]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/dsa/bcm_sf2_cfp.c
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / drivers / net / dsa / bcm_sf2_cfp.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Broadcom Starfighter 2 DSA switch CFP support
4  *
5  * Copyright (C) 2016, Broadcom
6  */
7
8 #include <linux/list.h>
9 #include <linux/ethtool.h>
10 #include <linux/if_ether.h>
11 #include <linux/in.h>
12 #include <linux/netdevice.h>
13 #include <net/dsa.h>
14 #include <linux/bitmap.h>
15 #include <net/flow_offload.h>
16
17 #include "bcm_sf2.h"
18 #include "bcm_sf2_regs.h"
19
20 struct cfp_rule {
21         int port;
22         struct ethtool_rx_flow_spec fs;
23         struct list_head next;
24 };
25
26 struct cfp_udf_slice_layout {
27         u8 slices[UDFS_PER_SLICE];
28         u32 mask_value;
29         u32 base_offset;
30 };
31
32 struct cfp_udf_layout {
33         struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
34 };
35
36 static const u8 zero_slice[UDFS_PER_SLICE] = { };
37
38 /* UDF slices layout for a TCPv4/UDPv4 specification */
39 static const struct cfp_udf_layout udf_tcpip4_layout = {
40         .udfs = {
41                 [1] = {
42                         .slices = {
43                                 /* End of L2, byte offset 12, src IP[0:15] */
44                                 CFG_UDF_EOL2 | 6,
45                                 /* End of L2, byte offset 14, src IP[16:31] */
46                                 CFG_UDF_EOL2 | 7,
47                                 /* End of L2, byte offset 16, dst IP[0:15] */
48                                 CFG_UDF_EOL2 | 8,
49                                 /* End of L2, byte offset 18, dst IP[16:31] */
50                                 CFG_UDF_EOL2 | 9,
51                                 /* End of L3, byte offset 0, src port */
52                                 CFG_UDF_EOL3 | 0,
53                                 /* End of L3, byte offset 2, dst port */
54                                 CFG_UDF_EOL3 | 1,
55                                 0, 0, 0
56                         },
57                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
58                         .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
59                 },
60         },
61 };
62
63 /* UDF slices layout for a TCPv6/UDPv6 specification */
64 static const struct cfp_udf_layout udf_tcpip6_layout = {
65         .udfs = {
66                 [0] = {
67                         .slices = {
68                                 /* End of L2, byte offset 8, src IP[0:15] */
69                                 CFG_UDF_EOL2 | 4,
70                                 /* End of L2, byte offset 10, src IP[16:31] */
71                                 CFG_UDF_EOL2 | 5,
72                                 /* End of L2, byte offset 12, src IP[32:47] */
73                                 CFG_UDF_EOL2 | 6,
74                                 /* End of L2, byte offset 14, src IP[48:63] */
75                                 CFG_UDF_EOL2 | 7,
76                                 /* End of L2, byte offset 16, src IP[64:79] */
77                                 CFG_UDF_EOL2 | 8,
78                                 /* End of L2, byte offset 18, src IP[80:95] */
79                                 CFG_UDF_EOL2 | 9,
80                                 /* End of L2, byte offset 20, src IP[96:111] */
81                                 CFG_UDF_EOL2 | 10,
82                                 /* End of L2, byte offset 22, src IP[112:127] */
83                                 CFG_UDF_EOL2 | 11,
84                                 /* End of L3, byte offset 0, src port */
85                                 CFG_UDF_EOL3 | 0,
86                         },
87                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
88                         .base_offset = CORE_UDF_0_B_0_8_PORT_0,
89                 },
90                 [3] = {
91                         .slices = {
92                                 /* End of L2, byte offset 24, dst IP[0:15] */
93                                 CFG_UDF_EOL2 | 12,
94                                 /* End of L2, byte offset 26, dst IP[16:31] */
95                                 CFG_UDF_EOL2 | 13,
96                                 /* End of L2, byte offset 28, dst IP[32:47] */
97                                 CFG_UDF_EOL2 | 14,
98                                 /* End of L2, byte offset 30, dst IP[48:63] */
99                                 CFG_UDF_EOL2 | 15,
100                                 /* End of L2, byte offset 32, dst IP[64:79] */
101                                 CFG_UDF_EOL2 | 16,
102                                 /* End of L2, byte offset 34, dst IP[80:95] */
103                                 CFG_UDF_EOL2 | 17,
104                                 /* End of L2, byte offset 36, dst IP[96:111] */
105                                 CFG_UDF_EOL2 | 18,
106                                 /* End of L2, byte offset 38, dst IP[112:127] */
107                                 CFG_UDF_EOL2 | 19,
108                                 /* End of L3, byte offset 2, dst port */
109                                 CFG_UDF_EOL3 | 1,
110                         },
111                         .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
112                         .base_offset = CORE_UDF_0_D_0_11_PORT_0,
113                 },
114         },
115 };
116
117 static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
118 {
119         unsigned int i, count = 0;
120
121         for (i = 0; i < UDFS_PER_SLICE; i++) {
122                 if (layout[i] != 0)
123                         count++;
124         }
125
126         return count;
127 }
128
129 static inline u32 udf_upper_bits(unsigned int num_udf)
130 {
131         return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
132 }
133
134 static inline u32 udf_lower_bits(unsigned int num_udf)
135 {
136         return (u8)GENMASK(num_udf - 1, 0);
137 }
138
139 static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
140                                              unsigned int start)
141 {
142         const struct cfp_udf_slice_layout *slice_layout;
143         unsigned int slice_idx;
144
145         for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
146                 slice_layout = &l->udfs[slice_idx];
147                 if (memcmp(slice_layout->slices, zero_slice,
148                            sizeof(zero_slice)))
149                         break;
150         }
151
152         return slice_idx;
153 }
154
155 static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
156                                 const struct cfp_udf_layout *layout,
157                                 unsigned int slice_num)
158 {
159         u32 offset = layout->udfs[slice_num].base_offset;
160         unsigned int i;
161
162         for (i = 0; i < UDFS_PER_SLICE; i++)
163                 core_writel(priv, layout->udfs[slice_num].slices[i],
164                             offset + i * 4);
165 }
166
167 static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
168 {
169         unsigned int timeout = 1000;
170         u32 reg;
171
172         reg = core_readl(priv, CORE_CFP_ACC);
173         reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
174         reg |= OP_STR_DONE | op;
175         core_writel(priv, reg, CORE_CFP_ACC);
176
177         do {
178                 reg = core_readl(priv, CORE_CFP_ACC);
179                 if (!(reg & OP_STR_DONE))
180                         break;
181
182                 cpu_relax();
183         } while (timeout--);
184
185         if (!timeout)
186                 return -ETIMEDOUT;
187
188         return 0;
189 }
190
191 static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
192                                              unsigned int addr)
193 {
194         u32 reg;
195
196         WARN_ON(addr >= priv->num_cfp_rules);
197
198         reg = core_readl(priv, CORE_CFP_ACC);
199         reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
200         reg |= addr << XCESS_ADDR_SHIFT;
201         core_writel(priv, reg, CORE_CFP_ACC);
202 }
203
204 static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
205 {
206         /* Entry #0 is reserved */
207         return priv->num_cfp_rules - 1;
208 }
209
210 static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
211                                    unsigned int rule_index,
212                                    int src_port,
213                                    unsigned int port_num,
214                                    unsigned int queue_num,
215                                    bool fwd_map_change)
216 {
217         int ret;
218         u32 reg;
219
220         /* Replace ARL derived destination with DST_MAP derived, define
221          * which port and queue this should be forwarded to.
222          */
223         if (fwd_map_change)
224                 reg = CHANGE_FWRD_MAP_IB_REP_ARL |
225                       BIT(port_num + DST_MAP_IB_SHIFT) |
226                       CHANGE_TC | queue_num << NEW_TC_SHIFT;
227         else
228                 reg = 0;
229
230         /* Enable looping back to the original port */
231         if (src_port == port_num)
232                 reg |= LOOP_BK_EN;
233
234         core_writel(priv, reg, CORE_ACT_POL_DATA0);
235
236         /* Set classification ID that needs to be put in Broadcom tag */
237         core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
238
239         core_writel(priv, 0, CORE_ACT_POL_DATA2);
240
241         /* Configure policer RAM now */
242         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
243         if (ret) {
244                 pr_err("Policer entry at %d failed\n", rule_index);
245                 return ret;
246         }
247
248         /* Disable the policer */
249         core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
250
251         /* Now the rate meter */
252         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
253         if (ret) {
254                 pr_err("Meter entry at %d failed\n", rule_index);
255                 return ret;
256         }
257
258         return 0;
259 }
260
261 static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
262                                    struct flow_dissector_key_ipv4_addrs *addrs,
263                                    struct flow_dissector_key_ports *ports,
264                                    unsigned int slice_num,
265                                    bool mask)
266 {
267         u32 reg, offset;
268
269         /* C-Tag                [31:24]
270          * UDF_n_A8             [23:8]
271          * UDF_n_A7             [7:0]
272          */
273         reg = 0;
274         if (mask)
275                 offset = CORE_CFP_MASK_PORT(4);
276         else
277                 offset = CORE_CFP_DATA_PORT(4);
278         core_writel(priv, reg, offset);
279
280         /* UDF_n_A7             [31:24]
281          * UDF_n_A6             [23:8]
282          * UDF_n_A5             [7:0]
283          */
284         reg = be16_to_cpu(ports->dst) >> 8;
285         if (mask)
286                 offset = CORE_CFP_MASK_PORT(3);
287         else
288                 offset = CORE_CFP_DATA_PORT(3);
289         core_writel(priv, reg, offset);
290
291         /* UDF_n_A5             [31:24]
292          * UDF_n_A4             [23:8]
293          * UDF_n_A3             [7:0]
294          */
295         reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
296               (u32)be16_to_cpu(ports->src) << 8 |
297               (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
298         if (mask)
299                 offset = CORE_CFP_MASK_PORT(2);
300         else
301                 offset = CORE_CFP_DATA_PORT(2);
302         core_writel(priv, reg, offset);
303
304         /* UDF_n_A3             [31:24]
305          * UDF_n_A2             [23:8]
306          * UDF_n_A1             [7:0]
307          */
308         reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
309               (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
310               (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
311         if (mask)
312                 offset = CORE_CFP_MASK_PORT(1);
313         else
314                 offset = CORE_CFP_DATA_PORT(1);
315         core_writel(priv, reg, offset);
316
317         /* UDF_n_A1             [31:24]
318          * UDF_n_A0             [23:8]
319          * Reserved             [7:4]
320          * Slice ID             [3:2]
321          * Slice valid          [1:0]
322          */
323         reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
324               (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
325               SLICE_NUM(slice_num) | SLICE_VALID;
326         if (mask)
327                 offset = CORE_CFP_MASK_PORT(0);
328         else
329                 offset = CORE_CFP_DATA_PORT(0);
330         core_writel(priv, reg, offset);
331 }
332
333 static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
334                                      unsigned int port_num,
335                                      unsigned int queue_num,
336                                      struct ethtool_rx_flow_spec *fs)
337 {
338         struct ethtool_rx_flow_spec_input input = {};
339         const struct cfp_udf_layout *layout;
340         unsigned int slice_num, rule_index;
341         struct ethtool_rx_flow_rule *flow;
342         struct flow_match_ipv4_addrs ipv4;
343         struct flow_match_ports ports;
344         struct flow_match_ip ip;
345         u8 ip_proto, ip_frag;
346         u8 num_udf;
347         u32 reg;
348         int ret;
349
350         switch (fs->flow_type & ~FLOW_EXT) {
351         case TCP_V4_FLOW:
352                 ip_proto = IPPROTO_TCP;
353                 break;
354         case UDP_V4_FLOW:
355                 ip_proto = IPPROTO_UDP;
356                 break;
357         default:
358                 return -EINVAL;
359         }
360
361         ip_frag = be32_to_cpu(fs->m_ext.data[0]);
362
363         /* Locate the first rule available */
364         if (fs->location == RX_CLS_LOC_ANY)
365                 rule_index = find_first_zero_bit(priv->cfp.used,
366                                                  priv->num_cfp_rules);
367         else
368                 rule_index = fs->location;
369
370         if (rule_index > bcm_sf2_cfp_rule_size(priv))
371                 return -ENOSPC;
372
373         input.fs = fs;
374         flow = ethtool_rx_flow_rule_create(&input);
375         if (IS_ERR(flow))
376                 return PTR_ERR(flow);
377
378         flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
379         flow_rule_match_ports(flow->rule, &ports);
380         flow_rule_match_ip(flow->rule, &ip);
381
382         layout = &udf_tcpip4_layout;
383         /* We only use one UDF slice for now */
384         slice_num = bcm_sf2_get_slice_number(layout, 0);
385         if (slice_num == UDF_NUM_SLICES) {
386                 ret = -EINVAL;
387                 goto out_err_flow_rule;
388         }
389
390         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
391
392         /* Apply the UDF layout for this filter */
393         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
394
395         /* Apply to all packets received through this port */
396         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
397
398         /* Source port map match */
399         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
400
401         /* S-Tag status         [31:30]
402          * C-Tag status         [29:28]
403          * L2 framing           [27:26]
404          * L3 framing           [25:24]
405          * IP ToS               [23:16]
406          * IP proto             [15:08]
407          * IP Fragm             [7]
408          * Non 1st frag         [6]
409          * IP Authen            [5]
410          * TTL range            [4:3]
411          * PPPoE session        [2]
412          * Reserved             [1]
413          * UDF_Valid[8]         [0]
414          */
415         core_writel(priv, ip.key->tos << IPTOS_SHIFT |
416                     ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
417                     udf_upper_bits(num_udf),
418                     CORE_CFP_DATA_PORT(6));
419
420         /* Mask with the specific layout for IPv4 packets */
421         core_writel(priv, layout->udfs[slice_num].mask_value |
422                     udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
423
424         /* UDF_Valid[7:0]       [31:24]
425          * S-Tag                [23:8]
426          * C-Tag                [7:0]
427          */
428         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
429
430         /* Mask all but valid UDFs */
431         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
432
433         /* Program the match and the mask */
434         bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, slice_num, false);
435         bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, SLICE_NUM_MASK, true);
436
437         /* Insert into TCAM now */
438         bcm_sf2_cfp_rule_addr_set(priv, rule_index);
439
440         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
441         if (ret) {
442                 pr_err("TCAM entry at addr %d failed\n", rule_index);
443                 goto out_err_flow_rule;
444         }
445
446         /* Insert into Action and policer RAMs now */
447         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
448                                       queue_num, true);
449         if (ret)
450                 goto out_err_flow_rule;
451
452         /* Turn on CFP for this rule now */
453         reg = core_readl(priv, CORE_CFP_CTL_REG);
454         reg |= BIT(port);
455         core_writel(priv, reg, CORE_CFP_CTL_REG);
456
457         /* Flag the rule as being used and return it */
458         set_bit(rule_index, priv->cfp.used);
459         set_bit(rule_index, priv->cfp.unique);
460         fs->location = rule_index;
461
462         return 0;
463
464 out_err_flow_rule:
465         ethtool_rx_flow_rule_destroy(flow);
466         return ret;
467 }
468
469 static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
470                                    const __be32 *ip6_addr, const __be16 port,
471                                    unsigned int slice_num,
472                                    bool mask)
473 {
474         u32 reg, tmp, val, offset;
475
476         /* C-Tag                [31:24]
477          * UDF_n_B8             [23:8]  (port)
478          * UDF_n_B7 (upper)     [7:0]   (addr[15:8])
479          */
480         reg = be32_to_cpu(ip6_addr[3]);
481         val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
482         if (mask)
483                 offset = CORE_CFP_MASK_PORT(4);
484         else
485                 offset = CORE_CFP_DATA_PORT(4);
486         core_writel(priv, val, offset);
487
488         /* UDF_n_B7 (lower)     [31:24] (addr[7:0])
489          * UDF_n_B6             [23:8] (addr[31:16])
490          * UDF_n_B5 (upper)     [7:0] (addr[47:40])
491          */
492         tmp = be32_to_cpu(ip6_addr[2]);
493         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
494               ((tmp >> 8) & 0xff);
495         if (mask)
496                 offset = CORE_CFP_MASK_PORT(3);
497         else
498                 offset = CORE_CFP_DATA_PORT(3);
499         core_writel(priv, val, offset);
500
501         /* UDF_n_B5 (lower)     [31:24] (addr[39:32])
502          * UDF_n_B4             [23:8] (addr[63:48])
503          * UDF_n_B3 (upper)     [7:0] (addr[79:72])
504          */
505         reg = be32_to_cpu(ip6_addr[1]);
506         val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
507               ((reg >> 8) & 0xff);
508         if (mask)
509                 offset = CORE_CFP_MASK_PORT(2);
510         else
511                 offset = CORE_CFP_DATA_PORT(2);
512         core_writel(priv, val, offset);
513
514         /* UDF_n_B3 (lower)     [31:24] (addr[71:64])
515          * UDF_n_B2             [23:8] (addr[95:80])
516          * UDF_n_B1 (upper)     [7:0] (addr[111:104])
517          */
518         tmp = be32_to_cpu(ip6_addr[0]);
519         val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
520               ((tmp >> 8) & 0xff);
521         if (mask)
522                 offset = CORE_CFP_MASK_PORT(1);
523         else
524                 offset = CORE_CFP_DATA_PORT(1);
525         core_writel(priv, val, offset);
526
527         /* UDF_n_B1 (lower)     [31:24] (addr[103:96])
528          * UDF_n_B0             [23:8] (addr[127:112])
529          * Reserved             [7:4]
530          * Slice ID             [3:2]
531          * Slice valid          [1:0]
532          */
533         reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
534                SLICE_NUM(slice_num) | SLICE_VALID;
535         if (mask)
536                 offset = CORE_CFP_MASK_PORT(0);
537         else
538                 offset = CORE_CFP_DATA_PORT(0);
539         core_writel(priv, reg, offset);
540 }
541
542 static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
543                                               int port, u32 location)
544 {
545         struct cfp_rule *rule = NULL;
546
547         list_for_each_entry(rule, &priv->cfp.rules_list, next) {
548                 if (rule->port == port && rule->fs.location == location)
549                         break;
550         }
551
552         return rule;
553 }
554
555 static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
556                                 struct ethtool_rx_flow_spec *fs)
557 {
558         struct cfp_rule *rule = NULL;
559         size_t fs_size = 0;
560         int ret = 1;
561
562         if (list_empty(&priv->cfp.rules_list))
563                 return ret;
564
565         list_for_each_entry(rule, &priv->cfp.rules_list, next) {
566                 ret = 1;
567                 if (rule->port != port)
568                         continue;
569
570                 if (rule->fs.flow_type != fs->flow_type ||
571                     rule->fs.ring_cookie != fs->ring_cookie ||
572                     rule->fs.m_ext.data[0] != fs->m_ext.data[0])
573                         continue;
574
575                 switch (fs->flow_type & ~FLOW_EXT) {
576                 case TCP_V6_FLOW:
577                 case UDP_V6_FLOW:
578                         fs_size = sizeof(struct ethtool_tcpip6_spec);
579                         break;
580                 case TCP_V4_FLOW:
581                 case UDP_V4_FLOW:
582                         fs_size = sizeof(struct ethtool_tcpip4_spec);
583                         break;
584                 default:
585                         continue;
586                 }
587
588                 ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
589                 ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
590                 if (ret == 0)
591                         break;
592         }
593
594         return ret;
595 }
596
597 static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
598                                      unsigned int port_num,
599                                      unsigned int queue_num,
600                                      struct ethtool_rx_flow_spec *fs)
601 {
602         struct ethtool_rx_flow_spec_input input = {};
603         unsigned int slice_num, rule_index[2];
604         const struct cfp_udf_layout *layout;
605         struct ethtool_rx_flow_rule *flow;
606         struct flow_match_ipv6_addrs ipv6;
607         struct flow_match_ports ports;
608         u8 ip_proto, ip_frag;
609         int ret = 0;
610         u8 num_udf;
611         u32 reg;
612
613         switch (fs->flow_type & ~FLOW_EXT) {
614         case TCP_V6_FLOW:
615                 ip_proto = IPPROTO_TCP;
616                 break;
617         case UDP_V6_FLOW:
618                 ip_proto = IPPROTO_UDP;
619                 break;
620         default:
621                 return -EINVAL;
622         }
623
624         ip_frag = be32_to_cpu(fs->m_ext.data[0]);
625
626         layout = &udf_tcpip6_layout;
627         slice_num = bcm_sf2_get_slice_number(layout, 0);
628         if (slice_num == UDF_NUM_SLICES)
629                 return -EINVAL;
630
631         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
632
633         /* Negotiate two indexes, one for the second half which we are chained
634          * from, which is what we will return to user-space, and a second one
635          * which is used to store its first half. That first half does not
636          * allow any choice of placement, so it just needs to find the next
637          * available bit. We return the second half as fs->location because
638          * that helps with the rule lookup later on since the second half is
639          * chained from its first half, we can easily identify IPv6 CFP rules
640          * by looking whether they carry a CHAIN_ID.
641          *
642          * We also want the second half to have a lower rule_index than its
643          * first half because the HW search is by incrementing addresses.
644          */
645         if (fs->location == RX_CLS_LOC_ANY)
646                 rule_index[1] = find_first_zero_bit(priv->cfp.used,
647                                                     priv->num_cfp_rules);
648         else
649                 rule_index[1] = fs->location;
650         if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
651                 return -ENOSPC;
652
653         /* Flag it as used (cleared on error path) such that we can immediately
654          * obtain a second one to chain from.
655          */
656         set_bit(rule_index[1], priv->cfp.used);
657
658         rule_index[0] = find_first_zero_bit(priv->cfp.used,
659                                             priv->num_cfp_rules);
660         if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
661                 ret = -ENOSPC;
662                 goto out_err;
663         }
664
665         input.fs = fs;
666         flow = ethtool_rx_flow_rule_create(&input);
667         if (IS_ERR(flow)) {
668                 ret = PTR_ERR(flow);
669                 goto out_err;
670         }
671         flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
672         flow_rule_match_ports(flow->rule, &ports);
673
674         /* Apply the UDF layout for this filter */
675         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
676
677         /* Apply to all packets received through this port */
678         core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
679
680         /* Source port map match */
681         core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
682
683         /* S-Tag status         [31:30]
684          * C-Tag status         [29:28]
685          * L2 framing           [27:26]
686          * L3 framing           [25:24]
687          * IP ToS               [23:16]
688          * IP proto             [15:08]
689          * IP Fragm             [7]
690          * Non 1st frag         [6]
691          * IP Authen            [5]
692          * TTL range            [4:3]
693          * PPPoE session        [2]
694          * Reserved             [1]
695          * UDF_Valid[8]         [0]
696          */
697         reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
698                 ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
699         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
700
701         /* Mask with the specific layout for IPv6 packets including
702          * UDF_Valid[8]
703          */
704         reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
705         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
706
707         /* UDF_Valid[7:0]       [31:24]
708          * S-Tag                [23:8]
709          * C-Tag                [7:0]
710          */
711         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
712
713         /* Mask all but valid UDFs */
714         core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
715
716         /* Slice the IPv6 source address and port */
717         bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
718                                ports.key->src, slice_num, false);
719         bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
720                                ports.mask->src, SLICE_NUM_MASK, true);
721
722         /* Insert into TCAM now because we need to insert a second rule */
723         bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
724
725         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
726         if (ret) {
727                 pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
728                 goto out_err_flow_rule;
729         }
730
731         /* Insert into Action and policer RAMs now */
732         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
733                                       queue_num, false);
734         if (ret)
735                 goto out_err_flow_rule;
736
737         /* Now deal with the second slice to chain this rule */
738         slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
739         if (slice_num == UDF_NUM_SLICES) {
740                 ret = -EINVAL;
741                 goto out_err_flow_rule;
742         }
743
744         num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
745
746         /* Apply the UDF layout for this filter */
747         bcm_sf2_cfp_udf_set(priv, layout, slice_num);
748
749         /* Chained rule, source port match is coming from the rule we are
750          * chained from.
751          */
752         core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
753         core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
754
755         /*
756          * CHAIN ID             [31:24] chain to previous slice
757          * Reserved             [23:20]
758          * UDF_Valid[11:8]      [19:16]
759          * UDF_Valid[7:0]       [15:8]
760          * UDF_n_D11            [7:0]
761          */
762         reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
763                 udf_lower_bits(num_udf) << 8;
764         core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
765
766         /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
767         reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
768                 udf_lower_bits(num_udf) << 8;
769         core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
770
771         /* Don't care */
772         core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
773
774         /* Mask all */
775         core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
776
777         bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
778                                ports.key->dst, slice_num, false);
779         bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
780                                ports.key->dst, SLICE_NUM_MASK, true);
781
782         /* Insert into TCAM now */
783         bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
784
785         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
786         if (ret) {
787                 pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
788                 goto out_err_flow_rule;
789         }
790
791         /* Insert into Action and policer RAMs now, set chain ID to
792          * the one we are chained to
793          */
794         ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
795                                       queue_num, true);
796         if (ret)
797                 goto out_err_flow_rule;
798
799         /* Turn on CFP for this rule now */
800         reg = core_readl(priv, CORE_CFP_CTL_REG);
801         reg |= BIT(port);
802         core_writel(priv, reg, CORE_CFP_CTL_REG);
803
804         /* Flag the second half rule as being used now, return it as the
805          * location, and flag it as unique while dumping rules
806          */
807         set_bit(rule_index[0], priv->cfp.used);
808         set_bit(rule_index[1], priv->cfp.unique);
809         fs->location = rule_index[1];
810
811         return ret;
812
813 out_err_flow_rule:
814         ethtool_rx_flow_rule_destroy(flow);
815 out_err:
816         clear_bit(rule_index[1], priv->cfp.used);
817         return ret;
818 }
819
820 static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
821                                    struct ethtool_rx_flow_spec *fs)
822 {
823         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
824         s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
825         __u64 ring_cookie = fs->ring_cookie;
826         unsigned int queue_num, port_num;
827         int ret;
828
829         /* This rule is a Wake-on-LAN filter and we must specifically
830          * target the CPU port in order for it to be working.
831          */
832         if (ring_cookie == RX_CLS_FLOW_WAKE)
833                 ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
834
835         /* We do not support discarding packets, check that the
836          * destination port is enabled and that we are within the
837          * number of ports supported by the switch
838          */
839         port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
840
841         if (ring_cookie == RX_CLS_FLOW_DISC ||
842             !(dsa_is_user_port(ds, port_num) ||
843               dsa_is_cpu_port(ds, port_num)) ||
844             port_num >= priv->hw_params.num_ports)
845                 return -EINVAL;
846         /*
847          * We have a small oddity where Port 6 just does not have a
848          * valid bit here (so we substract by one).
849          */
850         queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
851         if (port_num >= 7)
852                 port_num -= 1;
853
854         switch (fs->flow_type & ~FLOW_EXT) {
855         case TCP_V4_FLOW:
856         case UDP_V4_FLOW:
857                 ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
858                                                 queue_num, fs);
859                 break;
860         case TCP_V6_FLOW:
861         case UDP_V6_FLOW:
862                 ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
863                                                 queue_num, fs);
864                 break;
865         default:
866                 ret = -EINVAL;
867                 break;
868         }
869
870         return ret;
871 }
872
873 static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
874                                 struct ethtool_rx_flow_spec *fs)
875 {
876         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
877         struct cfp_rule *rule = NULL;
878         int ret = -EINVAL;
879
880         /* Check for unsupported extensions */
881         if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
882              fs->m_ext.data[1]))
883                 return -EINVAL;
884
885         if (fs->location != RX_CLS_LOC_ANY && fs->location >= CFP_NUM_RULES)
886                 return -EINVAL;
887
888         if (fs->location != RX_CLS_LOC_ANY &&
889             test_bit(fs->location, priv->cfp.used))
890                 return -EBUSY;
891
892         if (fs->location != RX_CLS_LOC_ANY &&
893             fs->location > bcm_sf2_cfp_rule_size(priv))
894                 return -EINVAL;
895
896         ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
897         if (ret == 0)
898                 return -EEXIST;
899
900         rule = kzalloc(sizeof(*rule), GFP_KERNEL);
901         if (!rule)
902                 return -ENOMEM;
903
904         ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
905         if (ret) {
906                 kfree(rule);
907                 return ret;
908         }
909
910         rule->port = port;
911         memcpy(&rule->fs, fs, sizeof(*fs));
912         list_add_tail(&rule->next, &priv->cfp.rules_list);
913
914         return ret;
915 }
916
917 static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
918                                     u32 loc, u32 *next_loc)
919 {
920         int ret;
921         u32 reg;
922
923         /* Indicate which rule we want to read */
924         bcm_sf2_cfp_rule_addr_set(priv, loc);
925
926         ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
927         if (ret)
928                 return ret;
929
930         /* Check if this is possibly an IPv6 rule that would
931          * indicate we need to delete its companion rule
932          * as well
933          */
934         reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
935         if (next_loc)
936                 *next_loc = (reg >> 24) & CHAIN_ID_MASK;
937
938         /* Clear its valid bits */
939         reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
940         reg &= ~SLICE_VALID;
941         core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
942
943         /* Write back this entry into the TCAM now */
944         ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
945         if (ret)
946                 return ret;
947
948         clear_bit(loc, priv->cfp.used);
949         clear_bit(loc, priv->cfp.unique);
950
951         return 0;
952 }
953
954 static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
955                                    u32 loc)
956 {
957         u32 next_loc = 0;
958         int ret;
959
960         ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
961         if (ret)
962                 return ret;
963
964         /* If this was an IPv6 rule, delete is companion rule too */
965         if (next_loc)
966                 ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
967
968         return ret;
969 }
970
971 static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
972 {
973         struct cfp_rule *rule;
974         int ret;
975
976         if (loc >= CFP_NUM_RULES)
977                 return -EINVAL;
978
979         /* Refuse deleting unused rules, and those that are not unique since
980          * that could leave IPv6 rules with one of the chained rule in the
981          * table.
982          */
983         if (!test_bit(loc, priv->cfp.unique) || loc == 0)
984                 return -EINVAL;
985
986         rule = bcm_sf2_cfp_rule_find(priv, port, loc);
987         if (!rule)
988                 return -EINVAL;
989
990         ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
991
992         list_del(&rule->next);
993         kfree(rule);
994
995         return ret;
996 }
997
998 static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
999 {
1000         unsigned int i;
1001
1002         for (i = 0; i < sizeof(flow->m_u); i++)
1003                 flow->m_u.hdata[i] ^= 0xff;
1004
1005         flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1006         flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1007         flow->m_ext.data[0] ^= cpu_to_be32(~0);
1008         flow->m_ext.data[1] ^= cpu_to_be32(~0);
1009 }
1010
1011 static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1012                                 struct ethtool_rxnfc *nfc)
1013 {
1014         struct cfp_rule *rule;
1015
1016         rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1017         if (!rule)
1018                 return -EINVAL;
1019
1020         memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1021
1022         bcm_sf2_invert_masks(&nfc->fs);
1023
1024         /* Put the TCAM size here */
1025         nfc->data = bcm_sf2_cfp_rule_size(priv);
1026
1027         return 0;
1028 }
1029
1030 /* We implement the search doing a TCAM search operation */
1031 static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1032                                     int port, struct ethtool_rxnfc *nfc,
1033                                     u32 *rule_locs)
1034 {
1035         unsigned int index = 1, rules_cnt = 0;
1036
1037         for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1038                 rule_locs[rules_cnt] = index;
1039                 rules_cnt++;
1040         }
1041
1042         /* Put the TCAM size here */
1043         nfc->data = bcm_sf2_cfp_rule_size(priv);
1044         nfc->rule_cnt = rules_cnt;
1045
1046         return 0;
1047 }
1048
1049 int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1050                       struct ethtool_rxnfc *nfc, u32 *rule_locs)
1051 {
1052         struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
1053         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1054         int ret = 0;
1055
1056         mutex_lock(&priv->cfp.lock);
1057
1058         switch (nfc->cmd) {
1059         case ETHTOOL_GRXCLSRLCNT:
1060                 /* Subtract the default, unusable rule */
1061                 nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1062                                               priv->num_cfp_rules) - 1;
1063                 /* We support specifying rule locations */
1064                 nfc->data |= RX_CLS_LOC_SPECIAL;
1065                 break;
1066         case ETHTOOL_GRXCLSRULE:
1067                 ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1068                 break;
1069         case ETHTOOL_GRXCLSRLALL:
1070                 ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1071                 break;
1072         default:
1073                 ret = -EOPNOTSUPP;
1074                 break;
1075         }
1076
1077         mutex_unlock(&priv->cfp.lock);
1078
1079         if (ret)
1080                 return ret;
1081
1082         /* Pass up the commands to the attached master network device */
1083         if (p->ethtool_ops->get_rxnfc) {
1084                 ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1085                 if (ret == -EOPNOTSUPP)
1086                         ret = 0;
1087         }
1088
1089         return ret;
1090 }
1091
1092 int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1093                       struct ethtool_rxnfc *nfc)
1094 {
1095         struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
1096         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1097         int ret = 0;
1098
1099         mutex_lock(&priv->cfp.lock);
1100
1101         switch (nfc->cmd) {
1102         case ETHTOOL_SRXCLSRLINS:
1103                 ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1104                 break;
1105
1106         case ETHTOOL_SRXCLSRLDEL:
1107                 ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1108                 break;
1109         default:
1110                 ret = -EOPNOTSUPP;
1111                 break;
1112         }
1113
1114         mutex_unlock(&priv->cfp.lock);
1115
1116         if (ret)
1117                 return ret;
1118
1119         /* Pass up the commands to the attached master network device.
1120          * This can fail, so rollback the operation if we need to.
1121          */
1122         if (p->ethtool_ops->set_rxnfc) {
1123                 ret = p->ethtool_ops->set_rxnfc(p, nfc);
1124                 if (ret && ret != -EOPNOTSUPP) {
1125                         mutex_lock(&priv->cfp.lock);
1126                         bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1127                         mutex_unlock(&priv->cfp.lock);
1128                 } else {
1129                         ret = 0;
1130                 }
1131         }
1132
1133         return ret;
1134 }
1135
1136 int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1137 {
1138         unsigned int timeout = 1000;
1139         u32 reg;
1140
1141         reg = core_readl(priv, CORE_CFP_ACC);
1142         reg |= TCAM_RESET;
1143         core_writel(priv, reg, CORE_CFP_ACC);
1144
1145         do {
1146                 reg = core_readl(priv, CORE_CFP_ACC);
1147                 if (!(reg & TCAM_RESET))
1148                         break;
1149
1150                 cpu_relax();
1151         } while (timeout--);
1152
1153         if (!timeout)
1154                 return -ETIMEDOUT;
1155
1156         return 0;
1157 }
1158
1159 void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1160 {
1161         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1162         struct cfp_rule *rule, *n;
1163
1164         if (list_empty(&priv->cfp.rules_list))
1165                 return;
1166
1167         list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1168                 bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1169 }
1170
1171 int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1172 {
1173         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1174         struct cfp_rule *rule;
1175         int ret = 0;
1176         u32 reg;
1177
1178         if (list_empty(&priv->cfp.rules_list))
1179                 return ret;
1180
1181         reg = core_readl(priv, CORE_CFP_CTL_REG);
1182         reg &= ~CFP_EN_MAP_MASK;
1183         core_writel(priv, reg, CORE_CFP_CTL_REG);
1184
1185         ret = bcm_sf2_cfp_rst(priv);
1186         if (ret)
1187                 return ret;
1188
1189         list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1190                 ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1191                                               rule->fs.location);
1192                 if (ret) {
1193                         dev_err(ds->dev, "failed to remove rule\n");
1194                         return ret;
1195                 }
1196
1197                 ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1198                 if (ret) {
1199                         dev_err(ds->dev, "failed to restore rule\n");
1200                         return ret;
1201                 }
1202         }
1203
1204         return ret;
1205 }
1206
1207 static const struct bcm_sf2_cfp_stat {
1208         unsigned int offset;
1209         unsigned int ram_loc;
1210         const char *name;
1211 } bcm_sf2_cfp_stats[] = {
1212         {
1213                 .offset = CORE_STAT_GREEN_CNTR,
1214                 .ram_loc = GREEN_STAT_RAM,
1215                 .name = "Green"
1216         },
1217         {
1218                 .offset = CORE_STAT_YELLOW_CNTR,
1219                 .ram_loc = YELLOW_STAT_RAM,
1220                 .name = "Yellow"
1221         },
1222         {
1223                 .offset = CORE_STAT_RED_CNTR,
1224                 .ram_loc = RED_STAT_RAM,
1225                 .name = "Red"
1226         },
1227 };
1228
1229 void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1230                              u32 stringset, uint8_t *data)
1231 {
1232         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1233         unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1234         char buf[ETH_GSTRING_LEN];
1235         unsigned int i, j, iter;
1236
1237         if (stringset != ETH_SS_STATS)
1238                 return;
1239
1240         for (i = 1; i < priv->num_cfp_rules; i++) {
1241                 for (j = 0; j < s; j++) {
1242                         snprintf(buf, sizeof(buf),
1243                                  "CFP%03d_%sCntr",
1244                                  i, bcm_sf2_cfp_stats[j].name);
1245                         iter = (i - 1) * s + j;
1246                         strlcpy(data + iter * ETH_GSTRING_LEN,
1247                                 buf, ETH_GSTRING_LEN);
1248                 }
1249         }
1250 }
1251
1252 void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1253                                    uint64_t *data)
1254 {
1255         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1256         unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1257         const struct bcm_sf2_cfp_stat *stat;
1258         unsigned int i, j, iter;
1259         struct cfp_rule *rule;
1260         int ret;
1261
1262         mutex_lock(&priv->cfp.lock);
1263         for (i = 1; i < priv->num_cfp_rules; i++) {
1264                 rule = bcm_sf2_cfp_rule_find(priv, port, i);
1265                 if (!rule)
1266                         continue;
1267
1268                 for (j = 0; j < s; j++) {
1269                         stat = &bcm_sf2_cfp_stats[j];
1270
1271                         bcm_sf2_cfp_rule_addr_set(priv, i);
1272                         ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1273                         if (ret)
1274                                 continue;
1275
1276                         iter = (i - 1) * s + j;
1277                         data[iter] = core_readl(priv, stat->offset);
1278                 }
1279
1280         }
1281         mutex_unlock(&priv->cfp.lock);
1282 }
1283
1284 int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1285 {
1286         struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1287
1288         if (sset != ETH_SS_STATS)
1289                 return 0;
1290
1291         /* 3 counters per CFP rules */
1292         return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1293 }