]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/freescale/dpaa/dpaa_eth.c
dpaa_eth: Initialize CGR structure before init
[linux.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *       notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *       notice, this list of conditions and the following disclaimer in the
9  *       documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *       names of its contributors may be used to endorse or promote products
12  *       derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76 #define FM_FD_STAT_RX_ERRORS                                            \
77         (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL     | \
78          FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79          FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME     | \
80          FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81          FM_FD_ERR_PRS_HDR_ERR)
82
83 #define FM_FD_STAT_TX_ERRORS \
84         (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85          FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88                           NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89                           NETIF_MSG_IFDOWN)
90
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL        127
124
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127
128 /* Values for the L3R field of the FM Parse Results
129  */
130 /* L3 Type field: First IP Present IPv4 */
131 #define FM_L3_PARSE_RESULT_IPV4 0x8000
132 /* L3 Type field: First IP Present IPv6 */
133 #define FM_L3_PARSE_RESULT_IPV6 0x4000
134 /* Values for the L4R field of the FM Parse Results */
135 /* L4 Type field: UDP */
136 #define FM_L4_PARSE_RESULT_UDP  0x40
137 /* L4 Type field: TCP */
138 #define FM_L4_PARSE_RESULT_TCP  0x20
139
140 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
141 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
142
143 #define FSL_DPAA_BPID_INV               0xff
144 #define FSL_DPAA_ETH_MAX_BUF_COUNT      128
145 #define FSL_DPAA_ETH_REFILL_THRESHOLD   80
146
147 #define DPAA_TX_PRIV_DATA_SIZE  16
148 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
149 #define DPAA_TIME_STAMP_SIZE 8
150 #define DPAA_HASH_RESULTS_SIZE 8
151 #define DPAA_RX_PRIV_DATA_SIZE  (u16)(DPAA_TX_PRIV_DATA_SIZE + \
152                                         dpaa_rx_extra_headroom)
153
154 #define DPAA_ETH_RX_QUEUES      128
155
156 #define DPAA_ENQUEUE_RETRIES    100000
157
158 enum port_type {RX, TX};
159
160 struct fm_port_fqs {
161         struct dpaa_fq *tx_defq;
162         struct dpaa_fq *tx_errq;
163         struct dpaa_fq *rx_defq;
164         struct dpaa_fq *rx_errq;
165 };
166
167 /* All the dpa bps in use at any moment */
168 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
169
170 /* The raw buffer size must be cacheline aligned */
171 #define DPAA_BP_RAW_SIZE 4096
172 /* When using more than one buffer pool, the raw sizes are as follows:
173  * 1 bp: 4KB
174  * 2 bp: 2KB, 4KB
175  * 3 bp: 1KB, 2KB, 4KB
176  * 4 bp: 1KB, 2KB, 4KB, 8KB
177  */
178 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
179 {
180         size_t res = DPAA_BP_RAW_SIZE / 4;
181         u8 i;
182
183         for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
184                 res *= 2;
185         return res;
186 }
187
188 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
189  * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
190  * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
191  * half-page-aligned buffers, so we reserve some more space for start-of-buffer
192  * alignment.
193  */
194 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
195
196 static int dpaa_max_frm;
197
198 static int dpaa_rx_extra_headroom;
199
200 #define dpaa_get_max_mtu()      \
201         (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
202
203 static int dpaa_netdev_init(struct net_device *net_dev,
204                             const struct net_device_ops *dpaa_ops,
205                             u16 tx_timeout)
206 {
207         struct dpaa_priv *priv = netdev_priv(net_dev);
208         struct device *dev = net_dev->dev.parent;
209         struct dpaa_percpu_priv *percpu_priv;
210         const u8 *mac_addr;
211         int i, err;
212
213         /* Although we access another CPU's private data here
214          * we do it at initialization so it is safe
215          */
216         for_each_possible_cpu(i) {
217                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
218                 percpu_priv->net_dev = net_dev;
219         }
220
221         net_dev->netdev_ops = dpaa_ops;
222         mac_addr = priv->mac_dev->addr;
223
224         net_dev->mem_start = priv->mac_dev->res->start;
225         net_dev->mem_end = priv->mac_dev->res->end;
226
227         net_dev->min_mtu = ETH_MIN_MTU;
228         net_dev->max_mtu = dpaa_get_max_mtu();
229
230         net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
231                                  NETIF_F_LLTX);
232
233         net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
234         /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
235          * For conformity, we'll still declare GSO explicitly.
236          */
237         net_dev->features |= NETIF_F_GSO;
238
239         net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
240         /* we do not want shared skbs on TX */
241         net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
242
243         net_dev->features |= net_dev->hw_features;
244         net_dev->vlan_features = net_dev->features;
245
246         memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
247         memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
248
249         net_dev->ethtool_ops = &dpaa_ethtool_ops;
250
251         net_dev->needed_headroom = priv->tx_headroom;
252         net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
253
254         /* start without the RUNNING flag, phylib controls it later */
255         netif_carrier_off(net_dev);
256
257         err = register_netdev(net_dev);
258         if (err < 0) {
259                 dev_err(dev, "register_netdev() = %d\n", err);
260                 return err;
261         }
262
263         return 0;
264 }
265
266 static int dpaa_stop(struct net_device *net_dev)
267 {
268         struct mac_device *mac_dev;
269         struct dpaa_priv *priv;
270         int i, err, error;
271
272         priv = netdev_priv(net_dev);
273         mac_dev = priv->mac_dev;
274
275         netif_tx_stop_all_queues(net_dev);
276         /* Allow the Fman (Tx) port to process in-flight frames before we
277          * try switching it off.
278          */
279         usleep_range(5000, 10000);
280
281         err = mac_dev->stop(mac_dev);
282         if (err < 0)
283                 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
284                           err);
285
286         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
287                 error = fman_port_disable(mac_dev->port[i]);
288                 if (error)
289                         err = error;
290         }
291
292         if (net_dev->phydev)
293                 phy_disconnect(net_dev->phydev);
294         net_dev->phydev = NULL;
295
296         return err;
297 }
298
299 static void dpaa_tx_timeout(struct net_device *net_dev)
300 {
301         struct dpaa_percpu_priv *percpu_priv;
302         const struct dpaa_priv  *priv;
303
304         priv = netdev_priv(net_dev);
305         percpu_priv = this_cpu_ptr(priv->percpu_priv);
306
307         netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
308                    jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
309
310         percpu_priv->stats.tx_errors++;
311 }
312
313 /* Calculates the statistics for the given device by adding the statistics
314  * collected by each CPU.
315  */
316 static struct rtnl_link_stats64 *dpaa_get_stats64(struct net_device *net_dev,
317                                                   struct rtnl_link_stats64 *s)
318 {
319         int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
320         struct dpaa_priv *priv = netdev_priv(net_dev);
321         struct dpaa_percpu_priv *percpu_priv;
322         u64 *netstats = (u64 *)s;
323         u64 *cpustats;
324         int i, j;
325
326         for_each_possible_cpu(i) {
327                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
328
329                 cpustats = (u64 *)&percpu_priv->stats;
330
331                 /* add stats from all CPUs */
332                 for (j = 0; j < numstats; j++)
333                         netstats[j] += cpustats[j];
334         }
335
336         return s;
337 }
338
339 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
340 {
341         struct platform_device *of_dev;
342         struct dpaa_eth_data *eth_data;
343         struct device *dpaa_dev, *dev;
344         struct device_node *mac_node;
345         struct mac_device *mac_dev;
346
347         dpaa_dev = &pdev->dev;
348         eth_data = dpaa_dev->platform_data;
349         if (!eth_data)
350                 return ERR_PTR(-ENODEV);
351
352         mac_node = eth_data->mac_node;
353
354         of_dev = of_find_device_by_node(mac_node);
355         if (!of_dev) {
356                 dev_err(dpaa_dev, "of_find_device_by_node(%s) failed\n",
357                         mac_node->full_name);
358                 of_node_put(mac_node);
359                 return ERR_PTR(-EINVAL);
360         }
361         of_node_put(mac_node);
362
363         dev = &of_dev->dev;
364
365         mac_dev = dev_get_drvdata(dev);
366         if (!mac_dev) {
367                 dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n",
368                         dev_name(dev));
369                 return ERR_PTR(-EINVAL);
370         }
371
372         return mac_dev;
373 }
374
375 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
376 {
377         const struct dpaa_priv *priv;
378         struct mac_device *mac_dev;
379         struct sockaddr old_addr;
380         int err;
381
382         priv = netdev_priv(net_dev);
383
384         memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
385
386         err = eth_mac_addr(net_dev, addr);
387         if (err < 0) {
388                 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
389                 return err;
390         }
391
392         mac_dev = priv->mac_dev;
393
394         err = mac_dev->change_addr(mac_dev->fman_mac,
395                                    (enet_addr_t *)net_dev->dev_addr);
396         if (err < 0) {
397                 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
398                           err);
399                 /* reverting to previous address */
400                 eth_mac_addr(net_dev, &old_addr);
401
402                 return err;
403         }
404
405         return 0;
406 }
407
408 static void dpaa_set_rx_mode(struct net_device *net_dev)
409 {
410         const struct dpaa_priv  *priv;
411         int err;
412
413         priv = netdev_priv(net_dev);
414
415         if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
416                 priv->mac_dev->promisc = !priv->mac_dev->promisc;
417                 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
418                                                  priv->mac_dev->promisc);
419                 if (err < 0)
420                         netif_err(priv, drv, net_dev,
421                                   "mac_dev->set_promisc() = %d\n",
422                                   err);
423         }
424
425         err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
426         if (err < 0)
427                 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
428                           err);
429 }
430
431 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
432 {
433         if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
434                 return NULL;
435
436         return dpaa_bp_array[bpid];
437 }
438
439 /* checks if this bpool is already allocated */
440 static bool dpaa_bpid2pool_use(int bpid)
441 {
442         if (dpaa_bpid2pool(bpid)) {
443                 atomic_inc(&dpaa_bp_array[bpid]->refs);
444                 return true;
445         }
446
447         return false;
448 }
449
450 /* called only once per bpid by dpaa_bp_alloc_pool() */
451 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
452 {
453         dpaa_bp_array[bpid] = dpaa_bp;
454         atomic_set(&dpaa_bp->refs, 1);
455 }
456
457 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
458 {
459         int err;
460
461         if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
462                 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
463                        __func__);
464                 return -EINVAL;
465         }
466
467         /* If the pool is already specified, we only create one per bpid */
468         if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
469             dpaa_bpid2pool_use(dpaa_bp->bpid))
470                 return 0;
471
472         if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
473                 dpaa_bp->pool = bman_new_pool();
474                 if (!dpaa_bp->pool) {
475                         pr_err("%s: bman_new_pool() failed\n",
476                                __func__);
477                         return -ENODEV;
478                 }
479
480                 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
481         }
482
483         if (dpaa_bp->seed_cb) {
484                 err = dpaa_bp->seed_cb(dpaa_bp);
485                 if (err)
486                         goto pool_seed_failed;
487         }
488
489         dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
490
491         return 0;
492
493 pool_seed_failed:
494         pr_err("%s: pool seeding failed\n", __func__);
495         bman_free_pool(dpaa_bp->pool);
496
497         return err;
498 }
499
500 /* remove and free all the buffers from the given buffer pool */
501 static void dpaa_bp_drain(struct dpaa_bp *bp)
502 {
503         u8 num = 8;
504         int ret;
505
506         do {
507                 struct bm_buffer bmb[8];
508                 int i;
509
510                 ret = bman_acquire(bp->pool, bmb, num);
511                 if (ret < 0) {
512                         if (num == 8) {
513                                 /* we have less than 8 buffers left;
514                                  * drain them one by one
515                                  */
516                                 num = 1;
517                                 ret = 1;
518                                 continue;
519                         } else {
520                                 /* Pool is fully drained */
521                                 break;
522                         }
523                 }
524
525                 if (bp->free_buf_cb)
526                         for (i = 0; i < num; i++)
527                                 bp->free_buf_cb(bp, &bmb[i]);
528         } while (ret > 0);
529 }
530
531 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
532 {
533         struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
534
535         /* the mapping between bpid and dpaa_bp is done very late in the
536          * allocation procedure; if something failed before the mapping, the bp
537          * was not configured, therefore we don't need the below instructions
538          */
539         if (!bp)
540                 return;
541
542         if (!atomic_dec_and_test(&bp->refs))
543                 return;
544
545         if (bp->free_buf_cb)
546                 dpaa_bp_drain(bp);
547
548         dpaa_bp_array[bp->bpid] = NULL;
549         bman_free_pool(bp->pool);
550 }
551
552 static void dpaa_bps_free(struct dpaa_priv *priv)
553 {
554         int i;
555
556         for (i = 0; i < DPAA_BPS_NUM; i++)
557                 dpaa_bp_free(priv->dpaa_bps[i]);
558 }
559
560 /* Use multiple WQs for FQ assignment:
561  *      - Tx Confirmation queues go to WQ1.
562  *      - Rx Error and Tx Error queues go to WQ2 (giving them a better chance
563  *        to be scheduled, in case there are many more FQs in WQ3).
564  *      - Rx Default and Tx queues go to WQ3 (no differentiation between
565  *        Rx and Tx traffic).
566  * This ensures that Tx-confirmed buffers are timely released. In particular,
567  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
568  * are greatly outnumbered by other FQs in the system, while
569  * dequeue scheduling is round-robin.
570  */
571 static inline void dpaa_assign_wq(struct dpaa_fq *fq)
572 {
573         switch (fq->fq_type) {
574         case FQ_TYPE_TX_CONFIRM:
575         case FQ_TYPE_TX_CONF_MQ:
576                 fq->wq = 1;
577                 break;
578         case FQ_TYPE_RX_ERROR:
579         case FQ_TYPE_TX_ERROR:
580                 fq->wq = 2;
581                 break;
582         case FQ_TYPE_RX_DEFAULT:
583         case FQ_TYPE_TX:
584                 fq->wq = 3;
585                 break;
586         default:
587                 WARN(1, "Invalid FQ type %d for FQID %d!\n",
588                      fq->fq_type, fq->fqid);
589         }
590 }
591
592 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
593                                      u32 start, u32 count,
594                                      struct list_head *list,
595                                      enum dpaa_fq_type fq_type)
596 {
597         struct dpaa_fq *dpaa_fq;
598         int i;
599
600         dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
601                                GFP_KERNEL);
602         if (!dpaa_fq)
603                 return NULL;
604
605         for (i = 0; i < count; i++) {
606                 dpaa_fq[i].fq_type = fq_type;
607                 dpaa_fq[i].fqid = start ? start + i : 0;
608                 list_add_tail(&dpaa_fq[i].list, list);
609         }
610
611         for (i = 0; i < count; i++)
612                 dpaa_assign_wq(dpaa_fq + i);
613
614         return dpaa_fq;
615 }
616
617 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
618                               struct fm_port_fqs *port_fqs)
619 {
620         struct dpaa_fq *dpaa_fq;
621
622         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
623         if (!dpaa_fq)
624                 goto fq_alloc_failed;
625
626         port_fqs->rx_errq = &dpaa_fq[0];
627
628         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
629         if (!dpaa_fq)
630                 goto fq_alloc_failed;
631
632         port_fqs->rx_defq = &dpaa_fq[0];
633
634         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
635                 goto fq_alloc_failed;
636
637         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
638         if (!dpaa_fq)
639                 goto fq_alloc_failed;
640
641         port_fqs->tx_errq = &dpaa_fq[0];
642
643         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
644         if (!dpaa_fq)
645                 goto fq_alloc_failed;
646
647         port_fqs->tx_defq = &dpaa_fq[0];
648
649         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
650                 goto fq_alloc_failed;
651
652         return 0;
653
654 fq_alloc_failed:
655         dev_err(dev, "dpaa_fq_alloc() failed\n");
656         return -ENOMEM;
657 }
658
659 static u32 rx_pool_channel;
660 static DEFINE_SPINLOCK(rx_pool_channel_init);
661
662 static int dpaa_get_channel(void)
663 {
664         spin_lock(&rx_pool_channel_init);
665         if (!rx_pool_channel) {
666                 u32 pool;
667                 int ret;
668
669                 ret = qman_alloc_pool(&pool);
670
671                 if (!ret)
672                         rx_pool_channel = pool;
673         }
674         spin_unlock(&rx_pool_channel_init);
675         if (!rx_pool_channel)
676                 return -ENOMEM;
677         return rx_pool_channel;
678 }
679
680 static void dpaa_release_channel(void)
681 {
682         qman_release_pool(rx_pool_channel);
683 }
684
685 static void dpaa_eth_add_channel(u16 channel)
686 {
687         u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
688         const cpumask_t *cpus = qman_affine_cpus();
689         struct qman_portal *portal;
690         int cpu;
691
692         for_each_cpu(cpu, cpus) {
693                 portal = qman_get_affine_portal(cpu);
694                 qman_p_static_dequeue_add(portal, pool);
695         }
696 }
697
698 /* Congestion group state change notification callback.
699  * Stops the device's egress queues while they are congested and
700  * wakes them upon exiting congested state.
701  * Also updates some CGR-related stats.
702  */
703 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
704                            int congested)
705 {
706         struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
707                 struct dpaa_priv, cgr_data.cgr);
708
709         if (congested) {
710                 priv->cgr_data.congestion_start_jiffies = jiffies;
711                 netif_tx_stop_all_queues(priv->net_dev);
712                 priv->cgr_data.cgr_congested_count++;
713         } else {
714                 priv->cgr_data.congested_jiffies +=
715                         (jiffies - priv->cgr_data.congestion_start_jiffies);
716                 netif_tx_wake_all_queues(priv->net_dev);
717         }
718 }
719
720 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
721 {
722         struct qm_mcc_initcgr initcgr;
723         u32 cs_th;
724         int err;
725
726         err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
727         if (err < 0) {
728                 if (netif_msg_drv(priv))
729                         pr_err("%s: Error %d allocating CGR ID\n",
730                                __func__, err);
731                 goto out_error;
732         }
733         priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
734
735         /* Enable Congestion State Change Notifications and CS taildrop */
736         memset(&initcgr, 0, sizeof(initcgr));
737         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
738         initcgr.cgr.cscn_en = QM_CGR_EN;
739
740         /* Set different thresholds based on the MAC speed.
741          * This may turn suboptimal if the MAC is reconfigured at a speed
742          * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
743          * In such cases, we ought to reconfigure the threshold, too.
744          */
745         if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
746                 cs_th = DPAA_CS_THRESHOLD_10G;
747         else
748                 cs_th = DPAA_CS_THRESHOLD_1G;
749         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
750
751         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
752         initcgr.cgr.cstd_en = QM_CGR_EN;
753
754         err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
755                               &initcgr);
756         if (err < 0) {
757                 if (netif_msg_drv(priv))
758                         pr_err("%s: Error %d creating CGR with ID %d\n",
759                                __func__, err, priv->cgr_data.cgr.cgrid);
760                 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
761                 goto out_error;
762         }
763         if (netif_msg_drv(priv))
764                 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
765                          priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
766                          priv->cgr_data.cgr.chan);
767
768 out_error:
769         return err;
770 }
771
772 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
773                                       struct dpaa_fq *fq,
774                                       const struct qman_fq *template)
775 {
776         fq->fq_base = *template;
777         fq->net_dev = priv->net_dev;
778
779         fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
780         fq->channel = priv->channel;
781 }
782
783 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
784                                      struct dpaa_fq *fq,
785                                      struct fman_port *port,
786                                      const struct qman_fq *template)
787 {
788         fq->fq_base = *template;
789         fq->net_dev = priv->net_dev;
790
791         if (port) {
792                 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
793                 fq->channel = (u16)fman_port_get_qman_channel_id(port);
794         } else {
795                 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
796         }
797 }
798
799 static void dpaa_fq_setup(struct dpaa_priv *priv,
800                           const struct dpaa_fq_cbs *fq_cbs,
801                           struct fman_port *tx_port)
802 {
803         int egress_cnt = 0, conf_cnt = 0, num_portals = 0, cpu;
804         const cpumask_t *affine_cpus = qman_affine_cpus();
805         u16 portals[NR_CPUS];
806         struct dpaa_fq *fq;
807
808         for_each_cpu(cpu, affine_cpus)
809                 portals[num_portals++] = qman_affine_channel(cpu);
810         if (num_portals == 0)
811                 dev_err(priv->net_dev->dev.parent,
812                         "No Qman software (affine) channels found");
813
814         /* Initialize each FQ in the list */
815         list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
816                 switch (fq->fq_type) {
817                 case FQ_TYPE_RX_DEFAULT:
818                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
819                         break;
820                 case FQ_TYPE_RX_ERROR:
821                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
822                         break;
823                 case FQ_TYPE_TX:
824                         dpaa_setup_egress(priv, fq, tx_port,
825                                           &fq_cbs->egress_ern);
826                         /* If we have more Tx queues than the number of cores,
827                          * just ignore the extra ones.
828                          */
829                         if (egress_cnt < DPAA_ETH_TXQ_NUM)
830                                 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
831                         break;
832                 case FQ_TYPE_TX_CONF_MQ:
833                         priv->conf_fqs[conf_cnt++] = &fq->fq_base;
834                         /* fall through */
835                 case FQ_TYPE_TX_CONFIRM:
836                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
837                         break;
838                 case FQ_TYPE_TX_ERROR:
839                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
840                         break;
841                 default:
842                         dev_warn(priv->net_dev->dev.parent,
843                                  "Unknown FQ type detected!\n");
844                         break;
845                 }
846         }
847
848          /* Make sure all CPUs receive a corresponding Tx queue. */
849         while (egress_cnt < DPAA_ETH_TXQ_NUM) {
850                 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
851                         if (fq->fq_type != FQ_TYPE_TX)
852                                 continue;
853                         priv->egress_fqs[egress_cnt++] = &fq->fq_base;
854                         if (egress_cnt == DPAA_ETH_TXQ_NUM)
855                                 break;
856                 }
857         }
858 }
859
860 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
861                                    struct qman_fq *tx_fq)
862 {
863         int i;
864
865         for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
866                 if (priv->egress_fqs[i] == tx_fq)
867                         return i;
868
869         return -EINVAL;
870 }
871
872 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
873 {
874         const struct dpaa_priv  *priv;
875         struct qman_fq *confq = NULL;
876         struct qm_mcc_initfq initfq;
877         struct device *dev;
878         struct qman_fq *fq;
879         int queue_id;
880         int err;
881
882         priv = netdev_priv(dpaa_fq->net_dev);
883         dev = dpaa_fq->net_dev->dev.parent;
884
885         if (dpaa_fq->fqid == 0)
886                 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
887
888         dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
889
890         err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
891         if (err) {
892                 dev_err(dev, "qman_create_fq() failed\n");
893                 return err;
894         }
895         fq = &dpaa_fq->fq_base;
896
897         if (dpaa_fq->init) {
898                 memset(&initfq, 0, sizeof(initfq));
899
900                 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
901                 /* Note: we may get to keep an empty FQ in cache */
902                 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
903
904                 /* Try to reduce the number of portal interrupts for
905                  * Tx Confirmation FQs.
906                  */
907                 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
908                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE);
909
910                 /* FQ placement */
911                 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
912
913                 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
914
915                 /* Put all egress queues in a congestion group of their own.
916                  * Sensu stricto, the Tx confirmation queues are Rx FQs,
917                  * rather than Tx - but they nonetheless account for the
918                  * memory footprint on behalf of egress traffic. We therefore
919                  * place them in the netdev's CGR, along with the Tx FQs.
920                  */
921                 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
922                     dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
923                     dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
924                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
925                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
926                         initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
927                         /* Set a fixed overhead accounting, in an attempt to
928                          * reduce the impact of fixed-size skb shells and the
929                          * driver's needed headroom on system memory. This is
930                          * especially the case when the egress traffic is
931                          * composed of small datagrams.
932                          * Unfortunately, QMan's OAL value is capped to an
933                          * insufficient value, but even that is better than
934                          * no overhead accounting at all.
935                          */
936                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
937                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
938                         qm_fqd_set_oal(&initfq.fqd,
939                                        min(sizeof(struct sk_buff) +
940                                        priv->tx_headroom,
941                                        (size_t)FSL_QMAN_MAX_OAL));
942                 }
943
944                 if (td_enable) {
945                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
946                         qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
947                         initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
948                 }
949
950                 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
951                         queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
952                         if (queue_id >= 0)
953                                 confq = priv->conf_fqs[queue_id];
954                         if (confq) {
955                                 initfq.we_mask |=
956                                         cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
957                         /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
958                          *           A2V=1 (contextA A2 field is valid)
959                          *           A0V=1 (contextA A0 field is valid)
960                          *           B0V=1 (contextB field is valid)
961                          * ContextA A2: EBD=1 (deallocate buffers inside FMan)
962                          * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
963                          */
964                                 qm_fqd_context_a_set64(&initfq.fqd,
965                                                        0x1e00000080000000ULL);
966                         }
967                 }
968
969                 /* Put all the ingress queues in our "ingress CGR". */
970                 if (priv->use_ingress_cgr &&
971                     (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
972                      dpaa_fq->fq_type == FQ_TYPE_RX_ERROR)) {
973                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
974                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
975                         initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
976                         /* Set a fixed overhead accounting, just like for the
977                          * egress CGR.
978                          */
979                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
980                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
981                         qm_fqd_set_oal(&initfq.fqd,
982                                        min(sizeof(struct sk_buff) +
983                                        priv->tx_headroom,
984                                        (size_t)FSL_QMAN_MAX_OAL));
985                 }
986
987                 /* Initialization common to all ingress queues */
988                 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
989                         initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
990                         initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE);
991                         initfq.fqd.context_a.stashing.exclusive =
992                                 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
993                                 QM_STASHING_EXCL_ANNOTATION;
994                         qm_fqd_set_stashing(&initfq.fqd, 1, 2,
995                                             DIV_ROUND_UP(sizeof(struct qman_fq),
996                                                          64));
997                 }
998
999                 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1000                 if (err < 0) {
1001                         dev_err(dev, "qman_init_fq(%u) = %d\n",
1002                                 qman_fq_fqid(fq), err);
1003                         qman_destroy_fq(fq);
1004                         return err;
1005                 }
1006         }
1007
1008         dpaa_fq->fqid = qman_fq_fqid(fq);
1009
1010         return 0;
1011 }
1012
1013 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1014 {
1015         const struct dpaa_priv  *priv;
1016         struct dpaa_fq *dpaa_fq;
1017         int err, error;
1018
1019         err = 0;
1020
1021         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1022         priv = netdev_priv(dpaa_fq->net_dev);
1023
1024         if (dpaa_fq->init) {
1025                 err = qman_retire_fq(fq, NULL);
1026                 if (err < 0 && netif_msg_drv(priv))
1027                         dev_err(dev, "qman_retire_fq(%u) = %d\n",
1028                                 qman_fq_fqid(fq), err);
1029
1030                 error = qman_oos_fq(fq);
1031                 if (error < 0 && netif_msg_drv(priv)) {
1032                         dev_err(dev, "qman_oos_fq(%u) = %d\n",
1033                                 qman_fq_fqid(fq), error);
1034                         if (err >= 0)
1035                                 err = error;
1036                 }
1037         }
1038
1039         qman_destroy_fq(fq);
1040         list_del(&dpaa_fq->list);
1041
1042         return err;
1043 }
1044
1045 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1046 {
1047         struct dpaa_fq *dpaa_fq, *tmp;
1048         int err, error;
1049
1050         err = 0;
1051         list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1052                 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1053                 if (error < 0 && err >= 0)
1054                         err = error;
1055         }
1056
1057         return err;
1058 }
1059
1060 static void dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1061                                   struct dpaa_fq *defq,
1062                                   struct dpaa_buffer_layout *buf_layout)
1063 {
1064         struct fman_buffer_prefix_content buf_prefix_content;
1065         struct fman_port_params params;
1066         int err;
1067
1068         memset(&params, 0, sizeof(params));
1069         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1070
1071         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1072         buf_prefix_content.pass_prs_result = true;
1073         buf_prefix_content.pass_hash_result = true;
1074         buf_prefix_content.pass_time_stamp = false;
1075         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1076
1077         params.specific_params.non_rx_params.err_fqid = errq->fqid;
1078         params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1079
1080         err = fman_port_config(port, &params);
1081         if (err)
1082                 pr_err("%s: fman_port_config failed\n", __func__);
1083
1084         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1085         if (err)
1086                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1087                        __func__);
1088
1089         err = fman_port_init(port);
1090         if (err)
1091                 pr_err("%s: fm_port_init failed\n", __func__);
1092 }
1093
1094 static void dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1095                                   size_t count, struct dpaa_fq *errq,
1096                                   struct dpaa_fq *defq,
1097                                   struct dpaa_buffer_layout *buf_layout)
1098 {
1099         struct fman_buffer_prefix_content buf_prefix_content;
1100         struct fman_port_rx_params *rx_p;
1101         struct fman_port_params params;
1102         int i, err;
1103
1104         memset(&params, 0, sizeof(params));
1105         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1106
1107         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1108         buf_prefix_content.pass_prs_result = true;
1109         buf_prefix_content.pass_hash_result = true;
1110         buf_prefix_content.pass_time_stamp = false;
1111         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1112
1113         rx_p = &params.specific_params.rx_params;
1114         rx_p->err_fqid = errq->fqid;
1115         rx_p->dflt_fqid = defq->fqid;
1116
1117         count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1118         rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1119         for (i = 0; i < count; i++) {
1120                 rx_p->ext_buf_pools.ext_buf_pool[i].id =  bps[i]->bpid;
1121                 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1122         }
1123
1124         err = fman_port_config(port, &params);
1125         if (err)
1126                 pr_err("%s: fman_port_config failed\n", __func__);
1127
1128         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1129         if (err)
1130                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1131                        __func__);
1132
1133         err = fman_port_init(port);
1134         if (err)
1135                 pr_err("%s: fm_port_init failed\n", __func__);
1136 }
1137
1138 static void dpaa_eth_init_ports(struct mac_device *mac_dev,
1139                                 struct dpaa_bp **bps, size_t count,
1140                                 struct fm_port_fqs *port_fqs,
1141                                 struct dpaa_buffer_layout *buf_layout,
1142                                 struct device *dev)
1143 {
1144         struct fman_port *rxport = mac_dev->port[RX];
1145         struct fman_port *txport = mac_dev->port[TX];
1146
1147         dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1148                               port_fqs->tx_defq, &buf_layout[TX]);
1149         dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1150                               port_fqs->rx_defq, &buf_layout[RX]);
1151 }
1152
1153 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1154                              struct bm_buffer *bmb, int cnt)
1155 {
1156         int err;
1157
1158         err = bman_release(dpaa_bp->pool, bmb, cnt);
1159         /* Should never occur, address anyway to avoid leaking the buffers */
1160         if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1161                 while (cnt-- > 0)
1162                         dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1163
1164         return cnt;
1165 }
1166
1167 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1168 {
1169         struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1170         struct dpaa_bp *dpaa_bp;
1171         int i = 0, j;
1172
1173         memset(bmb, 0, sizeof(bmb));
1174
1175         do {
1176                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1177                 if (!dpaa_bp)
1178                         return;
1179
1180                 j = 0;
1181                 do {
1182                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1183
1184                         bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1185
1186                         j++; i++;
1187                 } while (j < ARRAY_SIZE(bmb) &&
1188                                 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1189                                 sgt[i - 1].bpid == sgt[i].bpid);
1190
1191                 dpaa_bman_release(dpaa_bp, bmb, j);
1192         } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1193 }
1194
1195 static void dpaa_fd_release(const struct net_device *net_dev,
1196                             const struct qm_fd *fd)
1197 {
1198         struct qm_sg_entry *sgt;
1199         struct dpaa_bp *dpaa_bp;
1200         struct bm_buffer bmb;
1201         dma_addr_t addr;
1202         void *vaddr;
1203
1204         bmb.data = 0;
1205         bm_buffer_set64(&bmb, qm_fd_addr(fd));
1206
1207         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1208         if (!dpaa_bp)
1209                 return;
1210
1211         if (qm_fd_get_format(fd) == qm_fd_sg) {
1212                 vaddr = phys_to_virt(qm_fd_addr(fd));
1213                 sgt = vaddr + qm_fd_get_offset(fd);
1214
1215                 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1216                                  DMA_FROM_DEVICE);
1217
1218                 dpaa_release_sgt_members(sgt);
1219
1220                 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1221                                       DMA_FROM_DEVICE);
1222                 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1223                         dev_err(dpaa_bp->dev, "DMA mapping failed");
1224                         return;
1225                 }
1226                 bm_buffer_set64(&bmb, addr);
1227         }
1228
1229         dpaa_bman_release(dpaa_bp, &bmb, 1);
1230 }
1231
1232 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1233                       const union qm_mr_entry *msg)
1234 {
1235         switch (msg->ern.rc & QM_MR_RC_MASK) {
1236         case QM_MR_RC_CGR_TAILDROP:
1237                 percpu_priv->ern_cnt.cg_tdrop++;
1238                 break;
1239         case QM_MR_RC_WRED:
1240                 percpu_priv->ern_cnt.wred++;
1241                 break;
1242         case QM_MR_RC_ERROR:
1243                 percpu_priv->ern_cnt.err_cond++;
1244                 break;
1245         case QM_MR_RC_ORPWINDOW_EARLY:
1246                 percpu_priv->ern_cnt.early_window++;
1247                 break;
1248         case QM_MR_RC_ORPWINDOW_LATE:
1249                 percpu_priv->ern_cnt.late_window++;
1250                 break;
1251         case QM_MR_RC_FQ_TAILDROP:
1252                 percpu_priv->ern_cnt.fq_tdrop++;
1253                 break;
1254         case QM_MR_RC_ORPWINDOW_RETIRED:
1255                 percpu_priv->ern_cnt.fq_retired++;
1256                 break;
1257         case QM_MR_RC_ORP_ZERO:
1258                 percpu_priv->ern_cnt.orp_zero++;
1259                 break;
1260         }
1261 }
1262
1263 /* Turn on HW checksum computation for this outgoing frame.
1264  * If the current protocol is not something we support in this regard
1265  * (or if the stack has already computed the SW checksum), we do nothing.
1266  *
1267  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1268  * otherwise.
1269  *
1270  * Note that this function may modify the fd->cmd field and the skb data buffer
1271  * (the Parse Results area).
1272  */
1273 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1274                                struct sk_buff *skb,
1275                                struct qm_fd *fd,
1276                                char *parse_results)
1277 {
1278         struct fman_prs_result *parse_result;
1279         u16 ethertype = ntohs(skb->protocol);
1280         struct ipv6hdr *ipv6h = NULL;
1281         struct iphdr *iph;
1282         int retval = 0;
1283         u8 l4_proto;
1284
1285         if (skb->ip_summed != CHECKSUM_PARTIAL)
1286                 return 0;
1287
1288         /* Note: L3 csum seems to be already computed in sw, but we can't choose
1289          * L4 alone from the FM configuration anyway.
1290          */
1291
1292         /* Fill in some fields of the Parse Results array, so the FMan
1293          * can find them as if they came from the FMan Parser.
1294          */
1295         parse_result = (struct fman_prs_result *)parse_results;
1296
1297         /* If we're dealing with VLAN, get the real Ethernet type */
1298         if (ethertype == ETH_P_8021Q) {
1299                 /* We can't always assume the MAC header is set correctly
1300                  * by the stack, so reset to beginning of skb->data
1301                  */
1302                 skb_reset_mac_header(skb);
1303                 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1304         }
1305
1306         /* Fill in the relevant L3 parse result fields
1307          * and read the L4 protocol type
1308          */
1309         switch (ethertype) {
1310         case ETH_P_IP:
1311                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1312                 iph = ip_hdr(skb);
1313                 WARN_ON(!iph);
1314                 l4_proto = iph->protocol;
1315                 break;
1316         case ETH_P_IPV6:
1317                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1318                 ipv6h = ipv6_hdr(skb);
1319                 WARN_ON(!ipv6h);
1320                 l4_proto = ipv6h->nexthdr;
1321                 break;
1322         default:
1323                 /* We shouldn't even be here */
1324                 if (net_ratelimit())
1325                         netif_alert(priv, tx_err, priv->net_dev,
1326                                     "Can't compute HW csum for L3 proto 0x%x\n",
1327                                     ntohs(skb->protocol));
1328                 retval = -EIO;
1329                 goto return_error;
1330         }
1331
1332         /* Fill in the relevant L4 parse result fields */
1333         switch (l4_proto) {
1334         case IPPROTO_UDP:
1335                 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1336                 break;
1337         case IPPROTO_TCP:
1338                 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1339                 break;
1340         default:
1341                 if (net_ratelimit())
1342                         netif_alert(priv, tx_err, priv->net_dev,
1343                                     "Can't compute HW csum for L4 proto 0x%x\n",
1344                                     l4_proto);
1345                 retval = -EIO;
1346                 goto return_error;
1347         }
1348
1349         /* At index 0 is IPOffset_1 as defined in the Parse Results */
1350         parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1351         parse_result->l4_off = (u8)skb_transport_offset(skb);
1352
1353         /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1354         fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1355
1356         /* On P1023 and similar platforms fd->cmd interpretation could
1357          * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1358          * is not set so we do not need to check; in the future, if/when
1359          * using context_a we need to check this bit
1360          */
1361
1362 return_error:
1363         return retval;
1364 }
1365
1366 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1367 {
1368         struct device *dev = dpaa_bp->dev;
1369         struct bm_buffer bmb[8];
1370         dma_addr_t addr;
1371         void *new_buf;
1372         u8 i;
1373
1374         for (i = 0; i < 8; i++) {
1375                 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1376                 if (unlikely(!new_buf)) {
1377                         dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1378                                 dpaa_bp->raw_size);
1379                         goto release_previous_buffs;
1380                 }
1381                 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1382
1383                 addr = dma_map_single(dev, new_buf,
1384                                       dpaa_bp->size, DMA_FROM_DEVICE);
1385                 if (unlikely(dma_mapping_error(dev, addr))) {
1386                         dev_err(dpaa_bp->dev, "DMA map failed");
1387                         goto release_previous_buffs;
1388                 }
1389
1390                 bmb[i].data = 0;
1391                 bm_buffer_set64(&bmb[i], addr);
1392         }
1393
1394 release_bufs:
1395         return dpaa_bman_release(dpaa_bp, bmb, i);
1396
1397 release_previous_buffs:
1398         WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1399
1400         bm_buffer_set64(&bmb[i], 0);
1401         /* Avoid releasing a completely null buffer; bman_release() requires
1402          * at least one buffer.
1403          */
1404         if (likely(i))
1405                 goto release_bufs;
1406
1407         return 0;
1408 }
1409
1410 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1411 {
1412         int i;
1413
1414         /* Give each CPU an allotment of "config_count" buffers */
1415         for_each_possible_cpu(i) {
1416                 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1417                 int j;
1418
1419                 /* Although we access another CPU's counters here
1420                  * we do it at boot time so it is safe
1421                  */
1422                 for (j = 0; j < dpaa_bp->config_count; j += 8)
1423                         *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1424         }
1425         return 0;
1426 }
1427
1428 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1429  * REFILL_THRESHOLD.
1430  */
1431 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1432 {
1433         int count = *countptr;
1434         int new_bufs;
1435
1436         if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1437                 do {
1438                         new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1439                         if (unlikely(!new_bufs)) {
1440                                 /* Avoid looping forever if we've temporarily
1441                                  * run out of memory. We'll try again at the
1442                                  * next NAPI cycle.
1443                                  */
1444                                 break;
1445                         }
1446                         count += new_bufs;
1447                 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1448
1449                 *countptr = count;
1450                 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1451                         return -ENOMEM;
1452         }
1453
1454         return 0;
1455 }
1456
1457 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1458 {
1459         struct dpaa_bp *dpaa_bp;
1460         int *countptr;
1461         int res, i;
1462
1463         for (i = 0; i < DPAA_BPS_NUM; i++) {
1464                 dpaa_bp = priv->dpaa_bps[i];
1465                 if (!dpaa_bp)
1466                         return -EINVAL;
1467                 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1468                 res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1469                 if (res)
1470                         return res;
1471         }
1472         return 0;
1473 }
1474
1475 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1476  * either contiguous frames or scatter/gather ones.
1477  * Skb freeing is not handled here.
1478  *
1479  * This function may be called on error paths in the Tx function, so guard
1480  * against cases when not all fd relevant fields were filled in.
1481  *
1482  * Return the skb backpointer, since for S/G frames the buffer containing it
1483  * gets freed here.
1484  */
1485 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1486                                           const struct qm_fd *fd)
1487 {
1488         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1489         struct device *dev = priv->net_dev->dev.parent;
1490         dma_addr_t addr = qm_fd_addr(fd);
1491         const struct qm_sg_entry *sgt;
1492         struct sk_buff **skbh, *skb;
1493         int nr_frags, i;
1494
1495         skbh = (struct sk_buff **)phys_to_virt(addr);
1496         skb = *skbh;
1497
1498         if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1499                 nr_frags = skb_shinfo(skb)->nr_frags;
1500                 dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1501                                  sizeof(struct qm_sg_entry) * (1 + nr_frags),
1502                                  dma_dir);
1503
1504                 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1505                  * it's from lowmem.
1506                  */
1507                 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1508
1509                 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1510                 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1511                                  qm_sg_entry_get_len(&sgt[0]), dma_dir);
1512
1513                 /* remaining pages were mapped with skb_frag_dma_map() */
1514                 for (i = 1; i < nr_frags; i++) {
1515                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1516
1517                         dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1518                                        qm_sg_entry_get_len(&sgt[i]), dma_dir);
1519                 }
1520
1521                 /* Free the page frag that we allocated on Tx */
1522                 skb_free_frag(phys_to_virt(addr));
1523         } else {
1524                 dma_unmap_single(dev, addr,
1525                                  skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1526         }
1527
1528         return skb;
1529 }
1530
1531 /* Build a linear skb around the received buffer.
1532  * We are guaranteed there is enough room at the end of the data buffer to
1533  * accommodate the shared info area of the skb.
1534  */
1535 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1536                                         const struct qm_fd *fd)
1537 {
1538         ssize_t fd_off = qm_fd_get_offset(fd);
1539         dma_addr_t addr = qm_fd_addr(fd);
1540         struct dpaa_bp *dpaa_bp;
1541         struct sk_buff *skb;
1542         void *vaddr;
1543
1544         vaddr = phys_to_virt(addr);
1545         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1546
1547         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1548         if (!dpaa_bp)
1549                 goto free_buffer;
1550
1551         skb = build_skb(vaddr, dpaa_bp->size +
1552                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1553         if (unlikely(!skb)) {
1554                 WARN_ONCE(1, "Build skb failure on Rx\n");
1555                 goto free_buffer;
1556         }
1557         WARN_ON(fd_off != priv->rx_headroom);
1558         skb_reserve(skb, fd_off);
1559         skb_put(skb, qm_fd_get_length(fd));
1560
1561         skb->ip_summed = CHECKSUM_NONE;
1562
1563         return skb;
1564
1565 free_buffer:
1566         skb_free_frag(vaddr);
1567         return NULL;
1568 }
1569
1570 /* Build an skb with the data of the first S/G entry in the linear portion and
1571  * the rest of the frame as skb fragments.
1572  *
1573  * The page fragment holding the S/G Table is recycled here.
1574  */
1575 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1576                                     const struct qm_fd *fd)
1577 {
1578         ssize_t fd_off = qm_fd_get_offset(fd);
1579         dma_addr_t addr = qm_fd_addr(fd);
1580         const struct qm_sg_entry *sgt;
1581         struct page *page, *head_page;
1582         struct dpaa_bp *dpaa_bp;
1583         void *vaddr, *sg_vaddr;
1584         int frag_off, frag_len;
1585         struct sk_buff *skb;
1586         dma_addr_t sg_addr;
1587         int page_offset;
1588         unsigned int sz;
1589         int *count_ptr;
1590         int i;
1591
1592         vaddr = phys_to_virt(addr);
1593         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1594
1595         /* Iterate through the SGT entries and add data buffers to the skb */
1596         sgt = vaddr + fd_off;
1597         for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1598                 /* Extension bit is not supported */
1599                 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1600
1601                 sg_addr = qm_sg_addr(&sgt[i]);
1602                 sg_vaddr = phys_to_virt(sg_addr);
1603                 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1604                                     SMP_CACHE_BYTES));
1605
1606                 /* We may use multiple Rx pools */
1607                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1608                 if (!dpaa_bp)
1609                         goto free_buffers;
1610
1611                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1612                 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1613                                  DMA_FROM_DEVICE);
1614                 if (i == 0) {
1615                         sz = dpaa_bp->size +
1616                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1617                         skb = build_skb(sg_vaddr, sz);
1618                         if (WARN_ON(unlikely(!skb)))
1619                                 goto free_buffers;
1620
1621                         skb->ip_summed = CHECKSUM_NONE;
1622
1623                         /* Make sure forwarded skbs will have enough space
1624                          * on Tx, if extra headers are added.
1625                          */
1626                         WARN_ON(fd_off != priv->rx_headroom);
1627                         skb_reserve(skb, fd_off);
1628                         skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1629                 } else {
1630                         /* Not the first S/G entry; all data from buffer will
1631                          * be added in an skb fragment; fragment index is offset
1632                          * by one since first S/G entry was incorporated in the
1633                          * linear part of the skb.
1634                          *
1635                          * Caution: 'page' may be a tail page.
1636                          */
1637                         page = virt_to_page(sg_vaddr);
1638                         head_page = virt_to_head_page(sg_vaddr);
1639
1640                         /* Compute offset in (possibly tail) page */
1641                         page_offset = ((unsigned long)sg_vaddr &
1642                                         (PAGE_SIZE - 1)) +
1643                                 (page_address(page) - page_address(head_page));
1644                         /* page_offset only refers to the beginning of sgt[i];
1645                          * but the buffer itself may have an internal offset.
1646                          */
1647                         frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1648                         frag_len = qm_sg_entry_get_len(&sgt[i]);
1649                         /* skb_add_rx_frag() does no checking on the page; if
1650                          * we pass it a tail page, we'll end up with
1651                          * bad page accounting and eventually with segafults.
1652                          */
1653                         skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1654                                         frag_len, dpaa_bp->size);
1655                 }
1656                 /* Update the pool count for the current {cpu x bpool} */
1657                 (*count_ptr)--;
1658
1659                 if (qm_sg_entry_is_final(&sgt[i]))
1660                         break;
1661         }
1662         WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1663
1664         /* free the SG table buffer */
1665         skb_free_frag(vaddr);
1666
1667         return skb;
1668
1669 free_buffers:
1670         /* compensate sw bpool counter changes */
1671         for (i--; i > 0; i--) {
1672                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1673                 if (dpaa_bp) {
1674                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1675                         (*count_ptr)++;
1676                 }
1677         }
1678         /* free all the SG entries */
1679         for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1680                 sg_addr = qm_sg_addr(&sgt[i]);
1681                 sg_vaddr = phys_to_virt(sg_addr);
1682                 skb_free_frag(sg_vaddr);
1683                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1684                 if (dpaa_bp) {
1685                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1686                         (*count_ptr)--;
1687                 }
1688
1689                 if (qm_sg_entry_is_final(&sgt[i]))
1690                         break;
1691         }
1692         /* free the SGT fragment */
1693         skb_free_frag(vaddr);
1694
1695         return NULL;
1696 }
1697
1698 static int skb_to_contig_fd(struct dpaa_priv *priv,
1699                             struct sk_buff *skb, struct qm_fd *fd,
1700                             int *offset)
1701 {
1702         struct net_device *net_dev = priv->net_dev;
1703         struct device *dev = net_dev->dev.parent;
1704         enum dma_data_direction dma_dir;
1705         unsigned char *buffer_start;
1706         struct sk_buff **skbh;
1707         dma_addr_t addr;
1708         int err;
1709
1710         /* We are guaranteed to have at least tx_headroom bytes
1711          * available, so just use that for offset.
1712          */
1713         fd->bpid = FSL_DPAA_BPID_INV;
1714         buffer_start = skb->data - priv->tx_headroom;
1715         dma_dir = DMA_TO_DEVICE;
1716
1717         skbh = (struct sk_buff **)buffer_start;
1718         *skbh = skb;
1719
1720         /* Enable L3/L4 hardware checksum computation.
1721          *
1722          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1723          * need to write into the skb.
1724          */
1725         err = dpaa_enable_tx_csum(priv, skb, fd,
1726                                   ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1727         if (unlikely(err < 0)) {
1728                 if (net_ratelimit())
1729                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1730                                   err);
1731                 return err;
1732         }
1733
1734         /* Fill in the rest of the FD fields */
1735         qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1736         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1737
1738         /* Map the entire buffer size that may be seen by FMan, but no more */
1739         addr = dma_map_single(dev, skbh,
1740                               skb_tail_pointer(skb) - buffer_start, dma_dir);
1741         if (unlikely(dma_mapping_error(dev, addr))) {
1742                 if (net_ratelimit())
1743                         netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1744                 return -EINVAL;
1745         }
1746         qm_fd_addr_set64(fd, addr);
1747
1748         return 0;
1749 }
1750
1751 static int skb_to_sg_fd(struct dpaa_priv *priv,
1752                         struct sk_buff *skb, struct qm_fd *fd)
1753 {
1754         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1755         const int nr_frags = skb_shinfo(skb)->nr_frags;
1756         struct net_device *net_dev = priv->net_dev;
1757         struct device *dev = net_dev->dev.parent;
1758         struct qm_sg_entry *sgt;
1759         struct sk_buff **skbh;
1760         int i, j, err, sz;
1761         void *buffer_start;
1762         skb_frag_t *frag;
1763         dma_addr_t addr;
1764         size_t frag_len;
1765         void *sgt_buf;
1766
1767         /* get a page frag to store the SGTable */
1768         sz = SKB_DATA_ALIGN(priv->tx_headroom +
1769                 sizeof(struct qm_sg_entry) * (1 + nr_frags));
1770         sgt_buf = netdev_alloc_frag(sz);
1771         if (unlikely(!sgt_buf)) {
1772                 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1773                            sz);
1774                 return -ENOMEM;
1775         }
1776
1777         /* Enable L3/L4 hardware checksum computation.
1778          *
1779          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1780          * need to write into the skb.
1781          */
1782         err = dpaa_enable_tx_csum(priv, skb, fd,
1783                                   sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1784         if (unlikely(err < 0)) {
1785                 if (net_ratelimit())
1786                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1787                                   err);
1788                 goto csum_failed;
1789         }
1790
1791         sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1792         qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1793         sgt[0].bpid = FSL_DPAA_BPID_INV;
1794         sgt[0].offset = 0;
1795         addr = dma_map_single(dev, skb->data,
1796                               skb_headlen(skb), dma_dir);
1797         if (unlikely(dma_mapping_error(dev, addr))) {
1798                 dev_err(dev, "DMA mapping failed");
1799                 err = -EINVAL;
1800                 goto sg0_map_failed;
1801         }
1802         qm_sg_entry_set64(&sgt[0], addr);
1803
1804         /* populate the rest of SGT entries */
1805         frag = &skb_shinfo(skb)->frags[0];
1806         frag_len = frag->size;
1807         for (i = 1; i <= nr_frags; i++, frag++) {
1808                 WARN_ON(!skb_frag_page(frag));
1809                 addr = skb_frag_dma_map(dev, frag, 0,
1810                                         frag_len, dma_dir);
1811                 if (unlikely(dma_mapping_error(dev, addr))) {
1812                         dev_err(dev, "DMA mapping failed");
1813                         err = -EINVAL;
1814                         goto sg_map_failed;
1815                 }
1816
1817                 qm_sg_entry_set_len(&sgt[i], frag_len);
1818                 sgt[i].bpid = FSL_DPAA_BPID_INV;
1819                 sgt[i].offset = 0;
1820
1821                 /* keep the offset in the address */
1822                 qm_sg_entry_set64(&sgt[i], addr);
1823                 frag_len = frag->size;
1824         }
1825         qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1826
1827         qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1828
1829         /* DMA map the SGT page */
1830         buffer_start = (void *)sgt - priv->tx_headroom;
1831         skbh = (struct sk_buff **)buffer_start;
1832         *skbh = skb;
1833
1834         addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1835                               sizeof(struct qm_sg_entry) * (1 + nr_frags),
1836                               dma_dir);
1837         if (unlikely(dma_mapping_error(dev, addr))) {
1838                 dev_err(dev, "DMA mapping failed");
1839                 err = -EINVAL;
1840                 goto sgt_map_failed;
1841         }
1842
1843         fd->bpid = FSL_DPAA_BPID_INV;
1844         fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1845         qm_fd_addr_set64(fd, addr);
1846
1847         return 0;
1848
1849 sgt_map_failed:
1850 sg_map_failed:
1851         for (j = 0; j < i; j++)
1852                 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1853                                qm_sg_entry_get_len(&sgt[j]), dma_dir);
1854 sg0_map_failed:
1855 csum_failed:
1856         skb_free_frag(sgt_buf);
1857
1858         return err;
1859 }
1860
1861 static inline int dpaa_xmit(struct dpaa_priv *priv,
1862                             struct rtnl_link_stats64 *percpu_stats,
1863                             int queue,
1864                             struct qm_fd *fd)
1865 {
1866         struct qman_fq *egress_fq;
1867         int err, i;
1868
1869         egress_fq = priv->egress_fqs[queue];
1870         if (fd->bpid == FSL_DPAA_BPID_INV)
1871                 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
1872
1873         /* Trace this Tx fd */
1874         trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
1875
1876         for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
1877                 err = qman_enqueue(egress_fq, fd);
1878                 if (err != -EBUSY)
1879                         break;
1880         }
1881
1882         if (unlikely(err < 0)) {
1883                 percpu_stats->tx_errors++;
1884                 percpu_stats->tx_fifo_errors++;
1885                 return err;
1886         }
1887
1888         percpu_stats->tx_packets++;
1889         percpu_stats->tx_bytes += qm_fd_get_length(fd);
1890
1891         return 0;
1892 }
1893
1894 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1895 {
1896         const int queue_mapping = skb_get_queue_mapping(skb);
1897         bool nonlinear = skb_is_nonlinear(skb);
1898         struct rtnl_link_stats64 *percpu_stats;
1899         struct dpaa_percpu_priv *percpu_priv;
1900         struct dpaa_priv *priv;
1901         struct qm_fd fd;
1902         int offset = 0;
1903         int err = 0;
1904
1905         priv = netdev_priv(net_dev);
1906         percpu_priv = this_cpu_ptr(priv->percpu_priv);
1907         percpu_stats = &percpu_priv->stats;
1908
1909         qm_fd_clear_fd(&fd);
1910
1911         if (!nonlinear) {
1912                 /* We're going to store the skb backpointer at the beginning
1913                  * of the data buffer, so we need a privately owned skb
1914                  *
1915                  * We've made sure skb is not shared in dev->priv_flags,
1916                  * we need to verify the skb head is not cloned
1917                  */
1918                 if (skb_cow_head(skb, priv->tx_headroom))
1919                         goto enomem;
1920
1921                 WARN_ON(skb_is_nonlinear(skb));
1922         }
1923
1924         /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
1925          * make sure we don't feed FMan with more fragments than it supports.
1926          */
1927         if (nonlinear &&
1928             likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
1929                 /* Just create a S/G fd based on the skb */
1930                 err = skb_to_sg_fd(priv, skb, &fd);
1931                 percpu_priv->tx_frag_skbuffs++;
1932         } else {
1933                 /* If the egress skb contains more fragments than we support
1934                  * we have no choice but to linearize it ourselves.
1935                  */
1936                 if (unlikely(nonlinear) && __skb_linearize(skb))
1937                         goto enomem;
1938
1939                 /* Finally, create a contig FD from this skb */
1940                 err = skb_to_contig_fd(priv, skb, &fd, &offset);
1941         }
1942         if (unlikely(err < 0))
1943                 goto skb_to_fd_failed;
1944
1945         if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
1946                 return NETDEV_TX_OK;
1947
1948         dpaa_cleanup_tx_fd(priv, &fd);
1949 skb_to_fd_failed:
1950 enomem:
1951         percpu_stats->tx_errors++;
1952         dev_kfree_skb(skb);
1953         return NETDEV_TX_OK;
1954 }
1955
1956 static void dpaa_rx_error(struct net_device *net_dev,
1957                           const struct dpaa_priv *priv,
1958                           struct dpaa_percpu_priv *percpu_priv,
1959                           const struct qm_fd *fd,
1960                           u32 fqid)
1961 {
1962         if (net_ratelimit())
1963                 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
1964                           be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
1965
1966         percpu_priv->stats.rx_errors++;
1967
1968         if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
1969                 percpu_priv->rx_errors.dme++;
1970         if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
1971                 percpu_priv->rx_errors.fpe++;
1972         if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
1973                 percpu_priv->rx_errors.fse++;
1974         if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
1975                 percpu_priv->rx_errors.phe++;
1976
1977         dpaa_fd_release(net_dev, fd);
1978 }
1979
1980 static void dpaa_tx_error(struct net_device *net_dev,
1981                           const struct dpaa_priv *priv,
1982                           struct dpaa_percpu_priv *percpu_priv,
1983                           const struct qm_fd *fd,
1984                           u32 fqid)
1985 {
1986         struct sk_buff *skb;
1987
1988         if (net_ratelimit())
1989                 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
1990                            be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
1991
1992         percpu_priv->stats.tx_errors++;
1993
1994         skb = dpaa_cleanup_tx_fd(priv, fd);
1995         dev_kfree_skb(skb);
1996 }
1997
1998 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
1999 {
2000         struct dpaa_napi_portal *np =
2001                         container_of(napi, struct dpaa_napi_portal, napi);
2002
2003         int cleaned = qman_p_poll_dqrr(np->p, budget);
2004
2005         if (cleaned < budget) {
2006                 napi_complete(napi);
2007                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2008
2009         } else if (np->down) {
2010                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2011         }
2012
2013         return cleaned;
2014 }
2015
2016 static void dpaa_tx_conf(struct net_device *net_dev,
2017                          const struct dpaa_priv *priv,
2018                          struct dpaa_percpu_priv *percpu_priv,
2019                          const struct qm_fd *fd,
2020                          u32 fqid)
2021 {
2022         struct sk_buff  *skb;
2023
2024         if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2025                 if (net_ratelimit())
2026                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2027                                    be32_to_cpu(fd->status) &
2028                                    FM_FD_STAT_TX_ERRORS);
2029
2030                 percpu_priv->stats.tx_errors++;
2031         }
2032
2033         percpu_priv->tx_confirm++;
2034
2035         skb = dpaa_cleanup_tx_fd(priv, fd);
2036
2037         consume_skb(skb);
2038 }
2039
2040 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2041                                          struct qman_portal *portal)
2042 {
2043         if (unlikely(in_irq() || !in_serving_softirq())) {
2044                 /* Disable QMan IRQ and invoke NAPI */
2045                 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2046
2047                 percpu_priv->np.p = portal;
2048                 napi_schedule(&percpu_priv->np.napi);
2049                 percpu_priv->in_interrupt++;
2050                 return 1;
2051         }
2052         return 0;
2053 }
2054
2055 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2056                                               struct qman_fq *fq,
2057                                               const struct qm_dqrr_entry *dq)
2058 {
2059         struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2060         struct dpaa_percpu_priv *percpu_priv;
2061         struct net_device *net_dev;
2062         struct dpaa_bp *dpaa_bp;
2063         struct dpaa_priv *priv;
2064
2065         net_dev = dpaa_fq->net_dev;
2066         priv = netdev_priv(net_dev);
2067         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2068         if (!dpaa_bp)
2069                 return qman_cb_dqrr_consume;
2070
2071         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2072
2073         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2074                 return qman_cb_dqrr_stop;
2075
2076         if (dpaa_eth_refill_bpools(priv))
2077                 /* Unable to refill the buffer pool due to insufficient
2078                  * system memory. Just release the frame back into the pool,
2079                  * otherwise we'll soon end up with an empty buffer pool.
2080                  */
2081                 dpaa_fd_release(net_dev, &dq->fd);
2082         else
2083                 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2084
2085         return qman_cb_dqrr_consume;
2086 }
2087
2088 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2089                                                 struct qman_fq *fq,
2090                                                 const struct qm_dqrr_entry *dq)
2091 {
2092         struct rtnl_link_stats64 *percpu_stats;
2093         struct dpaa_percpu_priv *percpu_priv;
2094         const struct qm_fd *fd = &dq->fd;
2095         dma_addr_t addr = qm_fd_addr(fd);
2096         enum qm_fd_format fd_format;
2097         struct net_device *net_dev;
2098         u32 fd_status = fd->status;
2099         struct dpaa_bp *dpaa_bp;
2100         struct dpaa_priv *priv;
2101         unsigned int skb_len;
2102         struct sk_buff *skb;
2103         int *count_ptr;
2104
2105         fd_status = be32_to_cpu(fd->status);
2106         fd_format = qm_fd_get_format(fd);
2107         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2108         priv = netdev_priv(net_dev);
2109         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2110         if (!dpaa_bp)
2111                 return qman_cb_dqrr_consume;
2112
2113         /* Trace the Rx fd */
2114         trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2115
2116         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2117         percpu_stats = &percpu_priv->stats;
2118
2119         if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2120                 return qman_cb_dqrr_stop;
2121
2122         /* Make sure we didn't run out of buffers */
2123         if (unlikely(dpaa_eth_refill_bpools(priv))) {
2124                 /* Unable to refill the buffer pool due to insufficient
2125                  * system memory. Just release the frame back into the pool,
2126                  * otherwise we'll soon end up with an empty buffer pool.
2127                  */
2128                 dpaa_fd_release(net_dev, &dq->fd);
2129                 return qman_cb_dqrr_consume;
2130         }
2131
2132         if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2133                 if (net_ratelimit())
2134                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2135                                    fd_status & FM_FD_STAT_RX_ERRORS);
2136
2137                 percpu_stats->rx_errors++;
2138                 dpaa_fd_release(net_dev, fd);
2139                 return qman_cb_dqrr_consume;
2140         }
2141
2142         dpaa_bp = dpaa_bpid2pool(fd->bpid);
2143         if (!dpaa_bp)
2144                 return qman_cb_dqrr_consume;
2145
2146         dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2147
2148         /* prefetch the first 64 bytes of the frame or the SGT start */
2149         prefetch(phys_to_virt(addr) + qm_fd_get_offset(fd));
2150
2151         fd_format = qm_fd_get_format(fd);
2152         /* The only FD types that we may receive are contig and S/G */
2153         WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2154
2155         /* Account for either the contig buffer or the SGT buffer (depending on
2156          * which case we were in) having been removed from the pool.
2157          */
2158         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2159         (*count_ptr)--;
2160
2161         if (likely(fd_format == qm_fd_contig))
2162                 skb = contig_fd_to_skb(priv, fd);
2163         else
2164                 skb = sg_fd_to_skb(priv, fd);
2165         if (!skb)
2166                 return qman_cb_dqrr_consume;
2167
2168         skb->protocol = eth_type_trans(skb, net_dev);
2169
2170         skb_len = skb->len;
2171
2172         if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2173                 return qman_cb_dqrr_consume;
2174
2175         percpu_stats->rx_packets++;
2176         percpu_stats->rx_bytes += skb_len;
2177
2178         return qman_cb_dqrr_consume;
2179 }
2180
2181 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2182                                                 struct qman_fq *fq,
2183                                                 const struct qm_dqrr_entry *dq)
2184 {
2185         struct dpaa_percpu_priv *percpu_priv;
2186         struct net_device *net_dev;
2187         struct dpaa_priv *priv;
2188
2189         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2190         priv = netdev_priv(net_dev);
2191
2192         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2193
2194         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2195                 return qman_cb_dqrr_stop;
2196
2197         dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2198
2199         return qman_cb_dqrr_consume;
2200 }
2201
2202 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2203                                                struct qman_fq *fq,
2204                                                const struct qm_dqrr_entry *dq)
2205 {
2206         struct dpaa_percpu_priv *percpu_priv;
2207         struct net_device *net_dev;
2208         struct dpaa_priv *priv;
2209
2210         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2211         priv = netdev_priv(net_dev);
2212
2213         /* Trace the fd */
2214         trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2215
2216         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2217
2218         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2219                 return qman_cb_dqrr_stop;
2220
2221         dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2222
2223         return qman_cb_dqrr_consume;
2224 }
2225
2226 static void egress_ern(struct qman_portal *portal,
2227                        struct qman_fq *fq,
2228                        const union qm_mr_entry *msg)
2229 {
2230         const struct qm_fd *fd = &msg->ern.fd;
2231         struct dpaa_percpu_priv *percpu_priv;
2232         const struct dpaa_priv *priv;
2233         struct net_device *net_dev;
2234         struct sk_buff *skb;
2235
2236         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2237         priv = netdev_priv(net_dev);
2238         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2239
2240         percpu_priv->stats.tx_dropped++;
2241         percpu_priv->stats.tx_fifo_errors++;
2242         count_ern(percpu_priv, msg);
2243
2244         skb = dpaa_cleanup_tx_fd(priv, fd);
2245         dev_kfree_skb_any(skb);
2246 }
2247
2248 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2249         .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2250         .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2251         .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2252         .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2253         .egress_ern = { .cb = { .ern = egress_ern } }
2254 };
2255
2256 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2257 {
2258         struct dpaa_percpu_priv *percpu_priv;
2259         int i;
2260
2261         for_each_possible_cpu(i) {
2262                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2263
2264                 percpu_priv->np.down = 0;
2265                 napi_enable(&percpu_priv->np.napi);
2266         }
2267 }
2268
2269 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2270 {
2271         struct dpaa_percpu_priv *percpu_priv;
2272         int i;
2273
2274         for_each_possible_cpu(i) {
2275                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2276
2277                 percpu_priv->np.down = 1;
2278                 napi_disable(&percpu_priv->np.napi);
2279         }
2280 }
2281
2282 static int dpaa_open(struct net_device *net_dev)
2283 {
2284         struct mac_device *mac_dev;
2285         struct dpaa_priv *priv;
2286         int err, i;
2287
2288         priv = netdev_priv(net_dev);
2289         mac_dev = priv->mac_dev;
2290         dpaa_eth_napi_enable(priv);
2291
2292         net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev);
2293         if (!net_dev->phydev) {
2294                 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2295                 err = -ENODEV;
2296                 goto phy_init_failed;
2297         }
2298
2299         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2300                 err = fman_port_enable(mac_dev->port[i]);
2301                 if (err)
2302                         goto mac_start_failed;
2303         }
2304
2305         err = priv->mac_dev->start(mac_dev);
2306         if (err < 0) {
2307                 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2308                 goto mac_start_failed;
2309         }
2310
2311         netif_tx_start_all_queues(net_dev);
2312
2313         return 0;
2314
2315 mac_start_failed:
2316         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2317                 fman_port_disable(mac_dev->port[i]);
2318
2319 phy_init_failed:
2320         dpaa_eth_napi_disable(priv);
2321
2322         return err;
2323 }
2324
2325 static int dpaa_eth_stop(struct net_device *net_dev)
2326 {
2327         struct dpaa_priv *priv;
2328         int err;
2329
2330         err = dpaa_stop(net_dev);
2331
2332         priv = netdev_priv(net_dev);
2333         dpaa_eth_napi_disable(priv);
2334
2335         return err;
2336 }
2337
2338 static const struct net_device_ops dpaa_ops = {
2339         .ndo_open = dpaa_open,
2340         .ndo_start_xmit = dpaa_start_xmit,
2341         .ndo_stop = dpaa_eth_stop,
2342         .ndo_tx_timeout = dpaa_tx_timeout,
2343         .ndo_get_stats64 = dpaa_get_stats64,
2344         .ndo_set_mac_address = dpaa_set_mac_address,
2345         .ndo_validate_addr = eth_validate_addr,
2346         .ndo_set_rx_mode = dpaa_set_rx_mode,
2347 };
2348
2349 static int dpaa_napi_add(struct net_device *net_dev)
2350 {
2351         struct dpaa_priv *priv = netdev_priv(net_dev);
2352         struct dpaa_percpu_priv *percpu_priv;
2353         int cpu;
2354
2355         for_each_possible_cpu(cpu) {
2356                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2357
2358                 netif_napi_add(net_dev, &percpu_priv->np.napi,
2359                                dpaa_eth_poll, NAPI_POLL_WEIGHT);
2360         }
2361
2362         return 0;
2363 }
2364
2365 static void dpaa_napi_del(struct net_device *net_dev)
2366 {
2367         struct dpaa_priv *priv = netdev_priv(net_dev);
2368         struct dpaa_percpu_priv *percpu_priv;
2369         int cpu;
2370
2371         for_each_possible_cpu(cpu) {
2372                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2373
2374                 netif_napi_del(&percpu_priv->np.napi);
2375         }
2376 }
2377
2378 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2379                                    struct bm_buffer *bmb)
2380 {
2381         dma_addr_t addr = bm_buf_addr(bmb);
2382
2383         dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2384
2385         skb_free_frag(phys_to_virt(addr));
2386 }
2387
2388 /* Alloc the dpaa_bp struct and configure default values */
2389 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2390 {
2391         struct dpaa_bp *dpaa_bp;
2392
2393         dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2394         if (!dpaa_bp)
2395                 return ERR_PTR(-ENOMEM);
2396
2397         dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2398         dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2399         dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2400
2401         dpaa_bp->seed_cb = dpaa_bp_seed;
2402         dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2403
2404         return dpaa_bp;
2405 }
2406
2407 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2408  * We won't be sending congestion notifications to FMan; for now, we just use
2409  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2410  * before they reach our ingress queues and eat up memory.
2411  */
2412 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2413 {
2414         struct qm_mcc_initcgr initcgr;
2415         u32 cs_th;
2416         int err;
2417
2418         err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2419         if (err < 0) {
2420                 if (netif_msg_drv(priv))
2421                         pr_err("Error %d allocating CGR ID\n", err);
2422                 goto out_error;
2423         }
2424
2425         /* Enable CS TD, but disable Congestion State Change Notifications. */
2426         memset(&initcgr, 0, sizeof(initcgr));
2427         initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2428         initcgr.cgr.cscn_en = QM_CGR_EN;
2429         cs_th = DPAA_INGRESS_CS_THRESHOLD;
2430         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2431
2432         initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2433         initcgr.cgr.cstd_en = QM_CGR_EN;
2434
2435         /* This CGR will be associated with the SWP affined to the current CPU.
2436          * However, we'll place all our ingress FQs in it.
2437          */
2438         err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2439                               &initcgr);
2440         if (err < 0) {
2441                 if (netif_msg_drv(priv))
2442                         pr_err("Error %d creating ingress CGR with ID %d\n",
2443                                err, priv->ingress_cgr.cgrid);
2444                 qman_release_cgrid(priv->ingress_cgr.cgrid);
2445                 goto out_error;
2446         }
2447         if (netif_msg_drv(priv))
2448                 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2449                          priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2450
2451         priv->use_ingress_cgr = true;
2452
2453 out_error:
2454         return err;
2455 }
2456
2457 static const struct of_device_id dpaa_match[];
2458
2459 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2460 {
2461         u16 headroom;
2462
2463         /* The frame headroom must accommodate:
2464          * - the driver private data area
2465          * - parse results, hash results, timestamp if selected
2466          * If either hash results or time stamp are selected, both will
2467          * be copied to/from the frame headroom, as TS is located between PR and
2468          * HR in the IC and IC copy size has a granularity of 16bytes
2469          * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2470          *
2471          * Also make sure the headroom is a multiple of data_align bytes
2472          */
2473         headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2474                 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2475
2476         return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2477                                               DPAA_FD_DATA_ALIGNMENT) :
2478                                         headroom;
2479 }
2480
2481 static int dpaa_eth_probe(struct platform_device *pdev)
2482 {
2483         struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2484         struct dpaa_percpu_priv *percpu_priv;
2485         struct net_device *net_dev = NULL;
2486         struct dpaa_fq *dpaa_fq, *tmp;
2487         struct dpaa_priv *priv = NULL;
2488         struct fm_port_fqs port_fqs;
2489         struct mac_device *mac_dev;
2490         int err = 0, i, channel;
2491         struct device *dev;
2492
2493         dev = &pdev->dev;
2494
2495         /* Allocate this early, so we can store relevant information in
2496          * the private area
2497          */
2498         net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2499         if (!net_dev) {
2500                 dev_err(dev, "alloc_etherdev_mq() failed\n");
2501                 goto alloc_etherdev_mq_failed;
2502         }
2503
2504         /* Do this here, so we can be verbose early */
2505         SET_NETDEV_DEV(net_dev, dev);
2506         dev_set_drvdata(dev, net_dev);
2507
2508         priv = netdev_priv(net_dev);
2509         priv->net_dev = net_dev;
2510
2511         priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2512
2513         mac_dev = dpaa_mac_dev_get(pdev);
2514         if (IS_ERR(mac_dev)) {
2515                 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2516                 err = PTR_ERR(mac_dev);
2517                 goto mac_probe_failed;
2518         }
2519
2520         /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2521          * we choose conservatively and let the user explicitly set a higher
2522          * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2523          * in the same LAN.
2524          * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2525          * start with the maximum allowed.
2526          */
2527         net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2528
2529         netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2530                    net_dev->mtu);
2531
2532         priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2533         priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2534
2535         /* device used for DMA mapping */
2536         arch_setup_dma_ops(dev, 0, 0, NULL, false);
2537         err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2538         if (err) {
2539                 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2540                 goto dev_mask_failed;
2541         }
2542
2543         /* bp init */
2544         for (i = 0; i < DPAA_BPS_NUM; i++) {
2545                 int err;
2546
2547                 dpaa_bps[i] = dpaa_bp_alloc(dev);
2548                 if (IS_ERR(dpaa_bps[i]))
2549                         return PTR_ERR(dpaa_bps[i]);
2550                 /* the raw size of the buffers used for reception */
2551                 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2552                 /* avoid runtime computations by keeping the usable size here */
2553                 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2554                 dpaa_bps[i]->dev = dev;
2555
2556                 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2557                 if (err < 0) {
2558                         dpaa_bps_free(priv);
2559                         priv->dpaa_bps[i] = NULL;
2560                         goto bp_create_failed;
2561                 }
2562                 priv->dpaa_bps[i] = dpaa_bps[i];
2563         }
2564
2565         INIT_LIST_HEAD(&priv->dpaa_fq_list);
2566
2567         memset(&port_fqs, 0, sizeof(port_fqs));
2568
2569         err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2570         if (err < 0) {
2571                 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2572                 goto fq_probe_failed;
2573         }
2574
2575         priv->mac_dev = mac_dev;
2576
2577         channel = dpaa_get_channel();
2578         if (channel < 0) {
2579                 dev_err(dev, "dpaa_get_channel() failed\n");
2580                 err = channel;
2581                 goto get_channel_failed;
2582         }
2583
2584         priv->channel = (u16)channel;
2585
2586         /* Start a thread that will walk the CPUs with affine portals
2587          * and add this pool channel to each's dequeue mask.
2588          */
2589         dpaa_eth_add_channel(priv->channel);
2590
2591         dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2592
2593         /* Create a congestion group for this netdev, with
2594          * dynamically-allocated CGR ID.
2595          * Must be executed after probing the MAC, but before
2596          * assigning the egress FQs to the CGRs.
2597          */
2598         err = dpaa_eth_cgr_init(priv);
2599         if (err < 0) {
2600                 dev_err(dev, "Error initializing CGR\n");
2601                 goto tx_cgr_init_failed;
2602         }
2603
2604         err = dpaa_ingress_cgr_init(priv);
2605         if (err < 0) {
2606                 dev_err(dev, "Error initializing ingress CGR\n");
2607                 goto rx_cgr_init_failed;
2608         }
2609
2610         /* Add the FQs to the interface, and make them active */
2611         list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2612                 err = dpaa_fq_init(dpaa_fq, false);
2613                 if (err < 0)
2614                         goto fq_alloc_failed;
2615         }
2616
2617         priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2618         priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2619
2620         /* All real interfaces need their ports initialized */
2621         dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2622                             &priv->buf_layout[0], dev);
2623
2624         priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2625         if (!priv->percpu_priv) {
2626                 dev_err(dev, "devm_alloc_percpu() failed\n");
2627                 err = -ENOMEM;
2628                 goto alloc_percpu_failed;
2629         }
2630         for_each_possible_cpu(i) {
2631                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2632                 memset(percpu_priv, 0, sizeof(*percpu_priv));
2633         }
2634
2635         /* Initialize NAPI */
2636         err = dpaa_napi_add(net_dev);
2637         if (err < 0)
2638                 goto napi_add_failed;
2639
2640         err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2641         if (err < 0)
2642                 goto netdev_init_failed;
2643
2644         dpaa_eth_sysfs_init(&net_dev->dev);
2645
2646         netif_info(priv, probe, net_dev, "Probed interface %s\n",
2647                    net_dev->name);
2648
2649         return 0;
2650
2651 netdev_init_failed:
2652 napi_add_failed:
2653         dpaa_napi_del(net_dev);
2654 alloc_percpu_failed:
2655         dpaa_fq_free(dev, &priv->dpaa_fq_list);
2656 fq_alloc_failed:
2657         qman_delete_cgr_safe(&priv->ingress_cgr);
2658         qman_release_cgrid(priv->ingress_cgr.cgrid);
2659 rx_cgr_init_failed:
2660         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2661         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2662 tx_cgr_init_failed:
2663 get_channel_failed:
2664         dpaa_bps_free(priv);
2665 bp_create_failed:
2666 fq_probe_failed:
2667 dev_mask_failed:
2668 mac_probe_failed:
2669         dev_set_drvdata(dev, NULL);
2670         free_netdev(net_dev);
2671 alloc_etherdev_mq_failed:
2672         for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) {
2673                 if (atomic_read(&dpaa_bps[i]->refs) == 0)
2674                         devm_kfree(dev, dpaa_bps[i]);
2675         }
2676         return err;
2677 }
2678
2679 static int dpaa_remove(struct platform_device *pdev)
2680 {
2681         struct net_device *net_dev;
2682         struct dpaa_priv *priv;
2683         struct device *dev;
2684         int err;
2685
2686         dev = &pdev->dev;
2687         net_dev = dev_get_drvdata(dev);
2688
2689         priv = netdev_priv(net_dev);
2690
2691         dpaa_eth_sysfs_remove(dev);
2692
2693         dev_set_drvdata(dev, NULL);
2694         unregister_netdev(net_dev);
2695
2696         err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2697
2698         qman_delete_cgr_safe(&priv->ingress_cgr);
2699         qman_release_cgrid(priv->ingress_cgr.cgrid);
2700         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2701         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2702
2703         dpaa_napi_del(net_dev);
2704
2705         dpaa_bps_free(priv);
2706
2707         free_netdev(net_dev);
2708
2709         return err;
2710 }
2711
2712 static struct platform_device_id dpaa_devtype[] = {
2713         {
2714                 .name = "dpaa-ethernet",
2715                 .driver_data = 0,
2716         }, {
2717         }
2718 };
2719 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2720
2721 static struct platform_driver dpaa_driver = {
2722         .driver = {
2723                 .name = KBUILD_MODNAME,
2724         },
2725         .id_table = dpaa_devtype,
2726         .probe = dpaa_eth_probe,
2727         .remove = dpaa_remove
2728 };
2729
2730 static int __init dpaa_load(void)
2731 {
2732         int err;
2733
2734         pr_debug("FSL DPAA Ethernet driver\n");
2735
2736         /* initialize dpaa_eth mirror values */
2737         dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2738         dpaa_max_frm = fman_get_max_frm();
2739
2740         err = platform_driver_register(&dpaa_driver);
2741         if (err < 0)
2742                 pr_err("Error, platform_driver_register() = %d\n", err);
2743
2744         return err;
2745 }
2746 module_init(dpaa_load);
2747
2748 static void __exit dpaa_unload(void)
2749 {
2750         platform_driver_unregister(&dpaa_driver);
2751
2752         /* Only one channel is used and needs to be released after all
2753          * interfaces are removed
2754          */
2755         dpaa_release_channel();
2756 }
2757 module_exit(dpaa_unload);
2758
2759 MODULE_LICENSE("Dual BSD/GPL");
2760 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");