]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/mmc/host/mmci.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux.git] / drivers / mmc / host / mmci.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4  *
5  *  Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
6  *  Copyright (C) 2010 ST-Ericsson SA
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/init.h>
11 #include <linux/ioport.h>
12 #include <linux/device.h>
13 #include <linux/io.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/highmem.h>
20 #include <linux/log2.h>
21 #include <linux/mmc/mmc.h>
22 #include <linux/mmc/pm.h>
23 #include <linux/mmc/host.h>
24 #include <linux/mmc/card.h>
25 #include <linux/mmc/slot-gpio.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/of.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/dmaengine.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/amba/mmci.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/types.h>
36 #include <linux/pinctrl/consumer.h>
37 #include <linux/reset.h>
38
39 #include <asm/div64.h>
40 #include <asm/io.h>
41
42 #include "mmci.h"
43
44 #define DRIVER_NAME "mmci-pl18x"
45
46 static void mmci_variant_init(struct mmci_host *host);
47 static void ux500v2_variant_init(struct mmci_host *host);
48
49 static unsigned int fmax = 515633;
50
51 static struct variant_data variant_arm = {
52         .fifosize               = 16 * 4,
53         .fifohalfsize           = 8 * 4,
54         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
55         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
56         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
57         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
58         .datalength_bits        = 16,
59         .datactrl_blocksz       = 11,
60         .pwrreg_powerup         = MCI_PWR_UP,
61         .f_max                  = 100000000,
62         .reversed_irq_handling  = true,
63         .mmcimask1              = true,
64         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
65         .start_err              = MCI_STARTBITERR,
66         .opendrain              = MCI_ROD,
67         .init                   = mmci_variant_init,
68 };
69
70 static struct variant_data variant_arm_extended_fifo = {
71         .fifosize               = 128 * 4,
72         .fifohalfsize           = 64 * 4,
73         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
74         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
75         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
76         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
77         .datalength_bits        = 16,
78         .datactrl_blocksz       = 11,
79         .pwrreg_powerup         = MCI_PWR_UP,
80         .f_max                  = 100000000,
81         .mmcimask1              = true,
82         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
83         .start_err              = MCI_STARTBITERR,
84         .opendrain              = MCI_ROD,
85         .init                   = mmci_variant_init,
86 };
87
88 static struct variant_data variant_arm_extended_fifo_hwfc = {
89         .fifosize               = 128 * 4,
90         .fifohalfsize           = 64 * 4,
91         .clkreg_enable          = MCI_ARM_HWFCEN,
92         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
93         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
94         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
95         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
96         .datalength_bits        = 16,
97         .datactrl_blocksz       = 11,
98         .pwrreg_powerup         = MCI_PWR_UP,
99         .f_max                  = 100000000,
100         .mmcimask1              = true,
101         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
102         .start_err              = MCI_STARTBITERR,
103         .opendrain              = MCI_ROD,
104         .init                   = mmci_variant_init,
105 };
106
107 static struct variant_data variant_u300 = {
108         .fifosize               = 16 * 4,
109         .fifohalfsize           = 8 * 4,
110         .clkreg_enable          = MCI_ST_U300_HWFCEN,
111         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
112         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
113         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
114         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
115         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
116         .datalength_bits        = 16,
117         .datactrl_blocksz       = 11,
118         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
119         .st_sdio                        = true,
120         .pwrreg_powerup         = MCI_PWR_ON,
121         .f_max                  = 100000000,
122         .signal_direction       = true,
123         .pwrreg_clkgate         = true,
124         .pwrreg_nopower         = true,
125         .mmcimask1              = true,
126         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
127         .start_err              = MCI_STARTBITERR,
128         .opendrain              = MCI_OD,
129         .init                   = mmci_variant_init,
130 };
131
132 static struct variant_data variant_nomadik = {
133         .fifosize               = 16 * 4,
134         .fifohalfsize           = 8 * 4,
135         .clkreg                 = MCI_CLK_ENABLE,
136         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
137         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
138         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
139         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
140         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
141         .datalength_bits        = 24,
142         .datactrl_blocksz       = 11,
143         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
144         .st_sdio                = true,
145         .st_clkdiv              = true,
146         .pwrreg_powerup         = MCI_PWR_ON,
147         .f_max                  = 100000000,
148         .signal_direction       = true,
149         .pwrreg_clkgate         = true,
150         .pwrreg_nopower         = true,
151         .mmcimask1              = true,
152         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
153         .start_err              = MCI_STARTBITERR,
154         .opendrain              = MCI_OD,
155         .init                   = mmci_variant_init,
156 };
157
158 static struct variant_data variant_ux500 = {
159         .fifosize               = 30 * 4,
160         .fifohalfsize           = 8 * 4,
161         .clkreg                 = MCI_CLK_ENABLE,
162         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
163         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
164         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
165         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
166         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
167         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
168         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
169         .datalength_bits        = 24,
170         .datactrl_blocksz       = 11,
171         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
172         .st_sdio                = true,
173         .st_clkdiv              = true,
174         .pwrreg_powerup         = MCI_PWR_ON,
175         .f_max                  = 100000000,
176         .signal_direction       = true,
177         .pwrreg_clkgate         = true,
178         .busy_detect            = true,
179         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
180         .busy_detect_flag       = MCI_ST_CARDBUSY,
181         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
182         .pwrreg_nopower         = true,
183         .mmcimask1              = true,
184         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
185         .start_err              = MCI_STARTBITERR,
186         .opendrain              = MCI_OD,
187         .init                   = mmci_variant_init,
188 };
189
190 static struct variant_data variant_ux500v2 = {
191         .fifosize               = 30 * 4,
192         .fifohalfsize           = 8 * 4,
193         .clkreg                 = MCI_CLK_ENABLE,
194         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
195         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
196         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
197         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
198         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
199         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
200         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
201         .datactrl_mask_ddrmode  = MCI_DPSM_ST_DDRMODE,
202         .datalength_bits        = 24,
203         .datactrl_blocksz       = 11,
204         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
205         .st_sdio                = true,
206         .st_clkdiv              = true,
207         .pwrreg_powerup         = MCI_PWR_ON,
208         .f_max                  = 100000000,
209         .signal_direction       = true,
210         .pwrreg_clkgate         = true,
211         .busy_detect            = true,
212         .busy_dpsm_flag         = MCI_DPSM_ST_BUSYMODE,
213         .busy_detect_flag       = MCI_ST_CARDBUSY,
214         .busy_detect_mask       = MCI_ST_BUSYENDMASK,
215         .pwrreg_nopower         = true,
216         .mmcimask1              = true,
217         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
218         .start_err              = MCI_STARTBITERR,
219         .opendrain              = MCI_OD,
220         .init                   = ux500v2_variant_init,
221 };
222
223 static struct variant_data variant_stm32 = {
224         .fifosize               = 32 * 4,
225         .fifohalfsize           = 8 * 4,
226         .clkreg                 = MCI_CLK_ENABLE,
227         .clkreg_enable          = MCI_ST_UX500_HWFCEN,
228         .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS,
229         .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE,
230         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
231         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
232         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
233         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
234         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
235         .datalength_bits        = 24,
236         .datactrl_blocksz       = 11,
237         .datactrl_mask_sdio     = MCI_DPSM_ST_SDIOEN,
238         .st_sdio                = true,
239         .st_clkdiv              = true,
240         .pwrreg_powerup         = MCI_PWR_ON,
241         .f_max                  = 48000000,
242         .pwrreg_clkgate         = true,
243         .pwrreg_nopower         = true,
244         .init                   = mmci_variant_init,
245 };
246
247 static struct variant_data variant_stm32_sdmmc = {
248         .fifosize               = 16 * 4,
249         .fifohalfsize           = 8 * 4,
250         .f_max                  = 208000000,
251         .stm32_clkdiv           = true,
252         .cmdreg_cpsm_enable     = MCI_CPSM_STM32_ENABLE,
253         .cmdreg_lrsp_crc        = MCI_CPSM_STM32_LRSP_CRC,
254         .cmdreg_srsp_crc        = MCI_CPSM_STM32_SRSP_CRC,
255         .cmdreg_srsp            = MCI_CPSM_STM32_SRSP,
256         .cmdreg_stop            = MCI_CPSM_STM32_CMDSTOP,
257         .data_cmd_enable        = MCI_CPSM_STM32_CMDTRANS,
258         .irq_pio_mask           = MCI_IRQ_PIO_STM32_MASK,
259         .datactrl_first         = true,
260         .datacnt_useless        = true,
261         .datalength_bits        = 25,
262         .datactrl_blocksz       = 14,
263         .stm32_idmabsize_mask   = GENMASK(12, 5),
264         .init                   = sdmmc_variant_init,
265 };
266
267 static struct variant_data variant_qcom = {
268         .fifosize               = 16 * 4,
269         .fifohalfsize           = 8 * 4,
270         .clkreg                 = MCI_CLK_ENABLE,
271         .clkreg_enable          = MCI_QCOM_CLK_FLOWENA |
272                                   MCI_QCOM_CLK_SELECT_IN_FBCLK,
273         .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8,
274         .datactrl_mask_ddrmode  = MCI_QCOM_CLK_SELECT_IN_DDR_MODE,
275         .cmdreg_cpsm_enable     = MCI_CPSM_ENABLE,
276         .cmdreg_lrsp_crc        = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP,
277         .cmdreg_srsp_crc        = MCI_CPSM_RESPONSE,
278         .cmdreg_srsp            = MCI_CPSM_RESPONSE,
279         .data_cmd_enable        = MCI_CPSM_QCOM_DATCMD,
280         .datalength_bits        = 24,
281         .datactrl_blocksz       = 11,
282         .pwrreg_powerup         = MCI_PWR_UP,
283         .f_max                  = 208000000,
284         .explicit_mclk_control  = true,
285         .qcom_fifo              = true,
286         .qcom_dml               = true,
287         .mmcimask1              = true,
288         .irq_pio_mask           = MCI_IRQ_PIO_MASK,
289         .start_err              = MCI_STARTBITERR,
290         .opendrain              = MCI_ROD,
291         .init                   = qcom_variant_init,
292 };
293
294 /* Busy detection for the ST Micro variant */
295 static int mmci_card_busy(struct mmc_host *mmc)
296 {
297         struct mmci_host *host = mmc_priv(mmc);
298         unsigned long flags;
299         int busy = 0;
300
301         spin_lock_irqsave(&host->lock, flags);
302         if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag)
303                 busy = 1;
304         spin_unlock_irqrestore(&host->lock, flags);
305
306         return busy;
307 }
308
309 static void mmci_reg_delay(struct mmci_host *host)
310 {
311         /*
312          * According to the spec, at least three feedback clock cycles
313          * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
314          * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
315          * Worst delay time during card init is at 100 kHz => 30 us.
316          * Worst delay time when up and running is at 25 MHz => 120 ns.
317          */
318         if (host->cclk < 25000000)
319                 udelay(30);
320         else
321                 ndelay(120);
322 }
323
324 /*
325  * This must be called with host->lock held
326  */
327 void mmci_write_clkreg(struct mmci_host *host, u32 clk)
328 {
329         if (host->clk_reg != clk) {
330                 host->clk_reg = clk;
331                 writel(clk, host->base + MMCICLOCK);
332         }
333 }
334
335 /*
336  * This must be called with host->lock held
337  */
338 void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
339 {
340         if (host->pwr_reg != pwr) {
341                 host->pwr_reg = pwr;
342                 writel(pwr, host->base + MMCIPOWER);
343         }
344 }
345
346 /*
347  * This must be called with host->lock held
348  */
349 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
350 {
351         /* Keep busy mode in DPSM if enabled */
352         datactrl |= host->datactrl_reg & host->variant->busy_dpsm_flag;
353
354         if (host->datactrl_reg != datactrl) {
355                 host->datactrl_reg = datactrl;
356                 writel(datactrl, host->base + MMCIDATACTRL);
357         }
358 }
359
360 /*
361  * This must be called with host->lock held
362  */
363 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
364 {
365         struct variant_data *variant = host->variant;
366         u32 clk = variant->clkreg;
367
368         /* Make sure cclk reflects the current calculated clock */
369         host->cclk = 0;
370
371         if (desired) {
372                 if (variant->explicit_mclk_control) {
373                         host->cclk = host->mclk;
374                 } else if (desired >= host->mclk) {
375                         clk = MCI_CLK_BYPASS;
376                         if (variant->st_clkdiv)
377                                 clk |= MCI_ST_UX500_NEG_EDGE;
378                         host->cclk = host->mclk;
379                 } else if (variant->st_clkdiv) {
380                         /*
381                          * DB8500 TRM says f = mclk / (clkdiv + 2)
382                          * => clkdiv = (mclk / f) - 2
383                          * Round the divider up so we don't exceed the max
384                          * frequency
385                          */
386                         clk = DIV_ROUND_UP(host->mclk, desired) - 2;
387                         if (clk >= 256)
388                                 clk = 255;
389                         host->cclk = host->mclk / (clk + 2);
390                 } else {
391                         /*
392                          * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
393                          * => clkdiv = mclk / (2 * f) - 1
394                          */
395                         clk = host->mclk / (2 * desired) - 1;
396                         if (clk >= 256)
397                                 clk = 255;
398                         host->cclk = host->mclk / (2 * (clk + 1));
399                 }
400
401                 clk |= variant->clkreg_enable;
402                 clk |= MCI_CLK_ENABLE;
403                 /* This hasn't proven to be worthwhile */
404                 /* clk |= MCI_CLK_PWRSAVE; */
405         }
406
407         /* Set actual clock for debug */
408         host->mmc->actual_clock = host->cclk;
409
410         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
411                 clk |= MCI_4BIT_BUS;
412         if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
413                 clk |= variant->clkreg_8bit_bus_enable;
414
415         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
416             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
417                 clk |= variant->clkreg_neg_edge_enable;
418
419         mmci_write_clkreg(host, clk);
420 }
421
422 void mmci_dma_release(struct mmci_host *host)
423 {
424         if (host->ops && host->ops->dma_release)
425                 host->ops->dma_release(host);
426
427         host->use_dma = false;
428 }
429
430 void mmci_dma_setup(struct mmci_host *host)
431 {
432         if (!host->ops || !host->ops->dma_setup)
433                 return;
434
435         if (host->ops->dma_setup(host))
436                 return;
437
438         /* initialize pre request cookie */
439         host->next_cookie = 1;
440
441         host->use_dma = true;
442 }
443
444 /*
445  * Validate mmc prerequisites
446  */
447 static int mmci_validate_data(struct mmci_host *host,
448                               struct mmc_data *data)
449 {
450         if (!data)
451                 return 0;
452
453         if (!is_power_of_2(data->blksz)) {
454                 dev_err(mmc_dev(host->mmc),
455                         "unsupported block size (%d bytes)\n", data->blksz);
456                 return -EINVAL;
457         }
458
459         if (host->ops && host->ops->validate_data)
460                 return host->ops->validate_data(host, data);
461
462         return 0;
463 }
464
465 int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next)
466 {
467         int err;
468
469         if (!host->ops || !host->ops->prep_data)
470                 return 0;
471
472         err = host->ops->prep_data(host, data, next);
473
474         if (next && !err)
475                 data->host_cookie = ++host->next_cookie < 0 ?
476                         1 : host->next_cookie;
477
478         return err;
479 }
480
481 void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data,
482                       int err)
483 {
484         if (host->ops && host->ops->unprep_data)
485                 host->ops->unprep_data(host, data, err);
486
487         data->host_cookie = 0;
488 }
489
490 void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
491 {
492         WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie);
493
494         if (host->ops && host->ops->get_next_data)
495                 host->ops->get_next_data(host, data);
496 }
497
498 int mmci_dma_start(struct mmci_host *host, unsigned int datactrl)
499 {
500         struct mmc_data *data = host->data;
501         int ret;
502
503         if (!host->use_dma)
504                 return -EINVAL;
505
506         ret = mmci_prep_data(host, data, false);
507         if (ret)
508                 return ret;
509
510         if (!host->ops || !host->ops->dma_start)
511                 return -EINVAL;
512
513         /* Okay, go for it. */
514         dev_vdbg(mmc_dev(host->mmc),
515                  "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
516                  data->sg_len, data->blksz, data->blocks, data->flags);
517
518         host->ops->dma_start(host, &datactrl);
519
520         /* Trigger the DMA transfer */
521         mmci_write_datactrlreg(host, datactrl);
522
523         /*
524          * Let the MMCI say when the data is ended and it's time
525          * to fire next DMA request. When that happens, MMCI will
526          * call mmci_data_end()
527          */
528         writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
529                host->base + MMCIMASK0);
530         return 0;
531 }
532
533 void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
534 {
535         if (!host->use_dma)
536                 return;
537
538         if (host->ops && host->ops->dma_finalize)
539                 host->ops->dma_finalize(host, data);
540 }
541
542 void mmci_dma_error(struct mmci_host *host)
543 {
544         if (!host->use_dma)
545                 return;
546
547         if (host->ops && host->ops->dma_error)
548                 host->ops->dma_error(host);
549 }
550
551 static void
552 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
553 {
554         writel(0, host->base + MMCICOMMAND);
555
556         BUG_ON(host->data);
557
558         host->mrq = NULL;
559         host->cmd = NULL;
560
561         mmc_request_done(host->mmc, mrq);
562 }
563
564 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
565 {
566         void __iomem *base = host->base;
567         struct variant_data *variant = host->variant;
568
569         if (host->singleirq) {
570                 unsigned int mask0 = readl(base + MMCIMASK0);
571
572                 mask0 &= ~variant->irq_pio_mask;
573                 mask0 |= mask;
574
575                 writel(mask0, base + MMCIMASK0);
576         }
577
578         if (variant->mmcimask1)
579                 writel(mask, base + MMCIMASK1);
580
581         host->mask1_reg = mask;
582 }
583
584 static void mmci_stop_data(struct mmci_host *host)
585 {
586         mmci_write_datactrlreg(host, 0);
587         mmci_set_mask1(host, 0);
588         host->data = NULL;
589 }
590
591 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
592 {
593         unsigned int flags = SG_MITER_ATOMIC;
594
595         if (data->flags & MMC_DATA_READ)
596                 flags |= SG_MITER_TO_SG;
597         else
598                 flags |= SG_MITER_FROM_SG;
599
600         sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
601 }
602
603 static u32 mmci_get_dctrl_cfg(struct mmci_host *host)
604 {
605         return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host);
606 }
607
608 static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host)
609 {
610         return MCI_DPSM_ENABLE | (host->data->blksz << 16);
611 }
612
613 /*
614  * All the DMA operation mode stuff goes inside this ifdef.
615  * This assumes that you have a generic DMA device interface,
616  * no custom DMA interfaces are supported.
617  */
618 #ifdef CONFIG_DMA_ENGINE
619 struct mmci_dmae_next {
620         struct dma_async_tx_descriptor *desc;
621         struct dma_chan *chan;
622 };
623
624 struct mmci_dmae_priv {
625         struct dma_chan *cur;
626         struct dma_chan *rx_channel;
627         struct dma_chan *tx_channel;
628         struct dma_async_tx_descriptor  *desc_current;
629         struct mmci_dmae_next next_data;
630 };
631
632 int mmci_dmae_setup(struct mmci_host *host)
633 {
634         const char *rxname, *txname;
635         struct mmci_dmae_priv *dmae;
636
637         dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL);
638         if (!dmae)
639                 return -ENOMEM;
640
641         host->dma_priv = dmae;
642
643         dmae->rx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
644                                                      "rx");
645         dmae->tx_channel = dma_request_slave_channel(mmc_dev(host->mmc),
646                                                      "tx");
647
648         /*
649          * If only an RX channel is specified, the driver will
650          * attempt to use it bidirectionally, however if it is
651          * is specified but cannot be located, DMA will be disabled.
652          */
653         if (dmae->rx_channel && !dmae->tx_channel)
654                 dmae->tx_channel = dmae->rx_channel;
655
656         if (dmae->rx_channel)
657                 rxname = dma_chan_name(dmae->rx_channel);
658         else
659                 rxname = "none";
660
661         if (dmae->tx_channel)
662                 txname = dma_chan_name(dmae->tx_channel);
663         else
664                 txname = "none";
665
666         dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
667                  rxname, txname);
668
669         /*
670          * Limit the maximum segment size in any SG entry according to
671          * the parameters of the DMA engine device.
672          */
673         if (dmae->tx_channel) {
674                 struct device *dev = dmae->tx_channel->device->dev;
675                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
676
677                 if (max_seg_size < host->mmc->max_seg_size)
678                         host->mmc->max_seg_size = max_seg_size;
679         }
680         if (dmae->rx_channel) {
681                 struct device *dev = dmae->rx_channel->device->dev;
682                 unsigned int max_seg_size = dma_get_max_seg_size(dev);
683
684                 if (max_seg_size < host->mmc->max_seg_size)
685                         host->mmc->max_seg_size = max_seg_size;
686         }
687
688         if (!dmae->tx_channel || !dmae->rx_channel) {
689                 mmci_dmae_release(host);
690                 return -EINVAL;
691         }
692
693         return 0;
694 }
695
696 /*
697  * This is used in or so inline it
698  * so it can be discarded.
699  */
700 void mmci_dmae_release(struct mmci_host *host)
701 {
702         struct mmci_dmae_priv *dmae = host->dma_priv;
703
704         if (dmae->rx_channel)
705                 dma_release_channel(dmae->rx_channel);
706         if (dmae->tx_channel)
707                 dma_release_channel(dmae->tx_channel);
708         dmae->rx_channel = dmae->tx_channel = NULL;
709 }
710
711 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
712 {
713         struct mmci_dmae_priv *dmae = host->dma_priv;
714         struct dma_chan *chan;
715
716         if (data->flags & MMC_DATA_READ)
717                 chan = dmae->rx_channel;
718         else
719                 chan = dmae->tx_channel;
720
721         dma_unmap_sg(chan->device->dev, data->sg, data->sg_len,
722                      mmc_get_dma_dir(data));
723 }
724
725 void mmci_dmae_error(struct mmci_host *host)
726 {
727         struct mmci_dmae_priv *dmae = host->dma_priv;
728
729         if (!dma_inprogress(host))
730                 return;
731
732         dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
733         dmaengine_terminate_all(dmae->cur);
734         host->dma_in_progress = false;
735         dmae->cur = NULL;
736         dmae->desc_current = NULL;
737         host->data->host_cookie = 0;
738
739         mmci_dma_unmap(host, host->data);
740 }
741
742 void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data)
743 {
744         struct mmci_dmae_priv *dmae = host->dma_priv;
745         u32 status;
746         int i;
747
748         if (!dma_inprogress(host))
749                 return;
750
751         /* Wait up to 1ms for the DMA to complete */
752         for (i = 0; ; i++) {
753                 status = readl(host->base + MMCISTATUS);
754                 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
755                         break;
756                 udelay(10);
757         }
758
759         /*
760          * Check to see whether we still have some data left in the FIFO -
761          * this catches DMA controllers which are unable to monitor the
762          * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
763          * contiguous buffers.  On TX, we'll get a FIFO underrun error.
764          */
765         if (status & MCI_RXDATAAVLBLMASK) {
766                 mmci_dma_error(host);
767                 if (!data->error)
768                         data->error = -EIO;
769         } else if (!data->host_cookie) {
770                 mmci_dma_unmap(host, data);
771         }
772
773         /*
774          * Use of DMA with scatter-gather is impossible.
775          * Give up with DMA and switch back to PIO mode.
776          */
777         if (status & MCI_RXDATAAVLBLMASK) {
778                 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
779                 mmci_dma_release(host);
780         }
781
782         host->dma_in_progress = false;
783         dmae->cur = NULL;
784         dmae->desc_current = NULL;
785 }
786
787 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
788 static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data,
789                                 struct dma_chan **dma_chan,
790                                 struct dma_async_tx_descriptor **dma_desc)
791 {
792         struct mmci_dmae_priv *dmae = host->dma_priv;
793         struct variant_data *variant = host->variant;
794         struct dma_slave_config conf = {
795                 .src_addr = host->phybase + MMCIFIFO,
796                 .dst_addr = host->phybase + MMCIFIFO,
797                 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
798                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
799                 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
800                 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
801                 .device_fc = false,
802         };
803         struct dma_chan *chan;
804         struct dma_device *device;
805         struct dma_async_tx_descriptor *desc;
806         int nr_sg;
807         unsigned long flags = DMA_CTRL_ACK;
808
809         if (data->flags & MMC_DATA_READ) {
810                 conf.direction = DMA_DEV_TO_MEM;
811                 chan = dmae->rx_channel;
812         } else {
813                 conf.direction = DMA_MEM_TO_DEV;
814                 chan = dmae->tx_channel;
815         }
816
817         /* If there's no DMA channel, fall back to PIO */
818         if (!chan)
819                 return -EINVAL;
820
821         /* If less than or equal to the fifo size, don't bother with DMA */
822         if (data->blksz * data->blocks <= variant->fifosize)
823                 return -EINVAL;
824
825         device = chan->device;
826         nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len,
827                            mmc_get_dma_dir(data));
828         if (nr_sg == 0)
829                 return -EINVAL;
830
831         if (host->variant->qcom_dml)
832                 flags |= DMA_PREP_INTERRUPT;
833
834         dmaengine_slave_config(chan, &conf);
835         desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
836                                             conf.direction, flags);
837         if (!desc)
838                 goto unmap_exit;
839
840         *dma_chan = chan;
841         *dma_desc = desc;
842
843         return 0;
844
845  unmap_exit:
846         dma_unmap_sg(device->dev, data->sg, data->sg_len,
847                      mmc_get_dma_dir(data));
848         return -ENOMEM;
849 }
850
851 int mmci_dmae_prep_data(struct mmci_host *host,
852                         struct mmc_data *data,
853                         bool next)
854 {
855         struct mmci_dmae_priv *dmae = host->dma_priv;
856         struct mmci_dmae_next *nd = &dmae->next_data;
857
858         if (!host->use_dma)
859                 return -EINVAL;
860
861         if (next)
862                 return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc);
863         /* Check if next job is already prepared. */
864         if (dmae->cur && dmae->desc_current)
865                 return 0;
866
867         /* No job were prepared thus do it now. */
868         return _mmci_dmae_prep_data(host, data, &dmae->cur,
869                                     &dmae->desc_current);
870 }
871
872 int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl)
873 {
874         struct mmci_dmae_priv *dmae = host->dma_priv;
875
876         host->dma_in_progress = true;
877         dmaengine_submit(dmae->desc_current);
878         dma_async_issue_pending(dmae->cur);
879
880         *datactrl |= MCI_DPSM_DMAENABLE;
881
882         return 0;
883 }
884
885 void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data)
886 {
887         struct mmci_dmae_priv *dmae = host->dma_priv;
888         struct mmci_dmae_next *next = &dmae->next_data;
889
890         if (!host->use_dma)
891                 return;
892
893         WARN_ON(!data->host_cookie && (next->desc || next->chan));
894
895         dmae->desc_current = next->desc;
896         dmae->cur = next->chan;
897         next->desc = NULL;
898         next->chan = NULL;
899 }
900
901 void mmci_dmae_unprep_data(struct mmci_host *host,
902                            struct mmc_data *data, int err)
903
904 {
905         struct mmci_dmae_priv *dmae = host->dma_priv;
906
907         if (!host->use_dma)
908                 return;
909
910         mmci_dma_unmap(host, data);
911
912         if (err) {
913                 struct mmci_dmae_next *next = &dmae->next_data;
914                 struct dma_chan *chan;
915                 if (data->flags & MMC_DATA_READ)
916                         chan = dmae->rx_channel;
917                 else
918                         chan = dmae->tx_channel;
919                 dmaengine_terminate_all(chan);
920
921                 if (dmae->desc_current == next->desc)
922                         dmae->desc_current = NULL;
923
924                 if (dmae->cur == next->chan) {
925                         host->dma_in_progress = false;
926                         dmae->cur = NULL;
927                 }
928
929                 next->desc = NULL;
930                 next->chan = NULL;
931         }
932 }
933
934 static struct mmci_host_ops mmci_variant_ops = {
935         .prep_data = mmci_dmae_prep_data,
936         .unprep_data = mmci_dmae_unprep_data,
937         .get_datactrl_cfg = mmci_get_dctrl_cfg,
938         .get_next_data = mmci_dmae_get_next_data,
939         .dma_setup = mmci_dmae_setup,
940         .dma_release = mmci_dmae_release,
941         .dma_start = mmci_dmae_start,
942         .dma_finalize = mmci_dmae_finalize,
943         .dma_error = mmci_dmae_error,
944 };
945 #else
946 static struct mmci_host_ops mmci_variant_ops = {
947         .get_datactrl_cfg = mmci_get_dctrl_cfg,
948 };
949 #endif
950
951 void mmci_variant_init(struct mmci_host *host)
952 {
953         host->ops = &mmci_variant_ops;
954 }
955
956 void ux500v2_variant_init(struct mmci_host *host)
957 {
958         host->ops = &mmci_variant_ops;
959         host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg;
960 }
961
962 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq)
963 {
964         struct mmci_host *host = mmc_priv(mmc);
965         struct mmc_data *data = mrq->data;
966
967         if (!data)
968                 return;
969
970         WARN_ON(data->host_cookie);
971
972         if (mmci_validate_data(host, data))
973                 return;
974
975         mmci_prep_data(host, data, true);
976 }
977
978 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
979                               int err)
980 {
981         struct mmci_host *host = mmc_priv(mmc);
982         struct mmc_data *data = mrq->data;
983
984         if (!data || !data->host_cookie)
985                 return;
986
987         mmci_unprep_data(host, data, err);
988 }
989
990 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
991 {
992         struct variant_data *variant = host->variant;
993         unsigned int datactrl, timeout, irqmask;
994         unsigned long long clks;
995         void __iomem *base;
996
997         dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
998                 data->blksz, data->blocks, data->flags);
999
1000         host->data = data;
1001         host->size = data->blksz * data->blocks;
1002         data->bytes_xfered = 0;
1003
1004         clks = (unsigned long long)data->timeout_ns * host->cclk;
1005         do_div(clks, NSEC_PER_SEC);
1006
1007         timeout = data->timeout_clks + (unsigned int)clks;
1008
1009         base = host->base;
1010         writel(timeout, base + MMCIDATATIMER);
1011         writel(host->size, base + MMCIDATALENGTH);
1012
1013         datactrl = host->ops->get_datactrl_cfg(host);
1014         datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0;
1015
1016         if (host->mmc->card && mmc_card_sdio(host->mmc->card)) {
1017                 u32 clk;
1018
1019                 datactrl |= variant->datactrl_mask_sdio;
1020
1021                 /*
1022                  * The ST Micro variant for SDIO small write transfers
1023                  * needs to have clock H/W flow control disabled,
1024                  * otherwise the transfer will not start. The threshold
1025                  * depends on the rate of MCLK.
1026                  */
1027                 if (variant->st_sdio && data->flags & MMC_DATA_WRITE &&
1028                     (host->size < 8 ||
1029                      (host->size <= 8 && host->mclk > 50000000)))
1030                         clk = host->clk_reg & ~variant->clkreg_enable;
1031                 else
1032                         clk = host->clk_reg | variant->clkreg_enable;
1033
1034                 mmci_write_clkreg(host, clk);
1035         }
1036
1037         if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
1038             host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
1039                 datactrl |= variant->datactrl_mask_ddrmode;
1040
1041         /*
1042          * Attempt to use DMA operation mode, if this
1043          * should fail, fall back to PIO mode
1044          */
1045         if (!mmci_dma_start(host, datactrl))
1046                 return;
1047
1048         /* IRQ mode, map the SG list for CPU reading/writing */
1049         mmci_init_sg(host, data);
1050
1051         if (data->flags & MMC_DATA_READ) {
1052                 irqmask = MCI_RXFIFOHALFFULLMASK;
1053
1054                 /*
1055                  * If we have less than the fifo 'half-full' threshold to
1056                  * transfer, trigger a PIO interrupt as soon as any data
1057                  * is available.
1058                  */
1059                 if (host->size < variant->fifohalfsize)
1060                         irqmask |= MCI_RXDATAAVLBLMASK;
1061         } else {
1062                 /*
1063                  * We don't actually need to include "FIFO empty" here
1064                  * since its implicit in "FIFO half empty".
1065                  */
1066                 irqmask = MCI_TXFIFOHALFEMPTYMASK;
1067         }
1068
1069         mmci_write_datactrlreg(host, datactrl);
1070         writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
1071         mmci_set_mask1(host, irqmask);
1072 }
1073
1074 static void
1075 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
1076 {
1077         void __iomem *base = host->base;
1078
1079         dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
1080             cmd->opcode, cmd->arg, cmd->flags);
1081
1082         if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) {
1083                 writel(0, base + MMCICOMMAND);
1084                 mmci_reg_delay(host);
1085         }
1086
1087         if (host->variant->cmdreg_stop &&
1088             cmd->opcode == MMC_STOP_TRANSMISSION)
1089                 c |= host->variant->cmdreg_stop;
1090
1091         c |= cmd->opcode | host->variant->cmdreg_cpsm_enable;
1092         if (cmd->flags & MMC_RSP_PRESENT) {
1093                 if (cmd->flags & MMC_RSP_136)
1094                         c |= host->variant->cmdreg_lrsp_crc;
1095                 else if (cmd->flags & MMC_RSP_CRC)
1096                         c |= host->variant->cmdreg_srsp_crc;
1097                 else
1098                         c |= host->variant->cmdreg_srsp;
1099         }
1100         if (/*interrupt*/0)
1101                 c |= MCI_CPSM_INTERRUPT;
1102
1103         if (mmc_cmd_type(cmd) == MMC_CMD_ADTC)
1104                 c |= host->variant->data_cmd_enable;
1105
1106         host->cmd = cmd;
1107
1108         writel(cmd->arg, base + MMCIARGUMENT);
1109         writel(c, base + MMCICOMMAND);
1110 }
1111
1112 static void mmci_stop_command(struct mmci_host *host)
1113 {
1114         host->stop_abort.error = 0;
1115         mmci_start_command(host, &host->stop_abort, 0);
1116 }
1117
1118 static void
1119 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
1120               unsigned int status)
1121 {
1122         unsigned int status_err;
1123
1124         /* Make sure we have data to handle */
1125         if (!data)
1126                 return;
1127
1128         /* First check for errors */
1129         status_err = status & (host->variant->start_err |
1130                                MCI_DATACRCFAIL | MCI_DATATIMEOUT |
1131                                MCI_TXUNDERRUN | MCI_RXOVERRUN);
1132
1133         if (status_err) {
1134                 u32 remain, success;
1135
1136                 /* Terminate the DMA transfer */
1137                 mmci_dma_error(host);
1138
1139                 /*
1140                  * Calculate how far we are into the transfer.  Note that
1141                  * the data counter gives the number of bytes transferred
1142                  * on the MMC bus, not on the host side.  On reads, this
1143                  * can be as much as a FIFO-worth of data ahead.  This
1144                  * matters for FIFO overruns only.
1145                  */
1146                 if (!host->variant->datacnt_useless) {
1147                         remain = readl(host->base + MMCIDATACNT);
1148                         success = data->blksz * data->blocks - remain;
1149                 } else {
1150                         success = 0;
1151                 }
1152
1153                 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
1154                         status_err, success);
1155                 if (status_err & MCI_DATACRCFAIL) {
1156                         /* Last block was not successful */
1157                         success -= 1;
1158                         data->error = -EILSEQ;
1159                 } else if (status_err & MCI_DATATIMEOUT) {
1160                         data->error = -ETIMEDOUT;
1161                 } else if (status_err & MCI_STARTBITERR) {
1162                         data->error = -ECOMM;
1163                 } else if (status_err & MCI_TXUNDERRUN) {
1164                         data->error = -EIO;
1165                 } else if (status_err & MCI_RXOVERRUN) {
1166                         if (success > host->variant->fifosize)
1167                                 success -= host->variant->fifosize;
1168                         else
1169                                 success = 0;
1170                         data->error = -EIO;
1171                 }
1172                 data->bytes_xfered = round_down(success, data->blksz);
1173         }
1174
1175         if (status & MCI_DATABLOCKEND)
1176                 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
1177
1178         if (status & MCI_DATAEND || data->error) {
1179                 mmci_dma_finalize(host, data);
1180
1181                 mmci_stop_data(host);
1182
1183                 if (!data->error)
1184                         /* The error clause is handled above, success! */
1185                         data->bytes_xfered = data->blksz * data->blocks;
1186
1187                 if (!data->stop) {
1188                         if (host->variant->cmdreg_stop && data->error)
1189                                 mmci_stop_command(host);
1190                         else
1191                                 mmci_request_end(host, data->mrq);
1192                 } else if (host->mrq->sbc && !data->error) {
1193                         mmci_request_end(host, data->mrq);
1194                 } else {
1195                         mmci_start_command(host, data->stop, 0);
1196                 }
1197         }
1198 }
1199
1200 static void
1201 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
1202              unsigned int status)
1203 {
1204         void __iomem *base = host->base;
1205         bool sbc, busy_resp;
1206
1207         if (!cmd)
1208                 return;
1209
1210         sbc = (cmd == host->mrq->sbc);
1211         busy_resp = !!(cmd->flags & MMC_RSP_BUSY);
1212
1213         /*
1214          * We need to be one of these interrupts to be considered worth
1215          * handling. Note that we tag on any latent IRQs postponed
1216          * due to waiting for busy status.
1217          */
1218         if (!((status|host->busy_status) &
1219               (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND)))
1220                 return;
1221
1222         /* Handle busy detection on DAT0 if the variant supports it. */
1223         if (busy_resp && host->variant->busy_detect) {
1224
1225                 /*
1226                  * Before unmasking for the busy end IRQ, confirm that the
1227                  * command was sent successfully. To keep track of having a
1228                  * command in-progress, waiting for busy signaling to end,
1229                  * store the status in host->busy_status.
1230                  *
1231                  * Note that, the card may need a couple of clock cycles before
1232                  * it starts signaling busy on DAT0, hence re-read the
1233                  * MMCISTATUS register here, to allow the busy bit to be set.
1234                  * Potentially we may even need to poll the register for a
1235                  * while, to allow it to be set, but tests indicates that it
1236                  * isn't needed.
1237                  */
1238                 if (!host->busy_status &&
1239                     !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
1240                     (readl(base + MMCISTATUS) & host->variant->busy_detect_flag)) {
1241
1242                         writel(readl(base + MMCIMASK0) |
1243                                host->variant->busy_detect_mask,
1244                                base + MMCIMASK0);
1245
1246                         host->busy_status =
1247                                 status & (MCI_CMDSENT|MCI_CMDRESPEND);
1248                         return;
1249                 }
1250
1251                 /*
1252                  * If there is a command in-progress that has been successfully
1253                  * sent, then bail out if busy status is set and wait for the
1254                  * busy end IRQ.
1255                  *
1256                  * Note that, the HW triggers an IRQ on both edges while
1257                  * monitoring DAT0 for busy completion, but there is only one
1258                  * status bit in MMCISTATUS for the busy state. Therefore
1259                  * both the start and the end interrupts needs to be cleared,
1260                  * one after the other. So, clear the busy start IRQ here.
1261                  */
1262                 if (host->busy_status &&
1263                     (status & host->variant->busy_detect_flag)) {
1264                         writel(host->variant->busy_detect_mask,
1265                                host->base + MMCICLEAR);
1266                         return;
1267                 }
1268
1269                 /*
1270                  * If there is a command in-progress that has been successfully
1271                  * sent and the busy bit isn't set, it means we have received
1272                  * the busy end IRQ. Clear and mask the IRQ, then continue to
1273                  * process the command.
1274                  */
1275                 if (host->busy_status) {
1276
1277                         writel(host->variant->busy_detect_mask,
1278                                host->base + MMCICLEAR);
1279
1280                         writel(readl(base + MMCIMASK0) &
1281                                ~host->variant->busy_detect_mask,
1282                                base + MMCIMASK0);
1283                         host->busy_status = 0;
1284                 }
1285         }
1286
1287         host->cmd = NULL;
1288
1289         if (status & MCI_CMDTIMEOUT) {
1290                 cmd->error = -ETIMEDOUT;
1291         } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
1292                 cmd->error = -EILSEQ;
1293         } else {
1294                 cmd->resp[0] = readl(base + MMCIRESPONSE0);
1295                 cmd->resp[1] = readl(base + MMCIRESPONSE1);
1296                 cmd->resp[2] = readl(base + MMCIRESPONSE2);
1297                 cmd->resp[3] = readl(base + MMCIRESPONSE3);
1298         }
1299
1300         if ((!sbc && !cmd->data) || cmd->error) {
1301                 if (host->data) {
1302                         /* Terminate the DMA transfer */
1303                         mmci_dma_error(host);
1304
1305                         mmci_stop_data(host);
1306                         if (host->variant->cmdreg_stop && cmd->error) {
1307                                 mmci_stop_command(host);
1308                                 return;
1309                         }
1310                 }
1311                 mmci_request_end(host, host->mrq);
1312         } else if (sbc) {
1313                 mmci_start_command(host, host->mrq->cmd, 0);
1314         } else if (!host->variant->datactrl_first &&
1315                    !(cmd->data->flags & MMC_DATA_READ)) {
1316                 mmci_start_data(host, cmd->data);
1317         }
1318 }
1319
1320 static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain)
1321 {
1322         return remain - (readl(host->base + MMCIFIFOCNT) << 2);
1323 }
1324
1325 static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r)
1326 {
1327         /*
1328          * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses
1329          * from the fifo range should be used
1330          */
1331         if (status & MCI_RXFIFOHALFFULL)
1332                 return host->variant->fifohalfsize;
1333         else if (status & MCI_RXDATAAVLBL)
1334                 return 4;
1335
1336         return 0;
1337 }
1338
1339 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
1340 {
1341         void __iomem *base = host->base;
1342         char *ptr = buffer;
1343         u32 status = readl(host->base + MMCISTATUS);
1344         int host_remain = host->size;
1345
1346         do {
1347                 int count = host->get_rx_fifocnt(host, status, host_remain);
1348
1349                 if (count > remain)
1350                         count = remain;
1351
1352                 if (count <= 0)
1353                         break;
1354
1355                 /*
1356                  * SDIO especially may want to send something that is
1357                  * not divisible by 4 (as opposed to card sectors
1358                  * etc). Therefore make sure to always read the last bytes
1359                  * while only doing full 32-bit reads towards the FIFO.
1360                  */
1361                 if (unlikely(count & 0x3)) {
1362                         if (count < 4) {
1363                                 unsigned char buf[4];
1364                                 ioread32_rep(base + MMCIFIFO, buf, 1);
1365                                 memcpy(ptr, buf, count);
1366                         } else {
1367                                 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1368                                 count &= ~0x3;
1369                         }
1370                 } else {
1371                         ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
1372                 }
1373
1374                 ptr += count;
1375                 remain -= count;
1376                 host_remain -= count;
1377
1378                 if (remain == 0)
1379                         break;
1380
1381                 status = readl(base + MMCISTATUS);
1382         } while (status & MCI_RXDATAAVLBL);
1383
1384         return ptr - buffer;
1385 }
1386
1387 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1388 {
1389         struct variant_data *variant = host->variant;
1390         void __iomem *base = host->base;
1391         char *ptr = buffer;
1392
1393         do {
1394                 unsigned int count, maxcnt;
1395
1396                 maxcnt = status & MCI_TXFIFOEMPTY ?
1397                          variant->fifosize : variant->fifohalfsize;
1398                 count = min(remain, maxcnt);
1399
1400                 /*
1401                  * SDIO especially may want to send something that is
1402                  * not divisible by 4 (as opposed to card sectors
1403                  * etc), and the FIFO only accept full 32-bit writes.
1404                  * So compensate by adding +3 on the count, a single
1405                  * byte become a 32bit write, 7 bytes will be two
1406                  * 32bit writes etc.
1407                  */
1408                 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1409
1410                 ptr += count;
1411                 remain -= count;
1412
1413                 if (remain == 0)
1414                         break;
1415
1416                 status = readl(base + MMCISTATUS);
1417         } while (status & MCI_TXFIFOHALFEMPTY);
1418
1419         return ptr - buffer;
1420 }
1421
1422 /*
1423  * PIO data transfer IRQ handler.
1424  */
1425 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1426 {
1427         struct mmci_host *host = dev_id;
1428         struct sg_mapping_iter *sg_miter = &host->sg_miter;
1429         struct variant_data *variant = host->variant;
1430         void __iomem *base = host->base;
1431         u32 status;
1432
1433         status = readl(base + MMCISTATUS);
1434
1435         dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1436
1437         do {
1438                 unsigned int remain, len;
1439                 char *buffer;
1440
1441                 /*
1442                  * For write, we only need to test the half-empty flag
1443                  * here - if the FIFO is completely empty, then by
1444                  * definition it is more than half empty.
1445                  *
1446                  * For read, check for data available.
1447                  */
1448                 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1449                         break;
1450
1451                 if (!sg_miter_next(sg_miter))
1452                         break;
1453
1454                 buffer = sg_miter->addr;
1455                 remain = sg_miter->length;
1456
1457                 len = 0;
1458                 if (status & MCI_RXACTIVE)
1459                         len = mmci_pio_read(host, buffer, remain);
1460                 if (status & MCI_TXACTIVE)
1461                         len = mmci_pio_write(host, buffer, remain, status);
1462
1463                 sg_miter->consumed = len;
1464
1465                 host->size -= len;
1466                 remain -= len;
1467
1468                 if (remain)
1469                         break;
1470
1471                 status = readl(base + MMCISTATUS);
1472         } while (1);
1473
1474         sg_miter_stop(sg_miter);
1475
1476         /*
1477          * If we have less than the fifo 'half-full' threshold to transfer,
1478          * trigger a PIO interrupt as soon as any data is available.
1479          */
1480         if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1481                 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1482
1483         /*
1484          * If we run out of data, disable the data IRQs; this
1485          * prevents a race where the FIFO becomes empty before
1486          * the chip itself has disabled the data path, and
1487          * stops us racing with our data end IRQ.
1488          */
1489         if (host->size == 0) {
1490                 mmci_set_mask1(host, 0);
1491                 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1492         }
1493
1494         return IRQ_HANDLED;
1495 }
1496
1497 /*
1498  * Handle completion of command and data transfers.
1499  */
1500 static irqreturn_t mmci_irq(int irq, void *dev_id)
1501 {
1502         struct mmci_host *host = dev_id;
1503         u32 status;
1504         int ret = 0;
1505
1506         spin_lock(&host->lock);
1507
1508         do {
1509                 status = readl(host->base + MMCISTATUS);
1510
1511                 if (host->singleirq) {
1512                         if (status & host->mask1_reg)
1513                                 mmci_pio_irq(irq, dev_id);
1514
1515                         status &= ~host->variant->irq_pio_mask;
1516                 }
1517
1518                 /*
1519                  * Busy detection is managed by mmci_cmd_irq(), including to
1520                  * clear the corresponding IRQ.
1521                  */
1522                 status &= readl(host->base + MMCIMASK0);
1523                 if (host->variant->busy_detect)
1524                         writel(status & ~host->variant->busy_detect_mask,
1525                                host->base + MMCICLEAR);
1526                 else
1527                         writel(status, host->base + MMCICLEAR);
1528
1529                 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1530
1531                 if (host->variant->reversed_irq_handling) {
1532                         mmci_data_irq(host, host->data, status);
1533                         mmci_cmd_irq(host, host->cmd, status);
1534                 } else {
1535                         mmci_cmd_irq(host, host->cmd, status);
1536                         mmci_data_irq(host, host->data, status);
1537                 }
1538
1539                 /*
1540                  * Busy detection has been handled by mmci_cmd_irq() above.
1541                  * Clear the status bit to prevent polling in IRQ context.
1542                  */
1543                 if (host->variant->busy_detect_flag)
1544                         status &= ~host->variant->busy_detect_flag;
1545
1546                 ret = 1;
1547         } while (status);
1548
1549         spin_unlock(&host->lock);
1550
1551         return IRQ_RETVAL(ret);
1552 }
1553
1554 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1555 {
1556         struct mmci_host *host = mmc_priv(mmc);
1557         unsigned long flags;
1558
1559         WARN_ON(host->mrq != NULL);
1560
1561         mrq->cmd->error = mmci_validate_data(host, mrq->data);
1562         if (mrq->cmd->error) {
1563                 mmc_request_done(mmc, mrq);
1564                 return;
1565         }
1566
1567         spin_lock_irqsave(&host->lock, flags);
1568
1569         host->mrq = mrq;
1570
1571         if (mrq->data)
1572                 mmci_get_next_data(host, mrq->data);
1573
1574         if (mrq->data &&
1575             (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ))
1576                 mmci_start_data(host, mrq->data);
1577
1578         if (mrq->sbc)
1579                 mmci_start_command(host, mrq->sbc, 0);
1580         else
1581                 mmci_start_command(host, mrq->cmd, 0);
1582
1583         spin_unlock_irqrestore(&host->lock, flags);
1584 }
1585
1586 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1587 {
1588         struct mmci_host *host = mmc_priv(mmc);
1589         struct variant_data *variant = host->variant;
1590         u32 pwr = 0;
1591         unsigned long flags;
1592         int ret;
1593
1594         if (host->plat->ios_handler &&
1595                 host->plat->ios_handler(mmc_dev(mmc), ios))
1596                         dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1597
1598         switch (ios->power_mode) {
1599         case MMC_POWER_OFF:
1600                 if (!IS_ERR(mmc->supply.vmmc))
1601                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1602
1603                 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1604                         regulator_disable(mmc->supply.vqmmc);
1605                         host->vqmmc_enabled = false;
1606                 }
1607
1608                 break;
1609         case MMC_POWER_UP:
1610                 if (!IS_ERR(mmc->supply.vmmc))
1611                         mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1612
1613                 /*
1614                  * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1615                  * and instead uses MCI_PWR_ON so apply whatever value is
1616                  * configured in the variant data.
1617                  */
1618                 pwr |= variant->pwrreg_powerup;
1619
1620                 break;
1621         case MMC_POWER_ON:
1622                 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1623                         ret = regulator_enable(mmc->supply.vqmmc);
1624                         if (ret < 0)
1625                                 dev_err(mmc_dev(mmc),
1626                                         "failed to enable vqmmc regulator\n");
1627                         else
1628                                 host->vqmmc_enabled = true;
1629                 }
1630
1631                 pwr |= MCI_PWR_ON;
1632                 break;
1633         }
1634
1635         if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1636                 /*
1637                  * The ST Micro variant has some additional bits
1638                  * indicating signal direction for the signals in
1639                  * the SD/MMC bus and feedback-clock usage.
1640                  */
1641                 pwr |= host->pwr_reg_add;
1642
1643                 if (ios->bus_width == MMC_BUS_WIDTH_4)
1644                         pwr &= ~MCI_ST_DATA74DIREN;
1645                 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1646                         pwr &= (~MCI_ST_DATA74DIREN &
1647                                 ~MCI_ST_DATA31DIREN &
1648                                 ~MCI_ST_DATA2DIREN);
1649         }
1650
1651         if (variant->opendrain) {
1652                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1653                         pwr |= variant->opendrain;
1654         } else {
1655                 /*
1656                  * If the variant cannot configure the pads by its own, then we
1657                  * expect the pinctrl to be able to do that for us
1658                  */
1659                 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
1660                         pinctrl_select_state(host->pinctrl, host->pins_opendrain);
1661                 else
1662                         pinctrl_select_state(host->pinctrl, host->pins_default);
1663         }
1664
1665         /*
1666          * If clock = 0 and the variant requires the MMCIPOWER to be used for
1667          * gating the clock, the MCI_PWR_ON bit is cleared.
1668          */
1669         if (!ios->clock && variant->pwrreg_clkgate)
1670                 pwr &= ~MCI_PWR_ON;
1671
1672         if (host->variant->explicit_mclk_control &&
1673             ios->clock != host->clock_cache) {
1674                 ret = clk_set_rate(host->clk, ios->clock);
1675                 if (ret < 0)
1676                         dev_err(mmc_dev(host->mmc),
1677                                 "Error setting clock rate (%d)\n", ret);
1678                 else
1679                         host->mclk = clk_get_rate(host->clk);
1680         }
1681         host->clock_cache = ios->clock;
1682
1683         spin_lock_irqsave(&host->lock, flags);
1684
1685         if (host->ops && host->ops->set_clkreg)
1686                 host->ops->set_clkreg(host, ios->clock);
1687         else
1688                 mmci_set_clkreg(host, ios->clock);
1689
1690         if (host->ops && host->ops->set_pwrreg)
1691                 host->ops->set_pwrreg(host, pwr);
1692         else
1693                 mmci_write_pwrreg(host, pwr);
1694
1695         mmci_reg_delay(host);
1696
1697         spin_unlock_irqrestore(&host->lock, flags);
1698 }
1699
1700 static int mmci_get_cd(struct mmc_host *mmc)
1701 {
1702         struct mmci_host *host = mmc_priv(mmc);
1703         struct mmci_platform_data *plat = host->plat;
1704         unsigned int status = mmc_gpio_get_cd(mmc);
1705
1706         if (status == -ENOSYS) {
1707                 if (!plat->status)
1708                         return 1; /* Assume always present */
1709
1710                 status = plat->status(mmc_dev(host->mmc));
1711         }
1712         return status;
1713 }
1714
1715 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1716 {
1717         int ret = 0;
1718
1719         if (!IS_ERR(mmc->supply.vqmmc)) {
1720
1721                 switch (ios->signal_voltage) {
1722                 case MMC_SIGNAL_VOLTAGE_330:
1723                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1724                                                 2700000, 3600000);
1725                         break;
1726                 case MMC_SIGNAL_VOLTAGE_180:
1727                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1728                                                 1700000, 1950000);
1729                         break;
1730                 case MMC_SIGNAL_VOLTAGE_120:
1731                         ret = regulator_set_voltage(mmc->supply.vqmmc,
1732                                                 1100000, 1300000);
1733                         break;
1734                 }
1735
1736                 if (ret)
1737                         dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1738         }
1739
1740         return ret;
1741 }
1742
1743 static struct mmc_host_ops mmci_ops = {
1744         .request        = mmci_request,
1745         .pre_req        = mmci_pre_request,
1746         .post_req       = mmci_post_request,
1747         .set_ios        = mmci_set_ios,
1748         .get_ro         = mmc_gpio_get_ro,
1749         .get_cd         = mmci_get_cd,
1750         .start_signal_voltage_switch = mmci_sig_volt_switch,
1751 };
1752
1753 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1754 {
1755         struct mmci_host *host = mmc_priv(mmc);
1756         int ret = mmc_of_parse(mmc);
1757
1758         if (ret)
1759                 return ret;
1760
1761         if (of_get_property(np, "st,sig-dir-dat0", NULL))
1762                 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1763         if (of_get_property(np, "st,sig-dir-dat2", NULL))
1764                 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1765         if (of_get_property(np, "st,sig-dir-dat31", NULL))
1766                 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1767         if (of_get_property(np, "st,sig-dir-dat74", NULL))
1768                 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1769         if (of_get_property(np, "st,sig-dir-cmd", NULL))
1770                 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1771         if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1772                 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1773         if (of_get_property(np, "st,sig-dir", NULL))
1774                 host->pwr_reg_add |= MCI_STM32_DIRPOL;
1775         if (of_get_property(np, "st,neg-edge", NULL))
1776                 host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE;
1777         if (of_get_property(np, "st,use-ckin", NULL))
1778                 host->clk_reg_add |= MCI_STM32_CLK_SELCKIN;
1779
1780         if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1781                 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1782         if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1783                 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1784
1785         return 0;
1786 }
1787
1788 static int mmci_probe(struct amba_device *dev,
1789         const struct amba_id *id)
1790 {
1791         struct mmci_platform_data *plat = dev->dev.platform_data;
1792         struct device_node *np = dev->dev.of_node;
1793         struct variant_data *variant = id->data;
1794         struct mmci_host *host;
1795         struct mmc_host *mmc;
1796         int ret;
1797
1798         /* Must have platform data or Device Tree. */
1799         if (!plat && !np) {
1800                 dev_err(&dev->dev, "No plat data or DT found\n");
1801                 return -EINVAL;
1802         }
1803
1804         if (!plat) {
1805                 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1806                 if (!plat)
1807                         return -ENOMEM;
1808         }
1809
1810         mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1811         if (!mmc)
1812                 return -ENOMEM;
1813
1814         ret = mmci_of_parse(np, mmc);
1815         if (ret)
1816                 goto host_free;
1817
1818         host = mmc_priv(mmc);
1819         host->mmc = mmc;
1820
1821         /*
1822          * Some variant (STM32) doesn't have opendrain bit, nevertheless
1823          * pins can be set accordingly using pinctrl
1824          */
1825         if (!variant->opendrain) {
1826                 host->pinctrl = devm_pinctrl_get(&dev->dev);
1827                 if (IS_ERR(host->pinctrl)) {
1828                         dev_err(&dev->dev, "failed to get pinctrl");
1829                         ret = PTR_ERR(host->pinctrl);
1830                         goto host_free;
1831                 }
1832
1833                 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1834                                                           PINCTRL_STATE_DEFAULT);
1835                 if (IS_ERR(host->pins_default)) {
1836                         dev_err(mmc_dev(mmc), "Can't select default pins\n");
1837                         ret = PTR_ERR(host->pins_default);
1838                         goto host_free;
1839                 }
1840
1841                 host->pins_opendrain = pinctrl_lookup_state(host->pinctrl,
1842                                                             MMCI_PINCTRL_STATE_OPENDRAIN);
1843                 if (IS_ERR(host->pins_opendrain)) {
1844                         dev_err(mmc_dev(mmc), "Can't select opendrain pins\n");
1845                         ret = PTR_ERR(host->pins_opendrain);
1846                         goto host_free;
1847                 }
1848         }
1849
1850         host->hw_designer = amba_manf(dev);
1851         host->hw_revision = amba_rev(dev);
1852         dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1853         dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1854
1855         host->clk = devm_clk_get(&dev->dev, NULL);
1856         if (IS_ERR(host->clk)) {
1857                 ret = PTR_ERR(host->clk);
1858                 goto host_free;
1859         }
1860
1861         ret = clk_prepare_enable(host->clk);
1862         if (ret)
1863                 goto host_free;
1864
1865         if (variant->qcom_fifo)
1866                 host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt;
1867         else
1868                 host->get_rx_fifocnt = mmci_get_rx_fifocnt;
1869
1870         host->plat = plat;
1871         host->variant = variant;
1872         host->mclk = clk_get_rate(host->clk);
1873         /*
1874          * According to the spec, mclk is max 100 MHz,
1875          * so we try to adjust the clock down to this,
1876          * (if possible).
1877          */
1878         if (host->mclk > variant->f_max) {
1879                 ret = clk_set_rate(host->clk, variant->f_max);
1880                 if (ret < 0)
1881                         goto clk_disable;
1882                 host->mclk = clk_get_rate(host->clk);
1883                 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1884                         host->mclk);
1885         }
1886
1887         host->phybase = dev->res.start;
1888         host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1889         if (IS_ERR(host->base)) {
1890                 ret = PTR_ERR(host->base);
1891                 goto clk_disable;
1892         }
1893
1894         if (variant->init)
1895                 variant->init(host);
1896
1897         /*
1898          * The ARM and ST versions of the block have slightly different
1899          * clock divider equations which means that the minimum divider
1900          * differs too.
1901          * on Qualcomm like controllers get the nearest minimum clock to 100Khz
1902          */
1903         if (variant->st_clkdiv)
1904                 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1905         else if (variant->stm32_clkdiv)
1906                 mmc->f_min = DIV_ROUND_UP(host->mclk, 2046);
1907         else if (variant->explicit_mclk_control)
1908                 mmc->f_min = clk_round_rate(host->clk, 100000);
1909         else
1910                 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1911         /*
1912          * If no maximum operating frequency is supplied, fall back to use
1913          * the module parameter, which has a (low) default value in case it
1914          * is not specified. Either value must not exceed the clock rate into
1915          * the block, of course.
1916          */
1917         if (mmc->f_max)
1918                 mmc->f_max = variant->explicit_mclk_control ?
1919                                 min(variant->f_max, mmc->f_max) :
1920                                 min(host->mclk, mmc->f_max);
1921         else
1922                 mmc->f_max = variant->explicit_mclk_control ?
1923                                 fmax : min(host->mclk, fmax);
1924
1925
1926         dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1927
1928         host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL);
1929         if (IS_ERR(host->rst)) {
1930                 ret = PTR_ERR(host->rst);
1931                 goto clk_disable;
1932         }
1933
1934         /* Get regulators and the supported OCR mask */
1935         ret = mmc_regulator_get_supply(mmc);
1936         if (ret)
1937                 goto clk_disable;
1938
1939         if (!mmc->ocr_avail)
1940                 mmc->ocr_avail = plat->ocr_mask;
1941         else if (plat->ocr_mask)
1942                 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1943
1944         /* We support these capabilities. */
1945         mmc->caps |= MMC_CAP_CMD23;
1946
1947         /*
1948          * Enable busy detection.
1949          */
1950         if (variant->busy_detect) {
1951                 mmci_ops.card_busy = mmci_card_busy;
1952                 /*
1953                  * Not all variants have a flag to enable busy detection
1954                  * in the DPSM, but if they do, set it here.
1955                  */
1956                 if (variant->busy_dpsm_flag)
1957                         mmci_write_datactrlreg(host,
1958                                                host->variant->busy_dpsm_flag);
1959                 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1960                 mmc->max_busy_timeout = 0;
1961         }
1962
1963         /* Prepare a CMD12 - needed to clear the DPSM on some variants. */
1964         host->stop_abort.opcode = MMC_STOP_TRANSMISSION;
1965         host->stop_abort.arg = 0;
1966         host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC;
1967
1968         mmc->ops = &mmci_ops;
1969
1970         /* We support these PM capabilities. */
1971         mmc->pm_caps |= MMC_PM_KEEP_POWER;
1972
1973         /*
1974          * We can do SGIO
1975          */
1976         mmc->max_segs = NR_SG;
1977
1978         /*
1979          * Since only a certain number of bits are valid in the data length
1980          * register, we must ensure that we don't exceed 2^num-1 bytes in a
1981          * single request.
1982          */
1983         mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1984
1985         /*
1986          * Set the maximum segment size.  Since we aren't doing DMA
1987          * (yet) we are only limited by the data length register.
1988          */
1989         mmc->max_seg_size = mmc->max_req_size;
1990
1991         /*
1992          * Block size can be up to 2048 bytes, but must be a power of two.
1993          */
1994         mmc->max_blk_size = 1 << variant->datactrl_blocksz;
1995
1996         /*
1997          * Limit the number of blocks transferred so that we don't overflow
1998          * the maximum request size.
1999          */
2000         mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz;
2001
2002         spin_lock_init(&host->lock);
2003
2004         writel(0, host->base + MMCIMASK0);
2005
2006         if (variant->mmcimask1)
2007                 writel(0, host->base + MMCIMASK1);
2008
2009         writel(0xfff, host->base + MMCICLEAR);
2010
2011         /*
2012          * If:
2013          * - not using DT but using a descriptor table, or
2014          * - using a table of descriptors ALONGSIDE DT, or
2015          * look up these descriptors named "cd" and "wp" right here, fail
2016          * silently of these do not exist
2017          */
2018         if (!np) {
2019                 ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0, NULL);
2020                 if (ret == -EPROBE_DEFER)
2021                         goto clk_disable;
2022
2023                 ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0, NULL);
2024                 if (ret == -EPROBE_DEFER)
2025                         goto clk_disable;
2026         }
2027
2028         ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
2029                         DRIVER_NAME " (cmd)", host);
2030         if (ret)
2031                 goto clk_disable;
2032
2033         if (!dev->irq[1])
2034                 host->singleirq = true;
2035         else {
2036                 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
2037                                 IRQF_SHARED, DRIVER_NAME " (pio)", host);
2038                 if (ret)
2039                         goto clk_disable;
2040         }
2041
2042         writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0);
2043
2044         amba_set_drvdata(dev, mmc);
2045
2046         dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
2047                  mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
2048                  amba_rev(dev), (unsigned long long)dev->res.start,
2049                  dev->irq[0], dev->irq[1]);
2050
2051         mmci_dma_setup(host);
2052
2053         pm_runtime_set_autosuspend_delay(&dev->dev, 50);
2054         pm_runtime_use_autosuspend(&dev->dev);
2055
2056         mmc_add_host(mmc);
2057
2058         pm_runtime_put(&dev->dev);
2059         return 0;
2060
2061  clk_disable:
2062         clk_disable_unprepare(host->clk);
2063  host_free:
2064         mmc_free_host(mmc);
2065         return ret;
2066 }
2067
2068 static int mmci_remove(struct amba_device *dev)
2069 {
2070         struct mmc_host *mmc = amba_get_drvdata(dev);
2071
2072         if (mmc) {
2073                 struct mmci_host *host = mmc_priv(mmc);
2074                 struct variant_data *variant = host->variant;
2075
2076                 /*
2077                  * Undo pm_runtime_put() in probe.  We use the _sync
2078                  * version here so that we can access the primecell.
2079                  */
2080                 pm_runtime_get_sync(&dev->dev);
2081
2082                 mmc_remove_host(mmc);
2083
2084                 writel(0, host->base + MMCIMASK0);
2085
2086                 if (variant->mmcimask1)
2087                         writel(0, host->base + MMCIMASK1);
2088
2089                 writel(0, host->base + MMCICOMMAND);
2090                 writel(0, host->base + MMCIDATACTRL);
2091
2092                 mmci_dma_release(host);
2093                 clk_disable_unprepare(host->clk);
2094                 mmc_free_host(mmc);
2095         }
2096
2097         return 0;
2098 }
2099
2100 #ifdef CONFIG_PM
2101 static void mmci_save(struct mmci_host *host)
2102 {
2103         unsigned long flags;
2104
2105         spin_lock_irqsave(&host->lock, flags);
2106
2107         writel(0, host->base + MMCIMASK0);
2108         if (host->variant->pwrreg_nopower) {
2109                 writel(0, host->base + MMCIDATACTRL);
2110                 writel(0, host->base + MMCIPOWER);
2111                 writel(0, host->base + MMCICLOCK);
2112         }
2113         mmci_reg_delay(host);
2114
2115         spin_unlock_irqrestore(&host->lock, flags);
2116 }
2117
2118 static void mmci_restore(struct mmci_host *host)
2119 {
2120         unsigned long flags;
2121
2122         spin_lock_irqsave(&host->lock, flags);
2123
2124         if (host->variant->pwrreg_nopower) {
2125                 writel(host->clk_reg, host->base + MMCICLOCK);
2126                 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
2127                 writel(host->pwr_reg, host->base + MMCIPOWER);
2128         }
2129         writel(MCI_IRQENABLE | host->variant->start_err,
2130                host->base + MMCIMASK0);
2131         mmci_reg_delay(host);
2132
2133         spin_unlock_irqrestore(&host->lock, flags);
2134 }
2135
2136 static int mmci_runtime_suspend(struct device *dev)
2137 {
2138         struct amba_device *adev = to_amba_device(dev);
2139         struct mmc_host *mmc = amba_get_drvdata(adev);
2140
2141         if (mmc) {
2142                 struct mmci_host *host = mmc_priv(mmc);
2143                 pinctrl_pm_select_sleep_state(dev);
2144                 mmci_save(host);
2145                 clk_disable_unprepare(host->clk);
2146         }
2147
2148         return 0;
2149 }
2150
2151 static int mmci_runtime_resume(struct device *dev)
2152 {
2153         struct amba_device *adev = to_amba_device(dev);
2154         struct mmc_host *mmc = amba_get_drvdata(adev);
2155
2156         if (mmc) {
2157                 struct mmci_host *host = mmc_priv(mmc);
2158                 clk_prepare_enable(host->clk);
2159                 mmci_restore(host);
2160                 pinctrl_pm_select_default_state(dev);
2161         }
2162
2163         return 0;
2164 }
2165 #endif
2166
2167 static const struct dev_pm_ops mmci_dev_pm_ops = {
2168         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2169                                 pm_runtime_force_resume)
2170         SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
2171 };
2172
2173 static const struct amba_id mmci_ids[] = {
2174         {
2175                 .id     = 0x00041180,
2176                 .mask   = 0xff0fffff,
2177                 .data   = &variant_arm,
2178         },
2179         {
2180                 .id     = 0x01041180,
2181                 .mask   = 0xff0fffff,
2182                 .data   = &variant_arm_extended_fifo,
2183         },
2184         {
2185                 .id     = 0x02041180,
2186                 .mask   = 0xff0fffff,
2187                 .data   = &variant_arm_extended_fifo_hwfc,
2188         },
2189         {
2190                 .id     = 0x00041181,
2191                 .mask   = 0x000fffff,
2192                 .data   = &variant_arm,
2193         },
2194         /* ST Micro variants */
2195         {
2196                 .id     = 0x00180180,
2197                 .mask   = 0x00ffffff,
2198                 .data   = &variant_u300,
2199         },
2200         {
2201                 .id     = 0x10180180,
2202                 .mask   = 0xf0ffffff,
2203                 .data   = &variant_nomadik,
2204         },
2205         {
2206                 .id     = 0x00280180,
2207                 .mask   = 0x00ffffff,
2208                 .data   = &variant_nomadik,
2209         },
2210         {
2211                 .id     = 0x00480180,
2212                 .mask   = 0xf0ffffff,
2213                 .data   = &variant_ux500,
2214         },
2215         {
2216                 .id     = 0x10480180,
2217                 .mask   = 0xf0ffffff,
2218                 .data   = &variant_ux500v2,
2219         },
2220         {
2221                 .id     = 0x00880180,
2222                 .mask   = 0x00ffffff,
2223                 .data   = &variant_stm32,
2224         },
2225         {
2226                 .id     = 0x10153180,
2227                 .mask   = 0xf0ffffff,
2228                 .data   = &variant_stm32_sdmmc,
2229         },
2230         /* Qualcomm variants */
2231         {
2232                 .id     = 0x00051180,
2233                 .mask   = 0x000fffff,
2234                 .data   = &variant_qcom,
2235         },
2236         { 0, 0 },
2237 };
2238
2239 MODULE_DEVICE_TABLE(amba, mmci_ids);
2240
2241 static struct amba_driver mmci_driver = {
2242         .drv            = {
2243                 .name   = DRIVER_NAME,
2244                 .pm     = &mmci_dev_pm_ops,
2245         },
2246         .probe          = mmci_probe,
2247         .remove         = mmci_remove,
2248         .id_table       = mmci_ids,
2249 };
2250
2251 module_amba_driver(mmci_driver);
2252
2253 module_param(fmax, uint, 0444);
2254
2255 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
2256 MODULE_LICENSE("GPL");