]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/mtd/lpddr/lpddr_cmds.c
Merge tag '9p-for-5.4' of git://github.com/martinetd/linux
[linux.git] / drivers / mtd / lpddr / lpddr_cmds.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * LPDDR flash memory device operations. This module provides read, write,
4  * erase, lock/unlock support for LPDDR flash memories
5  * (C) 2008 Korolev Alexey <akorolev@infradead.org>
6  * (C) 2008 Vasiliy Leonenko <vasiliy.leonenko@gmail.com>
7  * Many thanks to Roman Borisov for initial enabling
8  *
9  * TODO:
10  * Implement VPP management
11  * Implement XIP support
12  * Implement OTP support
13  */
14 #include <linux/mtd/pfow.h>
15 #include <linux/mtd/qinfo.h>
16 #include <linux/slab.h>
17 #include <linux/module.h>
18
19 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
20                                         size_t *retlen, u_char *buf);
21 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to,
22                                 size_t len, size_t *retlen, const u_char *buf);
23 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
24                                 unsigned long count, loff_t to, size_t *retlen);
25 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr);
26 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
27 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
28 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
29                         size_t *retlen, void **mtdbuf, resource_size_t *phys);
30 static int lpddr_unpoint(struct mtd_info *mtd, loff_t adr, size_t len);
31 static int get_chip(struct map_info *map, struct flchip *chip, int mode);
32 static int chip_ready(struct map_info *map, struct flchip *chip, int mode);
33 static void put_chip(struct map_info *map, struct flchip *chip);
34
35 struct mtd_info *lpddr_cmdset(struct map_info *map)
36 {
37         struct lpddr_private *lpddr = map->fldrv_priv;
38         struct flchip_shared *shared;
39         struct flchip *chip;
40         struct mtd_info *mtd;
41         int numchips;
42         int i, j;
43
44         mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
45         if (!mtd)
46                 return NULL;
47         mtd->priv = map;
48         mtd->type = MTD_NORFLASH;
49
50         /* Fill in the default mtd operations */
51         mtd->_read = lpddr_read;
52         mtd->type = MTD_NORFLASH;
53         mtd->flags = MTD_CAP_NORFLASH;
54         mtd->flags &= ~MTD_BIT_WRITEABLE;
55         mtd->_erase = lpddr_erase;
56         mtd->_write = lpddr_write_buffers;
57         mtd->_writev = lpddr_writev;
58         mtd->_lock = lpddr_lock;
59         mtd->_unlock = lpddr_unlock;
60         if (map_is_linear(map)) {
61                 mtd->_point = lpddr_point;
62                 mtd->_unpoint = lpddr_unpoint;
63         }
64         mtd->size = 1 << lpddr->qinfo->DevSizeShift;
65         mtd->erasesize = 1 << lpddr->qinfo->UniformBlockSizeShift;
66         mtd->writesize = 1 << lpddr->qinfo->BufSizeShift;
67
68         shared = kmalloc_array(lpddr->numchips, sizeof(struct flchip_shared),
69                                                 GFP_KERNEL);
70         if (!shared) {
71                 kfree(lpddr);
72                 kfree(mtd);
73                 return NULL;
74         }
75
76         chip = &lpddr->chips[0];
77         numchips = lpddr->numchips / lpddr->qinfo->HWPartsNum;
78         for (i = 0; i < numchips; i++) {
79                 shared[i].writing = shared[i].erasing = NULL;
80                 mutex_init(&shared[i].lock);
81                 for (j = 0; j < lpddr->qinfo->HWPartsNum; j++) {
82                         *chip = lpddr->chips[i];
83                         chip->start += j << lpddr->chipshift;
84                         chip->oldstate = chip->state = FL_READY;
85                         chip->priv = &shared[i];
86                         /* those should be reset too since
87                            they create memory references. */
88                         init_waitqueue_head(&chip->wq);
89                         mutex_init(&chip->mutex);
90                         chip++;
91                 }
92         }
93
94         return mtd;
95 }
96 EXPORT_SYMBOL(lpddr_cmdset);
97
98 static int wait_for_ready(struct map_info *map, struct flchip *chip,
99                 unsigned int chip_op_time)
100 {
101         unsigned int timeo, reset_timeo, sleep_time;
102         unsigned int dsr;
103         flstate_t chip_state = chip->state;
104         int ret = 0;
105
106         /* set our timeout to 8 times the expected delay */
107         timeo = chip_op_time * 8;
108         if (!timeo)
109                 timeo = 500000;
110         reset_timeo = timeo;
111         sleep_time = chip_op_time / 2;
112
113         for (;;) {
114                 dsr = CMDVAL(map_read(map, map->pfow_base + PFOW_DSR));
115                 if (dsr & DSR_READY_STATUS)
116                         break;
117                 if (!timeo) {
118                         printk(KERN_ERR "%s: Flash timeout error state %d \n",
119                                                         map->name, chip_state);
120                         ret = -ETIME;
121                         break;
122                 }
123
124                 /* OK Still waiting. Drop the lock, wait a while and retry. */
125                 mutex_unlock(&chip->mutex);
126                 if (sleep_time >= 1000000/HZ) {
127                         /*
128                          * Half of the normal delay still remaining
129                          * can be performed with a sleeping delay instead
130                          * of busy waiting.
131                          */
132                         msleep(sleep_time/1000);
133                         timeo -= sleep_time;
134                         sleep_time = 1000000/HZ;
135                 } else {
136                         udelay(1);
137                         cond_resched();
138                         timeo--;
139                 }
140                 mutex_lock(&chip->mutex);
141
142                 while (chip->state != chip_state) {
143                         /* Someone's suspended the operation: sleep */
144                         DECLARE_WAITQUEUE(wait, current);
145                         set_current_state(TASK_UNINTERRUPTIBLE);
146                         add_wait_queue(&chip->wq, &wait);
147                         mutex_unlock(&chip->mutex);
148                         schedule();
149                         remove_wait_queue(&chip->wq, &wait);
150                         mutex_lock(&chip->mutex);
151                 }
152                 if (chip->erase_suspended || chip->write_suspended)  {
153                         /* Suspend has occurred while sleep: reset timeout */
154                         timeo = reset_timeo;
155                         chip->erase_suspended = chip->write_suspended = 0;
156                 }
157         }
158         /* check status for errors */
159         if (dsr & DSR_ERR) {
160                 /* Clear DSR*/
161                 map_write(map, CMD(~(DSR_ERR)), map->pfow_base + PFOW_DSR);
162                 printk(KERN_WARNING"%s: Bad status on wait: 0x%x \n",
163                                 map->name, dsr);
164                 print_drs_error(dsr);
165                 ret = -EIO;
166         }
167         chip->state = FL_READY;
168         return ret;
169 }
170
171 static int get_chip(struct map_info *map, struct flchip *chip, int mode)
172 {
173         int ret;
174         DECLARE_WAITQUEUE(wait, current);
175
176  retry:
177         if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)
178                 && chip->state != FL_SYNCING) {
179                 /*
180                  * OK. We have possibility for contension on the write/erase
181                  * operations which are global to the real chip and not per
182                  * partition.  So let's fight it over in the partition which
183                  * currently has authority on the operation.
184                  *
185                  * The rules are as follows:
186                  *
187                  * - any write operation must own shared->writing.
188                  *
189                  * - any erase operation must own _both_ shared->writing and
190                  *   shared->erasing.
191                  *
192                  * - contension arbitration is handled in the owner's context.
193                  *
194                  * The 'shared' struct can be read and/or written only when
195                  * its lock is taken.
196                  */
197                 struct flchip_shared *shared = chip->priv;
198                 struct flchip *contender;
199                 mutex_lock(&shared->lock);
200                 contender = shared->writing;
201                 if (contender && contender != chip) {
202                         /*
203                          * The engine to perform desired operation on this
204                          * partition is already in use by someone else.
205                          * Let's fight over it in the context of the chip
206                          * currently using it.  If it is possible to suspend,
207                          * that other partition will do just that, otherwise
208                          * it'll happily send us to sleep.  In any case, when
209                          * get_chip returns success we're clear to go ahead.
210                          */
211                         ret = mutex_trylock(&contender->mutex);
212                         mutex_unlock(&shared->lock);
213                         if (!ret)
214                                 goto retry;
215                         mutex_unlock(&chip->mutex);
216                         ret = chip_ready(map, contender, mode);
217                         mutex_lock(&chip->mutex);
218
219                         if (ret == -EAGAIN) {
220                                 mutex_unlock(&contender->mutex);
221                                 goto retry;
222                         }
223                         if (ret) {
224                                 mutex_unlock(&contender->mutex);
225                                 return ret;
226                         }
227                         mutex_lock(&shared->lock);
228
229                         /* We should not own chip if it is already in FL_SYNCING
230                          * state. Put contender and retry. */
231                         if (chip->state == FL_SYNCING) {
232                                 put_chip(map, contender);
233                                 mutex_unlock(&contender->mutex);
234                                 goto retry;
235                         }
236                         mutex_unlock(&contender->mutex);
237                 }
238
239                 /* Check if we have suspended erase on this chip.
240                    Must sleep in such a case. */
241                 if (mode == FL_ERASING && shared->erasing
242                     && shared->erasing->oldstate == FL_ERASING) {
243                         mutex_unlock(&shared->lock);
244                         set_current_state(TASK_UNINTERRUPTIBLE);
245                         add_wait_queue(&chip->wq, &wait);
246                         mutex_unlock(&chip->mutex);
247                         schedule();
248                         remove_wait_queue(&chip->wq, &wait);
249                         mutex_lock(&chip->mutex);
250                         goto retry;
251                 }
252
253                 /* We now own it */
254                 shared->writing = chip;
255                 if (mode == FL_ERASING)
256                         shared->erasing = chip;
257                 mutex_unlock(&shared->lock);
258         }
259
260         ret = chip_ready(map, chip, mode);
261         if (ret == -EAGAIN)
262                 goto retry;
263
264         return ret;
265 }
266
267 static int chip_ready(struct map_info *map, struct flchip *chip, int mode)
268 {
269         struct lpddr_private *lpddr = map->fldrv_priv;
270         int ret = 0;
271         DECLARE_WAITQUEUE(wait, current);
272
273         /* Prevent setting state FL_SYNCING for chip in suspended state. */
274         if (FL_SYNCING == mode && FL_READY != chip->oldstate)
275                 goto sleep;
276
277         switch (chip->state) {
278         case FL_READY:
279         case FL_JEDEC_QUERY:
280                 return 0;
281
282         case FL_ERASING:
283                 if (!lpddr->qinfo->SuspEraseSupp ||
284                         !(mode == FL_READY || mode == FL_POINT))
285                         goto sleep;
286
287                 map_write(map, CMD(LPDDR_SUSPEND),
288                         map->pfow_base + PFOW_PROGRAM_ERASE_SUSPEND);
289                 chip->oldstate = FL_ERASING;
290                 chip->state = FL_ERASE_SUSPENDING;
291                 ret = wait_for_ready(map, chip, 0);
292                 if (ret) {
293                         /* Oops. something got wrong. */
294                         /* Resume and pretend we weren't here.  */
295                         put_chip(map, chip);
296                         printk(KERN_ERR "%s: suspend operation failed."
297                                         "State may be wrong \n", map->name);
298                         return -EIO;
299                 }
300                 chip->erase_suspended = 1;
301                 chip->state = FL_READY;
302                 return 0;
303                 /* Erase suspend */
304         case FL_POINT:
305                 /* Only if there's no operation suspended... */
306                 if (mode == FL_READY && chip->oldstate == FL_READY)
307                         return 0;
308                 /* fall through */
309
310         default:
311 sleep:
312                 set_current_state(TASK_UNINTERRUPTIBLE);
313                 add_wait_queue(&chip->wq, &wait);
314                 mutex_unlock(&chip->mutex);
315                 schedule();
316                 remove_wait_queue(&chip->wq, &wait);
317                 mutex_lock(&chip->mutex);
318                 return -EAGAIN;
319         }
320 }
321
322 static void put_chip(struct map_info *map, struct flchip *chip)
323 {
324         if (chip->priv) {
325                 struct flchip_shared *shared = chip->priv;
326                 mutex_lock(&shared->lock);
327                 if (shared->writing == chip && chip->oldstate == FL_READY) {
328                         /* We own the ability to write, but we're done */
329                         shared->writing = shared->erasing;
330                         if (shared->writing && shared->writing != chip) {
331                                 /* give back the ownership */
332                                 struct flchip *loaner = shared->writing;
333                                 mutex_lock(&loaner->mutex);
334                                 mutex_unlock(&shared->lock);
335                                 mutex_unlock(&chip->mutex);
336                                 put_chip(map, loaner);
337                                 mutex_lock(&chip->mutex);
338                                 mutex_unlock(&loaner->mutex);
339                                 wake_up(&chip->wq);
340                                 return;
341                         }
342                         shared->erasing = NULL;
343                         shared->writing = NULL;
344                 } else if (shared->erasing == chip && shared->writing != chip) {
345                         /*
346                          * We own the ability to erase without the ability
347                          * to write, which means the erase was suspended
348                          * and some other partition is currently writing.
349                          * Don't let the switch below mess things up since
350                          * we don't have ownership to resume anything.
351                          */
352                         mutex_unlock(&shared->lock);
353                         wake_up(&chip->wq);
354                         return;
355                 }
356                 mutex_unlock(&shared->lock);
357         }
358
359         switch (chip->oldstate) {
360         case FL_ERASING:
361                 map_write(map, CMD(LPDDR_RESUME),
362                                 map->pfow_base + PFOW_COMMAND_CODE);
363                 map_write(map, CMD(LPDDR_START_EXECUTION),
364                                 map->pfow_base + PFOW_COMMAND_EXECUTE);
365                 chip->oldstate = FL_READY;
366                 chip->state = FL_ERASING;
367                 break;
368         case FL_READY:
369                 break;
370         default:
371                 printk(KERN_ERR "%s: put_chip() called with oldstate %d!\n",
372                                 map->name, chip->oldstate);
373         }
374         wake_up(&chip->wq);
375 }
376
377 static int do_write_buffer(struct map_info *map, struct flchip *chip,
378                         unsigned long adr, const struct kvec **pvec,
379                         unsigned long *pvec_seek, int len)
380 {
381         struct lpddr_private *lpddr = map->fldrv_priv;
382         map_word datum;
383         int ret, wbufsize, word_gap, words;
384         const struct kvec *vec;
385         unsigned long vec_seek;
386         unsigned long prog_buf_ofs;
387
388         wbufsize = 1 << lpddr->qinfo->BufSizeShift;
389
390         mutex_lock(&chip->mutex);
391         ret = get_chip(map, chip, FL_WRITING);
392         if (ret) {
393                 mutex_unlock(&chip->mutex);
394                 return ret;
395         }
396         /* Figure out the number of words to write */
397         word_gap = (-adr & (map_bankwidth(map)-1));
398         words = (len - word_gap + map_bankwidth(map) - 1) / map_bankwidth(map);
399         if (!word_gap) {
400                 words--;
401         } else {
402                 word_gap = map_bankwidth(map) - word_gap;
403                 adr -= word_gap;
404                 datum = map_word_ff(map);
405         }
406         /* Write data */
407         /* Get the program buffer offset from PFOW register data first*/
408         prog_buf_ofs = map->pfow_base + CMDVAL(map_read(map,
409                                 map->pfow_base + PFOW_PROGRAM_BUFFER_OFFSET));
410         vec = *pvec;
411         vec_seek = *pvec_seek;
412         do {
413                 int n = map_bankwidth(map) - word_gap;
414
415                 if (n > vec->iov_len - vec_seek)
416                         n = vec->iov_len - vec_seek;
417                 if (n > len)
418                         n = len;
419
420                 if (!word_gap && (len < map_bankwidth(map)))
421                         datum = map_word_ff(map);
422
423                 datum = map_word_load_partial(map, datum,
424                                 vec->iov_base + vec_seek, word_gap, n);
425
426                 len -= n;
427                 word_gap += n;
428                 if (!len || word_gap == map_bankwidth(map)) {
429                         map_write(map, datum, prog_buf_ofs);
430                         prog_buf_ofs += map_bankwidth(map);
431                         word_gap = 0;
432                 }
433
434                 vec_seek += n;
435                 if (vec_seek == vec->iov_len) {
436                         vec++;
437                         vec_seek = 0;
438                 }
439         } while (len);
440         *pvec = vec;
441         *pvec_seek = vec_seek;
442
443         /* GO GO GO */
444         send_pfow_command(map, LPDDR_BUFF_PROGRAM, adr, wbufsize, NULL);
445         chip->state = FL_WRITING;
446         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->ProgBufferTime));
447         if (ret)        {
448                 printk(KERN_WARNING"%s Buffer program error: %d at %lx; \n",
449                         map->name, ret, adr);
450                 goto out;
451         }
452
453  out:   put_chip(map, chip);
454         mutex_unlock(&chip->mutex);
455         return ret;
456 }
457
458 static int do_erase_oneblock(struct mtd_info *mtd, loff_t adr)
459 {
460         struct map_info *map = mtd->priv;
461         struct lpddr_private *lpddr = map->fldrv_priv;
462         int chipnum = adr >> lpddr->chipshift;
463         struct flchip *chip = &lpddr->chips[chipnum];
464         int ret;
465
466         mutex_lock(&chip->mutex);
467         ret = get_chip(map, chip, FL_ERASING);
468         if (ret) {
469                 mutex_unlock(&chip->mutex);
470                 return ret;
471         }
472         send_pfow_command(map, LPDDR_BLOCK_ERASE, adr, 0, NULL);
473         chip->state = FL_ERASING;
474         ret = wait_for_ready(map, chip, (1<<lpddr->qinfo->BlockEraseTime)*1000);
475         if (ret) {
476                 printk(KERN_WARNING"%s Erase block error %d at : %llx\n",
477                         map->name, ret, adr);
478                 goto out;
479         }
480  out:   put_chip(map, chip);
481         mutex_unlock(&chip->mutex);
482         return ret;
483 }
484
485 static int lpddr_read(struct mtd_info *mtd, loff_t adr, size_t len,
486                         size_t *retlen, u_char *buf)
487 {
488         struct map_info *map = mtd->priv;
489         struct lpddr_private *lpddr = map->fldrv_priv;
490         int chipnum = adr >> lpddr->chipshift;
491         struct flchip *chip = &lpddr->chips[chipnum];
492         int ret = 0;
493
494         mutex_lock(&chip->mutex);
495         ret = get_chip(map, chip, FL_READY);
496         if (ret) {
497                 mutex_unlock(&chip->mutex);
498                 return ret;
499         }
500
501         map_copy_from(map, buf, adr, len);
502         *retlen = len;
503
504         put_chip(map, chip);
505         mutex_unlock(&chip->mutex);
506         return ret;
507 }
508
509 static int lpddr_point(struct mtd_info *mtd, loff_t adr, size_t len,
510                         size_t *retlen, void **mtdbuf, resource_size_t *phys)
511 {
512         struct map_info *map = mtd->priv;
513         struct lpddr_private *lpddr = map->fldrv_priv;
514         int chipnum = adr >> lpddr->chipshift;
515         unsigned long ofs, last_end = 0;
516         struct flchip *chip = &lpddr->chips[chipnum];
517         int ret = 0;
518
519         if (!map->virt)
520                 return -EINVAL;
521
522         /* ofs: offset within the first chip that the first read should start */
523         ofs = adr - (chipnum << lpddr->chipshift);
524         *mtdbuf = (void *)map->virt + chip->start + ofs;
525
526         while (len) {
527                 unsigned long thislen;
528
529                 if (chipnum >= lpddr->numchips)
530                         break;
531
532                 /* We cannot point across chips that are virtually disjoint */
533                 if (!last_end)
534                         last_end = chip->start;
535                 else if (chip->start != last_end)
536                         break;
537
538                 if ((len + ofs - 1) >> lpddr->chipshift)
539                         thislen = (1<<lpddr->chipshift) - ofs;
540                 else
541                         thislen = len;
542                 /* get the chip */
543                 mutex_lock(&chip->mutex);
544                 ret = get_chip(map, chip, FL_POINT);
545                 mutex_unlock(&chip->mutex);
546                 if (ret)
547                         break;
548
549                 chip->state = FL_POINT;
550                 chip->ref_point_counter++;
551                 *retlen += thislen;
552                 len -= thislen;
553
554                 ofs = 0;
555                 last_end += 1 << lpddr->chipshift;
556                 chipnum++;
557                 chip = &lpddr->chips[chipnum];
558         }
559         return 0;
560 }
561
562 static int lpddr_unpoint (struct mtd_info *mtd, loff_t adr, size_t len)
563 {
564         struct map_info *map = mtd->priv;
565         struct lpddr_private *lpddr = map->fldrv_priv;
566         int chipnum = adr >> lpddr->chipshift, err = 0;
567         unsigned long ofs;
568
569         /* ofs: offset within the first chip that the first read should start */
570         ofs = adr - (chipnum << lpddr->chipshift);
571
572         while (len) {
573                 unsigned long thislen;
574                 struct flchip *chip;
575
576                 chip = &lpddr->chips[chipnum];
577                 if (chipnum >= lpddr->numchips)
578                         break;
579
580                 if ((len + ofs - 1) >> lpddr->chipshift)
581                         thislen = (1<<lpddr->chipshift) - ofs;
582                 else
583                         thislen = len;
584
585                 mutex_lock(&chip->mutex);
586                 if (chip->state == FL_POINT) {
587                         chip->ref_point_counter--;
588                         if (chip->ref_point_counter == 0)
589                                 chip->state = FL_READY;
590                 } else {
591                         printk(KERN_WARNING "%s: Warning: unpoint called on non"
592                                         "pointed region\n", map->name);
593                         err = -EINVAL;
594                 }
595
596                 put_chip(map, chip);
597                 mutex_unlock(&chip->mutex);
598
599                 len -= thislen;
600                 ofs = 0;
601                 chipnum++;
602         }
603
604         return err;
605 }
606
607 static int lpddr_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
608                                 size_t *retlen, const u_char *buf)
609 {
610         struct kvec vec;
611
612         vec.iov_base = (void *) buf;
613         vec.iov_len = len;
614
615         return lpddr_writev(mtd, &vec, 1, to, retlen);
616 }
617
618
619 static int lpddr_writev(struct mtd_info *mtd, const struct kvec *vecs,
620                                 unsigned long count, loff_t to, size_t *retlen)
621 {
622         struct map_info *map = mtd->priv;
623         struct lpddr_private *lpddr = map->fldrv_priv;
624         int ret = 0;
625         int chipnum;
626         unsigned long ofs, vec_seek, i;
627         int wbufsize = 1 << lpddr->qinfo->BufSizeShift;
628         size_t len = 0;
629
630         for (i = 0; i < count; i++)
631                 len += vecs[i].iov_len;
632
633         if (!len)
634                 return 0;
635
636         chipnum = to >> lpddr->chipshift;
637
638         ofs = to;
639         vec_seek = 0;
640
641         do {
642                 /* We must not cross write block boundaries */
643                 int size = wbufsize - (ofs & (wbufsize-1));
644
645                 if (size > len)
646                         size = len;
647
648                 ret = do_write_buffer(map, &lpddr->chips[chipnum],
649                                           ofs, &vecs, &vec_seek, size);
650                 if (ret)
651                         return ret;
652
653                 ofs += size;
654                 (*retlen) += size;
655                 len -= size;
656
657                 /* Be nice and reschedule with the chip in a usable
658                  * state for other processes */
659                 cond_resched();
660
661         } while (len);
662
663         return 0;
664 }
665
666 static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr)
667 {
668         unsigned long ofs, len;
669         int ret;
670         struct map_info *map = mtd->priv;
671         struct lpddr_private *lpddr = map->fldrv_priv;
672         int size = 1 << lpddr->qinfo->UniformBlockSizeShift;
673
674         ofs = instr->addr;
675         len = instr->len;
676
677         while (len > 0) {
678                 ret = do_erase_oneblock(mtd, ofs);
679                 if (ret)
680                         return ret;
681                 ofs += size;
682                 len -= size;
683         }
684
685         return 0;
686 }
687
688 #define DO_XXLOCK_LOCK          1
689 #define DO_XXLOCK_UNLOCK        2
690 static int do_xxlock(struct mtd_info *mtd, loff_t adr, uint32_t len, int thunk)
691 {
692         int ret = 0;
693         struct map_info *map = mtd->priv;
694         struct lpddr_private *lpddr = map->fldrv_priv;
695         int chipnum = adr >> lpddr->chipshift;
696         struct flchip *chip = &lpddr->chips[chipnum];
697
698         mutex_lock(&chip->mutex);
699         ret = get_chip(map, chip, FL_LOCKING);
700         if (ret) {
701                 mutex_unlock(&chip->mutex);
702                 return ret;
703         }
704
705         if (thunk == DO_XXLOCK_LOCK) {
706                 send_pfow_command(map, LPDDR_LOCK_BLOCK, adr, adr + len, NULL);
707                 chip->state = FL_LOCKING;
708         } else if (thunk == DO_XXLOCK_UNLOCK) {
709                 send_pfow_command(map, LPDDR_UNLOCK_BLOCK, adr, adr + len, NULL);
710                 chip->state = FL_UNLOCKING;
711         } else
712                 BUG();
713
714         ret = wait_for_ready(map, chip, 1);
715         if (ret)        {
716                 printk(KERN_ERR "%s: block unlock error status %d \n",
717                                 map->name, ret);
718                 goto out;
719         }
720 out:    put_chip(map, chip);
721         mutex_unlock(&chip->mutex);
722         return ret;
723 }
724
725 static int lpddr_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
726 {
727         return do_xxlock(mtd, ofs, len, DO_XXLOCK_LOCK);
728 }
729
730 static int lpddr_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
731 {
732         return do_xxlock(mtd, ofs, len, DO_XXLOCK_UNLOCK);
733 }
734
735 MODULE_LICENSE("GPL");
736 MODULE_AUTHOR("Alexey Korolev <akorolev@infradead.org>");
737 MODULE_DESCRIPTION("MTD driver for LPDDR flash chips");