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2409                         rdev_clear_badblocks(rdev,
2410                                              r1_bio->sector,
2411                                              r1_bio->sectors, 0);
2412                         rdev_dec_pending(rdev, conf->mddev);
2413                 } else if (r1_bio->bios[m] != NULL) {
2414                         /* This drive got a write error.  We need to
2415                          * narrow down and record precise write
2416                          * errors.
2417                          */
2418                         fail = true;
2419                         if (!narrow_write_error(r1_bio, m)) {
2420                                 md_error(conf->mddev,
2421                                          conf->mirrors[m].rdev);
2422                                 /* an I/O failed, we can't clear the bitmap */
2423                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2424                         }
2425                         rdev_dec_pending(conf->mirrors[m].rdev,
2426                                          conf->mddev);
2427                 }
2428         if (fail) {
2429                 spin_lock_irq(&conf->device_lock);
2430                 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2431                 idx = sector_to_idx(r1_bio->sector);
2432                 atomic_inc(&conf->nr_queued[idx]);
2433                 spin_unlock_irq(&conf->device_lock);
2434                 /*
2435                  * In case freeze_array() is waiting for condition
2436                  * get_unqueued_pending() == extra to be true.
2437                  */
2438                 wake_up(&conf->wait_barrier);
2439                 md_wakeup_thread(conf->mddev->thread);
2440         } else {
2441                 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2442                         close_write(r1_bio);
2443                 raid_end_bio_io(r1_bio);
2444         }
2445 }
2446
2447 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2448 {
2449         int disk;
2450         int max_sectors;
2451         struct mddev *mddev = conf->mddev;
2452         struct bio *bio;
2453         char b[BDEVNAME_SIZE];
2454         struct md_rdev *rdev;
2455         dev_t bio_dev;
2456         sector_t bio_sector;
2457
2458         clear_bit(R1BIO_ReadError, &r1_bio->state);
2459         /* we got a read error. Maybe the drive is bad.  Maybe just
2460          * the block and we can fix it.
2461          * We freeze all other IO, and try reading the block from
2462          * other devices.  When we find one, we re-write
2463          * and check it that fixes the read error.
2464          * This is all done synchronously while the array is
2465          * frozen
2466          */
2467
2468         bio = r1_bio->bios[r1_bio->read_disk];
2469         bdevname(bio->bi_bdev, b);
2470         bio_dev = bio->bi_bdev->bd_dev;
2471         bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2472         bio_put(bio);
2473         r1_bio->bios[r1_bio->read_disk] = NULL;
2474
2475         rdev = conf->mirrors[r1_bio->read_disk].rdev;
2476         if (mddev->ro == 0
2477             && !test_bit(FailFast, &rdev->flags)) {
2478                 freeze_array(conf, 1);
2479                 fix_read_error(conf, r1_bio->read_disk,
2480                                r1_bio->sector, r1_bio->sectors);
2481                 unfreeze_array(conf);
2482         } else {
2483                 r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2484         }
2485
2486         rdev_dec_pending(rdev, conf->mddev);
2487
2488 read_more:
2489         disk = read_balance(conf, r1_bio, &max_sectors);
2490         if (disk == -1) {
2491                 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2492                                     mdname(mddev), b, (unsigned long long)r1_bio->sector);
2493                 raid_end_bio_io(r1_bio);
2494         } else {
2495                 const unsigned long do_sync
2496                         = r1_bio->master_bio->bi_opf & REQ_SYNC;
2497                 r1_bio->read_disk = disk;
2498                 bio = bio_clone_fast(r1_bio->master_bio, GFP_NOIO,
2499                                      mddev->bio_set);
2500                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2501                          max_sectors);
2502                 r1_bio->bios[r1_bio->read_disk] = bio;
2503                 rdev = conf->mirrors[disk].rdev;
2504                 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2505                                     mdname(mddev),
2506                                     (unsigned long long)r1_bio->sector,
2507                                     bdevname(rdev->bdev, b));
2508                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2509                 bio->bi_bdev = rdev->bdev;
2510                 bio->bi_end_io = raid1_end_read_request;
2511                 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2512                 if (test_bit(FailFast, &rdev->flags) &&
2513                     test_bit(R1BIO_FailFast, &r1_bio->state))
2514                         bio->bi_opf |= MD_FAILFAST;
2515                 bio->bi_private = r1_bio;
2516                 if (max_sectors < r1_bio->sectors) {
2517                         /* Drat - have to split this up more */
2518                         struct bio *mbio = r1_bio->master_bio;
2519                         int sectors_handled = (r1_bio->sector + max_sectors
2520                                                - mbio->bi_iter.bi_sector);
2521                         r1_bio->sectors = max_sectors;
2522                         bio_inc_remaining(mbio);
2523                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2524                                               bio, bio_dev, bio_sector);
2525                         generic_make_request(bio);
2526                         bio = NULL;
2527
2528                         r1_bio = alloc_r1bio(mddev, mbio, sectors_handled);
2529                         set_bit(R1BIO_ReadError, &r1_bio->state);
2530                         inc_pending(conf, r1_bio->sector);
2531
2532                         goto read_more;
2533                 } else {
2534                         trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2535                                               bio, bio_dev, bio_sector);
2536                         generic_make_request(bio);
2537                 }
2538         }
2539 }
2540
2541 static void raid1d(struct md_thread *thread)
2542 {
2543         struct mddev *mddev = thread->mddev;
2544         struct r1bio *r1_bio;
2545         unsigned long flags;
2546         struct r1conf *conf = mddev->private;
2547         struct list_head *head = &conf->retry_list;
2548         struct blk_plug plug;
2549         int idx;
2550
2551         md_check_recovery(mddev);
2552
2553         if (!list_empty_careful(&conf->bio_end_io_list) &&
2554             !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2555                 LIST_HEAD(tmp);
2556                 spin_lock_irqsave(&conf->device_lock, flags);
2557                 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
2558                         list_splice_init(&conf->bio_end_io_list, &tmp);
2559                 spin_unlock_irqrestore(&conf->device_lock, flags);
2560                 while (!list_empty(&tmp)) {
2561                         r1_bio = list_first_entry(&tmp, struct r1bio,
2562                                                   retry_list);
2563                         list_del(&r1_bio->retry_list);
2564                         idx = sector_to_idx(r1_bio->sector);
2565                         atomic_dec(&conf->nr_queued[idx]);
2566                         if (mddev->degraded)
2567                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2568                         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2569                                 close_write(r1_bio);
2570                         raid_end_bio_io(r1_bio);
2571                 }
2572         }
2573
2574         blk_start_plug(&plug);
2575         for (;;) {
2576
2577                 flush_pending_writes(conf);
2578
2579                 spin_lock_irqsave(&conf->device_lock, flags);
2580                 if (list_empty(head)) {
2581                         spin_unlock_irqrestore(&conf->device_lock, flags);
2582                         break;
2583                 }
2584                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2585                 list_del(head->prev);
2586                 idx = sector_to_idx(r1_bio->sector);
2587                 atomic_dec(&conf->nr_queued[idx]);
2588                 spin_unlock_irqrestore(&conf->device_lock, flags);
2589
2590                 mddev = r1_bio->mddev;
2591                 conf = mddev->private;
2592                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2593                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2594                             test_bit(R1BIO_WriteError, &r1_bio->state))
2595                                 handle_sync_write_finished(conf, r1_bio);
2596                         else
2597                                 sync_request_write(mddev, r1_bio);
2598                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2599                            test_bit(R1BIO_WriteError, &r1_bio->state))
2600                         handle_write_finished(conf, r1_bio);
2601                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2602                         handle_read_error(conf, r1_bio);
2603                 else
2604                         WARN_ON_ONCE(1);
2605
2606                 cond_resched();
2607                 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2608                         md_check_recovery(mddev);
2609         }
2610         blk_finish_plug(&plug);
2611 }
2612
2613 static int init_resync(struct r1conf *conf)
2614 {
2615         int buffs;
2616
2617         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2618         BUG_ON(conf->r1buf_pool);
2619         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2620                                           conf->poolinfo);
2621         if (!conf->r1buf_pool)
2622                 return -ENOMEM;
2623         return 0;
2624 }
2625
2626 /*
2627  * perform a "sync" on one "block"
2628  *
2629  * We need to make sure that no normal I/O request - particularly write
2630  * requests - conflict with active sync requests.
2631  *
2632  * This is achieved by tracking pending requests and a 'barrier' concept
2633  * that can be installed to exclude normal IO requests.
2634  */
2635
2636 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2637                                    int *skipped)
2638 {
2639         struct r1conf *conf = mddev->private;
2640         struct r1bio *r1_bio;
2641         struct bio *bio;
2642         sector_t max_sector, nr_sectors;
2643         int disk = -1;
2644         int i;
2645         int wonly = -1;
2646         int write_targets = 0, read_targets = 0;
2647         sector_t sync_blocks;
2648         int still_degraded = 0;
2649         int good_sectors = RESYNC_SECTORS;
2650         int min_bad = 0; /* number of sectors that are bad in all devices */
2651         int idx = sector_to_idx(sector_nr);
2652
2653         if (!conf->r1buf_pool)
2654                 if (init_resync(conf))
2655                         return 0;
2656
2657         max_sector = mddev->dev_sectors;
2658         if (sector_nr >= max_sector) {
2659                 /* If we aborted, we need to abort the
2660                  * sync on the 'current' bitmap chunk (there will
2661                  * only be one in raid1 resync.
2662                  * We can find the current addess in mddev->curr_resync
2663                  */
2664                 if (mddev->curr_resync < max_sector) /* aborted */
2665                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2666                                                 &sync_blocks, 1);
2667                 else /* completed sync */
2668                         conf->fullsync = 0;
2669
2670                 bitmap_close_sync(mddev->bitmap);
2671                 close_sync(conf);
2672
2673                 if (mddev_is_clustered(mddev)) {
2674                         conf->cluster_sync_low = 0;
2675                         conf->cluster_sync_high = 0;
2676                 }
2677                 return 0;
2678         }
2679
2680         if (mddev->bitmap == NULL &&
2681             mddev->recovery_cp == MaxSector &&
2682             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2683             conf->fullsync == 0) {
2684                 *skipped = 1;
2685                 return max_sector - sector_nr;
2686         }
2687         /* before building a request, check if we can skip these blocks..
2688          * This call the bitmap_start_sync doesn't actually record anything
2689          */
2690         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2691             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2692                 /* We can skip this block, and probably several more */
2693                 *skipped = 1;
2694                 return sync_blocks;
2695         }
2696
2697         /*
2698          * If there is non-resync activity waiting for a turn, then let it
2699          * though before starting on this new sync request.
2700          */
2701         if (atomic_read(&conf->nr_waiting[idx]))
2702                 schedule_timeout_uninterruptible(1);
2703
2704         /* we are incrementing sector_nr below. To be safe, we check against
2705          * sector_nr + two times RESYNC_SECTORS
2706          */
2707
2708         bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2709                 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2710         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2711
2712         raise_barrier(conf, sector_nr);
2713
2714         rcu_read_lock();
2715         /*
2716          * If we get a correctably read error during resync or recovery,
2717          * we might want to read from a different device.  So we
2718          * flag all drives that could conceivably be read from for READ,
2719          * and any others (which will be non-In_sync devices) for WRITE.
2720          * If a read fails, we try reading from something else for which READ
2721          * is OK.
2722          */
2723
2724         r1_bio->mddev = mddev;
2725         r1_bio->sector = sector_nr;
2726         r1_bio->state = 0;
2727         set_bit(R1BIO_IsSync, &r1_bio->state);
2728         /* make sure good_sectors won't go across barrier unit boundary */
2729         good_sectors = align_to_barrier_unit_end(sector_nr, good_sectors);
2730
2731         for (i = 0; i < conf->raid_disks * 2; i++) {
2732                 struct md_rdev *rdev;
2733                 bio = r1_bio->bios[i];
2734
2735                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2736                 if (rdev == NULL ||
2737                     test_bit(Faulty, &rdev->flags)) {
2738                         if (i < conf->raid_disks)
2739                                 still_degraded = 1;
2740                 } else if (!test_bit(In_sync, &rdev->flags)) {
2741                         bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2742                         bio->bi_end_io = end_sync_write;
2743                         write_targets ++;
2744                 } else {
2745                         /* may need to read from here */
2746                         sector_t first_bad = MaxSector;
2747                         int bad_sectors;
2748
2749                         if (is_badblock(rdev, sector_nr, good_sectors,
2750                                         &first_bad, &bad_sectors)) {
2751                                 if (first_bad > sector_nr)
2752                                         good_sectors = first_bad - sector_nr;
2753                                 else {
2754                                         bad_sectors -= (sector_nr - first_bad);
2755                                         if (min_bad == 0 ||
2756                                             min_bad > bad_sectors)
2757                                                 min_bad = bad_sectors;
2758                                 }
2759                         }
2760                         if (sector_nr < first_bad) {
2761                                 if (test_bit(WriteMostly, &rdev->flags)) {
2762                                         if (wonly < 0)
2763                                                 wonly = i;
2764                                 } else {
2765                                         if (disk < 0)
2766                                                 disk = i;
2767                                 }
2768                                 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2769                                 bio->bi_end_io = end_sync_read;
2770                                 read_targets++;
2771                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2772                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2773                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2774                                 /*
2775                                  * The device is suitable for reading (InSync),
2776                                  * but has bad block(s) here. Let's try to correct them,
2777                                  * if we are doing resync or repair. Otherwise, leave
2778                                  * this device alone for this sync request.
2779                                  */
2780                                 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2781                                 bio->bi_end_io = end_sync_write;
2782                                 write_targets++;
2783                         }
2784                 }
2785                 if (bio->bi_end_io) {
2786                         atomic_inc(&rdev->nr_pending);
2787                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2788                         bio->bi_bdev = rdev->bdev;
2789                         if (test_bit(FailFast, &rdev->flags))
2790                                 bio->bi_opf |= MD_FAILFAST;
2791                 }
2792         }
2793         rcu_read_unlock();
2794         if (disk < 0)
2795                 disk = wonly;
2796         r1_bio->read_disk = disk;
2797
2798         if (read_targets == 0 && min_bad > 0) {
2799                 /* These sectors are bad on all InSync devices, so we
2800                  * need to mark them bad on all write targets
2801                  */
2802                 int ok = 1;
2803                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2804                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2805                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2806                                 ok = rdev_set_badblocks(rdev, sector_nr,
2807                                                         min_bad, 0
2808                                         ) && ok;
2809                         }
2810                 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2811                 *skipped = 1;
2812                 put_buf(r1_bio);
2813
2814                 if (!ok) {
2815                         /* Cannot record the badblocks, so need to
2816                          * abort the resync.
2817                          * If there are multiple read targets, could just
2818                          * fail the really bad ones ???
2819                          */
2820                         conf->recovery_disabled = mddev->recovery_disabled;
2821                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2822                         return 0;
2823                 } else
2824                         return min_bad;
2825
2826         }
2827         if (min_bad > 0 && min_bad < good_sectors) {
2828                 /* only resync enough to reach the next bad->good
2829                  * transition */
2830                 good_sectors = min_bad;
2831         }
2832
2833         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2834                 /* extra read targets are also write targets */
2835                 write_targets += read_targets-1;
2836
2837         if (write_targets == 0 || read_targets == 0) {
2838                 /* There is nowhere to write, so all non-sync
2839                  * drives must be failed - so we are finished
2840                  */
2841                 sector_t rv;
2842                 if (min_bad > 0)
2843                         max_sector = sector_nr + min_bad;
2844                 rv = max_sector - sector_nr;
2845                 *skipped = 1;
2846                 put_buf(r1_bio);
2847                 return rv;
2848         }
2849
2850         if (max_sector > mddev->resync_max)
2851                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2852         if (max_sector > sector_nr + good_sectors)
2853                 max_sector = sector_nr + good_sectors;
2854         nr_sectors = 0;
2855         sync_blocks = 0;
2856         do {
2857                 struct page *page;
2858                 int len = PAGE_SIZE;
2859                 if (sector_nr + (len>>9) > max_sector)
2860                         len = (max_sector - sector_nr) << 9;
2861                 if (len == 0)
2862                         break;
2863                 if (sync_blocks == 0) {
2864                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2865                                                &sync_blocks, still_degraded) &&
2866                             !conf->fullsync &&
2867                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2868                                 break;
2869                         if ((len >> 9) > sync_blocks)
2870                                 len = sync_blocks<<9;
2871                 }
2872
2873                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2874                         struct resync_pages *rp;
2875
2876                         bio = r1_bio->bios[i];
2877                         rp = get_resync_pages(bio);
2878                         if (bio->bi_end_io) {
2879                                 page = resync_fetch_page(rp, rp->idx++);
2880
2881                                 /*
2882                                  * won't fail because the vec table is big
2883                                  * enough to hold all these pages
2884                                  */
2885                                 bio_add_page(bio, page, len, 0);
2886                         }
2887                 }
2888                 nr_sectors += len>>9;
2889                 sector_nr += len>>9;
2890                 sync_blocks -= (len>>9);
2891         } while (get_resync_pages(r1_bio->bios[disk]->bi_private)->idx < RESYNC_PAGES);
2892
2893         r1_bio->sectors = nr_sectors;
2894
2895         if (mddev_is_clustered(mddev) &&
2896                         conf->cluster_sync_high < sector_nr + nr_sectors) {
2897                 conf->cluster_sync_low = mddev->curr_resync_completed;
2898                 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2899                 /* Send resync message */
2900                 md_cluster_ops->resync_info_update(mddev,
2901                                 conf->cluster_sync_low,
2902                                 conf->cluster_sync_high);
2903         }
2904
2905         /* For a user-requested sync, we read all readable devices and do a
2906          * compare
2907          */
2908         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2909                 atomic_set(&r1_bio->remaining, read_targets);
2910                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2911                         bio = r1_bio->bios[i];
2912                         if (bio->bi_end_io == end_sync_read) {
2913                                 read_targets--;
2914                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2915                                 if (read_targets == 1)
2916                                         bio->bi_opf &= ~MD_FAILFAST;
2917                                 generic_make_request(bio);
2918                         }
2919                 }
2920         } else {
2921                 atomic_set(&r1_bio->remaining, 1);
2922                 bio = r1_bio->bios[r1_bio->read_disk];
2923                 md_sync_acct(bio->bi_bdev, nr_sectors);
2924                 if (read_targets == 1)
2925                         bio->bi_opf &= ~MD_FAILFAST;
2926                 generic_make_request(bio);
2927
2928         }
2929         return nr_sectors;
2930 }
2931
2932 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2933 {
2934         if (sectors)
2935                 return sectors;
2936
2937         return mddev->dev_sectors;
2938 }
2939
2940 static struct r1conf *setup_conf(struct mddev *mddev)
2941 {
2942         struct r1conf *conf;
2943         int i;
2944         struct raid1_info *disk;
2945         struct md_rdev *rdev;
2946         int err = -ENOMEM;
2947
2948         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2949         if (!conf)
2950                 goto abort;
2951
2952         conf->nr_pending = kcalloc(BARRIER_BUCKETS_NR,
2953                                    sizeof(atomic_t), GFP_KERNEL);
2954         if (!conf->nr_pending)
2955                 goto abort;
2956
2957         conf->nr_waiting = kcalloc(BARRIER_BUCKETS_NR,
2958                                    sizeof(atomic_t), GFP_KERNEL);
2959         if (!conf->nr_waiting)
2960                 goto abort;
2961
2962         conf->nr_queued = kcalloc(BARRIER_BUCKETS_NR,
2963                                   sizeof(atomic_t), GFP_KERNEL);
2964         if (!conf->nr_queued)
2965                 goto abort;
2966
2967         conf->barrier = kcalloc(BARRIER_BUCKETS_NR,
2968                                 sizeof(atomic_t), GFP_KERNEL);
2969         if (!conf->barrier)
2970                 goto abort;
2971
2972         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2973                                 * mddev->raid_disks * 2,
2974                                  GFP_KERNEL);
2975         if (!conf->mirrors)
2976                 goto abort;
2977
2978         conf->tmppage = alloc_page(GFP_KERNEL);
2979         if (!conf->tmppage)
2980                 goto abort;
2981
2982         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2983         if (!conf->poolinfo)
2984                 goto abort;
2985         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2986         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2987                                           r1bio_pool_free,
2988                                           conf->poolinfo);
2989         if (!conf->r1bio_pool)
2990                 goto abort;
2991
2992         conf->bio_split = bioset_create(BIO_POOL_SIZE, 0);
2993         if (!conf->bio_split)
2994                 goto abort;
2995
2996         conf->poolinfo->mddev = mddev;
2997
2998         err = -EINVAL;
2999         spin_lock_init(&conf->device_lock);
3000         rdev_for_each(rdev, mddev) {
3001                 struct request_queue *q;
3002                 int disk_idx = rdev->raid_disk;
3003                 if (disk_idx >= mddev->raid_disks
3004                     || disk_idx < 0)
3005                         continue;
3006                 if (test_bit(Replacement, &rdev->flags))
3007                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
3008                 else
3009                         disk = conf->mirrors + disk_idx;
3010
3011                 if (disk->rdev)
3012                         goto abort;
3013                 disk->rdev = rdev;
3014                 q = bdev_get_queue(rdev->bdev);
3015
3016                 disk->head_position = 0;
3017                 disk->seq_start = MaxSector;
3018         }
3019         conf->raid_disks = mddev->raid_disks;
3020         conf->mddev = mddev;
3021         INIT_LIST_HEAD(&conf->retry_list);
3022         INIT_LIST_HEAD(&conf->bio_end_io_list);
3023
3024         spin_lock_init(&conf->resync_lock);
3025         init_waitqueue_head(&conf->wait_barrier);
3026
3027         bio_list_init(&conf->pending_bio_list);
3028         conf->pending_count = 0;
3029         conf->recovery_disabled = mddev->recovery_disabled - 1;
3030
3031         err = -EIO;
3032         for (i = 0; i < conf->raid_disks * 2; i++) {
3033
3034                 disk = conf->mirrors + i;
3035
3036                 if (i < conf->raid_disks &&
3037                     disk[conf->raid_disks].rdev) {
3038                         /* This slot has a replacement. */
3039                         if (!disk->rdev) {
3040                                 /* No original, just make the replacement
3041                                  * a recovering spare
3042                                  */
3043                                 disk->rdev =
3044                                         disk[conf->raid_disks].rdev;
3045                                 disk[conf->raid_disks].rdev = NULL;
3046                         } else if (!test_bit(In_sync, &disk->rdev->flags))
3047                                 /* Original is not in_sync - bad */
3048                                 goto abort;
3049                 }
3050
3051                 if (!disk->rdev ||
3052                     !test_bit(In_sync, &disk->rdev->flags)) {
3053                         disk->head_position = 0;
3054                         if (disk->rdev &&
3055                             (disk->rdev->saved_raid_disk < 0))
3056                                 conf->fullsync = 1;
3057                 }
3058         }
3059
3060         err = -ENOMEM;
3061         conf->thread = md_register_thread(raid1d, mddev, "raid1");
3062         if (!conf->thread)
3063                 goto abort;
3064
3065         return conf;
3066
3067  abort:
3068         if (conf) {
3069                 mempool_destroy(conf->r1bio_pool);
3070                 kfree(conf->mirrors);
3071                 safe_put_page(conf->tmppage);
3072                 kfree(conf->poolinfo);
3073                 kfree(conf->nr_pending);
3074                 kfree(conf->nr_waiting);
3075                 kfree(conf->nr_queued);
3076                 kfree(conf->barrier);
3077                 if (conf->bio_split)
3078                         bioset_free(conf->bio_split);
3079                 kfree(conf);
3080         }
3081         return ERR_PTR(err);
3082 }
3083
3084 static void raid1_free(struct mddev *mddev, void *priv);
3085 static int raid1_run(struct mddev *mddev)
3086 {
3087         struct r1conf *conf;
3088         int i;
3089         struct md_rdev *rdev;
3090         int ret;
3091         bool discard_supported = false;
3092
3093         if (mddev->level != 1) {
3094                 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3095                         mdname(mddev), mddev->level);
3096                 return -EIO;
3097         }
3098         if (mddev->reshape_position != MaxSector) {
3099                 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3100                         mdname(mddev));
3101                 return -EIO;
3102         }
3103         /*
3104          * copy the already verified devices into our private RAID1
3105          * bookkeeping area. [whatever we allocate in run(),
3106          * should be freed in raid1_free()]
3107          */
3108         if (mddev->private == NULL)
3109                 conf = setup_conf(mddev);
3110         else
3111                 conf = mddev->private;
3112
3113         if (IS_ERR(conf))
3114                 return PTR_ERR(conf);
3115
3116         if (mddev->queue)
3117                 blk_queue_max_write_same_sectors(mddev->queue, 0);
3118
3119         rdev_for_each(rdev, mddev) {
3120                 if (!mddev->gendisk)
3121                         continue;
3122                 disk_stack_limits(mddev->gendisk, rdev->bdev,
3123                                   rdev->data_offset << 9);
3124                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3125                         discard_supported = true;
3126         }
3127
3128         mddev->degraded = 0;
3129         for (i=0; i < conf->raid_disks; i++)
3130                 if (conf->mirrors[i].rdev == NULL ||
3131                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3132                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3133                         mddev->degraded++;
3134
3135         if (conf->raid_disks - mddev->degraded == 1)
3136                 mddev->recovery_cp = MaxSector;
3137
3138         if (mddev->recovery_cp != MaxSector)
3139                 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3140                         mdname(mddev));
3141         pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3142                 mdname(mddev), mddev->raid_disks - mddev->degraded,
3143                 mddev->raid_disks);
3144
3145         /*
3146          * Ok, everything is just fine now
3147          */
3148         mddev->thread = conf->thread;
3149         conf->thread = NULL;
3150         mddev->private = conf;
3151         set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3152
3153         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3154
3155         if (mddev->queue) {
3156                 if (discard_supported)
3157                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3158                                                 mddev->queue);
3159                 else
3160                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3161                                                   mddev->queue);
3162         }
3163
3164         ret =  md_integrity_register(mddev);
3165         if (ret) {
3166                 md_unregister_thread(&mddev->thread);
3167                 raid1_free(mddev, conf);
3168         }
3169         return ret;
3170 }
3171
3172 static void raid1_free(struct mddev *mddev, void *priv)
3173 {
3174         struct r1conf *conf = priv;
3175
3176         mempool_destroy(conf->r1bio_pool);
3177         kfree(conf->mirrors);
3178         safe_put_page(conf->tmppage);
3179         kfree(conf->poolinfo);
3180         kfree(conf->nr_pending);
3181         kfree(conf->nr_waiting);
3182         kfree(conf->nr_queued);
3183         kfree(conf->barrier);
3184         if (conf->bio_split)
3185                 bioset_free(conf->bio_split);
3186         kfree(conf);
3187 }
3188
3189 static int raid1_resize(struct mddev *mddev, sector_t sectors)
3190 {
3191         /* no resync is happening, and there is enough space
3192          * on all devices, so we can resize.
3193          * We need to make sure resync covers any new space.
3194          * If the array is shrinking we should possibly wait until
3195          * any io in the removed space completes, but it hardly seems
3196          * worth it.
3197          */
3198         sector_t newsize = raid1_size(mddev, sectors, 0);
3199         if (mddev->external_size &&
3200             mddev->array_sectors > newsize)
3201                 return -EINVAL;
3202         if (mddev->bitmap) {
3203                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3204                 if (ret)
3205                         return ret;
3206         }
3207         md_set_array_sectors(mddev, newsize);
3208         if (sectors > mddev->dev_sectors &&
3209             mddev->recovery_cp > mddev->dev_sectors) {
3210                 mddev->recovery_cp = mddev->dev_sectors;
3211                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3212         }
3213         mddev->dev_sectors = sectors;
3214         mddev->resync_max_sectors = sectors;
3215         return 0;
3216 }
3217
3218 static int raid1_reshape(struct mddev *mddev)
3219 {
3220         /* We need to:
3221          * 1/ resize the r1bio_pool
3222          * 2/ resize conf->mirrors
3223          *
3224          * We allocate a new r1bio_pool if we can.
3225          * Then raise a device barrier and wait until all IO stops.
3226          * Then resize conf->mirrors and swap in the new r1bio pool.
3227          *
3228          * At the same time, we "pack" the devices so that all the missing
3229          * devices have the higher raid_disk numbers.
3230          */
3231         mempool_t *newpool, *oldpool;
3232         struct pool_info *newpoolinfo;
3233         struct raid1_info *newmirrors;
3234         struct r1conf *conf = mddev->private;
3235         int cnt, raid_disks;
3236         unsigned long flags;
3237         int d, d2, err;
3238
3239         /* Cannot change chunk_size, layout, or level */
3240         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3241             mddev->layout != mddev->new_layout ||
3242             mddev->level != mddev->new_level) {
3243                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3244                 mddev->new_layout = mddev->layout;
3245                 mddev->new_level = mddev->level;
3246                 return -EINVAL;
3247         }
3248
3249         if (!mddev_is_clustered(mddev)) {
3250                 err = md_allow_write(mddev);
3251                 if (err)
3252                         return err;
3253         }
3254
3255         raid_disks = mddev->raid_disks + mddev->delta_disks;
3256
3257         if (raid_disks < conf->raid_disks) {
3258                 cnt=0;
3259                 for (d= 0; d < conf->raid_disks; d++)
3260                         if (conf->mirrors[d].rdev)
3261                                 cnt++;
3262                 if (cnt > raid_disks)
3263                         return -EBUSY;
3264         }
3265
3266         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3267         if (!newpoolinfo)
3268                 return -ENOMEM;
3269         newpoolinfo->mddev = mddev;
3270         newpoolinfo->raid_disks = raid_disks * 2;
3271
3272         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3273                                  r1bio_pool_free, newpoolinfo);
3274         if (!newpool) {
3275                 kfree(newpoolinfo);
3276                 return -ENOMEM;
3277         }
3278         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3279                              GFP_KERNEL);
3280         if (!newmirrors) {
3281                 kfree(newpoolinfo);
3282                 mempool_destroy(newpool);
3283                 return -ENOMEM;
3284         }
3285
3286         freeze_array(conf, 0);
3287
3288         /* ok, everything is stopped */
3289         oldpool = conf->r1bio_pool;
3290         conf->r1bio_pool = newpool;
3291
3292         for (d = d2 = 0; d < conf->raid_disks; d++) {
3293                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3294                 if (rdev && rdev->raid_disk != d2) {
3295                         sysfs_unlink_rdev(mddev, rdev);
3296                         rdev->raid_disk = d2;
3297                         sysfs_unlink_rdev(mddev, rdev);
3298                         if (sysfs_link_rdev(mddev, rdev))
3299                                 pr_warn("md/raid1:%s: cannot register rd%d\n",
3300                                         mdname(mddev), rdev->raid_disk);
3301                 }
3302                 if (rdev)
3303                         newmirrors[d2++].rdev = rdev;
3304         }
3305         kfree(conf->mirrors);
3306         conf->mirrors = newmirrors;
3307         kfree(conf->poolinfo);
3308         conf->poolinfo = newpoolinfo;
3309
3310         spin_lock_irqsave(&conf->device_lock, flags);
3311         mddev->degraded += (raid_disks - conf->raid_disks);
3312         spin_unlock_irqrestore(&conf->device_lock, flags);
3313         conf->raid_disks = mddev->raid_disks = raid_disks;
3314         mddev->delta_disks = 0;
3315
3316         unfreeze_array(conf);
3317
3318         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3319         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3320         md_wakeup_thread(mddev->thread);
3321
3322         mempool_destroy(oldpool);
3323         return 0;
3324 }
3325
3326 static void raid1_quiesce(struct mddev *mddev, int state)
3327 {
3328         struct r1conf *conf = mddev->private;
3329
3330         switch(state) {
3331         case 2: /* wake for suspend */
3332                 wake_up(&conf->wait_barrier);
3333                 break;
3334         case 1:
3335                 freeze_array(conf, 0);
3336                 break;
3337         case 0:
3338                 unfreeze_array(conf);
3339                 break;
3340         }
3341 }
3342
3343 static void *raid1_takeover(struct mddev *mddev)
3344 {
3345         /* raid1 can take over:
3346          *  raid5 with 2 devices, any layout or chunk size
3347          */
3348         if (mddev->level == 5 && mddev->raid_disks == 2) {
3349                 struct r1conf *conf;
3350                 mddev->new_level = 1;
3351                 mddev->new_layout = 0;
3352                 mddev->new_chunk_sectors = 0;
3353                 conf = setup_conf(mddev);
3354                 if (!IS_ERR(conf)) {
3355                         /* Array must appear to be quiesced */
3356                         conf->array_frozen = 1;
3357                         mddev_clear_unsupported_flags(mddev,
3358                                 UNSUPPORTED_MDDEV_FLAGS);
3359                 }
3360                 return conf;
3361         }
3362         return ERR_PTR(-EINVAL);
3363 }
3364
3365 static struct md_personality raid1_personality =
3366 {
3367         .name           = "raid1",
3368         .level          = 1,
3369         .owner          = THIS_MODULE,
3370         .make_request   = raid1_make_request,
3371         .run            = raid1_run,
3372         .free           = raid1_free,
3373         .status         = raid1_status,
3374         .error_handler  = raid1_error,
3375         .hot_add_disk   = raid1_add_disk,
3376         .hot_remove_disk= raid1_remove_disk,
3377         .spare_active   = raid1_spare_active,
3378         .sync_request   = raid1_sync_request,
3379         .resize         = raid1_resize,
3380         .size           = raid1_size,
3381         .check_reshape  = raid1_reshape,
3382         .quiesce        = raid1_quiesce,
3383         .takeover       = raid1_takeover,
3384         .congested      = raid1_congested,
3385 };
3386
3387 static int __init raid_init(void)
3388 {
3389         return register_md_personality(&raid1_personality);
3390 }
3391
3392 static void raid_exit(void)
3393 {
3394         unregister_md_personality(&raid1_personality);
3395 }
3396
3397 module_init(raid_init);
3398 module_exit(raid_exit);
3399 MODULE_LICENSE("GPL");
3400 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3401 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3402 MODULE_ALIAS("md-raid1");
3403 MODULE_ALIAS("md-level-1");
3404
3405 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);