]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/freescale/dpaa/dpaa_eth.c
Merge tag 'for-linus-4.10-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / net / ethernet / freescale / dpaa / dpaa_eth.c
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *       notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *       notice, this list of conditions and the following disclaimer in the
9  *       documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *       names of its contributors may be used to endorse or promote products
12  *       derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75
76 #define FM_FD_STAT_RX_ERRORS                                            \
77         (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL     | \
78          FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79          FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME     | \
80          FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81          FM_FD_ERR_PRS_HDR_ERR)
82
83 #define FM_FD_STAT_TX_ERRORS \
84         (FM_FD_ERR_UNSUPPORTED_FORMAT | \
85          FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88                           NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89                           NETIF_MSG_IFDOWN)
90
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL        127
124
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127
128 /* Values for the L3R field of the FM Parse Results
129  */
130 /* L3 Type field: First IP Present IPv4 */
131 #define FM_L3_PARSE_RESULT_IPV4 0x8000
132 /* L3 Type field: First IP Present IPv6 */
133 #define FM_L3_PARSE_RESULT_IPV6 0x4000
134 /* Values for the L4R field of the FM Parse Results */
135 /* L4 Type field: UDP */
136 #define FM_L4_PARSE_RESULT_UDP  0x40
137 /* L4 Type field: TCP */
138 #define FM_L4_PARSE_RESULT_TCP  0x20
139
140 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
141 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
142
143 #define FSL_DPAA_BPID_INV               0xff
144 #define FSL_DPAA_ETH_MAX_BUF_COUNT      128
145 #define FSL_DPAA_ETH_REFILL_THRESHOLD   80
146
147 #define DPAA_TX_PRIV_DATA_SIZE  16
148 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
149 #define DPAA_TIME_STAMP_SIZE 8
150 #define DPAA_HASH_RESULTS_SIZE 8
151 #define DPAA_RX_PRIV_DATA_SIZE  (u16)(DPAA_TX_PRIV_DATA_SIZE + \
152                                         dpaa_rx_extra_headroom)
153
154 #define DPAA_ETH_RX_QUEUES      128
155
156 #define DPAA_ENQUEUE_RETRIES    100000
157
158 enum port_type {RX, TX};
159
160 struct fm_port_fqs {
161         struct dpaa_fq *tx_defq;
162         struct dpaa_fq *tx_errq;
163         struct dpaa_fq *rx_defq;
164         struct dpaa_fq *rx_errq;
165 };
166
167 /* All the dpa bps in use at any moment */
168 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
169
170 /* The raw buffer size must be cacheline aligned */
171 #define DPAA_BP_RAW_SIZE 4096
172 /* When using more than one buffer pool, the raw sizes are as follows:
173  * 1 bp: 4KB
174  * 2 bp: 2KB, 4KB
175  * 3 bp: 1KB, 2KB, 4KB
176  * 4 bp: 1KB, 2KB, 4KB, 8KB
177  */
178 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
179 {
180         size_t res = DPAA_BP_RAW_SIZE / 4;
181         u8 i;
182
183         for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
184                 res *= 2;
185         return res;
186 }
187
188 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
189  * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
190  * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
191  * half-page-aligned buffers, so we reserve some more space for start-of-buffer
192  * alignment.
193  */
194 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
195
196 static int dpaa_max_frm;
197
198 static int dpaa_rx_extra_headroom;
199
200 #define dpaa_get_max_mtu()      \
201         (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
202
203 static int dpaa_netdev_init(struct net_device *net_dev,
204                             const struct net_device_ops *dpaa_ops,
205                             u16 tx_timeout)
206 {
207         struct dpaa_priv *priv = netdev_priv(net_dev);
208         struct device *dev = net_dev->dev.parent;
209         struct dpaa_percpu_priv *percpu_priv;
210         const u8 *mac_addr;
211         int i, err;
212
213         /* Although we access another CPU's private data here
214          * we do it at initialization so it is safe
215          */
216         for_each_possible_cpu(i) {
217                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
218                 percpu_priv->net_dev = net_dev;
219         }
220
221         net_dev->netdev_ops = dpaa_ops;
222         mac_addr = priv->mac_dev->addr;
223
224         net_dev->mem_start = priv->mac_dev->res->start;
225         net_dev->mem_end = priv->mac_dev->res->end;
226
227         net_dev->min_mtu = ETH_MIN_MTU;
228         net_dev->max_mtu = dpaa_get_max_mtu();
229
230         net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
231                                  NETIF_F_LLTX);
232
233         net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
234         /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
235          * For conformity, we'll still declare GSO explicitly.
236          */
237         net_dev->features |= NETIF_F_GSO;
238
239         net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
240         /* we do not want shared skbs on TX */
241         net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
242
243         net_dev->features |= net_dev->hw_features;
244         net_dev->vlan_features = net_dev->features;
245
246         memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
247         memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
248
249         net_dev->ethtool_ops = &dpaa_ethtool_ops;
250
251         net_dev->needed_headroom = priv->tx_headroom;
252         net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
253
254         /* start without the RUNNING flag, phylib controls it later */
255         netif_carrier_off(net_dev);
256
257         err = register_netdev(net_dev);
258         if (err < 0) {
259                 dev_err(dev, "register_netdev() = %d\n", err);
260                 return err;
261         }
262
263         return 0;
264 }
265
266 static int dpaa_stop(struct net_device *net_dev)
267 {
268         struct mac_device *mac_dev;
269         struct dpaa_priv *priv;
270         int i, err, error;
271
272         priv = netdev_priv(net_dev);
273         mac_dev = priv->mac_dev;
274
275         netif_tx_stop_all_queues(net_dev);
276         /* Allow the Fman (Tx) port to process in-flight frames before we
277          * try switching it off.
278          */
279         usleep_range(5000, 10000);
280
281         err = mac_dev->stop(mac_dev);
282         if (err < 0)
283                 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
284                           err);
285
286         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
287                 error = fman_port_disable(mac_dev->port[i]);
288                 if (error)
289                         err = error;
290         }
291
292         if (net_dev->phydev)
293                 phy_disconnect(net_dev->phydev);
294         net_dev->phydev = NULL;
295
296         return err;
297 }
298
299 static void dpaa_tx_timeout(struct net_device *net_dev)
300 {
301         struct dpaa_percpu_priv *percpu_priv;
302         const struct dpaa_priv  *priv;
303
304         priv = netdev_priv(net_dev);
305         percpu_priv = this_cpu_ptr(priv->percpu_priv);
306
307         netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
308                    jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
309
310         percpu_priv->stats.tx_errors++;
311 }
312
313 /* Calculates the statistics for the given device by adding the statistics
314  * collected by each CPU.
315  */
316 static struct rtnl_link_stats64 *dpaa_get_stats64(struct net_device *net_dev,
317                                                   struct rtnl_link_stats64 *s)
318 {
319         int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
320         struct dpaa_priv *priv = netdev_priv(net_dev);
321         struct dpaa_percpu_priv *percpu_priv;
322         u64 *netstats = (u64 *)s;
323         u64 *cpustats;
324         int i, j;
325
326         for_each_possible_cpu(i) {
327                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
328
329                 cpustats = (u64 *)&percpu_priv->stats;
330
331                 /* add stats from all CPUs */
332                 for (j = 0; j < numstats; j++)
333                         netstats[j] += cpustats[j];
334         }
335
336         return s;
337 }
338
339 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
340 {
341         struct platform_device *of_dev;
342         struct dpaa_eth_data *eth_data;
343         struct device *dpaa_dev, *dev;
344         struct device_node *mac_node;
345         struct mac_device *mac_dev;
346
347         dpaa_dev = &pdev->dev;
348         eth_data = dpaa_dev->platform_data;
349         if (!eth_data)
350                 return ERR_PTR(-ENODEV);
351
352         mac_node = eth_data->mac_node;
353
354         of_dev = of_find_device_by_node(mac_node);
355         if (!of_dev) {
356                 dev_err(dpaa_dev, "of_find_device_by_node(%s) failed\n",
357                         mac_node->full_name);
358                 of_node_put(mac_node);
359                 return ERR_PTR(-EINVAL);
360         }
361         of_node_put(mac_node);
362
363         dev = &of_dev->dev;
364
365         mac_dev = dev_get_drvdata(dev);
366         if (!mac_dev) {
367                 dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n",
368                         dev_name(dev));
369                 return ERR_PTR(-EINVAL);
370         }
371
372         return mac_dev;
373 }
374
375 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
376 {
377         const struct dpaa_priv *priv;
378         struct mac_device *mac_dev;
379         struct sockaddr old_addr;
380         int err;
381
382         priv = netdev_priv(net_dev);
383
384         memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
385
386         err = eth_mac_addr(net_dev, addr);
387         if (err < 0) {
388                 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
389                 return err;
390         }
391
392         mac_dev = priv->mac_dev;
393
394         err = mac_dev->change_addr(mac_dev->fman_mac,
395                                    (enet_addr_t *)net_dev->dev_addr);
396         if (err < 0) {
397                 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
398                           err);
399                 /* reverting to previous address */
400                 eth_mac_addr(net_dev, &old_addr);
401
402                 return err;
403         }
404
405         return 0;
406 }
407
408 static void dpaa_set_rx_mode(struct net_device *net_dev)
409 {
410         const struct dpaa_priv  *priv;
411         int err;
412
413         priv = netdev_priv(net_dev);
414
415         if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
416                 priv->mac_dev->promisc = !priv->mac_dev->promisc;
417                 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
418                                                  priv->mac_dev->promisc);
419                 if (err < 0)
420                         netif_err(priv, drv, net_dev,
421                                   "mac_dev->set_promisc() = %d\n",
422                                   err);
423         }
424
425         err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
426         if (err < 0)
427                 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
428                           err);
429 }
430
431 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
432 {
433         if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
434                 return NULL;
435
436         return dpaa_bp_array[bpid];
437 }
438
439 /* checks if this bpool is already allocated */
440 static bool dpaa_bpid2pool_use(int bpid)
441 {
442         if (dpaa_bpid2pool(bpid)) {
443                 atomic_inc(&dpaa_bp_array[bpid]->refs);
444                 return true;
445         }
446
447         return false;
448 }
449
450 /* called only once per bpid by dpaa_bp_alloc_pool() */
451 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
452 {
453         dpaa_bp_array[bpid] = dpaa_bp;
454         atomic_set(&dpaa_bp->refs, 1);
455 }
456
457 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
458 {
459         int err;
460
461         if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
462                 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
463                        __func__);
464                 return -EINVAL;
465         }
466
467         /* If the pool is already specified, we only create one per bpid */
468         if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
469             dpaa_bpid2pool_use(dpaa_bp->bpid))
470                 return 0;
471
472         if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
473                 dpaa_bp->pool = bman_new_pool();
474                 if (!dpaa_bp->pool) {
475                         pr_err("%s: bman_new_pool() failed\n",
476                                __func__);
477                         return -ENODEV;
478                 }
479
480                 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
481         }
482
483         if (dpaa_bp->seed_cb) {
484                 err = dpaa_bp->seed_cb(dpaa_bp);
485                 if (err)
486                         goto pool_seed_failed;
487         }
488
489         dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
490
491         return 0;
492
493 pool_seed_failed:
494         pr_err("%s: pool seeding failed\n", __func__);
495         bman_free_pool(dpaa_bp->pool);
496
497         return err;
498 }
499
500 /* remove and free all the buffers from the given buffer pool */
501 static void dpaa_bp_drain(struct dpaa_bp *bp)
502 {
503         u8 num = 8;
504         int ret;
505
506         do {
507                 struct bm_buffer bmb[8];
508                 int i;
509
510                 ret = bman_acquire(bp->pool, bmb, num);
511                 if (ret < 0) {
512                         if (num == 8) {
513                                 /* we have less than 8 buffers left;
514                                  * drain them one by one
515                                  */
516                                 num = 1;
517                                 ret = 1;
518                                 continue;
519                         } else {
520                                 /* Pool is fully drained */
521                                 break;
522                         }
523                 }
524
525                 if (bp->free_buf_cb)
526                         for (i = 0; i < num; i++)
527                                 bp->free_buf_cb(bp, &bmb[i]);
528         } while (ret > 0);
529 }
530
531 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
532 {
533         struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
534
535         /* the mapping between bpid and dpaa_bp is done very late in the
536          * allocation procedure; if something failed before the mapping, the bp
537          * was not configured, therefore we don't need the below instructions
538          */
539         if (!bp)
540                 return;
541
542         if (!atomic_dec_and_test(&bp->refs))
543                 return;
544
545         if (bp->free_buf_cb)
546                 dpaa_bp_drain(bp);
547
548         dpaa_bp_array[bp->bpid] = NULL;
549         bman_free_pool(bp->pool);
550 }
551
552 static void dpaa_bps_free(struct dpaa_priv *priv)
553 {
554         int i;
555
556         for (i = 0; i < DPAA_BPS_NUM; i++)
557                 dpaa_bp_free(priv->dpaa_bps[i]);
558 }
559
560 /* Use multiple WQs for FQ assignment:
561  *      - Tx Confirmation queues go to WQ1.
562  *      - Rx Error and Tx Error queues go to WQ2 (giving them a better chance
563  *        to be scheduled, in case there are many more FQs in WQ3).
564  *      - Rx Default and Tx queues go to WQ3 (no differentiation between
565  *        Rx and Tx traffic).
566  * This ensures that Tx-confirmed buffers are timely released. In particular,
567  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
568  * are greatly outnumbered by other FQs in the system, while
569  * dequeue scheduling is round-robin.
570  */
571 static inline void dpaa_assign_wq(struct dpaa_fq *fq)
572 {
573         switch (fq->fq_type) {
574         case FQ_TYPE_TX_CONFIRM:
575         case FQ_TYPE_TX_CONF_MQ:
576                 fq->wq = 1;
577                 break;
578         case FQ_TYPE_RX_ERROR:
579         case FQ_TYPE_TX_ERROR:
580                 fq->wq = 2;
581                 break;
582         case FQ_TYPE_RX_DEFAULT:
583         case FQ_TYPE_TX:
584                 fq->wq = 3;
585                 break;
586         default:
587                 WARN(1, "Invalid FQ type %d for FQID %d!\n",
588                      fq->fq_type, fq->fqid);
589         }
590 }
591
592 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
593                                      u32 start, u32 count,
594                                      struct list_head *list,
595                                      enum dpaa_fq_type fq_type)
596 {
597         struct dpaa_fq *dpaa_fq;
598         int i;
599
600         dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
601                                GFP_KERNEL);
602         if (!dpaa_fq)
603                 return NULL;
604
605         for (i = 0; i < count; i++) {
606                 dpaa_fq[i].fq_type = fq_type;
607                 dpaa_fq[i].fqid = start ? start + i : 0;
608                 list_add_tail(&dpaa_fq[i].list, list);
609         }
610
611         for (i = 0; i < count; i++)
612                 dpaa_assign_wq(dpaa_fq + i);
613
614         return dpaa_fq;
615 }
616
617 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
618                               struct fm_port_fqs *port_fqs)
619 {
620         struct dpaa_fq *dpaa_fq;
621
622         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
623         if (!dpaa_fq)
624                 goto fq_alloc_failed;
625
626         port_fqs->rx_errq = &dpaa_fq[0];
627
628         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
629         if (!dpaa_fq)
630                 goto fq_alloc_failed;
631
632         port_fqs->rx_defq = &dpaa_fq[0];
633
634         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
635                 goto fq_alloc_failed;
636
637         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
638         if (!dpaa_fq)
639                 goto fq_alloc_failed;
640
641         port_fqs->tx_errq = &dpaa_fq[0];
642
643         dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
644         if (!dpaa_fq)
645                 goto fq_alloc_failed;
646
647         port_fqs->tx_defq = &dpaa_fq[0];
648
649         if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
650                 goto fq_alloc_failed;
651
652         return 0;
653
654 fq_alloc_failed:
655         dev_err(dev, "dpaa_fq_alloc() failed\n");
656         return -ENOMEM;
657 }
658
659 static u32 rx_pool_channel;
660 static DEFINE_SPINLOCK(rx_pool_channel_init);
661
662 static int dpaa_get_channel(void)
663 {
664         spin_lock(&rx_pool_channel_init);
665         if (!rx_pool_channel) {
666                 u32 pool;
667                 int ret;
668
669                 ret = qman_alloc_pool(&pool);
670
671                 if (!ret)
672                         rx_pool_channel = pool;
673         }
674         spin_unlock(&rx_pool_channel_init);
675         if (!rx_pool_channel)
676                 return -ENOMEM;
677         return rx_pool_channel;
678 }
679
680 static void dpaa_release_channel(void)
681 {
682         qman_release_pool(rx_pool_channel);
683 }
684
685 static void dpaa_eth_add_channel(u16 channel)
686 {
687         u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
688         const cpumask_t *cpus = qman_affine_cpus();
689         struct qman_portal *portal;
690         int cpu;
691
692         for_each_cpu(cpu, cpus) {
693                 portal = qman_get_affine_portal(cpu);
694                 qman_p_static_dequeue_add(portal, pool);
695         }
696 }
697
698 /* Congestion group state change notification callback.
699  * Stops the device's egress queues while they are congested and
700  * wakes them upon exiting congested state.
701  * Also updates some CGR-related stats.
702  */
703 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
704                            int congested)
705 {
706         struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
707                 struct dpaa_priv, cgr_data.cgr);
708
709         if (congested) {
710                 priv->cgr_data.congestion_start_jiffies = jiffies;
711                 netif_tx_stop_all_queues(priv->net_dev);
712                 priv->cgr_data.cgr_congested_count++;
713         } else {
714                 priv->cgr_data.congested_jiffies +=
715                         (jiffies - priv->cgr_data.congestion_start_jiffies);
716                 netif_tx_wake_all_queues(priv->net_dev);
717         }
718 }
719
720 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
721 {
722         struct qm_mcc_initcgr initcgr;
723         u32 cs_th;
724         int err;
725
726         err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
727         if (err < 0) {
728                 if (netif_msg_drv(priv))
729                         pr_err("%s: Error %d allocating CGR ID\n",
730                                __func__, err);
731                 goto out_error;
732         }
733         priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
734
735         /* Enable Congestion State Change Notifications and CS taildrop */
736         initcgr.we_mask = QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES;
737         initcgr.cgr.cscn_en = QM_CGR_EN;
738
739         /* Set different thresholds based on the MAC speed.
740          * This may turn suboptimal if the MAC is reconfigured at a speed
741          * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
742          * In such cases, we ought to reconfigure the threshold, too.
743          */
744         if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
745                 cs_th = DPAA_CS_THRESHOLD_10G;
746         else
747                 cs_th = DPAA_CS_THRESHOLD_1G;
748         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
749
750         initcgr.we_mask |= QM_CGR_WE_CSTD_EN;
751         initcgr.cgr.cstd_en = QM_CGR_EN;
752
753         err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
754                               &initcgr);
755         if (err < 0) {
756                 if (netif_msg_drv(priv))
757                         pr_err("%s: Error %d creating CGR with ID %d\n",
758                                __func__, err, priv->cgr_data.cgr.cgrid);
759                 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
760                 goto out_error;
761         }
762         if (netif_msg_drv(priv))
763                 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
764                          priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
765                          priv->cgr_data.cgr.chan);
766
767 out_error:
768         return err;
769 }
770
771 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
772                                       struct dpaa_fq *fq,
773                                       const struct qman_fq *template)
774 {
775         fq->fq_base = *template;
776         fq->net_dev = priv->net_dev;
777
778         fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
779         fq->channel = priv->channel;
780 }
781
782 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
783                                      struct dpaa_fq *fq,
784                                      struct fman_port *port,
785                                      const struct qman_fq *template)
786 {
787         fq->fq_base = *template;
788         fq->net_dev = priv->net_dev;
789
790         if (port) {
791                 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
792                 fq->channel = (u16)fman_port_get_qman_channel_id(port);
793         } else {
794                 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
795         }
796 }
797
798 static void dpaa_fq_setup(struct dpaa_priv *priv,
799                           const struct dpaa_fq_cbs *fq_cbs,
800                           struct fman_port *tx_port)
801 {
802         int egress_cnt = 0, conf_cnt = 0, num_portals = 0, cpu;
803         const cpumask_t *affine_cpus = qman_affine_cpus();
804         u16 portals[NR_CPUS];
805         struct dpaa_fq *fq;
806
807         for_each_cpu(cpu, affine_cpus)
808                 portals[num_portals++] = qman_affine_channel(cpu);
809         if (num_portals == 0)
810                 dev_err(priv->net_dev->dev.parent,
811                         "No Qman software (affine) channels found");
812
813         /* Initialize each FQ in the list */
814         list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
815                 switch (fq->fq_type) {
816                 case FQ_TYPE_RX_DEFAULT:
817                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
818                         break;
819                 case FQ_TYPE_RX_ERROR:
820                         dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
821                         break;
822                 case FQ_TYPE_TX:
823                         dpaa_setup_egress(priv, fq, tx_port,
824                                           &fq_cbs->egress_ern);
825                         /* If we have more Tx queues than the number of cores,
826                          * just ignore the extra ones.
827                          */
828                         if (egress_cnt < DPAA_ETH_TXQ_NUM)
829                                 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
830                         break;
831                 case FQ_TYPE_TX_CONF_MQ:
832                         priv->conf_fqs[conf_cnt++] = &fq->fq_base;
833                         /* fall through */
834                 case FQ_TYPE_TX_CONFIRM:
835                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
836                         break;
837                 case FQ_TYPE_TX_ERROR:
838                         dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
839                         break;
840                 default:
841                         dev_warn(priv->net_dev->dev.parent,
842                                  "Unknown FQ type detected!\n");
843                         break;
844                 }
845         }
846
847          /* Make sure all CPUs receive a corresponding Tx queue. */
848         while (egress_cnt < DPAA_ETH_TXQ_NUM) {
849                 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
850                         if (fq->fq_type != FQ_TYPE_TX)
851                                 continue;
852                         priv->egress_fqs[egress_cnt++] = &fq->fq_base;
853                         if (egress_cnt == DPAA_ETH_TXQ_NUM)
854                                 break;
855                 }
856         }
857 }
858
859 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
860                                    struct qman_fq *tx_fq)
861 {
862         int i;
863
864         for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
865                 if (priv->egress_fqs[i] == tx_fq)
866                         return i;
867
868         return -EINVAL;
869 }
870
871 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
872 {
873         const struct dpaa_priv  *priv;
874         struct qman_fq *confq = NULL;
875         struct qm_mcc_initfq initfq;
876         struct device *dev;
877         struct qman_fq *fq;
878         int queue_id;
879         int err;
880
881         priv = netdev_priv(dpaa_fq->net_dev);
882         dev = dpaa_fq->net_dev->dev.parent;
883
884         if (dpaa_fq->fqid == 0)
885                 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
886
887         dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
888
889         err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
890         if (err) {
891                 dev_err(dev, "qman_create_fq() failed\n");
892                 return err;
893         }
894         fq = &dpaa_fq->fq_base;
895
896         if (dpaa_fq->init) {
897                 memset(&initfq, 0, sizeof(initfq));
898
899                 initfq.we_mask = QM_INITFQ_WE_FQCTRL;
900                 /* Note: we may get to keep an empty FQ in cache */
901                 initfq.fqd.fq_ctrl = QM_FQCTRL_PREFERINCACHE;
902
903                 /* Try to reduce the number of portal interrupts for
904                  * Tx Confirmation FQs.
905                  */
906                 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
907                         initfq.fqd.fq_ctrl |= QM_FQCTRL_HOLDACTIVE;
908
909                 /* FQ placement */
910                 initfq.we_mask |= QM_INITFQ_WE_DESTWQ;
911
912                 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
913
914                 /* Put all egress queues in a congestion group of their own.
915                  * Sensu stricto, the Tx confirmation queues are Rx FQs,
916                  * rather than Tx - but they nonetheless account for the
917                  * memory footprint on behalf of egress traffic. We therefore
918                  * place them in the netdev's CGR, along with the Tx FQs.
919                  */
920                 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
921                     dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
922                     dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
923                         initfq.we_mask |= QM_INITFQ_WE_CGID;
924                         initfq.fqd.fq_ctrl |= QM_FQCTRL_CGE;
925                         initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
926                         /* Set a fixed overhead accounting, in an attempt to
927                          * reduce the impact of fixed-size skb shells and the
928                          * driver's needed headroom on system memory. This is
929                          * especially the case when the egress traffic is
930                          * composed of small datagrams.
931                          * Unfortunately, QMan's OAL value is capped to an
932                          * insufficient value, but even that is better than
933                          * no overhead accounting at all.
934                          */
935                         initfq.we_mask |= QM_INITFQ_WE_OAC;
936                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
937                         qm_fqd_set_oal(&initfq.fqd,
938                                        min(sizeof(struct sk_buff) +
939                                        priv->tx_headroom,
940                                        (size_t)FSL_QMAN_MAX_OAL));
941                 }
942
943                 if (td_enable) {
944                         initfq.we_mask |= QM_INITFQ_WE_TDTHRESH;
945                         qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
946                         initfq.fqd.fq_ctrl = QM_FQCTRL_TDE;
947                 }
948
949                 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
950                         queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
951                         if (queue_id >= 0)
952                                 confq = priv->conf_fqs[queue_id];
953                         if (confq) {
954                                 initfq.we_mask |= QM_INITFQ_WE_CONTEXTA;
955                         /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
956                          *           A2V=1 (contextA A2 field is valid)
957                          *           A0V=1 (contextA A0 field is valid)
958                          *           B0V=1 (contextB field is valid)
959                          * ContextA A2: EBD=1 (deallocate buffers inside FMan)
960                          * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
961                          */
962                                 initfq.fqd.context_a.hi = 0x1e000000;
963                                 initfq.fqd.context_a.lo = 0x80000000;
964                         }
965                 }
966
967                 /* Put all the ingress queues in our "ingress CGR". */
968                 if (priv->use_ingress_cgr &&
969                     (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
970                      dpaa_fq->fq_type == FQ_TYPE_RX_ERROR)) {
971                         initfq.we_mask |= QM_INITFQ_WE_CGID;
972                         initfq.fqd.fq_ctrl |= QM_FQCTRL_CGE;
973                         initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
974                         /* Set a fixed overhead accounting, just like for the
975                          * egress CGR.
976                          */
977                         initfq.we_mask |= QM_INITFQ_WE_OAC;
978                         qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
979                         qm_fqd_set_oal(&initfq.fqd,
980                                        min(sizeof(struct sk_buff) +
981                                        priv->tx_headroom,
982                                        (size_t)FSL_QMAN_MAX_OAL));
983                 }
984
985                 /* Initialization common to all ingress queues */
986                 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
987                         initfq.we_mask |= QM_INITFQ_WE_CONTEXTA;
988                         initfq.fqd.fq_ctrl |=
989                                 QM_FQCTRL_HOLDACTIVE;
990                         initfq.fqd.context_a.stashing.exclusive =
991                                 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
992                                 QM_STASHING_EXCL_ANNOTATION;
993                         qm_fqd_set_stashing(&initfq.fqd, 1, 2,
994                                             DIV_ROUND_UP(sizeof(struct qman_fq),
995                                                          64));
996                 }
997
998                 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
999                 if (err < 0) {
1000                         dev_err(dev, "qman_init_fq(%u) = %d\n",
1001                                 qman_fq_fqid(fq), err);
1002                         qman_destroy_fq(fq);
1003                         return err;
1004                 }
1005         }
1006
1007         dpaa_fq->fqid = qman_fq_fqid(fq);
1008
1009         return 0;
1010 }
1011
1012 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1013 {
1014         const struct dpaa_priv  *priv;
1015         struct dpaa_fq *dpaa_fq;
1016         int err, error;
1017
1018         err = 0;
1019
1020         dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1021         priv = netdev_priv(dpaa_fq->net_dev);
1022
1023         if (dpaa_fq->init) {
1024                 err = qman_retire_fq(fq, NULL);
1025                 if (err < 0 && netif_msg_drv(priv))
1026                         dev_err(dev, "qman_retire_fq(%u) = %d\n",
1027                                 qman_fq_fqid(fq), err);
1028
1029                 error = qman_oos_fq(fq);
1030                 if (error < 0 && netif_msg_drv(priv)) {
1031                         dev_err(dev, "qman_oos_fq(%u) = %d\n",
1032                                 qman_fq_fqid(fq), error);
1033                         if (err >= 0)
1034                                 err = error;
1035                 }
1036         }
1037
1038         qman_destroy_fq(fq);
1039         list_del(&dpaa_fq->list);
1040
1041         return err;
1042 }
1043
1044 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1045 {
1046         struct dpaa_fq *dpaa_fq, *tmp;
1047         int err, error;
1048
1049         err = 0;
1050         list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1051                 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1052                 if (error < 0 && err >= 0)
1053                         err = error;
1054         }
1055
1056         return err;
1057 }
1058
1059 static void dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1060                                   struct dpaa_fq *defq,
1061                                   struct dpaa_buffer_layout *buf_layout)
1062 {
1063         struct fman_buffer_prefix_content buf_prefix_content;
1064         struct fman_port_params params;
1065         int err;
1066
1067         memset(&params, 0, sizeof(params));
1068         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1069
1070         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1071         buf_prefix_content.pass_prs_result = true;
1072         buf_prefix_content.pass_hash_result = true;
1073         buf_prefix_content.pass_time_stamp = false;
1074         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1075
1076         params.specific_params.non_rx_params.err_fqid = errq->fqid;
1077         params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1078
1079         err = fman_port_config(port, &params);
1080         if (err)
1081                 pr_err("%s: fman_port_config failed\n", __func__);
1082
1083         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1084         if (err)
1085                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1086                        __func__);
1087
1088         err = fman_port_init(port);
1089         if (err)
1090                 pr_err("%s: fm_port_init failed\n", __func__);
1091 }
1092
1093 static void dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1094                                   size_t count, struct dpaa_fq *errq,
1095                                   struct dpaa_fq *defq,
1096                                   struct dpaa_buffer_layout *buf_layout)
1097 {
1098         struct fman_buffer_prefix_content buf_prefix_content;
1099         struct fman_port_rx_params *rx_p;
1100         struct fman_port_params params;
1101         int i, err;
1102
1103         memset(&params, 0, sizeof(params));
1104         memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1105
1106         buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1107         buf_prefix_content.pass_prs_result = true;
1108         buf_prefix_content.pass_hash_result = true;
1109         buf_prefix_content.pass_time_stamp = false;
1110         buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1111
1112         rx_p = &params.specific_params.rx_params;
1113         rx_p->err_fqid = errq->fqid;
1114         rx_p->dflt_fqid = defq->fqid;
1115
1116         count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1117         rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1118         for (i = 0; i < count; i++) {
1119                 rx_p->ext_buf_pools.ext_buf_pool[i].id =  bps[i]->bpid;
1120                 rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1121         }
1122
1123         err = fman_port_config(port, &params);
1124         if (err)
1125                 pr_err("%s: fman_port_config failed\n", __func__);
1126
1127         err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1128         if (err)
1129                 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1130                        __func__);
1131
1132         err = fman_port_init(port);
1133         if (err)
1134                 pr_err("%s: fm_port_init failed\n", __func__);
1135 }
1136
1137 static void dpaa_eth_init_ports(struct mac_device *mac_dev,
1138                                 struct dpaa_bp **bps, size_t count,
1139                                 struct fm_port_fqs *port_fqs,
1140                                 struct dpaa_buffer_layout *buf_layout,
1141                                 struct device *dev)
1142 {
1143         struct fman_port *rxport = mac_dev->port[RX];
1144         struct fman_port *txport = mac_dev->port[TX];
1145
1146         dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1147                               port_fqs->tx_defq, &buf_layout[TX]);
1148         dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1149                               port_fqs->rx_defq, &buf_layout[RX]);
1150 }
1151
1152 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1153                              struct bm_buffer *bmb, int cnt)
1154 {
1155         int err;
1156
1157         err = bman_release(dpaa_bp->pool, bmb, cnt);
1158         /* Should never occur, address anyway to avoid leaking the buffers */
1159         if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1160                 while (cnt-- > 0)
1161                         dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1162
1163         return cnt;
1164 }
1165
1166 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1167 {
1168         struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1169         struct dpaa_bp *dpaa_bp;
1170         int i = 0, j;
1171
1172         memset(bmb, 0, sizeof(bmb));
1173
1174         do {
1175                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1176                 if (!dpaa_bp)
1177                         return;
1178
1179                 j = 0;
1180                 do {
1181                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1182
1183                         bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1184
1185                         j++; i++;
1186                 } while (j < ARRAY_SIZE(bmb) &&
1187                                 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1188                                 sgt[i - 1].bpid == sgt[i].bpid);
1189
1190                 dpaa_bman_release(dpaa_bp, bmb, j);
1191         } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1192 }
1193
1194 static void dpaa_fd_release(const struct net_device *net_dev,
1195                             const struct qm_fd *fd)
1196 {
1197         struct qm_sg_entry *sgt;
1198         struct dpaa_bp *dpaa_bp;
1199         struct bm_buffer bmb;
1200         dma_addr_t addr;
1201         void *vaddr;
1202
1203         bmb.data = 0;
1204         bm_buffer_set64(&bmb, qm_fd_addr(fd));
1205
1206         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1207         if (!dpaa_bp)
1208                 return;
1209
1210         if (qm_fd_get_format(fd) == qm_fd_sg) {
1211                 vaddr = phys_to_virt(qm_fd_addr(fd));
1212                 sgt = vaddr + qm_fd_get_offset(fd);
1213
1214                 dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1215                                  DMA_FROM_DEVICE);
1216
1217                 dpaa_release_sgt_members(sgt);
1218
1219                 addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1220                                       DMA_FROM_DEVICE);
1221                 if (dma_mapping_error(dpaa_bp->dev, addr)) {
1222                         dev_err(dpaa_bp->dev, "DMA mapping failed");
1223                         return;
1224                 }
1225                 bm_buffer_set64(&bmb, addr);
1226         }
1227
1228         dpaa_bman_release(dpaa_bp, &bmb, 1);
1229 }
1230
1231 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1232                       const union qm_mr_entry *msg)
1233 {
1234         switch (msg->ern.rc & QM_MR_RC_MASK) {
1235         case QM_MR_RC_CGR_TAILDROP:
1236                 percpu_priv->ern_cnt.cg_tdrop++;
1237                 break;
1238         case QM_MR_RC_WRED:
1239                 percpu_priv->ern_cnt.wred++;
1240                 break;
1241         case QM_MR_RC_ERROR:
1242                 percpu_priv->ern_cnt.err_cond++;
1243                 break;
1244         case QM_MR_RC_ORPWINDOW_EARLY:
1245                 percpu_priv->ern_cnt.early_window++;
1246                 break;
1247         case QM_MR_RC_ORPWINDOW_LATE:
1248                 percpu_priv->ern_cnt.late_window++;
1249                 break;
1250         case QM_MR_RC_FQ_TAILDROP:
1251                 percpu_priv->ern_cnt.fq_tdrop++;
1252                 break;
1253         case QM_MR_RC_ORPWINDOW_RETIRED:
1254                 percpu_priv->ern_cnt.fq_retired++;
1255                 break;
1256         case QM_MR_RC_ORP_ZERO:
1257                 percpu_priv->ern_cnt.orp_zero++;
1258                 break;
1259         }
1260 }
1261
1262 /* Turn on HW checksum computation for this outgoing frame.
1263  * If the current protocol is not something we support in this regard
1264  * (or if the stack has already computed the SW checksum), we do nothing.
1265  *
1266  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1267  * otherwise.
1268  *
1269  * Note that this function may modify the fd->cmd field and the skb data buffer
1270  * (the Parse Results area).
1271  */
1272 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1273                                struct sk_buff *skb,
1274                                struct qm_fd *fd,
1275                                char *parse_results)
1276 {
1277         struct fman_prs_result *parse_result;
1278         u16 ethertype = ntohs(skb->protocol);
1279         struct ipv6hdr *ipv6h = NULL;
1280         struct iphdr *iph;
1281         int retval = 0;
1282         u8 l4_proto;
1283
1284         if (skb->ip_summed != CHECKSUM_PARTIAL)
1285                 return 0;
1286
1287         /* Note: L3 csum seems to be already computed in sw, but we can't choose
1288          * L4 alone from the FM configuration anyway.
1289          */
1290
1291         /* Fill in some fields of the Parse Results array, so the FMan
1292          * can find them as if they came from the FMan Parser.
1293          */
1294         parse_result = (struct fman_prs_result *)parse_results;
1295
1296         /* If we're dealing with VLAN, get the real Ethernet type */
1297         if (ethertype == ETH_P_8021Q) {
1298                 /* We can't always assume the MAC header is set correctly
1299                  * by the stack, so reset to beginning of skb->data
1300                  */
1301                 skb_reset_mac_header(skb);
1302                 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1303         }
1304
1305         /* Fill in the relevant L3 parse result fields
1306          * and read the L4 protocol type
1307          */
1308         switch (ethertype) {
1309         case ETH_P_IP:
1310                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1311                 iph = ip_hdr(skb);
1312                 WARN_ON(!iph);
1313                 l4_proto = iph->protocol;
1314                 break;
1315         case ETH_P_IPV6:
1316                 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1317                 ipv6h = ipv6_hdr(skb);
1318                 WARN_ON(!ipv6h);
1319                 l4_proto = ipv6h->nexthdr;
1320                 break;
1321         default:
1322                 /* We shouldn't even be here */
1323                 if (net_ratelimit())
1324                         netif_alert(priv, tx_err, priv->net_dev,
1325                                     "Can't compute HW csum for L3 proto 0x%x\n",
1326                                     ntohs(skb->protocol));
1327                 retval = -EIO;
1328                 goto return_error;
1329         }
1330
1331         /* Fill in the relevant L4 parse result fields */
1332         switch (l4_proto) {
1333         case IPPROTO_UDP:
1334                 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1335                 break;
1336         case IPPROTO_TCP:
1337                 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1338                 break;
1339         default:
1340                 if (net_ratelimit())
1341                         netif_alert(priv, tx_err, priv->net_dev,
1342                                     "Can't compute HW csum for L4 proto 0x%x\n",
1343                                     l4_proto);
1344                 retval = -EIO;
1345                 goto return_error;
1346         }
1347
1348         /* At index 0 is IPOffset_1 as defined in the Parse Results */
1349         parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1350         parse_result->l4_off = (u8)skb_transport_offset(skb);
1351
1352         /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1353         fd->cmd |= FM_FD_CMD_RPD | FM_FD_CMD_DTC;
1354
1355         /* On P1023 and similar platforms fd->cmd interpretation could
1356          * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1357          * is not set so we do not need to check; in the future, if/when
1358          * using context_a we need to check this bit
1359          */
1360
1361 return_error:
1362         return retval;
1363 }
1364
1365 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1366 {
1367         struct device *dev = dpaa_bp->dev;
1368         struct bm_buffer bmb[8];
1369         dma_addr_t addr;
1370         void *new_buf;
1371         u8 i;
1372
1373         for (i = 0; i < 8; i++) {
1374                 new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1375                 if (unlikely(!new_buf)) {
1376                         dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1377                                 dpaa_bp->raw_size);
1378                         goto release_previous_buffs;
1379                 }
1380                 new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1381
1382                 addr = dma_map_single(dev, new_buf,
1383                                       dpaa_bp->size, DMA_FROM_DEVICE);
1384                 if (unlikely(dma_mapping_error(dev, addr))) {
1385                         dev_err(dpaa_bp->dev, "DMA map failed");
1386                         goto release_previous_buffs;
1387                 }
1388
1389                 bmb[i].data = 0;
1390                 bm_buffer_set64(&bmb[i], addr);
1391         }
1392
1393 release_bufs:
1394         return dpaa_bman_release(dpaa_bp, bmb, i);
1395
1396 release_previous_buffs:
1397         WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1398
1399         bm_buffer_set64(&bmb[i], 0);
1400         /* Avoid releasing a completely null buffer; bman_release() requires
1401          * at least one buffer.
1402          */
1403         if (likely(i))
1404                 goto release_bufs;
1405
1406         return 0;
1407 }
1408
1409 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1410 {
1411         int i;
1412
1413         /* Give each CPU an allotment of "config_count" buffers */
1414         for_each_possible_cpu(i) {
1415                 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1416                 int j;
1417
1418                 /* Although we access another CPU's counters here
1419                  * we do it at boot time so it is safe
1420                  */
1421                 for (j = 0; j < dpaa_bp->config_count; j += 8)
1422                         *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1423         }
1424         return 0;
1425 }
1426
1427 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1428  * REFILL_THRESHOLD.
1429  */
1430 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1431 {
1432         int count = *countptr;
1433         int new_bufs;
1434
1435         if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1436                 do {
1437                         new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1438                         if (unlikely(!new_bufs)) {
1439                                 /* Avoid looping forever if we've temporarily
1440                                  * run out of memory. We'll try again at the
1441                                  * next NAPI cycle.
1442                                  */
1443                                 break;
1444                         }
1445                         count += new_bufs;
1446                 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1447
1448                 *countptr = count;
1449                 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1450                         return -ENOMEM;
1451         }
1452
1453         return 0;
1454 }
1455
1456 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1457 {
1458         struct dpaa_bp *dpaa_bp;
1459         int *countptr;
1460         int res, i;
1461
1462         for (i = 0; i < DPAA_BPS_NUM; i++) {
1463                 dpaa_bp = priv->dpaa_bps[i];
1464                 if (!dpaa_bp)
1465                         return -EINVAL;
1466                 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1467                 res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1468                 if (res)
1469                         return res;
1470         }
1471         return 0;
1472 }
1473
1474 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1475  * either contiguous frames or scatter/gather ones.
1476  * Skb freeing is not handled here.
1477  *
1478  * This function may be called on error paths in the Tx function, so guard
1479  * against cases when not all fd relevant fields were filled in.
1480  *
1481  * Return the skb backpointer, since for S/G frames the buffer containing it
1482  * gets freed here.
1483  */
1484 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1485                                           const struct qm_fd *fd)
1486 {
1487         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1488         struct device *dev = priv->net_dev->dev.parent;
1489         dma_addr_t addr = qm_fd_addr(fd);
1490         const struct qm_sg_entry *sgt;
1491         struct sk_buff **skbh, *skb;
1492         int nr_frags, i;
1493
1494         skbh = (struct sk_buff **)phys_to_virt(addr);
1495         skb = *skbh;
1496
1497         if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1498                 nr_frags = skb_shinfo(skb)->nr_frags;
1499                 dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1500                                  sizeof(struct qm_sg_entry) * (1 + nr_frags),
1501                                  dma_dir);
1502
1503                 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1504                  * it's from lowmem.
1505                  */
1506                 sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1507
1508                 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1509                 dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1510                                  qm_sg_entry_get_len(&sgt[0]), dma_dir);
1511
1512                 /* remaining pages were mapped with skb_frag_dma_map() */
1513                 for (i = 1; i < nr_frags; i++) {
1514                         WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1515
1516                         dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1517                                        qm_sg_entry_get_len(&sgt[i]), dma_dir);
1518                 }
1519
1520                 /* Free the page frag that we allocated on Tx */
1521                 skb_free_frag(phys_to_virt(addr));
1522         } else {
1523                 dma_unmap_single(dev, addr,
1524                                  skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1525         }
1526
1527         return skb;
1528 }
1529
1530 /* Build a linear skb around the received buffer.
1531  * We are guaranteed there is enough room at the end of the data buffer to
1532  * accommodate the shared info area of the skb.
1533  */
1534 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1535                                         const struct qm_fd *fd)
1536 {
1537         ssize_t fd_off = qm_fd_get_offset(fd);
1538         dma_addr_t addr = qm_fd_addr(fd);
1539         struct dpaa_bp *dpaa_bp;
1540         struct sk_buff *skb;
1541         void *vaddr;
1542
1543         vaddr = phys_to_virt(addr);
1544         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1545
1546         dpaa_bp = dpaa_bpid2pool(fd->bpid);
1547         if (!dpaa_bp)
1548                 goto free_buffer;
1549
1550         skb = build_skb(vaddr, dpaa_bp->size +
1551                         SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1552         if (unlikely(!skb)) {
1553                 WARN_ONCE(1, "Build skb failure on Rx\n");
1554                 goto free_buffer;
1555         }
1556         WARN_ON(fd_off != priv->rx_headroom);
1557         skb_reserve(skb, fd_off);
1558         skb_put(skb, qm_fd_get_length(fd));
1559
1560         skb->ip_summed = CHECKSUM_NONE;
1561
1562         return skb;
1563
1564 free_buffer:
1565         skb_free_frag(vaddr);
1566         return NULL;
1567 }
1568
1569 /* Build an skb with the data of the first S/G entry in the linear portion and
1570  * the rest of the frame as skb fragments.
1571  *
1572  * The page fragment holding the S/G Table is recycled here.
1573  */
1574 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1575                                     const struct qm_fd *fd)
1576 {
1577         ssize_t fd_off = qm_fd_get_offset(fd);
1578         dma_addr_t addr = qm_fd_addr(fd);
1579         const struct qm_sg_entry *sgt;
1580         struct page *page, *head_page;
1581         struct dpaa_bp *dpaa_bp;
1582         void *vaddr, *sg_vaddr;
1583         int frag_off, frag_len;
1584         struct sk_buff *skb;
1585         dma_addr_t sg_addr;
1586         int page_offset;
1587         unsigned int sz;
1588         int *count_ptr;
1589         int i;
1590
1591         vaddr = phys_to_virt(addr);
1592         WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1593
1594         /* Iterate through the SGT entries and add data buffers to the skb */
1595         sgt = vaddr + fd_off;
1596         for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1597                 /* Extension bit is not supported */
1598                 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1599
1600                 sg_addr = qm_sg_addr(&sgt[i]);
1601                 sg_vaddr = phys_to_virt(sg_addr);
1602                 WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1603                                     SMP_CACHE_BYTES));
1604
1605                 /* We may use multiple Rx pools */
1606                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1607                 if (!dpaa_bp)
1608                         goto free_buffers;
1609
1610                 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1611                 dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1612                                  DMA_FROM_DEVICE);
1613                 if (i == 0) {
1614                         sz = dpaa_bp->size +
1615                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1616                         skb = build_skb(sg_vaddr, sz);
1617                         if (WARN_ON(unlikely(!skb)))
1618                                 goto free_buffers;
1619
1620                         skb->ip_summed = CHECKSUM_NONE;
1621
1622                         /* Make sure forwarded skbs will have enough space
1623                          * on Tx, if extra headers are added.
1624                          */
1625                         WARN_ON(fd_off != priv->rx_headroom);
1626                         skb_reserve(skb, fd_off);
1627                         skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1628                 } else {
1629                         /* Not the first S/G entry; all data from buffer will
1630                          * be added in an skb fragment; fragment index is offset
1631                          * by one since first S/G entry was incorporated in the
1632                          * linear part of the skb.
1633                          *
1634                          * Caution: 'page' may be a tail page.
1635                          */
1636                         page = virt_to_page(sg_vaddr);
1637                         head_page = virt_to_head_page(sg_vaddr);
1638
1639                         /* Compute offset in (possibly tail) page */
1640                         page_offset = ((unsigned long)sg_vaddr &
1641                                         (PAGE_SIZE - 1)) +
1642                                 (page_address(page) - page_address(head_page));
1643                         /* page_offset only refers to the beginning of sgt[i];
1644                          * but the buffer itself may have an internal offset.
1645                          */
1646                         frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1647                         frag_len = qm_sg_entry_get_len(&sgt[i]);
1648                         /* skb_add_rx_frag() does no checking on the page; if
1649                          * we pass it a tail page, we'll end up with
1650                          * bad page accounting and eventually with segafults.
1651                          */
1652                         skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1653                                         frag_len, dpaa_bp->size);
1654                 }
1655                 /* Update the pool count for the current {cpu x bpool} */
1656                 (*count_ptr)--;
1657
1658                 if (qm_sg_entry_is_final(&sgt[i]))
1659                         break;
1660         }
1661         WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1662
1663         /* free the SG table buffer */
1664         skb_free_frag(vaddr);
1665
1666         return skb;
1667
1668 free_buffers:
1669         /* compensate sw bpool counter changes */
1670         for (i--; i > 0; i--) {
1671                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1672                 if (dpaa_bp) {
1673                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1674                         (*count_ptr)++;
1675                 }
1676         }
1677         /* free all the SG entries */
1678         for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1679                 sg_addr = qm_sg_addr(&sgt[i]);
1680                 sg_vaddr = phys_to_virt(sg_addr);
1681                 skb_free_frag(sg_vaddr);
1682                 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1683                 if (dpaa_bp) {
1684                         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1685                         (*count_ptr)--;
1686                 }
1687
1688                 if (qm_sg_entry_is_final(&sgt[i]))
1689                         break;
1690         }
1691         /* free the SGT fragment */
1692         skb_free_frag(vaddr);
1693
1694         return NULL;
1695 }
1696
1697 static int skb_to_contig_fd(struct dpaa_priv *priv,
1698                             struct sk_buff *skb, struct qm_fd *fd,
1699                             int *offset)
1700 {
1701         struct net_device *net_dev = priv->net_dev;
1702         struct device *dev = net_dev->dev.parent;
1703         enum dma_data_direction dma_dir;
1704         unsigned char *buffer_start;
1705         struct sk_buff **skbh;
1706         dma_addr_t addr;
1707         int err;
1708
1709         /* We are guaranteed to have at least tx_headroom bytes
1710          * available, so just use that for offset.
1711          */
1712         fd->bpid = FSL_DPAA_BPID_INV;
1713         buffer_start = skb->data - priv->tx_headroom;
1714         dma_dir = DMA_TO_DEVICE;
1715
1716         skbh = (struct sk_buff **)buffer_start;
1717         *skbh = skb;
1718
1719         /* Enable L3/L4 hardware checksum computation.
1720          *
1721          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1722          * need to write into the skb.
1723          */
1724         err = dpaa_enable_tx_csum(priv, skb, fd,
1725                                   ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1726         if (unlikely(err < 0)) {
1727                 if (net_ratelimit())
1728                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1729                                   err);
1730                 return err;
1731         }
1732
1733         /* Fill in the rest of the FD fields */
1734         qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1735         fd->cmd |= FM_FD_CMD_FCO;
1736
1737         /* Map the entire buffer size that may be seen by FMan, but no more */
1738         addr = dma_map_single(dev, skbh,
1739                               skb_tail_pointer(skb) - buffer_start, dma_dir);
1740         if (unlikely(dma_mapping_error(dev, addr))) {
1741                 if (net_ratelimit())
1742                         netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1743                 return -EINVAL;
1744         }
1745         qm_fd_addr_set64(fd, addr);
1746
1747         return 0;
1748 }
1749
1750 static int skb_to_sg_fd(struct dpaa_priv *priv,
1751                         struct sk_buff *skb, struct qm_fd *fd)
1752 {
1753         const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1754         const int nr_frags = skb_shinfo(skb)->nr_frags;
1755         struct net_device *net_dev = priv->net_dev;
1756         struct device *dev = net_dev->dev.parent;
1757         struct qm_sg_entry *sgt;
1758         struct sk_buff **skbh;
1759         int i, j, err, sz;
1760         void *buffer_start;
1761         skb_frag_t *frag;
1762         dma_addr_t addr;
1763         size_t frag_len;
1764         void *sgt_buf;
1765
1766         /* get a page frag to store the SGTable */
1767         sz = SKB_DATA_ALIGN(priv->tx_headroom +
1768                 sizeof(struct qm_sg_entry) * (1 + nr_frags));
1769         sgt_buf = netdev_alloc_frag(sz);
1770         if (unlikely(!sgt_buf)) {
1771                 netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1772                            sz);
1773                 return -ENOMEM;
1774         }
1775
1776         /* Enable L3/L4 hardware checksum computation.
1777          *
1778          * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1779          * need to write into the skb.
1780          */
1781         err = dpaa_enable_tx_csum(priv, skb, fd,
1782                                   sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1783         if (unlikely(err < 0)) {
1784                 if (net_ratelimit())
1785                         netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1786                                   err);
1787                 goto csum_failed;
1788         }
1789
1790         sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1791         qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1792         sgt[0].bpid = FSL_DPAA_BPID_INV;
1793         sgt[0].offset = 0;
1794         addr = dma_map_single(dev, skb->data,
1795                               skb_headlen(skb), dma_dir);
1796         if (unlikely(dma_mapping_error(dev, addr))) {
1797                 dev_err(dev, "DMA mapping failed");
1798                 err = -EINVAL;
1799                 goto sg0_map_failed;
1800         }
1801         qm_sg_entry_set64(&sgt[0], addr);
1802
1803         /* populate the rest of SGT entries */
1804         frag = &skb_shinfo(skb)->frags[0];
1805         frag_len = frag->size;
1806         for (i = 1; i <= nr_frags; i++, frag++) {
1807                 WARN_ON(!skb_frag_page(frag));
1808                 addr = skb_frag_dma_map(dev, frag, 0,
1809                                         frag_len, dma_dir);
1810                 if (unlikely(dma_mapping_error(dev, addr))) {
1811                         dev_err(dev, "DMA mapping failed");
1812                         err = -EINVAL;
1813                         goto sg_map_failed;
1814                 }
1815
1816                 qm_sg_entry_set_len(&sgt[i], frag_len);
1817                 sgt[i].bpid = FSL_DPAA_BPID_INV;
1818                 sgt[i].offset = 0;
1819
1820                 /* keep the offset in the address */
1821                 qm_sg_entry_set64(&sgt[i], addr);
1822                 frag_len = frag->size;
1823         }
1824         qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1825
1826         qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1827
1828         /* DMA map the SGT page */
1829         buffer_start = (void *)sgt - priv->tx_headroom;
1830         skbh = (struct sk_buff **)buffer_start;
1831         *skbh = skb;
1832
1833         addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1834                               sizeof(struct qm_sg_entry) * (1 + nr_frags),
1835                               dma_dir);
1836         if (unlikely(dma_mapping_error(dev, addr))) {
1837                 dev_err(dev, "DMA mapping failed");
1838                 err = -EINVAL;
1839                 goto sgt_map_failed;
1840         }
1841
1842         fd->bpid = FSL_DPAA_BPID_INV;
1843         fd->cmd |= FM_FD_CMD_FCO;
1844         qm_fd_addr_set64(fd, addr);
1845
1846         return 0;
1847
1848 sgt_map_failed:
1849 sg_map_failed:
1850         for (j = 0; j < i; j++)
1851                 dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1852                                qm_sg_entry_get_len(&sgt[j]), dma_dir);
1853 sg0_map_failed:
1854 csum_failed:
1855         skb_free_frag(sgt_buf);
1856
1857         return err;
1858 }
1859
1860 static inline int dpaa_xmit(struct dpaa_priv *priv,
1861                             struct rtnl_link_stats64 *percpu_stats,
1862                             int queue,
1863                             struct qm_fd *fd)
1864 {
1865         struct qman_fq *egress_fq;
1866         int err, i;
1867
1868         egress_fq = priv->egress_fqs[queue];
1869         if (fd->bpid == FSL_DPAA_BPID_INV)
1870                 fd->cmd |= qman_fq_fqid(priv->conf_fqs[queue]);
1871
1872         /* Trace this Tx fd */
1873         trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
1874
1875         for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
1876                 err = qman_enqueue(egress_fq, fd);
1877                 if (err != -EBUSY)
1878                         break;
1879         }
1880
1881         if (unlikely(err < 0)) {
1882                 percpu_stats->tx_errors++;
1883                 percpu_stats->tx_fifo_errors++;
1884                 return err;
1885         }
1886
1887         percpu_stats->tx_packets++;
1888         percpu_stats->tx_bytes += qm_fd_get_length(fd);
1889
1890         return 0;
1891 }
1892
1893 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1894 {
1895         const int queue_mapping = skb_get_queue_mapping(skb);
1896         bool nonlinear = skb_is_nonlinear(skb);
1897         struct rtnl_link_stats64 *percpu_stats;
1898         struct dpaa_percpu_priv *percpu_priv;
1899         struct dpaa_priv *priv;
1900         struct qm_fd fd;
1901         int offset = 0;
1902         int err = 0;
1903
1904         priv = netdev_priv(net_dev);
1905         percpu_priv = this_cpu_ptr(priv->percpu_priv);
1906         percpu_stats = &percpu_priv->stats;
1907
1908         qm_fd_clear_fd(&fd);
1909
1910         if (!nonlinear) {
1911                 /* We're going to store the skb backpointer at the beginning
1912                  * of the data buffer, so we need a privately owned skb
1913                  *
1914                  * We've made sure skb is not shared in dev->priv_flags,
1915                  * we need to verify the skb head is not cloned
1916                  */
1917                 if (skb_cow_head(skb, priv->tx_headroom))
1918                         goto enomem;
1919
1920                 WARN_ON(skb_is_nonlinear(skb));
1921         }
1922
1923         /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
1924          * make sure we don't feed FMan with more fragments than it supports.
1925          */
1926         if (nonlinear &&
1927             likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
1928                 /* Just create a S/G fd based on the skb */
1929                 err = skb_to_sg_fd(priv, skb, &fd);
1930                 percpu_priv->tx_frag_skbuffs++;
1931         } else {
1932                 /* If the egress skb contains more fragments than we support
1933                  * we have no choice but to linearize it ourselves.
1934                  */
1935                 if (unlikely(nonlinear) && __skb_linearize(skb))
1936                         goto enomem;
1937
1938                 /* Finally, create a contig FD from this skb */
1939                 err = skb_to_contig_fd(priv, skb, &fd, &offset);
1940         }
1941         if (unlikely(err < 0))
1942                 goto skb_to_fd_failed;
1943
1944         if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
1945                 return NETDEV_TX_OK;
1946
1947         dpaa_cleanup_tx_fd(priv, &fd);
1948 skb_to_fd_failed:
1949 enomem:
1950         percpu_stats->tx_errors++;
1951         dev_kfree_skb(skb);
1952         return NETDEV_TX_OK;
1953 }
1954
1955 static void dpaa_rx_error(struct net_device *net_dev,
1956                           const struct dpaa_priv *priv,
1957                           struct dpaa_percpu_priv *percpu_priv,
1958                           const struct qm_fd *fd,
1959                           u32 fqid)
1960 {
1961         if (net_ratelimit())
1962                 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
1963                           fd->status & FM_FD_STAT_RX_ERRORS);
1964
1965         percpu_priv->stats.rx_errors++;
1966
1967         if (fd->status & FM_FD_ERR_DMA)
1968                 percpu_priv->rx_errors.dme++;
1969         if (fd->status & FM_FD_ERR_PHYSICAL)
1970                 percpu_priv->rx_errors.fpe++;
1971         if (fd->status & FM_FD_ERR_SIZE)
1972                 percpu_priv->rx_errors.fse++;
1973         if (fd->status & FM_FD_ERR_PRS_HDR_ERR)
1974                 percpu_priv->rx_errors.phe++;
1975
1976         dpaa_fd_release(net_dev, fd);
1977 }
1978
1979 static void dpaa_tx_error(struct net_device *net_dev,
1980                           const struct dpaa_priv *priv,
1981                           struct dpaa_percpu_priv *percpu_priv,
1982                           const struct qm_fd *fd,
1983                           u32 fqid)
1984 {
1985         struct sk_buff *skb;
1986
1987         if (net_ratelimit())
1988                 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
1989                            fd->status & FM_FD_STAT_TX_ERRORS);
1990
1991         percpu_priv->stats.tx_errors++;
1992
1993         skb = dpaa_cleanup_tx_fd(priv, fd);
1994         dev_kfree_skb(skb);
1995 }
1996
1997 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
1998 {
1999         struct dpaa_napi_portal *np =
2000                         container_of(napi, struct dpaa_napi_portal, napi);
2001
2002         int cleaned = qman_p_poll_dqrr(np->p, budget);
2003
2004         if (cleaned < budget) {
2005                 napi_complete(napi);
2006                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2007
2008         } else if (np->down) {
2009                 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2010         }
2011
2012         return cleaned;
2013 }
2014
2015 static void dpaa_tx_conf(struct net_device *net_dev,
2016                          const struct dpaa_priv *priv,
2017                          struct dpaa_percpu_priv *percpu_priv,
2018                          const struct qm_fd *fd,
2019                          u32 fqid)
2020 {
2021         struct sk_buff  *skb;
2022
2023         if (unlikely(fd->status & FM_FD_STAT_TX_ERRORS) != 0) {
2024                 if (net_ratelimit())
2025                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2026                                    fd->status & FM_FD_STAT_TX_ERRORS);
2027
2028                 percpu_priv->stats.tx_errors++;
2029         }
2030
2031         percpu_priv->tx_confirm++;
2032
2033         skb = dpaa_cleanup_tx_fd(priv, fd);
2034
2035         consume_skb(skb);
2036 }
2037
2038 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2039                                          struct qman_portal *portal)
2040 {
2041         if (unlikely(in_irq() || !in_serving_softirq())) {
2042                 /* Disable QMan IRQ and invoke NAPI */
2043                 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2044
2045                 percpu_priv->np.p = portal;
2046                 napi_schedule(&percpu_priv->np.napi);
2047                 percpu_priv->in_interrupt++;
2048                 return 1;
2049         }
2050         return 0;
2051 }
2052
2053 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2054                                               struct qman_fq *fq,
2055                                               const struct qm_dqrr_entry *dq)
2056 {
2057         struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2058         struct dpaa_percpu_priv *percpu_priv;
2059         struct net_device *net_dev;
2060         struct dpaa_bp *dpaa_bp;
2061         struct dpaa_priv *priv;
2062
2063         net_dev = dpaa_fq->net_dev;
2064         priv = netdev_priv(net_dev);
2065         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2066         if (!dpaa_bp)
2067                 return qman_cb_dqrr_consume;
2068
2069         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2070
2071         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2072                 return qman_cb_dqrr_stop;
2073
2074         if (dpaa_eth_refill_bpools(priv))
2075                 /* Unable to refill the buffer pool due to insufficient
2076                  * system memory. Just release the frame back into the pool,
2077                  * otherwise we'll soon end up with an empty buffer pool.
2078                  */
2079                 dpaa_fd_release(net_dev, &dq->fd);
2080         else
2081                 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2082
2083         return qman_cb_dqrr_consume;
2084 }
2085
2086 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2087                                                 struct qman_fq *fq,
2088                                                 const struct qm_dqrr_entry *dq)
2089 {
2090         struct rtnl_link_stats64 *percpu_stats;
2091         struct dpaa_percpu_priv *percpu_priv;
2092         const struct qm_fd *fd = &dq->fd;
2093         dma_addr_t addr = qm_fd_addr(fd);
2094         enum qm_fd_format fd_format;
2095         struct net_device *net_dev;
2096         u32 fd_status = fd->status;
2097         struct dpaa_bp *dpaa_bp;
2098         struct dpaa_priv *priv;
2099         unsigned int skb_len;
2100         struct sk_buff *skb;
2101         int *count_ptr;
2102
2103         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2104         priv = netdev_priv(net_dev);
2105         dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2106         if (!dpaa_bp)
2107                 return qman_cb_dqrr_consume;
2108
2109         /* Trace the Rx fd */
2110         trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2111
2112         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2113         percpu_stats = &percpu_priv->stats;
2114
2115         if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2116                 return qman_cb_dqrr_stop;
2117
2118         /* Make sure we didn't run out of buffers */
2119         if (unlikely(dpaa_eth_refill_bpools(priv))) {
2120                 /* Unable to refill the buffer pool due to insufficient
2121                  * system memory. Just release the frame back into the pool,
2122                  * otherwise we'll soon end up with an empty buffer pool.
2123                  */
2124                 dpaa_fd_release(net_dev, &dq->fd);
2125                 return qman_cb_dqrr_consume;
2126         }
2127
2128         if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2129                 if (net_ratelimit())
2130                         netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2131                                    fd_status & FM_FD_STAT_RX_ERRORS);
2132
2133                 percpu_stats->rx_errors++;
2134                 dpaa_fd_release(net_dev, fd);
2135                 return qman_cb_dqrr_consume;
2136         }
2137
2138         dpaa_bp = dpaa_bpid2pool(fd->bpid);
2139         if (!dpaa_bp)
2140                 return qman_cb_dqrr_consume;
2141
2142         dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2143
2144         /* prefetch the first 64 bytes of the frame or the SGT start */
2145         prefetch(phys_to_virt(addr) + qm_fd_get_offset(fd));
2146
2147         fd_format = qm_fd_get_format(fd);
2148         /* The only FD types that we may receive are contig and S/G */
2149         WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2150
2151         /* Account for either the contig buffer or the SGT buffer (depending on
2152          * which case we were in) having been removed from the pool.
2153          */
2154         count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2155         (*count_ptr)--;
2156
2157         if (likely(fd_format == qm_fd_contig))
2158                 skb = contig_fd_to_skb(priv, fd);
2159         else
2160                 skb = sg_fd_to_skb(priv, fd);
2161         if (!skb)
2162                 return qman_cb_dqrr_consume;
2163
2164         skb->protocol = eth_type_trans(skb, net_dev);
2165
2166         skb_len = skb->len;
2167
2168         if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2169                 return qman_cb_dqrr_consume;
2170
2171         percpu_stats->rx_packets++;
2172         percpu_stats->rx_bytes += skb_len;
2173
2174         return qman_cb_dqrr_consume;
2175 }
2176
2177 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2178                                                 struct qman_fq *fq,
2179                                                 const struct qm_dqrr_entry *dq)
2180 {
2181         struct dpaa_percpu_priv *percpu_priv;
2182         struct net_device *net_dev;
2183         struct dpaa_priv *priv;
2184
2185         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2186         priv = netdev_priv(net_dev);
2187
2188         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2189
2190         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2191                 return qman_cb_dqrr_stop;
2192
2193         dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2194
2195         return qman_cb_dqrr_consume;
2196 }
2197
2198 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2199                                                struct qman_fq *fq,
2200                                                const struct qm_dqrr_entry *dq)
2201 {
2202         struct dpaa_percpu_priv *percpu_priv;
2203         struct net_device *net_dev;
2204         struct dpaa_priv *priv;
2205
2206         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2207         priv = netdev_priv(net_dev);
2208
2209         /* Trace the fd */
2210         trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2211
2212         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2213
2214         if (dpaa_eth_napi_schedule(percpu_priv, portal))
2215                 return qman_cb_dqrr_stop;
2216
2217         dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2218
2219         return qman_cb_dqrr_consume;
2220 }
2221
2222 static void egress_ern(struct qman_portal *portal,
2223                        struct qman_fq *fq,
2224                        const union qm_mr_entry *msg)
2225 {
2226         const struct qm_fd *fd = &msg->ern.fd;
2227         struct dpaa_percpu_priv *percpu_priv;
2228         const struct dpaa_priv *priv;
2229         struct net_device *net_dev;
2230         struct sk_buff *skb;
2231
2232         net_dev = ((struct dpaa_fq *)fq)->net_dev;
2233         priv = netdev_priv(net_dev);
2234         percpu_priv = this_cpu_ptr(priv->percpu_priv);
2235
2236         percpu_priv->stats.tx_dropped++;
2237         percpu_priv->stats.tx_fifo_errors++;
2238         count_ern(percpu_priv, msg);
2239
2240         skb = dpaa_cleanup_tx_fd(priv, fd);
2241         dev_kfree_skb_any(skb);
2242 }
2243
2244 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2245         .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2246         .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2247         .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2248         .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2249         .egress_ern = { .cb = { .ern = egress_ern } }
2250 };
2251
2252 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2253 {
2254         struct dpaa_percpu_priv *percpu_priv;
2255         int i;
2256
2257         for_each_possible_cpu(i) {
2258                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2259
2260                 percpu_priv->np.down = 0;
2261                 napi_enable(&percpu_priv->np.napi);
2262         }
2263 }
2264
2265 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2266 {
2267         struct dpaa_percpu_priv *percpu_priv;
2268         int i;
2269
2270         for_each_possible_cpu(i) {
2271                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2272
2273                 percpu_priv->np.down = 1;
2274                 napi_disable(&percpu_priv->np.napi);
2275         }
2276 }
2277
2278 static int dpaa_open(struct net_device *net_dev)
2279 {
2280         struct mac_device *mac_dev;
2281         struct dpaa_priv *priv;
2282         int err, i;
2283
2284         priv = netdev_priv(net_dev);
2285         mac_dev = priv->mac_dev;
2286         dpaa_eth_napi_enable(priv);
2287
2288         net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev);
2289         if (!net_dev->phydev) {
2290                 netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2291                 return -ENODEV;
2292         }
2293
2294         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2295                 err = fman_port_enable(mac_dev->port[i]);
2296                 if (err)
2297                         goto mac_start_failed;
2298         }
2299
2300         err = priv->mac_dev->start(mac_dev);
2301         if (err < 0) {
2302                 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2303                 goto mac_start_failed;
2304         }
2305
2306         netif_tx_start_all_queues(net_dev);
2307
2308         return 0;
2309
2310 mac_start_failed:
2311         for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2312                 fman_port_disable(mac_dev->port[i]);
2313
2314         dpaa_eth_napi_disable(priv);
2315
2316         return err;
2317 }
2318
2319 static int dpaa_eth_stop(struct net_device *net_dev)
2320 {
2321         struct dpaa_priv *priv;
2322         int err;
2323
2324         err = dpaa_stop(net_dev);
2325
2326         priv = netdev_priv(net_dev);
2327         dpaa_eth_napi_disable(priv);
2328
2329         return err;
2330 }
2331
2332 static const struct net_device_ops dpaa_ops = {
2333         .ndo_open = dpaa_open,
2334         .ndo_start_xmit = dpaa_start_xmit,
2335         .ndo_stop = dpaa_eth_stop,
2336         .ndo_tx_timeout = dpaa_tx_timeout,
2337         .ndo_get_stats64 = dpaa_get_stats64,
2338         .ndo_set_mac_address = dpaa_set_mac_address,
2339         .ndo_validate_addr = eth_validate_addr,
2340         .ndo_set_rx_mode = dpaa_set_rx_mode,
2341 };
2342
2343 static int dpaa_napi_add(struct net_device *net_dev)
2344 {
2345         struct dpaa_priv *priv = netdev_priv(net_dev);
2346         struct dpaa_percpu_priv *percpu_priv;
2347         int cpu;
2348
2349         for_each_possible_cpu(cpu) {
2350                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2351
2352                 netif_napi_add(net_dev, &percpu_priv->np.napi,
2353                                dpaa_eth_poll, NAPI_POLL_WEIGHT);
2354         }
2355
2356         return 0;
2357 }
2358
2359 static void dpaa_napi_del(struct net_device *net_dev)
2360 {
2361         struct dpaa_priv *priv = netdev_priv(net_dev);
2362         struct dpaa_percpu_priv *percpu_priv;
2363         int cpu;
2364
2365         for_each_possible_cpu(cpu) {
2366                 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2367
2368                 netif_napi_del(&percpu_priv->np.napi);
2369         }
2370 }
2371
2372 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2373                                    struct bm_buffer *bmb)
2374 {
2375         dma_addr_t addr = bm_buf_addr(bmb);
2376
2377         dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2378
2379         skb_free_frag(phys_to_virt(addr));
2380 }
2381
2382 /* Alloc the dpaa_bp struct and configure default values */
2383 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2384 {
2385         struct dpaa_bp *dpaa_bp;
2386
2387         dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2388         if (!dpaa_bp)
2389                 return ERR_PTR(-ENOMEM);
2390
2391         dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2392         dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2393         dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2394
2395         dpaa_bp->seed_cb = dpaa_bp_seed;
2396         dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2397
2398         return dpaa_bp;
2399 }
2400
2401 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2402  * We won't be sending congestion notifications to FMan; for now, we just use
2403  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2404  * before they reach our ingress queues and eat up memory.
2405  */
2406 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2407 {
2408         struct qm_mcc_initcgr initcgr;
2409         u32 cs_th;
2410         int err;
2411
2412         err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2413         if (err < 0) {
2414                 if (netif_msg_drv(priv))
2415                         pr_err("Error %d allocating CGR ID\n", err);
2416                 goto out_error;
2417         }
2418
2419         /* Enable CS TD, but disable Congestion State Change Notifications. */
2420         initcgr.we_mask = QM_CGR_WE_CS_THRES;
2421         initcgr.cgr.cscn_en = QM_CGR_EN;
2422         cs_th = DPAA_INGRESS_CS_THRESHOLD;
2423         qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2424
2425         initcgr.we_mask |= QM_CGR_WE_CSTD_EN;
2426         initcgr.cgr.cstd_en = QM_CGR_EN;
2427
2428         /* This CGR will be associated with the SWP affined to the current CPU.
2429          * However, we'll place all our ingress FQs in it.
2430          */
2431         err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2432                               &initcgr);
2433         if (err < 0) {
2434                 if (netif_msg_drv(priv))
2435                         pr_err("Error %d creating ingress CGR with ID %d\n",
2436                                err, priv->ingress_cgr.cgrid);
2437                 qman_release_cgrid(priv->ingress_cgr.cgrid);
2438                 goto out_error;
2439         }
2440         if (netif_msg_drv(priv))
2441                 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2442                          priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2443
2444         priv->use_ingress_cgr = true;
2445
2446 out_error:
2447         return err;
2448 }
2449
2450 static const struct of_device_id dpaa_match[];
2451
2452 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2453 {
2454         u16 headroom;
2455
2456         /* The frame headroom must accommodate:
2457          * - the driver private data area
2458          * - parse results, hash results, timestamp if selected
2459          * If either hash results or time stamp are selected, both will
2460          * be copied to/from the frame headroom, as TS is located between PR and
2461          * HR in the IC and IC copy size has a granularity of 16bytes
2462          * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2463          *
2464          * Also make sure the headroom is a multiple of data_align bytes
2465          */
2466         headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2467                 DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2468
2469         return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2470                                               DPAA_FD_DATA_ALIGNMENT) :
2471                                         headroom;
2472 }
2473
2474 static int dpaa_eth_probe(struct platform_device *pdev)
2475 {
2476         struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2477         struct dpaa_percpu_priv *percpu_priv;
2478         struct net_device *net_dev = NULL;
2479         struct dpaa_fq *dpaa_fq, *tmp;
2480         struct dpaa_priv *priv = NULL;
2481         struct fm_port_fqs port_fqs;
2482         struct mac_device *mac_dev;
2483         int err = 0, i, channel;
2484         struct device *dev;
2485
2486         dev = &pdev->dev;
2487
2488         /* Allocate this early, so we can store relevant information in
2489          * the private area
2490          */
2491         net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2492         if (!net_dev) {
2493                 dev_err(dev, "alloc_etherdev_mq() failed\n");
2494                 goto alloc_etherdev_mq_failed;
2495         }
2496
2497         /* Do this here, so we can be verbose early */
2498         SET_NETDEV_DEV(net_dev, dev);
2499         dev_set_drvdata(dev, net_dev);
2500
2501         priv = netdev_priv(net_dev);
2502         priv->net_dev = net_dev;
2503
2504         priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2505
2506         mac_dev = dpaa_mac_dev_get(pdev);
2507         if (IS_ERR(mac_dev)) {
2508                 dev_err(dev, "dpaa_mac_dev_get() failed\n");
2509                 err = PTR_ERR(mac_dev);
2510                 goto mac_probe_failed;
2511         }
2512
2513         /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2514          * we choose conservatively and let the user explicitly set a higher
2515          * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2516          * in the same LAN.
2517          * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2518          * start with the maximum allowed.
2519          */
2520         net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2521
2522         netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2523                    net_dev->mtu);
2524
2525         priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2526         priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2527
2528         /* device used for DMA mapping */
2529         arch_setup_dma_ops(dev, 0, 0, NULL, false);
2530         err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2531         if (err) {
2532                 dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2533                 goto dev_mask_failed;
2534         }
2535
2536         /* bp init */
2537         for (i = 0; i < DPAA_BPS_NUM; i++) {
2538                 int err;
2539
2540                 dpaa_bps[i] = dpaa_bp_alloc(dev);
2541                 if (IS_ERR(dpaa_bps[i]))
2542                         return PTR_ERR(dpaa_bps[i]);
2543                 /* the raw size of the buffers used for reception */
2544                 dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2545                 /* avoid runtime computations by keeping the usable size here */
2546                 dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2547                 dpaa_bps[i]->dev = dev;
2548
2549                 err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2550                 if (err < 0) {
2551                         dpaa_bps_free(priv);
2552                         priv->dpaa_bps[i] = NULL;
2553                         goto bp_create_failed;
2554                 }
2555                 priv->dpaa_bps[i] = dpaa_bps[i];
2556         }
2557
2558         INIT_LIST_HEAD(&priv->dpaa_fq_list);
2559
2560         memset(&port_fqs, 0, sizeof(port_fqs));
2561
2562         err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2563         if (err < 0) {
2564                 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2565                 goto fq_probe_failed;
2566         }
2567
2568         priv->mac_dev = mac_dev;
2569
2570         channel = dpaa_get_channel();
2571         if (channel < 0) {
2572                 dev_err(dev, "dpaa_get_channel() failed\n");
2573                 err = channel;
2574                 goto get_channel_failed;
2575         }
2576
2577         priv->channel = (u16)channel;
2578
2579         /* Start a thread that will walk the CPUs with affine portals
2580          * and add this pool channel to each's dequeue mask.
2581          */
2582         dpaa_eth_add_channel(priv->channel);
2583
2584         dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2585
2586         /* Create a congestion group for this netdev, with
2587          * dynamically-allocated CGR ID.
2588          * Must be executed after probing the MAC, but before
2589          * assigning the egress FQs to the CGRs.
2590          */
2591         err = dpaa_eth_cgr_init(priv);
2592         if (err < 0) {
2593                 dev_err(dev, "Error initializing CGR\n");
2594                 goto tx_cgr_init_failed;
2595         }
2596
2597         err = dpaa_ingress_cgr_init(priv);
2598         if (err < 0) {
2599                 dev_err(dev, "Error initializing ingress CGR\n");
2600                 goto rx_cgr_init_failed;
2601         }
2602
2603         /* Add the FQs to the interface, and make them active */
2604         list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2605                 err = dpaa_fq_init(dpaa_fq, false);
2606                 if (err < 0)
2607                         goto fq_alloc_failed;
2608         }
2609
2610         priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2611         priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2612
2613         /* All real interfaces need their ports initialized */
2614         dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2615                             &priv->buf_layout[0], dev);
2616
2617         priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2618         if (!priv->percpu_priv) {
2619                 dev_err(dev, "devm_alloc_percpu() failed\n");
2620                 err = -ENOMEM;
2621                 goto alloc_percpu_failed;
2622         }
2623         for_each_possible_cpu(i) {
2624                 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2625                 memset(percpu_priv, 0, sizeof(*percpu_priv));
2626         }
2627
2628         /* Initialize NAPI */
2629         err = dpaa_napi_add(net_dev);
2630         if (err < 0)
2631                 goto napi_add_failed;
2632
2633         err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2634         if (err < 0)
2635                 goto netdev_init_failed;
2636
2637         dpaa_eth_sysfs_init(&net_dev->dev);
2638
2639         netif_info(priv, probe, net_dev, "Probed interface %s\n",
2640                    net_dev->name);
2641
2642         return 0;
2643
2644 netdev_init_failed:
2645 napi_add_failed:
2646         dpaa_napi_del(net_dev);
2647 alloc_percpu_failed:
2648         dpaa_fq_free(dev, &priv->dpaa_fq_list);
2649 fq_alloc_failed:
2650         qman_delete_cgr_safe(&priv->ingress_cgr);
2651         qman_release_cgrid(priv->ingress_cgr.cgrid);
2652 rx_cgr_init_failed:
2653         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2654         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2655 tx_cgr_init_failed:
2656 get_channel_failed:
2657         dpaa_bps_free(priv);
2658 bp_create_failed:
2659 fq_probe_failed:
2660 dev_mask_failed:
2661 mac_probe_failed:
2662         dev_set_drvdata(dev, NULL);
2663         free_netdev(net_dev);
2664 alloc_etherdev_mq_failed:
2665         for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) {
2666                 if (atomic_read(&dpaa_bps[i]->refs) == 0)
2667                         devm_kfree(dev, dpaa_bps[i]);
2668         }
2669         return err;
2670 }
2671
2672 static int dpaa_remove(struct platform_device *pdev)
2673 {
2674         struct net_device *net_dev;
2675         struct dpaa_priv *priv;
2676         struct device *dev;
2677         int err;
2678
2679         dev = &pdev->dev;
2680         net_dev = dev_get_drvdata(dev);
2681
2682         priv = netdev_priv(net_dev);
2683
2684         dpaa_eth_sysfs_remove(dev);
2685
2686         dev_set_drvdata(dev, NULL);
2687         unregister_netdev(net_dev);
2688
2689         err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2690
2691         qman_delete_cgr_safe(&priv->ingress_cgr);
2692         qman_release_cgrid(priv->ingress_cgr.cgrid);
2693         qman_delete_cgr_safe(&priv->cgr_data.cgr);
2694         qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2695
2696         dpaa_napi_del(net_dev);
2697
2698         dpaa_bps_free(priv);
2699
2700         free_netdev(net_dev);
2701
2702         return err;
2703 }
2704
2705 static struct platform_device_id dpaa_devtype[] = {
2706         {
2707                 .name = "dpaa-ethernet",
2708                 .driver_data = 0,
2709         }, {
2710         }
2711 };
2712 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2713
2714 static struct platform_driver dpaa_driver = {
2715         .driver = {
2716                 .name = KBUILD_MODNAME,
2717         },
2718         .id_table = dpaa_devtype,
2719         .probe = dpaa_eth_probe,
2720         .remove = dpaa_remove
2721 };
2722
2723 static int __init dpaa_load(void)
2724 {
2725         int err;
2726
2727         pr_debug("FSL DPAA Ethernet driver\n");
2728
2729         /* initialize dpaa_eth mirror values */
2730         dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2731         dpaa_max_frm = fman_get_max_frm();
2732
2733         err = platform_driver_register(&dpaa_driver);
2734         if (err < 0)
2735                 pr_err("Error, platform_driver_register() = %d\n", err);
2736
2737         return err;
2738 }
2739 module_init(dpaa_load);
2740
2741 static void __exit dpaa_unload(void)
2742 {
2743         platform_driver_unregister(&dpaa_driver);
2744
2745         /* Only one channel is used and needs to be released after all
2746          * interfaces are removed
2747          */
2748         dpaa_release_channel();
2749 }
2750 module_exit(dpaa_unload);
2751
2752 MODULE_LICENSE("Dual BSD/GPL");
2753 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");