]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/dsa/microchip/ksz9477.c
net: dsa: microchip: Add shared regmap mutex
[linux.git] / drivers / net / dsa / microchip / ksz9477.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ9477 switch driver main logic
4  *
5  * Copyright (C) 2017-2019 Microchip Technology Inc.
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/iopoll.h>
11 #include <linux/platform_data/microchip-ksz.h>
12 #include <linux/phy.h>
13 #include <linux/if_bridge.h>
14 #include <net/dsa.h>
15 #include <net/switchdev.h>
16
17 #include "ksz9477_reg.h"
18 #include "ksz_common.h"
19
20 /* Used with variable features to indicate capabilities. */
21 #define GBIT_SUPPORT                    BIT(0)
22 #define NEW_XMII                        BIT(1)
23 #define IS_9893                         BIT(2)
24
25 static const struct {
26         int index;
27         char string[ETH_GSTRING_LEN];
28 } ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
29         { 0x00, "rx_hi" },
30         { 0x01, "rx_undersize" },
31         { 0x02, "rx_fragments" },
32         { 0x03, "rx_oversize" },
33         { 0x04, "rx_jabbers" },
34         { 0x05, "rx_symbol_err" },
35         { 0x06, "rx_crc_err" },
36         { 0x07, "rx_align_err" },
37         { 0x08, "rx_mac_ctrl" },
38         { 0x09, "rx_pause" },
39         { 0x0A, "rx_bcast" },
40         { 0x0B, "rx_mcast" },
41         { 0x0C, "rx_ucast" },
42         { 0x0D, "rx_64_or_less" },
43         { 0x0E, "rx_65_127" },
44         { 0x0F, "rx_128_255" },
45         { 0x10, "rx_256_511" },
46         { 0x11, "rx_512_1023" },
47         { 0x12, "rx_1024_1522" },
48         { 0x13, "rx_1523_2000" },
49         { 0x14, "rx_2001" },
50         { 0x15, "tx_hi" },
51         { 0x16, "tx_late_col" },
52         { 0x17, "tx_pause" },
53         { 0x18, "tx_bcast" },
54         { 0x19, "tx_mcast" },
55         { 0x1A, "tx_ucast" },
56         { 0x1B, "tx_deferred" },
57         { 0x1C, "tx_total_col" },
58         { 0x1D, "tx_exc_col" },
59         { 0x1E, "tx_single_col" },
60         { 0x1F, "tx_mult_col" },
61         { 0x80, "rx_total" },
62         { 0x81, "tx_total" },
63         { 0x82, "rx_discards" },
64         { 0x83, "tx_discards" },
65 };
66
67 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
68 {
69         regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
70 }
71
72 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
73                          bool set)
74 {
75         regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
76                            bits, set ? bits : 0);
77 }
78
79 static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
80 {
81         regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
82 }
83
84 static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
85                                u32 bits, bool set)
86 {
87         regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
88                            bits, set ? bits : 0);
89 }
90
91 static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
92 {
93         unsigned int val;
94
95         return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
96                                         val, !(val & VLAN_START), 10, 1000);
97 }
98
99 static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
100                                   u32 *vlan_table)
101 {
102         int ret;
103
104         mutex_lock(&dev->vlan_mutex);
105
106         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
107         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
108
109         /* wait to be cleared */
110         ret = ksz9477_wait_vlan_ctrl_ready(dev);
111         if (ret) {
112                 dev_dbg(dev->dev, "Failed to read vlan table\n");
113                 goto exit;
114         }
115
116         ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
117         ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
118         ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
119
120         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
121
122 exit:
123         mutex_unlock(&dev->vlan_mutex);
124
125         return ret;
126 }
127
128 static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
129                                   u32 *vlan_table)
130 {
131         int ret;
132
133         mutex_lock(&dev->vlan_mutex);
134
135         ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
136         ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
137         ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
138
139         ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
140         ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
141
142         /* wait to be cleared */
143         ret = ksz9477_wait_vlan_ctrl_ready(dev);
144         if (ret) {
145                 dev_dbg(dev->dev, "Failed to write vlan table\n");
146                 goto exit;
147         }
148
149         ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
150
151         /* update vlan cache table */
152         dev->vlan_cache[vid].table[0] = vlan_table[0];
153         dev->vlan_cache[vid].table[1] = vlan_table[1];
154         dev->vlan_cache[vid].table[2] = vlan_table[2];
155
156 exit:
157         mutex_unlock(&dev->vlan_mutex);
158
159         return ret;
160 }
161
162 static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
163 {
164         ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
165         ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
166         ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
167         ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
168 }
169
170 static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
171 {
172         ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
173         ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
174         ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
175         ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
176 }
177
178 static int ksz9477_wait_alu_ready(struct ksz_device *dev)
179 {
180         unsigned int val;
181
182         return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
183                                         val, !(val & ALU_START), 10, 1000);
184 }
185
186 static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
187 {
188         unsigned int val;
189
190         return regmap_read_poll_timeout(dev->regmap[2],
191                                         REG_SW_ALU_STAT_CTRL__4,
192                                         val, !(val & ALU_STAT_START),
193                                         10, 1000);
194 }
195
196 static int ksz9477_reset_switch(struct ksz_device *dev)
197 {
198         u8 data8;
199         u32 data32;
200
201         /* reset switch */
202         ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
203
204         /* turn off SPI DO Edge select */
205         regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
206                            SPI_AUTO_EDGE_DETECTION, 0);
207
208         /* default configuration */
209         ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
210         data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
211               SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
212         ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
213
214         /* disable interrupts */
215         ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
216         ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
217         ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
218
219         /* set broadcast storm protection 10% rate */
220         regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
221                            BROADCAST_STORM_RATE,
222                            (BROADCAST_STORM_VALUE *
223                            BROADCAST_STORM_PROT_RATE) / 100);
224
225         if (dev->synclko_125)
226                 ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
227                            SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
228
229         return 0;
230 }
231
232 static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
233                               u64 *cnt)
234 {
235         struct ksz_port *p = &dev->ports[port];
236         unsigned int val;
237         u32 data;
238         int ret;
239
240         /* retain the flush/freeze bit */
241         data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
242         data |= MIB_COUNTER_READ;
243         data |= (addr << MIB_COUNTER_INDEX_S);
244         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
245
246         ret = regmap_read_poll_timeout(dev->regmap[2],
247                         PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
248                         val, !(val & MIB_COUNTER_READ), 10, 1000);
249         /* failed to read MIB. get out of loop */
250         if (ret) {
251                 dev_dbg(dev->dev, "Failed to get MIB\n");
252                 return;
253         }
254
255         /* count resets upon read */
256         ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
257         *cnt += data;
258 }
259
260 static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
261                               u64 *dropped, u64 *cnt)
262 {
263         addr = ksz9477_mib_names[addr].index;
264         ksz9477_r_mib_cnt(dev, port, addr, cnt);
265 }
266
267 static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
268 {
269         u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
270         struct ksz_port *p = &dev->ports[port];
271
272         /* enable/disable the port for flush/freeze function */
273         mutex_lock(&p->mib.cnt_mutex);
274         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
275
276         /* used by MIB counter reading code to know freeze is enabled */
277         p->freeze = freeze;
278         mutex_unlock(&p->mib.cnt_mutex);
279 }
280
281 static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
282 {
283         struct ksz_port_mib *mib = &dev->ports[port].mib;
284
285         /* flush all enabled port MIB counters */
286         mutex_lock(&mib->cnt_mutex);
287         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
288                      MIB_COUNTER_FLUSH_FREEZE);
289         ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
290         ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
291         mutex_unlock(&mib->cnt_mutex);
292
293         mib->cnt_ptr = 0;
294         memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
295 }
296
297 static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
298                                                       int port)
299 {
300         enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
301         struct ksz_device *dev = ds->priv;
302
303         if (dev->features & IS_9893)
304                 proto = DSA_TAG_PROTO_KSZ9893;
305         return proto;
306 }
307
308 static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
309 {
310         struct ksz_device *dev = ds->priv;
311         u16 val = 0xffff;
312
313         /* No real PHY after this. Simulate the PHY.
314          * A fixed PHY can be setup in the device tree, but this function is
315          * still called for that port during initialization.
316          * For RGMII PHY there is no way to access it so the fixed PHY should
317          * be used.  For SGMII PHY the supporting code will be added later.
318          */
319         if (addr >= dev->phy_port_cnt) {
320                 struct ksz_port *p = &dev->ports[addr];
321
322                 switch (reg) {
323                 case MII_BMCR:
324                         val = 0x1140;
325                         break;
326                 case MII_BMSR:
327                         val = 0x796d;
328                         break;
329                 case MII_PHYSID1:
330                         val = 0x0022;
331                         break;
332                 case MII_PHYSID2:
333                         val = 0x1631;
334                         break;
335                 case MII_ADVERTISE:
336                         val = 0x05e1;
337                         break;
338                 case MII_LPA:
339                         val = 0xc5e1;
340                         break;
341                 case MII_CTRL1000:
342                         val = 0x0700;
343                         break;
344                 case MII_STAT1000:
345                         if (p->phydev.speed == SPEED_1000)
346                                 val = 0x3800;
347                         else
348                                 val = 0;
349                         break;
350                 }
351         } else {
352                 ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
353         }
354
355         return val;
356 }
357
358 static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
359                                u16 val)
360 {
361         struct ksz_device *dev = ds->priv;
362
363         /* No real PHY after this. */
364         if (addr >= dev->phy_port_cnt)
365                 return 0;
366
367         /* No gigabit support.  Do not write to this register. */
368         if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
369                 return 0;
370         ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
371
372         return 0;
373 }
374
375 static void ksz9477_get_strings(struct dsa_switch *ds, int port,
376                                 u32 stringset, uint8_t *buf)
377 {
378         int i;
379
380         if (stringset != ETH_SS_STATS)
381                 return;
382
383         for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
384                 memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
385                        ETH_GSTRING_LEN);
386         }
387 }
388
389 static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
390                                     u8 member)
391 {
392         ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
393         dev->ports[port].member = member;
394 }
395
396 static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
397                                        u8 state)
398 {
399         struct ksz_device *dev = ds->priv;
400         struct ksz_port *p = &dev->ports[port];
401         u8 data;
402         int member = -1;
403         int forward = dev->member;
404
405         ksz_pread8(dev, port, P_STP_CTRL, &data);
406         data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
407
408         switch (state) {
409         case BR_STATE_DISABLED:
410                 data |= PORT_LEARN_DISABLE;
411                 if (port != dev->cpu_port)
412                         member = 0;
413                 break;
414         case BR_STATE_LISTENING:
415                 data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
416                 if (port != dev->cpu_port &&
417                     p->stp_state == BR_STATE_DISABLED)
418                         member = dev->host_mask | p->vid_member;
419                 break;
420         case BR_STATE_LEARNING:
421                 data |= PORT_RX_ENABLE;
422                 break;
423         case BR_STATE_FORWARDING:
424                 data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
425
426                 /* This function is also used internally. */
427                 if (port == dev->cpu_port)
428                         break;
429
430                 member = dev->host_mask | p->vid_member;
431                 mutex_lock(&dev->dev_mutex);
432
433                 /* Port is a member of a bridge. */
434                 if (dev->br_member & (1 << port)) {
435                         dev->member |= (1 << port);
436                         member = dev->member;
437                 }
438                 mutex_unlock(&dev->dev_mutex);
439                 break;
440         case BR_STATE_BLOCKING:
441                 data |= PORT_LEARN_DISABLE;
442                 if (port != dev->cpu_port &&
443                     p->stp_state == BR_STATE_DISABLED)
444                         member = dev->host_mask | p->vid_member;
445                 break;
446         default:
447                 dev_err(ds->dev, "invalid STP state: %d\n", state);
448                 return;
449         }
450
451         ksz_pwrite8(dev, port, P_STP_CTRL, data);
452         p->stp_state = state;
453         mutex_lock(&dev->dev_mutex);
454         if (data & PORT_RX_ENABLE)
455                 dev->rx_ports |= (1 << port);
456         else
457                 dev->rx_ports &= ~(1 << port);
458         if (data & PORT_TX_ENABLE)
459                 dev->tx_ports |= (1 << port);
460         else
461                 dev->tx_ports &= ~(1 << port);
462
463         /* Port membership may share register with STP state. */
464         if (member >= 0 && member != p->member)
465                 ksz9477_cfg_port_member(dev, port, (u8)member);
466
467         /* Check if forwarding needs to be updated. */
468         if (state != BR_STATE_FORWARDING) {
469                 if (dev->br_member & (1 << port))
470                         dev->member &= ~(1 << port);
471         }
472
473         /* When topology has changed the function ksz_update_port_member
474          * should be called to modify port forwarding behavior.
475          */
476         if (forward != dev->member)
477                 ksz_update_port_member(dev, port);
478         mutex_unlock(&dev->dev_mutex);
479 }
480
481 static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
482 {
483         u8 data;
484
485         regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
486                            SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
487                            SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
488
489         if (port < dev->mib_port_cnt) {
490                 /* flush individual port */
491                 ksz_pread8(dev, port, P_STP_CTRL, &data);
492                 if (!(data & PORT_LEARN_DISABLE))
493                         ksz_pwrite8(dev, port, P_STP_CTRL,
494                                     data | PORT_LEARN_DISABLE);
495                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
496                 ksz_pwrite8(dev, port, P_STP_CTRL, data);
497         } else {
498                 /* flush all */
499                 ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
500         }
501 }
502
503 static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
504                                        bool flag)
505 {
506         struct ksz_device *dev = ds->priv;
507
508         if (flag) {
509                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
510                              PORT_VLAN_LOOKUP_VID_0, true);
511                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
512         } else {
513                 ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
514                 ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
515                              PORT_VLAN_LOOKUP_VID_0, false);
516         }
517
518         return 0;
519 }
520
521 static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
522                                   const struct switchdev_obj_port_vlan *vlan)
523 {
524         struct ksz_device *dev = ds->priv;
525         u32 vlan_table[3];
526         u16 vid;
527         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
528
529         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
530                 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
531                         dev_dbg(dev->dev, "Failed to get vlan table\n");
532                         return;
533                 }
534
535                 vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
536                 if (untagged)
537                         vlan_table[1] |= BIT(port);
538                 else
539                         vlan_table[1] &= ~BIT(port);
540                 vlan_table[1] &= ~(BIT(dev->cpu_port));
541
542                 vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
543
544                 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
545                         dev_dbg(dev->dev, "Failed to set vlan table\n");
546                         return;
547                 }
548
549                 /* change PVID */
550                 if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
551                         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
552         }
553 }
554
555 static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
556                                  const struct switchdev_obj_port_vlan *vlan)
557 {
558         struct ksz_device *dev = ds->priv;
559         bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
560         u32 vlan_table[3];
561         u16 vid;
562         u16 pvid;
563
564         ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
565         pvid = pvid & 0xFFF;
566
567         for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
568                 if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
569                         dev_dbg(dev->dev, "Failed to get vlan table\n");
570                         return -ETIMEDOUT;
571                 }
572
573                 vlan_table[2] &= ~BIT(port);
574
575                 if (pvid == vid)
576                         pvid = 1;
577
578                 if (untagged)
579                         vlan_table[1] &= ~BIT(port);
580
581                 if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
582                         dev_dbg(dev->dev, "Failed to set vlan table\n");
583                         return -ETIMEDOUT;
584                 }
585         }
586
587         ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
588
589         return 0;
590 }
591
592 static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
593                                 const unsigned char *addr, u16 vid)
594 {
595         struct ksz_device *dev = ds->priv;
596         u32 alu_table[4];
597         u32 data;
598         int ret = 0;
599
600         mutex_lock(&dev->alu_mutex);
601
602         /* find any entry with mac & vid */
603         data = vid << ALU_FID_INDEX_S;
604         data |= ((addr[0] << 8) | addr[1]);
605         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
606
607         data = ((addr[2] << 24) | (addr[3] << 16));
608         data |= ((addr[4] << 8) | addr[5]);
609         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
610
611         /* start read operation */
612         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
613
614         /* wait to be finished */
615         ret = ksz9477_wait_alu_ready(dev);
616         if (ret) {
617                 dev_dbg(dev->dev, "Failed to read ALU\n");
618                 goto exit;
619         }
620
621         /* read ALU entry */
622         ksz9477_read_table(dev, alu_table);
623
624         /* update ALU entry */
625         alu_table[0] = ALU_V_STATIC_VALID;
626         alu_table[1] |= BIT(port);
627         if (vid)
628                 alu_table[1] |= ALU_V_USE_FID;
629         alu_table[2] = (vid << ALU_V_FID_S);
630         alu_table[2] |= ((addr[0] << 8) | addr[1]);
631         alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
632         alu_table[3] |= ((addr[4] << 8) | addr[5]);
633
634         ksz9477_write_table(dev, alu_table);
635
636         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
637
638         /* wait to be finished */
639         ret = ksz9477_wait_alu_ready(dev);
640         if (ret)
641                 dev_dbg(dev->dev, "Failed to write ALU\n");
642
643 exit:
644         mutex_unlock(&dev->alu_mutex);
645
646         return ret;
647 }
648
649 static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
650                                 const unsigned char *addr, u16 vid)
651 {
652         struct ksz_device *dev = ds->priv;
653         u32 alu_table[4];
654         u32 data;
655         int ret = 0;
656
657         mutex_lock(&dev->alu_mutex);
658
659         /* read any entry with mac & vid */
660         data = vid << ALU_FID_INDEX_S;
661         data |= ((addr[0] << 8) | addr[1]);
662         ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
663
664         data = ((addr[2] << 24) | (addr[3] << 16));
665         data |= ((addr[4] << 8) | addr[5]);
666         ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
667
668         /* start read operation */
669         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
670
671         /* wait to be finished */
672         ret = ksz9477_wait_alu_ready(dev);
673         if (ret) {
674                 dev_dbg(dev->dev, "Failed to read ALU\n");
675                 goto exit;
676         }
677
678         ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
679         if (alu_table[0] & ALU_V_STATIC_VALID) {
680                 ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
681                 ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
682                 ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
683
684                 /* clear forwarding port */
685                 alu_table[2] &= ~BIT(port);
686
687                 /* if there is no port to forward, clear table */
688                 if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
689                         alu_table[0] = 0;
690                         alu_table[1] = 0;
691                         alu_table[2] = 0;
692                         alu_table[3] = 0;
693                 }
694         } else {
695                 alu_table[0] = 0;
696                 alu_table[1] = 0;
697                 alu_table[2] = 0;
698                 alu_table[3] = 0;
699         }
700
701         ksz9477_write_table(dev, alu_table);
702
703         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
704
705         /* wait to be finished */
706         ret = ksz9477_wait_alu_ready(dev);
707         if (ret)
708                 dev_dbg(dev->dev, "Failed to write ALU\n");
709
710 exit:
711         mutex_unlock(&dev->alu_mutex);
712
713         return ret;
714 }
715
716 static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
717 {
718         alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
719         alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
720         alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
721         alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
722                         ALU_V_PRIO_AGE_CNT_M;
723         alu->mstp = alu_table[0] & ALU_V_MSTP_M;
724
725         alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
726         alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
727         alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
728
729         alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
730
731         alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
732         alu->mac[1] = alu_table[2] & 0xFF;
733         alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
734         alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
735         alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
736         alu->mac[5] = alu_table[3] & 0xFF;
737 }
738
739 static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
740                                  dsa_fdb_dump_cb_t *cb, void *data)
741 {
742         struct ksz_device *dev = ds->priv;
743         int ret = 0;
744         u32 ksz_data;
745         u32 alu_table[4];
746         struct alu_struct alu;
747         int timeout;
748
749         mutex_lock(&dev->alu_mutex);
750
751         /* start ALU search */
752         ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
753
754         do {
755                 timeout = 1000;
756                 do {
757                         ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
758                         if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
759                                 break;
760                         usleep_range(1, 10);
761                 } while (timeout-- > 0);
762
763                 if (!timeout) {
764                         dev_dbg(dev->dev, "Failed to search ALU\n");
765                         ret = -ETIMEDOUT;
766                         goto exit;
767                 }
768
769                 /* read ALU table */
770                 ksz9477_read_table(dev, alu_table);
771
772                 ksz9477_convert_alu(&alu, alu_table);
773
774                 if (alu.port_forward & BIT(port)) {
775                         ret = cb(alu.mac, alu.fid, alu.is_static, data);
776                         if (ret)
777                                 goto exit;
778                 }
779         } while (ksz_data & ALU_START);
780
781 exit:
782
783         /* stop ALU search */
784         ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
785
786         mutex_unlock(&dev->alu_mutex);
787
788         return ret;
789 }
790
791 static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
792                                  const struct switchdev_obj_port_mdb *mdb)
793 {
794         struct ksz_device *dev = ds->priv;
795         u32 static_table[4];
796         u32 data;
797         int index;
798         u32 mac_hi, mac_lo;
799
800         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
801         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
802         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
803
804         mutex_lock(&dev->alu_mutex);
805
806         for (index = 0; index < dev->num_statics; index++) {
807                 /* find empty slot first */
808                 data = (index << ALU_STAT_INDEX_S) |
809                         ALU_STAT_READ | ALU_STAT_START;
810                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
811
812                 /* wait to be finished */
813                 if (ksz9477_wait_alu_sta_ready(dev)) {
814                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
815                         goto exit;
816                 }
817
818                 /* read ALU static table */
819                 ksz9477_read_table(dev, static_table);
820
821                 if (static_table[0] & ALU_V_STATIC_VALID) {
822                         /* check this has same vid & mac address */
823                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
824                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
825                             static_table[3] == mac_lo) {
826                                 /* found matching one */
827                                 break;
828                         }
829                 } else {
830                         /* found empty one */
831                         break;
832                 }
833         }
834
835         /* no available entry */
836         if (index == dev->num_statics)
837                 goto exit;
838
839         /* add entry */
840         static_table[0] = ALU_V_STATIC_VALID;
841         static_table[1] |= BIT(port);
842         if (mdb->vid)
843                 static_table[1] |= ALU_V_USE_FID;
844         static_table[2] = (mdb->vid << ALU_V_FID_S);
845         static_table[2] |= mac_hi;
846         static_table[3] = mac_lo;
847
848         ksz9477_write_table(dev, static_table);
849
850         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
851         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
852
853         /* wait to be finished */
854         if (ksz9477_wait_alu_sta_ready(dev))
855                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
856
857 exit:
858         mutex_unlock(&dev->alu_mutex);
859 }
860
861 static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
862                                 const struct switchdev_obj_port_mdb *mdb)
863 {
864         struct ksz_device *dev = ds->priv;
865         u32 static_table[4];
866         u32 data;
867         int index;
868         int ret = 0;
869         u32 mac_hi, mac_lo;
870
871         mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
872         mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
873         mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
874
875         mutex_lock(&dev->alu_mutex);
876
877         for (index = 0; index < dev->num_statics; index++) {
878                 /* find empty slot first */
879                 data = (index << ALU_STAT_INDEX_S) |
880                         ALU_STAT_READ | ALU_STAT_START;
881                 ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
882
883                 /* wait to be finished */
884                 ret = ksz9477_wait_alu_sta_ready(dev);
885                 if (ret) {
886                         dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
887                         goto exit;
888                 }
889
890                 /* read ALU static table */
891                 ksz9477_read_table(dev, static_table);
892
893                 if (static_table[0] & ALU_V_STATIC_VALID) {
894                         /* check this has same vid & mac address */
895
896                         if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
897                             ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
898                             static_table[3] == mac_lo) {
899                                 /* found matching one */
900                                 break;
901                         }
902                 }
903         }
904
905         /* no available entry */
906         if (index == dev->num_statics)
907                 goto exit;
908
909         /* clear port */
910         static_table[1] &= ~BIT(port);
911
912         if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
913                 /* delete entry */
914                 static_table[0] = 0;
915                 static_table[1] = 0;
916                 static_table[2] = 0;
917                 static_table[3] = 0;
918         }
919
920         ksz9477_write_table(dev, static_table);
921
922         data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
923         ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
924
925         /* wait to be finished */
926         ret = ksz9477_wait_alu_sta_ready(dev);
927         if (ret)
928                 dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
929
930 exit:
931         mutex_unlock(&dev->alu_mutex);
932
933         return ret;
934 }
935
936 static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
937                                    struct dsa_mall_mirror_tc_entry *mirror,
938                                    bool ingress)
939 {
940         struct ksz_device *dev = ds->priv;
941
942         if (ingress)
943                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
944         else
945                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
946
947         ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
948
949         /* configure mirror port */
950         ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
951                      PORT_MIRROR_SNIFFER, true);
952
953         ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
954
955         return 0;
956 }
957
958 static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
959                                     struct dsa_mall_mirror_tc_entry *mirror)
960 {
961         struct ksz_device *dev = ds->priv;
962         u8 data;
963
964         if (mirror->ingress)
965                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
966         else
967                 ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
968
969         ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
970
971         if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
972                 ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
973                              PORT_MIRROR_SNIFFER, false);
974 }
975
976 static void ksz9477_phy_setup(struct ksz_device *dev, int port,
977                               struct phy_device *phy)
978 {
979         /* Only apply to port with PHY. */
980         if (port >= dev->phy_port_cnt)
981                 return;
982
983         /* The MAC actually cannot run in 1000 half-duplex mode. */
984         phy_remove_link_mode(phy,
985                              ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
986
987         /* PHY does not support gigabit. */
988         if (!(dev->features & GBIT_SUPPORT))
989                 phy_remove_link_mode(phy,
990                                      ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
991 }
992
993 static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
994 {
995         bool gbit;
996
997         if (dev->features & NEW_XMII)
998                 gbit = !(data & PORT_MII_NOT_1GBIT);
999         else
1000                 gbit = !!(data & PORT_MII_1000MBIT_S1);
1001         return gbit;
1002 }
1003
1004 static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
1005 {
1006         if (dev->features & NEW_XMII) {
1007                 if (gbit)
1008                         *data &= ~PORT_MII_NOT_1GBIT;
1009                 else
1010                         *data |= PORT_MII_NOT_1GBIT;
1011         } else {
1012                 if (gbit)
1013                         *data |= PORT_MII_1000MBIT_S1;
1014                 else
1015                         *data &= ~PORT_MII_1000MBIT_S1;
1016         }
1017 }
1018
1019 static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
1020 {
1021         int mode;
1022
1023         if (dev->features & NEW_XMII) {
1024                 switch (data & PORT_MII_SEL_M) {
1025                 case PORT_MII_SEL:
1026                         mode = 0;
1027                         break;
1028                 case PORT_RMII_SEL:
1029                         mode = 1;
1030                         break;
1031                 case PORT_GMII_SEL:
1032                         mode = 2;
1033                         break;
1034                 default:
1035                         mode = 3;
1036                 }
1037         } else {
1038                 switch (data & PORT_MII_SEL_M) {
1039                 case PORT_MII_SEL_S1:
1040                         mode = 0;
1041                         break;
1042                 case PORT_RMII_SEL_S1:
1043                         mode = 1;
1044                         break;
1045                 case PORT_GMII_SEL_S1:
1046                         mode = 2;
1047                         break;
1048                 default:
1049                         mode = 3;
1050                 }
1051         }
1052         return mode;
1053 }
1054
1055 static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
1056 {
1057         u8 xmii;
1058
1059         if (dev->features & NEW_XMII) {
1060                 switch (mode) {
1061                 case 0:
1062                         xmii = PORT_MII_SEL;
1063                         break;
1064                 case 1:
1065                         xmii = PORT_RMII_SEL;
1066                         break;
1067                 case 2:
1068                         xmii = PORT_GMII_SEL;
1069                         break;
1070                 default:
1071                         xmii = PORT_RGMII_SEL;
1072                         break;
1073                 }
1074         } else {
1075                 switch (mode) {
1076                 case 0:
1077                         xmii = PORT_MII_SEL_S1;
1078                         break;
1079                 case 1:
1080                         xmii = PORT_RMII_SEL_S1;
1081                         break;
1082                 case 2:
1083                         xmii = PORT_GMII_SEL_S1;
1084                         break;
1085                 default:
1086                         xmii = PORT_RGMII_SEL_S1;
1087                         break;
1088                 }
1089         }
1090         *data &= ~PORT_MII_SEL_M;
1091         *data |= xmii;
1092 }
1093
1094 static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
1095 {
1096         phy_interface_t interface;
1097         bool gbit;
1098         int mode;
1099         u8 data8;
1100
1101         if (port < dev->phy_port_cnt)
1102                 return PHY_INTERFACE_MODE_NA;
1103         ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1104         gbit = ksz9477_get_gbit(dev, data8);
1105         mode = ksz9477_get_xmii(dev, data8);
1106         switch (mode) {
1107         case 2:
1108                 interface = PHY_INTERFACE_MODE_GMII;
1109                 if (gbit)
1110                         break;
1111                 /* fall through */
1112         case 0:
1113                 interface = PHY_INTERFACE_MODE_MII;
1114                 break;
1115         case 1:
1116                 interface = PHY_INTERFACE_MODE_RMII;
1117                 break;
1118         default:
1119                 interface = PHY_INTERFACE_MODE_RGMII;
1120                 if (data8 & PORT_RGMII_ID_EG_ENABLE)
1121                         interface = PHY_INTERFACE_MODE_RGMII_TXID;
1122                 if (data8 & PORT_RGMII_ID_IG_ENABLE) {
1123                         interface = PHY_INTERFACE_MODE_RGMII_RXID;
1124                         if (data8 & PORT_RGMII_ID_EG_ENABLE)
1125                                 interface = PHY_INTERFACE_MODE_RGMII_ID;
1126                 }
1127                 break;
1128         }
1129         return interface;
1130 }
1131
1132 static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
1133                                    u8 dev_addr, u16 reg_addr, u16 val)
1134 {
1135         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1136                      MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
1137         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
1138         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
1139                      MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
1140         ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
1141 }
1142
1143 static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
1144 {
1145         /* Apply PHY settings to address errata listed in
1146          * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
1147          * Silicon Errata and Data Sheet Clarification documents:
1148          *
1149          * Register settings are needed to improve PHY receive performance
1150          */
1151         ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
1152         ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
1153         ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
1154         ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
1155         ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
1156         ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
1157         ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
1158
1159         /* Transmit waveform amplitude can be improved
1160          * (1000BASE-T, 100BASE-TX, 10BASE-Te)
1161          */
1162         ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
1163
1164         /* Energy Efficient Ethernet (EEE) feature select must
1165          * be manually disabled (except on KSZ8565 which is 100Mbit)
1166          */
1167         if (dev->features & GBIT_SUPPORT)
1168                 ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
1169
1170         /* Register settings are required to meet data sheet
1171          * supply current specifications
1172          */
1173         ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
1174         ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
1175         ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
1176         ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
1177         ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
1178         ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
1179         ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
1180         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
1181         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
1182         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
1183         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
1184         ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
1185         ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
1186 }
1187
1188 static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1189 {
1190         u8 data8;
1191         u8 member;
1192         u16 data16;
1193         struct ksz_port *p = &dev->ports[port];
1194
1195         /* enable tag tail for host port */
1196         if (cpu_port)
1197                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
1198                              true);
1199
1200         ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
1201
1202         /* set back pressure */
1203         ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
1204
1205         /* enable broadcast storm limit */
1206         ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1207
1208         /* disable DiffServ priority */
1209         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
1210
1211         /* replace priority */
1212         ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
1213                      false);
1214         ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
1215                            MTI_PVID_REPLACE, false);
1216
1217         /* enable 802.1p priority */
1218         ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
1219
1220         if (port < dev->phy_port_cnt) {
1221                 /* do not force flow control */
1222                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1223                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1224                              false);
1225
1226                 if (dev->phy_errata_9477)
1227                         ksz9477_phy_errata_setup(dev, port);
1228         } else {
1229                 /* force flow control */
1230                 ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
1231                              PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
1232                              true);
1233
1234                 /* configure MAC to 1G & RGMII mode */
1235                 ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
1236                 switch (dev->interface) {
1237                 case PHY_INTERFACE_MODE_MII:
1238                         ksz9477_set_xmii(dev, 0, &data8);
1239                         ksz9477_set_gbit(dev, false, &data8);
1240                         p->phydev.speed = SPEED_100;
1241                         break;
1242                 case PHY_INTERFACE_MODE_RMII:
1243                         ksz9477_set_xmii(dev, 1, &data8);
1244                         ksz9477_set_gbit(dev, false, &data8);
1245                         p->phydev.speed = SPEED_100;
1246                         break;
1247                 case PHY_INTERFACE_MODE_GMII:
1248                         ksz9477_set_xmii(dev, 2, &data8);
1249                         ksz9477_set_gbit(dev, true, &data8);
1250                         p->phydev.speed = SPEED_1000;
1251                         break;
1252                 default:
1253                         ksz9477_set_xmii(dev, 3, &data8);
1254                         ksz9477_set_gbit(dev, true, &data8);
1255                         data8 &= ~PORT_RGMII_ID_IG_ENABLE;
1256                         data8 &= ~PORT_RGMII_ID_EG_ENABLE;
1257                         if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1258                             dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
1259                                 data8 |= PORT_RGMII_ID_IG_ENABLE;
1260                         if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
1261                             dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
1262                                 data8 |= PORT_RGMII_ID_EG_ENABLE;
1263                         p->phydev.speed = SPEED_1000;
1264                         break;
1265                 }
1266                 ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
1267                 p->phydev.duplex = 1;
1268         }
1269         mutex_lock(&dev->dev_mutex);
1270         if (cpu_port) {
1271                 member = dev->port_mask;
1272                 dev->on_ports = dev->host_mask;
1273                 dev->live_ports = dev->host_mask;
1274         } else {
1275                 member = dev->host_mask | p->vid_member;
1276                 dev->on_ports |= (1 << port);
1277
1278                 /* Link was detected before port is enabled. */
1279                 if (p->phydev.link)
1280                         dev->live_ports |= (1 << port);
1281         }
1282         mutex_unlock(&dev->dev_mutex);
1283         ksz9477_cfg_port_member(dev, port, member);
1284
1285         /* clear pending interrupts */
1286         if (port < dev->phy_port_cnt)
1287                 ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
1288 }
1289
1290 static void ksz9477_config_cpu_port(struct dsa_switch *ds)
1291 {
1292         struct ksz_device *dev = ds->priv;
1293         struct ksz_port *p;
1294         int i;
1295
1296         ds->num_ports = dev->port_cnt;
1297
1298         for (i = 0; i < dev->port_cnt; i++) {
1299                 if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
1300                         phy_interface_t interface;
1301
1302                         dev->cpu_port = i;
1303                         dev->host_mask = (1 << dev->cpu_port);
1304                         dev->port_mask |= dev->host_mask;
1305
1306                         /* Read from XMII register to determine host port
1307                          * interface.  If set specifically in device tree
1308                          * note the difference to help debugging.
1309                          */
1310                         interface = ksz9477_get_interface(dev, i);
1311                         if (!dev->interface)
1312                                 dev->interface = interface;
1313                         if (interface && interface != dev->interface)
1314                                 dev_info(dev->dev,
1315                                          "use %s instead of %s\n",
1316                                           phy_modes(dev->interface),
1317                                           phy_modes(interface));
1318
1319                         /* enable cpu port */
1320                         ksz9477_port_setup(dev, i, true);
1321                         p = &dev->ports[dev->cpu_port];
1322                         p->vid_member = dev->port_mask;
1323                         p->on = 1;
1324                 }
1325         }
1326
1327         dev->member = dev->host_mask;
1328
1329         for (i = 0; i < dev->mib_port_cnt; i++) {
1330                 if (i == dev->cpu_port)
1331                         continue;
1332                 p = &dev->ports[i];
1333
1334                 /* Initialize to non-zero so that ksz_cfg_port_member() will
1335                  * be called.
1336                  */
1337                 p->vid_member = (1 << i);
1338                 p->member = dev->port_mask;
1339                 ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1340                 p->on = 1;
1341                 if (i < dev->phy_port_cnt)
1342                         p->phy = 1;
1343                 if (dev->chip_id == 0x00947700 && i == 6) {
1344                         p->sgmii = 1;
1345
1346                         /* SGMII PHY detection code is not implemented yet. */
1347                         p->phy = 0;
1348                 }
1349         }
1350 }
1351
1352 static int ksz9477_setup(struct dsa_switch *ds)
1353 {
1354         struct ksz_device *dev = ds->priv;
1355         int ret = 0;
1356
1357         dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
1358                                        dev->num_vlans, GFP_KERNEL);
1359         if (!dev->vlan_cache)
1360                 return -ENOMEM;
1361
1362         ret = ksz9477_reset_switch(dev);
1363         if (ret) {
1364                 dev_err(ds->dev, "failed to reset switch\n");
1365                 return ret;
1366         }
1367
1368         /* Required for port partitioning. */
1369         ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
1370                       true);
1371
1372         /* Do not work correctly with tail tagging. */
1373         ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
1374
1375         /* accept packet up to 2000bytes */
1376         ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
1377
1378         ksz9477_config_cpu_port(ds);
1379
1380         ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
1381
1382         /* queue based egress rate limit */
1383         ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
1384
1385         /* enable global MIB counter freeze function */
1386         ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
1387
1388         /* start switch */
1389         ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
1390
1391         ksz_init_mib_timer(dev);
1392
1393         return 0;
1394 }
1395
1396 static const struct dsa_switch_ops ksz9477_switch_ops = {
1397         .get_tag_protocol       = ksz9477_get_tag_protocol,
1398         .setup                  = ksz9477_setup,
1399         .phy_read               = ksz9477_phy_read16,
1400         .phy_write              = ksz9477_phy_write16,
1401         .adjust_link            = ksz_adjust_link,
1402         .port_enable            = ksz_enable_port,
1403         .port_disable           = ksz_disable_port,
1404         .get_strings            = ksz9477_get_strings,
1405         .get_ethtool_stats      = ksz_get_ethtool_stats,
1406         .get_sset_count         = ksz_sset_count,
1407         .port_bridge_join       = ksz_port_bridge_join,
1408         .port_bridge_leave      = ksz_port_bridge_leave,
1409         .port_stp_state_set     = ksz9477_port_stp_state_set,
1410         .port_fast_age          = ksz_port_fast_age,
1411         .port_vlan_filtering    = ksz9477_port_vlan_filtering,
1412         .port_vlan_prepare      = ksz_port_vlan_prepare,
1413         .port_vlan_add          = ksz9477_port_vlan_add,
1414         .port_vlan_del          = ksz9477_port_vlan_del,
1415         .port_fdb_dump          = ksz9477_port_fdb_dump,
1416         .port_fdb_add           = ksz9477_port_fdb_add,
1417         .port_fdb_del           = ksz9477_port_fdb_del,
1418         .port_mdb_prepare       = ksz_port_mdb_prepare,
1419         .port_mdb_add           = ksz9477_port_mdb_add,
1420         .port_mdb_del           = ksz9477_port_mdb_del,
1421         .port_mirror_add        = ksz9477_port_mirror_add,
1422         .port_mirror_del        = ksz9477_port_mirror_del,
1423 };
1424
1425 static u32 ksz9477_get_port_addr(int port, int offset)
1426 {
1427         return PORT_CTRL_ADDR(port, offset);
1428 }
1429
1430 static int ksz9477_switch_detect(struct ksz_device *dev)
1431 {
1432         u8 data8;
1433         u8 id_hi;
1434         u8 id_lo;
1435         u32 id32;
1436         int ret;
1437
1438         /* turn off SPI DO Edge select */
1439         ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1440         if (ret)
1441                 return ret;
1442
1443         data8 &= ~SPI_AUTO_EDGE_DETECTION;
1444         ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1445         if (ret)
1446                 return ret;
1447
1448         /* read chip id */
1449         ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1450         if (ret)
1451                 return ret;
1452         ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
1453         if (ret)
1454                 return ret;
1455
1456         /* Number of ports can be reduced depending on chip. */
1457         dev->mib_port_cnt = TOTAL_PORT_NUM;
1458         dev->phy_port_cnt = 5;
1459
1460         /* Default capability is gigabit capable. */
1461         dev->features = GBIT_SUPPORT;
1462
1463         id_hi = (u8)(id32 >> 16);
1464         id_lo = (u8)(id32 >> 8);
1465         if ((id_lo & 0xf) == 3) {
1466                 /* Chip is from KSZ9893 design. */
1467                 dev->features |= IS_9893;
1468
1469                 /* Chip does not support gigabit. */
1470                 if (data8 & SW_QW_ABLE)
1471                         dev->features &= ~GBIT_SUPPORT;
1472                 dev->mib_port_cnt = 3;
1473                 dev->phy_port_cnt = 2;
1474         } else {
1475                 /* Chip uses new XMII register definitions. */
1476                 dev->features |= NEW_XMII;
1477
1478                 /* Chip does not support gigabit. */
1479                 if (!(data8 & SW_GIGABIT_ABLE))
1480                         dev->features &= ~GBIT_SUPPORT;
1481         }
1482
1483         /* Change chip id to known ones so it can be matched against them. */
1484         id32 = (id_hi << 16) | (id_lo << 8);
1485
1486         dev->chip_id = id32;
1487
1488         return 0;
1489 }
1490
1491 struct ksz_chip_data {
1492         u32 chip_id;
1493         const char *dev_name;
1494         int num_vlans;
1495         int num_alus;
1496         int num_statics;
1497         int cpu_ports;
1498         int port_cnt;
1499         bool phy_errata_9477;
1500 };
1501
1502 static const struct ksz_chip_data ksz9477_switch_chips[] = {
1503         {
1504                 .chip_id = 0x00947700,
1505                 .dev_name = "KSZ9477",
1506                 .num_vlans = 4096,
1507                 .num_alus = 4096,
1508                 .num_statics = 16,
1509                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1510                 .port_cnt = 7,          /* total physical port count */
1511                 .phy_errata_9477 = true,
1512         },
1513         {
1514                 .chip_id = 0x00989700,
1515                 .dev_name = "KSZ9897",
1516                 .num_vlans = 4096,
1517                 .num_alus = 4096,
1518                 .num_statics = 16,
1519                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1520                 .port_cnt = 7,          /* total physical port count */
1521                 .phy_errata_9477 = true,
1522         },
1523         {
1524                 .chip_id = 0x00989300,
1525                 .dev_name = "KSZ9893",
1526                 .num_vlans = 4096,
1527                 .num_alus = 4096,
1528                 .num_statics = 16,
1529                 .cpu_ports = 0x07,      /* can be configured as cpu port */
1530                 .port_cnt = 3,          /* total port count */
1531         },
1532         {
1533                 .chip_id = 0x00956700,
1534                 .dev_name = "KSZ9567",
1535                 .num_vlans = 4096,
1536                 .num_alus = 4096,
1537                 .num_statics = 16,
1538                 .cpu_ports = 0x7F,      /* can be configured as cpu port */
1539                 .port_cnt = 7,          /* total physical port count */
1540         },
1541 };
1542
1543 static int ksz9477_switch_init(struct ksz_device *dev)
1544 {
1545         int i;
1546
1547         dev->ds->ops = &ksz9477_switch_ops;
1548
1549         for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
1550                 const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
1551
1552                 if (dev->chip_id == chip->chip_id) {
1553                         dev->name = chip->dev_name;
1554                         dev->num_vlans = chip->num_vlans;
1555                         dev->num_alus = chip->num_alus;
1556                         dev->num_statics = chip->num_statics;
1557                         dev->port_cnt = chip->port_cnt;
1558                         dev->cpu_ports = chip->cpu_ports;
1559                         dev->phy_errata_9477 = chip->phy_errata_9477;
1560
1561                         break;
1562                 }
1563         }
1564
1565         /* no switch found */
1566         if (!dev->port_cnt)
1567                 return -ENODEV;
1568
1569         dev->port_mask = (1 << dev->port_cnt) - 1;
1570
1571         dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
1572         dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
1573
1574         i = dev->mib_port_cnt;
1575         dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
1576                                   GFP_KERNEL);
1577         if (!dev->ports)
1578                 return -ENOMEM;
1579         for (i = 0; i < dev->mib_port_cnt; i++) {
1580                 mutex_init(&dev->ports[i].mib.cnt_mutex);
1581                 dev->ports[i].mib.counters =
1582                         devm_kzalloc(dev->dev,
1583                                      sizeof(u64) *
1584                                      (TOTAL_SWITCH_COUNTER_NUM + 1),
1585                                      GFP_KERNEL);
1586                 if (!dev->ports[i].mib.counters)
1587                         return -ENOMEM;
1588         }
1589
1590         return 0;
1591 }
1592
1593 static void ksz9477_switch_exit(struct ksz_device *dev)
1594 {
1595         ksz9477_reset_switch(dev);
1596 }
1597
1598 static const struct ksz_dev_ops ksz9477_dev_ops = {
1599         .get_port_addr = ksz9477_get_port_addr,
1600         .cfg_port_member = ksz9477_cfg_port_member,
1601         .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
1602         .phy_setup = ksz9477_phy_setup,
1603         .port_setup = ksz9477_port_setup,
1604         .r_mib_cnt = ksz9477_r_mib_cnt,
1605         .r_mib_pkt = ksz9477_r_mib_pkt,
1606         .freeze_mib = ksz9477_freeze_mib,
1607         .port_init_cnt = ksz9477_port_init_cnt,
1608         .shutdown = ksz9477_reset_switch,
1609         .detect = ksz9477_switch_detect,
1610         .init = ksz9477_switch_init,
1611         .exit = ksz9477_switch_exit,
1612 };
1613
1614 int ksz9477_switch_register(struct ksz_device *dev)
1615 {
1616         return ksz_switch_register(dev, &ksz9477_dev_ops);
1617 }
1618 EXPORT_SYMBOL(ksz9477_switch_register);
1619
1620 MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1621 MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
1622 MODULE_LICENSE("GPL");