]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/media/platform/vsp1/vsp1_video.c
Merge tag 'io_uring-5.6-2020-03-07' of git://git.kernel.dk/linux-block
[linux.git] / drivers / media / platform / vsp1 / vsp1_video.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_video.c  --  R-Car VSP1 Video Node
4  *
5  * Copyright (C) 2013-2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9
10 #include <linux/list.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/v4l2-mediabus.h>
15 #include <linux/videodev2.h>
16 #include <linux/wait.h>
17
18 #include <media/media-entity.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-fh.h>
21 #include <media/v4l2-ioctl.h>
22 #include <media/v4l2-subdev.h>
23 #include <media/videobuf2-v4l2.h>
24 #include <media/videobuf2-dma-contig.h>
25
26 #include "vsp1.h"
27 #include "vsp1_brx.h"
28 #include "vsp1_dl.h"
29 #include "vsp1_entity.h"
30 #include "vsp1_hgo.h"
31 #include "vsp1_hgt.h"
32 #include "vsp1_pipe.h"
33 #include "vsp1_rwpf.h"
34 #include "vsp1_uds.h"
35 #include "vsp1_video.h"
36
37 #define VSP1_VIDEO_DEF_FORMAT           V4L2_PIX_FMT_YUYV
38 #define VSP1_VIDEO_DEF_WIDTH            1024
39 #define VSP1_VIDEO_DEF_HEIGHT           768
40
41 #define VSP1_VIDEO_MAX_WIDTH            8190U
42 #define VSP1_VIDEO_MAX_HEIGHT           8190U
43
44 /* -----------------------------------------------------------------------------
45  * Helper functions
46  */
47
48 static struct v4l2_subdev *
49 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
50 {
51         struct media_pad *remote;
52
53         remote = media_entity_remote_pad(local);
54         if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
55                 return NULL;
56
57         if (pad)
58                 *pad = remote->index;
59
60         return media_entity_to_v4l2_subdev(remote->entity);
61 }
62
63 static int vsp1_video_verify_format(struct vsp1_video *video)
64 {
65         struct v4l2_subdev_format fmt;
66         struct v4l2_subdev *subdev;
67         int ret;
68
69         subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
70         if (subdev == NULL)
71                 return -EINVAL;
72
73         fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
74         ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
75         if (ret < 0)
76                 return ret == -ENOIOCTLCMD ? -EINVAL : ret;
77
78         if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
79             video->rwpf->format.height != fmt.format.height ||
80             video->rwpf->format.width != fmt.format.width)
81                 return -EINVAL;
82
83         return 0;
84 }
85
86 static int __vsp1_video_try_format(struct vsp1_video *video,
87                                    struct v4l2_pix_format_mplane *pix,
88                                    const struct vsp1_format_info **fmtinfo)
89 {
90         static const u32 xrgb_formats[][2] = {
91                 { V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
92                 { V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
93                 { V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
94                 { V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
95         };
96
97         const struct vsp1_format_info *info;
98         unsigned int width = pix->width;
99         unsigned int height = pix->height;
100         unsigned int i;
101
102         /*
103          * Backward compatibility: replace deprecated RGB formats by their XRGB
104          * equivalent. This selects the format older userspace applications want
105          * while still exposing the new format.
106          */
107         for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
108                 if (xrgb_formats[i][0] == pix->pixelformat) {
109                         pix->pixelformat = xrgb_formats[i][1];
110                         break;
111                 }
112         }
113
114         /*
115          * Retrieve format information and select the default format if the
116          * requested format isn't supported.
117          */
118         info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
119         if (info == NULL)
120                 info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
121
122         pix->pixelformat = info->fourcc;
123         pix->colorspace = V4L2_COLORSPACE_SRGB;
124         pix->field = V4L2_FIELD_NONE;
125
126         if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
127             info->fourcc == V4L2_PIX_FMT_HSV32)
128                 pix->hsv_enc = V4L2_HSV_ENC_256;
129
130         memset(pix->reserved, 0, sizeof(pix->reserved));
131
132         /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
133         width = round_down(width, info->hsub);
134         height = round_down(height, info->vsub);
135
136         /* Clamp the width and height. */
137         pix->width = clamp(width, info->hsub, VSP1_VIDEO_MAX_WIDTH);
138         pix->height = clamp(height, info->vsub, VSP1_VIDEO_MAX_HEIGHT);
139
140         /*
141          * Compute and clamp the stride and image size. While not documented in
142          * the datasheet, strides not aligned to a multiple of 128 bytes result
143          * in image corruption.
144          */
145         for (i = 0; i < min(info->planes, 2U); ++i) {
146                 unsigned int hsub = i > 0 ? info->hsub : 1;
147                 unsigned int vsub = i > 0 ? info->vsub : 1;
148                 unsigned int align = 128;
149                 unsigned int bpl;
150
151                 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
152                               pix->width / hsub * info->bpp[i] / 8,
153                               round_down(65535U, align));
154
155                 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
156                 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
157                                             * pix->height / vsub;
158         }
159
160         if (info->planes == 3) {
161                 /* The second and third planes must have the same stride. */
162                 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
163                 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
164         }
165
166         pix->num_planes = info->planes;
167
168         if (fmtinfo)
169                 *fmtinfo = info;
170
171         return 0;
172 }
173
174 /* -----------------------------------------------------------------------------
175  * VSP1 Partition Algorithm support
176  */
177
178 /**
179  * vsp1_video_calculate_partition - Calculate the active partition output window
180  *
181  * @pipe: the pipeline
182  * @partition: partition that will hold the calculated values
183  * @div_size: pre-determined maximum partition division size
184  * @index: partition index
185  */
186 static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
187                                            struct vsp1_partition *partition,
188                                            unsigned int div_size,
189                                            unsigned int index)
190 {
191         const struct v4l2_mbus_framefmt *format;
192         struct vsp1_partition_window window;
193         unsigned int modulus;
194
195         /*
196          * Partitions are computed on the size before rotation, use the format
197          * at the WPF sink.
198          */
199         format = vsp1_entity_get_pad_format(&pipe->output->entity,
200                                             pipe->output->entity.config,
201                                             RWPF_PAD_SINK);
202
203         /* A single partition simply processes the output size in full. */
204         if (pipe->partitions <= 1) {
205                 window.left = 0;
206                 window.width = format->width;
207
208                 vsp1_pipeline_propagate_partition(pipe, partition, index,
209                                                   &window);
210                 return;
211         }
212
213         /* Initialise the partition with sane starting conditions. */
214         window.left = index * div_size;
215         window.width = div_size;
216
217         modulus = format->width % div_size;
218
219         /*
220          * We need to prevent the last partition from being smaller than the
221          * *minimum* width of the hardware capabilities.
222          *
223          * If the modulus is less than half of the partition size,
224          * the penultimate partition is reduced to half, which is added
225          * to the final partition: |1234|1234|1234|12|341|
226          * to prevent this:        |1234|1234|1234|1234|1|.
227          */
228         if (modulus) {
229                 /*
230                  * pipe->partitions is 1 based, whilst index is a 0 based index.
231                  * Normalise this locally.
232                  */
233                 unsigned int partitions = pipe->partitions - 1;
234
235                 if (modulus < div_size / 2) {
236                         if (index == partitions - 1) {
237                                 /* Halve the penultimate partition. */
238                                 window.width = div_size / 2;
239                         } else if (index == partitions) {
240                                 /* Increase the final partition. */
241                                 window.width = (div_size / 2) + modulus;
242                                 window.left -= div_size / 2;
243                         }
244                 } else if (index == partitions) {
245                         window.width = modulus;
246                 }
247         }
248
249         vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
250 }
251
252 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
253 {
254         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
255         const struct v4l2_mbus_framefmt *format;
256         struct vsp1_entity *entity;
257         unsigned int div_size;
258         unsigned int i;
259
260         /*
261          * Partitions are computed on the size before rotation, use the format
262          * at the WPF sink.
263          */
264         format = vsp1_entity_get_pad_format(&pipe->output->entity,
265                                             pipe->output->entity.config,
266                                             RWPF_PAD_SINK);
267         div_size = format->width;
268
269         /*
270          * Only Gen3 hardware requires image partitioning, Gen2 will operate
271          * with a single partition that covers the whole output.
272          */
273         if (vsp1->info->gen == 3) {
274                 list_for_each_entry(entity, &pipe->entities, list_pipe) {
275                         unsigned int entity_max;
276
277                         if (!entity->ops->max_width)
278                                 continue;
279
280                         entity_max = entity->ops->max_width(entity, pipe);
281                         if (entity_max)
282                                 div_size = min(div_size, entity_max);
283                 }
284         }
285
286         pipe->partitions = DIV_ROUND_UP(format->width, div_size);
287         pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
288                                    GFP_KERNEL);
289         if (!pipe->part_table)
290                 return -ENOMEM;
291
292         for (i = 0; i < pipe->partitions; ++i)
293                 vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
294                                                div_size, i);
295
296         return 0;
297 }
298
299 /* -----------------------------------------------------------------------------
300  * Pipeline Management
301  */
302
303 /*
304  * vsp1_video_complete_buffer - Complete the current buffer
305  * @video: the video node
306  *
307  * This function completes the current buffer by filling its sequence number,
308  * time stamp and payload size, and hands it back to the videobuf core.
309  *
310  * Return the next queued buffer or NULL if the queue is empty.
311  */
312 static struct vsp1_vb2_buffer *
313 vsp1_video_complete_buffer(struct vsp1_video *video)
314 {
315         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
316         struct vsp1_vb2_buffer *next = NULL;
317         struct vsp1_vb2_buffer *done;
318         unsigned long flags;
319         unsigned int i;
320
321         spin_lock_irqsave(&video->irqlock, flags);
322
323         if (list_empty(&video->irqqueue)) {
324                 spin_unlock_irqrestore(&video->irqlock, flags);
325                 return NULL;
326         }
327
328         done = list_first_entry(&video->irqqueue,
329                                 struct vsp1_vb2_buffer, queue);
330
331         list_del(&done->queue);
332
333         if (!list_empty(&video->irqqueue))
334                 next = list_first_entry(&video->irqqueue,
335                                         struct vsp1_vb2_buffer, queue);
336
337         spin_unlock_irqrestore(&video->irqlock, flags);
338
339         done->buf.sequence = pipe->sequence;
340         done->buf.vb2_buf.timestamp = ktime_get_ns();
341         for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
342                 vb2_set_plane_payload(&done->buf.vb2_buf, i,
343                                       vb2_plane_size(&done->buf.vb2_buf, i));
344         vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
345
346         return next;
347 }
348
349 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
350                                  struct vsp1_rwpf *rwpf)
351 {
352         struct vsp1_video *video = rwpf->video;
353         struct vsp1_vb2_buffer *buf;
354
355         buf = vsp1_video_complete_buffer(video);
356         if (buf == NULL)
357                 return;
358
359         video->rwpf->mem = buf->mem;
360         pipe->buffers_ready |= 1 << video->pipe_index;
361 }
362
363 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
364                                               struct vsp1_dl_list *dl,
365                                               unsigned int partition)
366 {
367         struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
368         struct vsp1_entity *entity;
369
370         pipe->partition = &pipe->part_table[partition];
371
372         list_for_each_entry(entity, &pipe->entities, list_pipe)
373                 vsp1_entity_configure_partition(entity, pipe, dl, dlb);
374 }
375
376 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
377 {
378         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
379         struct vsp1_entity *entity;
380         struct vsp1_dl_body *dlb;
381         struct vsp1_dl_list *dl;
382         unsigned int partition;
383
384         dl = vsp1_dl_list_get(pipe->output->dlm);
385
386         /*
387          * If the VSP hardware isn't configured yet (which occurs either when
388          * processing the first frame or after a system suspend/resume), add the
389          * cached stream configuration to the display list to perform a full
390          * initialisation.
391          */
392         if (!pipe->configured)
393                 vsp1_dl_list_add_body(dl, pipe->stream_config);
394
395         dlb = vsp1_dl_list_get_body0(dl);
396
397         list_for_each_entry(entity, &pipe->entities, list_pipe)
398                 vsp1_entity_configure_frame(entity, pipe, dl, dlb);
399
400         /* Run the first partition. */
401         vsp1_video_pipeline_run_partition(pipe, dl, 0);
402
403         /* Process consecutive partitions as necessary. */
404         for (partition = 1; partition < pipe->partitions; ++partition) {
405                 struct vsp1_dl_list *dl_next;
406
407                 dl_next = vsp1_dl_list_get(pipe->output->dlm);
408
409                 /*
410                  * An incomplete chain will still function, but output only
411                  * the partitions that had a dl available. The frame end
412                  * interrupt will be marked on the last dl in the chain.
413                  */
414                 if (!dl_next) {
415                         dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
416                         break;
417                 }
418
419                 vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
420                 vsp1_dl_list_add_chain(dl, dl_next);
421         }
422
423         /* Complete, and commit the head display list. */
424         vsp1_dl_list_commit(dl, 0);
425         pipe->configured = true;
426
427         vsp1_pipeline_run(pipe);
428 }
429
430 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
431                                           unsigned int completion)
432 {
433         struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
434         enum vsp1_pipeline_state state;
435         unsigned long flags;
436         unsigned int i;
437
438         /* M2M Pipelines should never call here with an incomplete frame. */
439         WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
440
441         spin_lock_irqsave(&pipe->irqlock, flags);
442
443         /* Complete buffers on all video nodes. */
444         for (i = 0; i < vsp1->info->rpf_count; ++i) {
445                 if (!pipe->inputs[i])
446                         continue;
447
448                 vsp1_video_frame_end(pipe, pipe->inputs[i]);
449         }
450
451         vsp1_video_frame_end(pipe, pipe->output);
452
453         state = pipe->state;
454         pipe->state = VSP1_PIPELINE_STOPPED;
455
456         /*
457          * If a stop has been requested, mark the pipeline as stopped and
458          * return. Otherwise restart the pipeline if ready.
459          */
460         if (state == VSP1_PIPELINE_STOPPING)
461                 wake_up(&pipe->wq);
462         else if (vsp1_pipeline_ready(pipe))
463                 vsp1_video_pipeline_run(pipe);
464
465         spin_unlock_irqrestore(&pipe->irqlock, flags);
466 }
467
468 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
469                                             struct vsp1_rwpf *input,
470                                             struct vsp1_rwpf *output)
471 {
472         struct media_entity_enum ent_enum;
473         struct vsp1_entity *entity;
474         struct media_pad *pad;
475         struct vsp1_brx *brx = NULL;
476         int ret;
477
478         ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
479         if (ret < 0)
480                 return ret;
481
482         /*
483          * The main data path doesn't include the HGO or HGT, use
484          * vsp1_entity_remote_pad() to traverse the graph.
485          */
486
487         pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
488
489         while (1) {
490                 if (pad == NULL) {
491                         ret = -EPIPE;
492                         goto out;
493                 }
494
495                 /* We've reached a video node, that shouldn't have happened. */
496                 if (!is_media_entity_v4l2_subdev(pad->entity)) {
497                         ret = -EPIPE;
498                         goto out;
499                 }
500
501                 entity = to_vsp1_entity(
502                         media_entity_to_v4l2_subdev(pad->entity));
503
504                 /*
505                  * A BRU or BRS is present in the pipeline, store its input pad
506                  * number in the input RPF for use when configuring the RPF.
507                  */
508                 if (entity->type == VSP1_ENTITY_BRU ||
509                     entity->type == VSP1_ENTITY_BRS) {
510                         /* BRU and BRS can't be chained. */
511                         if (brx) {
512                                 ret = -EPIPE;
513                                 goto out;
514                         }
515
516                         brx = to_brx(&entity->subdev);
517                         brx->inputs[pad->index].rpf = input;
518                         input->brx_input = pad->index;
519                 }
520
521                 /* We've reached the WPF, we're done. */
522                 if (entity->type == VSP1_ENTITY_WPF)
523                         break;
524
525                 /* Ensure the branch has no loop. */
526                 if (media_entity_enum_test_and_set(&ent_enum,
527                                                    &entity->subdev.entity)) {
528                         ret = -EPIPE;
529                         goto out;
530                 }
531
532                 /* UDS can't be chained. */
533                 if (entity->type == VSP1_ENTITY_UDS) {
534                         if (pipe->uds) {
535                                 ret = -EPIPE;
536                                 goto out;
537                         }
538
539                         pipe->uds = entity;
540                         pipe->uds_input = brx ? &brx->entity : &input->entity;
541                 }
542
543                 /* Follow the source link, ignoring any HGO or HGT. */
544                 pad = &entity->pads[entity->source_pad];
545                 pad = vsp1_entity_remote_pad(pad);
546         }
547
548         /* The last entity must be the output WPF. */
549         if (entity != &output->entity)
550                 ret = -EPIPE;
551
552 out:
553         media_entity_enum_cleanup(&ent_enum);
554
555         return ret;
556 }
557
558 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
559                                      struct vsp1_video *video)
560 {
561         struct media_graph graph;
562         struct media_entity *entity = &video->video.entity;
563         struct media_device *mdev = entity->graph_obj.mdev;
564         unsigned int i;
565         int ret;
566
567         /* Walk the graph to locate the entities and video nodes. */
568         ret = media_graph_walk_init(&graph, mdev);
569         if (ret)
570                 return ret;
571
572         media_graph_walk_start(&graph, entity);
573
574         while ((entity = media_graph_walk_next(&graph))) {
575                 struct v4l2_subdev *subdev;
576                 struct vsp1_rwpf *rwpf;
577                 struct vsp1_entity *e;
578
579                 if (!is_media_entity_v4l2_subdev(entity))
580                         continue;
581
582                 subdev = media_entity_to_v4l2_subdev(entity);
583                 e = to_vsp1_entity(subdev);
584                 list_add_tail(&e->list_pipe, &pipe->entities);
585                 e->pipe = pipe;
586
587                 switch (e->type) {
588                 case VSP1_ENTITY_RPF:
589                         rwpf = to_rwpf(subdev);
590                         pipe->inputs[rwpf->entity.index] = rwpf;
591                         rwpf->video->pipe_index = ++pipe->num_inputs;
592                         break;
593
594                 case VSP1_ENTITY_WPF:
595                         rwpf = to_rwpf(subdev);
596                         pipe->output = rwpf;
597                         rwpf->video->pipe_index = 0;
598                         break;
599
600                 case VSP1_ENTITY_LIF:
601                         pipe->lif = e;
602                         break;
603
604                 case VSP1_ENTITY_BRU:
605                 case VSP1_ENTITY_BRS:
606                         pipe->brx = e;
607                         break;
608
609                 case VSP1_ENTITY_HGO:
610                         pipe->hgo = e;
611                         break;
612
613                 case VSP1_ENTITY_HGT:
614                         pipe->hgt = e;
615                         break;
616
617                 default:
618                         break;
619                 }
620         }
621
622         media_graph_walk_cleanup(&graph);
623
624         /* We need one output and at least one input. */
625         if (pipe->num_inputs == 0 || !pipe->output)
626                 return -EPIPE;
627
628         /*
629          * Follow links downstream for each input and make sure the graph
630          * contains no loop and that all branches end at the output WPF.
631          */
632         for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
633                 if (!pipe->inputs[i])
634                         continue;
635
636                 ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
637                                                        pipe->output);
638                 if (ret < 0)
639                         return ret;
640         }
641
642         return 0;
643 }
644
645 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
646                                     struct vsp1_video *video)
647 {
648         vsp1_pipeline_init(pipe);
649
650         pipe->frame_end = vsp1_video_pipeline_frame_end;
651
652         return vsp1_video_pipeline_build(pipe, video);
653 }
654
655 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
656 {
657         struct vsp1_pipeline *pipe;
658         int ret;
659
660         /*
661          * Get a pipeline object for the video node. If a pipeline has already
662          * been allocated just increment its reference count and return it.
663          * Otherwise allocate a new pipeline and initialize it, it will be freed
664          * when the last reference is released.
665          */
666         if (!video->rwpf->entity.pipe) {
667                 pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
668                 if (!pipe)
669                         return ERR_PTR(-ENOMEM);
670
671                 ret = vsp1_video_pipeline_init(pipe, video);
672                 if (ret < 0) {
673                         vsp1_pipeline_reset(pipe);
674                         kfree(pipe);
675                         return ERR_PTR(ret);
676                 }
677         } else {
678                 pipe = video->rwpf->entity.pipe;
679                 kref_get(&pipe->kref);
680         }
681
682         return pipe;
683 }
684
685 static void vsp1_video_pipeline_release(struct kref *kref)
686 {
687         struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
688
689         vsp1_pipeline_reset(pipe);
690         kfree(pipe);
691 }
692
693 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
694 {
695         struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
696
697         mutex_lock(&mdev->graph_mutex);
698         kref_put(&pipe->kref, vsp1_video_pipeline_release);
699         mutex_unlock(&mdev->graph_mutex);
700 }
701
702 /* -----------------------------------------------------------------------------
703  * videobuf2 Queue Operations
704  */
705
706 static int
707 vsp1_video_queue_setup(struct vb2_queue *vq,
708                        unsigned int *nbuffers, unsigned int *nplanes,
709                        unsigned int sizes[], struct device *alloc_devs[])
710 {
711         struct vsp1_video *video = vb2_get_drv_priv(vq);
712         const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
713         unsigned int i;
714
715         if (*nplanes) {
716                 if (*nplanes != format->num_planes)
717                         return -EINVAL;
718
719                 for (i = 0; i < *nplanes; i++)
720                         if (sizes[i] < format->plane_fmt[i].sizeimage)
721                                 return -EINVAL;
722                 return 0;
723         }
724
725         *nplanes = format->num_planes;
726
727         for (i = 0; i < format->num_planes; ++i)
728                 sizes[i] = format->plane_fmt[i].sizeimage;
729
730         return 0;
731 }
732
733 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
734 {
735         struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
736         struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
737         struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
738         const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
739         unsigned int i;
740
741         if (vb->num_planes < format->num_planes)
742                 return -EINVAL;
743
744         for (i = 0; i < vb->num_planes; ++i) {
745                 buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
746
747                 if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
748                         return -EINVAL;
749         }
750
751         for ( ; i < 3; ++i)
752                 buf->mem.addr[i] = 0;
753
754         return 0;
755 }
756
757 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
758 {
759         struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
760         struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
761         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
762         struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
763         unsigned long flags;
764         bool empty;
765
766         spin_lock_irqsave(&video->irqlock, flags);
767         empty = list_empty(&video->irqqueue);
768         list_add_tail(&buf->queue, &video->irqqueue);
769         spin_unlock_irqrestore(&video->irqlock, flags);
770
771         if (!empty)
772                 return;
773
774         spin_lock_irqsave(&pipe->irqlock, flags);
775
776         video->rwpf->mem = buf->mem;
777         pipe->buffers_ready |= 1 << video->pipe_index;
778
779         if (vb2_is_streaming(&video->queue) &&
780             vsp1_pipeline_ready(pipe))
781                 vsp1_video_pipeline_run(pipe);
782
783         spin_unlock_irqrestore(&pipe->irqlock, flags);
784 }
785
786 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
787 {
788         struct vsp1_entity *entity;
789         int ret;
790
791         /* Determine this pipelines sizes for image partitioning support. */
792         ret = vsp1_video_pipeline_setup_partitions(pipe);
793         if (ret < 0)
794                 return ret;
795
796         if (pipe->uds) {
797                 struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
798
799                 /*
800                  * If a BRU or BRS is present in the pipeline before the UDS,
801                  * the alpha component doesn't need to be scaled as the BRU and
802                  * BRS output alpha value is fixed to 255. Otherwise we need to
803                  * scale the alpha component only when available at the input
804                  * RPF.
805                  */
806                 if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
807                     pipe->uds_input->type == VSP1_ENTITY_BRS) {
808                         uds->scale_alpha = false;
809                 } else {
810                         struct vsp1_rwpf *rpf =
811                                 to_rwpf(&pipe->uds_input->subdev);
812
813                         uds->scale_alpha = rpf->fmtinfo->alpha;
814                 }
815         }
816
817         /*
818          * Compute and cache the stream configuration into a body. The cached
819          * body will be added to the display list by vsp1_video_pipeline_run()
820          * whenever the pipeline needs to be fully reconfigured.
821          */
822         pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
823         if (!pipe->stream_config)
824                 return -ENOMEM;
825
826         list_for_each_entry(entity, &pipe->entities, list_pipe) {
827                 vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
828                 vsp1_entity_configure_stream(entity, pipe, NULL,
829                                              pipe->stream_config);
830         }
831
832         return 0;
833 }
834
835 static void vsp1_video_release_buffers(struct vsp1_video *video)
836 {
837         struct vsp1_vb2_buffer *buffer;
838         unsigned long flags;
839
840         /* Remove all buffers from the IRQ queue. */
841         spin_lock_irqsave(&video->irqlock, flags);
842         list_for_each_entry(buffer, &video->irqqueue, queue)
843                 vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
844         INIT_LIST_HEAD(&video->irqqueue);
845         spin_unlock_irqrestore(&video->irqlock, flags);
846 }
847
848 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
849 {
850         lockdep_assert_held(&pipe->lock);
851
852         /* Release any cached configuration from our output video. */
853         vsp1_dl_body_put(pipe->stream_config);
854         pipe->stream_config = NULL;
855         pipe->configured = false;
856
857         /* Release our partition table allocation. */
858         kfree(pipe->part_table);
859         pipe->part_table = NULL;
860 }
861
862 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
863 {
864         struct vsp1_video *video = vb2_get_drv_priv(vq);
865         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
866         bool start_pipeline = false;
867         unsigned long flags;
868         int ret;
869
870         mutex_lock(&pipe->lock);
871         if (pipe->stream_count == pipe->num_inputs) {
872                 ret = vsp1_video_setup_pipeline(pipe);
873                 if (ret < 0) {
874                         vsp1_video_release_buffers(video);
875                         vsp1_video_cleanup_pipeline(pipe);
876                         mutex_unlock(&pipe->lock);
877                         return ret;
878                 }
879
880                 start_pipeline = true;
881         }
882
883         pipe->stream_count++;
884         mutex_unlock(&pipe->lock);
885
886         /*
887          * vsp1_pipeline_ready() is not sufficient to establish that all streams
888          * are prepared and the pipeline is configured, as multiple streams
889          * can race through streamon with buffers already queued; Therefore we
890          * don't even attempt to start the pipeline until the last stream has
891          * called through here.
892          */
893         if (!start_pipeline)
894                 return 0;
895
896         spin_lock_irqsave(&pipe->irqlock, flags);
897         if (vsp1_pipeline_ready(pipe))
898                 vsp1_video_pipeline_run(pipe);
899         spin_unlock_irqrestore(&pipe->irqlock, flags);
900
901         return 0;
902 }
903
904 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
905 {
906         struct vsp1_video *video = vb2_get_drv_priv(vq);
907         struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
908         unsigned long flags;
909         int ret;
910
911         /*
912          * Clear the buffers ready flag to make sure the device won't be started
913          * by a QBUF on the video node on the other side of the pipeline.
914          */
915         spin_lock_irqsave(&video->irqlock, flags);
916         pipe->buffers_ready &= ~(1 << video->pipe_index);
917         spin_unlock_irqrestore(&video->irqlock, flags);
918
919         mutex_lock(&pipe->lock);
920         if (--pipe->stream_count == pipe->num_inputs) {
921                 /* Stop the pipeline. */
922                 ret = vsp1_pipeline_stop(pipe);
923                 if (ret == -ETIMEDOUT)
924                         dev_err(video->vsp1->dev, "pipeline stop timeout\n");
925
926                 vsp1_video_cleanup_pipeline(pipe);
927         }
928         mutex_unlock(&pipe->lock);
929
930         media_pipeline_stop(&video->video.entity);
931         vsp1_video_release_buffers(video);
932         vsp1_video_pipeline_put(pipe);
933 }
934
935 static const struct vb2_ops vsp1_video_queue_qops = {
936         .queue_setup = vsp1_video_queue_setup,
937         .buf_prepare = vsp1_video_buffer_prepare,
938         .buf_queue = vsp1_video_buffer_queue,
939         .wait_prepare = vb2_ops_wait_prepare,
940         .wait_finish = vb2_ops_wait_finish,
941         .start_streaming = vsp1_video_start_streaming,
942         .stop_streaming = vsp1_video_stop_streaming,
943 };
944
945 /* -----------------------------------------------------------------------------
946  * V4L2 ioctls
947  */
948
949 static int
950 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
951 {
952         struct v4l2_fh *vfh = file->private_data;
953         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
954
955         cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
956                           | V4L2_CAP_VIDEO_CAPTURE_MPLANE
957                           | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
958
959
960         strscpy(cap->driver, "vsp1", sizeof(cap->driver));
961         strscpy(cap->card, video->video.name, sizeof(cap->card));
962         snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
963                  dev_name(video->vsp1->dev));
964
965         return 0;
966 }
967
968 static int
969 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
970 {
971         struct v4l2_fh *vfh = file->private_data;
972         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
973
974         if (format->type != video->queue.type)
975                 return -EINVAL;
976
977         mutex_lock(&video->lock);
978         format->fmt.pix_mp = video->rwpf->format;
979         mutex_unlock(&video->lock);
980
981         return 0;
982 }
983
984 static int
985 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
986 {
987         struct v4l2_fh *vfh = file->private_data;
988         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
989
990         if (format->type != video->queue.type)
991                 return -EINVAL;
992
993         return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
994 }
995
996 static int
997 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
998 {
999         struct v4l2_fh *vfh = file->private_data;
1000         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1001         const struct vsp1_format_info *info;
1002         int ret;
1003
1004         if (format->type != video->queue.type)
1005                 return -EINVAL;
1006
1007         ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
1008         if (ret < 0)
1009                 return ret;
1010
1011         mutex_lock(&video->lock);
1012
1013         if (vb2_is_busy(&video->queue)) {
1014                 ret = -EBUSY;
1015                 goto done;
1016         }
1017
1018         video->rwpf->format = format->fmt.pix_mp;
1019         video->rwpf->fmtinfo = info;
1020
1021 done:
1022         mutex_unlock(&video->lock);
1023         return ret;
1024 }
1025
1026 static int
1027 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
1028 {
1029         struct v4l2_fh *vfh = file->private_data;
1030         struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1031         struct media_device *mdev = &video->vsp1->media_dev;
1032         struct vsp1_pipeline *pipe;
1033         int ret;
1034
1035         if (video->queue.owner && video->queue.owner != file->private_data)
1036                 return -EBUSY;
1037
1038         /*
1039          * Get a pipeline for the video node and start streaming on it. No link
1040          * touching an entity in the pipeline can be activated or deactivated
1041          * once streaming is started.
1042          */
1043         mutex_lock(&mdev->graph_mutex);
1044
1045         pipe = vsp1_video_pipeline_get(video);
1046         if (IS_ERR(pipe)) {
1047                 mutex_unlock(&mdev->graph_mutex);
1048                 return PTR_ERR(pipe);
1049         }
1050
1051         ret = __media_pipeline_start(&video->video.entity, &pipe->pipe);
1052         if (ret < 0) {
1053                 mutex_unlock(&mdev->graph_mutex);
1054                 goto err_pipe;
1055         }
1056
1057         mutex_unlock(&mdev->graph_mutex);
1058
1059         /*
1060          * Verify that the configured format matches the output of the connected
1061          * subdev.
1062          */
1063         ret = vsp1_video_verify_format(video);
1064         if (ret < 0)
1065                 goto err_stop;
1066
1067         /* Start the queue. */
1068         ret = vb2_streamon(&video->queue, type);
1069         if (ret < 0)
1070                 goto err_stop;
1071
1072         return 0;
1073
1074 err_stop:
1075         media_pipeline_stop(&video->video.entity);
1076 err_pipe:
1077         vsp1_video_pipeline_put(pipe);
1078         return ret;
1079 }
1080
1081 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1082         .vidioc_querycap                = vsp1_video_querycap,
1083         .vidioc_g_fmt_vid_cap_mplane    = vsp1_video_get_format,
1084         .vidioc_s_fmt_vid_cap_mplane    = vsp1_video_set_format,
1085         .vidioc_try_fmt_vid_cap_mplane  = vsp1_video_try_format,
1086         .vidioc_g_fmt_vid_out_mplane    = vsp1_video_get_format,
1087         .vidioc_s_fmt_vid_out_mplane    = vsp1_video_set_format,
1088         .vidioc_try_fmt_vid_out_mplane  = vsp1_video_try_format,
1089         .vidioc_reqbufs                 = vb2_ioctl_reqbufs,
1090         .vidioc_querybuf                = vb2_ioctl_querybuf,
1091         .vidioc_qbuf                    = vb2_ioctl_qbuf,
1092         .vidioc_dqbuf                   = vb2_ioctl_dqbuf,
1093         .vidioc_expbuf                  = vb2_ioctl_expbuf,
1094         .vidioc_create_bufs             = vb2_ioctl_create_bufs,
1095         .vidioc_prepare_buf             = vb2_ioctl_prepare_buf,
1096         .vidioc_streamon                = vsp1_video_streamon,
1097         .vidioc_streamoff               = vb2_ioctl_streamoff,
1098 };
1099
1100 /* -----------------------------------------------------------------------------
1101  * V4L2 File Operations
1102  */
1103
1104 static int vsp1_video_open(struct file *file)
1105 {
1106         struct vsp1_video *video = video_drvdata(file);
1107         struct v4l2_fh *vfh;
1108         int ret = 0;
1109
1110         vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1111         if (vfh == NULL)
1112                 return -ENOMEM;
1113
1114         v4l2_fh_init(vfh, &video->video);
1115         v4l2_fh_add(vfh);
1116
1117         file->private_data = vfh;
1118
1119         ret = vsp1_device_get(video->vsp1);
1120         if (ret < 0) {
1121                 v4l2_fh_del(vfh);
1122                 v4l2_fh_exit(vfh);
1123                 kfree(vfh);
1124         }
1125
1126         return ret;
1127 }
1128
1129 static int vsp1_video_release(struct file *file)
1130 {
1131         struct vsp1_video *video = video_drvdata(file);
1132         struct v4l2_fh *vfh = file->private_data;
1133
1134         mutex_lock(&video->lock);
1135         if (video->queue.owner == vfh) {
1136                 vb2_queue_release(&video->queue);
1137                 video->queue.owner = NULL;
1138         }
1139         mutex_unlock(&video->lock);
1140
1141         vsp1_device_put(video->vsp1);
1142
1143         v4l2_fh_release(file);
1144
1145         file->private_data = NULL;
1146
1147         return 0;
1148 }
1149
1150 static const struct v4l2_file_operations vsp1_video_fops = {
1151         .owner = THIS_MODULE,
1152         .unlocked_ioctl = video_ioctl2,
1153         .open = vsp1_video_open,
1154         .release = vsp1_video_release,
1155         .poll = vb2_fop_poll,
1156         .mmap = vb2_fop_mmap,
1157 };
1158
1159 /* -----------------------------------------------------------------------------
1160  * Suspend and Resume
1161  */
1162
1163 void vsp1_video_suspend(struct vsp1_device *vsp1)
1164 {
1165         unsigned long flags;
1166         unsigned int i;
1167         int ret;
1168
1169         /*
1170          * To avoid increasing the system suspend time needlessly, loop over the
1171          * pipelines twice, first to set them all to the stopping state, and
1172          * then to wait for the stop to complete.
1173          */
1174         for (i = 0; i < vsp1->info->wpf_count; ++i) {
1175                 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1176                 struct vsp1_pipeline *pipe;
1177
1178                 if (wpf == NULL)
1179                         continue;
1180
1181                 pipe = wpf->entity.pipe;
1182                 if (pipe == NULL)
1183                         continue;
1184
1185                 spin_lock_irqsave(&pipe->irqlock, flags);
1186                 if (pipe->state == VSP1_PIPELINE_RUNNING)
1187                         pipe->state = VSP1_PIPELINE_STOPPING;
1188                 spin_unlock_irqrestore(&pipe->irqlock, flags);
1189         }
1190
1191         for (i = 0; i < vsp1->info->wpf_count; ++i) {
1192                 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1193                 struct vsp1_pipeline *pipe;
1194
1195                 if (wpf == NULL)
1196                         continue;
1197
1198                 pipe = wpf->entity.pipe;
1199                 if (pipe == NULL)
1200                         continue;
1201
1202                 ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
1203                                          msecs_to_jiffies(500));
1204                 if (ret == 0)
1205                         dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
1206                                  wpf->entity.index);
1207         }
1208 }
1209
1210 void vsp1_video_resume(struct vsp1_device *vsp1)
1211 {
1212         unsigned long flags;
1213         unsigned int i;
1214
1215         /* Resume all running pipelines. */
1216         for (i = 0; i < vsp1->info->wpf_count; ++i) {
1217                 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1218                 struct vsp1_pipeline *pipe;
1219
1220                 if (wpf == NULL)
1221                         continue;
1222
1223                 pipe = wpf->entity.pipe;
1224                 if (pipe == NULL)
1225                         continue;
1226
1227                 /*
1228                  * The hardware may have been reset during a suspend and will
1229                  * need a full reconfiguration.
1230                  */
1231                 pipe->configured = false;
1232
1233                 spin_lock_irqsave(&pipe->irqlock, flags);
1234                 if (vsp1_pipeline_ready(pipe))
1235                         vsp1_video_pipeline_run(pipe);
1236                 spin_unlock_irqrestore(&pipe->irqlock, flags);
1237         }
1238 }
1239
1240 /* -----------------------------------------------------------------------------
1241  * Initialization and Cleanup
1242  */
1243
1244 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1245                                      struct vsp1_rwpf *rwpf)
1246 {
1247         struct vsp1_video *video;
1248         const char *direction;
1249         int ret;
1250
1251         video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1252         if (!video)
1253                 return ERR_PTR(-ENOMEM);
1254
1255         rwpf->video = video;
1256
1257         video->vsp1 = vsp1;
1258         video->rwpf = rwpf;
1259
1260         if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1261                 direction = "input";
1262                 video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1263                 video->pad.flags = MEDIA_PAD_FL_SOURCE;
1264                 video->video.vfl_dir = VFL_DIR_TX;
1265                 video->video.device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE |
1266                                            V4L2_CAP_STREAMING;
1267         } else {
1268                 direction = "output";
1269                 video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1270                 video->pad.flags = MEDIA_PAD_FL_SINK;
1271                 video->video.vfl_dir = VFL_DIR_RX;
1272                 video->video.device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1273                                            V4L2_CAP_STREAMING;
1274         }
1275
1276         mutex_init(&video->lock);
1277         spin_lock_init(&video->irqlock);
1278         INIT_LIST_HEAD(&video->irqqueue);
1279
1280         /* Initialize the media entity... */
1281         ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1282         if (ret < 0)
1283                 return ERR_PTR(ret);
1284
1285         /* ... and the format ... */
1286         rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1287         rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1288         rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1289         __vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1290
1291         /* ... and the video node... */
1292         video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1293         video->video.fops = &vsp1_video_fops;
1294         snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1295                  rwpf->entity.subdev.name, direction);
1296         video->video.vfl_type = VFL_TYPE_GRABBER;
1297         video->video.release = video_device_release_empty;
1298         video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1299
1300         video_set_drvdata(&video->video, video);
1301
1302         video->queue.type = video->type;
1303         video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1304         video->queue.lock = &video->lock;
1305         video->queue.drv_priv = video;
1306         video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1307         video->queue.ops = &vsp1_video_queue_qops;
1308         video->queue.mem_ops = &vb2_dma_contig_memops;
1309         video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1310         video->queue.dev = video->vsp1->bus_master;
1311         ret = vb2_queue_init(&video->queue);
1312         if (ret < 0) {
1313                 dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1314                 goto error;
1315         }
1316
1317         /* ... and register the video device. */
1318         video->video.queue = &video->queue;
1319         ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
1320         if (ret < 0) {
1321                 dev_err(video->vsp1->dev, "failed to register video device\n");
1322                 goto error;
1323         }
1324
1325         return video;
1326
1327 error:
1328         vsp1_video_cleanup(video);
1329         return ERR_PTR(ret);
1330 }
1331
1332 void vsp1_video_cleanup(struct vsp1_video *video)
1333 {
1334         if (video_is_registered(&video->video))
1335                 video_unregister_device(&video->video);
1336
1337         media_entity_cleanup(&video->video.entity);
1338 }