]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/mtd/nand/raw/lpc32xx_mlc.c
mtd: Remove dev_err() usage after platform_get_irq()
[linux.git] / drivers / mtd / nand / raw / lpc32xx_mlc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for NAND MLC Controller in LPC32xx
4  *
5  * Author: Roland Stigge <stigge@antcom.de>
6  *
7  * Copyright © 2011 WORK Microwave GmbH
8  * Copyright © 2011, 2012 Roland Stigge
9  *
10  * NAND Flash Controller Operation:
11  * - Read: Auto Decode
12  * - Write: Auto Encode
13  * - Tested Page Sizes: 2048, 4096
14  */
15
16 #include <linux/slab.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/clk.h>
23 #include <linux/err.h>
24 #include <linux/delay.h>
25 #include <linux/completion.h>
26 #include <linux/interrupt.h>
27 #include <linux/of.h>
28 #include <linux/of_gpio.h>
29 #include <linux/mtd/lpc32xx_mlc.h>
30 #include <linux/io.h>
31 #include <linux/mm.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/dmaengine.h>
34 #include <linux/mtd/nand_ecc.h>
35
36 #define DRV_NAME "lpc32xx_mlc"
37
38 /**********************************************************************
39 * MLC NAND controller register offsets
40 **********************************************************************/
41
42 #define MLC_BUFF(x)                     (x + 0x00000)
43 #define MLC_DATA(x)                     (x + 0x08000)
44 #define MLC_CMD(x)                      (x + 0x10000)
45 #define MLC_ADDR(x)                     (x + 0x10004)
46 #define MLC_ECC_ENC_REG(x)              (x + 0x10008)
47 #define MLC_ECC_DEC_REG(x)              (x + 0x1000C)
48 #define MLC_ECC_AUTO_ENC_REG(x)         (x + 0x10010)
49 #define MLC_ECC_AUTO_DEC_REG(x)         (x + 0x10014)
50 #define MLC_RPR(x)                      (x + 0x10018)
51 #define MLC_WPR(x)                      (x + 0x1001C)
52 #define MLC_RUBP(x)                     (x + 0x10020)
53 #define MLC_ROBP(x)                     (x + 0x10024)
54 #define MLC_SW_WP_ADD_LOW(x)            (x + 0x10028)
55 #define MLC_SW_WP_ADD_HIG(x)            (x + 0x1002C)
56 #define MLC_ICR(x)                      (x + 0x10030)
57 #define MLC_TIME_REG(x)                 (x + 0x10034)
58 #define MLC_IRQ_MR(x)                   (x + 0x10038)
59 #define MLC_IRQ_SR(x)                   (x + 0x1003C)
60 #define MLC_LOCK_PR(x)                  (x + 0x10044)
61 #define MLC_ISR(x)                      (x + 0x10048)
62 #define MLC_CEH(x)                      (x + 0x1004C)
63
64 /**********************************************************************
65 * MLC_CMD bit definitions
66 **********************************************************************/
67 #define MLCCMD_RESET                    0xFF
68
69 /**********************************************************************
70 * MLC_ICR bit definitions
71 **********************************************************************/
72 #define MLCICR_WPROT                    (1 << 3)
73 #define MLCICR_LARGEBLOCK               (1 << 2)
74 #define MLCICR_LONGADDR                 (1 << 1)
75 #define MLCICR_16BIT                    (1 << 0)  /* unsupported by LPC32x0! */
76
77 /**********************************************************************
78 * MLC_TIME_REG bit definitions
79 **********************************************************************/
80 #define MLCTIMEREG_TCEA_DELAY(n)        (((n) & 0x03) << 24)
81 #define MLCTIMEREG_BUSY_DELAY(n)        (((n) & 0x1F) << 19)
82 #define MLCTIMEREG_NAND_TA(n)           (((n) & 0x07) << 16)
83 #define MLCTIMEREG_RD_HIGH(n)           (((n) & 0x0F) << 12)
84 #define MLCTIMEREG_RD_LOW(n)            (((n) & 0x0F) << 8)
85 #define MLCTIMEREG_WR_HIGH(n)           (((n) & 0x0F) << 4)
86 #define MLCTIMEREG_WR_LOW(n)            (((n) & 0x0F) << 0)
87
88 /**********************************************************************
89 * MLC_IRQ_MR and MLC_IRQ_SR bit definitions
90 **********************************************************************/
91 #define MLCIRQ_NAND_READY               (1 << 5)
92 #define MLCIRQ_CONTROLLER_READY         (1 << 4)
93 #define MLCIRQ_DECODE_FAILURE           (1 << 3)
94 #define MLCIRQ_DECODE_ERROR             (1 << 2)
95 #define MLCIRQ_ECC_READY                (1 << 1)
96 #define MLCIRQ_WRPROT_FAULT             (1 << 0)
97
98 /**********************************************************************
99 * MLC_LOCK_PR bit definitions
100 **********************************************************************/
101 #define MLCLOCKPR_MAGIC                 0xA25E
102
103 /**********************************************************************
104 * MLC_ISR bit definitions
105 **********************************************************************/
106 #define MLCISR_DECODER_FAILURE          (1 << 6)
107 #define MLCISR_ERRORS                   ((1 << 4) | (1 << 5))
108 #define MLCISR_ERRORS_DETECTED          (1 << 3)
109 #define MLCISR_ECC_READY                (1 << 2)
110 #define MLCISR_CONTROLLER_READY         (1 << 1)
111 #define MLCISR_NAND_READY               (1 << 0)
112
113 /**********************************************************************
114 * MLC_CEH bit definitions
115 **********************************************************************/
116 #define MLCCEH_NORMAL                   (1 << 0)
117
118 struct lpc32xx_nand_cfg_mlc {
119         uint32_t tcea_delay;
120         uint32_t busy_delay;
121         uint32_t nand_ta;
122         uint32_t rd_high;
123         uint32_t rd_low;
124         uint32_t wr_high;
125         uint32_t wr_low;
126         int wp_gpio;
127         struct mtd_partition *parts;
128         unsigned num_parts;
129 };
130
131 static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section,
132                                  struct mtd_oob_region *oobregion)
133 {
134         struct nand_chip *nand_chip = mtd_to_nand(mtd);
135
136         if (section >= nand_chip->ecc.steps)
137                 return -ERANGE;
138
139         oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes;
140         oobregion->length = nand_chip->ecc.bytes;
141
142         return 0;
143 }
144
145 static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section,
146                                   struct mtd_oob_region *oobregion)
147 {
148         struct nand_chip *nand_chip = mtd_to_nand(mtd);
149
150         if (section >= nand_chip->ecc.steps)
151                 return -ERANGE;
152
153         oobregion->offset = 16 * section;
154         oobregion->length = 16 - nand_chip->ecc.bytes;
155
156         return 0;
157 }
158
159 static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = {
160         .ecc = lpc32xx_ooblayout_ecc,
161         .free = lpc32xx_ooblayout_free,
162 };
163
164 static struct nand_bbt_descr lpc32xx_nand_bbt = {
165         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
166                    NAND_BBT_WRITE,
167         .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 },
168 };
169
170 static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = {
171         .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB |
172                    NAND_BBT_WRITE,
173         .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 },
174 };
175
176 struct lpc32xx_nand_host {
177         struct platform_device  *pdev;
178         struct nand_chip        nand_chip;
179         struct lpc32xx_mlc_platform_data *pdata;
180         struct clk              *clk;
181         void __iomem            *io_base;
182         int                     irq;
183         struct lpc32xx_nand_cfg_mlc     *ncfg;
184         struct completion       comp_nand;
185         struct completion       comp_controller;
186         uint32_t llptr;
187         /*
188          * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer
189          */
190         dma_addr_t              oob_buf_phy;
191         /*
192          * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer
193          */
194         uint8_t                 *oob_buf;
195         /* Physical address of DMA base address */
196         dma_addr_t              io_base_phy;
197
198         struct completion       comp_dma;
199         struct dma_chan         *dma_chan;
200         struct dma_slave_config dma_slave_config;
201         struct scatterlist      sgl;
202         uint8_t                 *dma_buf;
203         uint8_t                 *dummy_buf;
204         int                     mlcsubpages; /* number of 512bytes-subpages */
205 };
206
207 /*
208  * Activate/Deactivate DMA Operation:
209  *
210  * Using the PL080 DMA Controller for transferring the 512 byte subpages
211  * instead of doing readl() / writel() in a loop slows it down significantly.
212  * Measurements via getnstimeofday() upon 512 byte subpage reads reveal:
213  *
214  * - readl() of 128 x 32 bits in a loop: ~20us
215  * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us
216  * - DMA read of 512 bytes (32 bit, no bursts): ~100us
217  *
218  * This applies to the transfer itself. In the DMA case: only the
219  * wait_for_completion() (DMA setup _not_ included).
220  *
221  * Note that the 512 bytes subpage transfer is done directly from/to a
222  * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a
223  * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND
224  * controller transferring data between its internal buffer to/from the NAND
225  * chip.)
226  *
227  * Therefore, using the PL080 DMA is disabled by default, for now.
228  *
229  */
230 static int use_dma;
231
232 static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host)
233 {
234         uint32_t clkrate, tmp;
235
236         /* Reset MLC controller */
237         writel(MLCCMD_RESET, MLC_CMD(host->io_base));
238         udelay(1000);
239
240         /* Get base clock for MLC block */
241         clkrate = clk_get_rate(host->clk);
242         if (clkrate == 0)
243                 clkrate = 104000000;
244
245         /* Unlock MLC_ICR
246          * (among others, will be locked again automatically) */
247         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
248
249         /* Configure MLC Controller: Large Block, 5 Byte Address */
250         tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR;
251         writel(tmp, MLC_ICR(host->io_base));
252
253         /* Unlock MLC_TIME_REG
254          * (among others, will be locked again automatically) */
255         writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base));
256
257         /* Compute clock setup values, see LPC and NAND manual */
258         tmp = 0;
259         tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1);
260         tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1);
261         tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1);
262         tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1);
263         tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low);
264         tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1);
265         tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low);
266         writel(tmp, MLC_TIME_REG(host->io_base));
267
268         /* Enable IRQ for CONTROLLER_READY and NAND_READY */
269         writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY,
270                         MLC_IRQ_MR(host->io_base));
271
272         /* Normal nCE operation: nCE controlled by controller */
273         writel(MLCCEH_NORMAL, MLC_CEH(host->io_base));
274 }
275
276 /*
277  * Hardware specific access to control lines
278  */
279 static void lpc32xx_nand_cmd_ctrl(struct nand_chip *nand_chip, int cmd,
280                                   unsigned int ctrl)
281 {
282         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
283
284         if (cmd != NAND_CMD_NONE) {
285                 if (ctrl & NAND_CLE)
286                         writel(cmd, MLC_CMD(host->io_base));
287                 else
288                         writel(cmd, MLC_ADDR(host->io_base));
289         }
290 }
291
292 /*
293  * Read Device Ready (NAND device _and_ controller ready)
294  */
295 static int lpc32xx_nand_device_ready(struct nand_chip *nand_chip)
296 {
297         struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip);
298
299         if ((readb(MLC_ISR(host->io_base)) &
300              (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) ==
301             (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY))
302                 return  1;
303
304         return 0;
305 }
306
307 static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host)
308 {
309         uint8_t sr;
310
311         /* Clear interrupt flag by reading status */
312         sr = readb(MLC_IRQ_SR(host->io_base));
313         if (sr & MLCIRQ_NAND_READY)
314                 complete(&host->comp_nand);
315         if (sr & MLCIRQ_CONTROLLER_READY)
316                 complete(&host->comp_controller);
317
318         return IRQ_HANDLED;
319 }
320
321 static int lpc32xx_waitfunc_nand(struct nand_chip *chip)
322 {
323         struct mtd_info *mtd = nand_to_mtd(chip);
324         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
325
326         if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)
327                 goto exit;
328
329         wait_for_completion(&host->comp_nand);
330
331         while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) {
332                 /* Seems to be delayed sometimes by controller */
333                 dev_dbg(&mtd->dev, "Warning: NAND not ready.\n");
334                 cpu_relax();
335         }
336
337 exit:
338         return NAND_STATUS_READY;
339 }
340
341 static int lpc32xx_waitfunc_controller(struct nand_chip *chip)
342 {
343         struct mtd_info *mtd = nand_to_mtd(chip);
344         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
345
346         if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY)
347                 goto exit;
348
349         wait_for_completion(&host->comp_controller);
350
351         while (!(readb(MLC_ISR(host->io_base)) &
352                  MLCISR_CONTROLLER_READY)) {
353                 dev_dbg(&mtd->dev, "Warning: Controller not ready.\n");
354                 cpu_relax();
355         }
356
357 exit:
358         return NAND_STATUS_READY;
359 }
360
361 static int lpc32xx_waitfunc(struct nand_chip *chip)
362 {
363         lpc32xx_waitfunc_nand(chip);
364         lpc32xx_waitfunc_controller(chip);
365
366         return NAND_STATUS_READY;
367 }
368
369 /*
370  * Enable NAND write protect
371  */
372 static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host)
373 {
374         if (gpio_is_valid(host->ncfg->wp_gpio))
375                 gpio_set_value(host->ncfg->wp_gpio, 0);
376 }
377
378 /*
379  * Disable NAND write protect
380  */
381 static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host)
382 {
383         if (gpio_is_valid(host->ncfg->wp_gpio))
384                 gpio_set_value(host->ncfg->wp_gpio, 1);
385 }
386
387 static void lpc32xx_dma_complete_func(void *completion)
388 {
389         complete(completion);
390 }
391
392 static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len,
393                             enum dma_transfer_direction dir)
394 {
395         struct nand_chip *chip = mtd_to_nand(mtd);
396         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
397         struct dma_async_tx_descriptor *desc;
398         int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
399         int res;
400
401         sg_init_one(&host->sgl, mem, len);
402
403         res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1,
404                          DMA_BIDIRECTIONAL);
405         if (res != 1) {
406                 dev_err(mtd->dev.parent, "Failed to map sg list\n");
407                 return -ENXIO;
408         }
409         desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir,
410                                        flags);
411         if (!desc) {
412                 dev_err(mtd->dev.parent, "Failed to prepare slave sg\n");
413                 goto out1;
414         }
415
416         init_completion(&host->comp_dma);
417         desc->callback = lpc32xx_dma_complete_func;
418         desc->callback_param = &host->comp_dma;
419
420         dmaengine_submit(desc);
421         dma_async_issue_pending(host->dma_chan);
422
423         wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000));
424
425         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
426                      DMA_BIDIRECTIONAL);
427         return 0;
428 out1:
429         dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1,
430                      DMA_BIDIRECTIONAL);
431         return -ENXIO;
432 }
433
434 static int lpc32xx_read_page(struct nand_chip *chip, uint8_t *buf,
435                              int oob_required, int page)
436 {
437         struct mtd_info *mtd = nand_to_mtd(chip);
438         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
439         int i, j;
440         uint8_t *oobbuf = chip->oob_poi;
441         uint32_t mlc_isr;
442         int res;
443         uint8_t *dma_buf;
444         bool dma_mapped;
445
446         if ((void *)buf <= high_memory) {
447                 dma_buf = buf;
448                 dma_mapped = true;
449         } else {
450                 dma_buf = host->dma_buf;
451                 dma_mapped = false;
452         }
453
454         /* Writing Command and Address */
455         nand_read_page_op(chip, page, 0, NULL, 0);
456
457         /* For all sub-pages */
458         for (i = 0; i < host->mlcsubpages; i++) {
459                 /* Start Auto Decode Command */
460                 writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base));
461
462                 /* Wait for Controller Ready */
463                 lpc32xx_waitfunc_controller(chip);
464
465                 /* Check ECC Error status */
466                 mlc_isr = readl(MLC_ISR(host->io_base));
467                 if (mlc_isr & MLCISR_DECODER_FAILURE) {
468                         mtd->ecc_stats.failed++;
469                         dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__);
470                 } else if (mlc_isr & MLCISR_ERRORS_DETECTED) {
471                         mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1;
472                 }
473
474                 /* Read 512 + 16 Bytes */
475                 if (use_dma) {
476                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
477                                                DMA_DEV_TO_MEM);
478                         if (res)
479                                 return res;
480                 } else {
481                         for (j = 0; j < (512 >> 2); j++) {
482                                 *((uint32_t *)(buf)) =
483                                         readl(MLC_BUFF(host->io_base));
484                                 buf += 4;
485                         }
486                 }
487                 for (j = 0; j < (16 >> 2); j++) {
488                         *((uint32_t *)(oobbuf)) =
489                                 readl(MLC_BUFF(host->io_base));
490                         oobbuf += 4;
491                 }
492         }
493
494         if (use_dma && !dma_mapped)
495                 memcpy(buf, dma_buf, mtd->writesize);
496
497         return 0;
498 }
499
500 static int lpc32xx_write_page_lowlevel(struct nand_chip *chip,
501                                        const uint8_t *buf, int oob_required,
502                                        int page)
503 {
504         struct mtd_info *mtd = nand_to_mtd(chip);
505         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
506         const uint8_t *oobbuf = chip->oob_poi;
507         uint8_t *dma_buf = (uint8_t *)buf;
508         int res;
509         int i, j;
510
511         if (use_dma && (void *)buf >= high_memory) {
512                 dma_buf = host->dma_buf;
513                 memcpy(dma_buf, buf, mtd->writesize);
514         }
515
516         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
517
518         for (i = 0; i < host->mlcsubpages; i++) {
519                 /* Start Encode */
520                 writeb(0x00, MLC_ECC_ENC_REG(host->io_base));
521
522                 /* Write 512 + 6 Bytes to Buffer */
523                 if (use_dma) {
524                         res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512,
525                                                DMA_MEM_TO_DEV);
526                         if (res)
527                                 return res;
528                 } else {
529                         for (j = 0; j < (512 >> 2); j++) {
530                                 writel(*((uint32_t *)(buf)),
531                                        MLC_BUFF(host->io_base));
532                                 buf += 4;
533                         }
534                 }
535                 writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base));
536                 oobbuf += 4;
537                 writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base));
538                 oobbuf += 12;
539
540                 /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */
541                 writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base));
542
543                 /* Wait for Controller Ready */
544                 lpc32xx_waitfunc_controller(chip);
545         }
546
547         return nand_prog_page_end_op(chip);
548 }
549
550 static int lpc32xx_read_oob(struct nand_chip *chip, int page)
551 {
552         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
553
554         /* Read whole page - necessary with MLC controller! */
555         lpc32xx_read_page(chip, host->dummy_buf, 1, page);
556
557         return 0;
558 }
559
560 static int lpc32xx_write_oob(struct nand_chip *chip, int page)
561 {
562         /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */
563         return 0;
564 }
565
566 /* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */
567 static void lpc32xx_ecc_enable(struct nand_chip *chip, int mode)
568 {
569         /* Always enabled! */
570 }
571
572 static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host)
573 {
574         struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
575         dma_cap_mask_t mask;
576
577         if (!host->pdata || !host->pdata->dma_filter) {
578                 dev_err(mtd->dev.parent, "no DMA platform data\n");
579                 return -ENOENT;
580         }
581
582         dma_cap_zero(mask);
583         dma_cap_set(DMA_SLAVE, mask);
584         host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter,
585                                              "nand-mlc");
586         if (!host->dma_chan) {
587                 dev_err(mtd->dev.parent, "Failed to request DMA channel\n");
588                 return -EBUSY;
589         }
590
591         /*
592          * Set direction to a sensible value even if the dmaengine driver
593          * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x
594          * driver criticizes it as "alien transfer direction".
595          */
596         host->dma_slave_config.direction = DMA_DEV_TO_MEM;
597         host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
598         host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
599         host->dma_slave_config.src_maxburst = 128;
600         host->dma_slave_config.dst_maxburst = 128;
601         /* DMA controller does flow control: */
602         host->dma_slave_config.device_fc = false;
603         host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy);
604         host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy);
605         if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) {
606                 dev_err(mtd->dev.parent, "Failed to setup DMA slave\n");
607                 goto out1;
608         }
609
610         return 0;
611 out1:
612         dma_release_channel(host->dma_chan);
613         return -ENXIO;
614 }
615
616 static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev)
617 {
618         struct lpc32xx_nand_cfg_mlc *ncfg;
619         struct device_node *np = dev->of_node;
620
621         ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL);
622         if (!ncfg)
623                 return NULL;
624
625         of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay);
626         of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay);
627         of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta);
628         of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high);
629         of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low);
630         of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high);
631         of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low);
632
633         if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta ||
634             !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high ||
635             !ncfg->wr_low) {
636                 dev_err(dev, "chip parameters not specified correctly\n");
637                 return NULL;
638         }
639
640         ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0);
641
642         return ncfg;
643 }
644
645 static int lpc32xx_nand_attach_chip(struct nand_chip *chip)
646 {
647         struct mtd_info *mtd = nand_to_mtd(chip);
648         struct lpc32xx_nand_host *host = nand_get_controller_data(chip);
649         struct device *dev = &host->pdev->dev;
650
651         host->dma_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
652         if (!host->dma_buf)
653                 return -ENOMEM;
654
655         host->dummy_buf = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL);
656         if (!host->dummy_buf)
657                 return -ENOMEM;
658
659         chip->ecc.mode = NAND_ECC_HW;
660         chip->ecc.size = 512;
661         mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops);
662         host->mlcsubpages = mtd->writesize / 512;
663
664         return 0;
665 }
666
667 static const struct nand_controller_ops lpc32xx_nand_controller_ops = {
668         .attach_chip = lpc32xx_nand_attach_chip,
669 };
670
671 /*
672  * Probe for NAND controller
673  */
674 static int lpc32xx_nand_probe(struct platform_device *pdev)
675 {
676         struct lpc32xx_nand_host *host;
677         struct mtd_info *mtd;
678         struct nand_chip *nand_chip;
679         struct resource *rc;
680         int res;
681
682         /* Allocate memory for the device structure (and zero it) */
683         host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
684         if (!host)
685                 return -ENOMEM;
686
687         host->pdev = pdev;
688
689         rc = platform_get_resource(pdev, IORESOURCE_MEM, 0);
690         host->io_base = devm_ioremap_resource(&pdev->dev, rc);
691         if (IS_ERR(host->io_base))
692                 return PTR_ERR(host->io_base);
693
694         host->io_base_phy = rc->start;
695
696         nand_chip = &host->nand_chip;
697         mtd = nand_to_mtd(nand_chip);
698         if (pdev->dev.of_node)
699                 host->ncfg = lpc32xx_parse_dt(&pdev->dev);
700         if (!host->ncfg) {
701                 dev_err(&pdev->dev,
702                         "Missing or bad NAND config from device tree\n");
703                 return -ENOENT;
704         }
705         if (host->ncfg->wp_gpio == -EPROBE_DEFER)
706                 return -EPROBE_DEFER;
707         if (gpio_is_valid(host->ncfg->wp_gpio) &&
708                         gpio_request(host->ncfg->wp_gpio, "NAND WP")) {
709                 dev_err(&pdev->dev, "GPIO not available\n");
710                 return -EBUSY;
711         }
712         lpc32xx_wp_disable(host);
713
714         host->pdata = dev_get_platdata(&pdev->dev);
715
716         /* link the private data structures */
717         nand_set_controller_data(nand_chip, host);
718         nand_set_flash_node(nand_chip, pdev->dev.of_node);
719         mtd->dev.parent = &pdev->dev;
720
721         /* Get NAND clock */
722         host->clk = clk_get(&pdev->dev, NULL);
723         if (IS_ERR(host->clk)) {
724                 dev_err(&pdev->dev, "Clock initialization failure\n");
725                 res = -ENOENT;
726                 goto free_gpio;
727         }
728         res = clk_prepare_enable(host->clk);
729         if (res)
730                 goto put_clk;
731
732         nand_chip->legacy.cmd_ctrl = lpc32xx_nand_cmd_ctrl;
733         nand_chip->legacy.dev_ready = lpc32xx_nand_device_ready;
734         nand_chip->legacy.chip_delay = 25; /* us */
735         nand_chip->legacy.IO_ADDR_R = MLC_DATA(host->io_base);
736         nand_chip->legacy.IO_ADDR_W = MLC_DATA(host->io_base);
737
738         /* Init NAND controller */
739         lpc32xx_nand_setup(host);
740
741         platform_set_drvdata(pdev, host);
742
743         /* Initialize function pointers */
744         nand_chip->ecc.hwctl = lpc32xx_ecc_enable;
745         nand_chip->ecc.read_page_raw = lpc32xx_read_page;
746         nand_chip->ecc.read_page = lpc32xx_read_page;
747         nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel;
748         nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel;
749         nand_chip->ecc.write_oob = lpc32xx_write_oob;
750         nand_chip->ecc.read_oob = lpc32xx_read_oob;
751         nand_chip->ecc.strength = 4;
752         nand_chip->ecc.bytes = 10;
753         nand_chip->legacy.waitfunc = lpc32xx_waitfunc;
754
755         nand_chip->options = NAND_NO_SUBPAGE_WRITE;
756         nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
757         nand_chip->bbt_td = &lpc32xx_nand_bbt;
758         nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror;
759
760         if (use_dma) {
761                 res = lpc32xx_dma_setup(host);
762                 if (res) {
763                         res = -EIO;
764                         goto unprepare_clk;
765                 }
766         }
767
768         /* initially clear interrupt status */
769         readb(MLC_IRQ_SR(host->io_base));
770
771         init_completion(&host->comp_nand);
772         init_completion(&host->comp_controller);
773
774         host->irq = platform_get_irq(pdev, 0);
775         if (host->irq < 0) {
776                 res = -EINVAL;
777                 goto release_dma_chan;
778         }
779
780         if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq,
781                         IRQF_TRIGGER_HIGH, DRV_NAME, host)) {
782                 dev_err(&pdev->dev, "Error requesting NAND IRQ\n");
783                 res = -ENXIO;
784                 goto release_dma_chan;
785         }
786
787         /*
788          * Scan to find existence of the device and get the type of NAND device:
789          * SMALL block or LARGE block.
790          */
791         nand_chip->legacy.dummy_controller.ops = &lpc32xx_nand_controller_ops;
792         res = nand_scan(nand_chip, 1);
793         if (res)
794                 goto free_irq;
795
796         mtd->name = DRV_NAME;
797
798         res = mtd_device_register(mtd, host->ncfg->parts,
799                                   host->ncfg->num_parts);
800         if (res)
801                 goto cleanup_nand;
802
803         return 0;
804
805 cleanup_nand:
806         nand_cleanup(nand_chip);
807 free_irq:
808         free_irq(host->irq, host);
809 release_dma_chan:
810         if (use_dma)
811                 dma_release_channel(host->dma_chan);
812 unprepare_clk:
813         clk_disable_unprepare(host->clk);
814 put_clk:
815         clk_put(host->clk);
816 free_gpio:
817         lpc32xx_wp_enable(host);
818         gpio_free(host->ncfg->wp_gpio);
819
820         return res;
821 }
822
823 /*
824  * Remove NAND device
825  */
826 static int lpc32xx_nand_remove(struct platform_device *pdev)
827 {
828         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
829
830         nand_release(&host->nand_chip);
831         free_irq(host->irq, host);
832         if (use_dma)
833                 dma_release_channel(host->dma_chan);
834
835         clk_disable_unprepare(host->clk);
836         clk_put(host->clk);
837
838         lpc32xx_wp_enable(host);
839         gpio_free(host->ncfg->wp_gpio);
840
841         return 0;
842 }
843
844 #ifdef CONFIG_PM
845 static int lpc32xx_nand_resume(struct platform_device *pdev)
846 {
847         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
848         int ret;
849
850         /* Re-enable NAND clock */
851         ret = clk_prepare_enable(host->clk);
852         if (ret)
853                 return ret;
854
855         /* Fresh init of NAND controller */
856         lpc32xx_nand_setup(host);
857
858         /* Disable write protect */
859         lpc32xx_wp_disable(host);
860
861         return 0;
862 }
863
864 static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm)
865 {
866         struct lpc32xx_nand_host *host = platform_get_drvdata(pdev);
867
868         /* Enable write protect for safety */
869         lpc32xx_wp_enable(host);
870
871         /* Disable clock */
872         clk_disable_unprepare(host->clk);
873         return 0;
874 }
875
876 #else
877 #define lpc32xx_nand_resume NULL
878 #define lpc32xx_nand_suspend NULL
879 #endif
880
881 static const struct of_device_id lpc32xx_nand_match[] = {
882         { .compatible = "nxp,lpc3220-mlc" },
883         { /* sentinel */ },
884 };
885 MODULE_DEVICE_TABLE(of, lpc32xx_nand_match);
886
887 static struct platform_driver lpc32xx_nand_driver = {
888         .probe          = lpc32xx_nand_probe,
889         .remove         = lpc32xx_nand_remove,
890         .resume         = lpc32xx_nand_resume,
891         .suspend        = lpc32xx_nand_suspend,
892         .driver         = {
893                 .name   = DRV_NAME,
894                 .of_match_table = lpc32xx_nand_match,
895         },
896 };
897
898 module_platform_driver(lpc32xx_nand_driver);
899
900 MODULE_LICENSE("GPL");
901 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
902 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller");