]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/mtd/nand/pxa3xx_nand.c
Merge tag 'for-linus-4.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / mtd / nand / pxa3xx_nand.c
1 /*
2  * drivers/mtd/nand/pxa3xx_nand.c
3  *
4  * Copyright © 2005 Intel Corporation
5  * Copyright © 2006 Marvell International Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * See Documentation/mtd/nand/pxa3xx-nand.txt for more details.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/dmaengine.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma/pxa-dma.h>
21 #include <linux/delay.h>
22 #include <linux/clk.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/io.h>
27 #include <linux/iopoll.h>
28 #include <linux/irq.h>
29 #include <linux/slab.h>
30 #include <linux/of.h>
31 #include <linux/of_device.h>
32 #include <linux/platform_data/mtd-nand-pxa3xx.h>
33 #include <linux/mfd/syscon.h>
34 #include <linux/regmap.h>
35
36 #define CHIP_DELAY_TIMEOUT      msecs_to_jiffies(200)
37 #define NAND_STOP_DELAY         msecs_to_jiffies(40)
38 #define PAGE_CHUNK_SIZE         (2048)
39
40 /*
41  * Define a buffer size for the initial command that detects the flash device:
42  * STATUS, READID and PARAM.
43  * ONFI param page is 256 bytes, and there are three redundant copies
44  * to be read. JEDEC param page is 512 bytes, and there are also three
45  * redundant copies to be read.
46  * Hence this buffer should be at least 512 x 3. Let's pick 2048.
47  */
48 #define INIT_BUFFER_SIZE        2048
49
50 /* System control register and bit to enable NAND on some SoCs */
51 #define GENCONF_SOC_DEVICE_MUX  0x208
52 #define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0)
53
54 /* registers and bit definitions */
55 #define NDCR            (0x00) /* Control register */
56 #define NDTR0CS0        (0x04) /* Timing Parameter 0 for CS0 */
57 #define NDTR1CS0        (0x0C) /* Timing Parameter 1 for CS0 */
58 #define NDSR            (0x14) /* Status Register */
59 #define NDPCR           (0x18) /* Page Count Register */
60 #define NDBDR0          (0x1C) /* Bad Block Register 0 */
61 #define NDBDR1          (0x20) /* Bad Block Register 1 */
62 #define NDECCCTRL       (0x28) /* ECC control */
63 #define NDDB            (0x40) /* Data Buffer */
64 #define NDCB0           (0x48) /* Command Buffer0 */
65 #define NDCB1           (0x4C) /* Command Buffer1 */
66 #define NDCB2           (0x50) /* Command Buffer2 */
67
68 #define NDCR_SPARE_EN           (0x1 << 31)
69 #define NDCR_ECC_EN             (0x1 << 30)
70 #define NDCR_DMA_EN             (0x1 << 29)
71 #define NDCR_ND_RUN             (0x1 << 28)
72 #define NDCR_DWIDTH_C           (0x1 << 27)
73 #define NDCR_DWIDTH_M           (0x1 << 26)
74 #define NDCR_PAGE_SZ            (0x1 << 24)
75 #define NDCR_NCSX               (0x1 << 23)
76 #define NDCR_ND_MODE            (0x3 << 21)
77 #define NDCR_NAND_MODE          (0x0)
78 #define NDCR_CLR_PG_CNT         (0x1 << 20)
79 #define NFCV1_NDCR_ARB_CNTL     (0x1 << 19)
80 #define NFCV2_NDCR_STOP_ON_UNCOR        (0x1 << 19)
81 #define NDCR_RD_ID_CNT_MASK     (0x7 << 16)
82 #define NDCR_RD_ID_CNT(x)       (((x) << 16) & NDCR_RD_ID_CNT_MASK)
83
84 #define NDCR_RA_START           (0x1 << 15)
85 #define NDCR_PG_PER_BLK         (0x1 << 14)
86 #define NDCR_ND_ARB_EN          (0x1 << 12)
87 #define NDCR_INT_MASK           (0xFFF)
88
89 #define NDSR_MASK               (0xfff)
90 #define NDSR_ERR_CNT_OFF        (16)
91 #define NDSR_ERR_CNT_MASK       (0x1f)
92 #define NDSR_ERR_CNT(sr)        ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK)
93 #define NDSR_RDY                (0x1 << 12)
94 #define NDSR_FLASH_RDY          (0x1 << 11)
95 #define NDSR_CS0_PAGED          (0x1 << 10)
96 #define NDSR_CS1_PAGED          (0x1 << 9)
97 #define NDSR_CS0_CMDD           (0x1 << 8)
98 #define NDSR_CS1_CMDD           (0x1 << 7)
99 #define NDSR_CS0_BBD            (0x1 << 6)
100 #define NDSR_CS1_BBD            (0x1 << 5)
101 #define NDSR_UNCORERR           (0x1 << 4)
102 #define NDSR_CORERR             (0x1 << 3)
103 #define NDSR_WRDREQ             (0x1 << 2)
104 #define NDSR_RDDREQ             (0x1 << 1)
105 #define NDSR_WRCMDREQ           (0x1)
106
107 #define NDCB0_LEN_OVRD          (0x1 << 28)
108 #define NDCB0_ST_ROW_EN         (0x1 << 26)
109 #define NDCB0_AUTO_RS           (0x1 << 25)
110 #define NDCB0_CSEL              (0x1 << 24)
111 #define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29)
112 #define NDCB0_EXT_CMD_TYPE(x)   (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK)
113 #define NDCB0_CMD_TYPE_MASK     (0x7 << 21)
114 #define NDCB0_CMD_TYPE(x)       (((x) << 21) & NDCB0_CMD_TYPE_MASK)
115 #define NDCB0_NC                (0x1 << 20)
116 #define NDCB0_DBC               (0x1 << 19)
117 #define NDCB0_ADDR_CYC_MASK     (0x7 << 16)
118 #define NDCB0_ADDR_CYC(x)       (((x) << 16) & NDCB0_ADDR_CYC_MASK)
119 #define NDCB0_CMD2_MASK         (0xff << 8)
120 #define NDCB0_CMD1_MASK         (0xff)
121 #define NDCB0_ADDR_CYC_SHIFT    (16)
122
123 #define EXT_CMD_TYPE_DISPATCH   6 /* Command dispatch */
124 #define EXT_CMD_TYPE_NAKED_RW   5 /* Naked read or Naked write */
125 #define EXT_CMD_TYPE_READ       4 /* Read */
126 #define EXT_CMD_TYPE_DISP_WR    4 /* Command dispatch with write */
127 #define EXT_CMD_TYPE_FINAL      3 /* Final command */
128 #define EXT_CMD_TYPE_LAST_RW    1 /* Last naked read/write */
129 #define EXT_CMD_TYPE_MONO       0 /* Monolithic read/write */
130
131 /*
132  * This should be large enough to read 'ONFI' and 'JEDEC'.
133  * Let's use 7 bytes, which is the maximum ID count supported
134  * by the controller (see NDCR_RD_ID_CNT_MASK).
135  */
136 #define READ_ID_BYTES           7
137
138 /* macros for registers read/write */
139 #define nand_writel(info, off, val)                                     \
140         do {                                                            \
141                 dev_vdbg(&info->pdev->dev,                              \
142                          "%s():%d nand_writel(0x%x, 0x%04x)\n",         \
143                          __func__, __LINE__, (val), (off));             \
144                 writel_relaxed((val), (info)->mmio_base + (off));       \
145         } while (0)
146
147 #define nand_readl(info, off)                                           \
148         ({                                                              \
149                 unsigned int _v;                                        \
150                 _v = readl_relaxed((info)->mmio_base + (off));          \
151                 dev_vdbg(&info->pdev->dev,                              \
152                          "%s():%d nand_readl(0x%04x) = 0x%x\n",         \
153                          __func__, __LINE__, (off), _v);                \
154                 _v;                                                     \
155         })
156
157 /* error code and state */
158 enum {
159         ERR_NONE        = 0,
160         ERR_DMABUSERR   = -1,
161         ERR_SENDCMD     = -2,
162         ERR_UNCORERR    = -3,
163         ERR_BBERR       = -4,
164         ERR_CORERR      = -5,
165 };
166
167 enum {
168         STATE_IDLE = 0,
169         STATE_PREPARED,
170         STATE_CMD_HANDLE,
171         STATE_DMA_READING,
172         STATE_DMA_WRITING,
173         STATE_DMA_DONE,
174         STATE_PIO_READING,
175         STATE_PIO_WRITING,
176         STATE_CMD_DONE,
177         STATE_READY,
178 };
179
180 enum pxa3xx_nand_variant {
181         PXA3XX_NAND_VARIANT_PXA,
182         PXA3XX_NAND_VARIANT_ARMADA370,
183         PXA3XX_NAND_VARIANT_ARMADA_8K,
184 };
185
186 struct pxa3xx_nand_host {
187         struct nand_chip        chip;
188         void                    *info_data;
189
190         /* page size of attached chip */
191         int                     use_ecc;
192         int                     cs;
193
194         /* calculated from pxa3xx_nand_flash data */
195         unsigned int            col_addr_cycles;
196         unsigned int            row_addr_cycles;
197 };
198
199 struct pxa3xx_nand_info {
200         struct nand_hw_control  controller;
201         struct platform_device   *pdev;
202
203         struct clk              *clk;
204         void __iomem            *mmio_base;
205         unsigned long           mmio_phys;
206         struct completion       cmd_complete, dev_ready;
207
208         unsigned int            buf_start;
209         unsigned int            buf_count;
210         unsigned int            buf_size;
211         unsigned int            data_buff_pos;
212         unsigned int            oob_buff_pos;
213
214         /* DMA information */
215         struct scatterlist      sg;
216         enum dma_data_direction dma_dir;
217         struct dma_chan         *dma_chan;
218         dma_cookie_t            dma_cookie;
219         int                     drcmr_dat;
220
221         unsigned char           *data_buff;
222         unsigned char           *oob_buff;
223         dma_addr_t              data_buff_phys;
224         int                     data_dma_ch;
225
226         struct pxa3xx_nand_host *host[NUM_CHIP_SELECT];
227         unsigned int            state;
228
229         /*
230          * This driver supports NFCv1 (as found in PXA SoC)
231          * and NFCv2 (as found in Armada 370/XP SoC).
232          */
233         enum pxa3xx_nand_variant variant;
234
235         int                     cs;
236         int                     use_ecc;        /* use HW ECC ? */
237         int                     ecc_bch;        /* using BCH ECC? */
238         int                     use_dma;        /* use DMA ? */
239         int                     use_spare;      /* use spare ? */
240         int                     need_wait;
241
242         /* Amount of real data per full chunk */
243         unsigned int            chunk_size;
244
245         /* Amount of spare data per full chunk */
246         unsigned int            spare_size;
247
248         /* Number of full chunks (i.e chunk_size + spare_size) */
249         unsigned int            nfullchunks;
250
251         /*
252          * Total number of chunks. If equal to nfullchunks, then there
253          * are only full chunks. Otherwise, there is one last chunk of
254          * size (last_chunk_size + last_spare_size)
255          */
256         unsigned int            ntotalchunks;
257
258         /* Amount of real data in the last chunk */
259         unsigned int            last_chunk_size;
260
261         /* Amount of spare data in the last chunk */
262         unsigned int            last_spare_size;
263
264         unsigned int            ecc_size;
265         unsigned int            ecc_err_cnt;
266         unsigned int            max_bitflips;
267         int                     retcode;
268
269         /*
270          * Variables only valid during command
271          * execution. step_chunk_size and step_spare_size is the
272          * amount of real data and spare data in the current
273          * chunk. cur_chunk is the current chunk being
274          * read/programmed.
275          */
276         unsigned int            step_chunk_size;
277         unsigned int            step_spare_size;
278         unsigned int            cur_chunk;
279
280         /* cached register value */
281         uint32_t                reg_ndcr;
282         uint32_t                ndtr0cs0;
283         uint32_t                ndtr1cs0;
284
285         /* generated NDCBx register values */
286         uint32_t                ndcb0;
287         uint32_t                ndcb1;
288         uint32_t                ndcb2;
289         uint32_t                ndcb3;
290 };
291
292 static bool use_dma = 1;
293 module_param(use_dma, bool, 0444);
294 MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW");
295
296 struct pxa3xx_nand_timing {
297         unsigned int    tCH;  /* Enable signal hold time */
298         unsigned int    tCS;  /* Enable signal setup time */
299         unsigned int    tWH;  /* ND_nWE high duration */
300         unsigned int    tWP;  /* ND_nWE pulse time */
301         unsigned int    tRH;  /* ND_nRE high duration */
302         unsigned int    tRP;  /* ND_nRE pulse width */
303         unsigned int    tR;   /* ND_nWE high to ND_nRE low for read */
304         unsigned int    tWHR; /* ND_nWE high to ND_nRE low for status read */
305         unsigned int    tAR;  /* ND_ALE low to ND_nRE low delay */
306 };
307
308 struct pxa3xx_nand_flash {
309         uint32_t        chip_id;
310         unsigned int    flash_width;    /* Width of Flash memory (DWIDTH_M) */
311         unsigned int    dfc_width;      /* Width of flash controller(DWIDTH_C) */
312         struct pxa3xx_nand_timing *timing;      /* NAND Flash timing */
313 };
314
315 static struct pxa3xx_nand_timing timing[] = {
316         { 40, 80, 60, 100, 80, 100, 90000, 400, 40, },
317         { 10,  0, 20,  40, 30,  40, 11123, 110, 10, },
318         { 10, 25, 15,  25, 15,  30, 25000,  60, 10, },
319         { 10, 35, 15,  25, 15,  25, 25000,  60, 10, },
320 };
321
322 static struct pxa3xx_nand_flash builtin_flash_types[] = {
323         { 0x46ec, 16, 16, &timing[1] },
324         { 0xdaec,  8,  8, &timing[1] },
325         { 0xd7ec,  8,  8, &timing[1] },
326         { 0xa12c,  8,  8, &timing[2] },
327         { 0xb12c, 16, 16, &timing[2] },
328         { 0xdc2c,  8,  8, &timing[2] },
329         { 0xcc2c, 16, 16, &timing[2] },
330         { 0xba20, 16, 16, &timing[3] },
331 };
332
333 static int pxa3xx_ooblayout_ecc(struct mtd_info *mtd, int section,
334                                 struct mtd_oob_region *oobregion)
335 {
336         struct nand_chip *chip = mtd_to_nand(mtd);
337         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
338         struct pxa3xx_nand_info *info = host->info_data;
339         int nchunks = mtd->writesize / info->chunk_size;
340
341         if (section >= nchunks)
342                 return -ERANGE;
343
344         oobregion->offset = ((info->ecc_size + info->spare_size) * section) +
345                             info->spare_size;
346         oobregion->length = info->ecc_size;
347
348         return 0;
349 }
350
351 static int pxa3xx_ooblayout_free(struct mtd_info *mtd, int section,
352                                  struct mtd_oob_region *oobregion)
353 {
354         struct nand_chip *chip = mtd_to_nand(mtd);
355         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
356         struct pxa3xx_nand_info *info = host->info_data;
357         int nchunks = mtd->writesize / info->chunk_size;
358
359         if (section >= nchunks)
360                 return -ERANGE;
361
362         if (!info->spare_size)
363                 return 0;
364
365         oobregion->offset = section * (info->ecc_size + info->spare_size);
366         oobregion->length = info->spare_size;
367         if (!section) {
368                 /*
369                  * Bootrom looks in bytes 0 & 5 for bad blocks for the
370                  * 4KB page / 4bit BCH combination.
371                  */
372                 if (mtd->writesize == 4096 && info->chunk_size == 2048) {
373                         oobregion->offset += 6;
374                         oobregion->length -= 6;
375                 } else {
376                         oobregion->offset += 2;
377                         oobregion->length -= 2;
378                 }
379         }
380
381         return 0;
382 }
383
384 static const struct mtd_ooblayout_ops pxa3xx_ooblayout_ops = {
385         .ecc = pxa3xx_ooblayout_ecc,
386         .free = pxa3xx_ooblayout_free,
387 };
388
389 static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' };
390 static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' };
391
392 static struct nand_bbt_descr bbt_main_descr = {
393         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
394                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
395         .offs = 8,
396         .len = 6,
397         .veroffs = 14,
398         .maxblocks = 8,         /* Last 8 blocks in each chip */
399         .pattern = bbt_pattern
400 };
401
402 static struct nand_bbt_descr bbt_mirror_descr = {
403         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
404                 | NAND_BBT_2BIT | NAND_BBT_VERSION,
405         .offs = 8,
406         .len = 6,
407         .veroffs = 14,
408         .maxblocks = 8,         /* Last 8 blocks in each chip */
409         .pattern = bbt_mirror_pattern
410 };
411
412 #define NDTR0_tCH(c)    (min((c), 7) << 19)
413 #define NDTR0_tCS(c)    (min((c), 7) << 16)
414 #define NDTR0_tWH(c)    (min((c), 7) << 11)
415 #define NDTR0_tWP(c)    (min((c), 7) << 8)
416 #define NDTR0_tRH(c)    (min((c), 7) << 3)
417 #define NDTR0_tRP(c)    (min((c), 7) << 0)
418
419 #define NDTR1_tR(c)     (min((c), 65535) << 16)
420 #define NDTR1_tWHR(c)   (min((c), 15) << 4)
421 #define NDTR1_tAR(c)    (min((c), 15) << 0)
422
423 /* convert nano-seconds to nand flash controller clock cycles */
424 #define ns2cycle(ns, clk)       (int)((ns) * (clk / 1000000) / 1000)
425
426 static const struct of_device_id pxa3xx_nand_dt_ids[] = {
427         {
428                 .compatible = "marvell,pxa3xx-nand",
429                 .data       = (void *)PXA3XX_NAND_VARIANT_PXA,
430         },
431         {
432                 .compatible = "marvell,armada370-nand",
433                 .data       = (void *)PXA3XX_NAND_VARIANT_ARMADA370,
434         },
435         {
436                 .compatible = "marvell,armada-8k-nand",
437                 .data       = (void *)PXA3XX_NAND_VARIANT_ARMADA_8K,
438         },
439         {}
440 };
441 MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids);
442
443 static enum pxa3xx_nand_variant
444 pxa3xx_nand_get_variant(struct platform_device *pdev)
445 {
446         const struct of_device_id *of_id =
447                         of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
448         if (!of_id)
449                 return PXA3XX_NAND_VARIANT_PXA;
450         return (enum pxa3xx_nand_variant)of_id->data;
451 }
452
453 static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host,
454                                    const struct pxa3xx_nand_timing *t)
455 {
456         struct pxa3xx_nand_info *info = host->info_data;
457         unsigned long nand_clk = clk_get_rate(info->clk);
458         uint32_t ndtr0, ndtr1;
459
460         ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) |
461                 NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) |
462                 NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) |
463                 NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) |
464                 NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) |
465                 NDTR0_tRP(ns2cycle(t->tRP, nand_clk));
466
467         ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) |
468                 NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) |
469                 NDTR1_tAR(ns2cycle(t->tAR, nand_clk));
470
471         info->ndtr0cs0 = ndtr0;
472         info->ndtr1cs0 = ndtr1;
473         nand_writel(info, NDTR0CS0, ndtr0);
474         nand_writel(info, NDTR1CS0, ndtr1);
475 }
476
477 static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host,
478                                        const struct nand_sdr_timings *t)
479 {
480         struct pxa3xx_nand_info *info = host->info_data;
481         struct nand_chip *chip = &host->chip;
482         unsigned long nand_clk = clk_get_rate(info->clk);
483         uint32_t ndtr0, ndtr1;
484
485         u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000);
486         u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000);
487         u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000);
488         u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000);
489         u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000);
490         u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000);
491         u32 tR = chip->chip_delay * 1000;
492         u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000);
493         u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000);
494
495         /* fallback to a default value if tR = 0 */
496         if (!tR)
497                 tR = 20000;
498
499         ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) |
500                 NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) |
501                 NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) |
502                 NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) |
503                 NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) |
504                 NDTR0_tRP(ns2cycle(tRP_min, nand_clk));
505
506         ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) |
507                 NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) |
508                 NDTR1_tAR(ns2cycle(tAR_min, nand_clk));
509
510         info->ndtr0cs0 = ndtr0;
511         info->ndtr1cs0 = ndtr1;
512         nand_writel(info, NDTR0CS0, ndtr0);
513         nand_writel(info, NDTR1CS0, ndtr1);
514 }
515
516 static int pxa3xx_nand_init_timings_compat(struct pxa3xx_nand_host *host,
517                                            unsigned int *flash_width,
518                                            unsigned int *dfc_width)
519 {
520         struct nand_chip *chip = &host->chip;
521         struct pxa3xx_nand_info *info = host->info_data;
522         const struct pxa3xx_nand_flash *f = NULL;
523         int i, id, ntypes;
524         u8 idbuf[2];
525
526         ntypes = ARRAY_SIZE(builtin_flash_types);
527
528         nand_readid_op(chip, 0, idbuf, sizeof(idbuf));
529         id = idbuf[0] | (idbuf[1] << 8);
530
531         for (i = 0; i < ntypes; i++) {
532                 f = &builtin_flash_types[i];
533
534                 if (f->chip_id == id)
535                         break;
536         }
537
538         if (i == ntypes) {
539                 dev_err(&info->pdev->dev, "Error: timings not found\n");
540                 return -EINVAL;
541         }
542
543         pxa3xx_nand_set_timing(host, f->timing);
544
545         *flash_width = f->flash_width;
546         *dfc_width = f->dfc_width;
547
548         return 0;
549 }
550
551 static int pxa3xx_nand_init_timings_onfi(struct pxa3xx_nand_host *host,
552                                          int mode)
553 {
554         const struct nand_sdr_timings *timings;
555
556         mode = fls(mode) - 1;
557         if (mode < 0)
558                 mode = 0;
559
560         timings = onfi_async_timing_mode_to_sdr_timings(mode);
561         if (IS_ERR(timings))
562                 return PTR_ERR(timings);
563
564         pxa3xx_nand_set_sdr_timing(host, timings);
565
566         return 0;
567 }
568
569 static int pxa3xx_nand_init(struct pxa3xx_nand_host *host)
570 {
571         struct nand_chip *chip = &host->chip;
572         struct pxa3xx_nand_info *info = host->info_data;
573         unsigned int flash_width = 0, dfc_width = 0;
574         int mode, err;
575
576         mode = onfi_get_async_timing_mode(chip);
577         if (mode == ONFI_TIMING_MODE_UNKNOWN) {
578                 err = pxa3xx_nand_init_timings_compat(host, &flash_width,
579                                                       &dfc_width);
580                 if (err)
581                         return err;
582
583                 if (flash_width == 16) {
584                         info->reg_ndcr |= NDCR_DWIDTH_M;
585                         chip->options |= NAND_BUSWIDTH_16;
586                 }
587
588                 info->reg_ndcr |= (dfc_width == 16) ? NDCR_DWIDTH_C : 0;
589         } else {
590                 err = pxa3xx_nand_init_timings_onfi(host, mode);
591                 if (err)
592                         return err;
593         }
594
595         return 0;
596 }
597
598 /**
599  * NOTE: it is a must to set ND_RUN firstly, then write
600  * command buffer, otherwise, it does not work.
601  * We enable all the interrupt at the same time, and
602  * let pxa3xx_nand_irq to handle all logic.
603  */
604 static void pxa3xx_nand_start(struct pxa3xx_nand_info *info)
605 {
606         uint32_t ndcr;
607
608         ndcr = info->reg_ndcr;
609
610         if (info->use_ecc) {
611                 ndcr |= NDCR_ECC_EN;
612                 if (info->ecc_bch)
613                         nand_writel(info, NDECCCTRL, 0x1);
614         } else {
615                 ndcr &= ~NDCR_ECC_EN;
616                 if (info->ecc_bch)
617                         nand_writel(info, NDECCCTRL, 0x0);
618         }
619
620         if (info->use_dma)
621                 ndcr |= NDCR_DMA_EN;
622         else
623                 ndcr &= ~NDCR_DMA_EN;
624
625         if (info->use_spare)
626                 ndcr |= NDCR_SPARE_EN;
627         else
628                 ndcr &= ~NDCR_SPARE_EN;
629
630         ndcr |= NDCR_ND_RUN;
631
632         /* clear status bits and run */
633         nand_writel(info, NDSR, NDSR_MASK);
634         nand_writel(info, NDCR, 0);
635         nand_writel(info, NDCR, ndcr);
636 }
637
638 static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info)
639 {
640         uint32_t ndcr;
641         int timeout = NAND_STOP_DELAY;
642
643         /* wait RUN bit in NDCR become 0 */
644         ndcr = nand_readl(info, NDCR);
645         while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) {
646                 ndcr = nand_readl(info, NDCR);
647                 udelay(1);
648         }
649
650         if (timeout <= 0) {
651                 ndcr &= ~NDCR_ND_RUN;
652                 nand_writel(info, NDCR, ndcr);
653         }
654         if (info->dma_chan)
655                 dmaengine_terminate_all(info->dma_chan);
656
657         /* clear status bits */
658         nand_writel(info, NDSR, NDSR_MASK);
659 }
660
661 static void __maybe_unused
662 enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
663 {
664         uint32_t ndcr;
665
666         ndcr = nand_readl(info, NDCR);
667         nand_writel(info, NDCR, ndcr & ~int_mask);
668 }
669
670 static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask)
671 {
672         uint32_t ndcr;
673
674         ndcr = nand_readl(info, NDCR);
675         nand_writel(info, NDCR, ndcr | int_mask);
676 }
677
678 static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len)
679 {
680         if (info->ecc_bch) {
681                 u32 val;
682                 int ret;
683
684                 /*
685                  * According to the datasheet, when reading from NDDB
686                  * with BCH enabled, after each 32 bytes reads, we
687                  * have to make sure that the NDSR.RDDREQ bit is set.
688                  *
689                  * Drain the FIFO 8 32 bits reads at a time, and skip
690                  * the polling on the last read.
691                  */
692                 while (len > 8) {
693                         ioread32_rep(info->mmio_base + NDDB, data, 8);
694
695                         ret = readl_relaxed_poll_timeout(info->mmio_base + NDSR, val,
696                                                          val & NDSR_RDDREQ, 1000, 5000);
697                         if (ret) {
698                                 dev_err(&info->pdev->dev,
699                                         "Timeout on RDDREQ while draining the FIFO\n");
700                                 return;
701                         }
702
703                         data += 32;
704                         len -= 8;
705                 }
706         }
707
708         ioread32_rep(info->mmio_base + NDDB, data, len);
709 }
710
711 static void handle_data_pio(struct pxa3xx_nand_info *info)
712 {
713         switch (info->state) {
714         case STATE_PIO_WRITING:
715                 if (info->step_chunk_size)
716                         writesl(info->mmio_base + NDDB,
717                                 info->data_buff + info->data_buff_pos,
718                                 DIV_ROUND_UP(info->step_chunk_size, 4));
719
720                 if (info->step_spare_size)
721                         writesl(info->mmio_base + NDDB,
722                                 info->oob_buff + info->oob_buff_pos,
723                                 DIV_ROUND_UP(info->step_spare_size, 4));
724                 break;
725         case STATE_PIO_READING:
726                 if (info->step_chunk_size)
727                         drain_fifo(info,
728                                    info->data_buff + info->data_buff_pos,
729                                    DIV_ROUND_UP(info->step_chunk_size, 4));
730
731                 if (info->step_spare_size)
732                         drain_fifo(info,
733                                    info->oob_buff + info->oob_buff_pos,
734                                    DIV_ROUND_UP(info->step_spare_size, 4));
735                 break;
736         default:
737                 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
738                                 info->state);
739                 BUG();
740         }
741
742         /* Update buffer pointers for multi-page read/write */
743         info->data_buff_pos += info->step_chunk_size;
744         info->oob_buff_pos += info->step_spare_size;
745 }
746
747 static void pxa3xx_nand_data_dma_irq(void *data)
748 {
749         struct pxa3xx_nand_info *info = data;
750         struct dma_tx_state state;
751         enum dma_status status;
752
753         status = dmaengine_tx_status(info->dma_chan, info->dma_cookie, &state);
754         if (likely(status == DMA_COMPLETE)) {
755                 info->state = STATE_DMA_DONE;
756         } else {
757                 dev_err(&info->pdev->dev, "DMA error on data channel\n");
758                 info->retcode = ERR_DMABUSERR;
759         }
760         dma_unmap_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
761
762         nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
763         enable_int(info, NDCR_INT_MASK);
764 }
765
766 static void start_data_dma(struct pxa3xx_nand_info *info)
767 {
768         enum dma_transfer_direction direction;
769         struct dma_async_tx_descriptor *tx;
770
771         switch (info->state) {
772         case STATE_DMA_WRITING:
773                 info->dma_dir = DMA_TO_DEVICE;
774                 direction = DMA_MEM_TO_DEV;
775                 break;
776         case STATE_DMA_READING:
777                 info->dma_dir = DMA_FROM_DEVICE;
778                 direction = DMA_DEV_TO_MEM;
779                 break;
780         default:
781                 dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__,
782                                 info->state);
783                 BUG();
784         }
785         info->sg.length = info->chunk_size;
786         if (info->use_spare)
787                 info->sg.length += info->spare_size + info->ecc_size;
788         dma_map_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir);
789
790         tx = dmaengine_prep_slave_sg(info->dma_chan, &info->sg, 1, direction,
791                                      DMA_PREP_INTERRUPT);
792         if (!tx) {
793                 dev_err(&info->pdev->dev, "prep_slave_sg() failed\n");
794                 return;
795         }
796         tx->callback = pxa3xx_nand_data_dma_irq;
797         tx->callback_param = info;
798         info->dma_cookie = dmaengine_submit(tx);
799         dma_async_issue_pending(info->dma_chan);
800         dev_dbg(&info->pdev->dev, "%s(dir=%d cookie=%x size=%u)\n",
801                 __func__, direction, info->dma_cookie, info->sg.length);
802 }
803
804 static irqreturn_t pxa3xx_nand_irq_thread(int irq, void *data)
805 {
806         struct pxa3xx_nand_info *info = data;
807
808         handle_data_pio(info);
809
810         info->state = STATE_CMD_DONE;
811         nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ);
812
813         return IRQ_HANDLED;
814 }
815
816 static irqreturn_t pxa3xx_nand_irq(int irq, void *devid)
817 {
818         struct pxa3xx_nand_info *info = devid;
819         unsigned int status, is_completed = 0, is_ready = 0;
820         unsigned int ready, cmd_done;
821         irqreturn_t ret = IRQ_HANDLED;
822
823         if (info->cs == 0) {
824                 ready           = NDSR_FLASH_RDY;
825                 cmd_done        = NDSR_CS0_CMDD;
826         } else {
827                 ready           = NDSR_RDY;
828                 cmd_done        = NDSR_CS1_CMDD;
829         }
830
831         status = nand_readl(info, NDSR);
832
833         if (status & NDSR_UNCORERR)
834                 info->retcode = ERR_UNCORERR;
835         if (status & NDSR_CORERR) {
836                 info->retcode = ERR_CORERR;
837                 if ((info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
838                      info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) &&
839                     info->ecc_bch)
840                         info->ecc_err_cnt = NDSR_ERR_CNT(status);
841                 else
842                         info->ecc_err_cnt = 1;
843
844                 /*
845                  * Each chunk composing a page is corrected independently,
846                  * and we need to store maximum number of corrected bitflips
847                  * to return it to the MTD layer in ecc.read_page().
848                  */
849                 info->max_bitflips = max_t(unsigned int,
850                                            info->max_bitflips,
851                                            info->ecc_err_cnt);
852         }
853         if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) {
854                 /* whether use dma to transfer data */
855                 if (info->use_dma) {
856                         disable_int(info, NDCR_INT_MASK);
857                         info->state = (status & NDSR_RDDREQ) ?
858                                       STATE_DMA_READING : STATE_DMA_WRITING;
859                         start_data_dma(info);
860                         goto NORMAL_IRQ_EXIT;
861                 } else {
862                         info->state = (status & NDSR_RDDREQ) ?
863                                       STATE_PIO_READING : STATE_PIO_WRITING;
864                         ret = IRQ_WAKE_THREAD;
865                         goto NORMAL_IRQ_EXIT;
866                 }
867         }
868         if (status & cmd_done) {
869                 info->state = STATE_CMD_DONE;
870                 is_completed = 1;
871         }
872         if (status & ready) {
873                 info->state = STATE_READY;
874                 is_ready = 1;
875         }
876
877         /*
878          * Clear all status bit before issuing the next command, which
879          * can and will alter the status bits and will deserve a new
880          * interrupt on its own. This lets the controller exit the IRQ
881          */
882         nand_writel(info, NDSR, status);
883
884         if (status & NDSR_WRCMDREQ) {
885                 status &= ~NDSR_WRCMDREQ;
886                 info->state = STATE_CMD_HANDLE;
887
888                 /*
889                  * Command buffer registers NDCB{0-2} (and optionally NDCB3)
890                  * must be loaded by writing directly either 12 or 16
891                  * bytes directly to NDCB0, four bytes at a time.
892                  *
893                  * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored
894                  * but each NDCBx register can be read.
895                  */
896                 nand_writel(info, NDCB0, info->ndcb0);
897                 nand_writel(info, NDCB0, info->ndcb1);
898                 nand_writel(info, NDCB0, info->ndcb2);
899
900                 /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */
901                 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
902                     info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K)
903                         nand_writel(info, NDCB0, info->ndcb3);
904         }
905
906         if (is_completed)
907                 complete(&info->cmd_complete);
908         if (is_ready)
909                 complete(&info->dev_ready);
910 NORMAL_IRQ_EXIT:
911         return ret;
912 }
913
914 static inline int is_buf_blank(uint8_t *buf, size_t len)
915 {
916         for (; len > 0; len--)
917                 if (*buf++ != 0xff)
918                         return 0;
919         return 1;
920 }
921
922 static void set_command_address(struct pxa3xx_nand_info *info,
923                 unsigned int page_size, uint16_t column, int page_addr)
924 {
925         /* small page addr setting */
926         if (page_size < PAGE_CHUNK_SIZE) {
927                 info->ndcb1 = ((page_addr & 0xFFFFFF) << 8)
928                                 | (column & 0xFF);
929
930                 info->ndcb2 = 0;
931         } else {
932                 info->ndcb1 = ((page_addr & 0xFFFF) << 16)
933                                 | (column & 0xFFFF);
934
935                 if (page_addr & 0xFF0000)
936                         info->ndcb2 = (page_addr & 0xFF0000) >> 16;
937                 else
938                         info->ndcb2 = 0;
939         }
940 }
941
942 static void prepare_start_command(struct pxa3xx_nand_info *info, int command)
943 {
944         struct pxa3xx_nand_host *host = info->host[info->cs];
945         struct mtd_info *mtd = nand_to_mtd(&host->chip);
946
947         /* reset data and oob column point to handle data */
948         info->buf_start         = 0;
949         info->buf_count         = 0;
950         info->data_buff_pos     = 0;
951         info->oob_buff_pos      = 0;
952         info->step_chunk_size   = 0;
953         info->step_spare_size   = 0;
954         info->cur_chunk         = 0;
955         info->use_ecc           = 0;
956         info->use_spare         = 1;
957         info->retcode           = ERR_NONE;
958         info->ecc_err_cnt       = 0;
959         info->ndcb3             = 0;
960         info->need_wait         = 0;
961
962         switch (command) {
963         case NAND_CMD_READ0:
964         case NAND_CMD_READOOB:
965         case NAND_CMD_PAGEPROG:
966                 info->use_ecc = 1;
967                 break;
968         case NAND_CMD_PARAM:
969                 info->use_spare = 0;
970                 break;
971         default:
972                 info->ndcb1 = 0;
973                 info->ndcb2 = 0;
974                 break;
975         }
976
977         /*
978          * If we are about to issue a read command, or about to set
979          * the write address, then clean the data buffer.
980          */
981         if (command == NAND_CMD_READ0 ||
982             command == NAND_CMD_READOOB ||
983             command == NAND_CMD_SEQIN) {
984
985                 info->buf_count = mtd->writesize + mtd->oobsize;
986                 memset(info->data_buff, 0xFF, info->buf_count);
987         }
988
989 }
990
991 static int prepare_set_command(struct pxa3xx_nand_info *info, int command,
992                 int ext_cmd_type, uint16_t column, int page_addr)
993 {
994         int addr_cycle, exec_cmd;
995         struct pxa3xx_nand_host *host;
996         struct mtd_info *mtd;
997
998         host = info->host[info->cs];
999         mtd = nand_to_mtd(&host->chip);
1000         addr_cycle = 0;
1001         exec_cmd = 1;
1002
1003         if (info->cs != 0)
1004                 info->ndcb0 = NDCB0_CSEL;
1005         else
1006                 info->ndcb0 = 0;
1007
1008         if (command == NAND_CMD_SEQIN)
1009                 exec_cmd = 0;
1010
1011         addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles
1012                                     + host->col_addr_cycles);
1013
1014         switch (command) {
1015         case NAND_CMD_READOOB:
1016         case NAND_CMD_READ0:
1017                 info->buf_start = column;
1018                 info->ndcb0 |= NDCB0_CMD_TYPE(0)
1019                                 | addr_cycle
1020                                 | NAND_CMD_READ0;
1021
1022                 if (command == NAND_CMD_READOOB)
1023                         info->buf_start += mtd->writesize;
1024
1025                 if (info->cur_chunk < info->nfullchunks) {
1026                         info->step_chunk_size = info->chunk_size;
1027                         info->step_spare_size = info->spare_size;
1028                 } else {
1029                         info->step_chunk_size = info->last_chunk_size;
1030                         info->step_spare_size = info->last_spare_size;
1031                 }
1032
1033                 /*
1034                  * Multiple page read needs an 'extended command type' field,
1035                  * which is either naked-read or last-read according to the
1036                  * state.
1037                  */
1038                 if (mtd->writesize == PAGE_CHUNK_SIZE) {
1039                         info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8);
1040                 } else if (mtd->writesize > PAGE_CHUNK_SIZE) {
1041                         info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8)
1042                                         | NDCB0_LEN_OVRD
1043                                         | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
1044                         info->ndcb3 = info->step_chunk_size +
1045                                 info->step_spare_size;
1046                 }
1047
1048                 set_command_address(info, mtd->writesize, column, page_addr);
1049                 break;
1050
1051         case NAND_CMD_SEQIN:
1052
1053                 info->buf_start = column;
1054                 set_command_address(info, mtd->writesize, 0, page_addr);
1055
1056                 /*
1057                  * Multiple page programming needs to execute the initial
1058                  * SEQIN command that sets the page address.
1059                  */
1060                 if (mtd->writesize > PAGE_CHUNK_SIZE) {
1061                         info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
1062                                 | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
1063                                 | addr_cycle
1064                                 | command;
1065                         exec_cmd = 1;
1066                 }
1067                 break;
1068
1069         case NAND_CMD_PAGEPROG:
1070                 if (is_buf_blank(info->data_buff,
1071                                         (mtd->writesize + mtd->oobsize))) {
1072                         exec_cmd = 0;
1073                         break;
1074                 }
1075
1076                 if (info->cur_chunk < info->nfullchunks) {
1077                         info->step_chunk_size = info->chunk_size;
1078                         info->step_spare_size = info->spare_size;
1079                 } else {
1080                         info->step_chunk_size = info->last_chunk_size;
1081                         info->step_spare_size = info->last_spare_size;
1082                 }
1083
1084                 /* Second command setting for large pages */
1085                 if (mtd->writesize > PAGE_CHUNK_SIZE) {
1086                         /*
1087                          * Multiple page write uses the 'extended command'
1088                          * field. This can be used to issue a command dispatch
1089                          * or a naked-write depending on the current stage.
1090                          */
1091                         info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
1092                                         | NDCB0_LEN_OVRD
1093                                         | NDCB0_EXT_CMD_TYPE(ext_cmd_type);
1094                         info->ndcb3 = info->step_chunk_size +
1095                                       info->step_spare_size;
1096
1097                         /*
1098                          * This is the command dispatch that completes a chunked
1099                          * page program operation.
1100                          */
1101                         if (info->cur_chunk == info->ntotalchunks) {
1102                                 info->ndcb0 = NDCB0_CMD_TYPE(0x1)
1103                                         | NDCB0_EXT_CMD_TYPE(ext_cmd_type)
1104                                         | command;
1105                                 info->ndcb1 = 0;
1106                                 info->ndcb2 = 0;
1107                                 info->ndcb3 = 0;
1108                         }
1109                 } else {
1110                         info->ndcb0 |= NDCB0_CMD_TYPE(0x1)
1111                                         | NDCB0_AUTO_RS
1112                                         | NDCB0_ST_ROW_EN
1113                                         | NDCB0_DBC
1114                                         | (NAND_CMD_PAGEPROG << 8)
1115                                         | NAND_CMD_SEQIN
1116                                         | addr_cycle;
1117                 }
1118                 break;
1119
1120         case NAND_CMD_PARAM:
1121                 info->buf_count = INIT_BUFFER_SIZE;
1122                 info->ndcb0 |= NDCB0_CMD_TYPE(0)
1123                                 | NDCB0_ADDR_CYC(1)
1124                                 | NDCB0_LEN_OVRD
1125                                 | command;
1126                 info->ndcb1 = (column & 0xFF);
1127                 info->ndcb3 = INIT_BUFFER_SIZE;
1128                 info->step_chunk_size = INIT_BUFFER_SIZE;
1129                 break;
1130
1131         case NAND_CMD_READID:
1132                 info->buf_count = READ_ID_BYTES;
1133                 info->ndcb0 |= NDCB0_CMD_TYPE(3)
1134                                 | NDCB0_ADDR_CYC(1)
1135                                 | command;
1136                 info->ndcb1 = (column & 0xFF);
1137
1138                 info->step_chunk_size = 8;
1139                 break;
1140         case NAND_CMD_STATUS:
1141                 info->buf_count = 1;
1142                 info->ndcb0 |= NDCB0_CMD_TYPE(4)
1143                                 | NDCB0_ADDR_CYC(1)
1144                                 | command;
1145
1146                 info->step_chunk_size = 8;
1147                 break;
1148
1149         case NAND_CMD_ERASE1:
1150                 info->ndcb0 |= NDCB0_CMD_TYPE(2)
1151                                 | NDCB0_AUTO_RS
1152                                 | NDCB0_ADDR_CYC(3)
1153                                 | NDCB0_DBC
1154                                 | (NAND_CMD_ERASE2 << 8)
1155                                 | NAND_CMD_ERASE1;
1156                 info->ndcb1 = page_addr;
1157                 info->ndcb2 = 0;
1158
1159                 break;
1160         case NAND_CMD_RESET:
1161                 info->ndcb0 |= NDCB0_CMD_TYPE(5)
1162                                 | command;
1163
1164                 break;
1165
1166         case NAND_CMD_ERASE2:
1167                 exec_cmd = 0;
1168                 break;
1169
1170         default:
1171                 exec_cmd = 0;
1172                 dev_err(&info->pdev->dev, "non-supported command %x\n",
1173                                 command);
1174                 break;
1175         }
1176
1177         return exec_cmd;
1178 }
1179
1180 static void nand_cmdfunc(struct mtd_info *mtd, unsigned command,
1181                          int column, int page_addr)
1182 {
1183         struct nand_chip *chip = mtd_to_nand(mtd);
1184         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1185         struct pxa3xx_nand_info *info = host->info_data;
1186         int exec_cmd;
1187
1188         /*
1189          * if this is a x16 device ,then convert the input
1190          * "byte" address into a "word" address appropriate
1191          * for indexing a word-oriented device
1192          */
1193         if (info->reg_ndcr & NDCR_DWIDTH_M)
1194                 column /= 2;
1195
1196         /*
1197          * There may be different NAND chip hooked to
1198          * different chip select, so check whether
1199          * chip select has been changed, if yes, reset the timing
1200          */
1201         if (info->cs != host->cs) {
1202                 info->cs = host->cs;
1203                 nand_writel(info, NDTR0CS0, info->ndtr0cs0);
1204                 nand_writel(info, NDTR1CS0, info->ndtr1cs0);
1205         }
1206
1207         prepare_start_command(info, command);
1208
1209         info->state = STATE_PREPARED;
1210         exec_cmd = prepare_set_command(info, command, 0, column, page_addr);
1211
1212         if (exec_cmd) {
1213                 init_completion(&info->cmd_complete);
1214                 init_completion(&info->dev_ready);
1215                 info->need_wait = 1;
1216                 pxa3xx_nand_start(info);
1217
1218                 if (!wait_for_completion_timeout(&info->cmd_complete,
1219                     CHIP_DELAY_TIMEOUT)) {
1220                         dev_err(&info->pdev->dev, "Wait time out!!!\n");
1221                         /* Stop State Machine for next command cycle */
1222                         pxa3xx_nand_stop(info);
1223                 }
1224         }
1225         info->state = STATE_IDLE;
1226 }
1227
1228 static void nand_cmdfunc_extended(struct mtd_info *mtd,
1229                                   const unsigned command,
1230                                   int column, int page_addr)
1231 {
1232         struct nand_chip *chip = mtd_to_nand(mtd);
1233         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1234         struct pxa3xx_nand_info *info = host->info_data;
1235         int exec_cmd, ext_cmd_type;
1236
1237         /*
1238          * if this is a x16 device then convert the input
1239          * "byte" address into a "word" address appropriate
1240          * for indexing a word-oriented device
1241          */
1242         if (info->reg_ndcr & NDCR_DWIDTH_M)
1243                 column /= 2;
1244
1245         /*
1246          * There may be different NAND chip hooked to
1247          * different chip select, so check whether
1248          * chip select has been changed, if yes, reset the timing
1249          */
1250         if (info->cs != host->cs) {
1251                 info->cs = host->cs;
1252                 nand_writel(info, NDTR0CS0, info->ndtr0cs0);
1253                 nand_writel(info, NDTR1CS0, info->ndtr1cs0);
1254         }
1255
1256         /* Select the extended command for the first command */
1257         switch (command) {
1258         case NAND_CMD_READ0:
1259         case NAND_CMD_READOOB:
1260                 ext_cmd_type = EXT_CMD_TYPE_MONO;
1261                 break;
1262         case NAND_CMD_SEQIN:
1263                 ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
1264                 break;
1265         case NAND_CMD_PAGEPROG:
1266                 ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
1267                 break;
1268         default:
1269                 ext_cmd_type = 0;
1270                 break;
1271         }
1272
1273         prepare_start_command(info, command);
1274
1275         /*
1276          * Prepare the "is ready" completion before starting a command
1277          * transaction sequence. If the command is not executed the
1278          * completion will be completed, see below.
1279          *
1280          * We can do that inside the loop because the command variable
1281          * is invariant and thus so is the exec_cmd.
1282          */
1283         info->need_wait = 1;
1284         init_completion(&info->dev_ready);
1285         do {
1286                 info->state = STATE_PREPARED;
1287
1288                 exec_cmd = prepare_set_command(info, command, ext_cmd_type,
1289                                                column, page_addr);
1290                 if (!exec_cmd) {
1291                         info->need_wait = 0;
1292                         complete(&info->dev_ready);
1293                         break;
1294                 }
1295
1296                 init_completion(&info->cmd_complete);
1297                 pxa3xx_nand_start(info);
1298
1299                 if (!wait_for_completion_timeout(&info->cmd_complete,
1300                     CHIP_DELAY_TIMEOUT)) {
1301                         dev_err(&info->pdev->dev, "Wait time out!!!\n");
1302                         /* Stop State Machine for next command cycle */
1303                         pxa3xx_nand_stop(info);
1304                         break;
1305                 }
1306
1307                 /* Only a few commands need several steps */
1308                 if (command != NAND_CMD_PAGEPROG &&
1309                     command != NAND_CMD_READ0    &&
1310                     command != NAND_CMD_READOOB)
1311                         break;
1312
1313                 info->cur_chunk++;
1314
1315                 /* Check if the sequence is complete */
1316                 if (info->cur_chunk == info->ntotalchunks && command != NAND_CMD_PAGEPROG)
1317                         break;
1318
1319                 /*
1320                  * After a splitted program command sequence has issued
1321                  * the command dispatch, the command sequence is complete.
1322                  */
1323                 if (info->cur_chunk == (info->ntotalchunks + 1) &&
1324                     command == NAND_CMD_PAGEPROG &&
1325                     ext_cmd_type == EXT_CMD_TYPE_DISPATCH)
1326                         break;
1327
1328                 if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) {
1329                         /* Last read: issue a 'last naked read' */
1330                         if (info->cur_chunk == info->ntotalchunks - 1)
1331                                 ext_cmd_type = EXT_CMD_TYPE_LAST_RW;
1332                         else
1333                                 ext_cmd_type = EXT_CMD_TYPE_NAKED_RW;
1334
1335                 /*
1336                  * If a splitted program command has no more data to transfer,
1337                  * the command dispatch must be issued to complete.
1338                  */
1339                 } else if (command == NAND_CMD_PAGEPROG &&
1340                            info->cur_chunk == info->ntotalchunks) {
1341                                 ext_cmd_type = EXT_CMD_TYPE_DISPATCH;
1342                 }
1343         } while (1);
1344
1345         info->state = STATE_IDLE;
1346 }
1347
1348 static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd,
1349                 struct nand_chip *chip, const uint8_t *buf, int oob_required,
1350                 int page)
1351 {
1352         nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
1353         chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1354
1355         return nand_prog_page_end_op(chip);
1356 }
1357
1358 static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd,
1359                 struct nand_chip *chip, uint8_t *buf, int oob_required,
1360                 int page)
1361 {
1362         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1363         struct pxa3xx_nand_info *info = host->info_data;
1364
1365         nand_read_page_op(chip, page, 0, buf, mtd->writesize);
1366         chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1367
1368         if (info->retcode == ERR_CORERR && info->use_ecc) {
1369                 mtd->ecc_stats.corrected += info->ecc_err_cnt;
1370
1371         } else if (info->retcode == ERR_UNCORERR) {
1372                 /*
1373                  * for blank page (all 0xff), HW will calculate its ECC as
1374                  * 0, which is different from the ECC information within
1375                  * OOB, ignore such uncorrectable errors
1376                  */
1377                 if (is_buf_blank(buf, mtd->writesize))
1378                         info->retcode = ERR_NONE;
1379                 else
1380                         mtd->ecc_stats.failed++;
1381         }
1382
1383         return info->max_bitflips;
1384 }
1385
1386 static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd)
1387 {
1388         struct nand_chip *chip = mtd_to_nand(mtd);
1389         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1390         struct pxa3xx_nand_info *info = host->info_data;
1391         char retval = 0xFF;
1392
1393         if (info->buf_start < info->buf_count)
1394                 /* Has just send a new command? */
1395                 retval = info->data_buff[info->buf_start++];
1396
1397         return retval;
1398 }
1399
1400 static u16 pxa3xx_nand_read_word(struct mtd_info *mtd)
1401 {
1402         struct nand_chip *chip = mtd_to_nand(mtd);
1403         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1404         struct pxa3xx_nand_info *info = host->info_data;
1405         u16 retval = 0xFFFF;
1406
1407         if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) {
1408                 retval = *((u16 *)(info->data_buff+info->buf_start));
1409                 info->buf_start += 2;
1410         }
1411         return retval;
1412 }
1413
1414 static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
1415 {
1416         struct nand_chip *chip = mtd_to_nand(mtd);
1417         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1418         struct pxa3xx_nand_info *info = host->info_data;
1419         int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
1420
1421         memcpy(buf, info->data_buff + info->buf_start, real_len);
1422         info->buf_start += real_len;
1423 }
1424
1425 static void pxa3xx_nand_write_buf(struct mtd_info *mtd,
1426                 const uint8_t *buf, int len)
1427 {
1428         struct nand_chip *chip = mtd_to_nand(mtd);
1429         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1430         struct pxa3xx_nand_info *info = host->info_data;
1431         int real_len = min_t(size_t, len, info->buf_count - info->buf_start);
1432
1433         memcpy(info->data_buff + info->buf_start, buf, real_len);
1434         info->buf_start += real_len;
1435 }
1436
1437 static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip)
1438 {
1439         return;
1440 }
1441
1442 static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this)
1443 {
1444         struct nand_chip *chip = mtd_to_nand(mtd);
1445         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1446         struct pxa3xx_nand_info *info = host->info_data;
1447
1448         if (info->need_wait) {
1449                 info->need_wait = 0;
1450                 if (!wait_for_completion_timeout(&info->dev_ready,
1451                     CHIP_DELAY_TIMEOUT)) {
1452                         dev_err(&info->pdev->dev, "Ready time out!!!\n");
1453                         return NAND_STATUS_FAIL;
1454                 }
1455         }
1456
1457         /* pxa3xx_nand_send_command has waited for command complete */
1458         if (this->state == FL_WRITING || this->state == FL_ERASING) {
1459                 if (info->retcode == ERR_NONE)
1460                         return 0;
1461                 else
1462                         return NAND_STATUS_FAIL;
1463         }
1464
1465         return NAND_STATUS_READY;
1466 }
1467
1468 static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info)
1469 {
1470         struct pxa3xx_nand_host *host = info->host[info->cs];
1471         struct platform_device *pdev = info->pdev;
1472         struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1473         const struct nand_sdr_timings *timings;
1474
1475         /* Configure default flash values */
1476         info->chunk_size = PAGE_CHUNK_SIZE;
1477         info->reg_ndcr = 0x0; /* enable all interrupts */
1478         info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
1479         info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES);
1480         info->reg_ndcr |= NDCR_SPARE_EN;
1481
1482         /* use the common timing to make a try */
1483         timings = onfi_async_timing_mode_to_sdr_timings(0);
1484         if (IS_ERR(timings))
1485                 return PTR_ERR(timings);
1486
1487         pxa3xx_nand_set_sdr_timing(host, timings);
1488         return 0;
1489 }
1490
1491 static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info)
1492 {
1493         struct pxa3xx_nand_host *host = info->host[info->cs];
1494         struct nand_chip *chip = &host->chip;
1495         struct mtd_info *mtd = nand_to_mtd(chip);
1496
1497         info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0;
1498         info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0;
1499         info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0;
1500 }
1501
1502 static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info)
1503 {
1504         struct platform_device *pdev = info->pdev;
1505         struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1506         uint32_t ndcr = nand_readl(info, NDCR);
1507
1508         /* Set an initial chunk size */
1509         info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512;
1510         info->reg_ndcr = ndcr &
1511                 ~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL);
1512         info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0;
1513         info->ndtr0cs0 = nand_readl(info, NDTR0CS0);
1514         info->ndtr1cs0 = nand_readl(info, NDTR1CS0);
1515 }
1516
1517 static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info)
1518 {
1519         struct platform_device *pdev = info->pdev;
1520         struct dma_slave_config config;
1521         dma_cap_mask_t mask;
1522         struct pxad_param param;
1523         int ret;
1524
1525         info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
1526         if (info->data_buff == NULL)
1527                 return -ENOMEM;
1528         if (use_dma == 0)
1529                 return 0;
1530
1531         ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1532         if (ret)
1533                 return ret;
1534
1535         sg_init_one(&info->sg, info->data_buff, info->buf_size);
1536         dma_cap_zero(mask);
1537         dma_cap_set(DMA_SLAVE, mask);
1538         param.prio = PXAD_PRIO_LOWEST;
1539         param.drcmr = info->drcmr_dat;
1540         info->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn,
1541                                                           &param, &pdev->dev,
1542                                                           "data");
1543         if (!info->dma_chan) {
1544                 dev_err(&pdev->dev, "unable to request data dma channel\n");
1545                 return -ENODEV;
1546         }
1547
1548         memset(&config, 0, sizeof(config));
1549         config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1550         config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1551         config.src_addr = info->mmio_phys + NDDB;
1552         config.dst_addr = info->mmio_phys + NDDB;
1553         config.src_maxburst = 32;
1554         config.dst_maxburst = 32;
1555         ret = dmaengine_slave_config(info->dma_chan, &config);
1556         if (ret < 0) {
1557                 dev_err(&info->pdev->dev,
1558                         "dma channel configuration failed: %d\n",
1559                         ret);
1560                 return ret;
1561         }
1562
1563         /*
1564          * Now that DMA buffers are allocated we turn on
1565          * DMA proper for I/O operations.
1566          */
1567         info->use_dma = 1;
1568         return 0;
1569 }
1570
1571 static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info)
1572 {
1573         if (info->use_dma) {
1574                 dmaengine_terminate_all(info->dma_chan);
1575                 dma_release_channel(info->dma_chan);
1576         }
1577         kfree(info->data_buff);
1578 }
1579
1580 static int pxa_ecc_init(struct pxa3xx_nand_info *info,
1581                         struct mtd_info *mtd,
1582                         int strength, int ecc_stepsize, int page_size)
1583 {
1584         struct nand_chip *chip = mtd_to_nand(mtd);
1585         struct nand_ecc_ctrl *ecc = &chip->ecc;
1586
1587         if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) {
1588                 info->nfullchunks = 1;
1589                 info->ntotalchunks = 1;
1590                 info->chunk_size = 2048;
1591                 info->spare_size = 40;
1592                 info->ecc_size = 24;
1593                 ecc->mode = NAND_ECC_HW;
1594                 ecc->size = 512;
1595                 ecc->strength = 1;
1596
1597         } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) {
1598                 info->nfullchunks = 1;
1599                 info->ntotalchunks = 1;
1600                 info->chunk_size = 512;
1601                 info->spare_size = 8;
1602                 info->ecc_size = 8;
1603                 ecc->mode = NAND_ECC_HW;
1604                 ecc->size = 512;
1605                 ecc->strength = 1;
1606
1607         /*
1608          * Required ECC: 4-bit correction per 512 bytes
1609          * Select: 16-bit correction per 2048 bytes
1610          */
1611         } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) {
1612                 info->ecc_bch = 1;
1613                 info->nfullchunks = 1;
1614                 info->ntotalchunks = 1;
1615                 info->chunk_size = 2048;
1616                 info->spare_size = 32;
1617                 info->ecc_size = 32;
1618                 ecc->mode = NAND_ECC_HW;
1619                 ecc->size = info->chunk_size;
1620                 mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
1621                 ecc->strength = 16;
1622
1623         } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) {
1624                 info->ecc_bch = 1;
1625                 info->nfullchunks = 2;
1626                 info->ntotalchunks = 2;
1627                 info->chunk_size = 2048;
1628                 info->spare_size = 32;
1629                 info->ecc_size = 32;
1630                 ecc->mode = NAND_ECC_HW;
1631                 ecc->size = info->chunk_size;
1632                 mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
1633                 ecc->strength = 16;
1634
1635         /*
1636          * Required ECC: 8-bit correction per 512 bytes
1637          * Select: 16-bit correction per 1024 bytes
1638          */
1639         } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) {
1640                 info->ecc_bch = 1;
1641                 info->nfullchunks = 4;
1642                 info->ntotalchunks = 5;
1643                 info->chunk_size = 1024;
1644                 info->spare_size = 0;
1645                 info->last_chunk_size = 0;
1646                 info->last_spare_size = 64;
1647                 info->ecc_size = 32;
1648                 ecc->mode = NAND_ECC_HW;
1649                 ecc->size = info->chunk_size;
1650                 mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops);
1651                 ecc->strength = 16;
1652         } else {
1653                 dev_err(&info->pdev->dev,
1654                         "ECC strength %d at page size %d is not supported\n",
1655                         strength, page_size);
1656                 return -ENODEV;
1657         }
1658
1659         dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n",
1660                  ecc->strength, ecc->size);
1661         return 0;
1662 }
1663
1664 static int pxa3xx_nand_scan(struct mtd_info *mtd)
1665 {
1666         struct nand_chip *chip = mtd_to_nand(mtd);
1667         struct pxa3xx_nand_host *host = nand_get_controller_data(chip);
1668         struct pxa3xx_nand_info *info = host->info_data;
1669         struct platform_device *pdev = info->pdev;
1670         struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
1671         int ret;
1672         uint16_t ecc_strength, ecc_step;
1673
1674         if (pdata->keep_config) {
1675                 pxa3xx_nand_detect_config(info);
1676         } else {
1677                 ret = pxa3xx_nand_config_ident(info);
1678                 if (ret)
1679                         return ret;
1680         }
1681
1682         if (info->reg_ndcr & NDCR_DWIDTH_M)
1683                 chip->options |= NAND_BUSWIDTH_16;
1684
1685         /* Device detection must be done with ECC disabled */
1686         if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
1687             info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K)
1688                 nand_writel(info, NDECCCTRL, 0x0);
1689
1690         if (pdata->flash_bbt)
1691                 chip->bbt_options |= NAND_BBT_USE_FLASH;
1692
1693         chip->ecc.strength = pdata->ecc_strength;
1694         chip->ecc.size = pdata->ecc_step_size;
1695
1696         ret = nand_scan_ident(mtd, 1, NULL);
1697         if (ret)
1698                 return ret;
1699
1700         if (!pdata->keep_config) {
1701                 ret = pxa3xx_nand_init(host);
1702                 if (ret) {
1703                         dev_err(&info->pdev->dev, "Failed to init nand: %d\n",
1704                                 ret);
1705                         return ret;
1706                 }
1707         }
1708
1709         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1710                 /*
1711                  * We'll use a bad block table stored in-flash and don't
1712                  * allow writing the bad block marker to the flash.
1713                  */
1714                 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
1715                 chip->bbt_td = &bbt_main_descr;
1716                 chip->bbt_md = &bbt_mirror_descr;
1717         }
1718
1719         /*
1720          * If the page size is bigger than the FIFO size, let's check
1721          * we are given the right variant and then switch to the extended
1722          * (aka splitted) command handling,
1723          */
1724         if (mtd->writesize > PAGE_CHUNK_SIZE) {
1725                 if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 ||
1726                     info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) {
1727                         chip->cmdfunc = nand_cmdfunc_extended;
1728                 } else {
1729                         dev_err(&info->pdev->dev,
1730                                 "unsupported page size on this variant\n");
1731                         return -ENODEV;
1732                 }
1733         }
1734
1735         ecc_strength = chip->ecc.strength;
1736         ecc_step = chip->ecc.size;
1737         if (!ecc_strength || !ecc_step) {
1738                 ecc_strength = chip->ecc_strength_ds;
1739                 ecc_step = chip->ecc_step_ds;
1740         }
1741
1742         /* Set default ECC strength requirements on non-ONFI devices */
1743         if (ecc_strength < 1 && ecc_step < 1) {
1744                 ecc_strength = 1;
1745                 ecc_step = 512;
1746         }
1747
1748         ret = pxa_ecc_init(info, mtd, ecc_strength,
1749                            ecc_step, mtd->writesize);
1750         if (ret)
1751                 return ret;
1752
1753         /* calculate addressing information */
1754         if (mtd->writesize >= 2048)
1755                 host->col_addr_cycles = 2;
1756         else
1757                 host->col_addr_cycles = 1;
1758
1759         /* release the initial buffer */
1760         kfree(info->data_buff);
1761
1762         /* allocate the real data + oob buffer */
1763         info->buf_size = mtd->writesize + mtd->oobsize;
1764         ret = pxa3xx_nand_init_buff(info);
1765         if (ret)
1766                 return ret;
1767         info->oob_buff = info->data_buff + mtd->writesize;
1768
1769         if ((mtd->size >> chip->page_shift) > 65536)
1770                 host->row_addr_cycles = 3;
1771         else
1772                 host->row_addr_cycles = 2;
1773
1774         if (!pdata->keep_config)
1775                 pxa3xx_nand_config_tail(info);
1776
1777         return nand_scan_tail(mtd);
1778 }
1779
1780 static int alloc_nand_resource(struct platform_device *pdev)
1781 {
1782         struct device_node *np = pdev->dev.of_node;
1783         struct pxa3xx_nand_platform_data *pdata;
1784         struct pxa3xx_nand_info *info;
1785         struct pxa3xx_nand_host *host;
1786         struct nand_chip *chip = NULL;
1787         struct mtd_info *mtd;
1788         struct resource *r;
1789         int ret, irq, cs;
1790
1791         pdata = dev_get_platdata(&pdev->dev);
1792         if (pdata->num_cs <= 0) {
1793                 dev_err(&pdev->dev, "invalid number of chip selects\n");
1794                 return -ENODEV;
1795         }
1796
1797         info = devm_kzalloc(&pdev->dev,
1798                             sizeof(*info) + sizeof(*host) * pdata->num_cs,
1799                             GFP_KERNEL);
1800         if (!info)
1801                 return -ENOMEM;
1802
1803         info->pdev = pdev;
1804         info->variant = pxa3xx_nand_get_variant(pdev);
1805         for (cs = 0; cs < pdata->num_cs; cs++) {
1806                 host = (void *)&info[1] + sizeof(*host) * cs;
1807                 chip = &host->chip;
1808                 nand_set_controller_data(chip, host);
1809                 mtd = nand_to_mtd(chip);
1810                 info->host[cs] = host;
1811                 host->cs = cs;
1812                 host->info_data = info;
1813                 mtd->dev.parent = &pdev->dev;
1814                 /* FIXME: all chips use the same device tree partitions */
1815                 nand_set_flash_node(chip, np);
1816
1817                 nand_set_controller_data(chip, host);
1818                 chip->ecc.read_page     = pxa3xx_nand_read_page_hwecc;
1819                 chip->ecc.write_page    = pxa3xx_nand_write_page_hwecc;
1820                 chip->controller        = &info->controller;
1821                 chip->waitfunc          = pxa3xx_nand_waitfunc;
1822                 chip->select_chip       = pxa3xx_nand_select_chip;
1823                 chip->read_word         = pxa3xx_nand_read_word;
1824                 chip->read_byte         = pxa3xx_nand_read_byte;
1825                 chip->read_buf          = pxa3xx_nand_read_buf;
1826                 chip->write_buf         = pxa3xx_nand_write_buf;
1827                 chip->options           |= NAND_NO_SUBPAGE_WRITE;
1828                 chip->cmdfunc           = nand_cmdfunc;
1829                 chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
1830                 chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
1831         }
1832
1833         nand_hw_control_init(chip->controller);
1834         info->clk = devm_clk_get(&pdev->dev, NULL);
1835         if (IS_ERR(info->clk)) {
1836                 ret = PTR_ERR(info->clk);
1837                 dev_err(&pdev->dev, "failed to get nand clock: %d\n", ret);
1838                 return ret;
1839         }
1840         ret = clk_prepare_enable(info->clk);
1841         if (ret < 0)
1842                 return ret;
1843
1844         if (!np && use_dma) {
1845                 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1846                 if (r == NULL) {
1847                         dev_err(&pdev->dev,
1848                                 "no resource defined for data DMA\n");
1849                         ret = -ENXIO;
1850                         goto fail_disable_clk;
1851                 }
1852                 info->drcmr_dat = r->start;
1853         }
1854
1855         irq = platform_get_irq(pdev, 0);
1856         if (irq < 0) {
1857                 dev_err(&pdev->dev, "no IRQ resource defined\n");
1858                 ret = -ENXIO;
1859                 goto fail_disable_clk;
1860         }
1861
1862         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1863         info->mmio_base = devm_ioremap_resource(&pdev->dev, r);
1864         if (IS_ERR(info->mmio_base)) {
1865                 ret = PTR_ERR(info->mmio_base);
1866                 dev_err(&pdev->dev, "failed to map register space: %d\n", ret);
1867                 goto fail_disable_clk;
1868         }
1869         info->mmio_phys = r->start;
1870
1871         /* Allocate a buffer to allow flash detection */
1872         info->buf_size = INIT_BUFFER_SIZE;
1873         info->data_buff = kmalloc(info->buf_size, GFP_KERNEL);
1874         if (info->data_buff == NULL) {
1875                 ret = -ENOMEM;
1876                 goto fail_disable_clk;
1877         }
1878
1879         /* initialize all interrupts to be disabled */
1880         disable_int(info, NDSR_MASK);
1881
1882         ret = request_threaded_irq(irq, pxa3xx_nand_irq,
1883                                    pxa3xx_nand_irq_thread, IRQF_ONESHOT,
1884                                    pdev->name, info);
1885         if (ret < 0) {
1886                 dev_err(&pdev->dev, "failed to request IRQ: %d\n", ret);
1887                 goto fail_free_buf;
1888         }
1889
1890         platform_set_drvdata(pdev, info);
1891
1892         return 0;
1893
1894 fail_free_buf:
1895         free_irq(irq, info);
1896         kfree(info->data_buff);
1897 fail_disable_clk:
1898         clk_disable_unprepare(info->clk);
1899         return ret;
1900 }
1901
1902 static int pxa3xx_nand_remove(struct platform_device *pdev)
1903 {
1904         struct pxa3xx_nand_info *info = platform_get_drvdata(pdev);
1905         struct pxa3xx_nand_platform_data *pdata;
1906         int irq, cs;
1907
1908         if (!info)
1909                 return 0;
1910
1911         pdata = dev_get_platdata(&pdev->dev);
1912
1913         irq = platform_get_irq(pdev, 0);
1914         if (irq >= 0)
1915                 free_irq(irq, info);
1916         pxa3xx_nand_free_buff(info);
1917
1918         /*
1919          * In the pxa3xx case, the DFI bus is shared between the SMC and NFC.
1920          * In order to prevent a lockup of the system bus, the DFI bus
1921          * arbitration is granted to SMC upon driver removal. This is done by
1922          * setting the x_ARB_CNTL bit, which also prevents the NAND to have
1923          * access to the bus anymore.
1924          */
1925         nand_writel(info, NDCR,
1926                     (nand_readl(info, NDCR) & ~NDCR_ND_ARB_EN) |
1927                     NFCV1_NDCR_ARB_CNTL);
1928         clk_disable_unprepare(info->clk);
1929
1930         for (cs = 0; cs < pdata->num_cs; cs++)
1931                 nand_release(nand_to_mtd(&info->host[cs]->chip));
1932         return 0;
1933 }
1934
1935 static int pxa3xx_nand_probe_dt(struct platform_device *pdev)
1936 {
1937         struct pxa3xx_nand_platform_data *pdata;
1938         struct device_node *np = pdev->dev.of_node;
1939         const struct of_device_id *of_id =
1940                         of_match_device(pxa3xx_nand_dt_ids, &pdev->dev);
1941
1942         if (!of_id)
1943                 return 0;
1944
1945         /*
1946          * Some SoCs like A7k/A8k need to enable manually the NAND
1947          * controller to avoid being bootloader dependent. This is done
1948          * through the use of a single bit in the System Functions registers.
1949          */
1950         if (pxa3xx_nand_get_variant(pdev) == PXA3XX_NAND_VARIANT_ARMADA_8K) {
1951                 struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle(
1952                         pdev->dev.of_node, "marvell,system-controller");
1953                 u32 reg;
1954
1955                 if (IS_ERR(sysctrl_base))
1956                         return PTR_ERR(sysctrl_base);
1957
1958                 regmap_read(sysctrl_base, GENCONF_SOC_DEVICE_MUX, &reg);
1959                 reg |= GENCONF_SOC_DEVICE_MUX_NFC_EN;
1960                 regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg);
1961         }
1962
1963         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1964         if (!pdata)
1965                 return -ENOMEM;
1966
1967         if (of_get_property(np, "marvell,nand-enable-arbiter", NULL))
1968                 pdata->enable_arbiter = 1;
1969         if (of_get_property(np, "marvell,nand-keep-config", NULL))
1970                 pdata->keep_config = 1;
1971         of_property_read_u32(np, "num-cs", &pdata->num_cs);
1972
1973         pdev->dev.platform_data = pdata;
1974
1975         return 0;
1976 }
1977
1978 static int pxa3xx_nand_probe(struct platform_device *pdev)
1979 {
1980         struct pxa3xx_nand_platform_data *pdata;
1981         struct pxa3xx_nand_info *info;
1982         int ret, cs, probe_success, dma_available;
1983
1984         dma_available = IS_ENABLED(CONFIG_ARM) &&
1985                 (IS_ENABLED(CONFIG_ARCH_PXA) || IS_ENABLED(CONFIG_ARCH_MMP));
1986         if (use_dma && !dma_available) {
1987                 use_dma = 0;
1988                 dev_warn(&pdev->dev,
1989                          "This platform can't do DMA on this device\n");
1990         }
1991
1992         ret = pxa3xx_nand_probe_dt(pdev);
1993         if (ret)
1994                 return ret;
1995
1996         pdata = dev_get_platdata(&pdev->dev);
1997         if (!pdata) {
1998                 dev_err(&pdev->dev, "no platform data defined\n");
1999                 return -ENODEV;
2000         }
2001
2002         ret = alloc_nand_resource(pdev);
2003         if (ret)
2004                 return ret;
2005
2006         info = platform_get_drvdata(pdev);
2007         probe_success = 0;
2008         for (cs = 0; cs < pdata->num_cs; cs++) {
2009                 struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip);
2010
2011                 /*
2012                  * The mtd name matches the one used in 'mtdparts' kernel
2013                  * parameter. This name cannot be changed or otherwise
2014                  * user's mtd partitions configuration would get broken.
2015                  */
2016                 mtd->name = "pxa3xx_nand-0";
2017                 info->cs = cs;
2018                 ret = pxa3xx_nand_scan(mtd);
2019                 if (ret) {
2020                         dev_warn(&pdev->dev, "failed to scan nand at cs %d\n",
2021                                 cs);
2022                         continue;
2023                 }
2024
2025                 ret = mtd_device_register(mtd, pdata->parts[cs],
2026                                           pdata->nr_parts[cs]);
2027                 if (!ret)
2028                         probe_success = 1;
2029         }
2030
2031         if (!probe_success) {
2032                 pxa3xx_nand_remove(pdev);
2033                 return -ENODEV;
2034         }
2035
2036         return 0;
2037 }
2038
2039 #ifdef CONFIG_PM
2040 static int pxa3xx_nand_suspend(struct device *dev)
2041 {
2042         struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
2043
2044         if (info->state) {
2045                 dev_err(dev, "driver busy, state = %d\n", info->state);
2046                 return -EAGAIN;
2047         }
2048
2049         clk_disable(info->clk);
2050         return 0;
2051 }
2052
2053 static int pxa3xx_nand_resume(struct device *dev)
2054 {
2055         struct pxa3xx_nand_info *info = dev_get_drvdata(dev);
2056         int ret;
2057
2058         ret = clk_enable(info->clk);
2059         if (ret < 0)
2060                 return ret;
2061
2062         /* We don't want to handle interrupt without calling mtd routine */
2063         disable_int(info, NDCR_INT_MASK);
2064
2065         /*
2066          * Directly set the chip select to a invalid value,
2067          * then the driver would reset the timing according
2068          * to current chip select at the beginning of cmdfunc
2069          */
2070         info->cs = 0xff;
2071
2072         /*
2073          * As the spec says, the NDSR would be updated to 0x1800 when
2074          * doing the nand_clk disable/enable.
2075          * To prevent it damaging state machine of the driver, clear
2076          * all status before resume
2077          */
2078         nand_writel(info, NDSR, NDSR_MASK);
2079
2080         return 0;
2081 }
2082 #else
2083 #define pxa3xx_nand_suspend     NULL
2084 #define pxa3xx_nand_resume      NULL
2085 #endif
2086
2087 static const struct dev_pm_ops pxa3xx_nand_pm_ops = {
2088         .suspend        = pxa3xx_nand_suspend,
2089         .resume         = pxa3xx_nand_resume,
2090 };
2091
2092 static struct platform_driver pxa3xx_nand_driver = {
2093         .driver = {
2094                 .name   = "pxa3xx-nand",
2095                 .of_match_table = pxa3xx_nand_dt_ids,
2096                 .pm     = &pxa3xx_nand_pm_ops,
2097         },
2098         .probe          = pxa3xx_nand_probe,
2099         .remove         = pxa3xx_nand_remove,
2100 };
2101
2102 module_platform_driver(pxa3xx_nand_driver);
2103
2104 MODULE_LICENSE("GPL");
2105 MODULE_DESCRIPTION("PXA3xx NAND controller driver");