]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/mtd/tests/mtd_nandecctest.c
mtd: rawnand: Clarify Kconfig entry MTD_NAND
[linux.git] / drivers / mtd / tests / mtd_nandecctest.c
1 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/module.h>
5 #include <linux/list.h>
6 #include <linux/random.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/mtd/nand_ecc.h>
11
12 #include "mtd_test.h"
13
14 /*
15  * Test the implementation for software ECC
16  *
17  * No actual MTD device is needed, So we don't need to warry about losing
18  * important data by human error.
19  *
20  * This covers possible patterns of corruption which can be reliably corrected
21  * or detected.
22  */
23
24 #if IS_ENABLED(CONFIG_MTD_RAW_NAND)
25
26 struct nand_ecc_test {
27         const char *name;
28         void (*prepare)(void *, void *, void *, void *, const size_t);
29         int (*verify)(void *, void *, void *, const size_t);
30 };
31
32 /*
33  * The reason for this __change_bit_le() instead of __change_bit() is to inject
34  * bit error properly within the region which is not a multiple of
35  * sizeof(unsigned long) on big-endian systems
36  */
37 #ifdef __LITTLE_ENDIAN
38 #define __change_bit_le(nr, addr) __change_bit(nr, addr)
39 #elif defined(__BIG_ENDIAN)
40 #define __change_bit_le(nr, addr) \
41                 __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
42 #else
43 #error "Unknown byte order"
44 #endif
45
46 static void single_bit_error_data(void *error_data, void *correct_data,
47                                 size_t size)
48 {
49         unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
50
51         memcpy(error_data, correct_data, size);
52         __change_bit_le(offset, error_data);
53 }
54
55 static void double_bit_error_data(void *error_data, void *correct_data,
56                                 size_t size)
57 {
58         unsigned int offset[2];
59
60         offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
61         do {
62                 offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
63         } while (offset[0] == offset[1]);
64
65         memcpy(error_data, correct_data, size);
66
67         __change_bit_le(offset[0], error_data);
68         __change_bit_le(offset[1], error_data);
69 }
70
71 static unsigned int random_ecc_bit(size_t size)
72 {
73         unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
74
75         if (size == 256) {
76                 /*
77                  * Don't inject a bit error into the insignificant bits (16th
78                  * and 17th bit) in ECC code for 256 byte data block
79                  */
80                 while (offset == 16 || offset == 17)
81                         offset = prandom_u32() % (3 * BITS_PER_BYTE);
82         }
83
84         return offset;
85 }
86
87 static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
88                                 size_t size)
89 {
90         unsigned int offset = random_ecc_bit(size);
91
92         memcpy(error_ecc, correct_ecc, 3);
93         __change_bit_le(offset, error_ecc);
94 }
95
96 static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
97                                 size_t size)
98 {
99         unsigned int offset[2];
100
101         offset[0] = random_ecc_bit(size);
102         do {
103                 offset[1] = random_ecc_bit(size);
104         } while (offset[0] == offset[1]);
105
106         memcpy(error_ecc, correct_ecc, 3);
107         __change_bit_le(offset[0], error_ecc);
108         __change_bit_le(offset[1], error_ecc);
109 }
110
111 static void no_bit_error(void *error_data, void *error_ecc,
112                 void *correct_data, void *correct_ecc, const size_t size)
113 {
114         memcpy(error_data, correct_data, size);
115         memcpy(error_ecc, correct_ecc, 3);
116 }
117
118 static int no_bit_error_verify(void *error_data, void *error_ecc,
119                                 void *correct_data, const size_t size)
120 {
121         unsigned char calc_ecc[3];
122         int ret;
123
124         __nand_calculate_ecc(error_data, size, calc_ecc,
125                              IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC));
126         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size,
127                                   IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC));
128         if (ret == 0 && !memcmp(correct_data, error_data, size))
129                 return 0;
130
131         return -EINVAL;
132 }
133
134 static void single_bit_error_in_data(void *error_data, void *error_ecc,
135                 void *correct_data, void *correct_ecc, const size_t size)
136 {
137         single_bit_error_data(error_data, correct_data, size);
138         memcpy(error_ecc, correct_ecc, 3);
139 }
140
141 static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
142                 void *correct_data, void *correct_ecc, const size_t size)
143 {
144         memcpy(error_data, correct_data, size);
145         single_bit_error_ecc(error_ecc, correct_ecc, size);
146 }
147
148 static int single_bit_error_correct(void *error_data, void *error_ecc,
149                                 void *correct_data, const size_t size)
150 {
151         unsigned char calc_ecc[3];
152         int ret;
153
154         __nand_calculate_ecc(error_data, size, calc_ecc,
155                              IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC));
156         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size,
157                                   IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC));
158         if (ret == 1 && !memcmp(correct_data, error_data, size))
159                 return 0;
160
161         return -EINVAL;
162 }
163
164 static void double_bit_error_in_data(void *error_data, void *error_ecc,
165                 void *correct_data, void *correct_ecc, const size_t size)
166 {
167         double_bit_error_data(error_data, correct_data, size);
168         memcpy(error_ecc, correct_ecc, 3);
169 }
170
171 static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
172                 void *correct_data, void *correct_ecc, const size_t size)
173 {
174         single_bit_error_data(error_data, correct_data, size);
175         single_bit_error_ecc(error_ecc, correct_ecc, size);
176 }
177
178 static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
179                 void *correct_data, void *correct_ecc, const size_t size)
180 {
181         memcpy(error_data, correct_data, size);
182         double_bit_error_ecc(error_ecc, correct_ecc, size);
183 }
184
185 static int double_bit_error_detect(void *error_data, void *error_ecc,
186                                 void *correct_data, const size_t size)
187 {
188         unsigned char calc_ecc[3];
189         int ret;
190
191         __nand_calculate_ecc(error_data, size, calc_ecc,
192                              IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC));
193         ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size,
194                                   IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC));
195
196         return (ret == -EBADMSG) ? 0 : -EINVAL;
197 }
198
199 static const struct nand_ecc_test nand_ecc_test[] = {
200         {
201                 .name = "no-bit-error",
202                 .prepare = no_bit_error,
203                 .verify = no_bit_error_verify,
204         },
205         {
206                 .name = "single-bit-error-in-data-correct",
207                 .prepare = single_bit_error_in_data,
208                 .verify = single_bit_error_correct,
209         },
210         {
211                 .name = "single-bit-error-in-ecc-correct",
212                 .prepare = single_bit_error_in_ecc,
213                 .verify = single_bit_error_correct,
214         },
215         {
216                 .name = "double-bit-error-in-data-detect",
217                 .prepare = double_bit_error_in_data,
218                 .verify = double_bit_error_detect,
219         },
220         {
221                 .name = "single-bit-error-in-data-and-ecc-detect",
222                 .prepare = single_bit_error_in_data_and_ecc,
223                 .verify = double_bit_error_detect,
224         },
225         {
226                 .name = "double-bit-error-in-ecc-detect",
227                 .prepare = double_bit_error_in_ecc,
228                 .verify = double_bit_error_detect,
229         },
230 };
231
232 static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
233                         void *correct_ecc, const size_t size)
234 {
235         pr_info("hexdump of error data:\n");
236         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
237                         error_data, size, false);
238         print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
239                         DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
240
241         pr_info("hexdump of correct data:\n");
242         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
243                         correct_data, size, false);
244         print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
245                         DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
246 }
247
248 static int nand_ecc_test_run(const size_t size)
249 {
250         int i;
251         int err = 0;
252         void *error_data;
253         void *error_ecc;
254         void *correct_data;
255         void *correct_ecc;
256
257         error_data = kmalloc(size, GFP_KERNEL);
258         error_ecc = kmalloc(3, GFP_KERNEL);
259         correct_data = kmalloc(size, GFP_KERNEL);
260         correct_ecc = kmalloc(3, GFP_KERNEL);
261
262         if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
263                 err = -ENOMEM;
264                 goto error;
265         }
266
267         prandom_bytes(correct_data, size);
268         __nand_calculate_ecc(correct_data, size, correct_ecc,
269                              IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC));
270
271         for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
272                 nand_ecc_test[i].prepare(error_data, error_ecc,
273                                 correct_data, correct_ecc, size);
274                 err = nand_ecc_test[i].verify(error_data, error_ecc,
275                                                 correct_data, size);
276
277                 if (err) {
278                         pr_err("not ok - %s-%zd\n",
279                                 nand_ecc_test[i].name, size);
280                         dump_data_ecc(error_data, error_ecc,
281                                 correct_data, correct_ecc, size);
282                         break;
283                 }
284                 pr_info("ok - %s-%zd\n",
285                         nand_ecc_test[i].name, size);
286
287                 err = mtdtest_relax();
288                 if (err)
289                         break;
290         }
291 error:
292         kfree(error_data);
293         kfree(error_ecc);
294         kfree(correct_data);
295         kfree(correct_ecc);
296
297         return err;
298 }
299
300 #else
301
302 static int nand_ecc_test_run(const size_t size)
303 {
304         return 0;
305 }
306
307 #endif
308
309 static int __init ecc_test_init(void)
310 {
311         int err;
312
313         err = nand_ecc_test_run(256);
314         if (err)
315                 return err;
316
317         return nand_ecc_test_run(512);
318 }
319
320 static void __exit ecc_test_exit(void)
321 {
322 }
323
324 module_init(ecc_test_init);
325 module_exit(ecc_test_exit);
326
327 MODULE_DESCRIPTION("NAND ECC function test module");
328 MODULE_AUTHOR("Akinobu Mita");
329 MODULE_LICENSE("GPL");