]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/broadcom/bnxt/bnxt.c
Merge branches 'pm-core', 'pm-qos', 'pm-domains' and 'pm-opp'
[linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <linux/rtc.h>
36 #include <net/ip.h>
37 #include <net/tcp.h>
38 #include <net/udp.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <net/udp_tunnel.h>
42 #ifdef CONFIG_NET_RX_BUSY_POLL
43 #include <net/busy_poll.h>
44 #endif
45 #include <linux/workqueue.h>
46 #include <linux/prefetch.h>
47 #include <linux/cache.h>
48 #include <linux/log2.h>
49 #include <linux/aer.h>
50 #include <linux/bitmap.h>
51 #include <linux/cpu_rmap.h>
52
53 #include "bnxt_hsi.h"
54 #include "bnxt.h"
55 #include "bnxt_ulp.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58 #include "bnxt_dcb.h"
59
60 #define BNXT_TX_TIMEOUT         (5 * HZ)
61
62 static const char version[] =
63         "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
64
65 MODULE_LICENSE("GPL");
66 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
67 MODULE_VERSION(DRV_MODULE_VERSION);
68
69 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
70 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
71 #define BNXT_RX_COPY_THRESH 256
72
73 #define BNXT_TX_PUSH_THRESH 164
74
75 enum board_idx {
76         BCM57301,
77         BCM57302,
78         BCM57304,
79         BCM57417_NPAR,
80         BCM58700,
81         BCM57311,
82         BCM57312,
83         BCM57402,
84         BCM57404,
85         BCM57406,
86         BCM57402_NPAR,
87         BCM57407,
88         BCM57412,
89         BCM57414,
90         BCM57416,
91         BCM57417,
92         BCM57412_NPAR,
93         BCM57314,
94         BCM57417_SFP,
95         BCM57416_SFP,
96         BCM57404_NPAR,
97         BCM57406_NPAR,
98         BCM57407_SFP,
99         BCM57407_NPAR,
100         BCM57414_NPAR,
101         BCM57416_NPAR,
102         NETXTREME_E_VF,
103         NETXTREME_C_VF,
104 };
105
106 /* indexed by enum above */
107 static const struct {
108         char *name;
109 } board_info[] = {
110         { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" },
111         { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" },
112         { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
113         { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" },
114         { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" },
115         { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" },
116         { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" },
117         { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" },
118         { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" },
119         { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" },
120         { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" },
121         { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" },
122         { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" },
123         { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" },
124         { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" },
125         { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" },
126         { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" },
127         { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" },
128         { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" },
129         { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" },
130         { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" },
131         { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" },
132         { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" },
133         { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" },
134         { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" },
135         { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" },
136         { "Broadcom NetXtreme-E Ethernet Virtual Function" },
137         { "Broadcom NetXtreme-C Ethernet Virtual Function" },
138 };
139
140 static const struct pci_device_id bnxt_pci_tbl[] = {
141         { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR },
142         { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
143         { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
144         { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
145         { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR },
146         { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 },
147         { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 },
148         { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 },
149         { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
150         { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
151         { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
152         { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR },
153         { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 },
154         { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 },
155         { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 },
156         { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 },
157         { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 },
158         { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR },
159         { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
160         { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP },
161         { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP },
162         { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR },
163         { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR },
164         { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP },
165         { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR },
166         { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR },
167         { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR },
168         { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR },
169         { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR },
170         { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR },
171 #ifdef CONFIG_BNXT_SRIOV
172         { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF },
173         { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF },
174         { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF },
175         { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF },
176         { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF },
177         { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF },
178 #endif
179         { 0 }
180 };
181
182 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
183
184 static const u16 bnxt_vf_req_snif[] = {
185         HWRM_FUNC_CFG,
186         HWRM_PORT_PHY_QCFG,
187         HWRM_CFA_L2_FILTER_ALLOC,
188 };
189
190 static const u16 bnxt_async_events_arr[] = {
191         ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
192         ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
193         ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
194         ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE,
195         ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
196 };
197
198 static bool bnxt_vf_pciid(enum board_idx idx)
199 {
200         return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF);
201 }
202
203 #define DB_CP_REARM_FLAGS       (DB_KEY_CP | DB_IDX_VALID)
204 #define DB_CP_FLAGS             (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
205 #define DB_CP_IRQ_DIS_FLAGS     (DB_KEY_CP | DB_IRQ_DIS)
206
207 #define BNXT_CP_DB_REARM(db, raw_cons)                                  \
208                 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
209
210 #define BNXT_CP_DB(db, raw_cons)                                        \
211                 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
212
213 #define BNXT_CP_DB_IRQ_DIS(db)                                          \
214                 writel(DB_CP_IRQ_DIS_FLAGS, db)
215
216 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
217 {
218         /* Tell compiler to fetch tx indices from memory. */
219         barrier();
220
221         return bp->tx_ring_size -
222                 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
223 }
224
225 static const u16 bnxt_lhint_arr[] = {
226         TX_BD_FLAGS_LHINT_512_AND_SMALLER,
227         TX_BD_FLAGS_LHINT_512_TO_1023,
228         TX_BD_FLAGS_LHINT_1024_TO_2047,
229         TX_BD_FLAGS_LHINT_1024_TO_2047,
230         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
231         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
232         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
233         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
234         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
235         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
236         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
237         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
238         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
239         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
240         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
241         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
242         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
243         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
244         TX_BD_FLAGS_LHINT_2048_AND_LARGER,
245 };
246
247 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
248 {
249         struct bnxt *bp = netdev_priv(dev);
250         struct tx_bd *txbd;
251         struct tx_bd_ext *txbd1;
252         struct netdev_queue *txq;
253         int i;
254         dma_addr_t mapping;
255         unsigned int length, pad = 0;
256         u32 len, free_size, vlan_tag_flags, cfa_action, flags;
257         u16 prod, last_frag;
258         struct pci_dev *pdev = bp->pdev;
259         struct bnxt_tx_ring_info *txr;
260         struct bnxt_sw_tx_bd *tx_buf;
261
262         i = skb_get_queue_mapping(skb);
263         if (unlikely(i >= bp->tx_nr_rings)) {
264                 dev_kfree_skb_any(skb);
265                 return NETDEV_TX_OK;
266         }
267
268         txr = &bp->tx_ring[i];
269         txq = netdev_get_tx_queue(dev, i);
270         prod = txr->tx_prod;
271
272         free_size = bnxt_tx_avail(bp, txr);
273         if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
274                 netif_tx_stop_queue(txq);
275                 return NETDEV_TX_BUSY;
276         }
277
278         length = skb->len;
279         len = skb_headlen(skb);
280         last_frag = skb_shinfo(skb)->nr_frags;
281
282         txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
283
284         txbd->tx_bd_opaque = prod;
285
286         tx_buf = &txr->tx_buf_ring[prod];
287         tx_buf->skb = skb;
288         tx_buf->nr_frags = last_frag;
289
290         vlan_tag_flags = 0;
291         cfa_action = 0;
292         if (skb_vlan_tag_present(skb)) {
293                 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
294                                  skb_vlan_tag_get(skb);
295                 /* Currently supports 8021Q, 8021AD vlan offloads
296                  * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
297                  */
298                 if (skb->vlan_proto == htons(ETH_P_8021Q))
299                         vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
300         }
301
302         if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
303                 struct tx_push_buffer *tx_push_buf = txr->tx_push;
304                 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
305                 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
306                 void *pdata = tx_push_buf->data;
307                 u64 *end;
308                 int j, push_len;
309
310                 /* Set COAL_NOW to be ready quickly for the next push */
311                 tx_push->tx_bd_len_flags_type =
312                         cpu_to_le32((length << TX_BD_LEN_SHIFT) |
313                                         TX_BD_TYPE_LONG_TX_BD |
314                                         TX_BD_FLAGS_LHINT_512_AND_SMALLER |
315                                         TX_BD_FLAGS_COAL_NOW |
316                                         TX_BD_FLAGS_PACKET_END |
317                                         (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
318
319                 if (skb->ip_summed == CHECKSUM_PARTIAL)
320                         tx_push1->tx_bd_hsize_lflags =
321                                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
322                 else
323                         tx_push1->tx_bd_hsize_lflags = 0;
324
325                 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
326                 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
327
328                 end = pdata + length;
329                 end = PTR_ALIGN(end, 8) - 1;
330                 *end = 0;
331
332                 skb_copy_from_linear_data(skb, pdata, len);
333                 pdata += len;
334                 for (j = 0; j < last_frag; j++) {
335                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
336                         void *fptr;
337
338                         fptr = skb_frag_address_safe(frag);
339                         if (!fptr)
340                                 goto normal_tx;
341
342                         memcpy(pdata, fptr, skb_frag_size(frag));
343                         pdata += skb_frag_size(frag);
344                 }
345
346                 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
347                 txbd->tx_bd_haddr = txr->data_mapping;
348                 prod = NEXT_TX(prod);
349                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
350                 memcpy(txbd, tx_push1, sizeof(*txbd));
351                 prod = NEXT_TX(prod);
352                 tx_push->doorbell =
353                         cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
354                 txr->tx_prod = prod;
355
356                 tx_buf->is_push = 1;
357                 netdev_tx_sent_queue(txq, skb->len);
358                 wmb();  /* Sync is_push and byte queue before pushing data */
359
360                 push_len = (length + sizeof(*tx_push) + 7) / 8;
361                 if (push_len > 16) {
362                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
363                         __iowrite32_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
364                                          (push_len - 16) << 1);
365                 } else {
366                         __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
367                                          push_len);
368                 }
369
370                 goto tx_done;
371         }
372
373 normal_tx:
374         if (length < BNXT_MIN_PKT_SIZE) {
375                 pad = BNXT_MIN_PKT_SIZE - length;
376                 if (skb_pad(skb, pad)) {
377                         /* SKB already freed. */
378                         tx_buf->skb = NULL;
379                         return NETDEV_TX_OK;
380                 }
381                 length = BNXT_MIN_PKT_SIZE;
382         }
383
384         mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
385
386         if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
387                 dev_kfree_skb_any(skb);
388                 tx_buf->skb = NULL;
389                 return NETDEV_TX_OK;
390         }
391
392         dma_unmap_addr_set(tx_buf, mapping, mapping);
393         flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
394                 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
395
396         txbd->tx_bd_haddr = cpu_to_le64(mapping);
397
398         prod = NEXT_TX(prod);
399         txbd1 = (struct tx_bd_ext *)
400                 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
401
402         txbd1->tx_bd_hsize_lflags = 0;
403         if (skb_is_gso(skb)) {
404                 u32 hdr_len;
405
406                 if (skb->encapsulation)
407                         hdr_len = skb_inner_network_offset(skb) +
408                                 skb_inner_network_header_len(skb) +
409                                 inner_tcp_hdrlen(skb);
410                 else
411                         hdr_len = skb_transport_offset(skb) +
412                                 tcp_hdrlen(skb);
413
414                 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
415                                         TX_BD_FLAGS_T_IPID |
416                                         (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
417                 length = skb_shinfo(skb)->gso_size;
418                 txbd1->tx_bd_mss = cpu_to_le32(length);
419                 length += hdr_len;
420         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
421                 txbd1->tx_bd_hsize_lflags =
422                         cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
423                 txbd1->tx_bd_mss = 0;
424         }
425
426         length >>= 9;
427         flags |= bnxt_lhint_arr[length];
428         txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
429
430         txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
431         txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
432         for (i = 0; i < last_frag; i++) {
433                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
434
435                 prod = NEXT_TX(prod);
436                 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
437
438                 len = skb_frag_size(frag);
439                 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
440                                            DMA_TO_DEVICE);
441
442                 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
443                         goto tx_dma_error;
444
445                 tx_buf = &txr->tx_buf_ring[prod];
446                 dma_unmap_addr_set(tx_buf, mapping, mapping);
447
448                 txbd->tx_bd_haddr = cpu_to_le64(mapping);
449
450                 flags = len << TX_BD_LEN_SHIFT;
451                 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
452         }
453
454         flags &= ~TX_BD_LEN;
455         txbd->tx_bd_len_flags_type =
456                 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
457                             TX_BD_FLAGS_PACKET_END);
458
459         netdev_tx_sent_queue(txq, skb->len);
460
461         /* Sync BD data before updating doorbell */
462         wmb();
463
464         prod = NEXT_TX(prod);
465         txr->tx_prod = prod;
466
467         writel(DB_KEY_TX | prod, txr->tx_doorbell);
468         writel(DB_KEY_TX | prod, txr->tx_doorbell);
469
470 tx_done:
471
472         mmiowb();
473
474         if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
475                 netif_tx_stop_queue(txq);
476
477                 /* netif_tx_stop_queue() must be done before checking
478                  * tx index in bnxt_tx_avail() below, because in
479                  * bnxt_tx_int(), we update tx index before checking for
480                  * netif_tx_queue_stopped().
481                  */
482                 smp_mb();
483                 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
484                         netif_tx_wake_queue(txq);
485         }
486         return NETDEV_TX_OK;
487
488 tx_dma_error:
489         last_frag = i;
490
491         /* start back at beginning and unmap skb */
492         prod = txr->tx_prod;
493         tx_buf = &txr->tx_buf_ring[prod];
494         tx_buf->skb = NULL;
495         dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
496                          skb_headlen(skb), PCI_DMA_TODEVICE);
497         prod = NEXT_TX(prod);
498
499         /* unmap remaining mapped pages */
500         for (i = 0; i < last_frag; i++) {
501                 prod = NEXT_TX(prod);
502                 tx_buf = &txr->tx_buf_ring[prod];
503                 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
504                                skb_frag_size(&skb_shinfo(skb)->frags[i]),
505                                PCI_DMA_TODEVICE);
506         }
507
508         dev_kfree_skb_any(skb);
509         return NETDEV_TX_OK;
510 }
511
512 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
513 {
514         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
515         int index = txr - &bp->tx_ring[0];
516         struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
517         u16 cons = txr->tx_cons;
518         struct pci_dev *pdev = bp->pdev;
519         int i;
520         unsigned int tx_bytes = 0;
521
522         for (i = 0; i < nr_pkts; i++) {
523                 struct bnxt_sw_tx_bd *tx_buf;
524                 struct sk_buff *skb;
525                 int j, last;
526
527                 tx_buf = &txr->tx_buf_ring[cons];
528                 cons = NEXT_TX(cons);
529                 skb = tx_buf->skb;
530                 tx_buf->skb = NULL;
531
532                 if (tx_buf->is_push) {
533                         tx_buf->is_push = 0;
534                         goto next_tx_int;
535                 }
536
537                 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
538                                  skb_headlen(skb), PCI_DMA_TODEVICE);
539                 last = tx_buf->nr_frags;
540
541                 for (j = 0; j < last; j++) {
542                         cons = NEXT_TX(cons);
543                         tx_buf = &txr->tx_buf_ring[cons];
544                         dma_unmap_page(
545                                 &pdev->dev,
546                                 dma_unmap_addr(tx_buf, mapping),
547                                 skb_frag_size(&skb_shinfo(skb)->frags[j]),
548                                 PCI_DMA_TODEVICE);
549                 }
550
551 next_tx_int:
552                 cons = NEXT_TX(cons);
553
554                 tx_bytes += skb->len;
555                 dev_kfree_skb_any(skb);
556         }
557
558         netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
559         txr->tx_cons = cons;
560
561         /* Need to make the tx_cons update visible to bnxt_start_xmit()
562          * before checking for netif_tx_queue_stopped().  Without the
563          * memory barrier, there is a small possibility that bnxt_start_xmit()
564          * will miss it and cause the queue to be stopped forever.
565          */
566         smp_mb();
567
568         if (unlikely(netif_tx_queue_stopped(txq)) &&
569             (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
570                 __netif_tx_lock(txq, smp_processor_id());
571                 if (netif_tx_queue_stopped(txq) &&
572                     bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
573                     txr->dev_state != BNXT_DEV_STATE_CLOSING)
574                         netif_tx_wake_queue(txq);
575                 __netif_tx_unlock(txq);
576         }
577 }
578
579 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
580                                        gfp_t gfp)
581 {
582         u8 *data;
583         struct pci_dev *pdev = bp->pdev;
584
585         data = kmalloc(bp->rx_buf_size, gfp);
586         if (!data)
587                 return NULL;
588
589         *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
590                                   bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
591
592         if (dma_mapping_error(&pdev->dev, *mapping)) {
593                 kfree(data);
594                 data = NULL;
595         }
596         return data;
597 }
598
599 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
600                                      struct bnxt_rx_ring_info *rxr,
601                                      u16 prod, gfp_t gfp)
602 {
603         struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
604         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
605         u8 *data;
606         dma_addr_t mapping;
607
608         data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
609         if (!data)
610                 return -ENOMEM;
611
612         rx_buf->data = data;
613         dma_unmap_addr_set(rx_buf, mapping, mapping);
614
615         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
616
617         return 0;
618 }
619
620 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
621                                u8 *data)
622 {
623         u16 prod = rxr->rx_prod;
624         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
625         struct rx_bd *cons_bd, *prod_bd;
626
627         prod_rx_buf = &rxr->rx_buf_ring[prod];
628         cons_rx_buf = &rxr->rx_buf_ring[cons];
629
630         prod_rx_buf->data = data;
631
632         dma_unmap_addr_set(prod_rx_buf, mapping,
633                            dma_unmap_addr(cons_rx_buf, mapping));
634
635         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
636         cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
637
638         prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
639 }
640
641 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
642 {
643         u16 next, max = rxr->rx_agg_bmap_size;
644
645         next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
646         if (next >= max)
647                 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
648         return next;
649 }
650
651 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
652                                      struct bnxt_rx_ring_info *rxr,
653                                      u16 prod, gfp_t gfp)
654 {
655         struct rx_bd *rxbd =
656                 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
657         struct bnxt_sw_rx_agg_bd *rx_agg_buf;
658         struct pci_dev *pdev = bp->pdev;
659         struct page *page;
660         dma_addr_t mapping;
661         u16 sw_prod = rxr->rx_sw_agg_prod;
662         unsigned int offset = 0;
663
664         if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
665                 page = rxr->rx_page;
666                 if (!page) {
667                         page = alloc_page(gfp);
668                         if (!page)
669                                 return -ENOMEM;
670                         rxr->rx_page = page;
671                         rxr->rx_page_offset = 0;
672                 }
673                 offset = rxr->rx_page_offset;
674                 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
675                 if (rxr->rx_page_offset == PAGE_SIZE)
676                         rxr->rx_page = NULL;
677                 else
678                         get_page(page);
679         } else {
680                 page = alloc_page(gfp);
681                 if (!page)
682                         return -ENOMEM;
683         }
684
685         mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
686                                PCI_DMA_FROMDEVICE);
687         if (dma_mapping_error(&pdev->dev, mapping)) {
688                 __free_page(page);
689                 return -EIO;
690         }
691
692         if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
693                 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
694
695         __set_bit(sw_prod, rxr->rx_agg_bmap);
696         rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
697         rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
698
699         rx_agg_buf->page = page;
700         rx_agg_buf->offset = offset;
701         rx_agg_buf->mapping = mapping;
702         rxbd->rx_bd_haddr = cpu_to_le64(mapping);
703         rxbd->rx_bd_opaque = sw_prod;
704         return 0;
705 }
706
707 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
708                                    u32 agg_bufs)
709 {
710         struct bnxt *bp = bnapi->bp;
711         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
712         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
713         u16 prod = rxr->rx_agg_prod;
714         u16 sw_prod = rxr->rx_sw_agg_prod;
715         u32 i;
716
717         for (i = 0; i < agg_bufs; i++) {
718                 u16 cons;
719                 struct rx_agg_cmp *agg;
720                 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
721                 struct rx_bd *prod_bd;
722                 struct page *page;
723
724                 agg = (struct rx_agg_cmp *)
725                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
726                 cons = agg->rx_agg_cmp_opaque;
727                 __clear_bit(cons, rxr->rx_agg_bmap);
728
729                 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
730                         sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
731
732                 __set_bit(sw_prod, rxr->rx_agg_bmap);
733                 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
734                 cons_rx_buf = &rxr->rx_agg_ring[cons];
735
736                 /* It is possible for sw_prod to be equal to cons, so
737                  * set cons_rx_buf->page to NULL first.
738                  */
739                 page = cons_rx_buf->page;
740                 cons_rx_buf->page = NULL;
741                 prod_rx_buf->page = page;
742                 prod_rx_buf->offset = cons_rx_buf->offset;
743
744                 prod_rx_buf->mapping = cons_rx_buf->mapping;
745
746                 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
747
748                 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
749                 prod_bd->rx_bd_opaque = sw_prod;
750
751                 prod = NEXT_RX_AGG(prod);
752                 sw_prod = NEXT_RX_AGG(sw_prod);
753                 cp_cons = NEXT_CMP(cp_cons);
754         }
755         rxr->rx_agg_prod = prod;
756         rxr->rx_sw_agg_prod = sw_prod;
757 }
758
759 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
760                                    struct bnxt_rx_ring_info *rxr, u16 cons,
761                                    u16 prod, u8 *data, dma_addr_t dma_addr,
762                                    unsigned int len)
763 {
764         int err;
765         struct sk_buff *skb;
766
767         err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
768         if (unlikely(err)) {
769                 bnxt_reuse_rx_data(rxr, cons, data);
770                 return NULL;
771         }
772
773         skb = build_skb(data, 0);
774         dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
775                          PCI_DMA_FROMDEVICE);
776         if (!skb) {
777                 kfree(data);
778                 return NULL;
779         }
780
781         skb_reserve(skb, BNXT_RX_OFFSET);
782         skb_put(skb, len);
783         return skb;
784 }
785
786 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
787                                      struct sk_buff *skb, u16 cp_cons,
788                                      u32 agg_bufs)
789 {
790         struct pci_dev *pdev = bp->pdev;
791         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
792         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
793         u16 prod = rxr->rx_agg_prod;
794         u32 i;
795
796         for (i = 0; i < agg_bufs; i++) {
797                 u16 cons, frag_len;
798                 struct rx_agg_cmp *agg;
799                 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
800                 struct page *page;
801                 dma_addr_t mapping;
802
803                 agg = (struct rx_agg_cmp *)
804                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
805                 cons = agg->rx_agg_cmp_opaque;
806                 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
807                             RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
808
809                 cons_rx_buf = &rxr->rx_agg_ring[cons];
810                 skb_fill_page_desc(skb, i, cons_rx_buf->page,
811                                    cons_rx_buf->offset, frag_len);
812                 __clear_bit(cons, rxr->rx_agg_bmap);
813
814                 /* It is possible for bnxt_alloc_rx_page() to allocate
815                  * a sw_prod index that equals the cons index, so we
816                  * need to clear the cons entry now.
817                  */
818                 mapping = dma_unmap_addr(cons_rx_buf, mapping);
819                 page = cons_rx_buf->page;
820                 cons_rx_buf->page = NULL;
821
822                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
823                         struct skb_shared_info *shinfo;
824                         unsigned int nr_frags;
825
826                         shinfo = skb_shinfo(skb);
827                         nr_frags = --shinfo->nr_frags;
828                         __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
829
830                         dev_kfree_skb(skb);
831
832                         cons_rx_buf->page = page;
833
834                         /* Update prod since possibly some pages have been
835                          * allocated already.
836                          */
837                         rxr->rx_agg_prod = prod;
838                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
839                         return NULL;
840                 }
841
842                 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
843                                PCI_DMA_FROMDEVICE);
844
845                 skb->data_len += frag_len;
846                 skb->len += frag_len;
847                 skb->truesize += PAGE_SIZE;
848
849                 prod = NEXT_RX_AGG(prod);
850                 cp_cons = NEXT_CMP(cp_cons);
851         }
852         rxr->rx_agg_prod = prod;
853         return skb;
854 }
855
856 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
857                                u8 agg_bufs, u32 *raw_cons)
858 {
859         u16 last;
860         struct rx_agg_cmp *agg;
861
862         *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
863         last = RING_CMP(*raw_cons);
864         agg = (struct rx_agg_cmp *)
865                 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
866         return RX_AGG_CMP_VALID(agg, *raw_cons);
867 }
868
869 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
870                                             unsigned int len,
871                                             dma_addr_t mapping)
872 {
873         struct bnxt *bp = bnapi->bp;
874         struct pci_dev *pdev = bp->pdev;
875         struct sk_buff *skb;
876
877         skb = napi_alloc_skb(&bnapi->napi, len);
878         if (!skb)
879                 return NULL;
880
881         dma_sync_single_for_cpu(&pdev->dev, mapping,
882                                 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
883
884         memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
885
886         dma_sync_single_for_device(&pdev->dev, mapping,
887                                    bp->rx_copy_thresh,
888                                    PCI_DMA_FROMDEVICE);
889
890         skb_put(skb, len);
891         return skb;
892 }
893
894 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
895                            u32 *raw_cons, void *cmp)
896 {
897         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
898         struct rx_cmp *rxcmp = cmp;
899         u32 tmp_raw_cons = *raw_cons;
900         u8 cmp_type, agg_bufs = 0;
901
902         cmp_type = RX_CMP_TYPE(rxcmp);
903
904         if (cmp_type == CMP_TYPE_RX_L2_CMP) {
905                 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
906                             RX_CMP_AGG_BUFS) >>
907                            RX_CMP_AGG_BUFS_SHIFT;
908         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
909                 struct rx_tpa_end_cmp *tpa_end = cmp;
910
911                 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
912                             RX_TPA_END_CMP_AGG_BUFS) >>
913                            RX_TPA_END_CMP_AGG_BUFS_SHIFT;
914         }
915
916         if (agg_bufs) {
917                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
918                         return -EBUSY;
919         }
920         *raw_cons = tmp_raw_cons;
921         return 0;
922 }
923
924 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
925 {
926         if (!rxr->bnapi->in_reset) {
927                 rxr->bnapi->in_reset = true;
928                 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
929                 schedule_work(&bp->sp_task);
930         }
931         rxr->rx_next_cons = 0xffff;
932 }
933
934 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
935                            struct rx_tpa_start_cmp *tpa_start,
936                            struct rx_tpa_start_cmp_ext *tpa_start1)
937 {
938         u8 agg_id = TPA_START_AGG_ID(tpa_start);
939         u16 cons, prod;
940         struct bnxt_tpa_info *tpa_info;
941         struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
942         struct rx_bd *prod_bd;
943         dma_addr_t mapping;
944
945         cons = tpa_start->rx_tpa_start_cmp_opaque;
946         prod = rxr->rx_prod;
947         cons_rx_buf = &rxr->rx_buf_ring[cons];
948         prod_rx_buf = &rxr->rx_buf_ring[prod];
949         tpa_info = &rxr->rx_tpa[agg_id];
950
951         if (unlikely(cons != rxr->rx_next_cons)) {
952                 bnxt_sched_reset(bp, rxr);
953                 return;
954         }
955
956         prod_rx_buf->data = tpa_info->data;
957
958         mapping = tpa_info->mapping;
959         dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
960
961         prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
962
963         prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
964
965         tpa_info->data = cons_rx_buf->data;
966         cons_rx_buf->data = NULL;
967         tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
968
969         tpa_info->len =
970                 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
971                                 RX_TPA_START_CMP_LEN_SHIFT;
972         if (likely(TPA_START_HASH_VALID(tpa_start))) {
973                 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
974
975                 tpa_info->hash_type = PKT_HASH_TYPE_L4;
976                 tpa_info->gso_type = SKB_GSO_TCPV4;
977                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
978                 if (hash_type == 3)
979                         tpa_info->gso_type = SKB_GSO_TCPV6;
980                 tpa_info->rss_hash =
981                         le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
982         } else {
983                 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
984                 tpa_info->gso_type = 0;
985                 if (netif_msg_rx_err(bp))
986                         netdev_warn(bp->dev, "TPA packet without valid hash\n");
987         }
988         tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
989         tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
990         tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info);
991
992         rxr->rx_prod = NEXT_RX(prod);
993         cons = NEXT_RX(cons);
994         rxr->rx_next_cons = NEXT_RX(cons);
995         cons_rx_buf = &rxr->rx_buf_ring[cons];
996
997         bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
998         rxr->rx_prod = NEXT_RX(rxr->rx_prod);
999         cons_rx_buf->data = NULL;
1000 }
1001
1002 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
1003                            u16 cp_cons, u32 agg_bufs)
1004 {
1005         if (agg_bufs)
1006                 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1007 }
1008
1009 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info,
1010                                            int payload_off, int tcp_ts,
1011                                            struct sk_buff *skb)
1012 {
1013 #ifdef CONFIG_INET
1014         struct tcphdr *th;
1015         int len, nw_off;
1016         u16 outer_ip_off, inner_ip_off, inner_mac_off;
1017         u32 hdr_info = tpa_info->hdr_info;
1018         bool loopback = false;
1019
1020         inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info);
1021         inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info);
1022         outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info);
1023
1024         /* If the packet is an internal loopback packet, the offsets will
1025          * have an extra 4 bytes.
1026          */
1027         if (inner_mac_off == 4) {
1028                 loopback = true;
1029         } else if (inner_mac_off > 4) {
1030                 __be16 proto = *((__be16 *)(skb->data + inner_ip_off -
1031                                             ETH_HLEN - 2));
1032
1033                 /* We only support inner iPv4/ipv6.  If we don't see the
1034                  * correct protocol ID, it must be a loopback packet where
1035                  * the offsets are off by 4.
1036                  */
1037                 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))
1038                         loopback = true;
1039         }
1040         if (loopback) {
1041                 /* internal loopback packet, subtract all offsets by 4 */
1042                 inner_ip_off -= 4;
1043                 inner_mac_off -= 4;
1044                 outer_ip_off -= 4;
1045         }
1046
1047         nw_off = inner_ip_off - ETH_HLEN;
1048         skb_set_network_header(skb, nw_off);
1049         if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) {
1050                 struct ipv6hdr *iph = ipv6_hdr(skb);
1051
1052                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1053                 len = skb->len - skb_transport_offset(skb);
1054                 th = tcp_hdr(skb);
1055                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1056         } else {
1057                 struct iphdr *iph = ip_hdr(skb);
1058
1059                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1060                 len = skb->len - skb_transport_offset(skb);
1061                 th = tcp_hdr(skb);
1062                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1063         }
1064
1065         if (inner_mac_off) { /* tunnel */
1066                 struct udphdr *uh = NULL;
1067                 __be16 proto = *((__be16 *)(skb->data + outer_ip_off -
1068                                             ETH_HLEN - 2));
1069
1070                 if (proto == htons(ETH_P_IP)) {
1071                         struct iphdr *iph = (struct iphdr *)skb->data;
1072
1073                         if (iph->protocol == IPPROTO_UDP)
1074                                 uh = (struct udphdr *)(iph + 1);
1075                 } else {
1076                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1077
1078                         if (iph->nexthdr == IPPROTO_UDP)
1079                                 uh = (struct udphdr *)(iph + 1);
1080                 }
1081                 if (uh) {
1082                         if (uh->check)
1083                                 skb_shinfo(skb)->gso_type |=
1084                                         SKB_GSO_UDP_TUNNEL_CSUM;
1085                         else
1086                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1087                 }
1088         }
1089 #endif
1090         return skb;
1091 }
1092
1093 #define BNXT_IPV4_HDR_SIZE      (sizeof(struct iphdr) + sizeof(struct tcphdr))
1094 #define BNXT_IPV6_HDR_SIZE      (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
1095
1096 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info,
1097                                            int payload_off, int tcp_ts,
1098                                            struct sk_buff *skb)
1099 {
1100 #ifdef CONFIG_INET
1101         struct tcphdr *th;
1102         int len, nw_off, tcp_opt_len = 0;
1103
1104         if (tcp_ts)
1105                 tcp_opt_len = 12;
1106
1107         if (tpa_info->gso_type == SKB_GSO_TCPV4) {
1108                 struct iphdr *iph;
1109
1110                 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
1111                          ETH_HLEN;
1112                 skb_set_network_header(skb, nw_off);
1113                 iph = ip_hdr(skb);
1114                 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
1115                 len = skb->len - skb_transport_offset(skb);
1116                 th = tcp_hdr(skb);
1117                 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
1118         } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
1119                 struct ipv6hdr *iph;
1120
1121                 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
1122                          ETH_HLEN;
1123                 skb_set_network_header(skb, nw_off);
1124                 iph = ipv6_hdr(skb);
1125                 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
1126                 len = skb->len - skb_transport_offset(skb);
1127                 th = tcp_hdr(skb);
1128                 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
1129         } else {
1130                 dev_kfree_skb_any(skb);
1131                 return NULL;
1132         }
1133         tcp_gro_complete(skb);
1134
1135         if (nw_off) { /* tunnel */
1136                 struct udphdr *uh = NULL;
1137
1138                 if (skb->protocol == htons(ETH_P_IP)) {
1139                         struct iphdr *iph = (struct iphdr *)skb->data;
1140
1141                         if (iph->protocol == IPPROTO_UDP)
1142                                 uh = (struct udphdr *)(iph + 1);
1143                 } else {
1144                         struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1145
1146                         if (iph->nexthdr == IPPROTO_UDP)
1147                                 uh = (struct udphdr *)(iph + 1);
1148                 }
1149                 if (uh) {
1150                         if (uh->check)
1151                                 skb_shinfo(skb)->gso_type |=
1152                                         SKB_GSO_UDP_TUNNEL_CSUM;
1153                         else
1154                                 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1155                 }
1156         }
1157 #endif
1158         return skb;
1159 }
1160
1161 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp,
1162                                            struct bnxt_tpa_info *tpa_info,
1163                                            struct rx_tpa_end_cmp *tpa_end,
1164                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1165                                            struct sk_buff *skb)
1166 {
1167 #ifdef CONFIG_INET
1168         int payload_off;
1169         u16 segs;
1170
1171         segs = TPA_END_TPA_SEGS(tpa_end);
1172         if (segs == 1)
1173                 return skb;
1174
1175         NAPI_GRO_CB(skb)->count = segs;
1176         skb_shinfo(skb)->gso_size =
1177                 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
1178         skb_shinfo(skb)->gso_type = tpa_info->gso_type;
1179         payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1180                        RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
1181                       RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
1182         skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb);
1183 #endif
1184         return skb;
1185 }
1186
1187 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1188                                            struct bnxt_napi *bnapi,
1189                                            u32 *raw_cons,
1190                                            struct rx_tpa_end_cmp *tpa_end,
1191                                            struct rx_tpa_end_cmp_ext *tpa_end1,
1192                                            bool *agg_event)
1193 {
1194         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1195         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1196         u8 agg_id = TPA_END_AGG_ID(tpa_end);
1197         u8 *data, agg_bufs;
1198         u16 cp_cons = RING_CMP(*raw_cons);
1199         unsigned int len;
1200         struct bnxt_tpa_info *tpa_info;
1201         dma_addr_t mapping;
1202         struct sk_buff *skb;
1203
1204         if (unlikely(bnapi->in_reset)) {
1205                 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1206
1207                 if (rc < 0)
1208                         return ERR_PTR(-EBUSY);
1209                 return NULL;
1210         }
1211
1212         tpa_info = &rxr->rx_tpa[agg_id];
1213         data = tpa_info->data;
1214         prefetch(data);
1215         len = tpa_info->len;
1216         mapping = tpa_info->mapping;
1217
1218         agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1219                     RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1220
1221         if (agg_bufs) {
1222                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1223                         return ERR_PTR(-EBUSY);
1224
1225                 *agg_event = true;
1226                 cp_cons = NEXT_CMP(cp_cons);
1227         }
1228
1229         if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1230                 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1231                 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1232                             agg_bufs, (int)MAX_SKB_FRAGS);
1233                 return NULL;
1234         }
1235
1236         if (len <= bp->rx_copy_thresh) {
1237                 skb = bnxt_copy_skb(bnapi, data, len, mapping);
1238                 if (!skb) {
1239                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1240                         return NULL;
1241                 }
1242         } else {
1243                 u8 *new_data;
1244                 dma_addr_t new_mapping;
1245
1246                 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1247                 if (!new_data) {
1248                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1249                         return NULL;
1250                 }
1251
1252                 tpa_info->data = new_data;
1253                 tpa_info->mapping = new_mapping;
1254
1255                 skb = build_skb(data, 0);
1256                 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1257                                  PCI_DMA_FROMDEVICE);
1258
1259                 if (!skb) {
1260                         kfree(data);
1261                         bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1262                         return NULL;
1263                 }
1264                 skb_reserve(skb, BNXT_RX_OFFSET);
1265                 skb_put(skb, len);
1266         }
1267
1268         if (agg_bufs) {
1269                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1270                 if (!skb) {
1271                         /* Page reuse already handled by bnxt_rx_pages(). */
1272                         return NULL;
1273                 }
1274         }
1275         skb->protocol = eth_type_trans(skb, bp->dev);
1276
1277         if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1278                 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1279
1280         if ((tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) &&
1281             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1282                 u16 vlan_proto = tpa_info->metadata >>
1283                         RX_CMP_FLAGS2_METADATA_TPID_SFT;
1284                 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_VID_MASK;
1285
1286                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1287         }
1288
1289         skb_checksum_none_assert(skb);
1290         if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1291                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1292                 skb->csum_level =
1293                         (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1294         }
1295
1296         if (TPA_END_GRO(tpa_end))
1297                 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb);
1298
1299         return skb;
1300 }
1301
1302 /* returns the following:
1303  * 1       - 1 packet successfully received
1304  * 0       - successful TPA_START, packet not completed yet
1305  * -EBUSY  - completion ring does not have all the agg buffers yet
1306  * -ENOMEM - packet aborted due to out of memory
1307  * -EIO    - packet aborted due to hw error indicated in BD
1308  */
1309 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1310                        bool *agg_event)
1311 {
1312         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1313         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1314         struct net_device *dev = bp->dev;
1315         struct rx_cmp *rxcmp;
1316         struct rx_cmp_ext *rxcmp1;
1317         u32 tmp_raw_cons = *raw_cons;
1318         u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1319         struct bnxt_sw_rx_bd *rx_buf;
1320         unsigned int len;
1321         u8 *data, agg_bufs, cmp_type;
1322         dma_addr_t dma_addr;
1323         struct sk_buff *skb;
1324         int rc = 0;
1325
1326         rxcmp = (struct rx_cmp *)
1327                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1328
1329         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1330         cp_cons = RING_CMP(tmp_raw_cons);
1331         rxcmp1 = (struct rx_cmp_ext *)
1332                         &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1333
1334         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1335                 return -EBUSY;
1336
1337         cmp_type = RX_CMP_TYPE(rxcmp);
1338
1339         prod = rxr->rx_prod;
1340
1341         if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1342                 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1343                                (struct rx_tpa_start_cmp_ext *)rxcmp1);
1344
1345                 goto next_rx_no_prod;
1346
1347         } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1348                 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1349                                    (struct rx_tpa_end_cmp *)rxcmp,
1350                                    (struct rx_tpa_end_cmp_ext *)rxcmp1,
1351                                    agg_event);
1352
1353                 if (unlikely(IS_ERR(skb)))
1354                         return -EBUSY;
1355
1356                 rc = -ENOMEM;
1357                 if (likely(skb)) {
1358                         skb_record_rx_queue(skb, bnapi->index);
1359                         skb_mark_napi_id(skb, &bnapi->napi);
1360                         if (bnxt_busy_polling(bnapi))
1361                                 netif_receive_skb(skb);
1362                         else
1363                                 napi_gro_receive(&bnapi->napi, skb);
1364                         rc = 1;
1365                 }
1366                 goto next_rx_no_prod;
1367         }
1368
1369         cons = rxcmp->rx_cmp_opaque;
1370         rx_buf = &rxr->rx_buf_ring[cons];
1371         data = rx_buf->data;
1372         if (unlikely(cons != rxr->rx_next_cons)) {
1373                 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1374
1375                 bnxt_sched_reset(bp, rxr);
1376                 return rc1;
1377         }
1378         prefetch(data);
1379
1380         agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1381                                 RX_CMP_AGG_BUFS_SHIFT;
1382
1383         if (agg_bufs) {
1384                 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1385                         return -EBUSY;
1386
1387                 cp_cons = NEXT_CMP(cp_cons);
1388                 *agg_event = true;
1389         }
1390
1391         rx_buf->data = NULL;
1392         if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1393                 bnxt_reuse_rx_data(rxr, cons, data);
1394                 if (agg_bufs)
1395                         bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1396
1397                 rc = -EIO;
1398                 goto next_rx;
1399         }
1400
1401         len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1402         dma_addr = dma_unmap_addr(rx_buf, mapping);
1403
1404         if (len <= bp->rx_copy_thresh) {
1405                 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1406                 bnxt_reuse_rx_data(rxr, cons, data);
1407                 if (!skb) {
1408                         rc = -ENOMEM;
1409                         goto next_rx;
1410                 }
1411         } else {
1412                 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1413                 if (!skb) {
1414                         rc = -ENOMEM;
1415                         goto next_rx;
1416                 }
1417         }
1418
1419         if (agg_bufs) {
1420                 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1421                 if (!skb) {
1422                         rc = -ENOMEM;
1423                         goto next_rx;
1424                 }
1425         }
1426
1427         if (RX_CMP_HASH_VALID(rxcmp)) {
1428                 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1429                 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1430
1431                 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1432                 if (hash_type != 1 && hash_type != 3)
1433                         type = PKT_HASH_TYPE_L3;
1434                 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1435         }
1436
1437         skb->protocol = eth_type_trans(skb, dev);
1438
1439         if ((rxcmp1->rx_cmp_flags2 &
1440              cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) &&
1441             (skb->dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
1442                 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1443                 u16 vtag = meta_data & RX_CMP_FLAGS2_METADATA_VID_MASK;
1444                 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1445
1446                 __vlan_hwaccel_put_tag(skb, htons(vlan_proto), vtag);
1447         }
1448
1449         skb_checksum_none_assert(skb);
1450         if (RX_CMP_L4_CS_OK(rxcmp1)) {
1451                 if (dev->features & NETIF_F_RXCSUM) {
1452                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1453                         skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1454                 }
1455         } else {
1456                 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1457                         if (dev->features & NETIF_F_RXCSUM)
1458                                 cpr->rx_l4_csum_errors++;
1459                 }
1460         }
1461
1462         skb_record_rx_queue(skb, bnapi->index);
1463         skb_mark_napi_id(skb, &bnapi->napi);
1464         if (bnxt_busy_polling(bnapi))
1465                 netif_receive_skb(skb);
1466         else
1467                 napi_gro_receive(&bnapi->napi, skb);
1468         rc = 1;
1469
1470 next_rx:
1471         rxr->rx_prod = NEXT_RX(prod);
1472         rxr->rx_next_cons = NEXT_RX(cons);
1473
1474 next_rx_no_prod:
1475         *raw_cons = tmp_raw_cons;
1476
1477         return rc;
1478 }
1479
1480 #define BNXT_GET_EVENT_PORT(data)       \
1481         ((data) &                       \
1482          ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1483
1484 static int bnxt_async_event_process(struct bnxt *bp,
1485                                     struct hwrm_async_event_cmpl *cmpl)
1486 {
1487         u16 event_id = le16_to_cpu(cmpl->event_id);
1488
1489         /* TODO CHIMP_FW: Define event id's for link change, error etc */
1490         switch (event_id) {
1491         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1492                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1493                 struct bnxt_link_info *link_info = &bp->link_info;
1494
1495                 if (BNXT_VF(bp))
1496                         goto async_event_process_exit;
1497                 if (data1 & 0x20000) {
1498                         u16 fw_speed = link_info->force_link_speed;
1499                         u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1500
1501                         netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1502                                     speed);
1503                 }
1504                 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event);
1505                 /* fall thru */
1506         }
1507         case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1508                 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1509                 break;
1510         case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1511                 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1512                 break;
1513         case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1514                 u32 data1 = le32_to_cpu(cmpl->event_data1);
1515                 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1516
1517                 if (BNXT_VF(bp))
1518                         break;
1519
1520                 if (bp->pf.port_id != port_id)
1521                         break;
1522
1523                 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1524                 break;
1525         }
1526         case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE:
1527                 if (BNXT_PF(bp))
1528                         goto async_event_process_exit;
1529                 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event);
1530                 break;
1531         default:
1532                 goto async_event_process_exit;
1533         }
1534         schedule_work(&bp->sp_task);
1535 async_event_process_exit:
1536         bnxt_ulp_async_events(bp, cmpl);
1537         return 0;
1538 }
1539
1540 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1541 {
1542         u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1543         struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1544         struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1545                                 (struct hwrm_fwd_req_cmpl *)txcmp;
1546
1547         switch (cmpl_type) {
1548         case CMPL_BASE_TYPE_HWRM_DONE:
1549                 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1550                 if (seq_id == bp->hwrm_intr_seq_id)
1551                         bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1552                 else
1553                         netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1554                 break;
1555
1556         case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1557                 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1558
1559                 if ((vf_id < bp->pf.first_vf_id) ||
1560                     (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1561                         netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1562                                    vf_id);
1563                         return -EINVAL;
1564                 }
1565
1566                 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1567                 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1568                 schedule_work(&bp->sp_task);
1569                 break;
1570
1571         case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1572                 bnxt_async_event_process(bp,
1573                                          (struct hwrm_async_event_cmpl *)txcmp);
1574
1575         default:
1576                 break;
1577         }
1578
1579         return 0;
1580 }
1581
1582 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1583 {
1584         struct bnxt_napi *bnapi = dev_instance;
1585         struct bnxt *bp = bnapi->bp;
1586         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1587         u32 cons = RING_CMP(cpr->cp_raw_cons);
1588
1589         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1590         napi_schedule(&bnapi->napi);
1591         return IRQ_HANDLED;
1592 }
1593
1594 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1595 {
1596         u32 raw_cons = cpr->cp_raw_cons;
1597         u16 cons = RING_CMP(raw_cons);
1598         struct tx_cmp *txcmp;
1599
1600         txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1601
1602         return TX_CMP_VALID(txcmp, raw_cons);
1603 }
1604
1605 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1606 {
1607         struct bnxt_napi *bnapi = dev_instance;
1608         struct bnxt *bp = bnapi->bp;
1609         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1610         u32 cons = RING_CMP(cpr->cp_raw_cons);
1611         u32 int_status;
1612
1613         prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1614
1615         if (!bnxt_has_work(bp, cpr)) {
1616                 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1617                 /* return if erroneous interrupt */
1618                 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1619                         return IRQ_NONE;
1620         }
1621
1622         /* disable ring IRQ */
1623         BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1624
1625         /* Return here if interrupt is shared and is disabled. */
1626         if (unlikely(atomic_read(&bp->intr_sem) != 0))
1627                 return IRQ_HANDLED;
1628
1629         napi_schedule(&bnapi->napi);
1630         return IRQ_HANDLED;
1631 }
1632
1633 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1634 {
1635         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1636         u32 raw_cons = cpr->cp_raw_cons;
1637         u32 cons;
1638         int tx_pkts = 0;
1639         int rx_pkts = 0;
1640         bool rx_event = false;
1641         bool agg_event = false;
1642         struct tx_cmp *txcmp;
1643
1644         while (1) {
1645                 int rc;
1646
1647                 cons = RING_CMP(raw_cons);
1648                 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1649
1650                 if (!TX_CMP_VALID(txcmp, raw_cons))
1651                         break;
1652
1653                 /* The valid test of the entry must be done first before
1654                  * reading any further.
1655                  */
1656                 dma_rmb();
1657                 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1658                         tx_pkts++;
1659                         /* return full budget so NAPI will complete. */
1660                         if (unlikely(tx_pkts > bp->tx_wake_thresh))
1661                                 rx_pkts = budget;
1662                 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1663                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1664                         if (likely(rc >= 0))
1665                                 rx_pkts += rc;
1666                         else if (rc == -EBUSY)  /* partial completion */
1667                                 break;
1668                         rx_event = true;
1669                 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1670                                      CMPL_BASE_TYPE_HWRM_DONE) ||
1671                                     (TX_CMP_TYPE(txcmp) ==
1672                                      CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1673                                     (TX_CMP_TYPE(txcmp) ==
1674                                      CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1675                         bnxt_hwrm_handler(bp, txcmp);
1676                 }
1677                 raw_cons = NEXT_RAW_CMP(raw_cons);
1678
1679                 if (rx_pkts == budget)
1680                         break;
1681         }
1682
1683         cpr->cp_raw_cons = raw_cons;
1684         /* ACK completion ring before freeing tx ring and producing new
1685          * buffers in rx/agg rings to prevent overflowing the completion
1686          * ring.
1687          */
1688         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1689
1690         if (tx_pkts)
1691                 bnxt_tx_int(bp, bnapi, tx_pkts);
1692
1693         if (rx_event) {
1694                 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1695
1696                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1697                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1698                 if (agg_event) {
1699                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1700                                rxr->rx_agg_doorbell);
1701                         writel(DB_KEY_RX | rxr->rx_agg_prod,
1702                                rxr->rx_agg_doorbell);
1703                 }
1704         }
1705         return rx_pkts;
1706 }
1707
1708 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget)
1709 {
1710         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1711         struct bnxt *bp = bnapi->bp;
1712         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1713         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1714         struct tx_cmp *txcmp;
1715         struct rx_cmp_ext *rxcmp1;
1716         u32 cp_cons, tmp_raw_cons;
1717         u32 raw_cons = cpr->cp_raw_cons;
1718         u32 rx_pkts = 0;
1719         bool agg_event = false;
1720
1721         while (1) {
1722                 int rc;
1723
1724                 cp_cons = RING_CMP(raw_cons);
1725                 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1726
1727                 if (!TX_CMP_VALID(txcmp, raw_cons))
1728                         break;
1729
1730                 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1731                         tmp_raw_cons = NEXT_RAW_CMP(raw_cons);
1732                         cp_cons = RING_CMP(tmp_raw_cons);
1733                         rxcmp1 = (struct rx_cmp_ext *)
1734                           &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1735
1736                         if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1737                                 break;
1738
1739                         /* force an error to recycle the buffer */
1740                         rxcmp1->rx_cmp_cfa_code_errors_v2 |=
1741                                 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR);
1742
1743                         rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1744                         if (likely(rc == -EIO))
1745                                 rx_pkts++;
1746                         else if (rc == -EBUSY)  /* partial completion */
1747                                 break;
1748                 } else if (unlikely(TX_CMP_TYPE(txcmp) ==
1749                                     CMPL_BASE_TYPE_HWRM_DONE)) {
1750                         bnxt_hwrm_handler(bp, txcmp);
1751                 } else {
1752                         netdev_err(bp->dev,
1753                                    "Invalid completion received on special ring\n");
1754                 }
1755                 raw_cons = NEXT_RAW_CMP(raw_cons);
1756
1757                 if (rx_pkts == budget)
1758                         break;
1759         }
1760
1761         cpr->cp_raw_cons = raw_cons;
1762         BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1763         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1764         writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1765
1766         if (agg_event) {
1767                 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1768                 writel(DB_KEY_RX | rxr->rx_agg_prod, rxr->rx_agg_doorbell);
1769         }
1770
1771         if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) {
1772                 napi_complete(napi);
1773                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1774         }
1775         return rx_pkts;
1776 }
1777
1778 static int bnxt_poll(struct napi_struct *napi, int budget)
1779 {
1780         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1781         struct bnxt *bp = bnapi->bp;
1782         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1783         int work_done = 0;
1784
1785         if (!bnxt_lock_napi(bnapi))
1786                 return budget;
1787
1788         while (1) {
1789                 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1790
1791                 if (work_done >= budget)
1792                         break;
1793
1794                 if (!bnxt_has_work(bp, cpr)) {
1795                         napi_complete(napi);
1796                         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1797                         break;
1798                 }
1799         }
1800         mmiowb();
1801         bnxt_unlock_napi(bnapi);
1802         return work_done;
1803 }
1804
1805 #ifdef CONFIG_NET_RX_BUSY_POLL
1806 static int bnxt_busy_poll(struct napi_struct *napi)
1807 {
1808         struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1809         struct bnxt *bp = bnapi->bp;
1810         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1811         int rx_work, budget = 4;
1812
1813         if (atomic_read(&bp->intr_sem) != 0)
1814                 return LL_FLUSH_FAILED;
1815
1816         if (!bp->link_info.link_up)
1817                 return LL_FLUSH_FAILED;
1818
1819         if (!bnxt_lock_poll(bnapi))
1820                 return LL_FLUSH_BUSY;
1821
1822         rx_work = bnxt_poll_work(bp, bnapi, budget);
1823
1824         BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1825
1826         bnxt_unlock_poll(bnapi);
1827         return rx_work;
1828 }
1829 #endif
1830
1831 static void bnxt_free_tx_skbs(struct bnxt *bp)
1832 {
1833         int i, max_idx;
1834         struct pci_dev *pdev = bp->pdev;
1835
1836         if (!bp->tx_ring)
1837                 return;
1838
1839         max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1840         for (i = 0; i < bp->tx_nr_rings; i++) {
1841                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1842                 int j;
1843
1844                 for (j = 0; j < max_idx;) {
1845                         struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1846                         struct sk_buff *skb = tx_buf->skb;
1847                         int k, last;
1848
1849                         if (!skb) {
1850                                 j++;
1851                                 continue;
1852                         }
1853
1854                         tx_buf->skb = NULL;
1855
1856                         if (tx_buf->is_push) {
1857                                 dev_kfree_skb(skb);
1858                                 j += 2;
1859                                 continue;
1860                         }
1861
1862                         dma_unmap_single(&pdev->dev,
1863                                          dma_unmap_addr(tx_buf, mapping),
1864                                          skb_headlen(skb),
1865                                          PCI_DMA_TODEVICE);
1866
1867                         last = tx_buf->nr_frags;
1868                         j += 2;
1869                         for (k = 0; k < last; k++, j++) {
1870                                 int ring_idx = j & bp->tx_ring_mask;
1871                                 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1872
1873                                 tx_buf = &txr->tx_buf_ring[ring_idx];
1874                                 dma_unmap_page(
1875                                         &pdev->dev,
1876                                         dma_unmap_addr(tx_buf, mapping),
1877                                         skb_frag_size(frag), PCI_DMA_TODEVICE);
1878                         }
1879                         dev_kfree_skb(skb);
1880                 }
1881                 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1882         }
1883 }
1884
1885 static void bnxt_free_rx_skbs(struct bnxt *bp)
1886 {
1887         int i, max_idx, max_agg_idx;
1888         struct pci_dev *pdev = bp->pdev;
1889
1890         if (!bp->rx_ring)
1891                 return;
1892
1893         max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1894         max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1895         for (i = 0; i < bp->rx_nr_rings; i++) {
1896                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1897                 int j;
1898
1899                 if (rxr->rx_tpa) {
1900                         for (j = 0; j < MAX_TPA; j++) {
1901                                 struct bnxt_tpa_info *tpa_info =
1902                                                         &rxr->rx_tpa[j];
1903                                 u8 *data = tpa_info->data;
1904
1905                                 if (!data)
1906                                         continue;
1907
1908                                 dma_unmap_single(
1909                                         &pdev->dev,
1910                                         dma_unmap_addr(tpa_info, mapping),
1911                                         bp->rx_buf_use_size,
1912                                         PCI_DMA_FROMDEVICE);
1913
1914                                 tpa_info->data = NULL;
1915
1916                                 kfree(data);
1917                         }
1918                 }
1919
1920                 for (j = 0; j < max_idx; j++) {
1921                         struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1922                         u8 *data = rx_buf->data;
1923
1924                         if (!data)
1925                                 continue;
1926
1927                         dma_unmap_single(&pdev->dev,
1928                                          dma_unmap_addr(rx_buf, mapping),
1929                                          bp->rx_buf_use_size,
1930                                          PCI_DMA_FROMDEVICE);
1931
1932                         rx_buf->data = NULL;
1933
1934                         kfree(data);
1935                 }
1936
1937                 for (j = 0; j < max_agg_idx; j++) {
1938                         struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1939                                 &rxr->rx_agg_ring[j];
1940                         struct page *page = rx_agg_buf->page;
1941
1942                         if (!page)
1943                                 continue;
1944
1945                         dma_unmap_page(&pdev->dev,
1946                                        dma_unmap_addr(rx_agg_buf, mapping),
1947                                        BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1948
1949                         rx_agg_buf->page = NULL;
1950                         __clear_bit(j, rxr->rx_agg_bmap);
1951
1952                         __free_page(page);
1953                 }
1954                 if (rxr->rx_page) {
1955                         __free_page(rxr->rx_page);
1956                         rxr->rx_page = NULL;
1957                 }
1958         }
1959 }
1960
1961 static void bnxt_free_skbs(struct bnxt *bp)
1962 {
1963         bnxt_free_tx_skbs(bp);
1964         bnxt_free_rx_skbs(bp);
1965 }
1966
1967 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1968 {
1969         struct pci_dev *pdev = bp->pdev;
1970         int i;
1971
1972         for (i = 0; i < ring->nr_pages; i++) {
1973                 if (!ring->pg_arr[i])
1974                         continue;
1975
1976                 dma_free_coherent(&pdev->dev, ring->page_size,
1977                                   ring->pg_arr[i], ring->dma_arr[i]);
1978
1979                 ring->pg_arr[i] = NULL;
1980         }
1981         if (ring->pg_tbl) {
1982                 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1983                                   ring->pg_tbl, ring->pg_tbl_map);
1984                 ring->pg_tbl = NULL;
1985         }
1986         if (ring->vmem_size && *ring->vmem) {
1987                 vfree(*ring->vmem);
1988                 *ring->vmem = NULL;
1989         }
1990 }
1991
1992 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1993 {
1994         int i;
1995         struct pci_dev *pdev = bp->pdev;
1996
1997         if (ring->nr_pages > 1) {
1998                 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1999                                                   ring->nr_pages * 8,
2000                                                   &ring->pg_tbl_map,
2001                                                   GFP_KERNEL);
2002                 if (!ring->pg_tbl)
2003                         return -ENOMEM;
2004         }
2005
2006         for (i = 0; i < ring->nr_pages; i++) {
2007                 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
2008                                                      ring->page_size,
2009                                                      &ring->dma_arr[i],
2010                                                      GFP_KERNEL);
2011                 if (!ring->pg_arr[i])
2012                         return -ENOMEM;
2013
2014                 if (ring->nr_pages > 1)
2015                         ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
2016         }
2017
2018         if (ring->vmem_size) {
2019                 *ring->vmem = vzalloc(ring->vmem_size);
2020                 if (!(*ring->vmem))
2021                         return -ENOMEM;
2022         }
2023         return 0;
2024 }
2025
2026 static void bnxt_free_rx_rings(struct bnxt *bp)
2027 {
2028         int i;
2029
2030         if (!bp->rx_ring)
2031                 return;
2032
2033         for (i = 0; i < bp->rx_nr_rings; i++) {
2034                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2035                 struct bnxt_ring_struct *ring;
2036
2037                 kfree(rxr->rx_tpa);
2038                 rxr->rx_tpa = NULL;
2039
2040                 kfree(rxr->rx_agg_bmap);
2041                 rxr->rx_agg_bmap = NULL;
2042
2043                 ring = &rxr->rx_ring_struct;
2044                 bnxt_free_ring(bp, ring);
2045
2046                 ring = &rxr->rx_agg_ring_struct;
2047                 bnxt_free_ring(bp, ring);
2048         }
2049 }
2050
2051 static int bnxt_alloc_rx_rings(struct bnxt *bp)
2052 {
2053         int i, rc, agg_rings = 0, tpa_rings = 0;
2054
2055         if (!bp->rx_ring)
2056                 return -ENOMEM;
2057
2058         if (bp->flags & BNXT_FLAG_AGG_RINGS)
2059                 agg_rings = 1;
2060
2061         if (bp->flags & BNXT_FLAG_TPA)
2062                 tpa_rings = 1;
2063
2064         for (i = 0; i < bp->rx_nr_rings; i++) {
2065                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
2066                 struct bnxt_ring_struct *ring;
2067
2068                 ring = &rxr->rx_ring_struct;
2069
2070                 rc = bnxt_alloc_ring(bp, ring);
2071                 if (rc)
2072                         return rc;
2073
2074                 if (agg_rings) {
2075                         u16 mem_size;
2076
2077                         ring = &rxr->rx_agg_ring_struct;
2078                         rc = bnxt_alloc_ring(bp, ring);
2079                         if (rc)
2080                                 return rc;
2081
2082                         rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
2083                         mem_size = rxr->rx_agg_bmap_size / 8;
2084                         rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
2085                         if (!rxr->rx_agg_bmap)
2086                                 return -ENOMEM;
2087
2088                         if (tpa_rings) {
2089                                 rxr->rx_tpa = kcalloc(MAX_TPA,
2090                                                 sizeof(struct bnxt_tpa_info),
2091                                                 GFP_KERNEL);
2092                                 if (!rxr->rx_tpa)
2093                                         return -ENOMEM;
2094                         }
2095                 }
2096         }
2097         return 0;
2098 }
2099
2100 static void bnxt_free_tx_rings(struct bnxt *bp)
2101 {
2102         int i;
2103         struct pci_dev *pdev = bp->pdev;
2104
2105         if (!bp->tx_ring)
2106                 return;
2107
2108         for (i = 0; i < bp->tx_nr_rings; i++) {
2109                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2110                 struct bnxt_ring_struct *ring;
2111
2112                 if (txr->tx_push) {
2113                         dma_free_coherent(&pdev->dev, bp->tx_push_size,
2114                                           txr->tx_push, txr->tx_push_mapping);
2115                         txr->tx_push = NULL;
2116                 }
2117
2118                 ring = &txr->tx_ring_struct;
2119
2120                 bnxt_free_ring(bp, ring);
2121         }
2122 }
2123
2124 static int bnxt_alloc_tx_rings(struct bnxt *bp)
2125 {
2126         int i, j, rc;
2127         struct pci_dev *pdev = bp->pdev;
2128
2129         bp->tx_push_size = 0;
2130         if (bp->tx_push_thresh) {
2131                 int push_size;
2132
2133                 push_size  = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
2134                                         bp->tx_push_thresh);
2135
2136                 if (push_size > 256) {
2137                         push_size = 0;
2138                         bp->tx_push_thresh = 0;
2139                 }
2140
2141                 bp->tx_push_size = push_size;
2142         }
2143
2144         for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
2145                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2146                 struct bnxt_ring_struct *ring;
2147
2148                 ring = &txr->tx_ring_struct;
2149
2150                 rc = bnxt_alloc_ring(bp, ring);
2151                 if (rc)
2152                         return rc;
2153
2154                 if (bp->tx_push_size) {
2155                         dma_addr_t mapping;
2156
2157                         /* One pre-allocated DMA buffer to backup
2158                          * TX push operation
2159                          */
2160                         txr->tx_push = dma_alloc_coherent(&pdev->dev,
2161                                                 bp->tx_push_size,
2162                                                 &txr->tx_push_mapping,
2163                                                 GFP_KERNEL);
2164
2165                         if (!txr->tx_push)
2166                                 return -ENOMEM;
2167
2168                         mapping = txr->tx_push_mapping +
2169                                 sizeof(struct tx_push_bd);
2170                         txr->data_mapping = cpu_to_le64(mapping);
2171
2172                         memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
2173                 }
2174                 ring->queue_id = bp->q_info[j].queue_id;
2175                 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
2176                         j++;
2177         }
2178         return 0;
2179 }
2180
2181 static void bnxt_free_cp_rings(struct bnxt *bp)
2182 {
2183         int i;
2184
2185         if (!bp->bnapi)
2186                 return;
2187
2188         for (i = 0; i < bp->cp_nr_rings; i++) {
2189                 struct bnxt_napi *bnapi = bp->bnapi[i];
2190                 struct bnxt_cp_ring_info *cpr;
2191                 struct bnxt_ring_struct *ring;
2192
2193                 if (!bnapi)
2194                         continue;
2195
2196                 cpr = &bnapi->cp_ring;
2197                 ring = &cpr->cp_ring_struct;
2198
2199                 bnxt_free_ring(bp, ring);
2200         }
2201 }
2202
2203 static int bnxt_alloc_cp_rings(struct bnxt *bp)
2204 {
2205         int i, rc;
2206
2207         for (i = 0; i < bp->cp_nr_rings; i++) {
2208                 struct bnxt_napi *bnapi = bp->bnapi[i];
2209                 struct bnxt_cp_ring_info *cpr;
2210                 struct bnxt_ring_struct *ring;
2211
2212                 if (!bnapi)
2213                         continue;
2214
2215                 cpr = &bnapi->cp_ring;
2216                 ring = &cpr->cp_ring_struct;
2217
2218                 rc = bnxt_alloc_ring(bp, ring);
2219                 if (rc)
2220                         return rc;
2221         }
2222         return 0;
2223 }
2224
2225 static void bnxt_init_ring_struct(struct bnxt *bp)
2226 {
2227         int i;
2228
2229         for (i = 0; i < bp->cp_nr_rings; i++) {
2230                 struct bnxt_napi *bnapi = bp->bnapi[i];
2231                 struct bnxt_cp_ring_info *cpr;
2232                 struct bnxt_rx_ring_info *rxr;
2233                 struct bnxt_tx_ring_info *txr;
2234                 struct bnxt_ring_struct *ring;
2235
2236                 if (!bnapi)
2237                         continue;
2238
2239                 cpr = &bnapi->cp_ring;
2240                 ring = &cpr->cp_ring_struct;
2241                 ring->nr_pages = bp->cp_nr_pages;
2242                 ring->page_size = HW_CMPD_RING_SIZE;
2243                 ring->pg_arr = (void **)cpr->cp_desc_ring;
2244                 ring->dma_arr = cpr->cp_desc_mapping;
2245                 ring->vmem_size = 0;
2246
2247                 rxr = bnapi->rx_ring;
2248                 if (!rxr)
2249                         goto skip_rx;
2250
2251                 ring = &rxr->rx_ring_struct;
2252                 ring->nr_pages = bp->rx_nr_pages;
2253                 ring->page_size = HW_RXBD_RING_SIZE;
2254                 ring->pg_arr = (void **)rxr->rx_desc_ring;
2255                 ring->dma_arr = rxr->rx_desc_mapping;
2256                 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2257                 ring->vmem = (void **)&rxr->rx_buf_ring;
2258
2259                 ring = &rxr->rx_agg_ring_struct;
2260                 ring->nr_pages = bp->rx_agg_nr_pages;
2261                 ring->page_size = HW_RXBD_RING_SIZE;
2262                 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2263                 ring->dma_arr = rxr->rx_agg_desc_mapping;
2264                 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2265                 ring->vmem = (void **)&rxr->rx_agg_ring;
2266
2267 skip_rx:
2268                 txr = bnapi->tx_ring;
2269                 if (!txr)
2270                         continue;
2271
2272                 ring = &txr->tx_ring_struct;
2273                 ring->nr_pages = bp->tx_nr_pages;
2274                 ring->page_size = HW_RXBD_RING_SIZE;
2275                 ring->pg_arr = (void **)txr->tx_desc_ring;
2276                 ring->dma_arr = txr->tx_desc_mapping;
2277                 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2278                 ring->vmem = (void **)&txr->tx_buf_ring;
2279         }
2280 }
2281
2282 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2283 {
2284         int i;
2285         u32 prod;
2286         struct rx_bd **rx_buf_ring;
2287
2288         rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2289         for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2290                 int j;
2291                 struct rx_bd *rxbd;
2292
2293                 rxbd = rx_buf_ring[i];
2294                 if (!rxbd)
2295                         continue;
2296
2297                 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2298                         rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2299                         rxbd->rx_bd_opaque = prod;
2300                 }
2301         }
2302 }
2303
2304 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2305 {
2306         struct net_device *dev = bp->dev;
2307         struct bnxt_rx_ring_info *rxr;
2308         struct bnxt_ring_struct *ring;
2309         u32 prod, type;
2310         int i;
2311
2312         type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2313                 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2314
2315         if (NET_IP_ALIGN == 2)
2316                 type |= RX_BD_FLAGS_SOP;
2317
2318         rxr = &bp->rx_ring[ring_nr];
2319         ring = &rxr->rx_ring_struct;
2320         bnxt_init_rxbd_pages(ring, type);
2321
2322         prod = rxr->rx_prod;
2323         for (i = 0; i < bp->rx_ring_size; i++) {
2324                 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2325                         netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2326                                     ring_nr, i, bp->rx_ring_size);
2327                         break;
2328                 }
2329                 prod = NEXT_RX(prod);
2330         }
2331         rxr->rx_prod = prod;
2332         ring->fw_ring_id = INVALID_HW_RING_ID;
2333
2334         ring = &rxr->rx_agg_ring_struct;
2335         ring->fw_ring_id = INVALID_HW_RING_ID;
2336
2337         if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2338                 return 0;
2339
2340         type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2341                 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2342
2343         bnxt_init_rxbd_pages(ring, type);
2344
2345         prod = rxr->rx_agg_prod;
2346         for (i = 0; i < bp->rx_agg_ring_size; i++) {
2347                 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2348                         netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2349                                     ring_nr, i, bp->rx_ring_size);
2350                         break;
2351                 }
2352                 prod = NEXT_RX_AGG(prod);
2353         }
2354         rxr->rx_agg_prod = prod;
2355
2356         if (bp->flags & BNXT_FLAG_TPA) {
2357                 if (rxr->rx_tpa) {
2358                         u8 *data;
2359                         dma_addr_t mapping;
2360
2361                         for (i = 0; i < MAX_TPA; i++) {
2362                                 data = __bnxt_alloc_rx_data(bp, &mapping,
2363                                                             GFP_KERNEL);
2364                                 if (!data)
2365                                         return -ENOMEM;
2366
2367                                 rxr->rx_tpa[i].data = data;
2368                                 rxr->rx_tpa[i].mapping = mapping;
2369                         }
2370                 } else {
2371                         netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2372                         return -ENOMEM;
2373                 }
2374         }
2375
2376         return 0;
2377 }
2378
2379 static int bnxt_init_rx_rings(struct bnxt *bp)
2380 {
2381         int i, rc = 0;
2382
2383         for (i = 0; i < bp->rx_nr_rings; i++) {
2384                 rc = bnxt_init_one_rx_ring(bp, i);
2385                 if (rc)
2386                         break;
2387         }
2388
2389         return rc;
2390 }
2391
2392 static int bnxt_init_tx_rings(struct bnxt *bp)
2393 {
2394         u16 i;
2395
2396         bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2397                                    MAX_SKB_FRAGS + 1);
2398
2399         for (i = 0; i < bp->tx_nr_rings; i++) {
2400                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2401                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2402
2403                 ring->fw_ring_id = INVALID_HW_RING_ID;
2404         }
2405
2406         return 0;
2407 }
2408
2409 static void bnxt_free_ring_grps(struct bnxt *bp)
2410 {
2411         kfree(bp->grp_info);
2412         bp->grp_info = NULL;
2413 }
2414
2415 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2416 {
2417         int i;
2418
2419         if (irq_re_init) {
2420                 bp->grp_info = kcalloc(bp->cp_nr_rings,
2421                                        sizeof(struct bnxt_ring_grp_info),
2422                                        GFP_KERNEL);
2423                 if (!bp->grp_info)
2424                         return -ENOMEM;
2425         }
2426         for (i = 0; i < bp->cp_nr_rings; i++) {
2427                 if (irq_re_init)
2428                         bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2429                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2430                 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2431                 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2432                 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2433         }
2434         return 0;
2435 }
2436
2437 static void bnxt_free_vnics(struct bnxt *bp)
2438 {
2439         kfree(bp->vnic_info);
2440         bp->vnic_info = NULL;
2441         bp->nr_vnics = 0;
2442 }
2443
2444 static int bnxt_alloc_vnics(struct bnxt *bp)
2445 {
2446         int num_vnics = 1;
2447
2448 #ifdef CONFIG_RFS_ACCEL
2449         if (bp->flags & BNXT_FLAG_RFS)
2450                 num_vnics += bp->rx_nr_rings;
2451 #endif
2452
2453         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
2454                 num_vnics++;
2455
2456         bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2457                                 GFP_KERNEL);
2458         if (!bp->vnic_info)
2459                 return -ENOMEM;
2460
2461         bp->nr_vnics = num_vnics;
2462         return 0;
2463 }
2464
2465 static void bnxt_init_vnics(struct bnxt *bp)
2466 {
2467         int i;
2468
2469         for (i = 0; i < bp->nr_vnics; i++) {
2470                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2471
2472                 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2473                 vnic->fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
2474                 vnic->fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
2475                 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2476
2477                 if (bp->vnic_info[i].rss_hash_key) {
2478                         if (i == 0)
2479                                 prandom_bytes(vnic->rss_hash_key,
2480                                               HW_HASH_KEY_SIZE);
2481                         else
2482                                 memcpy(vnic->rss_hash_key,
2483                                        bp->vnic_info[0].rss_hash_key,
2484                                        HW_HASH_KEY_SIZE);
2485                 }
2486         }
2487 }
2488
2489 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2490 {
2491         int pages;
2492
2493         pages = ring_size / desc_per_pg;
2494
2495         if (!pages)
2496                 return 1;
2497
2498         pages++;
2499
2500         while (pages & (pages - 1))
2501                 pages++;
2502
2503         return pages;
2504 }
2505
2506 static void bnxt_set_tpa_flags(struct bnxt *bp)
2507 {
2508         bp->flags &= ~BNXT_FLAG_TPA;
2509         if (bp->dev->features & NETIF_F_LRO)
2510                 bp->flags |= BNXT_FLAG_LRO;
2511         if (bp->dev->features & NETIF_F_GRO)
2512                 bp->flags |= BNXT_FLAG_GRO;
2513 }
2514
2515 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2516  * be set on entry.
2517  */
2518 void bnxt_set_ring_params(struct bnxt *bp)
2519 {
2520         u32 ring_size, rx_size, rx_space;
2521         u32 agg_factor = 0, agg_ring_size = 0;
2522
2523         /* 8 for CRC and VLAN */
2524         rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2525
2526         rx_space = rx_size + NET_SKB_PAD +
2527                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2528
2529         bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2530         ring_size = bp->rx_ring_size;
2531         bp->rx_agg_ring_size = 0;
2532         bp->rx_agg_nr_pages = 0;
2533
2534         if (bp->flags & BNXT_FLAG_TPA)
2535                 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2536
2537         bp->flags &= ~BNXT_FLAG_JUMBO;
2538         if (rx_space > PAGE_SIZE) {
2539                 u32 jumbo_factor;
2540
2541                 bp->flags |= BNXT_FLAG_JUMBO;
2542                 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2543                 if (jumbo_factor > agg_factor)
2544                         agg_factor = jumbo_factor;
2545         }
2546         agg_ring_size = ring_size * agg_factor;
2547
2548         if (agg_ring_size) {
2549                 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2550                                                         RX_DESC_CNT);
2551                 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2552                         u32 tmp = agg_ring_size;
2553
2554                         bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2555                         agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2556                         netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2557                                     tmp, agg_ring_size);
2558                 }
2559                 bp->rx_agg_ring_size = agg_ring_size;
2560                 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2561                 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2562                 rx_space = rx_size + NET_SKB_PAD +
2563                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2564         }
2565
2566         bp->rx_buf_use_size = rx_size;
2567         bp->rx_buf_size = rx_space;
2568
2569         bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2570         bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2571
2572         ring_size = bp->tx_ring_size;
2573         bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2574         bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2575
2576         ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2577         bp->cp_ring_size = ring_size;
2578
2579         bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2580         if (bp->cp_nr_pages > MAX_CP_PAGES) {
2581                 bp->cp_nr_pages = MAX_CP_PAGES;
2582                 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2583                 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2584                             ring_size, bp->cp_ring_size);
2585         }
2586         bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2587         bp->cp_ring_mask = bp->cp_bit - 1;
2588 }
2589
2590 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2591 {
2592         int i;
2593         struct bnxt_vnic_info *vnic;
2594         struct pci_dev *pdev = bp->pdev;
2595
2596         if (!bp->vnic_info)
2597                 return;
2598
2599         for (i = 0; i < bp->nr_vnics; i++) {
2600                 vnic = &bp->vnic_info[i];
2601
2602                 kfree(vnic->fw_grp_ids);
2603                 vnic->fw_grp_ids = NULL;
2604
2605                 kfree(vnic->uc_list);
2606                 vnic->uc_list = NULL;
2607
2608                 if (vnic->mc_list) {
2609                         dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2610                                           vnic->mc_list, vnic->mc_list_mapping);
2611                         vnic->mc_list = NULL;
2612                 }
2613
2614                 if (vnic->rss_table) {
2615                         dma_free_coherent(&pdev->dev, PAGE_SIZE,
2616                                           vnic->rss_table,
2617                                           vnic->rss_table_dma_addr);
2618                         vnic->rss_table = NULL;
2619                 }
2620
2621                 vnic->rss_hash_key = NULL;
2622                 vnic->flags = 0;
2623         }
2624 }
2625
2626 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2627 {
2628         int i, rc = 0, size;
2629         struct bnxt_vnic_info *vnic;
2630         struct pci_dev *pdev = bp->pdev;
2631         int max_rings;
2632
2633         for (i = 0; i < bp->nr_vnics; i++) {
2634                 vnic = &bp->vnic_info[i];
2635
2636                 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2637                         int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2638
2639                         if (mem_size > 0) {
2640                                 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2641                                 if (!vnic->uc_list) {
2642                                         rc = -ENOMEM;
2643                                         goto out;
2644                                 }
2645                         }
2646                 }
2647
2648                 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2649                         vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2650                         vnic->mc_list =
2651                                 dma_alloc_coherent(&pdev->dev,
2652                                                    vnic->mc_list_size,
2653                                                    &vnic->mc_list_mapping,
2654                                                    GFP_KERNEL);
2655                         if (!vnic->mc_list) {
2656                                 rc = -ENOMEM;
2657                                 goto out;
2658                         }
2659                 }
2660
2661                 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2662                         max_rings = bp->rx_nr_rings;
2663                 else
2664                         max_rings = 1;
2665
2666                 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2667                 if (!vnic->fw_grp_ids) {
2668                         rc = -ENOMEM;
2669                         goto out;
2670                 }
2671
2672                 /* Allocate rss table and hash key */
2673                 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2674                                                      &vnic->rss_table_dma_addr,
2675                                                      GFP_KERNEL);
2676                 if (!vnic->rss_table) {
2677                         rc = -ENOMEM;
2678                         goto out;
2679                 }
2680
2681                 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2682
2683                 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2684                 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2685         }
2686         return 0;
2687
2688 out:
2689         return rc;
2690 }
2691
2692 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2693 {
2694         struct pci_dev *pdev = bp->pdev;
2695
2696         dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2697                           bp->hwrm_cmd_resp_dma_addr);
2698
2699         bp->hwrm_cmd_resp_addr = NULL;
2700         if (bp->hwrm_dbg_resp_addr) {
2701                 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2702                                   bp->hwrm_dbg_resp_addr,
2703                                   bp->hwrm_dbg_resp_dma_addr);
2704
2705                 bp->hwrm_dbg_resp_addr = NULL;
2706         }
2707 }
2708
2709 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2710 {
2711         struct pci_dev *pdev = bp->pdev;
2712
2713         bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2714                                                    &bp->hwrm_cmd_resp_dma_addr,
2715                                                    GFP_KERNEL);
2716         if (!bp->hwrm_cmd_resp_addr)
2717                 return -ENOMEM;
2718         bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2719                                                     HWRM_DBG_REG_BUF_SIZE,
2720                                                     &bp->hwrm_dbg_resp_dma_addr,
2721                                                     GFP_KERNEL);
2722         if (!bp->hwrm_dbg_resp_addr)
2723                 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2724
2725         return 0;
2726 }
2727
2728 static void bnxt_free_stats(struct bnxt *bp)
2729 {
2730         u32 size, i;
2731         struct pci_dev *pdev = bp->pdev;
2732
2733         if (bp->hw_rx_port_stats) {
2734                 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2735                                   bp->hw_rx_port_stats,
2736                                   bp->hw_rx_port_stats_map);
2737                 bp->hw_rx_port_stats = NULL;
2738                 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2739         }
2740
2741         if (!bp->bnapi)
2742                 return;
2743
2744         size = sizeof(struct ctx_hw_stats);
2745
2746         for (i = 0; i < bp->cp_nr_rings; i++) {
2747                 struct bnxt_napi *bnapi = bp->bnapi[i];
2748                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2749
2750                 if (cpr->hw_stats) {
2751                         dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2752                                           cpr->hw_stats_map);
2753                         cpr->hw_stats = NULL;
2754                 }
2755         }
2756 }
2757
2758 static int bnxt_alloc_stats(struct bnxt *bp)
2759 {
2760         u32 size, i;
2761         struct pci_dev *pdev = bp->pdev;
2762
2763         size = sizeof(struct ctx_hw_stats);
2764
2765         for (i = 0; i < bp->cp_nr_rings; i++) {
2766                 struct bnxt_napi *bnapi = bp->bnapi[i];
2767                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2768
2769                 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2770                                                    &cpr->hw_stats_map,
2771                                                    GFP_KERNEL);
2772                 if (!cpr->hw_stats)
2773                         return -ENOMEM;
2774
2775                 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2776         }
2777
2778         if (BNXT_PF(bp) && bp->chip_num != CHIP_NUM_58700) {
2779                 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2780                                          sizeof(struct tx_port_stats) + 1024;
2781
2782                 bp->hw_rx_port_stats =
2783                         dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2784                                            &bp->hw_rx_port_stats_map,
2785                                            GFP_KERNEL);
2786                 if (!bp->hw_rx_port_stats)
2787                         return -ENOMEM;
2788
2789                 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2790                                        512;
2791                 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2792                                            sizeof(struct rx_port_stats) + 512;
2793                 bp->flags |= BNXT_FLAG_PORT_STATS;
2794         }
2795         return 0;
2796 }
2797
2798 static void bnxt_clear_ring_indices(struct bnxt *bp)
2799 {
2800         int i;
2801
2802         if (!bp->bnapi)
2803                 return;
2804
2805         for (i = 0; i < bp->cp_nr_rings; i++) {
2806                 struct bnxt_napi *bnapi = bp->bnapi[i];
2807                 struct bnxt_cp_ring_info *cpr;
2808                 struct bnxt_rx_ring_info *rxr;
2809                 struct bnxt_tx_ring_info *txr;
2810
2811                 if (!bnapi)
2812                         continue;
2813
2814                 cpr = &bnapi->cp_ring;
2815                 cpr->cp_raw_cons = 0;
2816
2817                 txr = bnapi->tx_ring;
2818                 if (txr) {
2819                         txr->tx_prod = 0;
2820                         txr->tx_cons = 0;
2821                 }
2822
2823                 rxr = bnapi->rx_ring;
2824                 if (rxr) {
2825                         rxr->rx_prod = 0;
2826                         rxr->rx_agg_prod = 0;
2827                         rxr->rx_sw_agg_prod = 0;
2828                         rxr->rx_next_cons = 0;
2829                 }
2830         }
2831 }
2832
2833 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2834 {
2835 #ifdef CONFIG_RFS_ACCEL
2836         int i;
2837
2838         /* Under rtnl_lock and all our NAPIs have been disabled.  It's
2839          * safe to delete the hash table.
2840          */
2841         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2842                 struct hlist_head *head;
2843                 struct hlist_node *tmp;
2844                 struct bnxt_ntuple_filter *fltr;
2845
2846                 head = &bp->ntp_fltr_hash_tbl[i];
2847                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2848                         hlist_del(&fltr->hash);
2849                         kfree(fltr);
2850                 }
2851         }
2852         if (irq_reinit) {
2853                 kfree(bp->ntp_fltr_bmap);
2854                 bp->ntp_fltr_bmap = NULL;
2855         }
2856         bp->ntp_fltr_count = 0;
2857 #endif
2858 }
2859
2860 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2861 {
2862 #ifdef CONFIG_RFS_ACCEL
2863         int i, rc = 0;
2864
2865         if (!(bp->flags & BNXT_FLAG_RFS))
2866                 return 0;
2867
2868         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2869                 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2870
2871         bp->ntp_fltr_count = 0;
2872         bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2873                                     GFP_KERNEL);
2874
2875         if (!bp->ntp_fltr_bmap)
2876                 rc = -ENOMEM;
2877
2878         return rc;
2879 #else
2880         return 0;
2881 #endif
2882 }
2883
2884 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2885 {
2886         bnxt_free_vnic_attributes(bp);
2887         bnxt_free_tx_rings(bp);
2888         bnxt_free_rx_rings(bp);
2889         bnxt_free_cp_rings(bp);
2890         bnxt_free_ntp_fltrs(bp, irq_re_init);
2891         if (irq_re_init) {
2892                 bnxt_free_stats(bp);
2893                 bnxt_free_ring_grps(bp);
2894                 bnxt_free_vnics(bp);
2895                 kfree(bp->tx_ring);
2896                 bp->tx_ring = NULL;
2897                 kfree(bp->rx_ring);
2898                 bp->rx_ring = NULL;
2899                 kfree(bp->bnapi);
2900                 bp->bnapi = NULL;
2901         } else {
2902                 bnxt_clear_ring_indices(bp);
2903         }
2904 }
2905
2906 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2907 {
2908         int i, j, rc, size, arr_size;
2909         void *bnapi;
2910
2911         if (irq_re_init) {
2912                 /* Allocate bnapi mem pointer array and mem block for
2913                  * all queues
2914                  */
2915                 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2916                                 bp->cp_nr_rings);
2917                 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2918                 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2919                 if (!bnapi)
2920                         return -ENOMEM;
2921
2922                 bp->bnapi = bnapi;
2923                 bnapi += arr_size;
2924                 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2925                         bp->bnapi[i] = bnapi;
2926                         bp->bnapi[i]->index = i;
2927                         bp->bnapi[i]->bp = bp;
2928                 }
2929
2930                 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2931                                       sizeof(struct bnxt_rx_ring_info),
2932                                       GFP_KERNEL);
2933                 if (!bp->rx_ring)
2934                         return -ENOMEM;
2935
2936                 for (i = 0; i < bp->rx_nr_rings; i++) {
2937                         bp->rx_ring[i].bnapi = bp->bnapi[i];
2938                         bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2939                 }
2940
2941                 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2942                                       sizeof(struct bnxt_tx_ring_info),
2943                                       GFP_KERNEL);
2944                 if (!bp->tx_ring)
2945                         return -ENOMEM;
2946
2947                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2948                         j = 0;
2949                 else
2950                         j = bp->rx_nr_rings;
2951
2952                 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2953                         bp->tx_ring[i].bnapi = bp->bnapi[j];
2954                         bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2955                 }
2956
2957                 rc = bnxt_alloc_stats(bp);
2958                 if (rc)
2959                         goto alloc_mem_err;
2960
2961                 rc = bnxt_alloc_ntp_fltrs(bp);
2962                 if (rc)
2963                         goto alloc_mem_err;
2964
2965                 rc = bnxt_alloc_vnics(bp);
2966                 if (rc)
2967                         goto alloc_mem_err;
2968         }
2969
2970         bnxt_init_ring_struct(bp);
2971
2972         rc = bnxt_alloc_rx_rings(bp);
2973         if (rc)
2974                 goto alloc_mem_err;
2975
2976         rc = bnxt_alloc_tx_rings(bp);
2977         if (rc)
2978                 goto alloc_mem_err;
2979
2980         rc = bnxt_alloc_cp_rings(bp);
2981         if (rc)
2982                 goto alloc_mem_err;
2983
2984         bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2985                                   BNXT_VNIC_UCAST_FLAG;
2986         rc = bnxt_alloc_vnic_attributes(bp);
2987         if (rc)
2988                 goto alloc_mem_err;
2989         return 0;
2990
2991 alloc_mem_err:
2992         bnxt_free_mem(bp, true);
2993         return rc;
2994 }
2995
2996 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2997                             u16 cmpl_ring, u16 target_id)
2998 {
2999         struct input *req = request;
3000
3001         req->req_type = cpu_to_le16(req_type);
3002         req->cmpl_ring = cpu_to_le16(cmpl_ring);
3003         req->target_id = cpu_to_le16(target_id);
3004         req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
3005 }
3006
3007 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
3008                                  int timeout, bool silent)
3009 {
3010         int i, intr_process, rc, tmo_count;
3011         struct input *req = msg;
3012         u32 *data = msg;
3013         __le32 *resp_len, *valid;
3014         u16 cp_ring_id, len = 0;
3015         struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
3016
3017         req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
3018         memset(resp, 0, PAGE_SIZE);
3019         cp_ring_id = le16_to_cpu(req->cmpl_ring);
3020         intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
3021
3022         /* Write request msg to hwrm channel */
3023         __iowrite32_copy(bp->bar0, data, msg_len / 4);
3024
3025         for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
3026                 writel(0, bp->bar0 + i);
3027
3028         /* currently supports only one outstanding message */
3029         if (intr_process)
3030                 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
3031
3032         /* Ring channel doorbell */
3033         writel(1, bp->bar0 + 0x100);
3034
3035         if (!timeout)
3036                 timeout = DFLT_HWRM_CMD_TIMEOUT;
3037
3038         i = 0;
3039         tmo_count = timeout * 40;
3040         if (intr_process) {
3041                 /* Wait until hwrm response cmpl interrupt is processed */
3042                 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
3043                        i++ < tmo_count) {
3044                         usleep_range(25, 40);
3045                 }
3046
3047                 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
3048                         netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
3049                                    le16_to_cpu(req->req_type));
3050                         return -1;
3051                 }
3052         } else {
3053                 /* Check if response len is updated */
3054                 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
3055                 for (i = 0; i < tmo_count; i++) {
3056                         len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
3057                               HWRM_RESP_LEN_SFT;
3058                         if (len)
3059                                 break;
3060                         usleep_range(25, 40);
3061                 }
3062
3063                 if (i >= tmo_count) {
3064                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
3065                                    timeout, le16_to_cpu(req->req_type),
3066                                    le16_to_cpu(req->seq_id), len);
3067                         return -1;
3068                 }
3069
3070                 /* Last word of resp contains valid bit */
3071                 valid = bp->hwrm_cmd_resp_addr + len - 4;
3072                 for (i = 0; i < 5; i++) {
3073                         if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
3074                                 break;
3075                         udelay(1);
3076                 }
3077
3078                 if (i >= 5) {
3079                         netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
3080                                    timeout, le16_to_cpu(req->req_type),
3081                                    le16_to_cpu(req->seq_id), len, *valid);
3082                         return -1;
3083                 }
3084         }
3085
3086         rc = le16_to_cpu(resp->error_code);
3087         if (rc && !silent)
3088                 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
3089                            le16_to_cpu(resp->req_type),
3090                            le16_to_cpu(resp->seq_id), rc);
3091         return rc;
3092 }
3093
3094 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3095 {
3096         return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
3097 }
3098
3099 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
3100 {
3101         int rc;
3102
3103         mutex_lock(&bp->hwrm_cmd_lock);
3104         rc = _hwrm_send_message(bp, msg, msg_len, timeout);
3105         mutex_unlock(&bp->hwrm_cmd_lock);
3106         return rc;
3107 }
3108
3109 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
3110                              int timeout)
3111 {
3112         int rc;
3113
3114         mutex_lock(&bp->hwrm_cmd_lock);
3115         rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
3116         mutex_unlock(&bp->hwrm_cmd_lock);
3117         return rc;
3118 }
3119
3120 int bnxt_hwrm_func_rgtr_async_events(struct bnxt *bp, unsigned long *bmap,
3121                                      int bmap_size)
3122 {
3123         struct hwrm_func_drv_rgtr_input req = {0};
3124         DECLARE_BITMAP(async_events_bmap, 256);
3125         u32 *events = (u32 *)async_events_bmap;
3126         int i;
3127
3128         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3129
3130         req.enables =
3131                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
3132
3133         memset(async_events_bmap, 0, sizeof(async_events_bmap));
3134         for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
3135                 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
3136
3137         if (bmap && bmap_size) {
3138                 for (i = 0; i < bmap_size; i++) {
3139                         if (test_bit(i, bmap))
3140                                 __set_bit(i, async_events_bmap);
3141                 }
3142         }
3143
3144         for (i = 0; i < 8; i++)
3145                 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
3146
3147         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3148 }
3149
3150 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
3151 {
3152         struct hwrm_func_drv_rgtr_input req = {0};
3153
3154         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
3155
3156         req.enables =
3157                 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
3158                             FUNC_DRV_RGTR_REQ_ENABLES_VER);
3159
3160         req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
3161         req.ver_maj = DRV_VER_MAJ;
3162         req.ver_min = DRV_VER_MIN;
3163         req.ver_upd = DRV_VER_UPD;
3164
3165         if (BNXT_PF(bp)) {
3166                 DECLARE_BITMAP(vf_req_snif_bmap, 256);
3167                 u32 *data = (u32 *)vf_req_snif_bmap;
3168                 int i;
3169
3170                 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
3171                 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
3172                         __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
3173
3174                 for (i = 0; i < 8; i++)
3175                         req.vf_req_fwd[i] = cpu_to_le32(data[i]);
3176
3177                 req.enables |=
3178                         cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
3179         }
3180
3181         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3182 }
3183
3184 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
3185 {
3186         struct hwrm_func_drv_unrgtr_input req = {0};
3187
3188         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
3189         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3190 }
3191
3192 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
3193 {
3194         u32 rc = 0;
3195         struct hwrm_tunnel_dst_port_free_input req = {0};
3196
3197         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
3198         req.tunnel_type = tunnel_type;
3199
3200         switch (tunnel_type) {
3201         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
3202                 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
3203                 break;
3204         case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
3205                 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
3206                 break;
3207         default:
3208                 break;
3209         }
3210
3211         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3212         if (rc)
3213                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
3214                            rc);
3215         return rc;
3216 }
3217
3218 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
3219                                            u8 tunnel_type)
3220 {
3221         u32 rc = 0;
3222         struct hwrm_tunnel_dst_port_alloc_input req = {0};
3223         struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3224
3225         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
3226
3227         req.tunnel_type = tunnel_type;
3228         req.tunnel_dst_port_val = port;
3229
3230         mutex_lock(&bp->hwrm_cmd_lock);
3231         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3232         if (rc) {
3233                 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
3234                            rc);
3235                 goto err_out;
3236         }
3237
3238         switch (tunnel_type) {
3239         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN:
3240                 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
3241                 break;
3242         case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE:
3243                 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
3244                 break;
3245         default:
3246                 break;
3247         }
3248
3249 err_out:
3250         mutex_unlock(&bp->hwrm_cmd_lock);
3251         return rc;
3252 }
3253
3254 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
3255 {
3256         struct hwrm_cfa_l2_set_rx_mask_input req = {0};
3257         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3258
3259         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
3260         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3261
3262         req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3263         req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3264         req.mask = cpu_to_le32(vnic->rx_mask);
3265         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3266 }
3267
3268 #ifdef CONFIG_RFS_ACCEL
3269 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3270                                             struct bnxt_ntuple_filter *fltr)
3271 {
3272         struct hwrm_cfa_ntuple_filter_free_input req = {0};
3273
3274         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3275         req.ntuple_filter_id = fltr->filter_id;
3276         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3277 }
3278
3279 #define BNXT_NTP_FLTR_FLAGS                                     \
3280         (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID |     \
3281          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE |        \
3282          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR |      \
3283          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE |      \
3284          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR |       \
3285          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK |  \
3286          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR |       \
3287          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK |  \
3288          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL |      \
3289          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT |         \
3290          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK |    \
3291          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT |         \
3292          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK |    \
3293          CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3294
3295 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3296                                              struct bnxt_ntuple_filter *fltr)
3297 {
3298         int rc = 0;
3299         struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3300         struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3301                 bp->hwrm_cmd_resp_addr;
3302         struct flow_keys *keys = &fltr->fkeys;
3303         struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3304
3305         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3306         req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[fltr->l2_fltr_idx];
3307
3308         req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3309
3310         req.ethertype = htons(ETH_P_IP);
3311         memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3312         req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3313         req.ip_protocol = keys->basic.ip_proto;
3314
3315         req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3316         req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3317         req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3318         req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3319
3320         req.src_port = keys->ports.src;
3321         req.src_port_mask = cpu_to_be16(0xffff);
3322         req.dst_port = keys->ports.dst;
3323         req.dst_port_mask = cpu_to_be16(0xffff);
3324
3325         req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3326         mutex_lock(&bp->hwrm_cmd_lock);
3327         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3328         if (!rc)
3329                 fltr->filter_id = resp->ntuple_filter_id;
3330         mutex_unlock(&bp->hwrm_cmd_lock);
3331         return rc;
3332 }
3333 #endif
3334
3335 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3336                                      u8 *mac_addr)
3337 {
3338         u32 rc = 0;
3339         struct hwrm_cfa_l2_filter_alloc_input req = {0};
3340         struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3341
3342         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3343         req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX);
3344         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
3345                 req.flags |=
3346                         cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3347         req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3348         req.enables =
3349                 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3350                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3351                             CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3352         memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3353         req.l2_addr_mask[0] = 0xff;
3354         req.l2_addr_mask[1] = 0xff;
3355         req.l2_addr_mask[2] = 0xff;
3356         req.l2_addr_mask[3] = 0xff;
3357         req.l2_addr_mask[4] = 0xff;
3358         req.l2_addr_mask[5] = 0xff;
3359
3360         mutex_lock(&bp->hwrm_cmd_lock);
3361         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3362         if (!rc)
3363                 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3364                                                         resp->l2_filter_id;
3365         mutex_unlock(&bp->hwrm_cmd_lock);
3366         return rc;
3367 }
3368
3369 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3370 {
3371         u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3372         int rc = 0;
3373
3374         /* Any associated ntuple filters will also be cleared by firmware. */
3375         mutex_lock(&bp->hwrm_cmd_lock);
3376         for (i = 0; i < num_of_vnics; i++) {
3377                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3378
3379                 for (j = 0; j < vnic->uc_filter_count; j++) {
3380                         struct hwrm_cfa_l2_filter_free_input req = {0};
3381
3382                         bnxt_hwrm_cmd_hdr_init(bp, &req,
3383                                                HWRM_CFA_L2_FILTER_FREE, -1, -1);
3384
3385                         req.l2_filter_id = vnic->fw_l2_filter_id[j];
3386
3387                         rc = _hwrm_send_message(bp, &req, sizeof(req),
3388                                                 HWRM_CMD_TIMEOUT);
3389                 }
3390                 vnic->uc_filter_count = 0;
3391         }
3392         mutex_unlock(&bp->hwrm_cmd_lock);
3393
3394         return rc;
3395 }
3396
3397 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3398 {
3399         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3400         struct hwrm_vnic_tpa_cfg_input req = {0};
3401
3402         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3403
3404         if (tpa_flags) {
3405                 u16 mss = bp->dev->mtu - 40;
3406                 u32 nsegs, n, segs = 0, flags;
3407
3408                 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3409                         VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3410                         VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3411                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3412                         VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3413                 if (tpa_flags & BNXT_FLAG_GRO)
3414                         flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3415
3416                 req.flags = cpu_to_le32(flags);
3417
3418                 req.enables =
3419                         cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3420                                     VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3421                                     VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3422
3423                 /* Number of segs are log2 units, and first packet is not
3424                  * included as part of this units.
3425                  */
3426                 if (mss <= BNXT_RX_PAGE_SIZE) {
3427                         n = BNXT_RX_PAGE_SIZE / mss;
3428                         nsegs = (MAX_SKB_FRAGS - 1) * n;
3429                 } else {
3430                         n = mss / BNXT_RX_PAGE_SIZE;
3431                         if (mss & (BNXT_RX_PAGE_SIZE - 1))
3432                                 n++;
3433                         nsegs = (MAX_SKB_FRAGS - n) / n;
3434                 }
3435
3436                 segs = ilog2(nsegs);
3437                 req.max_agg_segs = cpu_to_le16(segs);
3438                 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3439
3440                 req.min_agg_len = cpu_to_le32(512);
3441         }
3442         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3443
3444         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3445 }
3446
3447 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3448 {
3449         u32 i, j, max_rings;
3450         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3451         struct hwrm_vnic_rss_cfg_input req = {0};
3452
3453         if (vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID)
3454                 return 0;
3455
3456         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3457         if (set_rss) {
3458                 req.hash_type = cpu_to_le32(bp->rss_hash_cfg);
3459                 if (vnic->flags & BNXT_VNIC_RSS_FLAG) {
3460                         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
3461                                 max_rings = bp->rx_nr_rings - 1;
3462                         else
3463                                 max_rings = bp->rx_nr_rings;
3464                 } else {
3465                         max_rings = 1;
3466                 }
3467
3468                 /* Fill the RSS indirection table with ring group ids */
3469                 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3470                         if (j == max_rings)
3471                                 j = 0;
3472                         vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3473                 }
3474
3475                 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3476                 req.hash_key_tbl_addr =
3477                         cpu_to_le64(vnic->rss_hash_key_dma_addr);
3478         }
3479         req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3480         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3481 }
3482
3483 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3484 {
3485         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3486         struct hwrm_vnic_plcmodes_cfg_input req = {0};
3487
3488         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3489         req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3490                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3491                                 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3492         req.enables =
3493                 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3494                             VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3495         /* thresholds not implemented in firmware yet */
3496         req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3497         req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3498         req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3499         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3500 }
3501
3502 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id,
3503                                         u16 ctx_idx)
3504 {
3505         struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3506
3507         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3508         req.rss_cos_lb_ctx_id =
3509                 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx]);
3510
3511         hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3512         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID;
3513 }
3514
3515 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3516 {
3517         int i, j;
3518
3519         for (i = 0; i < bp->nr_vnics; i++) {
3520                 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3521
3522                 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) {
3523                         if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID)
3524                                 bnxt_hwrm_vnic_ctx_free_one(bp, i, j);
3525                 }
3526         }
3527         bp->rsscos_nr_ctxs = 0;
3528 }
3529
3530 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id, u16 ctx_idx)
3531 {
3532         int rc;
3533         struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3534         struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3535                                                 bp->hwrm_cmd_resp_addr;
3536
3537         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3538                                -1);
3539
3540         mutex_lock(&bp->hwrm_cmd_lock);
3541         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3542         if (!rc)
3543                 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[ctx_idx] =
3544                         le16_to_cpu(resp->rss_cos_lb_ctx_id);
3545         mutex_unlock(&bp->hwrm_cmd_lock);
3546
3547         return rc;
3548 }
3549
3550 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3551 {
3552         unsigned int ring = 0, grp_idx;
3553         struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3554         struct hwrm_vnic_cfg_input req = {0};
3555         u16 def_vlan = 0;
3556
3557         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3558
3559         req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP);
3560         /* Only RSS support for now TBD: COS & LB */
3561         if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) {
3562                 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]);
3563                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE |
3564                                            VNIC_CFG_REQ_ENABLES_MRU);
3565         } else {
3566                 req.rss_rule = cpu_to_le16(0xffff);
3567         }
3568
3569         if (BNXT_CHIP_TYPE_NITRO_A0(bp) &&
3570             (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) {
3571                 req.cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]);
3572                 req.enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE);
3573         } else {
3574                 req.cos_rule = cpu_to_le16(0xffff);
3575         }
3576
3577         if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3578                 ring = 0;
3579         else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3580                 ring = vnic_id - 1;
3581         else if ((vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp))
3582                 ring = bp->rx_nr_rings - 1;
3583
3584         grp_idx = bp->rx_ring[ring].bnapi->index;
3585         req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3586         req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3587
3588         req.lb_rule = cpu_to_le16(0xffff);
3589         req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3590                               VLAN_HLEN);
3591
3592 #ifdef CONFIG_BNXT_SRIOV
3593         if (BNXT_VF(bp))
3594                 def_vlan = bp->vf.vlan;
3595 #endif
3596         if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan)
3597                 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3598         if (!vnic_id && bnxt_ulp_registered(bp->edev, BNXT_ROCE_ULP))
3599                 req.flags |=
3600                         cpu_to_le32(VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE);
3601
3602         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3603 }
3604
3605 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3606 {
3607         u32 rc = 0;
3608
3609         if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3610                 struct hwrm_vnic_free_input req = {0};
3611
3612                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3613                 req.vnic_id =
3614                         cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3615
3616                 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3617                 if (rc)
3618                         return rc;
3619                 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3620         }
3621         return rc;
3622 }
3623
3624 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3625 {
3626         u16 i;
3627
3628         for (i = 0; i < bp->nr_vnics; i++)
3629                 bnxt_hwrm_vnic_free_one(bp, i);
3630 }
3631
3632 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3633                                 unsigned int start_rx_ring_idx,
3634                                 unsigned int nr_rings)
3635 {
3636         int rc = 0;
3637         unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3638         struct hwrm_vnic_alloc_input req = {0};
3639         struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3640
3641         /* map ring groups to this vnic */
3642         for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3643                 grp_idx = bp->rx_ring[i].bnapi->index;
3644                 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3645                         netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3646                                    j, nr_rings);
3647                         break;
3648                 }
3649                 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3650                                         bp->grp_info[grp_idx].fw_grp_id;
3651         }
3652
3653         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[0] = INVALID_HW_RING_ID;
3654         bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx[1] = INVALID_HW_RING_ID;
3655         if (vnic_id == 0)
3656                 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3657
3658         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3659
3660         mutex_lock(&bp->hwrm_cmd_lock);
3661         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3662         if (!rc)
3663                 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3664         mutex_unlock(&bp->hwrm_cmd_lock);
3665         return rc;
3666 }
3667
3668 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3669 {
3670         u16 i;
3671         u32 rc = 0;
3672
3673         mutex_lock(&bp->hwrm_cmd_lock);
3674         for (i = 0; i < bp->rx_nr_rings; i++) {
3675                 struct hwrm_ring_grp_alloc_input req = {0};
3676                 struct hwrm_ring_grp_alloc_output *resp =
3677                                         bp->hwrm_cmd_resp_addr;
3678                 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3679
3680                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3681
3682                 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3683                 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3684                 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3685                 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3686
3687                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3688                                         HWRM_CMD_TIMEOUT);
3689                 if (rc)
3690                         break;
3691
3692                 bp->grp_info[grp_idx].fw_grp_id =
3693                         le32_to_cpu(resp->ring_group_id);
3694         }
3695         mutex_unlock(&bp->hwrm_cmd_lock);
3696         return rc;
3697 }
3698
3699 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3700 {
3701         u16 i;
3702         u32 rc = 0;
3703         struct hwrm_ring_grp_free_input req = {0};
3704
3705         if (!bp->grp_info)
3706                 return 0;
3707
3708         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3709
3710         mutex_lock(&bp->hwrm_cmd_lock);
3711         for (i = 0; i < bp->cp_nr_rings; i++) {
3712                 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3713                         continue;
3714                 req.ring_group_id =
3715                         cpu_to_le32(bp->grp_info[i].fw_grp_id);
3716
3717                 rc = _hwrm_send_message(bp, &req, sizeof(req),
3718                                         HWRM_CMD_TIMEOUT);
3719                 if (rc)
3720                         break;
3721                 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3722         }
3723         mutex_unlock(&bp->hwrm_cmd_lock);
3724         return rc;
3725 }
3726
3727 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3728                                     struct bnxt_ring_struct *ring,
3729                                     u32 ring_type, u32 map_index,
3730                                     u32 stats_ctx_id)
3731 {
3732         int rc = 0, err = 0;
3733         struct hwrm_ring_alloc_input req = {0};
3734         struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3735         u16 ring_id;
3736
3737         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3738
3739         req.enables = 0;
3740         if (ring->nr_pages > 1) {
3741                 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3742                 /* Page size is in log2 units */
3743                 req.page_size = BNXT_PAGE_SHIFT;
3744                 req.page_tbl_depth = 1;
3745         } else {
3746                 req.page_tbl_addr =  cpu_to_le64(ring->dma_arr[0]);
3747         }
3748         req.fbo = 0;
3749         /* Association of ring index with doorbell index and MSIX number */
3750         req.logical_id = cpu_to_le16(map_index);
3751
3752         switch (ring_type) {
3753         case HWRM_RING_ALLOC_TX:
3754                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3755                 /* Association of transmit ring with completion ring */
3756                 req.cmpl_ring_id =
3757                         cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3758                 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3759                 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3760                 req.queue_id = cpu_to_le16(ring->queue_id);
3761                 break;
3762         case HWRM_RING_ALLOC_RX:
3763                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3764                 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3765                 break;
3766         case HWRM_RING_ALLOC_AGG:
3767                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3768                 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3769                 break;
3770         case HWRM_RING_ALLOC_CMPL:
3771                 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3772                 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3773                 if (bp->flags & BNXT_FLAG_USING_MSIX)
3774                         req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3775                 break;
3776         default:
3777                 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3778                            ring_type);
3779                 return -1;
3780         }
3781
3782         mutex_lock(&bp->hwrm_cmd_lock);
3783         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3784         err = le16_to_cpu(resp->error_code);
3785         ring_id = le16_to_cpu(resp->ring_id);
3786         mutex_unlock(&bp->hwrm_cmd_lock);
3787
3788         if (rc || err) {
3789                 switch (ring_type) {
3790                 case RING_FREE_REQ_RING_TYPE_CMPL:
3791                         netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3792                                    rc, err);
3793                         return -1;
3794
3795                 case RING_FREE_REQ_RING_TYPE_RX:
3796                         netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3797                                    rc, err);
3798                         return -1;
3799
3800                 case RING_FREE_REQ_RING_TYPE_TX:
3801                         netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3802                                    rc, err);
3803                         return -1;
3804
3805                 default:
3806                         netdev_err(bp->dev, "Invalid ring\n");
3807                         return -1;
3808                 }
3809         }
3810         ring->fw_ring_id = ring_id;
3811         return rc;
3812 }
3813
3814 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3815 {
3816         int i, rc = 0;
3817
3818         for (i = 0; i < bp->cp_nr_rings; i++) {
3819                 struct bnxt_napi *bnapi = bp->bnapi[i];
3820                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3821                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3822
3823                 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3824                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3825                                               INVALID_STATS_CTX_ID);
3826                 if (rc)
3827                         goto err_out;
3828                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3829                 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3830         }
3831
3832         for (i = 0; i < bp->tx_nr_rings; i++) {
3833                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3834                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3835                 u32 map_idx = txr->bnapi->index;
3836                 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3837
3838                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3839                                               map_idx, fw_stats_ctx);
3840                 if (rc)
3841                         goto err_out;
3842                 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3843         }
3844
3845         for (i = 0; i < bp->rx_nr_rings; i++) {
3846                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3847                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3848                 u32 map_idx = rxr->bnapi->index;
3849
3850                 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3851                                               map_idx, INVALID_STATS_CTX_ID);
3852                 if (rc)
3853                         goto err_out;
3854                 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3855                 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3856                 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3857         }
3858
3859         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3860                 for (i = 0; i < bp->rx_nr_rings; i++) {
3861                         struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3862                         struct bnxt_ring_struct *ring =
3863                                                 &rxr->rx_agg_ring_struct;
3864                         u32 grp_idx = rxr->bnapi->index;
3865                         u32 map_idx = grp_idx + bp->rx_nr_rings;
3866
3867                         rc = hwrm_ring_alloc_send_msg(bp, ring,
3868                                                       HWRM_RING_ALLOC_AGG,
3869                                                       map_idx,
3870                                                       INVALID_STATS_CTX_ID);
3871                         if (rc)
3872                                 goto err_out;
3873
3874                         rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3875                         writel(DB_KEY_RX | rxr->rx_agg_prod,
3876                                rxr->rx_agg_doorbell);
3877                         bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3878                 }
3879         }
3880 err_out:
3881         return rc;
3882 }
3883
3884 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3885                                    struct bnxt_ring_struct *ring,
3886                                    u32 ring_type, int cmpl_ring_id)
3887 {
3888         int rc;
3889         struct hwrm_ring_free_input req = {0};
3890         struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3891         u16 error_code;
3892
3893         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3894         req.ring_type = ring_type;
3895         req.ring_id = cpu_to_le16(ring->fw_ring_id);
3896
3897         mutex_lock(&bp->hwrm_cmd_lock);
3898         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3899         error_code = le16_to_cpu(resp->error_code);
3900         mutex_unlock(&bp->hwrm_cmd_lock);
3901
3902         if (rc || error_code) {
3903                 switch (ring_type) {
3904                 case RING_FREE_REQ_RING_TYPE_CMPL:
3905                         netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3906                                    rc);
3907                         return rc;
3908                 case RING_FREE_REQ_RING_TYPE_RX:
3909                         netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3910                                    rc);
3911                         return rc;
3912                 case RING_FREE_REQ_RING_TYPE_TX:
3913                         netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3914                                    rc);
3915                         return rc;
3916                 default:
3917                         netdev_err(bp->dev, "Invalid ring\n");
3918                         return -1;
3919                 }
3920         }
3921         return 0;
3922 }
3923
3924 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3925 {
3926         int i;
3927
3928         if (!bp->bnapi)
3929                 return;
3930
3931         for (i = 0; i < bp->tx_nr_rings; i++) {
3932                 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3933                 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3934                 u32 grp_idx = txr->bnapi->index;
3935                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3936
3937                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3938                         hwrm_ring_free_send_msg(bp, ring,
3939                                                 RING_FREE_REQ_RING_TYPE_TX,
3940                                                 close_path ? cmpl_ring_id :
3941                                                 INVALID_HW_RING_ID);
3942                         ring->fw_ring_id = INVALID_HW_RING_ID;
3943                 }
3944         }
3945
3946         for (i = 0; i < bp->rx_nr_rings; i++) {
3947                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3948                 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3949                 u32 grp_idx = rxr->bnapi->index;
3950                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3951
3952                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3953                         hwrm_ring_free_send_msg(bp, ring,
3954                                                 RING_FREE_REQ_RING_TYPE_RX,
3955                                                 close_path ? cmpl_ring_id :
3956                                                 INVALID_HW_RING_ID);
3957                         ring->fw_ring_id = INVALID_HW_RING_ID;
3958                         bp->grp_info[grp_idx].rx_fw_ring_id =
3959                                 INVALID_HW_RING_ID;
3960                 }
3961         }
3962
3963         for (i = 0; i < bp->rx_nr_rings; i++) {
3964                 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3965                 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3966                 u32 grp_idx = rxr->bnapi->index;
3967                 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3968
3969                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3970                         hwrm_ring_free_send_msg(bp, ring,
3971                                                 RING_FREE_REQ_RING_TYPE_RX,
3972                                                 close_path ? cmpl_ring_id :
3973                                                 INVALID_HW_RING_ID);
3974                         ring->fw_ring_id = INVALID_HW_RING_ID;
3975                         bp->grp_info[grp_idx].agg_fw_ring_id =
3976                                 INVALID_HW_RING_ID;
3977                 }
3978         }
3979
3980         for (i = 0; i < bp->cp_nr_rings; i++) {
3981                 struct bnxt_napi *bnapi = bp->bnapi[i];
3982                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3983                 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3984
3985                 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3986                         hwrm_ring_free_send_msg(bp, ring,
3987                                                 RING_FREE_REQ_RING_TYPE_CMPL,
3988                                                 INVALID_HW_RING_ID);
3989                         ring->fw_ring_id = INVALID_HW_RING_ID;
3990                         bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3991                 }
3992         }
3993 }
3994
3995 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3996         u32 buf_tmrs, u16 flags,
3997         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3998 {
3999         req->flags = cpu_to_le16(flags);
4000         req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
4001         req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
4002         req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
4003         req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
4004         /* Minimum time between 2 interrupts set to buf_tmr x 2 */
4005         req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
4006         req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
4007         req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
4008 }
4009
4010 int bnxt_hwrm_set_coal(struct bnxt *bp)
4011 {
4012         int i, rc = 0;
4013         struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
4014                                                            req_tx = {0}, *req;
4015         u16 max_buf, max_buf_irq;
4016         u16 buf_tmr, buf_tmr_irq;
4017         u32 flags;
4018
4019         bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
4020                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4021         bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
4022                                HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
4023
4024         /* Each rx completion (2 records) should be DMAed immediately.
4025          * DMA 1/4 of the completion buffers at a time.
4026          */
4027         max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
4028         /* max_buf must not be zero */
4029         max_buf = clamp_t(u16, max_buf, 1, 63);
4030         max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
4031         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
4032         /* buf timer set to 1/4 of interrupt timer */
4033         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4034         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
4035         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4036
4037         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4038
4039         /* RING_IDLE generates more IRQs for lower latency.  Enable it only
4040          * if coal_ticks is less than 25 us.
4041          */
4042         if (bp->rx_coal_ticks < 25)
4043                 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
4044
4045         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4046                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
4047
4048         /* max_buf must not be zero */
4049         max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
4050         max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
4051         buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
4052         /* buf timer set to 1/4 of interrupt timer */
4053         buf_tmr = max_t(u16, buf_tmr / 4, 1);
4054         buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
4055         buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
4056
4057         flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
4058         bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
4059                                   buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
4060
4061         mutex_lock(&bp->hwrm_cmd_lock);
4062         for (i = 0; i < bp->cp_nr_rings; i++) {
4063                 struct bnxt_napi *bnapi = bp->bnapi[i];
4064
4065                 req = &req_rx;
4066                 if (!bnapi->rx_ring)
4067                         req = &req_tx;
4068                 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
4069
4070                 rc = _hwrm_send_message(bp, req, sizeof(*req),
4071                                         HWRM_CMD_TIMEOUT);
4072                 if (rc)
4073                         break;
4074         }
4075         mutex_unlock(&bp->hwrm_cmd_lock);
4076         return rc;
4077 }
4078
4079 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
4080 {
4081         int rc = 0, i;
4082         struct hwrm_stat_ctx_free_input req = {0};
4083
4084         if (!bp->bnapi)
4085                 return 0;
4086
4087         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4088                 return 0;
4089
4090         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
4091
4092         mutex_lock(&bp->hwrm_cmd_lock);
4093         for (i = 0; i < bp->cp_nr_rings; i++) {
4094                 struct bnxt_napi *bnapi = bp->bnapi[i];
4095                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4096
4097                 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
4098                         req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
4099
4100                         rc = _hwrm_send_message(bp, &req, sizeof(req),
4101                                                 HWRM_CMD_TIMEOUT);
4102                         if (rc)
4103                                 break;
4104
4105                         cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
4106                 }
4107         }
4108         mutex_unlock(&bp->hwrm_cmd_lock);
4109         return rc;
4110 }
4111
4112 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
4113 {
4114         int rc = 0, i;
4115         struct hwrm_stat_ctx_alloc_input req = {0};
4116         struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
4117
4118         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4119                 return 0;
4120
4121         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
4122
4123         req.update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000);
4124
4125         mutex_lock(&bp->hwrm_cmd_lock);
4126         for (i = 0; i < bp->cp_nr_rings; i++) {
4127                 struct bnxt_napi *bnapi = bp->bnapi[i];
4128                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4129
4130                 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
4131
4132                 rc = _hwrm_send_message(bp, &req, sizeof(req),
4133                                         HWRM_CMD_TIMEOUT);
4134                 if (rc)
4135                         break;
4136
4137                 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
4138
4139                 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
4140         }
4141         mutex_unlock(&bp->hwrm_cmd_lock);
4142         return rc;
4143 }
4144
4145 static int bnxt_hwrm_func_qcfg(struct bnxt *bp)
4146 {
4147         struct hwrm_func_qcfg_input req = {0};
4148         struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4149         int rc;
4150
4151         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
4152         req.fid = cpu_to_le16(0xffff);
4153         mutex_lock(&bp->hwrm_cmd_lock);
4154         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4155         if (rc)
4156                 goto func_qcfg_exit;
4157
4158 #ifdef CONFIG_BNXT_SRIOV
4159         if (BNXT_VF(bp)) {
4160                 struct bnxt_vf_info *vf = &bp->vf;
4161
4162                 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK;
4163         }
4164 #endif
4165         switch (resp->port_partition_type) {
4166         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0:
4167         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5:
4168         case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0:
4169                 bp->port_partition_type = resp->port_partition_type;
4170                 break;
4171         }
4172
4173 func_qcfg_exit:
4174         mutex_unlock(&bp->hwrm_cmd_lock);
4175         return rc;
4176 }
4177
4178 static int bnxt_hwrm_func_qcaps(struct bnxt *bp)
4179 {
4180         int rc = 0;
4181         struct hwrm_func_qcaps_input req = {0};
4182         struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4183
4184         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
4185         req.fid = cpu_to_le16(0xffff);
4186
4187         mutex_lock(&bp->hwrm_cmd_lock);
4188         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4189         if (rc)
4190                 goto hwrm_func_qcaps_exit;
4191
4192         if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED))
4193                 bp->flags |= BNXT_FLAG_ROCEV1_CAP;
4194         if (resp->flags & cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED))
4195                 bp->flags |= BNXT_FLAG_ROCEV2_CAP;
4196
4197         bp->tx_push_thresh = 0;
4198         if (resp->flags &
4199             cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
4200                 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
4201
4202         if (BNXT_PF(bp)) {
4203                 struct bnxt_pf_info *pf = &bp->pf;
4204
4205                 pf->fw_fid = le16_to_cpu(resp->fid);
4206                 pf->port_id = le16_to_cpu(resp->port_id);
4207                 bp->dev->dev_port = pf->port_id;
4208                 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
4209                 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
4210                 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4211                 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4212                 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4213                 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4214                 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4215                 if (!pf->max_hw_ring_grps)
4216                         pf->max_hw_ring_grps = pf->max_tx_rings;
4217                 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4218                 pf->max_vnics = le16_to_cpu(resp->max_vnics);
4219                 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4220                 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
4221                 pf->max_vfs = le16_to_cpu(resp->max_vfs);
4222                 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
4223                 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
4224                 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
4225                 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
4226                 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
4227                 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
4228         } else {
4229 #ifdef CONFIG_BNXT_SRIOV
4230                 struct bnxt_vf_info *vf = &bp->vf;
4231
4232                 vf->fw_fid = le16_to_cpu(resp->fid);
4233
4234                 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
4235                 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
4236                 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
4237                 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
4238                 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
4239                 if (!vf->max_hw_ring_grps)
4240                         vf->max_hw_ring_grps = vf->max_tx_rings;
4241                 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
4242                 vf->max_vnics = le16_to_cpu(resp->max_vnics);
4243                 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
4244
4245                 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
4246                 mutex_unlock(&bp->hwrm_cmd_lock);
4247
4248                 if (is_valid_ether_addr(vf->mac_addr)) {
4249                         /* overwrite netdev dev_adr with admin VF MAC */
4250                         memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
4251                 } else {
4252                         random_ether_addr(bp->dev->dev_addr);
4253                         rc = bnxt_approve_mac(bp, bp->dev->dev_addr);
4254                 }
4255                 return rc;
4256 #endif
4257         }
4258
4259 hwrm_func_qcaps_exit:
4260         mutex_unlock(&bp->hwrm_cmd_lock);
4261         return rc;
4262 }
4263
4264 static int bnxt_hwrm_func_reset(struct bnxt *bp)
4265 {
4266         struct hwrm_func_reset_input req = {0};
4267
4268         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
4269         req.enables = 0;
4270
4271         return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
4272 }
4273
4274 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
4275 {
4276         int rc = 0;
4277         struct hwrm_queue_qportcfg_input req = {0};
4278         struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
4279         u8 i, *qptr;
4280
4281         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
4282
4283         mutex_lock(&bp->hwrm_cmd_lock);
4284         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4285         if (rc)
4286                 goto qportcfg_exit;
4287
4288         if (!resp->max_configurable_queues) {
4289                 rc = -EINVAL;
4290                 goto qportcfg_exit;
4291         }
4292         bp->max_tc = resp->max_configurable_queues;
4293         bp->max_lltc = resp->max_configurable_lossless_queues;
4294         if (bp->max_tc > BNXT_MAX_QUEUE)
4295                 bp->max_tc = BNXT_MAX_QUEUE;
4296
4297         if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG)
4298                 bp->max_tc = 1;
4299
4300         if (bp->max_lltc > bp->max_tc)
4301                 bp->max_lltc = bp->max_tc;
4302
4303         qptr = &resp->queue_id0;
4304         for (i = 0; i < bp->max_tc; i++) {
4305                 bp->q_info[i].queue_id = *qptr++;
4306                 bp->q_info[i].queue_profile = *qptr++;
4307         }
4308
4309 qportcfg_exit:
4310         mutex_unlock(&bp->hwrm_cmd_lock);
4311         return rc;
4312 }
4313
4314 static int bnxt_hwrm_ver_get(struct bnxt *bp)
4315 {
4316         int rc;
4317         struct hwrm_ver_get_input req = {0};
4318         struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
4319
4320         bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
4321         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
4322         req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
4323         req.hwrm_intf_min = HWRM_VERSION_MINOR;
4324         req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
4325         mutex_lock(&bp->hwrm_cmd_lock);
4326         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4327         if (rc)
4328                 goto hwrm_ver_get_exit;
4329
4330         memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
4331
4332         bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
4333                              resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
4334         if (resp->hwrm_intf_maj < 1) {
4335                 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
4336                             resp->hwrm_intf_maj, resp->hwrm_intf_min,
4337                             resp->hwrm_intf_upd);
4338                 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
4339         }
4340         snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
4341                  resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
4342                  resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
4343
4344         bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
4345         if (!bp->hwrm_cmd_timeout)
4346                 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
4347
4348         if (resp->hwrm_intf_maj >= 1)
4349                 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4350
4351         bp->chip_num = le16_to_cpu(resp->chip_num);
4352         if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev &&
4353             !resp->chip_metal)
4354                 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0;
4355
4356 hwrm_ver_get_exit:
4357         mutex_unlock(&bp->hwrm_cmd_lock);
4358         return rc;
4359 }
4360
4361 int bnxt_hwrm_fw_set_time(struct bnxt *bp)
4362 {
4363 #if IS_ENABLED(CONFIG_RTC_LIB)
4364         struct hwrm_fw_set_time_input req = {0};
4365         struct rtc_time tm;
4366         struct timeval tv;
4367
4368         if (bp->hwrm_spec_code < 0x10400)
4369                 return -EOPNOTSUPP;
4370
4371         do_gettimeofday(&tv);
4372         rtc_time_to_tm(tv.tv_sec, &tm);
4373         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FW_SET_TIME, -1, -1);
4374         req.year = cpu_to_le16(1900 + tm.tm_year);
4375         req.month = 1 + tm.tm_mon;
4376         req.day = tm.tm_mday;
4377         req.hour = tm.tm_hour;
4378         req.minute = tm.tm_min;
4379         req.second = tm.tm_sec;
4380         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4381 #else
4382         return -EOPNOTSUPP;
4383 #endif
4384 }
4385
4386 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4387 {
4388         int rc;
4389         struct bnxt_pf_info *pf = &bp->pf;
4390         struct hwrm_port_qstats_input req = {0};
4391
4392         if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4393                 return 0;
4394
4395         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4396         req.port_id = cpu_to_le16(pf->port_id);
4397         req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4398         req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4399         rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4400         return rc;
4401 }
4402
4403 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4404 {
4405         if (bp->vxlan_port_cnt) {
4406                 bnxt_hwrm_tunnel_dst_port_free(
4407                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4408         }
4409         bp->vxlan_port_cnt = 0;
4410         if (bp->nge_port_cnt) {
4411                 bnxt_hwrm_tunnel_dst_port_free(
4412                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4413         }
4414         bp->nge_port_cnt = 0;
4415 }
4416
4417 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4418 {
4419         int rc, i;
4420         u32 tpa_flags = 0;
4421
4422         if (set_tpa)
4423                 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4424         for (i = 0; i < bp->nr_vnics; i++) {
4425                 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4426                 if (rc) {
4427                         netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4428                                    rc, i);
4429                         return rc;
4430                 }
4431         }
4432         return 0;
4433 }
4434
4435 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4436 {
4437         int i;
4438
4439         for (i = 0; i < bp->nr_vnics; i++)
4440                 bnxt_hwrm_vnic_set_rss(bp, i, false);
4441 }
4442
4443 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4444                                     bool irq_re_init)
4445 {
4446         if (bp->vnic_info) {
4447                 bnxt_hwrm_clear_vnic_filter(bp);
4448                 /* clear all RSS setting before free vnic ctx */
4449                 bnxt_hwrm_clear_vnic_rss(bp);
4450                 bnxt_hwrm_vnic_ctx_free(bp);
4451                 /* before free the vnic, undo the vnic tpa settings */
4452                 if (bp->flags & BNXT_FLAG_TPA)
4453                         bnxt_set_tpa(bp, false);
4454                 bnxt_hwrm_vnic_free(bp);
4455         }
4456         bnxt_hwrm_ring_free(bp, close_path);
4457         bnxt_hwrm_ring_grp_free(bp);
4458         if (irq_re_init) {
4459                 bnxt_hwrm_stat_ctx_free(bp);
4460                 bnxt_hwrm_free_tunnel_ports(bp);
4461         }
4462 }
4463
4464 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4465 {
4466         int rc;
4467
4468         /* allocate context for vnic */
4469         rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 0);
4470         if (rc) {
4471                 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4472                            vnic_id, rc);
4473                 goto vnic_setup_err;
4474         }
4475         bp->rsscos_nr_ctxs++;
4476
4477         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4478                 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id, 1);
4479                 if (rc) {
4480                         netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n",
4481                                    vnic_id, rc);
4482                         goto vnic_setup_err;
4483                 }
4484                 bp->rsscos_nr_ctxs++;
4485         }
4486
4487         /* configure default vnic, ring grp */
4488         rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4489         if (rc) {
4490                 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4491                            vnic_id, rc);
4492                 goto vnic_setup_err;
4493         }
4494
4495         /* Enable RSS hashing on vnic */
4496         rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4497         if (rc) {
4498                 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4499                            vnic_id, rc);
4500                 goto vnic_setup_err;
4501         }
4502
4503         if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4504                 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4505                 if (rc) {
4506                         netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4507                                    vnic_id, rc);
4508                 }
4509         }
4510
4511 vnic_setup_err:
4512         return rc;
4513 }
4514
4515 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4516 {
4517 #ifdef CONFIG_RFS_ACCEL
4518         int i, rc = 0;
4519
4520         for (i = 0; i < bp->rx_nr_rings; i++) {
4521                 u16 vnic_id = i + 1;
4522                 u16 ring_id = i;
4523
4524                 if (vnic_id >= bp->nr_vnics)
4525                         break;
4526
4527                 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4528                 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4529                 if (rc) {
4530                         netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4531                                    vnic_id, rc);
4532                         break;
4533                 }
4534                 rc = bnxt_setup_vnic(bp, vnic_id);
4535                 if (rc)
4536                         break;
4537         }
4538         return rc;
4539 #else
4540         return 0;
4541 #endif
4542 }
4543
4544 /* Allow PF and VF with default VLAN to be in promiscuous mode */
4545 static bool bnxt_promisc_ok(struct bnxt *bp)
4546 {
4547 #ifdef CONFIG_BNXT_SRIOV
4548         if (BNXT_VF(bp) && !bp->vf.vlan)
4549                 return false;
4550 #endif
4551         return true;
4552 }
4553
4554 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp)
4555 {
4556         unsigned int rc = 0;
4557
4558         rc = bnxt_hwrm_vnic_alloc(bp, 1, bp->rx_nr_rings - 1, 1);
4559         if (rc) {
4560                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4561                            rc);
4562                 return rc;
4563         }
4564
4565         rc = bnxt_hwrm_vnic_cfg(bp, 1);
4566         if (rc) {
4567                 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n",
4568                            rc);
4569                 return rc;
4570         }
4571         return rc;
4572 }
4573
4574 static int bnxt_cfg_rx_mode(struct bnxt *);
4575 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4576
4577 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4578 {
4579         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4580         int rc = 0;
4581         unsigned int rx_nr_rings = bp->rx_nr_rings;
4582
4583         if (irq_re_init) {
4584                 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4585                 if (rc) {
4586                         netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4587                                    rc);
4588                         goto err_out;
4589                 }
4590         }
4591
4592         rc = bnxt_hwrm_ring_alloc(bp);
4593         if (rc) {
4594                 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4595                 goto err_out;
4596         }
4597
4598         rc = bnxt_hwrm_ring_grp_alloc(bp);
4599         if (rc) {
4600                 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4601                 goto err_out;
4602         }
4603
4604         if (BNXT_CHIP_TYPE_NITRO_A0(bp))
4605                 rx_nr_rings--;
4606
4607         /* default vnic 0 */
4608         rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, rx_nr_rings);
4609         if (rc) {
4610                 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4611                 goto err_out;
4612         }
4613
4614         rc = bnxt_setup_vnic(bp, 0);
4615         if (rc)
4616                 goto err_out;
4617
4618         if (bp->flags & BNXT_FLAG_RFS) {
4619                 rc = bnxt_alloc_rfs_vnics(bp);
4620                 if (rc)
4621                         goto err_out;
4622         }
4623
4624         if (bp->flags & BNXT_FLAG_TPA) {
4625                 rc = bnxt_set_tpa(bp, true);
4626                 if (rc)
4627                         goto err_out;
4628         }
4629
4630         if (BNXT_VF(bp))
4631                 bnxt_update_vf_mac(bp);
4632
4633         /* Filter for default vnic 0 */
4634         rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4635         if (rc) {
4636                 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4637                 goto err_out;
4638         }
4639         vnic->uc_filter_count = 1;
4640
4641         vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4642
4643         if ((bp->dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
4644                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4645
4646         if (bp->dev->flags & IFF_ALLMULTI) {
4647                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4648                 vnic->mc_list_count = 0;
4649         } else {
4650                 u32 mask = 0;
4651
4652                 bnxt_mc_list_updated(bp, &mask);
4653                 vnic->rx_mask |= mask;
4654         }
4655
4656         rc = bnxt_cfg_rx_mode(bp);
4657         if (rc)
4658                 goto err_out;
4659
4660         rc = bnxt_hwrm_set_coal(bp);
4661         if (rc)
4662                 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4663                                 rc);
4664
4665         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
4666                 rc = bnxt_setup_nitroa0_vnic(bp);
4667                 if (rc)
4668                         netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n",
4669                                    rc);
4670         }
4671
4672         if (BNXT_VF(bp)) {
4673                 bnxt_hwrm_func_qcfg(bp);
4674                 netdev_update_features(bp->dev);
4675         }
4676
4677         return 0;
4678
4679 err_out:
4680         bnxt_hwrm_resource_free(bp, 0, true);
4681
4682         return rc;
4683 }
4684
4685 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4686 {
4687         bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4688         return 0;
4689 }
4690
4691 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4692 {
4693         bnxt_init_rx_rings(bp);
4694         bnxt_init_tx_rings(bp);
4695         bnxt_init_ring_grps(bp, irq_re_init);
4696         bnxt_init_vnics(bp);
4697
4698         return bnxt_init_chip(bp, irq_re_init);
4699 }
4700
4701 static void bnxt_disable_int(struct bnxt *bp)
4702 {
4703         int i;
4704
4705         if (!bp->bnapi)
4706                 return;
4707
4708         for (i = 0; i < bp->cp_nr_rings; i++) {
4709                 struct bnxt_napi *bnapi = bp->bnapi[i];
4710                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4711
4712                 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4713         }
4714 }
4715
4716 static void bnxt_enable_int(struct bnxt *bp)
4717 {
4718         int i;
4719
4720         atomic_set(&bp->intr_sem, 0);
4721         for (i = 0; i < bp->cp_nr_rings; i++) {
4722                 struct bnxt_napi *bnapi = bp->bnapi[i];
4723                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4724
4725                 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4726         }
4727 }
4728
4729 static int bnxt_set_real_num_queues(struct bnxt *bp)
4730 {
4731         int rc;
4732         struct net_device *dev = bp->dev;
4733
4734         rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4735         if (rc)
4736                 return rc;
4737
4738         rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4739         if (rc)
4740                 return rc;
4741
4742 #ifdef CONFIG_RFS_ACCEL
4743         if (bp->flags & BNXT_FLAG_RFS)
4744                 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4745 #endif
4746
4747         return rc;
4748 }
4749
4750 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4751                            bool shared)
4752 {
4753         int _rx = *rx, _tx = *tx;
4754
4755         if (shared) {
4756                 *rx = min_t(int, _rx, max);
4757                 *tx = min_t(int, _tx, max);
4758         } else {
4759                 if (max < 2)
4760                         return -ENOMEM;
4761
4762                 while (_rx + _tx > max) {
4763                         if (_rx > _tx && _rx > 1)
4764                                 _rx--;
4765                         else if (_tx > 1)
4766                                 _tx--;
4767                 }
4768                 *rx = _rx;
4769                 *tx = _tx;
4770         }
4771         return 0;
4772 }
4773
4774 static void bnxt_setup_msix(struct bnxt *bp)
4775 {
4776         const int len = sizeof(bp->irq_tbl[0].name);
4777         struct net_device *dev = bp->dev;
4778         int tcs, i;
4779
4780         tcs = netdev_get_num_tc(dev);
4781         if (tcs > 1) {
4782                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4783                 if (bp->tx_nr_rings_per_tc == 0) {
4784                         netdev_reset_tc(dev);
4785                         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4786                 } else {
4787                         int i, off, count;
4788
4789                         bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4790                         for (i = 0; i < tcs; i++) {
4791                                 count = bp->tx_nr_rings_per_tc;
4792                                 off = i * count;
4793                                 netdev_set_tc_queue(dev, i, count, off);
4794                         }
4795                 }
4796         }
4797
4798         for (i = 0; i < bp->cp_nr_rings; i++) {
4799                 char *attr;
4800
4801                 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4802                         attr = "TxRx";
4803                 else if (i < bp->rx_nr_rings)
4804                         attr = "rx";
4805                 else
4806                         attr = "tx";
4807
4808                 snprintf(bp->irq_tbl[i].name, len, "%s-%s-%d", dev->name, attr,
4809                          i);
4810                 bp->irq_tbl[i].handler = bnxt_msix;
4811         }
4812 }
4813
4814 static void bnxt_setup_inta(struct bnxt *bp)
4815 {
4816         const int len = sizeof(bp->irq_tbl[0].name);
4817
4818         if (netdev_get_num_tc(bp->dev))
4819                 netdev_reset_tc(bp->dev);
4820
4821         snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx",
4822                  0);
4823         bp->irq_tbl[0].handler = bnxt_inta;
4824 }
4825
4826 static int bnxt_setup_int_mode(struct bnxt *bp)
4827 {
4828         int rc;
4829
4830         if (bp->flags & BNXT_FLAG_USING_MSIX)
4831                 bnxt_setup_msix(bp);
4832         else
4833                 bnxt_setup_inta(bp);
4834
4835         rc = bnxt_set_real_num_queues(bp);
4836         return rc;
4837 }
4838
4839 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp)
4840 {
4841 #if defined(CONFIG_BNXT_SRIOV)
4842         if (BNXT_VF(bp))
4843                 return bp->vf.max_stat_ctxs;
4844 #endif
4845         return bp->pf.max_stat_ctxs;
4846 }
4847
4848 void bnxt_set_max_func_stat_ctxs(struct bnxt *bp, unsigned int max)
4849 {
4850 #if defined(CONFIG_BNXT_SRIOV)
4851         if (BNXT_VF(bp))
4852                 bp->vf.max_stat_ctxs = max;
4853         else
4854 #endif
4855                 bp->pf.max_stat_ctxs = max;
4856 }
4857
4858 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp)
4859 {
4860 #if defined(CONFIG_BNXT_SRIOV)
4861         if (BNXT_VF(bp))
4862                 return bp->vf.max_cp_rings;
4863 #endif
4864         return bp->pf.max_cp_rings;
4865 }
4866
4867 void bnxt_set_max_func_cp_rings(struct bnxt *bp, unsigned int max)
4868 {
4869 #if defined(CONFIG_BNXT_SRIOV)
4870         if (BNXT_VF(bp))
4871                 bp->vf.max_cp_rings = max;
4872         else
4873 #endif
4874                 bp->pf.max_cp_rings = max;
4875 }
4876
4877 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp)
4878 {
4879 #if defined(CONFIG_BNXT_SRIOV)
4880         if (BNXT_VF(bp))
4881                 return bp->vf.max_irqs;
4882 #endif
4883         return bp->pf.max_irqs;
4884 }
4885
4886 void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs)
4887 {
4888 #if defined(CONFIG_BNXT_SRIOV)
4889         if (BNXT_VF(bp))
4890                 bp->vf.max_irqs = max_irqs;
4891         else
4892 #endif
4893                 bp->pf.max_irqs = max_irqs;
4894 }
4895
4896 static int bnxt_init_msix(struct bnxt *bp)
4897 {
4898         int i, total_vecs, rc = 0, min = 1;
4899         struct msix_entry *msix_ent;
4900
4901         total_vecs = bnxt_get_max_func_irqs(bp);
4902         msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4903         if (!msix_ent)
4904                 return -ENOMEM;
4905
4906         for (i = 0; i < total_vecs; i++) {
4907                 msix_ent[i].entry = i;
4908                 msix_ent[i].vector = 0;
4909         }
4910
4911         if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4912                 min = 2;
4913
4914         total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4915         if (total_vecs < 0) {
4916                 rc = -ENODEV;
4917                 goto msix_setup_exit;
4918         }
4919
4920         bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4921         if (bp->irq_tbl) {
4922                 for (i = 0; i < total_vecs; i++)
4923                         bp->irq_tbl[i].vector = msix_ent[i].vector;
4924
4925                 bp->total_irqs = total_vecs;
4926                 /* Trim rings based upon num of vectors allocated */
4927                 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4928                                      total_vecs, min == 1);
4929                 if (rc)
4930                         goto msix_setup_exit;
4931
4932                 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4933                 bp->cp_nr_rings = (min == 1) ?
4934                                   max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
4935                                   bp->tx_nr_rings + bp->rx_nr_rings;
4936
4937         } else {
4938                 rc = -ENOMEM;
4939                 goto msix_setup_exit;
4940         }
4941         bp->flags |= BNXT_FLAG_USING_MSIX;
4942         kfree(msix_ent);
4943         return 0;
4944
4945 msix_setup_exit:
4946         netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc);
4947         kfree(bp->irq_tbl);
4948         bp->irq_tbl = NULL;
4949         pci_disable_msix(bp->pdev);
4950         kfree(msix_ent);
4951         return rc;
4952 }
4953
4954 static int bnxt_init_inta(struct bnxt *bp)
4955 {
4956         bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4957         if (!bp->irq_tbl)
4958                 return -ENOMEM;
4959
4960         bp->total_irqs = 1;
4961         bp->rx_nr_rings = 1;
4962         bp->tx_nr_rings = 1;
4963         bp->cp_nr_rings = 1;
4964         bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4965         bp->flags |= BNXT_FLAG_SHARED_RINGS;
4966         bp->irq_tbl[0].vector = bp->pdev->irq;
4967         return 0;
4968 }
4969
4970 static int bnxt_init_int_mode(struct bnxt *bp)
4971 {
4972         int rc = 0;
4973
4974         if (bp->flags & BNXT_FLAG_MSIX_CAP)
4975                 rc = bnxt_init_msix(bp);
4976
4977         if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4978                 /* fallback to INTA */
4979                 rc = bnxt_init_inta(bp);
4980         }
4981         return rc;
4982 }
4983
4984 static void bnxt_clear_int_mode(struct bnxt *bp)
4985 {
4986         if (bp->flags & BNXT_FLAG_USING_MSIX)
4987                 pci_disable_msix(bp->pdev);
4988
4989         kfree(bp->irq_tbl);
4990         bp->irq_tbl = NULL;
4991         bp->flags &= ~BNXT_FLAG_USING_MSIX;
4992 }
4993
4994 static void bnxt_free_irq(struct bnxt *bp)
4995 {
4996         struct bnxt_irq *irq;
4997         int i;
4998
4999 #ifdef CONFIG_RFS_ACCEL
5000         free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
5001         bp->dev->rx_cpu_rmap = NULL;
5002 #endif
5003         if (!bp->irq_tbl)
5004                 return;
5005
5006         for (i = 0; i < bp->cp_nr_rings; i++) {
5007                 irq = &bp->irq_tbl[i];
5008                 if (irq->requested)
5009                         free_irq(irq->vector, bp->bnapi[i]);
5010                 irq->requested = 0;
5011         }
5012 }
5013
5014 static int bnxt_request_irq(struct bnxt *bp)
5015 {
5016         int i, j, rc = 0;
5017         unsigned long flags = 0;
5018 #ifdef CONFIG_RFS_ACCEL
5019         struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
5020 #endif
5021
5022         if (!(bp->flags & BNXT_FLAG_USING_MSIX))
5023                 flags = IRQF_SHARED;
5024
5025         for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
5026                 struct bnxt_irq *irq = &bp->irq_tbl[i];
5027 #ifdef CONFIG_RFS_ACCEL
5028                 if (rmap && bp->bnapi[i]->rx_ring) {
5029                         rc = irq_cpu_rmap_add(rmap, irq->vector);
5030                         if (rc)
5031                                 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
5032                                             j);
5033                         j++;
5034                 }
5035 #endif
5036                 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
5037                                  bp->bnapi[i]);
5038                 if (rc)
5039                         break;
5040
5041                 irq->requested = 1;
5042         }
5043         return rc;
5044 }
5045
5046 static void bnxt_del_napi(struct bnxt *bp)
5047 {
5048         int i;
5049
5050         if (!bp->bnapi)
5051                 return;
5052
5053         for (i = 0; i < bp->cp_nr_rings; i++) {
5054                 struct bnxt_napi *bnapi = bp->bnapi[i];
5055
5056                 napi_hash_del(&bnapi->napi);
5057                 netif_napi_del(&bnapi->napi);
5058         }
5059         /* We called napi_hash_del() before netif_napi_del(), we need
5060          * to respect an RCU grace period before freeing napi structures.
5061          */
5062         synchronize_net();
5063 }
5064
5065 static void bnxt_init_napi(struct bnxt *bp)
5066 {
5067         int i;
5068         unsigned int cp_nr_rings = bp->cp_nr_rings;
5069         struct bnxt_napi *bnapi;
5070
5071         if (bp->flags & BNXT_FLAG_USING_MSIX) {
5072                 if (BNXT_CHIP_TYPE_NITRO_A0(bp))
5073                         cp_nr_rings--;
5074                 for (i = 0; i < cp_nr_rings; i++) {
5075                         bnapi = bp->bnapi[i];
5076                         netif_napi_add(bp->dev, &bnapi->napi,
5077                                        bnxt_poll, 64);
5078                 }
5079                 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
5080                         bnapi = bp->bnapi[cp_nr_rings];
5081                         netif_napi_add(bp->dev, &bnapi->napi,
5082                                        bnxt_poll_nitroa0, 64);
5083                 }
5084         } else {
5085                 bnapi = bp->bnapi[0];
5086                 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
5087         }
5088 }
5089
5090 static void bnxt_disable_napi(struct bnxt *bp)
5091 {
5092         int i;
5093
5094         if (!bp->bnapi)
5095                 return;
5096
5097         for (i = 0; i < bp->cp_nr_rings; i++) {
5098                 napi_disable(&bp->bnapi[i]->napi);
5099                 bnxt_disable_poll(bp->bnapi[i]);
5100         }
5101 }
5102
5103 static void bnxt_enable_napi(struct bnxt *bp)
5104 {
5105         int i;
5106
5107         for (i = 0; i < bp->cp_nr_rings; i++) {
5108                 bp->bnapi[i]->in_reset = false;
5109                 bnxt_enable_poll(bp->bnapi[i]);
5110                 napi_enable(&bp->bnapi[i]->napi);
5111         }
5112 }
5113
5114 void bnxt_tx_disable(struct bnxt *bp)
5115 {
5116         int i;
5117         struct bnxt_tx_ring_info *txr;
5118         struct netdev_queue *txq;
5119
5120         if (bp->tx_ring) {
5121                 for (i = 0; i < bp->tx_nr_rings; i++) {
5122                         txr = &bp->tx_ring[i];
5123                         txq = netdev_get_tx_queue(bp->dev, i);
5124                         txr->dev_state = BNXT_DEV_STATE_CLOSING;
5125                 }
5126         }
5127         /* Stop all TX queues */
5128         netif_tx_disable(bp->dev);
5129         netif_carrier_off(bp->dev);
5130 }
5131
5132 void bnxt_tx_enable(struct bnxt *bp)
5133 {
5134         int i;
5135         struct bnxt_tx_ring_info *txr;
5136         struct netdev_queue *txq;
5137
5138         for (i = 0; i < bp->tx_nr_rings; i++) {
5139                 txr = &bp->tx_ring[i];
5140                 txq = netdev_get_tx_queue(bp->dev, i);
5141                 txr->dev_state = 0;
5142         }
5143         netif_tx_wake_all_queues(bp->dev);
5144         if (bp->link_info.link_up)
5145                 netif_carrier_on(bp->dev);
5146 }
5147
5148 static void bnxt_report_link(struct bnxt *bp)
5149 {
5150         if (bp->link_info.link_up) {
5151                 const char *duplex;
5152                 const char *flow_ctrl;
5153                 u16 speed;
5154
5155                 netif_carrier_on(bp->dev);
5156                 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
5157                         duplex = "full";
5158                 else
5159                         duplex = "half";
5160                 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
5161                         flow_ctrl = "ON - receive & transmit";
5162                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
5163                         flow_ctrl = "ON - transmit";
5164                 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
5165                         flow_ctrl = "ON - receive";
5166                 else
5167                         flow_ctrl = "none";
5168                 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
5169                 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
5170                             speed, duplex, flow_ctrl);
5171                 if (bp->flags & BNXT_FLAG_EEE_CAP)
5172                         netdev_info(bp->dev, "EEE is %s\n",
5173                                     bp->eee.eee_active ? "active" :
5174                                                          "not active");
5175         } else {
5176                 netif_carrier_off(bp->dev);
5177                 netdev_err(bp->dev, "NIC Link is Down\n");
5178         }
5179 }
5180
5181 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
5182 {
5183         int rc = 0;
5184         struct hwrm_port_phy_qcaps_input req = {0};
5185         struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
5186         struct bnxt_link_info *link_info = &bp->link_info;
5187
5188         if (bp->hwrm_spec_code < 0x10201)
5189                 return 0;
5190
5191         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
5192
5193         mutex_lock(&bp->hwrm_cmd_lock);
5194         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5195         if (rc)
5196                 goto hwrm_phy_qcaps_exit;
5197
5198         if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
5199                 struct ethtool_eee *eee = &bp->eee;
5200                 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
5201
5202                 bp->flags |= BNXT_FLAG_EEE_CAP;
5203                 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5204                 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
5205                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
5206                 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
5207                                  PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
5208         }
5209         link_info->support_auto_speeds =
5210                 le16_to_cpu(resp->supported_speeds_auto_mode);
5211
5212 hwrm_phy_qcaps_exit:
5213         mutex_unlock(&bp->hwrm_cmd_lock);
5214         return rc;
5215 }
5216
5217 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
5218 {
5219         int rc = 0;
5220         struct bnxt_link_info *link_info = &bp->link_info;
5221         struct hwrm_port_phy_qcfg_input req = {0};
5222         struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
5223         u8 link_up = link_info->link_up;
5224         u16 diff;
5225
5226         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
5227
5228         mutex_lock(&bp->hwrm_cmd_lock);
5229         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5230         if (rc) {
5231                 mutex_unlock(&bp->hwrm_cmd_lock);
5232                 return rc;
5233         }
5234
5235         memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
5236         link_info->phy_link_status = resp->link;
5237         link_info->duplex =  resp->duplex;
5238         link_info->pause = resp->pause;
5239         link_info->auto_mode = resp->auto_mode;
5240         link_info->auto_pause_setting = resp->auto_pause;
5241         link_info->lp_pause = resp->link_partner_adv_pause;
5242         link_info->force_pause_setting = resp->force_pause;
5243         link_info->duplex_setting = resp->duplex;
5244         if (link_info->phy_link_status == BNXT_LINK_LINK)
5245                 link_info->link_speed = le16_to_cpu(resp->link_speed);
5246         else
5247                 link_info->link_speed = 0;
5248         link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
5249         link_info->support_speeds = le16_to_cpu(resp->support_speeds);
5250         link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
5251         link_info->lp_auto_link_speeds =
5252                 le16_to_cpu(resp->link_partner_adv_speeds);
5253         link_info->preemphasis = le32_to_cpu(resp->preemphasis);
5254         link_info->phy_ver[0] = resp->phy_maj;
5255         link_info->phy_ver[1] = resp->phy_min;
5256         link_info->phy_ver[2] = resp->phy_bld;
5257         link_info->media_type = resp->media_type;
5258         link_info->phy_type = resp->phy_type;
5259         link_info->transceiver = resp->xcvr_pkg_type;
5260         link_info->phy_addr = resp->eee_config_phy_addr &
5261                               PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
5262         link_info->module_status = resp->module_status;
5263
5264         if (bp->flags & BNXT_FLAG_EEE_CAP) {
5265                 struct ethtool_eee *eee = &bp->eee;
5266                 u16 fw_speeds;
5267
5268                 eee->eee_active = 0;
5269                 if (resp->eee_config_phy_addr &
5270                     PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
5271                         eee->eee_active = 1;
5272                         fw_speeds = le16_to_cpu(
5273                                 resp->link_partner_adv_eee_link_speed_mask);
5274                         eee->lp_advertised =
5275                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5276                 }
5277
5278                 /* Pull initial EEE config */
5279                 if (!chng_link_state) {
5280                         if (resp->eee_config_phy_addr &
5281                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
5282                                 eee->eee_enabled = 1;
5283
5284                         fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
5285                         eee->advertised =
5286                                 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
5287
5288                         if (resp->eee_config_phy_addr &
5289                             PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
5290                                 __le32 tmr;
5291
5292                                 eee->tx_lpi_enabled = 1;
5293                                 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
5294                                 eee->tx_lpi_timer = le32_to_cpu(tmr) &
5295                                         PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
5296                         }
5297                 }
5298         }
5299         /* TODO: need to add more logic to report VF link */
5300         if (chng_link_state) {
5301                 if (link_info->phy_link_status == BNXT_LINK_LINK)
5302                         link_info->link_up = 1;
5303                 else
5304                         link_info->link_up = 0;
5305                 if (link_up != link_info->link_up)
5306                         bnxt_report_link(bp);
5307         } else {
5308                 /* alwasy link down if not require to update link state */
5309                 link_info->link_up = 0;
5310         }
5311         mutex_unlock(&bp->hwrm_cmd_lock);
5312
5313         diff = link_info->support_auto_speeds ^ link_info->advertising;
5314         if ((link_info->support_auto_speeds | diff) !=
5315             link_info->support_auto_speeds) {
5316                 /* An advertised speed is no longer supported, so we need to
5317                  * update the advertisement settings.  Caller holds RTNL
5318                  * so we can modify link settings.
5319                  */
5320                 link_info->advertising = link_info->support_auto_speeds;
5321                 if (link_info->autoneg & BNXT_AUTONEG_SPEED)
5322                         bnxt_hwrm_set_link_setting(bp, true, false);
5323         }
5324         return 0;
5325 }
5326
5327 static void bnxt_get_port_module_status(struct bnxt *bp)
5328 {
5329         struct bnxt_link_info *link_info = &bp->link_info;
5330         struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
5331         u8 module_status;
5332
5333         if (bnxt_update_link(bp, true))
5334                 return;
5335
5336         module_status = link_info->module_status;
5337         switch (module_status) {
5338         case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
5339         case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
5340         case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
5341                 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
5342                             bp->pf.port_id);
5343                 if (bp->hwrm_spec_code >= 0x10201) {
5344                         netdev_warn(bp->dev, "Module part number %s\n",
5345                                     resp->phy_vendor_partnumber);
5346                 }
5347                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
5348                         netdev_warn(bp->dev, "TX is disabled\n");
5349                 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
5350                         netdev_warn(bp->dev, "SFP+ module is shutdown\n");
5351         }
5352 }
5353
5354 static void
5355 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
5356 {
5357         if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
5358                 if (bp->hwrm_spec_code >= 0x10201)
5359                         req->auto_pause =
5360                                 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
5361                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5362                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
5363                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5364                         req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
5365                 req->enables |=
5366                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5367         } else {
5368                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
5369                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
5370                 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
5371                         req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
5372                 req->enables |=
5373                         cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
5374                 if (bp->hwrm_spec_code >= 0x10201) {
5375                         req->auto_pause = req->force_pause;
5376                         req->enables |= cpu_to_le32(
5377                                 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
5378                 }
5379         }
5380 }
5381
5382 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
5383                                       struct hwrm_port_phy_cfg_input *req)
5384 {
5385         u8 autoneg = bp->link_info.autoneg;
5386         u16 fw_link_speed = bp->link_info.req_link_speed;
5387         u32 advertising = bp->link_info.advertising;
5388
5389         if (autoneg & BNXT_AUTONEG_SPEED) {
5390                 req->auto_mode |=
5391                         PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
5392
5393                 req->enables |= cpu_to_le32(
5394                         PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
5395                 req->auto_link_speed_mask = cpu_to_le16(advertising);
5396
5397                 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
5398                 req->flags |=
5399                         cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
5400         } else {
5401                 req->force_link_speed = cpu_to_le16(fw_link_speed);
5402                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
5403         }
5404
5405         /* tell chimp that the setting takes effect immediately */
5406         req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
5407 }
5408
5409 int bnxt_hwrm_set_pause(struct bnxt *bp)
5410 {
5411         struct hwrm_port_phy_cfg_input req = {0};
5412         int rc;
5413
5414         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5415         bnxt_hwrm_set_pause_common(bp, &req);
5416
5417         if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
5418             bp->link_info.force_link_chng)
5419                 bnxt_hwrm_set_link_common(bp, &req);
5420
5421         mutex_lock(&bp->hwrm_cmd_lock);
5422         rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5423         if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
5424                 /* since changing of pause setting doesn't trigger any link
5425                  * change event, the driver needs to update the current pause
5426                  * result upon successfully return of the phy_cfg command
5427                  */
5428                 bp->link_info.pause =
5429                 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
5430                 bp->link_info.auto_pause_setting = 0;
5431                 if (!bp->link_info.force_link_chng)
5432                         bnxt_report_link(bp);
5433         }
5434         bp->link_info.force_link_chng = false;
5435         mutex_unlock(&bp->hwrm_cmd_lock);
5436         return rc;
5437 }
5438
5439 static void bnxt_hwrm_set_eee(struct bnxt *bp,
5440                               struct hwrm_port_phy_cfg_input *req)
5441 {
5442         struct ethtool_eee *eee = &bp->eee;
5443
5444         if (eee->eee_enabled) {
5445                 u16 eee_speeds;
5446                 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
5447
5448                 if (eee->tx_lpi_enabled)
5449                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
5450                 else
5451                         flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
5452
5453                 req->flags |= cpu_to_le32(flags);
5454                 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
5455                 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
5456                 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
5457         } else {
5458                 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
5459         }
5460 }
5461
5462 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
5463 {
5464         struct hwrm_port_phy_cfg_input req = {0};
5465
5466         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5467         if (set_pause)
5468                 bnxt_hwrm_set_pause_common(bp, &req);
5469
5470         bnxt_hwrm_set_link_common(bp, &req);
5471
5472         if (set_eee)
5473                 bnxt_hwrm_set_eee(bp, &req);
5474         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5475 }
5476
5477 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
5478 {
5479         struct hwrm_port_phy_cfg_input req = {0};
5480
5481         if (!BNXT_SINGLE_PF(bp))
5482                 return 0;
5483
5484         if (pci_num_vf(bp->pdev))
5485                 return 0;
5486
5487         bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
5488         req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN);
5489         return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
5490 }
5491
5492 static bool bnxt_eee_config_ok(struct bnxt *bp)
5493 {
5494         struct ethtool_eee *eee = &bp->eee;
5495         struct bnxt_link_info *link_info = &bp->link_info;
5496
5497         if (!(bp->flags & BNXT_FLAG_EEE_CAP))
5498                 return true;
5499
5500         if (eee->eee_enabled) {
5501                 u32 advertising =
5502                         _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
5503
5504                 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5505                         eee->eee_enabled = 0;
5506                         return false;
5507                 }
5508                 if (eee->advertised & ~advertising) {
5509                         eee->advertised = advertising & eee->supported;
5510                         return false;
5511                 }
5512         }
5513         return true;
5514 }
5515
5516 static int bnxt_update_phy_setting(struct bnxt *bp)
5517 {
5518         int rc;
5519         bool update_link = false;
5520         bool update_pause = false;
5521         bool update_eee = false;
5522         struct bnxt_link_info *link_info = &bp->link_info;
5523
5524         rc = bnxt_update_link(bp, true);
5525         if (rc) {
5526                 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
5527                            rc);
5528                 return rc;
5529         }
5530         if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5531             (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
5532             link_info->req_flow_ctrl)
5533                 update_pause = true;
5534         if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
5535             link_info->force_pause_setting != link_info->req_flow_ctrl)
5536                 update_pause = true;
5537         if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
5538                 if (BNXT_AUTO_MODE(link_info->auto_mode))
5539                         update_link = true;
5540                 if (link_info->req_link_speed != link_info->force_link_speed)
5541                         update_link = true;
5542                 if (link_info->req_duplex != link_info->duplex_setting)
5543                         update_link = true;
5544         } else {
5545                 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5546                         update_link = true;
5547                 if (link_info->advertising != link_info->auto_link_speeds)
5548                         update_link = true;
5549         }
5550
5551         /* The last close may have shutdown the link, so need to call
5552          * PHY_CFG to bring it back up.
5553          */
5554         if (!netif_carrier_ok(bp->dev))
5555                 update_link = true;
5556
5557         if (!bnxt_eee_config_ok(bp))
5558                 update_eee = true;
5559
5560         if (update_link)
5561                 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5562         else if (update_pause)
5563                 rc = bnxt_hwrm_set_pause(bp);
5564         if (rc) {
5565                 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5566                            rc);
5567                 return rc;
5568         }
5569
5570         return rc;
5571 }
5572
5573 /* Common routine to pre-map certain register block to different GRC window.
5574  * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5575  * in PF and 3 windows in VF that can be customized to map in different
5576  * register blocks.
5577  */
5578 static void bnxt_preset_reg_win(struct bnxt *bp)
5579 {
5580         if (BNXT_PF(bp)) {
5581                 /* CAG registers map to GRC window #4 */
5582                 writel(BNXT_CAG_REG_BASE,
5583                        bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5584         }
5585 }
5586
5587 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5588 {
5589         int rc = 0;
5590
5591         bnxt_preset_reg_win(bp);
5592         netif_carrier_off(bp->dev);
5593         if (irq_re_init) {
5594                 rc = bnxt_setup_int_mode(bp);
5595                 if (rc) {
5596                         netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5597                                    rc);
5598                         return rc;
5599                 }
5600         }
5601         if ((bp->flags & BNXT_FLAG_RFS) &&
5602             !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5603                 /* disable RFS if falling back to INTA */
5604                 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5605                 bp->flags &= ~BNXT_FLAG_RFS;
5606         }
5607
5608         rc = bnxt_alloc_mem(bp, irq_re_init);
5609         if (rc) {
5610                 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5611                 goto open_err_free_mem;
5612         }
5613
5614         if (irq_re_init) {
5615                 bnxt_init_napi(bp);
5616                 rc = bnxt_request_irq(bp);
5617                 if (rc) {
5618                         netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5619                         goto open_err;
5620                 }
5621         }
5622
5623         bnxt_enable_napi(bp);
5624
5625         rc = bnxt_init_nic(bp, irq_re_init);
5626         if (rc) {
5627                 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5628                 goto open_err;
5629         }
5630
5631         if (link_re_init) {
5632                 rc = bnxt_update_phy_setting(bp);
5633                 if (rc)
5634                         netdev_warn(bp->dev, "failed to update phy settings\n");
5635         }
5636
5637         if (irq_re_init)
5638                 udp_tunnel_get_rx_info(bp->dev);
5639
5640         set_bit(BNXT_STATE_OPEN, &bp->state);
5641         bnxt_enable_int(bp);
5642         /* Enable TX queues */
5643         bnxt_tx_enable(bp);
5644         mod_timer(&bp->timer, jiffies + bp->current_interval);
5645         /* Poll link status and check for SFP+ module status */
5646         bnxt_get_port_module_status(bp);
5647
5648         return 0;
5649
5650 open_err:
5651         bnxt_disable_napi(bp);
5652         bnxt_del_napi(bp);
5653
5654 open_err_free_mem:
5655         bnxt_free_skbs(bp);
5656         bnxt_free_irq(bp);
5657         bnxt_free_mem(bp, true);
5658         return rc;
5659 }
5660
5661 /* rtnl_lock held */
5662 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5663 {
5664         int rc = 0;
5665
5666         rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
5667         if (rc) {
5668                 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
5669                 dev_close(bp->dev);
5670         }
5671         return rc;
5672 }
5673
5674 static int bnxt_open(struct net_device *dev)
5675 {
5676         struct bnxt *bp = netdev_priv(dev);
5677
5678         return __bnxt_open_nic(bp, true, true);
5679 }
5680
5681 static void bnxt_disable_int_sync(struct bnxt *bp)
5682 {
5683         int i;
5684
5685         atomic_inc(&bp->intr_sem);
5686         if (!netif_running(bp->dev))
5687                 return;
5688
5689         bnxt_disable_int(bp);
5690         for (i = 0; i < bp->cp_nr_rings; i++)
5691                 synchronize_irq(bp->irq_tbl[i].vector);
5692 }
5693
5694 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5695 {
5696         int rc = 0;
5697
5698 #ifdef CONFIG_BNXT_SRIOV
5699         if (bp->sriov_cfg) {
5700                 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
5701                                                       !bp->sriov_cfg,
5702                                                       BNXT_SRIOV_CFG_WAIT_TMO);
5703                 if (rc)
5704                         netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
5705         }
5706 #endif
5707         /* Change device state to avoid TX queue wake up's */
5708         bnxt_tx_disable(bp);
5709
5710         clear_bit(BNXT_STATE_OPEN, &bp->state);
5711         smp_mb__after_atomic();
5712         while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
5713                 msleep(20);
5714
5715         /* Flush rings before disabling interrupts */
5716         bnxt_shutdown_nic(bp, irq_re_init);
5717
5718         /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
5719
5720         bnxt_disable_napi(bp);
5721         bnxt_disable_int_sync(bp);
5722         del_timer_sync(&bp->timer);
5723         bnxt_free_skbs(bp);
5724
5725         if (irq_re_init) {
5726                 bnxt_free_irq(bp);
5727                 bnxt_del_napi(bp);
5728         }
5729         bnxt_free_mem(bp, irq_re_init);
5730         return rc;
5731 }
5732
5733 static int bnxt_close(struct net_device *dev)
5734 {
5735         struct bnxt *bp = netdev_priv(dev);
5736
5737         bnxt_close_nic(bp, true, true);
5738         bnxt_hwrm_shutdown_link(bp);
5739         return 0;
5740 }
5741
5742 /* rtnl_lock held */
5743 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5744 {
5745         switch (cmd) {
5746         case SIOCGMIIPHY:
5747                 /* fallthru */
5748         case SIOCGMIIREG: {
5749                 if (!netif_running(dev))
5750                         return -EAGAIN;
5751
5752                 return 0;
5753         }
5754
5755         case SIOCSMIIREG:
5756                 if (!netif_running(dev))
5757                         return -EAGAIN;
5758
5759                 return 0;
5760
5761         default:
5762                 /* do nothing */
5763                 break;
5764         }
5765         return -EOPNOTSUPP;
5766 }
5767
5768 static struct rtnl_link_stats64 *
5769 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5770 {
5771         u32 i;
5772         struct bnxt *bp = netdev_priv(dev);
5773
5774         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5775
5776         if (!bp->bnapi)
5777                 return stats;
5778
5779         /* TODO check if we need to synchronize with bnxt_close path */
5780         for (i = 0; i < bp->cp_nr_rings; i++) {
5781                 struct bnxt_napi *bnapi = bp->bnapi[i];
5782                 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5783                 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5784
5785                 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5786                 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5787                 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5788
5789                 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5790                 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5791                 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5792
5793                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5794                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5795                 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5796
5797                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5798                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5799                 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5800
5801                 stats->rx_missed_errors +=
5802                         le64_to_cpu(hw_stats->rx_discard_pkts);
5803
5804                 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5805
5806                 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5807         }
5808
5809         if (bp->flags & BNXT_FLAG_PORT_STATS) {
5810                 struct rx_port_stats *rx = bp->hw_rx_port_stats;
5811                 struct tx_port_stats *tx = bp->hw_tx_port_stats;
5812
5813                 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5814                 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5815                 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5816                                           le64_to_cpu(rx->rx_ovrsz_frames) +
5817                                           le64_to_cpu(rx->rx_runt_frames);
5818                 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5819                                    le64_to_cpu(rx->rx_jbr_frames);
5820                 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5821                 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5822                 stats->tx_errors = le64_to_cpu(tx->tx_err);
5823         }
5824
5825         return stats;
5826 }
5827
5828 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5829 {
5830         struct net_device *dev = bp->dev;
5831         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5832         struct netdev_hw_addr *ha;
5833         u8 *haddr;
5834         int mc_count = 0;
5835         bool update = false;
5836         int off = 0;
5837
5838         netdev_for_each_mc_addr(ha, dev) {
5839                 if (mc_count >= BNXT_MAX_MC_ADDRS) {
5840                         *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5841                         vnic->mc_list_count = 0;
5842                         return false;
5843                 }
5844                 haddr = ha->addr;
5845                 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5846                         memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5847                         update = true;
5848                 }
5849                 off += ETH_ALEN;
5850                 mc_count++;
5851         }
5852         if (mc_count)
5853                 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5854
5855         if (mc_count != vnic->mc_list_count) {
5856                 vnic->mc_list_count = mc_count;
5857                 update = true;
5858         }
5859         return update;
5860 }
5861
5862 static bool bnxt_uc_list_updated(struct bnxt *bp)
5863 {
5864         struct net_device *dev = bp->dev;
5865         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5866         struct netdev_hw_addr *ha;
5867         int off = 0;
5868
5869         if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5870                 return true;
5871
5872         netdev_for_each_uc_addr(ha, dev) {
5873                 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5874                         return true;
5875
5876                 off += ETH_ALEN;
5877         }
5878         return false;
5879 }
5880
5881 static void bnxt_set_rx_mode(struct net_device *dev)
5882 {
5883         struct bnxt *bp = netdev_priv(dev);
5884         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5885         u32 mask = vnic->rx_mask;
5886         bool mc_update = false;
5887         bool uc_update;
5888
5889         if (!netif_running(dev))
5890                 return;
5891
5892         mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5893                   CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5894                   CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5895
5896         if ((dev->flags & IFF_PROMISC) && bnxt_promisc_ok(bp))
5897                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5898
5899         uc_update = bnxt_uc_list_updated(bp);
5900
5901         if (dev->flags & IFF_ALLMULTI) {
5902                 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5903                 vnic->mc_list_count = 0;
5904         } else {
5905                 mc_update = bnxt_mc_list_updated(bp, &mask);
5906         }
5907
5908         if (mask != vnic->rx_mask || uc_update || mc_update) {
5909                 vnic->rx_mask = mask;
5910
5911                 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5912                 schedule_work(&bp->sp_task);
5913         }
5914 }
5915
5916 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5917 {
5918         struct net_device *dev = bp->dev;
5919         struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5920         struct netdev_hw_addr *ha;
5921         int i, off = 0, rc;
5922         bool uc_update;
5923
5924         netif_addr_lock_bh(dev);
5925         uc_update = bnxt_uc_list_updated(bp);
5926         netif_addr_unlock_bh(dev);
5927
5928         if (!uc_update)
5929                 goto skip_uc;
5930
5931         mutex_lock(&bp->hwrm_cmd_lock);
5932         for (i = 1; i < vnic->uc_filter_count; i++) {
5933                 struct hwrm_cfa_l2_filter_free_input req = {0};
5934
5935                 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5936                                        -1);
5937
5938                 req.l2_filter_id = vnic->fw_l2_filter_id[i];
5939
5940                 rc = _hwrm_send_message(bp, &req, sizeof(req),
5941                                         HWRM_CMD_TIMEOUT);
5942         }
5943         mutex_unlock(&bp->hwrm_cmd_lock);
5944
5945         vnic->uc_filter_count = 1;
5946
5947         netif_addr_lock_bh(dev);
5948         if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5949                 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5950         } else {
5951                 netdev_for_each_uc_addr(ha, dev) {
5952                         memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5953                         off += ETH_ALEN;
5954                         vnic->uc_filter_count++;
5955                 }
5956         }
5957         netif_addr_unlock_bh(dev);
5958
5959         for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5960                 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5961                 if (rc) {
5962                         netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5963                                    rc);
5964                         vnic->uc_filter_count = i;
5965                         return rc;
5966                 }
5967         }
5968
5969 skip_uc:
5970         rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5971         if (rc)
5972                 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5973                            rc);
5974
5975         return rc;
5976 }
5977
5978 static bool bnxt_rfs_capable(struct bnxt *bp)
5979 {
5980 #ifdef CONFIG_RFS_ACCEL
5981         struct bnxt_pf_info *pf = &bp->pf;
5982         int vnics;
5983
5984         if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5985                 return false;
5986
5987         vnics = 1 + bp->rx_nr_rings;
5988         if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics) {
5989                 netdev_warn(bp->dev,
5990                             "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n",
5991                             min(pf->max_rsscos_ctxs - 1, pf->max_vnics - 1));
5992                 return false;
5993         }
5994
5995         return true;
5996 #else
5997         return false;
5998 #endif
5999 }
6000
6001 static netdev_features_t bnxt_fix_features(struct net_device *dev,
6002                                            netdev_features_t features)
6003 {
6004         struct bnxt *bp = netdev_priv(dev);
6005
6006         if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp))
6007                 features &= ~NETIF_F_NTUPLE;
6008
6009         /* Both CTAG and STAG VLAN accelaration on the RX side have to be
6010          * turned on or off together.
6011          */
6012         if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) !=
6013             (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) {
6014                 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX)
6015                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6016                                       NETIF_F_HW_VLAN_STAG_RX);
6017                 else
6018                         features |= NETIF_F_HW_VLAN_CTAG_RX |
6019                                     NETIF_F_HW_VLAN_STAG_RX;
6020         }
6021 #ifdef CONFIG_BNXT_SRIOV
6022         if (BNXT_VF(bp)) {
6023                 if (bp->vf.vlan) {
6024                         features &= ~(NETIF_F_HW_VLAN_CTAG_RX |
6025                                       NETIF_F_HW_VLAN_STAG_RX);
6026                 }
6027         }
6028 #endif
6029         return features;
6030 }
6031
6032 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
6033 {
6034         struct bnxt *bp = netdev_priv(dev);
6035         u32 flags = bp->flags;
6036         u32 changes;
6037         int rc = 0;
6038         bool re_init = false;
6039         bool update_tpa = false;
6040
6041         flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
6042         if ((features & NETIF_F_GRO) && !BNXT_CHIP_TYPE_NITRO_A0(bp))
6043                 flags |= BNXT_FLAG_GRO;
6044         if (features & NETIF_F_LRO)
6045                 flags |= BNXT_FLAG_LRO;
6046
6047         if (features & NETIF_F_HW_VLAN_CTAG_RX)
6048                 flags |= BNXT_FLAG_STRIP_VLAN;
6049
6050         if (features & NETIF_F_NTUPLE)
6051                 flags |= BNXT_FLAG_RFS;
6052
6053         changes = flags ^ bp->flags;
6054         if (changes & BNXT_FLAG_TPA) {
6055                 update_tpa = true;
6056                 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
6057                     (flags & BNXT_FLAG_TPA) == 0)
6058                         re_init = true;
6059         }
6060
6061         if (changes & ~BNXT_FLAG_TPA)
6062                 re_init = true;
6063
6064         if (flags != bp->flags) {
6065                 u32 old_flags = bp->flags;
6066
6067                 bp->flags = flags;
6068
6069                 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6070                         if (update_tpa)
6071                                 bnxt_set_ring_params(bp);
6072                         return rc;
6073                 }
6074
6075                 if (re_init) {
6076                         bnxt_close_nic(bp, false, false);
6077                         if (update_tpa)
6078                                 bnxt_set_ring_params(bp);
6079
6080                         return bnxt_open_nic(bp, false, false);
6081                 }
6082                 if (update_tpa) {
6083                         rc = bnxt_set_tpa(bp,
6084                                           (flags & BNXT_FLAG_TPA) ?
6085                                           true : false);
6086                         if (rc)
6087                                 bp->flags = old_flags;
6088                 }
6089         }
6090         return rc;
6091 }
6092
6093 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
6094 {
6095         struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
6096         int i = bnapi->index;
6097
6098         if (!txr)
6099                 return;
6100
6101         netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
6102                     i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
6103                     txr->tx_cons);
6104 }
6105
6106 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
6107 {
6108         struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
6109         int i = bnapi->index;
6110
6111         if (!rxr)
6112                 return;
6113
6114         netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
6115                     i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
6116                     rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
6117                     rxr->rx_sw_agg_prod);
6118 }
6119
6120 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
6121 {
6122         struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
6123         int i = bnapi->index;
6124
6125         netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
6126                     i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
6127 }
6128
6129 static void bnxt_dbg_dump_states(struct bnxt *bp)
6130 {
6131         int i;
6132         struct bnxt_napi *bnapi;
6133
6134         for (i = 0; i < bp->cp_nr_rings; i++) {
6135                 bnapi = bp->bnapi[i];
6136                 if (netif_msg_drv(bp)) {
6137                         bnxt_dump_tx_sw_state(bnapi);
6138                         bnxt_dump_rx_sw_state(bnapi);
6139                         bnxt_dump_cp_sw_state(bnapi);
6140                 }
6141         }
6142 }
6143
6144 static void bnxt_reset_task(struct bnxt *bp, bool silent)
6145 {
6146         if (!silent)
6147                 bnxt_dbg_dump_states(bp);
6148         if (netif_running(bp->dev)) {
6149                 bnxt_close_nic(bp, false, false);
6150                 bnxt_open_nic(bp, false, false);
6151         }
6152 }
6153
6154 static void bnxt_tx_timeout(struct net_device *dev)
6155 {
6156         struct bnxt *bp = netdev_priv(dev);
6157
6158         netdev_err(bp->dev,  "TX timeout detected, starting reset task!\n");
6159         set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
6160         schedule_work(&bp->sp_task);
6161 }
6162
6163 #ifdef CONFIG_NET_POLL_CONTROLLER
6164 static void bnxt_poll_controller(struct net_device *dev)
6165 {
6166         struct bnxt *bp = netdev_priv(dev);
6167         int i;
6168
6169         for (i = 0; i < bp->cp_nr_rings; i++) {
6170                 struct bnxt_irq *irq = &bp->irq_tbl[i];
6171
6172                 disable_irq(irq->vector);
6173                 irq->handler(irq->vector, bp->bnapi[i]);
6174                 enable_irq(irq->vector);
6175         }
6176 }
6177 #endif
6178
6179 static void bnxt_timer(unsigned long data)
6180 {
6181         struct bnxt *bp = (struct bnxt *)data;
6182         struct net_device *dev = bp->dev;
6183
6184         if (!netif_running(dev))
6185                 return;
6186
6187         if (atomic_read(&bp->intr_sem) != 0)
6188                 goto bnxt_restart_timer;
6189
6190         if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
6191                 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
6192                 schedule_work(&bp->sp_task);
6193         }
6194 bnxt_restart_timer:
6195         mod_timer(&bp->timer, jiffies + bp->current_interval);
6196 }
6197
6198 static void bnxt_rtnl_lock_sp(struct bnxt *bp)
6199 {
6200         /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK
6201          * set.  If the device is being closed, bnxt_close() may be holding
6202          * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear.  So we
6203          * must clear BNXT_STATE_IN_SP_TASK before holding rtnl().
6204          */
6205         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6206         rtnl_lock();
6207 }
6208
6209 static void bnxt_rtnl_unlock_sp(struct bnxt *bp)
6210 {
6211         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6212         rtnl_unlock();
6213 }
6214
6215 /* Only called from bnxt_sp_task() */
6216 static void bnxt_reset(struct bnxt *bp, bool silent)
6217 {
6218         bnxt_rtnl_lock_sp(bp);
6219         if (test_bit(BNXT_STATE_OPEN, &bp->state))
6220                 bnxt_reset_task(bp, silent);
6221         bnxt_rtnl_unlock_sp(bp);
6222 }
6223
6224 static void bnxt_cfg_ntp_filters(struct bnxt *);
6225
6226 static void bnxt_sp_task(struct work_struct *work)
6227 {
6228         struct bnxt *bp = container_of(work, struct bnxt, sp_task);
6229
6230         set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6231         smp_mb__after_atomic();
6232         if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
6233                 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6234                 return;
6235         }
6236
6237         if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
6238                 bnxt_cfg_rx_mode(bp);
6239
6240         if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
6241                 bnxt_cfg_ntp_filters(bp);
6242         if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
6243                 bnxt_hwrm_exec_fwd_req(bp);
6244         if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6245                 bnxt_hwrm_tunnel_dst_port_alloc(
6246                         bp, bp->vxlan_port,
6247                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6248         }
6249         if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6250                 bnxt_hwrm_tunnel_dst_port_free(
6251                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
6252         }
6253         if (test_and_clear_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event)) {
6254                 bnxt_hwrm_tunnel_dst_port_alloc(
6255                         bp, bp->nge_port,
6256                         TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6257         }
6258         if (test_and_clear_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event)) {
6259                 bnxt_hwrm_tunnel_dst_port_free(
6260                         bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
6261         }
6262         if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
6263                 bnxt_hwrm_port_qstats(bp);
6264
6265         /* These functions below will clear BNXT_STATE_IN_SP_TASK.  They
6266          * must be the last functions to be called before exiting.
6267          */
6268         if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
6269                 int rc = 0;
6270
6271                 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT,
6272                                        &bp->sp_event))
6273                         bnxt_hwrm_phy_qcaps(bp);
6274
6275                 bnxt_rtnl_lock_sp(bp);
6276                 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6277                         rc = bnxt_update_link(bp, true);
6278                 bnxt_rtnl_unlock_sp(bp);
6279                 if (rc)
6280                         netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
6281                                    rc);
6282         }
6283         if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) {
6284                 bnxt_rtnl_lock_sp(bp);
6285                 if (test_bit(BNXT_STATE_OPEN, &bp->state))
6286                         bnxt_get_port_module_status(bp);
6287                 bnxt_rtnl_unlock_sp(bp);
6288         }
6289         if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event))
6290                 bnxt_reset(bp, false);
6291
6292         if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event))
6293                 bnxt_reset(bp, true);
6294
6295         smp_mb__before_atomic();
6296         clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
6297 }
6298
6299 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
6300 {
6301         int rc;
6302         struct bnxt *bp = netdev_priv(dev);
6303
6304         SET_NETDEV_DEV(dev, &pdev->dev);
6305
6306         /* enable device (incl. PCI PM wakeup), and bus-mastering */
6307         rc = pci_enable_device(pdev);
6308         if (rc) {
6309                 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
6310                 goto init_err;
6311         }
6312
6313         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
6314                 dev_err(&pdev->dev,
6315                         "Cannot find PCI device base address, aborting\n");
6316                 rc = -ENODEV;
6317                 goto init_err_disable;
6318         }
6319
6320         rc = pci_request_regions(pdev, DRV_MODULE_NAME);
6321         if (rc) {
6322                 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
6323                 goto init_err_disable;
6324         }
6325
6326         if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
6327             dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
6328                 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
6329                 goto init_err_disable;
6330         }
6331
6332         pci_set_master(pdev);
6333
6334         bp->dev = dev;
6335         bp->pdev = pdev;
6336
6337         bp->bar0 = pci_ioremap_bar(pdev, 0);
6338         if (!bp->bar0) {
6339                 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
6340                 rc = -ENOMEM;
6341                 goto init_err_release;
6342         }
6343
6344         bp->bar1 = pci_ioremap_bar(pdev, 2);
6345         if (!bp->bar1) {
6346                 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
6347                 rc = -ENOMEM;
6348                 goto init_err_release;
6349         }
6350
6351         bp->bar2 = pci_ioremap_bar(pdev, 4);
6352         if (!bp->bar2) {
6353                 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
6354                 rc = -ENOMEM;
6355                 goto init_err_release;
6356         }
6357
6358         pci_enable_pcie_error_reporting(pdev);
6359
6360         INIT_WORK(&bp->sp_task, bnxt_sp_task);
6361
6362         spin_lock_init(&bp->ntp_fltr_lock);
6363
6364         bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
6365         bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
6366
6367         /* tick values in micro seconds */
6368         bp->rx_coal_ticks = 12;
6369         bp->rx_coal_bufs = 30;
6370         bp->rx_coal_ticks_irq = 1;
6371         bp->rx_coal_bufs_irq = 2;
6372
6373         bp->tx_coal_ticks = 25;
6374         bp->tx_coal_bufs = 30;
6375         bp->tx_coal_ticks_irq = 2;
6376         bp->tx_coal_bufs_irq = 2;
6377
6378         bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS;
6379
6380         init_timer(&bp->timer);
6381         bp->timer.data = (unsigned long)bp;
6382         bp->timer.function = bnxt_timer;
6383         bp->current_interval = BNXT_TIMER_INTERVAL;
6384
6385         clear_bit(BNXT_STATE_OPEN, &bp->state);
6386
6387         return 0;
6388
6389 init_err_release:
6390         if (bp->bar2) {
6391                 pci_iounmap(pdev, bp->bar2);
6392                 bp->bar2 = NULL;
6393         }
6394
6395         if (bp->bar1) {
6396                 pci_iounmap(pdev, bp->bar1);
6397                 bp->bar1 = NULL;
6398         }
6399
6400         if (bp->bar0) {
6401                 pci_iounmap(pdev, bp->bar0);
6402                 bp->bar0 = NULL;
6403         }
6404
6405         pci_release_regions(pdev);
6406
6407 init_err_disable:
6408         pci_disable_device(pdev);
6409
6410 init_err:
6411         return rc;
6412 }
6413
6414 /* rtnl_lock held */
6415 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
6416 {
6417         struct sockaddr *addr = p;
6418         struct bnxt *bp = netdev_priv(dev);
6419         int rc = 0;
6420
6421         if (!is_valid_ether_addr(addr->sa_data))
6422                 return -EADDRNOTAVAIL;
6423
6424         rc = bnxt_approve_mac(bp, addr->sa_data);
6425         if (rc)
6426                 return rc;
6427
6428         if (ether_addr_equal(addr->sa_data, dev->dev_addr))
6429                 return 0;
6430
6431         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
6432         if (netif_running(dev)) {
6433                 bnxt_close_nic(bp, false, false);
6434                 rc = bnxt_open_nic(bp, false, false);
6435         }
6436
6437         return rc;
6438 }
6439
6440 /* rtnl_lock held */
6441 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
6442 {
6443         struct bnxt *bp = netdev_priv(dev);
6444
6445         if (netif_running(dev))
6446                 bnxt_close_nic(bp, false, false);
6447
6448         dev->mtu = new_mtu;
6449         bnxt_set_ring_params(bp);
6450
6451         if (netif_running(dev))
6452                 return bnxt_open_nic(bp, false, false);
6453
6454         return 0;
6455 }
6456
6457 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc)
6458 {
6459         struct bnxt *bp = netdev_priv(dev);
6460         bool sh = false;
6461
6462         if (tc > bp->max_tc) {
6463                 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
6464                            tc, bp->max_tc);
6465                 return -EINVAL;
6466         }
6467
6468         if (netdev_get_num_tc(dev) == tc)
6469                 return 0;
6470
6471         if (bp->flags & BNXT_FLAG_SHARED_RINGS)
6472                 sh = true;
6473
6474         if (tc) {
6475                 int max_rx_rings, max_tx_rings, rc;
6476
6477                 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6478                 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
6479                         return -ENOMEM;
6480         }
6481
6482         /* Needs to close the device and do hw resource re-allocations */
6483         if (netif_running(bp->dev))
6484                 bnxt_close_nic(bp, true, false);
6485
6486         if (tc) {
6487                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
6488                 netdev_set_num_tc(dev, tc);
6489         } else {
6490                 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6491                 netdev_reset_tc(dev);
6492         }
6493         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6494                                bp->tx_nr_rings + bp->rx_nr_rings;
6495         bp->num_stat_ctxs = bp->cp_nr_rings;
6496
6497         if (netif_running(bp->dev))
6498                 return bnxt_open_nic(bp, true, false);
6499
6500         return 0;
6501 }
6502
6503 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
6504                          struct tc_to_netdev *ntc)
6505 {
6506         if (ntc->type != TC_SETUP_MQPRIO)
6507                 return -EINVAL;
6508
6509         return bnxt_setup_mq_tc(dev, ntc->tc);
6510 }
6511
6512 #ifdef CONFIG_RFS_ACCEL
6513 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
6514                             struct bnxt_ntuple_filter *f2)
6515 {
6516         struct flow_keys *keys1 = &f1->fkeys;
6517         struct flow_keys *keys2 = &f2->fkeys;
6518
6519         if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
6520             keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
6521             keys1->ports.ports == keys2->ports.ports &&
6522             keys1->basic.ip_proto == keys2->basic.ip_proto &&
6523             keys1->basic.n_proto == keys2->basic.n_proto &&
6524             ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr) &&
6525             ether_addr_equal(f1->dst_mac_addr, f2->dst_mac_addr))
6526                 return true;
6527
6528         return false;
6529 }
6530
6531 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
6532                               u16 rxq_index, u32 flow_id)
6533 {
6534         struct bnxt *bp = netdev_priv(dev);
6535         struct bnxt_ntuple_filter *fltr, *new_fltr;
6536         struct flow_keys *fkeys;
6537         struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
6538         int rc = 0, idx, bit_id, l2_idx = 0;
6539         struct hlist_head *head;
6540
6541         if (skb->encapsulation)
6542                 return -EPROTONOSUPPORT;
6543
6544         if (!ether_addr_equal(dev->dev_addr, eth->h_dest)) {
6545                 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
6546                 int off = 0, j;
6547
6548                 netif_addr_lock_bh(dev);
6549                 for (j = 0; j < vnic->uc_filter_count; j++, off += ETH_ALEN) {
6550                         if (ether_addr_equal(eth->h_dest,
6551                                              vnic->uc_list + off)) {
6552                                 l2_idx = j + 1;
6553                                 break;
6554                         }
6555                 }
6556                 netif_addr_unlock_bh(dev);
6557                 if (!l2_idx)
6558                         return -EINVAL;
6559         }
6560         new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
6561         if (!new_fltr)
6562                 return -ENOMEM;
6563
6564         fkeys = &new_fltr->fkeys;
6565         if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
6566                 rc = -EPROTONOSUPPORT;
6567                 goto err_free;
6568         }
6569
6570         if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
6571             ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
6572              (fkeys->basic.ip_proto != IPPROTO_UDP))) {
6573                 rc = -EPROTONOSUPPORT;
6574                 goto err_free;
6575         }
6576
6577         memcpy(new_fltr->dst_mac_addr, eth->h_dest, ETH_ALEN);
6578         memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
6579
6580         idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
6581         head = &bp->ntp_fltr_hash_tbl[idx];
6582         rcu_read_lock();
6583         hlist_for_each_entry_rcu(fltr, head, hash) {
6584                 if (bnxt_fltr_match(fltr, new_fltr)) {
6585                         rcu_read_unlock();
6586                         rc = 0;
6587                         goto err_free;
6588                 }
6589         }
6590         rcu_read_unlock();
6591
6592         spin_lock_bh(&bp->ntp_fltr_lock);
6593         bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
6594                                          BNXT_NTP_FLTR_MAX_FLTR, 0);
6595         if (bit_id < 0) {
6596                 spin_unlock_bh(&bp->ntp_fltr_lock);
6597                 rc = -ENOMEM;
6598                 goto err_free;
6599         }
6600
6601         new_fltr->sw_id = (u16)bit_id;
6602         new_fltr->flow_id = flow_id;
6603         new_fltr->l2_fltr_idx = l2_idx;
6604         new_fltr->rxq = rxq_index;
6605         hlist_add_head_rcu(&new_fltr->hash, head);
6606         bp->ntp_fltr_count++;
6607         spin_unlock_bh(&bp->ntp_fltr_lock);
6608
6609         set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
6610         schedule_work(&bp->sp_task);
6611
6612         return new_fltr->sw_id;
6613
6614 err_free:
6615         kfree(new_fltr);
6616         return rc;
6617 }
6618
6619 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6620 {
6621         int i;
6622
6623         for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
6624                 struct hlist_head *head;
6625                 struct hlist_node *tmp;
6626                 struct bnxt_ntuple_filter *fltr;
6627                 int rc;
6628
6629                 head = &bp->ntp_fltr_hash_tbl[i];
6630                 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
6631                         bool del = false;
6632
6633                         if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
6634                                 if (rps_may_expire_flow(bp->dev, fltr->rxq,
6635                                                         fltr->flow_id,
6636                                                         fltr->sw_id)) {
6637                                         bnxt_hwrm_cfa_ntuple_filter_free(bp,
6638                                                                          fltr);
6639                                         del = true;
6640                                 }
6641                         } else {
6642                                 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
6643                                                                        fltr);
6644                                 if (rc)
6645                                         del = true;
6646                                 else
6647                                         set_bit(BNXT_FLTR_VALID, &fltr->state);
6648                         }
6649
6650                         if (del) {
6651                                 spin_lock_bh(&bp->ntp_fltr_lock);
6652                                 hlist_del_rcu(&fltr->hash);
6653                                 bp->ntp_fltr_count--;
6654                                 spin_unlock_bh(&bp->ntp_fltr_lock);
6655                                 synchronize_rcu();
6656                                 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
6657                                 kfree(fltr);
6658                         }
6659                 }
6660         }
6661         if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
6662                 netdev_info(bp->dev, "Receive PF driver unload event!");
6663 }
6664
6665 #else
6666
6667 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6668 {
6669 }
6670
6671 #endif /* CONFIG_RFS_ACCEL */
6672
6673 static void bnxt_udp_tunnel_add(struct net_device *dev,
6674                                 struct udp_tunnel_info *ti)
6675 {
6676         struct bnxt *bp = netdev_priv(dev);
6677
6678         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6679                 return;
6680
6681         if (!netif_running(dev))
6682                 return;
6683
6684         switch (ti->type) {
6685         case UDP_TUNNEL_TYPE_VXLAN:
6686                 if (bp->vxlan_port_cnt && bp->vxlan_port != ti->port)
6687                         return;
6688
6689                 bp->vxlan_port_cnt++;
6690                 if (bp->vxlan_port_cnt == 1) {
6691                         bp->vxlan_port = ti->port;
6692                         set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
6693                         schedule_work(&bp->sp_task);
6694                 }
6695                 break;
6696         case UDP_TUNNEL_TYPE_GENEVE:
6697                 if (bp->nge_port_cnt && bp->nge_port != ti->port)
6698                         return;
6699
6700                 bp->nge_port_cnt++;
6701                 if (bp->nge_port_cnt == 1) {
6702                         bp->nge_port = ti->port;
6703                         set_bit(BNXT_GENEVE_ADD_PORT_SP_EVENT, &bp->sp_event);
6704                 }
6705                 break;
6706         default:
6707                 return;
6708         }
6709
6710         schedule_work(&bp->sp_task);
6711 }
6712
6713 static void bnxt_udp_tunnel_del(struct net_device *dev,
6714                                 struct udp_tunnel_info *ti)
6715 {
6716         struct bnxt *bp = netdev_priv(dev);
6717
6718         if (ti->sa_family != AF_INET6 && ti->sa_family != AF_INET)
6719                 return;
6720
6721         if (!netif_running(dev))
6722                 return;
6723
6724         switch (ti->type) {
6725         case UDP_TUNNEL_TYPE_VXLAN:
6726                 if (!bp->vxlan_port_cnt || bp->vxlan_port != ti->port)
6727                         return;
6728                 bp->vxlan_port_cnt--;
6729
6730                 if (bp->vxlan_port_cnt != 0)
6731                         return;
6732
6733                 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
6734                 break;
6735         case UDP_TUNNEL_TYPE_GENEVE:
6736                 if (!bp->nge_port_cnt || bp->nge_port != ti->port)
6737                         return;
6738                 bp->nge_port_cnt--;
6739
6740                 if (bp->nge_port_cnt != 0)
6741                         return;
6742
6743                 set_bit(BNXT_GENEVE_DEL_PORT_SP_EVENT, &bp->sp_event);
6744                 break;
6745         default:
6746                 return;
6747         }
6748
6749         schedule_work(&bp->sp_task);
6750 }
6751
6752 static const struct net_device_ops bnxt_netdev_ops = {
6753         .ndo_open               = bnxt_open,
6754         .ndo_start_xmit         = bnxt_start_xmit,
6755         .ndo_stop               = bnxt_close,
6756         .ndo_get_stats64        = bnxt_get_stats64,
6757         .ndo_set_rx_mode        = bnxt_set_rx_mode,
6758         .ndo_do_ioctl           = bnxt_ioctl,
6759         .ndo_validate_addr      = eth_validate_addr,
6760         .ndo_set_mac_address    = bnxt_change_mac_addr,
6761         .ndo_change_mtu         = bnxt_change_mtu,
6762         .ndo_fix_features       = bnxt_fix_features,
6763         .ndo_set_features       = bnxt_set_features,
6764         .ndo_tx_timeout         = bnxt_tx_timeout,
6765 #ifdef CONFIG_BNXT_SRIOV
6766         .ndo_get_vf_config      = bnxt_get_vf_config,
6767         .ndo_set_vf_mac         = bnxt_set_vf_mac,
6768         .ndo_set_vf_vlan        = bnxt_set_vf_vlan,
6769         .ndo_set_vf_rate        = bnxt_set_vf_bw,
6770         .ndo_set_vf_link_state  = bnxt_set_vf_link_state,
6771         .ndo_set_vf_spoofchk    = bnxt_set_vf_spoofchk,
6772 #endif
6773 #ifdef CONFIG_NET_POLL_CONTROLLER
6774         .ndo_poll_controller    = bnxt_poll_controller,
6775 #endif
6776         .ndo_setup_tc           = bnxt_setup_tc,
6777 #ifdef CONFIG_RFS_ACCEL
6778         .ndo_rx_flow_steer      = bnxt_rx_flow_steer,
6779 #endif
6780         .ndo_udp_tunnel_add     = bnxt_udp_tunnel_add,
6781         .ndo_udp_tunnel_del     = bnxt_udp_tunnel_del,
6782 #ifdef CONFIG_NET_RX_BUSY_POLL
6783         .ndo_busy_poll          = bnxt_busy_poll,
6784 #endif
6785 };
6786
6787 static void bnxt_remove_one(struct pci_dev *pdev)
6788 {
6789         struct net_device *dev = pci_get_drvdata(pdev);
6790         struct bnxt *bp = netdev_priv(dev);
6791
6792         if (BNXT_PF(bp))
6793                 bnxt_sriov_disable(bp);
6794
6795         pci_disable_pcie_error_reporting(pdev);
6796         unregister_netdev(dev);
6797         cancel_work_sync(&bp->sp_task);
6798         bp->sp_event = 0;
6799
6800         bnxt_clear_int_mode(bp);
6801         bnxt_hwrm_func_drv_unrgtr(bp);
6802         bnxt_free_hwrm_resources(bp);
6803         bnxt_dcb_free(bp);
6804         pci_iounmap(pdev, bp->bar2);
6805         pci_iounmap(pdev, bp->bar1);
6806         pci_iounmap(pdev, bp->bar0);
6807         kfree(bp->edev);
6808         bp->edev = NULL;
6809         free_netdev(dev);
6810
6811         pci_release_regions(pdev);
6812         pci_disable_device(pdev);
6813 }
6814
6815 static int bnxt_probe_phy(struct bnxt *bp)
6816 {
6817         int rc = 0;
6818         struct bnxt_link_info *link_info = &bp->link_info;
6819
6820         rc = bnxt_hwrm_phy_qcaps(bp);
6821         if (rc) {
6822                 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
6823                            rc);
6824                 return rc;
6825         }
6826
6827         rc = bnxt_update_link(bp, false);
6828         if (rc) {
6829                 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
6830                            rc);
6831                 return rc;
6832         }
6833
6834         /* Older firmware does not have supported_auto_speeds, so assume
6835          * that all supported speeds can be autonegotiated.
6836          */
6837         if (link_info->auto_link_speeds && !link_info->support_auto_speeds)
6838                 link_info->support_auto_speeds = link_info->support_speeds;
6839
6840         /*initialize the ethool setting copy with NVM settings */
6841         if (BNXT_AUTO_MODE(link_info->auto_mode)) {
6842                 link_info->autoneg = BNXT_AUTONEG_SPEED;
6843                 if (bp->hwrm_spec_code >= 0x10201) {
6844                         if (link_info->auto_pause_setting &
6845                             PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
6846                                 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6847                 } else {
6848                         link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6849                 }
6850                 link_info->advertising = link_info->auto_link_speeds;
6851         } else {
6852                 link_info->req_link_speed = link_info->force_link_speed;
6853                 link_info->req_duplex = link_info->duplex_setting;
6854         }
6855         if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
6856                 link_info->req_flow_ctrl =
6857                         link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
6858         else
6859                 link_info->req_flow_ctrl = link_info->force_pause_setting;
6860         return rc;
6861 }
6862
6863 static int bnxt_get_max_irq(struct pci_dev *pdev)
6864 {
6865         u16 ctrl;
6866
6867         if (!pdev->msix_cap)
6868                 return 1;
6869
6870         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
6871         return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
6872 }
6873
6874 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
6875                                 int *max_cp)
6876 {
6877         int max_ring_grps = 0;
6878
6879 #ifdef CONFIG_BNXT_SRIOV
6880         if (!BNXT_PF(bp)) {
6881                 *max_tx = bp->vf.max_tx_rings;
6882                 *max_rx = bp->vf.max_rx_rings;
6883                 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
6884                 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
6885                 max_ring_grps = bp->vf.max_hw_ring_grps;
6886         } else
6887 #endif
6888         {
6889                 *max_tx = bp->pf.max_tx_rings;
6890                 *max_rx = bp->pf.max_rx_rings;
6891                 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
6892                 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
6893                 max_ring_grps = bp->pf.max_hw_ring_grps;
6894         }
6895         if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) {
6896                 *max_cp -= 1;
6897                 *max_rx -= 2;
6898         }
6899         if (bp->flags & BNXT_FLAG_AGG_RINGS)
6900                 *max_rx >>= 1;
6901         *max_rx = min_t(int, *max_rx, max_ring_grps);
6902 }
6903
6904 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
6905 {
6906         int rx, tx, cp;
6907
6908         _bnxt_get_max_rings(bp, &rx, &tx, &cp);
6909         if (!rx || !tx || !cp)
6910                 return -ENOMEM;
6911
6912         *max_rx = rx;
6913         *max_tx = tx;
6914         return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
6915 }
6916
6917 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx,
6918                                bool shared)
6919 {
6920         int rc;
6921
6922         rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared);
6923         if (rc)
6924                 return rc;
6925
6926         if (bp->flags & BNXT_FLAG_ROCE_CAP) {
6927                 int max_cp, max_stat, max_irq;
6928
6929                 /* Reserve minimum resources for RoCE */
6930                 max_cp = bnxt_get_max_func_cp_rings(bp);
6931                 max_stat = bnxt_get_max_func_stat_ctxs(bp);
6932                 max_irq = bnxt_get_max_func_irqs(bp);
6933                 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS ||
6934                     max_irq <= BNXT_MIN_ROCE_CP_RINGS ||
6935                     max_stat <= BNXT_MIN_ROCE_STAT_CTXS)
6936                         return 0;
6937
6938                 max_cp -= BNXT_MIN_ROCE_CP_RINGS;
6939                 max_irq -= BNXT_MIN_ROCE_CP_RINGS;
6940                 max_stat -= BNXT_MIN_ROCE_STAT_CTXS;
6941                 max_cp = min_t(int, max_cp, max_irq);
6942                 max_cp = min_t(int, max_cp, max_stat);
6943                 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared);
6944                 if (rc)
6945                         rc = 0;
6946         }
6947         return rc;
6948 }
6949
6950 static int bnxt_set_dflt_rings(struct bnxt *bp)
6951 {
6952         int dflt_rings, max_rx_rings, max_tx_rings, rc;
6953         bool sh = true;
6954
6955         if (sh)
6956                 bp->flags |= BNXT_FLAG_SHARED_RINGS;
6957         dflt_rings = netif_get_num_default_rss_queues();
6958         rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6959         if (rc)
6960                 return rc;
6961         bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6962         bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6963         bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6964         bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6965                                bp->tx_nr_rings + bp->rx_nr_rings;
6966         bp->num_stat_ctxs = bp->cp_nr_rings;
6967         if (BNXT_CHIP_TYPE_NITRO_A0(bp)) {
6968                 bp->rx_nr_rings++;
6969                 bp->cp_nr_rings++;
6970         }
6971         return rc;
6972 }
6973
6974 void bnxt_restore_pf_fw_resources(struct bnxt *bp)
6975 {
6976         ASSERT_RTNL();
6977         bnxt_hwrm_func_qcaps(bp);
6978         bnxt_subtract_ulp_resources(bp, BNXT_ROCE_ULP);
6979 }
6980
6981 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
6982 {
6983         enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
6984         enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
6985
6986         if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
6987             speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
6988                 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
6989         else
6990                 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
6991                             speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
6992                             speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
6993                             speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
6994                             "Unknown", width);
6995 }
6996
6997 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6998 {
6999         static int version_printed;
7000         struct net_device *dev;
7001         struct bnxt *bp;
7002         int rc, max_irqs;
7003
7004         if (pdev->device == 0x16cd && pci_is_bridge(pdev))
7005                 return -ENODEV;
7006
7007         if (version_printed++ == 0)
7008                 pr_info("%s", version);
7009
7010         max_irqs = bnxt_get_max_irq(pdev);
7011         dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
7012         if (!dev)
7013                 return -ENOMEM;
7014
7015         bp = netdev_priv(dev);
7016
7017         if (bnxt_vf_pciid(ent->driver_data))
7018                 bp->flags |= BNXT_FLAG_VF;
7019
7020         if (pdev->msix_cap)
7021                 bp->flags |= BNXT_FLAG_MSIX_CAP;
7022
7023         rc = bnxt_init_board(pdev, dev);
7024         if (rc < 0)
7025                 goto init_err_free;
7026
7027         dev->netdev_ops = &bnxt_netdev_ops;
7028         dev->watchdog_timeo = BNXT_TX_TIMEOUT;
7029         dev->ethtool_ops = &bnxt_ethtool_ops;
7030
7031         pci_set_drvdata(pdev, dev);
7032
7033         rc = bnxt_alloc_hwrm_resources(bp);
7034         if (rc)
7035                 goto init_err;
7036
7037         mutex_init(&bp->hwrm_cmd_lock);
7038         rc = bnxt_hwrm_ver_get(bp);
7039         if (rc)
7040                 goto init_err;
7041
7042         bnxt_hwrm_fw_set_time(bp);
7043
7044         dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7045                            NETIF_F_TSO | NETIF_F_TSO6 |
7046                            NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7047                            NETIF_F_GSO_IPXIP4 |
7048                            NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7049                            NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
7050                            NETIF_F_RXCSUM | NETIF_F_GRO;
7051
7052         if (!BNXT_CHIP_TYPE_NITRO_A0(bp))
7053                 dev->hw_features |= NETIF_F_LRO;
7054
7055         dev->hw_enc_features =
7056                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
7057                         NETIF_F_TSO | NETIF_F_TSO6 |
7058                         NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
7059                         NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
7060                         NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
7061         dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
7062                                     NETIF_F_GSO_GRE_CSUM;
7063         dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
7064         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7065                             NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
7066         dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
7067         dev->priv_flags |= IFF_UNICAST_FLT;
7068
7069         /* MTU range: 60 - 9500 */
7070         dev->min_mtu = ETH_ZLEN;
7071         dev->max_mtu = 9500;
7072
7073         bnxt_dcb_init(bp);
7074
7075 #ifdef CONFIG_BNXT_SRIOV
7076         init_waitqueue_head(&bp->sriov_cfg_wait);
7077 #endif
7078         bp->gro_func = bnxt_gro_func_5730x;
7079         if (BNXT_CHIP_NUM_57X1X(bp->chip_num))
7080                 bp->gro_func = bnxt_gro_func_5731x;
7081
7082         rc = bnxt_hwrm_func_drv_rgtr(bp);
7083         if (rc)
7084                 goto init_err;
7085
7086         rc = bnxt_hwrm_func_rgtr_async_events(bp, NULL, 0);
7087         if (rc)
7088                 goto init_err;
7089
7090         bp->ulp_probe = bnxt_ulp_probe;
7091
7092         /* Get the MAX capabilities for this function */
7093         rc = bnxt_hwrm_func_qcaps(bp);
7094         if (rc) {
7095                 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
7096                            rc);
7097                 rc = -1;
7098                 goto init_err;
7099         }
7100
7101         rc = bnxt_hwrm_queue_qportcfg(bp);
7102         if (rc) {
7103                 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
7104                            rc);
7105                 rc = -1;
7106                 goto init_err;
7107         }
7108
7109         bnxt_hwrm_func_qcfg(bp);
7110
7111         bnxt_set_tpa_flags(bp);
7112         bnxt_set_ring_params(bp);
7113         bnxt_set_max_func_irqs(bp, max_irqs);
7114         bnxt_set_dflt_rings(bp);
7115
7116         /* Default RSS hash cfg. */
7117         bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 |
7118                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 |
7119                            VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 |
7120                            VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6;
7121         if (!BNXT_CHIP_NUM_57X0X(bp->chip_num) &&
7122             !BNXT_CHIP_TYPE_NITRO_A0(bp) &&
7123             bp->hwrm_spec_code >= 0x10501) {
7124                 bp->flags |= BNXT_FLAG_UDP_RSS_CAP;
7125                 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 |
7126                                     VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6;
7127         }
7128
7129         if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) {
7130                 dev->hw_features |= NETIF_F_NTUPLE;
7131                 if (bnxt_rfs_capable(bp)) {
7132                         bp->flags |= BNXT_FLAG_RFS;
7133                         dev->features |= NETIF_F_NTUPLE;
7134                 }
7135         }
7136
7137         if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
7138                 bp->flags |= BNXT_FLAG_STRIP_VLAN;
7139
7140         rc = bnxt_probe_phy(bp);
7141         if (rc)
7142                 goto init_err;
7143
7144         rc = bnxt_hwrm_func_reset(bp);
7145         if (rc)
7146                 goto init_err;
7147
7148         rc = bnxt_init_int_mode(bp);
7149         if (rc)
7150                 goto init_err;
7151
7152         rc = register_netdev(dev);
7153         if (rc)
7154                 goto init_err_clr_int;
7155
7156         netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
7157                     board_info[ent->driver_data].name,
7158                     (long)pci_resource_start(pdev, 0), dev->dev_addr);
7159
7160         bnxt_parse_log_pcie_link(bp);
7161
7162         return 0;
7163
7164 init_err_clr_int:
7165         bnxt_clear_int_mode(bp);
7166
7167 init_err:
7168         pci_iounmap(pdev, bp->bar0);
7169         pci_release_regions(pdev);
7170         pci_disable_device(pdev);
7171
7172 init_err_free:
7173         free_netdev(dev);
7174         return rc;
7175 }
7176
7177 /**
7178  * bnxt_io_error_detected - called when PCI error is detected
7179  * @pdev: Pointer to PCI device
7180  * @state: The current pci connection state
7181  *
7182  * This function is called after a PCI bus error affecting
7183  * this device has been detected.
7184  */
7185 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
7186                                                pci_channel_state_t state)
7187 {
7188         struct net_device *netdev = pci_get_drvdata(pdev);
7189         struct bnxt *bp = netdev_priv(netdev);
7190
7191         netdev_info(netdev, "PCI I/O error detected\n");
7192
7193         rtnl_lock();
7194         netif_device_detach(netdev);
7195
7196         bnxt_ulp_stop(bp);
7197
7198         if (state == pci_channel_io_perm_failure) {
7199                 rtnl_unlock();
7200                 return PCI_ERS_RESULT_DISCONNECT;
7201         }
7202
7203         if (netif_running(netdev))
7204                 bnxt_close(netdev);
7205
7206         pci_disable_device(pdev);
7207         rtnl_unlock();
7208
7209         /* Request a slot slot reset. */
7210         return PCI_ERS_RESULT_NEED_RESET;
7211 }
7212
7213 /**
7214  * bnxt_io_slot_reset - called after the pci bus has been reset.
7215  * @pdev: Pointer to PCI device
7216  *
7217  * Restart the card from scratch, as if from a cold-boot.
7218  * At this point, the card has exprienced a hard reset,
7219  * followed by fixups by BIOS, and has its config space
7220  * set up identically to what it was at cold boot.
7221  */
7222 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
7223 {
7224         struct net_device *netdev = pci_get_drvdata(pdev);
7225         struct bnxt *bp = netdev_priv(netdev);
7226         int err = 0;
7227         pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
7228
7229         netdev_info(bp->dev, "PCI Slot Reset\n");
7230
7231         rtnl_lock();
7232
7233         if (pci_enable_device(pdev)) {
7234                 dev_err(&pdev->dev,
7235                         "Cannot re-enable PCI device after reset.\n");
7236         } else {
7237                 pci_set_master(pdev);
7238
7239                 err = bnxt_hwrm_func_reset(bp);
7240                 if (!err && netif_running(netdev))
7241                         err = bnxt_open(netdev);
7242
7243                 if (!err) {
7244                         result = PCI_ERS_RESULT_RECOVERED;
7245                         bnxt_ulp_start(bp);
7246                 }
7247         }
7248
7249         if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
7250                 dev_close(netdev);
7251
7252         rtnl_unlock();
7253
7254         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7255         if (err) {
7256                 dev_err(&pdev->dev,
7257                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7258                          err); /* non-fatal, continue */
7259         }
7260
7261         return PCI_ERS_RESULT_RECOVERED;
7262 }
7263
7264 /**
7265  * bnxt_io_resume - called when traffic can start flowing again.
7266  * @pdev: Pointer to PCI device
7267  *
7268  * This callback is called when the error recovery driver tells
7269  * us that its OK to resume normal operation.
7270  */
7271 static void bnxt_io_resume(struct pci_dev *pdev)
7272 {
7273         struct net_device *netdev = pci_get_drvdata(pdev);
7274
7275         rtnl_lock();
7276
7277         netif_device_attach(netdev);
7278
7279         rtnl_unlock();
7280 }
7281
7282 static const struct pci_error_handlers bnxt_err_handler = {
7283         .error_detected = bnxt_io_error_detected,
7284         .slot_reset     = bnxt_io_slot_reset,
7285         .resume         = bnxt_io_resume
7286 };
7287
7288 static struct pci_driver bnxt_pci_driver = {
7289         .name           = DRV_MODULE_NAME,
7290         .id_table       = bnxt_pci_tbl,
7291         .probe          = bnxt_init_one,
7292         .remove         = bnxt_remove_one,
7293         .err_handler    = &bnxt_err_handler,
7294 #if defined(CONFIG_BNXT_SRIOV)
7295         .sriov_configure = bnxt_sriov_configure,
7296 #endif
7297 };
7298
7299 module_pci_driver(bnxt_pci_driver);