]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/freescale/gianfar.c
df13c693b03850b23c357b98997c3f29fff289cb
[linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <linux/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105
106 #include "gianfar.h"
107
108 #define TX_TIMEOUT      (5*HZ)
109
110 const char gfar_driver_version[] = "2.0";
111
112 static int gfar_enet_open(struct net_device *dev);
113 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
114 static void gfar_reset_task(struct work_struct *work);
115 static void gfar_timeout(struct net_device *dev);
116 static int gfar_close(struct net_device *dev);
117 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
118                                 int alloc_cnt);
119 static int gfar_set_mac_address(struct net_device *dev);
120 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
121 static irqreturn_t gfar_error(int irq, void *dev_id);
122 static irqreturn_t gfar_transmit(int irq, void *dev_id);
123 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
124 static void adjust_link(struct net_device *dev);
125 static noinline void gfar_update_link_state(struct gfar_private *priv);
126 static int init_phy(struct net_device *dev);
127 static int gfar_probe(struct platform_device *ofdev);
128 static int gfar_remove(struct platform_device *ofdev);
129 static void free_skb_resources(struct gfar_private *priv);
130 static void gfar_set_multi(struct net_device *dev);
131 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
132 static void gfar_configure_serdes(struct net_device *dev);
133 static int gfar_poll_rx(struct napi_struct *napi, int budget);
134 static int gfar_poll_tx(struct napi_struct *napi, int budget);
135 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
137 #ifdef CONFIG_NET_POLL_CONTROLLER
138 static void gfar_netpoll(struct net_device *dev);
139 #endif
140 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
141 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
142 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
143 static void gfar_halt_nodisable(struct gfar_private *priv);
144 static void gfar_clear_exact_match(struct net_device *dev);
145 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
146                                   const u8 *addr);
147 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
148
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
152
153 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
154                             dma_addr_t buf)
155 {
156         u32 lstatus;
157
158         bdp->bufPtr = cpu_to_be32(buf);
159
160         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
161         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
162                 lstatus |= BD_LFLAG(RXBD_WRAP);
163
164         gfar_wmb();
165
166         bdp->lstatus = cpu_to_be32(lstatus);
167 }
168
169 static void gfar_init_bds(struct net_device *ndev)
170 {
171         struct gfar_private *priv = netdev_priv(ndev);
172         struct gfar __iomem *regs = priv->gfargrp[0].regs;
173         struct gfar_priv_tx_q *tx_queue = NULL;
174         struct gfar_priv_rx_q *rx_queue = NULL;
175         struct txbd8 *txbdp;
176         u32 __iomem *rfbptr;
177         int i, j;
178
179         for (i = 0; i < priv->num_tx_queues; i++) {
180                 tx_queue = priv->tx_queue[i];
181                 /* Initialize some variables in our dev structure */
182                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
183                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
184                 tx_queue->cur_tx = tx_queue->tx_bd_base;
185                 tx_queue->skb_curtx = 0;
186                 tx_queue->skb_dirtytx = 0;
187
188                 /* Initialize Transmit Descriptor Ring */
189                 txbdp = tx_queue->tx_bd_base;
190                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
191                         txbdp->lstatus = 0;
192                         txbdp->bufPtr = 0;
193                         txbdp++;
194                 }
195
196                 /* Set the last descriptor in the ring to indicate wrap */
197                 txbdp--;
198                 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
199                                             TXBD_WRAP);
200         }
201
202         rfbptr = &regs->rfbptr0;
203         for (i = 0; i < priv->num_rx_queues; i++) {
204                 rx_queue = priv->rx_queue[i];
205
206                 rx_queue->next_to_clean = 0;
207                 rx_queue->next_to_use = 0;
208                 rx_queue->next_to_alloc = 0;
209
210                 /* make sure next_to_clean != next_to_use after this
211                  * by leaving at least 1 unused descriptor
212                  */
213                 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
214
215                 rx_queue->rfbptr = rfbptr;
216                 rfbptr += 2;
217         }
218 }
219
220 static int gfar_alloc_skb_resources(struct net_device *ndev)
221 {
222         void *vaddr;
223         dma_addr_t addr;
224         int i, j;
225         struct gfar_private *priv = netdev_priv(ndev);
226         struct device *dev = priv->dev;
227         struct gfar_priv_tx_q *tx_queue = NULL;
228         struct gfar_priv_rx_q *rx_queue = NULL;
229
230         priv->total_tx_ring_size = 0;
231         for (i = 0; i < priv->num_tx_queues; i++)
232                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
233
234         priv->total_rx_ring_size = 0;
235         for (i = 0; i < priv->num_rx_queues; i++)
236                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
237
238         /* Allocate memory for the buffer descriptors */
239         vaddr = dma_alloc_coherent(dev,
240                                    (priv->total_tx_ring_size *
241                                     sizeof(struct txbd8)) +
242                                    (priv->total_rx_ring_size *
243                                     sizeof(struct rxbd8)),
244                                    &addr, GFP_KERNEL);
245         if (!vaddr)
246                 return -ENOMEM;
247
248         for (i = 0; i < priv->num_tx_queues; i++) {
249                 tx_queue = priv->tx_queue[i];
250                 tx_queue->tx_bd_base = vaddr;
251                 tx_queue->tx_bd_dma_base = addr;
252                 tx_queue->dev = ndev;
253                 /* enet DMA only understands physical addresses */
254                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
255                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
256         }
257
258         /* Start the rx descriptor ring where the tx ring leaves off */
259         for (i = 0; i < priv->num_rx_queues; i++) {
260                 rx_queue = priv->rx_queue[i];
261                 rx_queue->rx_bd_base = vaddr;
262                 rx_queue->rx_bd_dma_base = addr;
263                 rx_queue->ndev = ndev;
264                 rx_queue->dev = dev;
265                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
266                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
267         }
268
269         /* Setup the skbuff rings */
270         for (i = 0; i < priv->num_tx_queues; i++) {
271                 tx_queue = priv->tx_queue[i];
272                 tx_queue->tx_skbuff =
273                         kmalloc_array(tx_queue->tx_ring_size,
274                                       sizeof(*tx_queue->tx_skbuff),
275                                       GFP_KERNEL);
276                 if (!tx_queue->tx_skbuff)
277                         goto cleanup;
278
279                 for (j = 0; j < tx_queue->tx_ring_size; j++)
280                         tx_queue->tx_skbuff[j] = NULL;
281         }
282
283         for (i = 0; i < priv->num_rx_queues; i++) {
284                 rx_queue = priv->rx_queue[i];
285                 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
286                                             sizeof(*rx_queue->rx_buff),
287                                             GFP_KERNEL);
288                 if (!rx_queue->rx_buff)
289                         goto cleanup;
290         }
291
292         gfar_init_bds(ndev);
293
294         return 0;
295
296 cleanup:
297         free_skb_resources(priv);
298         return -ENOMEM;
299 }
300
301 static void gfar_init_tx_rx_base(struct gfar_private *priv)
302 {
303         struct gfar __iomem *regs = priv->gfargrp[0].regs;
304         u32 __iomem *baddr;
305         int i;
306
307         baddr = &regs->tbase0;
308         for (i = 0; i < priv->num_tx_queues; i++) {
309                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
310                 baddr += 2;
311         }
312
313         baddr = &regs->rbase0;
314         for (i = 0; i < priv->num_rx_queues; i++) {
315                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
316                 baddr += 2;
317         }
318 }
319
320 static void gfar_init_rqprm(struct gfar_private *priv)
321 {
322         struct gfar __iomem *regs = priv->gfargrp[0].regs;
323         u32 __iomem *baddr;
324         int i;
325
326         baddr = &regs->rqprm0;
327         for (i = 0; i < priv->num_rx_queues; i++) {
328                 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
329                            (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
330                 baddr++;
331         }
332 }
333
334 static void gfar_rx_offload_en(struct gfar_private *priv)
335 {
336         /* set this when rx hw offload (TOE) functions are being used */
337         priv->uses_rxfcb = 0;
338
339         if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
340                 priv->uses_rxfcb = 1;
341
342         if (priv->hwts_rx_en || priv->rx_filer_enable)
343                 priv->uses_rxfcb = 1;
344 }
345
346 static void gfar_mac_rx_config(struct gfar_private *priv)
347 {
348         struct gfar __iomem *regs = priv->gfargrp[0].regs;
349         u32 rctrl = 0;
350
351         if (priv->rx_filer_enable) {
352                 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
353                 /* Program the RIR0 reg with the required distribution */
354                 if (priv->poll_mode == GFAR_SQ_POLLING)
355                         gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
356                 else /* GFAR_MQ_POLLING */
357                         gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
358         }
359
360         /* Restore PROMISC mode */
361         if (priv->ndev->flags & IFF_PROMISC)
362                 rctrl |= RCTRL_PROM;
363
364         if (priv->ndev->features & NETIF_F_RXCSUM)
365                 rctrl |= RCTRL_CHECKSUMMING;
366
367         if (priv->extended_hash)
368                 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
369
370         if (priv->padding) {
371                 rctrl &= ~RCTRL_PAL_MASK;
372                 rctrl |= RCTRL_PADDING(priv->padding);
373         }
374
375         /* Enable HW time stamping if requested from user space */
376         if (priv->hwts_rx_en)
377                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
378
379         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
380                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
381
382         /* Clear the LFC bit */
383         gfar_write(&regs->rctrl, rctrl);
384         /* Init flow control threshold values */
385         gfar_init_rqprm(priv);
386         gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
387         rctrl |= RCTRL_LFC;
388
389         /* Init rctrl based on our settings */
390         gfar_write(&regs->rctrl, rctrl);
391 }
392
393 static void gfar_mac_tx_config(struct gfar_private *priv)
394 {
395         struct gfar __iomem *regs = priv->gfargrp[0].regs;
396         u32 tctrl = 0;
397
398         if (priv->ndev->features & NETIF_F_IP_CSUM)
399                 tctrl |= TCTRL_INIT_CSUM;
400
401         if (priv->prio_sched_en)
402                 tctrl |= TCTRL_TXSCHED_PRIO;
403         else {
404                 tctrl |= TCTRL_TXSCHED_WRRS;
405                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
406                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
407         }
408
409         if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
410                 tctrl |= TCTRL_VLINS;
411
412         gfar_write(&regs->tctrl, tctrl);
413 }
414
415 static void gfar_configure_coalescing(struct gfar_private *priv,
416                                unsigned long tx_mask, unsigned long rx_mask)
417 {
418         struct gfar __iomem *regs = priv->gfargrp[0].regs;
419         u32 __iomem *baddr;
420
421         if (priv->mode == MQ_MG_MODE) {
422                 int i = 0;
423
424                 baddr = &regs->txic0;
425                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
426                         gfar_write(baddr + i, 0);
427                         if (likely(priv->tx_queue[i]->txcoalescing))
428                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
429                 }
430
431                 baddr = &regs->rxic0;
432                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
433                         gfar_write(baddr + i, 0);
434                         if (likely(priv->rx_queue[i]->rxcoalescing))
435                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
436                 }
437         } else {
438                 /* Backward compatible case -- even if we enable
439                  * multiple queues, there's only single reg to program
440                  */
441                 gfar_write(&regs->txic, 0);
442                 if (likely(priv->tx_queue[0]->txcoalescing))
443                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
444
445                 gfar_write(&regs->rxic, 0);
446                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
447                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
448         }
449 }
450
451 void gfar_configure_coalescing_all(struct gfar_private *priv)
452 {
453         gfar_configure_coalescing(priv, 0xFF, 0xFF);
454 }
455
456 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
457 {
458         struct gfar_private *priv = netdev_priv(dev);
459         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
460         unsigned long tx_packets = 0, tx_bytes = 0;
461         int i;
462
463         for (i = 0; i < priv->num_rx_queues; i++) {
464                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
465                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
466                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
467         }
468
469         dev->stats.rx_packets = rx_packets;
470         dev->stats.rx_bytes   = rx_bytes;
471         dev->stats.rx_dropped = rx_dropped;
472
473         for (i = 0; i < priv->num_tx_queues; i++) {
474                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
475                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
476         }
477
478         dev->stats.tx_bytes   = tx_bytes;
479         dev->stats.tx_packets = tx_packets;
480
481         return &dev->stats;
482 }
483
484 static int gfar_set_mac_addr(struct net_device *dev, void *p)
485 {
486         eth_mac_addr(dev, p);
487
488         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
489
490         return 0;
491 }
492
493 static const struct net_device_ops gfar_netdev_ops = {
494         .ndo_open = gfar_enet_open,
495         .ndo_start_xmit = gfar_start_xmit,
496         .ndo_stop = gfar_close,
497         .ndo_change_mtu = gfar_change_mtu,
498         .ndo_set_features = gfar_set_features,
499         .ndo_set_rx_mode = gfar_set_multi,
500         .ndo_tx_timeout = gfar_timeout,
501         .ndo_do_ioctl = gfar_ioctl,
502         .ndo_get_stats = gfar_get_stats,
503         .ndo_change_carrier = fixed_phy_change_carrier,
504         .ndo_set_mac_address = gfar_set_mac_addr,
505         .ndo_validate_addr = eth_validate_addr,
506 #ifdef CONFIG_NET_POLL_CONTROLLER
507         .ndo_poll_controller = gfar_netpoll,
508 #endif
509 };
510
511 static void gfar_ints_disable(struct gfar_private *priv)
512 {
513         int i;
514         for (i = 0; i < priv->num_grps; i++) {
515                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
516                 /* Clear IEVENT */
517                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
518
519                 /* Initialize IMASK */
520                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
521         }
522 }
523
524 static void gfar_ints_enable(struct gfar_private *priv)
525 {
526         int i;
527         for (i = 0; i < priv->num_grps; i++) {
528                 struct gfar __iomem *regs = priv->gfargrp[i].regs;
529                 /* Unmask the interrupts we look for */
530                 gfar_write(&regs->imask, IMASK_DEFAULT);
531         }
532 }
533
534 static int gfar_alloc_tx_queues(struct gfar_private *priv)
535 {
536         int i;
537
538         for (i = 0; i < priv->num_tx_queues; i++) {
539                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
540                                             GFP_KERNEL);
541                 if (!priv->tx_queue[i])
542                         return -ENOMEM;
543
544                 priv->tx_queue[i]->tx_skbuff = NULL;
545                 priv->tx_queue[i]->qindex = i;
546                 priv->tx_queue[i]->dev = priv->ndev;
547                 spin_lock_init(&(priv->tx_queue[i]->txlock));
548         }
549         return 0;
550 }
551
552 static int gfar_alloc_rx_queues(struct gfar_private *priv)
553 {
554         int i;
555
556         for (i = 0; i < priv->num_rx_queues; i++) {
557                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
558                                             GFP_KERNEL);
559                 if (!priv->rx_queue[i])
560                         return -ENOMEM;
561
562                 priv->rx_queue[i]->qindex = i;
563                 priv->rx_queue[i]->ndev = priv->ndev;
564         }
565         return 0;
566 }
567
568 static void gfar_free_tx_queues(struct gfar_private *priv)
569 {
570         int i;
571
572         for (i = 0; i < priv->num_tx_queues; i++)
573                 kfree(priv->tx_queue[i]);
574 }
575
576 static void gfar_free_rx_queues(struct gfar_private *priv)
577 {
578         int i;
579
580         for (i = 0; i < priv->num_rx_queues; i++)
581                 kfree(priv->rx_queue[i]);
582 }
583
584 static void unmap_group_regs(struct gfar_private *priv)
585 {
586         int i;
587
588         for (i = 0; i < MAXGROUPS; i++)
589                 if (priv->gfargrp[i].regs)
590                         iounmap(priv->gfargrp[i].regs);
591 }
592
593 static void free_gfar_dev(struct gfar_private *priv)
594 {
595         int i, j;
596
597         for (i = 0; i < priv->num_grps; i++)
598                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
599                         kfree(priv->gfargrp[i].irqinfo[j]);
600                         priv->gfargrp[i].irqinfo[j] = NULL;
601                 }
602
603         free_netdev(priv->ndev);
604 }
605
606 static void disable_napi(struct gfar_private *priv)
607 {
608         int i;
609
610         for (i = 0; i < priv->num_grps; i++) {
611                 napi_disable(&priv->gfargrp[i].napi_rx);
612                 napi_disable(&priv->gfargrp[i].napi_tx);
613         }
614 }
615
616 static void enable_napi(struct gfar_private *priv)
617 {
618         int i;
619
620         for (i = 0; i < priv->num_grps; i++) {
621                 napi_enable(&priv->gfargrp[i].napi_rx);
622                 napi_enable(&priv->gfargrp[i].napi_tx);
623         }
624 }
625
626 static int gfar_parse_group(struct device_node *np,
627                             struct gfar_private *priv, const char *model)
628 {
629         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
630         int i;
631
632         for (i = 0; i < GFAR_NUM_IRQS; i++) {
633                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
634                                           GFP_KERNEL);
635                 if (!grp->irqinfo[i])
636                         return -ENOMEM;
637         }
638
639         grp->regs = of_iomap(np, 0);
640         if (!grp->regs)
641                 return -ENOMEM;
642
643         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
644
645         /* If we aren't the FEC we have multiple interrupts */
646         if (model && strcasecmp(model, "FEC")) {
647                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
648                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
649                 if (!gfar_irq(grp, TX)->irq ||
650                     !gfar_irq(grp, RX)->irq ||
651                     !gfar_irq(grp, ER)->irq)
652                         return -EINVAL;
653         }
654
655         grp->priv = priv;
656         spin_lock_init(&grp->grplock);
657         if (priv->mode == MQ_MG_MODE) {
658                 u32 rxq_mask, txq_mask;
659                 int ret;
660
661                 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
662                 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663
664                 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
665                 if (!ret) {
666                         grp->rx_bit_map = rxq_mask ?
667                         rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
668                 }
669
670                 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
671                 if (!ret) {
672                         grp->tx_bit_map = txq_mask ?
673                         txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
674                 }
675
676                 if (priv->poll_mode == GFAR_SQ_POLLING) {
677                         /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
678                         grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
679                         grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680                 }
681         } else {
682                 grp->rx_bit_map = 0xFF;
683                 grp->tx_bit_map = 0xFF;
684         }
685
686         /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
687          * right to left, so we need to revert the 8 bits to get the q index
688          */
689         grp->rx_bit_map = bitrev8(grp->rx_bit_map);
690         grp->tx_bit_map = bitrev8(grp->tx_bit_map);
691
692         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
693          * also assign queues to groups
694          */
695         for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
696                 if (!grp->rx_queue)
697                         grp->rx_queue = priv->rx_queue[i];
698                 grp->num_rx_queues++;
699                 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
700                 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
701                 priv->rx_queue[i]->grp = grp;
702         }
703
704         for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
705                 if (!grp->tx_queue)
706                         grp->tx_queue = priv->tx_queue[i];
707                 grp->num_tx_queues++;
708                 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
709                 priv->tqueue |= (TQUEUE_EN0 >> i);
710                 priv->tx_queue[i]->grp = grp;
711         }
712
713         priv->num_grps++;
714
715         return 0;
716 }
717
718 static int gfar_of_group_count(struct device_node *np)
719 {
720         struct device_node *child;
721         int num = 0;
722
723         for_each_available_child_of_node(np, child)
724                 if (of_node_name_eq(child, "queue-group"))
725                         num++;
726
727         return num;
728 }
729
730 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
731 {
732         const char *model;
733         const char *ctype;
734         const void *mac_addr;
735         int err = 0, i;
736         struct net_device *dev = NULL;
737         struct gfar_private *priv = NULL;
738         struct device_node *np = ofdev->dev.of_node;
739         struct device_node *child = NULL;
740         u32 stash_len = 0;
741         u32 stash_idx = 0;
742         unsigned int num_tx_qs, num_rx_qs;
743         unsigned short mode, poll_mode;
744
745         if (!np)
746                 return -ENODEV;
747
748         if (of_device_is_compatible(np, "fsl,etsec2")) {
749                 mode = MQ_MG_MODE;
750                 poll_mode = GFAR_SQ_POLLING;
751         } else {
752                 mode = SQ_SG_MODE;
753                 poll_mode = GFAR_SQ_POLLING;
754         }
755
756         if (mode == SQ_SG_MODE) {
757                 num_tx_qs = 1;
758                 num_rx_qs = 1;
759         } else { /* MQ_MG_MODE */
760                 /* get the actual number of supported groups */
761                 unsigned int num_grps = gfar_of_group_count(np);
762
763                 if (num_grps == 0 || num_grps > MAXGROUPS) {
764                         dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
765                                 num_grps);
766                         pr_err("Cannot do alloc_etherdev, aborting\n");
767                         return -EINVAL;
768                 }
769
770                 if (poll_mode == GFAR_SQ_POLLING) {
771                         num_tx_qs = num_grps; /* one txq per int group */
772                         num_rx_qs = num_grps; /* one rxq per int group */
773                 } else { /* GFAR_MQ_POLLING */
774                         u32 tx_queues, rx_queues;
775                         int ret;
776
777                         /* parse the num of HW tx and rx queues */
778                         ret = of_property_read_u32(np, "fsl,num_tx_queues",
779                                                    &tx_queues);
780                         num_tx_qs = ret ? 1 : tx_queues;
781
782                         ret = of_property_read_u32(np, "fsl,num_rx_queues",
783                                                    &rx_queues);
784                         num_rx_qs = ret ? 1 : rx_queues;
785                 }
786         }
787
788         if (num_tx_qs > MAX_TX_QS) {
789                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
790                        num_tx_qs, MAX_TX_QS);
791                 pr_err("Cannot do alloc_etherdev, aborting\n");
792                 return -EINVAL;
793         }
794
795         if (num_rx_qs > MAX_RX_QS) {
796                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
797                        num_rx_qs, MAX_RX_QS);
798                 pr_err("Cannot do alloc_etherdev, aborting\n");
799                 return -EINVAL;
800         }
801
802         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
803         dev = *pdev;
804         if (NULL == dev)
805                 return -ENOMEM;
806
807         priv = netdev_priv(dev);
808         priv->ndev = dev;
809
810         priv->mode = mode;
811         priv->poll_mode = poll_mode;
812
813         priv->num_tx_queues = num_tx_qs;
814         netif_set_real_num_rx_queues(dev, num_rx_qs);
815         priv->num_rx_queues = num_rx_qs;
816
817         err = gfar_alloc_tx_queues(priv);
818         if (err)
819                 goto tx_alloc_failed;
820
821         err = gfar_alloc_rx_queues(priv);
822         if (err)
823                 goto rx_alloc_failed;
824
825         err = of_property_read_string(np, "model", &model);
826         if (err) {
827                 pr_err("Device model property missing, aborting\n");
828                 goto rx_alloc_failed;
829         }
830
831         /* Init Rx queue filer rule set linked list */
832         INIT_LIST_HEAD(&priv->rx_list.list);
833         priv->rx_list.count = 0;
834         mutex_init(&priv->rx_queue_access);
835
836         for (i = 0; i < MAXGROUPS; i++)
837                 priv->gfargrp[i].regs = NULL;
838
839         /* Parse and initialize group specific information */
840         if (priv->mode == MQ_MG_MODE) {
841                 for_each_available_child_of_node(np, child) {
842                         if (!of_node_name_eq(child, "queue-group"))
843                                 continue;
844
845                         err = gfar_parse_group(child, priv, model);
846                         if (err)
847                                 goto err_grp_init;
848                 }
849         } else { /* SQ_SG_MODE */
850                 err = gfar_parse_group(np, priv, model);
851                 if (err)
852                         goto err_grp_init;
853         }
854
855         if (of_property_read_bool(np, "bd-stash")) {
856                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
857                 priv->bd_stash_en = 1;
858         }
859
860         err = of_property_read_u32(np, "rx-stash-len", &stash_len);
861
862         if (err == 0)
863                 priv->rx_stash_size = stash_len;
864
865         err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
866
867         if (err == 0)
868                 priv->rx_stash_index = stash_idx;
869
870         if (stash_len || stash_idx)
871                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
872
873         mac_addr = of_get_mac_address(np);
874
875         if (!IS_ERR(mac_addr))
876                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
877
878         if (model && !strcasecmp(model, "TSEC"))
879                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
880                                      FSL_GIANFAR_DEV_HAS_COALESCE |
881                                      FSL_GIANFAR_DEV_HAS_RMON |
882                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
883
884         if (model && !strcasecmp(model, "eTSEC"))
885                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
886                                      FSL_GIANFAR_DEV_HAS_COALESCE |
887                                      FSL_GIANFAR_DEV_HAS_RMON |
888                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
889                                      FSL_GIANFAR_DEV_HAS_CSUM |
890                                      FSL_GIANFAR_DEV_HAS_VLAN |
891                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
892                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
893                                      FSL_GIANFAR_DEV_HAS_TIMER |
894                                      FSL_GIANFAR_DEV_HAS_RX_FILER;
895
896         err = of_property_read_string(np, "phy-connection-type", &ctype);
897
898         /* We only care about rgmii-id.  The rest are autodetected */
899         if (err == 0 && !strcmp(ctype, "rgmii-id"))
900                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
901         else
902                 priv->interface = PHY_INTERFACE_MODE_MII;
903
904         if (of_find_property(np, "fsl,magic-packet", NULL))
905                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
906
907         if (of_get_property(np, "fsl,wake-on-filer", NULL))
908                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
909
910         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
911
912         /* In the case of a fixed PHY, the DT node associated
913          * to the PHY is the Ethernet MAC DT node.
914          */
915         if (!priv->phy_node && of_phy_is_fixed_link(np)) {
916                 err = of_phy_register_fixed_link(np);
917                 if (err)
918                         goto err_grp_init;
919
920                 priv->phy_node = of_node_get(np);
921         }
922
923         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
924         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
925
926         return 0;
927
928 err_grp_init:
929         unmap_group_regs(priv);
930 rx_alloc_failed:
931         gfar_free_rx_queues(priv);
932 tx_alloc_failed:
933         gfar_free_tx_queues(priv);
934         free_gfar_dev(priv);
935         return err;
936 }
937
938 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
939 {
940         struct hwtstamp_config config;
941         struct gfar_private *priv = netdev_priv(netdev);
942
943         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
944                 return -EFAULT;
945
946         /* reserved for future extensions */
947         if (config.flags)
948                 return -EINVAL;
949
950         switch (config.tx_type) {
951         case HWTSTAMP_TX_OFF:
952                 priv->hwts_tx_en = 0;
953                 break;
954         case HWTSTAMP_TX_ON:
955                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
956                         return -ERANGE;
957                 priv->hwts_tx_en = 1;
958                 break;
959         default:
960                 return -ERANGE;
961         }
962
963         switch (config.rx_filter) {
964         case HWTSTAMP_FILTER_NONE:
965                 if (priv->hwts_rx_en) {
966                         priv->hwts_rx_en = 0;
967                         reset_gfar(netdev);
968                 }
969                 break;
970         default:
971                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
972                         return -ERANGE;
973                 if (!priv->hwts_rx_en) {
974                         priv->hwts_rx_en = 1;
975                         reset_gfar(netdev);
976                 }
977                 config.rx_filter = HWTSTAMP_FILTER_ALL;
978                 break;
979         }
980
981         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
982                 -EFAULT : 0;
983 }
984
985 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
986 {
987         struct hwtstamp_config config;
988         struct gfar_private *priv = netdev_priv(netdev);
989
990         config.flags = 0;
991         config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
992         config.rx_filter = (priv->hwts_rx_en ?
993                             HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
994
995         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
996                 -EFAULT : 0;
997 }
998
999 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1000 {
1001         struct phy_device *phydev = dev->phydev;
1002
1003         if (!netif_running(dev))
1004                 return -EINVAL;
1005
1006         if (cmd == SIOCSHWTSTAMP)
1007                 return gfar_hwtstamp_set(dev, rq);
1008         if (cmd == SIOCGHWTSTAMP)
1009                 return gfar_hwtstamp_get(dev, rq);
1010
1011         if (!phydev)
1012                 return -ENODEV;
1013
1014         return phy_mii_ioctl(phydev, rq, cmd);
1015 }
1016
1017 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1018                                    u32 class)
1019 {
1020         u32 rqfpr = FPR_FILER_MASK;
1021         u32 rqfcr = 0x0;
1022
1023         rqfar--;
1024         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1025         priv->ftp_rqfpr[rqfar] = rqfpr;
1026         priv->ftp_rqfcr[rqfar] = rqfcr;
1027         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1028
1029         rqfar--;
1030         rqfcr = RQFCR_CMP_NOMATCH;
1031         priv->ftp_rqfpr[rqfar] = rqfpr;
1032         priv->ftp_rqfcr[rqfar] = rqfcr;
1033         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1034
1035         rqfar--;
1036         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1037         rqfpr = class;
1038         priv->ftp_rqfcr[rqfar] = rqfcr;
1039         priv->ftp_rqfpr[rqfar] = rqfpr;
1040         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1041
1042         rqfar--;
1043         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1044         rqfpr = class;
1045         priv->ftp_rqfcr[rqfar] = rqfcr;
1046         priv->ftp_rqfpr[rqfar] = rqfpr;
1047         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1048
1049         return rqfar;
1050 }
1051
1052 static void gfar_init_filer_table(struct gfar_private *priv)
1053 {
1054         int i = 0x0;
1055         u32 rqfar = MAX_FILER_IDX;
1056         u32 rqfcr = 0x0;
1057         u32 rqfpr = FPR_FILER_MASK;
1058
1059         /* Default rule */
1060         rqfcr = RQFCR_CMP_MATCH;
1061         priv->ftp_rqfcr[rqfar] = rqfcr;
1062         priv->ftp_rqfpr[rqfar] = rqfpr;
1063         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1064
1065         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1066         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1067         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1068         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1069         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1070         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1071
1072         /* cur_filer_idx indicated the first non-masked rule */
1073         priv->cur_filer_idx = rqfar;
1074
1075         /* Rest are masked rules */
1076         rqfcr = RQFCR_CMP_NOMATCH;
1077         for (i = 0; i < rqfar; i++) {
1078                 priv->ftp_rqfcr[i] = rqfcr;
1079                 priv->ftp_rqfpr[i] = rqfpr;
1080                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1081         }
1082 }
1083
1084 #ifdef CONFIG_PPC
1085 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1086 {
1087         unsigned int pvr = mfspr(SPRN_PVR);
1088         unsigned int svr = mfspr(SPRN_SVR);
1089         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1090         unsigned int rev = svr & 0xffff;
1091
1092         /* MPC8313 Rev 2.0 and higher; All MPC837x */
1093         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1094             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1095                 priv->errata |= GFAR_ERRATA_74;
1096
1097         /* MPC8313 and MPC837x all rev */
1098         if ((pvr == 0x80850010 && mod == 0x80b0) ||
1099             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1100                 priv->errata |= GFAR_ERRATA_76;
1101
1102         /* MPC8313 Rev < 2.0 */
1103         if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1104                 priv->errata |= GFAR_ERRATA_12;
1105 }
1106
1107 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1108 {
1109         unsigned int svr = mfspr(SPRN_SVR);
1110
1111         if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1112                 priv->errata |= GFAR_ERRATA_12;
1113         /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1114         if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1115             ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1116             ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1117                 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1118 }
1119 #endif
1120
1121 static void gfar_detect_errata(struct gfar_private *priv)
1122 {
1123         struct device *dev = &priv->ofdev->dev;
1124
1125         /* no plans to fix */
1126         priv->errata |= GFAR_ERRATA_A002;
1127
1128 #ifdef CONFIG_PPC
1129         if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1130                 __gfar_detect_errata_85xx(priv);
1131         else /* non-mpc85xx parts, i.e. e300 core based */
1132                 __gfar_detect_errata_83xx(priv);
1133 #endif
1134
1135         if (priv->errata)
1136                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1137                          priv->errata);
1138 }
1139
1140 void gfar_mac_reset(struct gfar_private *priv)
1141 {
1142         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1143         u32 tempval;
1144
1145         /* Reset MAC layer */
1146         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1147
1148         /* We need to delay at least 3 TX clocks */
1149         udelay(3);
1150
1151         /* the soft reset bit is not self-resetting, so we need to
1152          * clear it before resuming normal operation
1153          */
1154         gfar_write(&regs->maccfg1, 0);
1155
1156         udelay(3);
1157
1158         gfar_rx_offload_en(priv);
1159
1160         /* Initialize the max receive frame/buffer lengths */
1161         gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1162         gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1163
1164         /* Initialize the Minimum Frame Length Register */
1165         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1166
1167         /* Initialize MACCFG2. */
1168         tempval = MACCFG2_INIT_SETTINGS;
1169
1170         /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1171          * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1172          * and by checking RxBD[LG] and discarding larger than MAXFRM.
1173          */
1174         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1175                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1176
1177         gfar_write(&regs->maccfg2, tempval);
1178
1179         /* Clear mac addr hash registers */
1180         gfar_write(&regs->igaddr0, 0);
1181         gfar_write(&regs->igaddr1, 0);
1182         gfar_write(&regs->igaddr2, 0);
1183         gfar_write(&regs->igaddr3, 0);
1184         gfar_write(&regs->igaddr4, 0);
1185         gfar_write(&regs->igaddr5, 0);
1186         gfar_write(&regs->igaddr6, 0);
1187         gfar_write(&regs->igaddr7, 0);
1188
1189         gfar_write(&regs->gaddr0, 0);
1190         gfar_write(&regs->gaddr1, 0);
1191         gfar_write(&regs->gaddr2, 0);
1192         gfar_write(&regs->gaddr3, 0);
1193         gfar_write(&regs->gaddr4, 0);
1194         gfar_write(&regs->gaddr5, 0);
1195         gfar_write(&regs->gaddr6, 0);
1196         gfar_write(&regs->gaddr7, 0);
1197
1198         if (priv->extended_hash)
1199                 gfar_clear_exact_match(priv->ndev);
1200
1201         gfar_mac_rx_config(priv);
1202
1203         gfar_mac_tx_config(priv);
1204
1205         gfar_set_mac_address(priv->ndev);
1206
1207         gfar_set_multi(priv->ndev);
1208
1209         /* clear ievent and imask before configuring coalescing */
1210         gfar_ints_disable(priv);
1211
1212         /* Configure the coalescing support */
1213         gfar_configure_coalescing_all(priv);
1214 }
1215
1216 static void gfar_hw_init(struct gfar_private *priv)
1217 {
1218         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1219         u32 attrs;
1220
1221         /* Stop the DMA engine now, in case it was running before
1222          * (The firmware could have used it, and left it running).
1223          */
1224         gfar_halt(priv);
1225
1226         gfar_mac_reset(priv);
1227
1228         /* Zero out the rmon mib registers if it has them */
1229         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1230                 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1231
1232                 /* Mask off the CAM interrupts */
1233                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1234                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1235         }
1236
1237         /* Initialize ECNTRL */
1238         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1239
1240         /* Set the extraction length and index */
1241         attrs = ATTRELI_EL(priv->rx_stash_size) |
1242                 ATTRELI_EI(priv->rx_stash_index);
1243
1244         gfar_write(&regs->attreli, attrs);
1245
1246         /* Start with defaults, and add stashing
1247          * depending on driver parameters
1248          */
1249         attrs = ATTR_INIT_SETTINGS;
1250
1251         if (priv->bd_stash_en)
1252                 attrs |= ATTR_BDSTASH;
1253
1254         if (priv->rx_stash_size != 0)
1255                 attrs |= ATTR_BUFSTASH;
1256
1257         gfar_write(&regs->attr, attrs);
1258
1259         /* FIFO configs */
1260         gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1261         gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1262         gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1263
1264         /* Program the interrupt steering regs, only for MG devices */
1265         if (priv->num_grps > 1)
1266                 gfar_write_isrg(priv);
1267 }
1268
1269 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1270 {
1271         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1272
1273         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1274                 priv->extended_hash = 1;
1275                 priv->hash_width = 9;
1276
1277                 priv->hash_regs[0] = &regs->igaddr0;
1278                 priv->hash_regs[1] = &regs->igaddr1;
1279                 priv->hash_regs[2] = &regs->igaddr2;
1280                 priv->hash_regs[3] = &regs->igaddr3;
1281                 priv->hash_regs[4] = &regs->igaddr4;
1282                 priv->hash_regs[5] = &regs->igaddr5;
1283                 priv->hash_regs[6] = &regs->igaddr6;
1284                 priv->hash_regs[7] = &regs->igaddr7;
1285                 priv->hash_regs[8] = &regs->gaddr0;
1286                 priv->hash_regs[9] = &regs->gaddr1;
1287                 priv->hash_regs[10] = &regs->gaddr2;
1288                 priv->hash_regs[11] = &regs->gaddr3;
1289                 priv->hash_regs[12] = &regs->gaddr4;
1290                 priv->hash_regs[13] = &regs->gaddr5;
1291                 priv->hash_regs[14] = &regs->gaddr6;
1292                 priv->hash_regs[15] = &regs->gaddr7;
1293
1294         } else {
1295                 priv->extended_hash = 0;
1296                 priv->hash_width = 8;
1297
1298                 priv->hash_regs[0] = &regs->gaddr0;
1299                 priv->hash_regs[1] = &regs->gaddr1;
1300                 priv->hash_regs[2] = &regs->gaddr2;
1301                 priv->hash_regs[3] = &regs->gaddr3;
1302                 priv->hash_regs[4] = &regs->gaddr4;
1303                 priv->hash_regs[5] = &regs->gaddr5;
1304                 priv->hash_regs[6] = &regs->gaddr6;
1305                 priv->hash_regs[7] = &regs->gaddr7;
1306         }
1307 }
1308
1309 /* Set up the ethernet device structure, private data,
1310  * and anything else we need before we start
1311  */
1312 static int gfar_probe(struct platform_device *ofdev)
1313 {
1314         struct device_node *np = ofdev->dev.of_node;
1315         struct net_device *dev = NULL;
1316         struct gfar_private *priv = NULL;
1317         int err = 0, i;
1318
1319         err = gfar_of_init(ofdev, &dev);
1320
1321         if (err)
1322                 return err;
1323
1324         priv = netdev_priv(dev);
1325         priv->ndev = dev;
1326         priv->ofdev = ofdev;
1327         priv->dev = &ofdev->dev;
1328         SET_NETDEV_DEV(dev, &ofdev->dev);
1329
1330         INIT_WORK(&priv->reset_task, gfar_reset_task);
1331
1332         platform_set_drvdata(ofdev, priv);
1333
1334         gfar_detect_errata(priv);
1335
1336         /* Set the dev->base_addr to the gfar reg region */
1337         dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338
1339         /* Fill in the dev structure */
1340         dev->watchdog_timeo = TX_TIMEOUT;
1341         /* MTU range: 50 - 9586 */
1342         dev->mtu = 1500;
1343         dev->min_mtu = 50;
1344         dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1345         dev->netdev_ops = &gfar_netdev_ops;
1346         dev->ethtool_ops = &gfar_ethtool_ops;
1347
1348         /* Register for napi ...We are registering NAPI for each grp */
1349         for (i = 0; i < priv->num_grps; i++) {
1350                 if (priv->poll_mode == GFAR_SQ_POLLING) {
1351                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1352                                        gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1353                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1354                                        gfar_poll_tx_sq, 2);
1355                 } else {
1356                         netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1357                                        gfar_poll_rx, GFAR_DEV_WEIGHT);
1358                         netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1359                                        gfar_poll_tx, 2);
1360                 }
1361         }
1362
1363         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1364                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1365                                    NETIF_F_RXCSUM;
1366                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1367                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1368         }
1369
1370         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1371                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1372                                     NETIF_F_HW_VLAN_CTAG_RX;
1373                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1374         }
1375
1376         dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1377
1378         gfar_init_addr_hash_table(priv);
1379
1380         /* Insert receive time stamps into padding alignment bytes, and
1381          * plus 2 bytes padding to ensure the cpu alignment.
1382          */
1383         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1384                 priv->padding = 8 + DEFAULT_PADDING;
1385
1386         if (dev->features & NETIF_F_IP_CSUM ||
1387             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1388                 dev->needed_headroom = GMAC_FCB_LEN;
1389
1390         /* Initializing some of the rx/tx queue level parameters */
1391         for (i = 0; i < priv->num_tx_queues; i++) {
1392                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1393                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1394                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1395                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1396         }
1397
1398         for (i = 0; i < priv->num_rx_queues; i++) {
1399                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1400                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1401                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1402         }
1403
1404         /* Always enable rx filer if available */
1405         priv->rx_filer_enable =
1406             (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1407         /* Enable most messages by default */
1408         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1409         /* use pritority h/w tx queue scheduling for single queue devices */
1410         if (priv->num_tx_queues == 1)
1411                 priv->prio_sched_en = 1;
1412
1413         set_bit(GFAR_DOWN, &priv->state);
1414
1415         gfar_hw_init(priv);
1416
1417         /* Carrier starts down, phylib will bring it up */
1418         netif_carrier_off(dev);
1419
1420         err = register_netdev(dev);
1421
1422         if (err) {
1423                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1424                 goto register_fail;
1425         }
1426
1427         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1428                 priv->wol_supported |= GFAR_WOL_MAGIC;
1429
1430         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1431             priv->rx_filer_enable)
1432                 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1433
1434         device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1435
1436         /* fill out IRQ number and name fields */
1437         for (i = 0; i < priv->num_grps; i++) {
1438                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1439                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1440                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1441                                 dev->name, "_g", '0' + i, "_tx");
1442                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1443                                 dev->name, "_g", '0' + i, "_rx");
1444                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1445                                 dev->name, "_g", '0' + i, "_er");
1446                 } else
1447                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1448         }
1449
1450         /* Initialize the filer table */
1451         gfar_init_filer_table(priv);
1452
1453         /* Print out the device info */
1454         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1455
1456         /* Even more device info helps when determining which kernel
1457          * provided which set of benchmarks.
1458          */
1459         netdev_info(dev, "Running with NAPI enabled\n");
1460         for (i = 0; i < priv->num_rx_queues; i++)
1461                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1462                             i, priv->rx_queue[i]->rx_ring_size);
1463         for (i = 0; i < priv->num_tx_queues; i++)
1464                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1465                             i, priv->tx_queue[i]->tx_ring_size);
1466
1467         return 0;
1468
1469 register_fail:
1470         if (of_phy_is_fixed_link(np))
1471                 of_phy_deregister_fixed_link(np);
1472         unmap_group_regs(priv);
1473         gfar_free_rx_queues(priv);
1474         gfar_free_tx_queues(priv);
1475         of_node_put(priv->phy_node);
1476         of_node_put(priv->tbi_node);
1477         free_gfar_dev(priv);
1478         return err;
1479 }
1480
1481 static int gfar_remove(struct platform_device *ofdev)
1482 {
1483         struct gfar_private *priv = platform_get_drvdata(ofdev);
1484         struct device_node *np = ofdev->dev.of_node;
1485
1486         of_node_put(priv->phy_node);
1487         of_node_put(priv->tbi_node);
1488
1489         unregister_netdev(priv->ndev);
1490
1491         if (of_phy_is_fixed_link(np))
1492                 of_phy_deregister_fixed_link(np);
1493
1494         unmap_group_regs(priv);
1495         gfar_free_rx_queues(priv);
1496         gfar_free_tx_queues(priv);
1497         free_gfar_dev(priv);
1498
1499         return 0;
1500 }
1501
1502 #ifdef CONFIG_PM
1503
1504 static void __gfar_filer_disable(struct gfar_private *priv)
1505 {
1506         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1507         u32 temp;
1508
1509         temp = gfar_read(&regs->rctrl);
1510         temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1511         gfar_write(&regs->rctrl, temp);
1512 }
1513
1514 static void __gfar_filer_enable(struct gfar_private *priv)
1515 {
1516         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1517         u32 temp;
1518
1519         temp = gfar_read(&regs->rctrl);
1520         temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1521         gfar_write(&regs->rctrl, temp);
1522 }
1523
1524 /* Filer rules implementing wol capabilities */
1525 static void gfar_filer_config_wol(struct gfar_private *priv)
1526 {
1527         unsigned int i;
1528         u32 rqfcr;
1529
1530         __gfar_filer_disable(priv);
1531
1532         /* clear the filer table, reject any packet by default */
1533         rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1534         for (i = 0; i <= MAX_FILER_IDX; i++)
1535                 gfar_write_filer(priv, i, rqfcr, 0);
1536
1537         i = 0;
1538         if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1539                 /* unicast packet, accept it */
1540                 struct net_device *ndev = priv->ndev;
1541                 /* get the default rx queue index */
1542                 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1543                 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1544                                     (ndev->dev_addr[1] << 8) |
1545                                      ndev->dev_addr[2];
1546
1547                 rqfcr = (qindex << 10) | RQFCR_AND |
1548                         RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1549
1550                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1551
1552                 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1553                                 (ndev->dev_addr[4] << 8) |
1554                                  ndev->dev_addr[5];
1555                 rqfcr = (qindex << 10) | RQFCR_GPI |
1556                         RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1557                 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1558         }
1559
1560         __gfar_filer_enable(priv);
1561 }
1562
1563 static void gfar_filer_restore_table(struct gfar_private *priv)
1564 {
1565         u32 rqfcr, rqfpr;
1566         unsigned int i;
1567
1568         __gfar_filer_disable(priv);
1569
1570         for (i = 0; i <= MAX_FILER_IDX; i++) {
1571                 rqfcr = priv->ftp_rqfcr[i];
1572                 rqfpr = priv->ftp_rqfpr[i];
1573                 gfar_write_filer(priv, i, rqfcr, rqfpr);
1574         }
1575
1576         __gfar_filer_enable(priv);
1577 }
1578
1579 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1580 static void gfar_start_wol_filer(struct gfar_private *priv)
1581 {
1582         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1583         u32 tempval;
1584         int i = 0;
1585
1586         /* Enable Rx hw queues */
1587         gfar_write(&regs->rqueue, priv->rqueue);
1588
1589         /* Initialize DMACTRL to have WWR and WOP */
1590         tempval = gfar_read(&regs->dmactrl);
1591         tempval |= DMACTRL_INIT_SETTINGS;
1592         gfar_write(&regs->dmactrl, tempval);
1593
1594         /* Make sure we aren't stopped */
1595         tempval = gfar_read(&regs->dmactrl);
1596         tempval &= ~DMACTRL_GRS;
1597         gfar_write(&regs->dmactrl, tempval);
1598
1599         for (i = 0; i < priv->num_grps; i++) {
1600                 regs = priv->gfargrp[i].regs;
1601                 /* Clear RHLT, so that the DMA starts polling now */
1602                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1603                 /* enable the Filer General Purpose Interrupt */
1604                 gfar_write(&regs->imask, IMASK_FGPI);
1605         }
1606
1607         /* Enable Rx DMA */
1608         tempval = gfar_read(&regs->maccfg1);
1609         tempval |= MACCFG1_RX_EN;
1610         gfar_write(&regs->maccfg1, tempval);
1611 }
1612
1613 static int gfar_suspend(struct device *dev)
1614 {
1615         struct gfar_private *priv = dev_get_drvdata(dev);
1616         struct net_device *ndev = priv->ndev;
1617         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1618         u32 tempval;
1619         u16 wol = priv->wol_opts;
1620
1621         if (!netif_running(ndev))
1622                 return 0;
1623
1624         disable_napi(priv);
1625         netif_tx_lock(ndev);
1626         netif_device_detach(ndev);
1627         netif_tx_unlock(ndev);
1628
1629         gfar_halt(priv);
1630
1631         if (wol & GFAR_WOL_MAGIC) {
1632                 /* Enable interrupt on Magic Packet */
1633                 gfar_write(&regs->imask, IMASK_MAG);
1634
1635                 /* Enable Magic Packet mode */
1636                 tempval = gfar_read(&regs->maccfg2);
1637                 tempval |= MACCFG2_MPEN;
1638                 gfar_write(&regs->maccfg2, tempval);
1639
1640                 /* re-enable the Rx block */
1641                 tempval = gfar_read(&regs->maccfg1);
1642                 tempval |= MACCFG1_RX_EN;
1643                 gfar_write(&regs->maccfg1, tempval);
1644
1645         } else if (wol & GFAR_WOL_FILER_UCAST) {
1646                 gfar_filer_config_wol(priv);
1647                 gfar_start_wol_filer(priv);
1648
1649         } else {
1650                 phy_stop(ndev->phydev);
1651         }
1652
1653         return 0;
1654 }
1655
1656 static int gfar_resume(struct device *dev)
1657 {
1658         struct gfar_private *priv = dev_get_drvdata(dev);
1659         struct net_device *ndev = priv->ndev;
1660         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1661         u32 tempval;
1662         u16 wol = priv->wol_opts;
1663
1664         if (!netif_running(ndev))
1665                 return 0;
1666
1667         if (wol & GFAR_WOL_MAGIC) {
1668                 /* Disable Magic Packet mode */
1669                 tempval = gfar_read(&regs->maccfg2);
1670                 tempval &= ~MACCFG2_MPEN;
1671                 gfar_write(&regs->maccfg2, tempval);
1672
1673         } else if (wol & GFAR_WOL_FILER_UCAST) {
1674                 /* need to stop rx only, tx is already down */
1675                 gfar_halt(priv);
1676                 gfar_filer_restore_table(priv);
1677
1678         } else {
1679                 phy_start(ndev->phydev);
1680         }
1681
1682         gfar_start(priv);
1683
1684         netif_device_attach(ndev);
1685         enable_napi(priv);
1686
1687         return 0;
1688 }
1689
1690 static int gfar_restore(struct device *dev)
1691 {
1692         struct gfar_private *priv = dev_get_drvdata(dev);
1693         struct net_device *ndev = priv->ndev;
1694
1695         if (!netif_running(ndev)) {
1696                 netif_device_attach(ndev);
1697
1698                 return 0;
1699         }
1700
1701         gfar_init_bds(ndev);
1702
1703         gfar_mac_reset(priv);
1704
1705         gfar_init_tx_rx_base(priv);
1706
1707         gfar_start(priv);
1708
1709         priv->oldlink = 0;
1710         priv->oldspeed = 0;
1711         priv->oldduplex = -1;
1712
1713         if (ndev->phydev)
1714                 phy_start(ndev->phydev);
1715
1716         netif_device_attach(ndev);
1717         enable_napi(priv);
1718
1719         return 0;
1720 }
1721
1722 static const struct dev_pm_ops gfar_pm_ops = {
1723         .suspend = gfar_suspend,
1724         .resume = gfar_resume,
1725         .freeze = gfar_suspend,
1726         .thaw = gfar_resume,
1727         .restore = gfar_restore,
1728 };
1729
1730 #define GFAR_PM_OPS (&gfar_pm_ops)
1731
1732 #else
1733
1734 #define GFAR_PM_OPS NULL
1735
1736 #endif
1737
1738 /* Reads the controller's registers to determine what interface
1739  * connects it to the PHY.
1740  */
1741 static phy_interface_t gfar_get_interface(struct net_device *dev)
1742 {
1743         struct gfar_private *priv = netdev_priv(dev);
1744         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1745         u32 ecntrl;
1746
1747         ecntrl = gfar_read(&regs->ecntrl);
1748
1749         if (ecntrl & ECNTRL_SGMII_MODE)
1750                 return PHY_INTERFACE_MODE_SGMII;
1751
1752         if (ecntrl & ECNTRL_TBI_MODE) {
1753                 if (ecntrl & ECNTRL_REDUCED_MODE)
1754                         return PHY_INTERFACE_MODE_RTBI;
1755                 else
1756                         return PHY_INTERFACE_MODE_TBI;
1757         }
1758
1759         if (ecntrl & ECNTRL_REDUCED_MODE) {
1760                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1761                         return PHY_INTERFACE_MODE_RMII;
1762                 }
1763                 else {
1764                         phy_interface_t interface = priv->interface;
1765
1766                         /* This isn't autodetected right now, so it must
1767                          * be set by the device tree or platform code.
1768                          */
1769                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1770                                 return PHY_INTERFACE_MODE_RGMII_ID;
1771
1772                         return PHY_INTERFACE_MODE_RGMII;
1773                 }
1774         }
1775
1776         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1777                 return PHY_INTERFACE_MODE_GMII;
1778
1779         return PHY_INTERFACE_MODE_MII;
1780 }
1781
1782
1783 /* Initializes driver's PHY state, and attaches to the PHY.
1784  * Returns 0 on success.
1785  */
1786 static int init_phy(struct net_device *dev)
1787 {
1788         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1789         struct gfar_private *priv = netdev_priv(dev);
1790         phy_interface_t interface;
1791         struct phy_device *phydev;
1792         struct ethtool_eee edata;
1793
1794         linkmode_set_bit_array(phy_10_100_features_array,
1795                                ARRAY_SIZE(phy_10_100_features_array),
1796                                mask);
1797         linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1798         linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1799         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1800                 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1801
1802         priv->oldlink = 0;
1803         priv->oldspeed = 0;
1804         priv->oldduplex = -1;
1805
1806         interface = gfar_get_interface(dev);
1807
1808         phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1809                                 interface);
1810         if (!phydev) {
1811                 dev_err(&dev->dev, "could not attach to PHY\n");
1812                 return -ENODEV;
1813         }
1814
1815         if (interface == PHY_INTERFACE_MODE_SGMII)
1816                 gfar_configure_serdes(dev);
1817
1818         /* Remove any features not supported by the controller */
1819         linkmode_and(phydev->supported, phydev->supported, mask);
1820         linkmode_copy(phydev->advertising, phydev->supported);
1821
1822         /* Add support for flow control */
1823         phy_support_asym_pause(phydev);
1824
1825         /* disable EEE autoneg, EEE not supported by eTSEC */
1826         memset(&edata, 0, sizeof(struct ethtool_eee));
1827         phy_ethtool_set_eee(phydev, &edata);
1828
1829         return 0;
1830 }
1831
1832 /* Initialize TBI PHY interface for communicating with the
1833  * SERDES lynx PHY on the chip.  We communicate with this PHY
1834  * through the MDIO bus on each controller, treating it as a
1835  * "normal" PHY at the address found in the TBIPA register.  We assume
1836  * that the TBIPA register is valid.  Either the MDIO bus code will set
1837  * it to a value that doesn't conflict with other PHYs on the bus, or the
1838  * value doesn't matter, as there are no other PHYs on the bus.
1839  */
1840 static void gfar_configure_serdes(struct net_device *dev)
1841 {
1842         struct gfar_private *priv = netdev_priv(dev);
1843         struct phy_device *tbiphy;
1844
1845         if (!priv->tbi_node) {
1846                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1847                                     "device tree specify a tbi-handle\n");
1848                 return;
1849         }
1850
1851         tbiphy = of_phy_find_device(priv->tbi_node);
1852         if (!tbiphy) {
1853                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1854                 return;
1855         }
1856
1857         /* If the link is already up, we must already be ok, and don't need to
1858          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1859          * everything for us?  Resetting it takes the link down and requires
1860          * several seconds for it to come back.
1861          */
1862         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1863                 put_device(&tbiphy->mdio.dev);
1864                 return;
1865         }
1866
1867         /* Single clk mode, mii mode off(for serdes communication) */
1868         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1869
1870         phy_write(tbiphy, MII_ADVERTISE,
1871                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1872                   ADVERTISE_1000XPSE_ASYM);
1873
1874         phy_write(tbiphy, MII_BMCR,
1875                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1876                   BMCR_SPEED1000);
1877
1878         put_device(&tbiphy->mdio.dev);
1879 }
1880
1881 static int __gfar_is_rx_idle(struct gfar_private *priv)
1882 {
1883         u32 res;
1884
1885         /* Normaly TSEC should not hang on GRS commands, so we should
1886          * actually wait for IEVENT_GRSC flag.
1887          */
1888         if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1889                 return 0;
1890
1891         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1892          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1893          * and the Rx can be safely reset.
1894          */
1895         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1896         res &= 0x7f807f80;
1897         if ((res & 0xffff) == (res >> 16))
1898                 return 1;
1899
1900         return 0;
1901 }
1902
1903 /* Halt the receive and transmit queues */
1904 static void gfar_halt_nodisable(struct gfar_private *priv)
1905 {
1906         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1907         u32 tempval;
1908         unsigned int timeout;
1909         int stopped;
1910
1911         gfar_ints_disable(priv);
1912
1913         if (gfar_is_dma_stopped(priv))
1914                 return;
1915
1916         /* Stop the DMA, and wait for it to stop */
1917         tempval = gfar_read(&regs->dmactrl);
1918         tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1919         gfar_write(&regs->dmactrl, tempval);
1920
1921 retry:
1922         timeout = 1000;
1923         while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1924                 cpu_relax();
1925                 timeout--;
1926         }
1927
1928         if (!timeout)
1929                 stopped = gfar_is_dma_stopped(priv);
1930
1931         if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1932             !__gfar_is_rx_idle(priv))
1933                 goto retry;
1934 }
1935
1936 /* Halt the receive and transmit queues */
1937 void gfar_halt(struct gfar_private *priv)
1938 {
1939         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1940         u32 tempval;
1941
1942         /* Dissable the Rx/Tx hw queues */
1943         gfar_write(&regs->rqueue, 0);
1944         gfar_write(&regs->tqueue, 0);
1945
1946         mdelay(10);
1947
1948         gfar_halt_nodisable(priv);
1949
1950         /* Disable Rx/Tx DMA */
1951         tempval = gfar_read(&regs->maccfg1);
1952         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1953         gfar_write(&regs->maccfg1, tempval);
1954 }
1955
1956 void stop_gfar(struct net_device *dev)
1957 {
1958         struct gfar_private *priv = netdev_priv(dev);
1959
1960         netif_tx_stop_all_queues(dev);
1961
1962         smp_mb__before_atomic();
1963         set_bit(GFAR_DOWN, &priv->state);
1964         smp_mb__after_atomic();
1965
1966         disable_napi(priv);
1967
1968         /* disable ints and gracefully shut down Rx/Tx DMA */
1969         gfar_halt(priv);
1970
1971         phy_stop(dev->phydev);
1972
1973         free_skb_resources(priv);
1974 }
1975
1976 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1977 {
1978         struct txbd8 *txbdp;
1979         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1980         int i, j;
1981
1982         txbdp = tx_queue->tx_bd_base;
1983
1984         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1985                 if (!tx_queue->tx_skbuff[i])
1986                         continue;
1987
1988                 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1989                                  be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1990                 txbdp->lstatus = 0;
1991                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1992                      j++) {
1993                         txbdp++;
1994                         dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1995                                        be16_to_cpu(txbdp->length),
1996                                        DMA_TO_DEVICE);
1997                 }
1998                 txbdp++;
1999                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
2000                 tx_queue->tx_skbuff[i] = NULL;
2001         }
2002         kfree(tx_queue->tx_skbuff);
2003         tx_queue->tx_skbuff = NULL;
2004 }
2005
2006 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2007 {
2008         int i;
2009
2010         struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2011
2012         if (rx_queue->skb)
2013                 dev_kfree_skb(rx_queue->skb);
2014
2015         for (i = 0; i < rx_queue->rx_ring_size; i++) {
2016                 struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2017
2018                 rxbdp->lstatus = 0;
2019                 rxbdp->bufPtr = 0;
2020                 rxbdp++;
2021
2022                 if (!rxb->page)
2023                         continue;
2024
2025                 dma_unmap_page(rx_queue->dev, rxb->dma,
2026                                PAGE_SIZE, DMA_FROM_DEVICE);
2027                 __free_page(rxb->page);
2028
2029                 rxb->page = NULL;
2030         }
2031
2032         kfree(rx_queue->rx_buff);
2033         rx_queue->rx_buff = NULL;
2034 }
2035
2036 /* If there are any tx skbs or rx skbs still around, free them.
2037  * Then free tx_skbuff and rx_skbuff
2038  */
2039 static void free_skb_resources(struct gfar_private *priv)
2040 {
2041         struct gfar_priv_tx_q *tx_queue = NULL;
2042         struct gfar_priv_rx_q *rx_queue = NULL;
2043         int i;
2044
2045         /* Go through all the buffer descriptors and free their data buffers */
2046         for (i = 0; i < priv->num_tx_queues; i++) {
2047                 struct netdev_queue *txq;
2048
2049                 tx_queue = priv->tx_queue[i];
2050                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2051                 if (tx_queue->tx_skbuff)
2052                         free_skb_tx_queue(tx_queue);
2053                 netdev_tx_reset_queue(txq);
2054         }
2055
2056         for (i = 0; i < priv->num_rx_queues; i++) {
2057                 rx_queue = priv->rx_queue[i];
2058                 if (rx_queue->rx_buff)
2059                         free_skb_rx_queue(rx_queue);
2060         }
2061
2062         dma_free_coherent(priv->dev,
2063                           sizeof(struct txbd8) * priv->total_tx_ring_size +
2064                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
2065                           priv->tx_queue[0]->tx_bd_base,
2066                           priv->tx_queue[0]->tx_bd_dma_base);
2067 }
2068
2069 void gfar_start(struct gfar_private *priv)
2070 {
2071         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2072         u32 tempval;
2073         int i = 0;
2074
2075         /* Enable Rx/Tx hw queues */
2076         gfar_write(&regs->rqueue, priv->rqueue);
2077         gfar_write(&regs->tqueue, priv->tqueue);
2078
2079         /* Initialize DMACTRL to have WWR and WOP */
2080         tempval = gfar_read(&regs->dmactrl);
2081         tempval |= DMACTRL_INIT_SETTINGS;
2082         gfar_write(&regs->dmactrl, tempval);
2083
2084         /* Make sure we aren't stopped */
2085         tempval = gfar_read(&regs->dmactrl);
2086         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2087         gfar_write(&regs->dmactrl, tempval);
2088
2089         for (i = 0; i < priv->num_grps; i++) {
2090                 regs = priv->gfargrp[i].regs;
2091                 /* Clear THLT/RHLT, so that the DMA starts polling now */
2092                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2093                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2094         }
2095
2096         /* Enable Rx/Tx DMA */
2097         tempval = gfar_read(&regs->maccfg1);
2098         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2099         gfar_write(&regs->maccfg1, tempval);
2100
2101         gfar_ints_enable(priv);
2102
2103         netif_trans_update(priv->ndev); /* prevent tx timeout */
2104 }
2105
2106 static void free_grp_irqs(struct gfar_priv_grp *grp)
2107 {
2108         free_irq(gfar_irq(grp, TX)->irq, grp);
2109         free_irq(gfar_irq(grp, RX)->irq, grp);
2110         free_irq(gfar_irq(grp, ER)->irq, grp);
2111 }
2112
2113 static int register_grp_irqs(struct gfar_priv_grp *grp)
2114 {
2115         struct gfar_private *priv = grp->priv;
2116         struct net_device *dev = priv->ndev;
2117         int err;
2118
2119         /* If the device has multiple interrupts, register for
2120          * them.  Otherwise, only register for the one
2121          */
2122         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2123                 /* Install our interrupt handlers for Error,
2124                  * Transmit, and Receive
2125                  */
2126                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2127                                   gfar_irq(grp, ER)->name, grp);
2128                 if (err < 0) {
2129                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2130                                   gfar_irq(grp, ER)->irq);
2131
2132                         goto err_irq_fail;
2133                 }
2134                 enable_irq_wake(gfar_irq(grp, ER)->irq);
2135
2136                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2137                                   gfar_irq(grp, TX)->name, grp);
2138                 if (err < 0) {
2139                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2140                                   gfar_irq(grp, TX)->irq);
2141                         goto tx_irq_fail;
2142                 }
2143                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2144                                   gfar_irq(grp, RX)->name, grp);
2145                 if (err < 0) {
2146                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2147                                   gfar_irq(grp, RX)->irq);
2148                         goto rx_irq_fail;
2149                 }
2150                 enable_irq_wake(gfar_irq(grp, RX)->irq);
2151
2152         } else {
2153                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2154                                   gfar_irq(grp, TX)->name, grp);
2155                 if (err < 0) {
2156                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2157                                   gfar_irq(grp, TX)->irq);
2158                         goto err_irq_fail;
2159                 }
2160                 enable_irq_wake(gfar_irq(grp, TX)->irq);
2161         }
2162
2163         return 0;
2164
2165 rx_irq_fail:
2166         free_irq(gfar_irq(grp, TX)->irq, grp);
2167 tx_irq_fail:
2168         free_irq(gfar_irq(grp, ER)->irq, grp);
2169 err_irq_fail:
2170         return err;
2171
2172 }
2173
2174 static void gfar_free_irq(struct gfar_private *priv)
2175 {
2176         int i;
2177
2178         /* Free the IRQs */
2179         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2180                 for (i = 0; i < priv->num_grps; i++)
2181                         free_grp_irqs(&priv->gfargrp[i]);
2182         } else {
2183                 for (i = 0; i < priv->num_grps; i++)
2184                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2185                                  &priv->gfargrp[i]);
2186         }
2187 }
2188
2189 static int gfar_request_irq(struct gfar_private *priv)
2190 {
2191         int err, i, j;
2192
2193         for (i = 0; i < priv->num_grps; i++) {
2194                 err = register_grp_irqs(&priv->gfargrp[i]);
2195                 if (err) {
2196                         for (j = 0; j < i; j++)
2197                                 free_grp_irqs(&priv->gfargrp[j]);
2198                         return err;
2199                 }
2200         }
2201
2202         return 0;
2203 }
2204
2205 /* Bring the controller up and running */
2206 int startup_gfar(struct net_device *ndev)
2207 {
2208         struct gfar_private *priv = netdev_priv(ndev);
2209         int err;
2210
2211         gfar_mac_reset(priv);
2212
2213         err = gfar_alloc_skb_resources(ndev);
2214         if (err)
2215                 return err;
2216
2217         gfar_init_tx_rx_base(priv);
2218
2219         smp_mb__before_atomic();
2220         clear_bit(GFAR_DOWN, &priv->state);
2221         smp_mb__after_atomic();
2222
2223         /* Start Rx/Tx DMA and enable the interrupts */
2224         gfar_start(priv);
2225
2226         /* force link state update after mac reset */
2227         priv->oldlink = 0;
2228         priv->oldspeed = 0;
2229         priv->oldduplex = -1;
2230
2231         phy_start(ndev->phydev);
2232
2233         enable_napi(priv);
2234
2235         netif_tx_wake_all_queues(ndev);
2236
2237         return 0;
2238 }
2239
2240 /* Called when something needs to use the ethernet device
2241  * Returns 0 for success.
2242  */
2243 static int gfar_enet_open(struct net_device *dev)
2244 {
2245         struct gfar_private *priv = netdev_priv(dev);
2246         int err;
2247
2248         err = init_phy(dev);
2249         if (err)
2250                 return err;
2251
2252         err = gfar_request_irq(priv);
2253         if (err)
2254                 return err;
2255
2256         err = startup_gfar(dev);
2257         if (err)
2258                 return err;
2259
2260         return err;
2261 }
2262
2263 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2264 {
2265         struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2266
2267         memset(fcb, 0, GMAC_FCB_LEN);
2268
2269         return fcb;
2270 }
2271
2272 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2273                                     int fcb_length)
2274 {
2275         /* If we're here, it's a IP packet with a TCP or UDP
2276          * payload.  We set it to checksum, using a pseudo-header
2277          * we provide
2278          */
2279         u8 flags = TXFCB_DEFAULT;
2280
2281         /* Tell the controller what the protocol is
2282          * And provide the already calculated phcs
2283          */
2284         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2285                 flags |= TXFCB_UDP;
2286                 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2287         } else
2288                 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2289
2290         /* l3os is the distance between the start of the
2291          * frame (skb->data) and the start of the IP hdr.
2292          * l4os is the distance between the start of the
2293          * l3 hdr and the l4 hdr
2294          */
2295         fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2296         fcb->l4os = skb_network_header_len(skb);
2297
2298         fcb->flags = flags;
2299 }
2300
2301 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2302 {
2303         fcb->flags |= TXFCB_VLN;
2304         fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2305 }
2306
2307 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2308                                       struct txbd8 *base, int ring_size)
2309 {
2310         struct txbd8 *new_bd = bdp + stride;
2311
2312         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2313 }
2314
2315 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2316                                       int ring_size)
2317 {
2318         return skip_txbd(bdp, 1, base, ring_size);
2319 }
2320
2321 /* eTSEC12: csum generation not supported for some fcb offsets */
2322 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2323                                        unsigned long fcb_addr)
2324 {
2325         return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2326                (fcb_addr % 0x20) > 0x18);
2327 }
2328
2329 /* eTSEC76: csum generation for frames larger than 2500 may
2330  * cause excess delays before start of transmission
2331  */
2332 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2333                                        unsigned int len)
2334 {
2335         return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2336                (len > 2500));
2337 }
2338
2339 /* This is called by the kernel when a frame is ready for transmission.
2340  * It is pointed to by the dev->hard_start_xmit function pointer
2341  */
2342 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2343 {
2344         struct gfar_private *priv = netdev_priv(dev);
2345         struct gfar_priv_tx_q *tx_queue = NULL;
2346         struct netdev_queue *txq;
2347         struct gfar __iomem *regs = NULL;
2348         struct txfcb *fcb = NULL;
2349         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2350         u32 lstatus;
2351         skb_frag_t *frag;
2352         int i, rq = 0;
2353         int do_tstamp, do_csum, do_vlan;
2354         u32 bufaddr;
2355         unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2356
2357         rq = skb->queue_mapping;
2358         tx_queue = priv->tx_queue[rq];
2359         txq = netdev_get_tx_queue(dev, rq);
2360         base = tx_queue->tx_bd_base;
2361         regs = tx_queue->grp->regs;
2362
2363         do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2364         do_vlan = skb_vlan_tag_present(skb);
2365         do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2366                     priv->hwts_tx_en;
2367
2368         if (do_csum || do_vlan)
2369                 fcb_len = GMAC_FCB_LEN;
2370
2371         /* check if time stamp should be generated */
2372         if (unlikely(do_tstamp))
2373                 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2374
2375         /* make space for additional header when fcb is needed */
2376         if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2377                 struct sk_buff *skb_new;
2378
2379                 skb_new = skb_realloc_headroom(skb, fcb_len);
2380                 if (!skb_new) {
2381                         dev->stats.tx_errors++;
2382                         dev_kfree_skb_any(skb);
2383                         return NETDEV_TX_OK;
2384                 }
2385
2386                 if (skb->sk)
2387                         skb_set_owner_w(skb_new, skb->sk);
2388                 dev_consume_skb_any(skb);
2389                 skb = skb_new;
2390         }
2391
2392         /* total number of fragments in the SKB */
2393         nr_frags = skb_shinfo(skb)->nr_frags;
2394
2395         /* calculate the required number of TxBDs for this skb */
2396         if (unlikely(do_tstamp))
2397                 nr_txbds = nr_frags + 2;
2398         else
2399                 nr_txbds = nr_frags + 1;
2400
2401         /* check if there is space to queue this packet */
2402         if (nr_txbds > tx_queue->num_txbdfree) {
2403                 /* no space, stop the queue */
2404                 netif_tx_stop_queue(txq);
2405                 dev->stats.tx_fifo_errors++;
2406                 return NETDEV_TX_BUSY;
2407         }
2408
2409         /* Update transmit stats */
2410         bytes_sent = skb->len;
2411         tx_queue->stats.tx_bytes += bytes_sent;
2412         /* keep Tx bytes on wire for BQL accounting */
2413         GFAR_CB(skb)->bytes_sent = bytes_sent;
2414         tx_queue->stats.tx_packets++;
2415
2416         txbdp = txbdp_start = tx_queue->cur_tx;
2417         lstatus = be32_to_cpu(txbdp->lstatus);
2418
2419         /* Add TxPAL between FCB and frame if required */
2420         if (unlikely(do_tstamp)) {
2421                 skb_push(skb, GMAC_TXPAL_LEN);
2422                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2423         }
2424
2425         /* Add TxFCB if required */
2426         if (fcb_len) {
2427                 fcb = gfar_add_fcb(skb);
2428                 lstatus |= BD_LFLAG(TXBD_TOE);
2429         }
2430
2431         /* Set up checksumming */
2432         if (do_csum) {
2433                 gfar_tx_checksum(skb, fcb, fcb_len);
2434
2435                 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2436                     unlikely(gfar_csum_errata_76(priv, skb->len))) {
2437                         __skb_pull(skb, GMAC_FCB_LEN);
2438                         skb_checksum_help(skb);
2439                         if (do_vlan || do_tstamp) {
2440                                 /* put back a new fcb for vlan/tstamp TOE */
2441                                 fcb = gfar_add_fcb(skb);
2442                         } else {
2443                                 /* Tx TOE not used */
2444                                 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2445                                 fcb = NULL;
2446                         }
2447                 }
2448         }
2449
2450         if (do_vlan)
2451                 gfar_tx_vlan(skb, fcb);
2452
2453         bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2454                                  DMA_TO_DEVICE);
2455         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2456                 goto dma_map_err;
2457
2458         txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2459
2460         /* Time stamp insertion requires one additional TxBD */
2461         if (unlikely(do_tstamp))
2462                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2463                                                  tx_queue->tx_ring_size);
2464
2465         if (likely(!nr_frags)) {
2466                 if (likely(!do_tstamp))
2467                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2468         } else {
2469                 u32 lstatus_start = lstatus;
2470
2471                 /* Place the fragment addresses and lengths into the TxBDs */
2472                 frag = &skb_shinfo(skb)->frags[0];
2473                 for (i = 0; i < nr_frags; i++, frag++) {
2474                         unsigned int size;
2475
2476                         /* Point at the next BD, wrapping as needed */
2477                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2478
2479                         size = skb_frag_size(frag);
2480
2481                         lstatus = be32_to_cpu(txbdp->lstatus) | size |
2482                                   BD_LFLAG(TXBD_READY);
2483
2484                         /* Handle the last BD specially */
2485                         if (i == nr_frags - 1)
2486                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2487
2488                         bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2489                                                    size, DMA_TO_DEVICE);
2490                         if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2491                                 goto dma_map_err;
2492
2493                         /* set the TxBD length and buffer pointer */
2494                         txbdp->bufPtr = cpu_to_be32(bufaddr);
2495                         txbdp->lstatus = cpu_to_be32(lstatus);
2496                 }
2497
2498                 lstatus = lstatus_start;
2499         }
2500
2501         /* If time stamping is requested one additional TxBD must be set up. The
2502          * first TxBD points to the FCB and must have a data length of
2503          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2504          * the full frame length.
2505          */
2506         if (unlikely(do_tstamp)) {
2507                 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2508
2509                 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2510                 bufaddr += fcb_len;
2511
2512                 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2513                               (skb_headlen(skb) - fcb_len);
2514                 if (!nr_frags)
2515                         lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2516
2517                 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2518                 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2519                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2520
2521                 /* Setup tx hardware time stamping */
2522                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2523                 fcb->ptp = 1;
2524         } else {
2525                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2526         }
2527
2528         netdev_tx_sent_queue(txq, bytes_sent);
2529
2530         gfar_wmb();
2531
2532         txbdp_start->lstatus = cpu_to_be32(lstatus);
2533
2534         gfar_wmb(); /* force lstatus write before tx_skbuff */
2535
2536         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2537
2538         /* Update the current skb pointer to the next entry we will use
2539          * (wrapping if necessary)
2540          */
2541         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2542                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2543
2544         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2545
2546         /* We can work in parallel with gfar_clean_tx_ring(), except
2547          * when modifying num_txbdfree. Note that we didn't grab the lock
2548          * when we were reading the num_txbdfree and checking for available
2549          * space, that's because outside of this function it can only grow.
2550          */
2551         spin_lock_bh(&tx_queue->txlock);
2552         /* reduce TxBD free count */
2553         tx_queue->num_txbdfree -= (nr_txbds);
2554         spin_unlock_bh(&tx_queue->txlock);
2555
2556         /* If the next BD still needs to be cleaned up, then the bds
2557          * are full.  We need to tell the kernel to stop sending us stuff.
2558          */
2559         if (!tx_queue->num_txbdfree) {
2560                 netif_tx_stop_queue(txq);
2561
2562                 dev->stats.tx_fifo_errors++;
2563         }
2564
2565         /* Tell the DMA to go go go */
2566         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2567
2568         return NETDEV_TX_OK;
2569
2570 dma_map_err:
2571         txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2572         if (do_tstamp)
2573                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2574         for (i = 0; i < nr_frags; i++) {
2575                 lstatus = be32_to_cpu(txbdp->lstatus);
2576                 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2577                         break;
2578
2579                 lstatus &= ~BD_LFLAG(TXBD_READY);
2580                 txbdp->lstatus = cpu_to_be32(lstatus);
2581                 bufaddr = be32_to_cpu(txbdp->bufPtr);
2582                 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2583                                DMA_TO_DEVICE);
2584                 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2585         }
2586         gfar_wmb();
2587         dev_kfree_skb_any(skb);
2588         return NETDEV_TX_OK;
2589 }
2590
2591 /* Stops the kernel queue, and halts the controller */
2592 static int gfar_close(struct net_device *dev)
2593 {
2594         struct gfar_private *priv = netdev_priv(dev);
2595
2596         cancel_work_sync(&priv->reset_task);
2597         stop_gfar(dev);
2598
2599         /* Disconnect from the PHY */
2600         phy_disconnect(dev->phydev);
2601
2602         gfar_free_irq(priv);
2603
2604         return 0;
2605 }
2606
2607 /* Changes the mac address if the controller is not running. */
2608 static int gfar_set_mac_address(struct net_device *dev)
2609 {
2610         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2611
2612         return 0;
2613 }
2614
2615 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2616 {
2617         struct gfar_private *priv = netdev_priv(dev);
2618
2619         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2620                 cpu_relax();
2621
2622         if (dev->flags & IFF_UP)
2623                 stop_gfar(dev);
2624
2625         dev->mtu = new_mtu;
2626
2627         if (dev->flags & IFF_UP)
2628                 startup_gfar(dev);
2629
2630         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2631
2632         return 0;
2633 }
2634
2635 void reset_gfar(struct net_device *ndev)
2636 {
2637         struct gfar_private *priv = netdev_priv(ndev);
2638
2639         while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2640                 cpu_relax();
2641
2642         stop_gfar(ndev);
2643         startup_gfar(ndev);
2644
2645         clear_bit_unlock(GFAR_RESETTING, &priv->state);
2646 }
2647
2648 /* gfar_reset_task gets scheduled when a packet has not been
2649  * transmitted after a set amount of time.
2650  * For now, assume that clearing out all the structures, and
2651  * starting over will fix the problem.
2652  */
2653 static void gfar_reset_task(struct work_struct *work)
2654 {
2655         struct gfar_private *priv = container_of(work, struct gfar_private,
2656                                                  reset_task);
2657         reset_gfar(priv->ndev);
2658 }
2659
2660 static void gfar_timeout(struct net_device *dev)
2661 {
2662         struct gfar_private *priv = netdev_priv(dev);
2663
2664         dev->stats.tx_errors++;
2665         schedule_work(&priv->reset_task);
2666 }
2667
2668 /* Interrupt Handler for Transmit complete */
2669 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2670 {
2671         struct net_device *dev = tx_queue->dev;
2672         struct netdev_queue *txq;
2673         struct gfar_private *priv = netdev_priv(dev);
2674         struct txbd8 *bdp, *next = NULL;
2675         struct txbd8 *lbdp = NULL;
2676         struct txbd8 *base = tx_queue->tx_bd_base;
2677         struct sk_buff *skb;
2678         int skb_dirtytx;
2679         int tx_ring_size = tx_queue->tx_ring_size;
2680         int frags = 0, nr_txbds = 0;
2681         int i;
2682         int howmany = 0;
2683         int tqi = tx_queue->qindex;
2684         unsigned int bytes_sent = 0;
2685         u32 lstatus;
2686         size_t buflen;
2687
2688         txq = netdev_get_tx_queue(dev, tqi);
2689         bdp = tx_queue->dirty_tx;
2690         skb_dirtytx = tx_queue->skb_dirtytx;
2691
2692         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2693
2694                 frags = skb_shinfo(skb)->nr_frags;
2695
2696                 /* When time stamping, one additional TxBD must be freed.
2697                  * Also, we need to dma_unmap_single() the TxPAL.
2698                  */
2699                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2700                         nr_txbds = frags + 2;
2701                 else
2702                         nr_txbds = frags + 1;
2703
2704                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2705
2706                 lstatus = be32_to_cpu(lbdp->lstatus);
2707
2708                 /* Only clean completed frames */
2709                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2710                     (lstatus & BD_LENGTH_MASK))
2711                         break;
2712
2713                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2714                         next = next_txbd(bdp, base, tx_ring_size);
2715                         buflen = be16_to_cpu(next->length) +
2716                                  GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2717                 } else
2718                         buflen = be16_to_cpu(bdp->length);
2719
2720                 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2721                                  buflen, DMA_TO_DEVICE);
2722
2723                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2724                         struct skb_shared_hwtstamps shhwtstamps;
2725                         u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2726                                           ~0x7UL);
2727
2728                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2729                         shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2730                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2731                         skb_tstamp_tx(skb, &shhwtstamps);
2732                         gfar_clear_txbd_status(bdp);
2733                         bdp = next;
2734                 }
2735
2736                 gfar_clear_txbd_status(bdp);
2737                 bdp = next_txbd(bdp, base, tx_ring_size);
2738
2739                 for (i = 0; i < frags; i++) {
2740                         dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2741                                        be16_to_cpu(bdp->length),
2742                                        DMA_TO_DEVICE);
2743                         gfar_clear_txbd_status(bdp);
2744                         bdp = next_txbd(bdp, base, tx_ring_size);
2745                 }
2746
2747                 bytes_sent += GFAR_CB(skb)->bytes_sent;
2748
2749                 dev_kfree_skb_any(skb);
2750
2751                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2752
2753                 skb_dirtytx = (skb_dirtytx + 1) &
2754                               TX_RING_MOD_MASK(tx_ring_size);
2755
2756                 howmany++;
2757                 spin_lock(&tx_queue->txlock);
2758                 tx_queue->num_txbdfree += nr_txbds;
2759                 spin_unlock(&tx_queue->txlock);
2760         }
2761
2762         /* If we freed a buffer, we can restart transmission, if necessary */
2763         if (tx_queue->num_txbdfree &&
2764             netif_tx_queue_stopped(txq) &&
2765             !(test_bit(GFAR_DOWN, &priv->state)))
2766                 netif_wake_subqueue(priv->ndev, tqi);
2767
2768         /* Update dirty indicators */
2769         tx_queue->skb_dirtytx = skb_dirtytx;
2770         tx_queue->dirty_tx = bdp;
2771
2772         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2773 }
2774
2775 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2776 {
2777         struct page *page;
2778         dma_addr_t addr;
2779
2780         page = dev_alloc_page();
2781         if (unlikely(!page))
2782                 return false;
2783
2784         addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2785         if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2786                 __free_page(page);
2787
2788                 return false;
2789         }
2790
2791         rxb->dma = addr;
2792         rxb->page = page;
2793         rxb->page_offset = 0;
2794
2795         return true;
2796 }
2797
2798 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2799 {
2800         struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2801         struct gfar_extra_stats *estats = &priv->extra_stats;
2802
2803         netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2804         atomic64_inc(&estats->rx_alloc_err);
2805 }
2806
2807 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2808                                 int alloc_cnt)
2809 {
2810         struct rxbd8 *bdp;
2811         struct gfar_rx_buff *rxb;
2812         int i;
2813
2814         i = rx_queue->next_to_use;
2815         bdp = &rx_queue->rx_bd_base[i];
2816         rxb = &rx_queue->rx_buff[i];
2817
2818         while (alloc_cnt--) {
2819                 /* try reuse page */
2820                 if (unlikely(!rxb->page)) {
2821                         if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2822                                 gfar_rx_alloc_err(rx_queue);
2823                                 break;
2824                         }
2825                 }
2826
2827                 /* Setup the new RxBD */
2828                 gfar_init_rxbdp(rx_queue, bdp,
2829                                 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2830
2831                 /* Update to the next pointer */
2832                 bdp++;
2833                 rxb++;
2834
2835                 if (unlikely(++i == rx_queue->rx_ring_size)) {
2836                         i = 0;
2837                         bdp = rx_queue->rx_bd_base;
2838                         rxb = rx_queue->rx_buff;
2839                 }
2840         }
2841
2842         rx_queue->next_to_use = i;
2843         rx_queue->next_to_alloc = i;
2844 }
2845
2846 static void count_errors(u32 lstatus, struct net_device *ndev)
2847 {
2848         struct gfar_private *priv = netdev_priv(ndev);
2849         struct net_device_stats *stats = &ndev->stats;
2850         struct gfar_extra_stats *estats = &priv->extra_stats;
2851
2852         /* If the packet was truncated, none of the other errors matter */
2853         if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2854                 stats->rx_length_errors++;
2855
2856                 atomic64_inc(&estats->rx_trunc);
2857
2858                 return;
2859         }
2860         /* Count the errors, if there were any */
2861         if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2862                 stats->rx_length_errors++;
2863
2864                 if (lstatus & BD_LFLAG(RXBD_LARGE))
2865                         atomic64_inc(&estats->rx_large);
2866                 else
2867                         atomic64_inc(&estats->rx_short);
2868         }
2869         if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2870                 stats->rx_frame_errors++;
2871                 atomic64_inc(&estats->rx_nonoctet);
2872         }
2873         if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2874                 atomic64_inc(&estats->rx_crcerr);
2875                 stats->rx_crc_errors++;
2876         }
2877         if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2878                 atomic64_inc(&estats->rx_overrun);
2879                 stats->rx_over_errors++;
2880         }
2881 }
2882
2883 irqreturn_t gfar_receive(int irq, void *grp_id)
2884 {
2885         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2886         unsigned long flags;
2887         u32 imask, ievent;
2888
2889         ievent = gfar_read(&grp->regs->ievent);
2890
2891         if (unlikely(ievent & IEVENT_FGPI)) {
2892                 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2893                 return IRQ_HANDLED;
2894         }
2895
2896         if (likely(napi_schedule_prep(&grp->napi_rx))) {
2897                 spin_lock_irqsave(&grp->grplock, flags);
2898                 imask = gfar_read(&grp->regs->imask);
2899                 imask &= IMASK_RX_DISABLED;
2900                 gfar_write(&grp->regs->imask, imask);
2901                 spin_unlock_irqrestore(&grp->grplock, flags);
2902                 __napi_schedule(&grp->napi_rx);
2903         } else {
2904                 /* Clear IEVENT, so interrupts aren't called again
2905                  * because of the packets that have already arrived.
2906                  */
2907                 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2908         }
2909
2910         return IRQ_HANDLED;
2911 }
2912
2913 /* Interrupt Handler for Transmit complete */
2914 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2915 {
2916         struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2917         unsigned long flags;
2918         u32 imask;
2919
2920         if (likely(napi_schedule_prep(&grp->napi_tx))) {
2921                 spin_lock_irqsave(&grp->grplock, flags);
2922                 imask = gfar_read(&grp->regs->imask);
2923                 imask &= IMASK_TX_DISABLED;
2924                 gfar_write(&grp->regs->imask, imask);
2925                 spin_unlock_irqrestore(&grp->grplock, flags);
2926                 __napi_schedule(&grp->napi_tx);
2927         } else {
2928                 /* Clear IEVENT, so interrupts aren't called again
2929                  * because of the packets that have already arrived.
2930                  */
2931                 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2932         }
2933
2934         return IRQ_HANDLED;
2935 }
2936
2937 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2938                              struct sk_buff *skb, bool first)
2939 {
2940         int size = lstatus & BD_LENGTH_MASK;
2941         struct page *page = rxb->page;
2942
2943         if (likely(first)) {
2944                 skb_put(skb, size);
2945         } else {
2946                 /* the last fragments' length contains the full frame length */
2947                 if (lstatus & BD_LFLAG(RXBD_LAST))
2948                         size -= skb->len;
2949
2950                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2951                                 rxb->page_offset + RXBUF_ALIGNMENT,
2952                                 size, GFAR_RXB_TRUESIZE);
2953         }
2954
2955         /* try reuse page */
2956         if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2957                 return false;
2958
2959         /* change offset to the other half */
2960         rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2961
2962         page_ref_inc(page);
2963
2964         return true;
2965 }
2966
2967 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2968                                struct gfar_rx_buff *old_rxb)
2969 {
2970         struct gfar_rx_buff *new_rxb;
2971         u16 nta = rxq->next_to_alloc;
2972
2973         new_rxb = &rxq->rx_buff[nta];
2974
2975         /* find next buf that can reuse a page */
2976         nta++;
2977         rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2978
2979         /* copy page reference */
2980         *new_rxb = *old_rxb;
2981
2982         /* sync for use by the device */
2983         dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2984                                          old_rxb->page_offset,
2985                                          GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2986 }
2987
2988 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2989                                             u32 lstatus, struct sk_buff *skb)
2990 {
2991         struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2992         struct page *page = rxb->page;
2993         bool first = false;
2994
2995         if (likely(!skb)) {
2996                 void *buff_addr = page_address(page) + rxb->page_offset;
2997
2998                 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2999                 if (unlikely(!skb)) {
3000                         gfar_rx_alloc_err(rx_queue);
3001                         return NULL;
3002                 }
3003                 skb_reserve(skb, RXBUF_ALIGNMENT);
3004                 first = true;
3005         }
3006
3007         dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3008                                       GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3009
3010         if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3011                 /* reuse the free half of the page */
3012                 gfar_reuse_rx_page(rx_queue, rxb);
3013         } else {
3014                 /* page cannot be reused, unmap it */
3015                 dma_unmap_page(rx_queue->dev, rxb->dma,
3016                                PAGE_SIZE, DMA_FROM_DEVICE);
3017         }
3018
3019         /* clear rxb content */
3020         rxb->page = NULL;
3021
3022         return skb;
3023 }
3024
3025 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3026 {
3027         /* If valid headers were found, and valid sums
3028          * were verified, then we tell the kernel that no
3029          * checksumming is necessary.  Otherwise, it is [FIXME]
3030          */
3031         if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3032             (RXFCB_CIP | RXFCB_CTU))
3033                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3034         else
3035                 skb_checksum_none_assert(skb);
3036 }
3037
3038 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3039 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3040 {
3041         struct gfar_private *priv = netdev_priv(ndev);
3042         struct rxfcb *fcb = NULL;
3043
3044         /* fcb is at the beginning if exists */
3045         fcb = (struct rxfcb *)skb->data;
3046
3047         /* Remove the FCB from the skb
3048          * Remove the padded bytes, if there are any
3049          */
3050         if (priv->uses_rxfcb)
3051                 skb_pull(skb, GMAC_FCB_LEN);
3052
3053         /* Get receive timestamp from the skb */
3054         if (priv->hwts_rx_en) {
3055                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3056                 u64 *ns = (u64 *) skb->data;
3057
3058                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3059                 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3060         }
3061
3062         if (priv->padding)
3063                 skb_pull(skb, priv->padding);
3064
3065         /* Trim off the FCS */
3066         pskb_trim(skb, skb->len - ETH_FCS_LEN);
3067
3068         if (ndev->features & NETIF_F_RXCSUM)
3069                 gfar_rx_checksum(skb, fcb);
3070
3071         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3072          * Even if vlan rx accel is disabled, on some chips
3073          * RXFCB_VLN is pseudo randomly set.
3074          */
3075         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3076             be16_to_cpu(fcb->flags) & RXFCB_VLN)
3077                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3078                                        be16_to_cpu(fcb->vlctl));
3079 }
3080
3081 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3082  * until the budget/quota has been reached. Returns the number
3083  * of frames handled
3084  */
3085 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3086 {
3087         struct net_device *ndev = rx_queue->ndev;
3088         struct gfar_private *priv = netdev_priv(ndev);
3089         struct rxbd8 *bdp;
3090         int i, howmany = 0;
3091         struct sk_buff *skb = rx_queue->skb;
3092         int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3093         unsigned int total_bytes = 0, total_pkts = 0;
3094
3095         /* Get the first full descriptor */
3096         i = rx_queue->next_to_clean;
3097
3098         while (rx_work_limit--) {
3099                 u32 lstatus;
3100
3101                 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3102                         gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3103                         cleaned_cnt = 0;
3104                 }
3105
3106                 bdp = &rx_queue->rx_bd_base[i];
3107                 lstatus = be32_to_cpu(bdp->lstatus);
3108                 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3109                         break;
3110
3111                 /* order rx buffer descriptor reads */
3112                 rmb();
3113
3114                 /* fetch next to clean buffer from the ring */
3115                 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3116                 if (unlikely(!skb))
3117                         break;
3118
3119                 cleaned_cnt++;
3120                 howmany++;
3121
3122                 if (unlikely(++i == rx_queue->rx_ring_size))
3123                         i = 0;
3124
3125                 rx_queue->next_to_clean = i;
3126
3127                 /* fetch next buffer if not the last in frame */
3128                 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3129                         continue;
3130
3131                 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3132                         count_errors(lstatus, ndev);
3133
3134                         /* discard faulty buffer */
3135                         dev_kfree_skb(skb);
3136                         skb = NULL;
3137                         rx_queue->stats.rx_dropped++;
3138                         continue;
3139                 }
3140
3141                 gfar_process_frame(ndev, skb);
3142
3143                 /* Increment the number of packets */
3144                 total_pkts++;
3145                 total_bytes += skb->len;
3146
3147                 skb_record_rx_queue(skb, rx_queue->qindex);
3148
3149                 skb->protocol = eth_type_trans(skb, ndev);
3150
3151                 /* Send the packet up the stack */
3152                 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3153
3154                 skb = NULL;
3155         }
3156
3157         /* Store incomplete frames for completion */
3158         rx_queue->skb = skb;
3159
3160         rx_queue->stats.rx_packets += total_pkts;
3161         rx_queue->stats.rx_bytes += total_bytes;
3162
3163         if (cleaned_cnt)
3164                 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3165
3166         /* Update Last Free RxBD pointer for LFC */
3167         if (unlikely(priv->tx_actual_en)) {
3168                 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3169
3170                 gfar_write(rx_queue->rfbptr, bdp_dma);
3171         }
3172
3173         return howmany;
3174 }
3175
3176 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3177 {
3178         struct gfar_priv_grp *gfargrp =
3179                 container_of(napi, struct gfar_priv_grp, napi_rx);
3180         struct gfar __iomem *regs = gfargrp->regs;
3181         struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3182         int work_done = 0;
3183
3184         /* Clear IEVENT, so interrupts aren't called again
3185          * because of the packets that have already arrived
3186          */
3187         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3188
3189         work_done = gfar_clean_rx_ring(rx_queue, budget);
3190
3191         if (work_done < budget) {
3192                 u32 imask;
3193                 napi_complete_done(napi, work_done);
3194                 /* Clear the halt bit in RSTAT */
3195                 gfar_write(&regs->rstat, gfargrp->rstat);
3196
3197                 spin_lock_irq(&gfargrp->grplock);
3198                 imask = gfar_read(&regs->imask);
3199                 imask |= IMASK_RX_DEFAULT;
3200                 gfar_write(&regs->imask, imask);
3201                 spin_unlock_irq(&gfargrp->grplock);
3202         }
3203
3204         return work_done;
3205 }
3206
3207 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3208 {
3209         struct gfar_priv_grp *gfargrp =
3210                 container_of(napi, struct gfar_priv_grp, napi_tx);
3211         struct gfar __iomem *regs = gfargrp->regs;
3212         struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3213         u32 imask;
3214
3215         /* Clear IEVENT, so interrupts aren't called again
3216          * because of the packets that have already arrived
3217          */
3218         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3219
3220         /* run Tx cleanup to completion */
3221         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3222                 gfar_clean_tx_ring(tx_queue);
3223
3224         napi_complete(napi);
3225
3226         spin_lock_irq(&gfargrp->grplock);
3227         imask = gfar_read(&regs->imask);
3228         imask |= IMASK_TX_DEFAULT;
3229         gfar_write(&regs->imask, imask);
3230         spin_unlock_irq(&gfargrp->grplock);
3231
3232         return 0;
3233 }
3234
3235 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3236 {
3237         struct gfar_priv_grp *gfargrp =
3238                 container_of(napi, struct gfar_priv_grp, napi_rx);
3239         struct gfar_private *priv = gfargrp->priv;
3240         struct gfar __iomem *regs = gfargrp->regs;
3241         struct gfar_priv_rx_q *rx_queue = NULL;
3242         int work_done = 0, work_done_per_q = 0;
3243         int i, budget_per_q = 0;
3244         unsigned long rstat_rxf;
3245         int num_act_queues;
3246
3247         /* Clear IEVENT, so interrupts aren't called again
3248          * because of the packets that have already arrived
3249          */
3250         gfar_write(&regs->ievent, IEVENT_RX_MASK);
3251
3252         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3253
3254         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3255         if (num_act_queues)
3256                 budget_per_q = budget/num_act_queues;
3257
3258         for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3259                 /* skip queue if not active */
3260                 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3261                         continue;
3262
3263                 rx_queue = priv->rx_queue[i];
3264                 work_done_per_q =
3265                         gfar_clean_rx_ring(rx_queue, budget_per_q);
3266                 work_done += work_done_per_q;
3267
3268                 /* finished processing this queue */
3269                 if (work_done_per_q < budget_per_q) {
3270                         /* clear active queue hw indication */
3271                         gfar_write(&regs->rstat,
3272                                    RSTAT_CLEAR_RXF0 >> i);
3273                         num_act_queues--;
3274
3275                         if (!num_act_queues)
3276                                 break;
3277                 }
3278         }
3279
3280         if (!num_act_queues) {
3281                 u32 imask;
3282                 napi_complete_done(napi, work_done);
3283
3284                 /* Clear the halt bit in RSTAT */
3285                 gfar_write(&regs->rstat, gfargrp->rstat);
3286
3287                 spin_lock_irq(&gfargrp->grplock);
3288                 imask = gfar_read(&regs->imask);
3289                 imask |= IMASK_RX_DEFAULT;
3290                 gfar_write(&regs->imask, imask);
3291                 spin_unlock_irq(&gfargrp->grplock);
3292         }
3293
3294         return work_done;
3295 }
3296
3297 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3298 {
3299         struct gfar_priv_grp *gfargrp =
3300                 container_of(napi, struct gfar_priv_grp, napi_tx);
3301         struct gfar_private *priv = gfargrp->priv;
3302         struct gfar __iomem *regs = gfargrp->regs;
3303         struct gfar_priv_tx_q *tx_queue = NULL;
3304         int has_tx_work = 0;
3305         int i;
3306
3307         /* Clear IEVENT, so interrupts aren't called again
3308          * because of the packets that have already arrived
3309          */
3310         gfar_write(&regs->ievent, IEVENT_TX_MASK);
3311
3312         for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3313                 tx_queue = priv->tx_queue[i];
3314                 /* run Tx cleanup to completion */
3315                 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3316                         gfar_clean_tx_ring(tx_queue);
3317                         has_tx_work = 1;
3318                 }
3319         }
3320
3321         if (!has_tx_work) {
3322                 u32 imask;
3323                 napi_complete(napi);
3324
3325                 spin_lock_irq(&gfargrp->grplock);
3326                 imask = gfar_read(&regs->imask);
3327                 imask |= IMASK_TX_DEFAULT;
3328                 gfar_write(&regs->imask, imask);
3329                 spin_unlock_irq(&gfargrp->grplock);
3330         }
3331
3332         return 0;
3333 }
3334
3335
3336 #ifdef CONFIG_NET_POLL_CONTROLLER
3337 /* Polling 'interrupt' - used by things like netconsole to send skbs
3338  * without having to re-enable interrupts. It's not called while
3339  * the interrupt routine is executing.
3340  */
3341 static void gfar_netpoll(struct net_device *dev)
3342 {
3343         struct gfar_private *priv = netdev_priv(dev);
3344         int i;
3345
3346         /* If the device has multiple interrupts, run tx/rx */
3347         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3348                 for (i = 0; i < priv->num_grps; i++) {
3349                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3350
3351                         disable_irq(gfar_irq(grp, TX)->irq);
3352                         disable_irq(gfar_irq(grp, RX)->irq);
3353                         disable_irq(gfar_irq(grp, ER)->irq);
3354                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3355                         enable_irq(gfar_irq(grp, ER)->irq);
3356                         enable_irq(gfar_irq(grp, RX)->irq);
3357                         enable_irq(gfar_irq(grp, TX)->irq);
3358                 }
3359         } else {
3360                 for (i = 0; i < priv->num_grps; i++) {
3361                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
3362
3363                         disable_irq(gfar_irq(grp, TX)->irq);
3364                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3365                         enable_irq(gfar_irq(grp, TX)->irq);
3366                 }
3367         }
3368 }
3369 #endif
3370
3371 /* The interrupt handler for devices with one interrupt */
3372 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3373 {
3374         struct gfar_priv_grp *gfargrp = grp_id;
3375
3376         /* Save ievent for future reference */
3377         u32 events = gfar_read(&gfargrp->regs->ievent);
3378
3379         /* Check for reception */
3380         if (events & IEVENT_RX_MASK)
3381                 gfar_receive(irq, grp_id);
3382
3383         /* Check for transmit completion */
3384         if (events & IEVENT_TX_MASK)
3385                 gfar_transmit(irq, grp_id);
3386
3387         /* Check for errors */
3388         if (events & IEVENT_ERR_MASK)
3389                 gfar_error(irq, grp_id);
3390
3391         return IRQ_HANDLED;
3392 }
3393
3394 /* Called every time the controller might need to be made
3395  * aware of new link state.  The PHY code conveys this
3396  * information through variables in the phydev structure, and this
3397  * function converts those variables into the appropriate
3398  * register values, and can bring down the device if needed.
3399  */
3400 static void adjust_link(struct net_device *dev)
3401 {
3402         struct gfar_private *priv = netdev_priv(dev);
3403         struct phy_device *phydev = dev->phydev;
3404
3405         if (unlikely(phydev->link != priv->oldlink ||
3406                      (phydev->link && (phydev->duplex != priv->oldduplex ||
3407                                        phydev->speed != priv->oldspeed))))
3408                 gfar_update_link_state(priv);
3409 }
3410
3411 /* Update the hash table based on the current list of multicast
3412  * addresses we subscribe to.  Also, change the promiscuity of
3413  * the device based on the flags (this function is called
3414  * whenever dev->flags is changed
3415  */
3416 static void gfar_set_multi(struct net_device *dev)
3417 {
3418         struct netdev_hw_addr *ha;
3419         struct gfar_private *priv = netdev_priv(dev);
3420         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3421         u32 tempval;
3422
3423         if (dev->flags & IFF_PROMISC) {
3424                 /* Set RCTRL to PROM */
3425                 tempval = gfar_read(&regs->rctrl);
3426                 tempval |= RCTRL_PROM;
3427                 gfar_write(&regs->rctrl, tempval);
3428         } else {
3429                 /* Set RCTRL to not PROM */
3430                 tempval = gfar_read(&regs->rctrl);
3431                 tempval &= ~(RCTRL_PROM);
3432                 gfar_write(&regs->rctrl, tempval);
3433         }
3434
3435         if (dev->flags & IFF_ALLMULTI) {
3436                 /* Set the hash to rx all multicast frames */
3437                 gfar_write(&regs->igaddr0, 0xffffffff);
3438                 gfar_write(&regs->igaddr1, 0xffffffff);
3439                 gfar_write(&regs->igaddr2, 0xffffffff);
3440                 gfar_write(&regs->igaddr3, 0xffffffff);
3441                 gfar_write(&regs->igaddr4, 0xffffffff);
3442                 gfar_write(&regs->igaddr5, 0xffffffff);
3443                 gfar_write(&regs->igaddr6, 0xffffffff);
3444                 gfar_write(&regs->igaddr7, 0xffffffff);
3445                 gfar_write(&regs->gaddr0, 0xffffffff);
3446                 gfar_write(&regs->gaddr1, 0xffffffff);
3447                 gfar_write(&regs->gaddr2, 0xffffffff);
3448                 gfar_write(&regs->gaddr3, 0xffffffff);
3449                 gfar_write(&regs->gaddr4, 0xffffffff);
3450                 gfar_write(&regs->gaddr5, 0xffffffff);
3451                 gfar_write(&regs->gaddr6, 0xffffffff);
3452                 gfar_write(&regs->gaddr7, 0xffffffff);
3453         } else {
3454                 int em_num;
3455                 int idx;
3456
3457                 /* zero out the hash */
3458                 gfar_write(&regs->igaddr0, 0x0);
3459                 gfar_write(&regs->igaddr1, 0x0);
3460                 gfar_write(&regs->igaddr2, 0x0);
3461                 gfar_write(&regs->igaddr3, 0x0);
3462                 gfar_write(&regs->igaddr4, 0x0);
3463                 gfar_write(&regs->igaddr5, 0x0);
3464                 gfar_write(&regs->igaddr6, 0x0);
3465                 gfar_write(&regs->igaddr7, 0x0);
3466                 gfar_write(&regs->gaddr0, 0x0);
3467                 gfar_write(&regs->gaddr1, 0x0);
3468                 gfar_write(&regs->gaddr2, 0x0);
3469                 gfar_write(&regs->gaddr3, 0x0);
3470                 gfar_write(&regs->gaddr4, 0x0);
3471                 gfar_write(&regs->gaddr5, 0x0);
3472                 gfar_write(&regs->gaddr6, 0x0);
3473                 gfar_write(&regs->gaddr7, 0x0);
3474
3475                 /* If we have extended hash tables, we need to
3476                  * clear the exact match registers to prepare for
3477                  * setting them
3478                  */
3479                 if (priv->extended_hash) {
3480                         em_num = GFAR_EM_NUM + 1;
3481                         gfar_clear_exact_match(dev);
3482                         idx = 1;
3483                 } else {
3484                         idx = 0;
3485                         em_num = 0;
3486                 }
3487
3488                 if (netdev_mc_empty(dev))
3489                         return;
3490
3491                 /* Parse the list, and set the appropriate bits */
3492                 netdev_for_each_mc_addr(ha, dev) {
3493                         if (idx < em_num) {
3494                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3495                                 idx++;
3496                         } else
3497                                 gfar_set_hash_for_addr(dev, ha->addr);
3498                 }
3499         }
3500 }
3501
3502
3503 /* Clears each of the exact match registers to zero, so they
3504  * don't interfere with normal reception
3505  */
3506 static void gfar_clear_exact_match(struct net_device *dev)
3507 {
3508         int idx;
3509         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3510
3511         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3512                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3513 }
3514
3515 /* Set the appropriate hash bit for the given addr */
3516 /* The algorithm works like so:
3517  * 1) Take the Destination Address (ie the multicast address), and
3518  * do a CRC on it (little endian), and reverse the bits of the
3519  * result.
3520  * 2) Use the 8 most significant bits as a hash into a 256-entry
3521  * table.  The table is controlled through 8 32-bit registers:
3522  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3523  * gaddr7.  This means that the 3 most significant bits in the
3524  * hash index which gaddr register to use, and the 5 other bits
3525  * indicate which bit (assuming an IBM numbering scheme, which
3526  * for PowerPC (tm) is usually the case) in the register holds
3527  * the entry.
3528  */
3529 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3530 {
3531         u32 tempval;
3532         struct gfar_private *priv = netdev_priv(dev);
3533         u32 result = ether_crc(ETH_ALEN, addr);
3534         int width = priv->hash_width;
3535         u8 whichbit = (result >> (32 - width)) & 0x1f;
3536         u8 whichreg = result >> (32 - width + 5);
3537         u32 value = (1 << (31-whichbit));
3538
3539         tempval = gfar_read(priv->hash_regs[whichreg]);
3540         tempval |= value;
3541         gfar_write(priv->hash_regs[whichreg], tempval);
3542 }
3543
3544
3545 /* There are multiple MAC Address register pairs on some controllers
3546  * This function sets the numth pair to a given address
3547  */
3548 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3549                                   const u8 *addr)
3550 {
3551         struct gfar_private *priv = netdev_priv(dev);
3552         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3553         u32 tempval;
3554         u32 __iomem *macptr = &regs->macstnaddr1;
3555
3556         macptr += num*2;
3557
3558         /* For a station address of 0x12345678ABCD in transmission
3559          * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3560          * MACnADDR2 is set to 0x34120000.
3561          */
3562         tempval = (addr[5] << 24) | (addr[4] << 16) |
3563                   (addr[3] << 8)  |  addr[2];
3564
3565         gfar_write(macptr, tempval);
3566
3567         tempval = (addr[1] << 24) | (addr[0] << 16);
3568
3569         gfar_write(macptr+1, tempval);
3570 }
3571
3572 /* GFAR error interrupt handler */
3573 static irqreturn_t gfar_error(int irq, void *grp_id)
3574 {
3575         struct gfar_priv_grp *gfargrp = grp_id;
3576         struct gfar __iomem *regs = gfargrp->regs;
3577         struct gfar_private *priv= gfargrp->priv;
3578         struct net_device *dev = priv->ndev;
3579
3580         /* Save ievent for future reference */
3581         u32 events = gfar_read(&regs->ievent);
3582
3583         /* Clear IEVENT */
3584         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3585
3586         /* Magic Packet is not an error. */
3587         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3588             (events & IEVENT_MAG))
3589                 events &= ~IEVENT_MAG;
3590
3591         /* Hmm... */
3592         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3593                 netdev_dbg(dev,
3594                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3595                            events, gfar_read(&regs->imask));
3596
3597         /* Update the error counters */
3598         if (events & IEVENT_TXE) {
3599                 dev->stats.tx_errors++;
3600
3601                 if (events & IEVENT_LC)
3602                         dev->stats.tx_window_errors++;
3603                 if (events & IEVENT_CRL)
3604                         dev->stats.tx_aborted_errors++;
3605                 if (events & IEVENT_XFUN) {
3606                         netif_dbg(priv, tx_err, dev,
3607                                   "TX FIFO underrun, packet dropped\n");
3608                         dev->stats.tx_dropped++;
3609                         atomic64_inc(&priv->extra_stats.tx_underrun);
3610
3611                         schedule_work(&priv->reset_task);
3612                 }
3613                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3614         }
3615         if (events & IEVENT_BSY) {
3616                 dev->stats.rx_over_errors++;
3617                 atomic64_inc(&priv->extra_stats.rx_bsy);
3618
3619                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3620                           gfar_read(&regs->rstat));
3621         }
3622         if (events & IEVENT_BABR) {
3623                 dev->stats.rx_errors++;
3624                 atomic64_inc(&priv->extra_stats.rx_babr);
3625
3626                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3627         }
3628         if (events & IEVENT_EBERR) {
3629                 atomic64_inc(&priv->extra_stats.eberr);
3630                 netif_dbg(priv, rx_err, dev, "bus error\n");
3631         }
3632         if (events & IEVENT_RXC)
3633                 netif_dbg(priv, rx_status, dev, "control frame\n");
3634
3635         if (events & IEVENT_BABT) {
3636                 atomic64_inc(&priv->extra_stats.tx_babt);
3637                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3638         }
3639         return IRQ_HANDLED;
3640 }
3641
3642 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3643 {
3644         struct net_device *ndev = priv->ndev;
3645         struct phy_device *phydev = ndev->phydev;
3646         u32 val = 0;
3647
3648         if (!phydev->duplex)
3649                 return val;
3650
3651         if (!priv->pause_aneg_en) {
3652                 if (priv->tx_pause_en)
3653                         val |= MACCFG1_TX_FLOW;
3654                 if (priv->rx_pause_en)
3655                         val |= MACCFG1_RX_FLOW;
3656         } else {
3657                 u16 lcl_adv, rmt_adv;
3658                 u8 flowctrl;
3659                 /* get link partner capabilities */
3660                 rmt_adv = 0;
3661                 if (phydev->pause)
3662                         rmt_adv = LPA_PAUSE_CAP;
3663                 if (phydev->asym_pause)
3664                         rmt_adv |= LPA_PAUSE_ASYM;
3665
3666                 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
3667                 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3668                 if (flowctrl & FLOW_CTRL_TX)
3669                         val |= MACCFG1_TX_FLOW;
3670                 if (flowctrl & FLOW_CTRL_RX)
3671                         val |= MACCFG1_RX_FLOW;
3672         }
3673
3674         return val;
3675 }
3676
3677 static noinline void gfar_update_link_state(struct gfar_private *priv)
3678 {
3679         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3680         struct net_device *ndev = priv->ndev;
3681         struct phy_device *phydev = ndev->phydev;
3682         struct gfar_priv_rx_q *rx_queue = NULL;
3683         int i;
3684
3685         if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3686                 return;
3687
3688         if (phydev->link) {
3689                 u32 tempval1 = gfar_read(&regs->maccfg1);
3690                 u32 tempval = gfar_read(&regs->maccfg2);
3691                 u32 ecntrl = gfar_read(&regs->ecntrl);
3692                 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3693
3694                 if (phydev->duplex != priv->oldduplex) {
3695                         if (!(phydev->duplex))
3696                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3697                         else
3698                                 tempval |= MACCFG2_FULL_DUPLEX;
3699
3700                         priv->oldduplex = phydev->duplex;
3701                 }
3702
3703                 if (phydev->speed != priv->oldspeed) {
3704                         switch (phydev->speed) {
3705                         case 1000:
3706                                 tempval =
3707                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3708
3709                                 ecntrl &= ~(ECNTRL_R100);
3710                                 break;
3711                         case 100:
3712                         case 10:
3713                                 tempval =
3714                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3715
3716                                 /* Reduced mode distinguishes
3717                                  * between 10 and 100
3718                                  */
3719                                 if (phydev->speed == SPEED_100)
3720                                         ecntrl |= ECNTRL_R100;
3721                                 else
3722                                         ecntrl &= ~(ECNTRL_R100);
3723                                 break;
3724                         default:
3725                                 netif_warn(priv, link, priv->ndev,
3726                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3727                                            phydev->speed);
3728                                 break;
3729                         }
3730
3731                         priv->oldspeed = phydev->speed;
3732                 }
3733
3734                 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3735                 tempval1 |= gfar_get_flowctrl_cfg(priv);
3736
3737                 /* Turn last free buffer recording on */
3738                 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3739                         for (i = 0; i < priv->num_rx_queues; i++) {
3740                                 u32 bdp_dma;
3741
3742                                 rx_queue = priv->rx_queue[i];
3743                                 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3744                                 gfar_write(rx_queue->rfbptr, bdp_dma);
3745                         }
3746
3747                         priv->tx_actual_en = 1;
3748                 }
3749
3750                 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3751                         priv->tx_actual_en = 0;
3752
3753                 gfar_write(&regs->maccfg1, tempval1);
3754                 gfar_write(&regs->maccfg2, tempval);
3755                 gfar_write(&regs->ecntrl, ecntrl);
3756
3757                 if (!priv->oldlink)
3758                         priv->oldlink = 1;
3759
3760         } else if (priv->oldlink) {
3761                 priv->oldlink = 0;
3762                 priv->oldspeed = 0;
3763                 priv->oldduplex = -1;
3764         }
3765
3766         if (netif_msg_link(priv))
3767                 phy_print_status(phydev);
3768 }
3769
3770 static const struct of_device_id gfar_match[] =
3771 {
3772         {
3773                 .type = "network",
3774                 .compatible = "gianfar",
3775         },
3776         {
3777                 .compatible = "fsl,etsec2",
3778         },
3779         {},
3780 };
3781 MODULE_DEVICE_TABLE(of, gfar_match);
3782
3783 /* Structure for a device driver */
3784 static struct platform_driver gfar_driver = {
3785         .driver = {
3786                 .name = "fsl-gianfar",
3787                 .pm = GFAR_PM_OPS,
3788                 .of_match_table = gfar_match,
3789         },
3790         .probe = gfar_probe,
3791         .remove = gfar_remove,
3792 };
3793
3794 module_platform_driver(gfar_driver);