]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/hisilicon/hns/hns_enet.c
net: hns: add phy_attached_info() to the hns driver
[linux.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2014-2015 Hisilicon Limited.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18
19 #include "hnae.h"
20 #include "hns_enet.h"
21 #include "hns_dsaf_mac.h"
22
23 #define NIC_MAX_Q_PER_VF 16
24 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
25
26 #define SERVICE_TIMER_HZ (1 * HZ)
27
28 #define RCB_IRQ_NOT_INITED 0
29 #define RCB_IRQ_INITED 1
30 #define HNS_BUFFER_SIZE_2048 2048
31
32 #define BD_MAX_SEND_SIZE 8191
33 #define SKB_TMP_LEN(SKB) \
34         (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
35
36 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
37                             int send_sz, dma_addr_t dma, int frag_end,
38                             int buf_num, enum hns_desc_type type, int mtu)
39 {
40         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
41         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
42         struct iphdr *iphdr;
43         struct ipv6hdr *ipv6hdr;
44         struct sk_buff *skb;
45         __be16 protocol;
46         u8 bn_pid = 0;
47         u8 rrcfv = 0;
48         u8 ip_offset = 0;
49         u8 tvsvsn = 0;
50         u16 mss = 0;
51         u8 l4_len = 0;
52         u16 paylen = 0;
53
54         desc_cb->priv = priv;
55         desc_cb->length = size;
56         desc_cb->dma = dma;
57         desc_cb->type = type;
58
59         desc->addr = cpu_to_le64(dma);
60         desc->tx.send_size = cpu_to_le16((u16)send_sz);
61
62         /* config bd buffer end */
63         hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
64         hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
65
66         /* fill port_id in the tx bd for sending management pkts */
67         hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
68                        HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
69
70         if (type == DESC_TYPE_SKB) {
71                 skb = (struct sk_buff *)priv;
72
73                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
74                         skb_reset_mac_len(skb);
75                         protocol = skb->protocol;
76                         ip_offset = ETH_HLEN;
77
78                         if (protocol == htons(ETH_P_8021Q)) {
79                                 ip_offset += VLAN_HLEN;
80                                 protocol = vlan_get_protocol(skb);
81                                 skb->protocol = protocol;
82                         }
83
84                         if (skb->protocol == htons(ETH_P_IP)) {
85                                 iphdr = ip_hdr(skb);
86                                 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
87                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
88
89                                 /* check for tcp/udp header */
90                                 if (iphdr->protocol == IPPROTO_TCP &&
91                                     skb_is_gso(skb)) {
92                                         hnae_set_bit(tvsvsn,
93                                                      HNSV2_TXD_TSE_B, 1);
94                                         l4_len = tcp_hdrlen(skb);
95                                         mss = skb_shinfo(skb)->gso_size;
96                                         paylen = skb->len - SKB_TMP_LEN(skb);
97                                 }
98                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
99                                 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
100                                 ipv6hdr = ipv6_hdr(skb);
101                                 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
102
103                                 /* check for tcp/udp header */
104                                 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
105                                     skb_is_gso(skb) && skb_is_gso_v6(skb)) {
106                                         hnae_set_bit(tvsvsn,
107                                                      HNSV2_TXD_TSE_B, 1);
108                                         l4_len = tcp_hdrlen(skb);
109                                         mss = skb_shinfo(skb)->gso_size;
110                                         paylen = skb->len - SKB_TMP_LEN(skb);
111                                 }
112                         }
113                         desc->tx.ip_offset = ip_offset;
114                         desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
115                         desc->tx.mss = cpu_to_le16(mss);
116                         desc->tx.l4_len = l4_len;
117                         desc->tx.paylen = cpu_to_le16(paylen);
118                 }
119         }
120
121         hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
122
123         desc->tx.bn_pid = bn_pid;
124         desc->tx.ra_ri_cs_fe_vld = rrcfv;
125
126         ring_ptr_move_fw(ring, next_to_use);
127 }
128
129 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
130                          int size, dma_addr_t dma, int frag_end,
131                          int buf_num, enum hns_desc_type type, int mtu)
132 {
133         fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
134                         buf_num, type, mtu);
135 }
136
137 static const struct acpi_device_id hns_enet_acpi_match[] = {
138         { "HISI00C1", 0 },
139         { "HISI00C2", 0 },
140         { },
141 };
142 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
143
144 static void fill_desc(struct hnae_ring *ring, void *priv,
145                       int size, dma_addr_t dma, int frag_end,
146                       int buf_num, enum hns_desc_type type, int mtu)
147 {
148         struct hnae_desc *desc = &ring->desc[ring->next_to_use];
149         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
150         struct sk_buff *skb;
151         __be16 protocol;
152         u32 ip_offset;
153         u32 asid_bufnum_pid = 0;
154         u32 flag_ipoffset = 0;
155
156         desc_cb->priv = priv;
157         desc_cb->length = size;
158         desc_cb->dma = dma;
159         desc_cb->type = type;
160
161         desc->addr = cpu_to_le64(dma);
162         desc->tx.send_size = cpu_to_le16((u16)size);
163
164         /*config bd buffer end */
165         flag_ipoffset |= 1 << HNS_TXD_VLD_B;
166
167         asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
168
169         if (type == DESC_TYPE_SKB) {
170                 skb = (struct sk_buff *)priv;
171
172                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
173                         protocol = skb->protocol;
174                         ip_offset = ETH_HLEN;
175
176                         /*if it is a SW VLAN check the next protocol*/
177                         if (protocol == htons(ETH_P_8021Q)) {
178                                 ip_offset += VLAN_HLEN;
179                                 protocol = vlan_get_protocol(skb);
180                                 skb->protocol = protocol;
181                         }
182
183                         if (skb->protocol == htons(ETH_P_IP)) {
184                                 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
185                                 /* check for tcp/udp header */
186                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
187
188                         } else if (skb->protocol == htons(ETH_P_IPV6)) {
189                                 /* ipv6 has not l3 cs, check for L4 header */
190                                 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191                         }
192
193                         flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
194                 }
195         }
196
197         flag_ipoffset |= frag_end << HNS_TXD_FE_B;
198
199         desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
200         desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
201
202         ring_ptr_move_fw(ring, next_to_use);
203 }
204
205 static void unfill_desc(struct hnae_ring *ring)
206 {
207         ring_ptr_move_bw(ring, next_to_use);
208 }
209
210 static int hns_nic_maybe_stop_tx(
211         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
212 {
213         struct sk_buff *skb = *out_skb;
214         struct sk_buff *new_skb = NULL;
215         int buf_num;
216
217         /* no. of segments (plus a header) */
218         buf_num = skb_shinfo(skb)->nr_frags + 1;
219
220         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
221                 if (ring_space(ring) < 1)
222                         return -EBUSY;
223
224                 new_skb = skb_copy(skb, GFP_ATOMIC);
225                 if (!new_skb)
226                         return -ENOMEM;
227
228                 dev_kfree_skb_any(skb);
229                 *out_skb = new_skb;
230                 buf_num = 1;
231         } else if (buf_num > ring_space(ring)) {
232                 return -EBUSY;
233         }
234
235         *bnum = buf_num;
236         return 0;
237 }
238
239 static int hns_nic_maybe_stop_tso(
240         struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
241 {
242         int i;
243         int size;
244         int buf_num;
245         int frag_num;
246         struct sk_buff *skb = *out_skb;
247         struct sk_buff *new_skb = NULL;
248         skb_frag_t *frag;
249
250         size = skb_headlen(skb);
251         buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
252
253         frag_num = skb_shinfo(skb)->nr_frags;
254         for (i = 0; i < frag_num; i++) {
255                 frag = &skb_shinfo(skb)->frags[i];
256                 size = skb_frag_size(frag);
257                 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
258         }
259
260         if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
261                 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262                 if (ring_space(ring) < buf_num)
263                         return -EBUSY;
264                 /* manual split the send packet */
265                 new_skb = skb_copy(skb, GFP_ATOMIC);
266                 if (!new_skb)
267                         return -ENOMEM;
268                 dev_kfree_skb_any(skb);
269                 *out_skb = new_skb;
270
271         } else if (ring_space(ring) < buf_num) {
272                 return -EBUSY;
273         }
274
275         *bnum = buf_num;
276         return 0;
277 }
278
279 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
280                           int size, dma_addr_t dma, int frag_end,
281                           int buf_num, enum hns_desc_type type, int mtu)
282 {
283         int frag_buf_num;
284         int sizeoflast;
285         int k;
286
287         frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
288         sizeoflast = size % BD_MAX_SEND_SIZE;
289         sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
290
291         /* when the frag size is bigger than hardware, split this frag */
292         for (k = 0; k < frag_buf_num; k++)
293                 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
294                                 (k == frag_buf_num - 1) ?
295                                         sizeoflast : BD_MAX_SEND_SIZE,
296                                 dma + BD_MAX_SEND_SIZE * k,
297                                 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
298                                 buf_num,
299                                 (type == DESC_TYPE_SKB && !k) ?
300                                         DESC_TYPE_SKB : DESC_TYPE_PAGE,
301                                 mtu);
302 }
303
304 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
305                                 struct sk_buff *skb,
306                                 struct hns_nic_ring_data *ring_data)
307 {
308         struct hns_nic_priv *priv = netdev_priv(ndev);
309         struct hnae_ring *ring = ring_data->ring;
310         struct device *dev = ring_to_dev(ring);
311         struct netdev_queue *dev_queue;
312         skb_frag_t *frag;
313         int buf_num;
314         int seg_num;
315         dma_addr_t dma;
316         int size, next_to_use;
317         int i;
318
319         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
320         case -EBUSY:
321                 ring->stats.tx_busy++;
322                 goto out_net_tx_busy;
323         case -ENOMEM:
324                 ring->stats.sw_err_cnt++;
325                 netdev_err(ndev, "no memory to xmit!\n");
326                 goto out_err_tx_ok;
327         default:
328                 break;
329         }
330
331         /* no. of segments (plus a header) */
332         seg_num = skb_shinfo(skb)->nr_frags + 1;
333         next_to_use = ring->next_to_use;
334
335         /* fill the first part */
336         size = skb_headlen(skb);
337         dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
338         if (dma_mapping_error(dev, dma)) {
339                 netdev_err(ndev, "TX head DMA map failed\n");
340                 ring->stats.sw_err_cnt++;
341                 goto out_err_tx_ok;
342         }
343         priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
344                             buf_num, DESC_TYPE_SKB, ndev->mtu);
345
346         /* fill the fragments */
347         for (i = 1; i < seg_num; i++) {
348                 frag = &skb_shinfo(skb)->frags[i - 1];
349                 size = skb_frag_size(frag);
350                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
351                 if (dma_mapping_error(dev, dma)) {
352                         netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
353                         ring->stats.sw_err_cnt++;
354                         goto out_map_frag_fail;
355                 }
356                 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
357                                     seg_num - 1 == i ? 1 : 0, buf_num,
358                                     DESC_TYPE_PAGE, ndev->mtu);
359         }
360
361         /*complete translate all packets*/
362         dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
363         netdev_tx_sent_queue(dev_queue, skb->len);
364
365         netif_trans_update(ndev);
366         ndev->stats.tx_bytes += skb->len;
367         ndev->stats.tx_packets++;
368
369         wmb(); /* commit all data before submit */
370         assert(skb->queue_mapping < priv->ae_handle->q_num);
371         hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
372
373         return NETDEV_TX_OK;
374
375 out_map_frag_fail:
376
377         while (ring->next_to_use != next_to_use) {
378                 unfill_desc(ring);
379                 if (ring->next_to_use != next_to_use)
380                         dma_unmap_page(dev,
381                                        ring->desc_cb[ring->next_to_use].dma,
382                                        ring->desc_cb[ring->next_to_use].length,
383                                        DMA_TO_DEVICE);
384                 else
385                         dma_unmap_single(dev,
386                                          ring->desc_cb[next_to_use].dma,
387                                          ring->desc_cb[next_to_use].length,
388                                          DMA_TO_DEVICE);
389         }
390
391 out_err_tx_ok:
392
393         dev_kfree_skb_any(skb);
394         return NETDEV_TX_OK;
395
396 out_net_tx_busy:
397
398         netif_stop_subqueue(ndev, skb->queue_mapping);
399
400         /* Herbert's original patch had:
401          *  smp_mb__after_netif_stop_queue();
402          * but since that doesn't exist yet, just open code it.
403          */
404         smp_mb();
405         return NETDEV_TX_BUSY;
406 }
407
408 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
409                                struct hnae_ring *ring, int pull_len,
410                                struct hnae_desc_cb *desc_cb)
411 {
412         struct hnae_desc *desc;
413         u32 truesize;
414         int size;
415         int last_offset;
416         bool twobufs;
417
418         twobufs = ((PAGE_SIZE < 8192) &&
419                 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
420
421         desc = &ring->desc[ring->next_to_clean];
422         size = le16_to_cpu(desc->rx.size);
423
424         if (twobufs) {
425                 truesize = hnae_buf_size(ring);
426         } else {
427                 truesize = ALIGN(size, L1_CACHE_BYTES);
428                 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
429         }
430
431         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
432                         size - pull_len, truesize);
433
434          /* avoid re-using remote pages,flag default unreuse */
435         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
436                 return;
437
438         if (twobufs) {
439                 /* if we are only owner of page we can reuse it */
440                 if (likely(page_count(desc_cb->priv) == 1)) {
441                         /* flip page offset to other buffer */
442                         desc_cb->page_offset ^= truesize;
443
444                         desc_cb->reuse_flag = 1;
445                         /* bump ref count on page before it is given*/
446                         get_page(desc_cb->priv);
447                 }
448                 return;
449         }
450
451         /* move offset up to the next cache line */
452         desc_cb->page_offset += truesize;
453
454         if (desc_cb->page_offset <= last_offset) {
455                 desc_cb->reuse_flag = 1;
456                 /* bump ref count on page before it is given*/
457                 get_page(desc_cb->priv);
458         }
459 }
460
461 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
462 {
463         *out_bnum = hnae_get_field(bnum_flag,
464                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
465 }
466
467 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
468 {
469         *out_bnum = hnae_get_field(bnum_flag,
470                                    HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
471 }
472
473 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
474                                 struct sk_buff *skb, u32 flag)
475 {
476         struct net_device *netdev = ring_data->napi.dev;
477         u32 l3id;
478         u32 l4id;
479
480         /* check if RX checksum offload is enabled */
481         if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
482                 return;
483
484         /* In hardware, we only support checksum for the following protocols:
485          * 1) IPv4,
486          * 2) TCP(over IPv4 or IPv6),
487          * 3) UDP(over IPv4 or IPv6),
488          * 4) SCTP(over IPv4 or IPv6)
489          * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
490          * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
491          *
492          * Hardware limitation:
493          * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
494          * Error" bit (which usually can be used to indicate whether checksum
495          * was calculated by the hardware and if there was any error encountered
496          * during checksum calculation).
497          *
498          * Software workaround:
499          * We do get info within the RX descriptor about the kind of L3/L4
500          * protocol coming in the packet and the error status. These errors
501          * might not just be checksum errors but could be related to version,
502          * length of IPv4, UDP, TCP etc.
503          * Because there is no-way of knowing if it is a L3/L4 error due to bad
504          * checksum or any other L3/L4 error, we will not (cannot) convey
505          * checksum status for such cases to upper stack and will not maintain
506          * the RX L3/L4 checksum counters as well.
507          */
508
509         l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
510         l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
511
512         /*  check L3 protocol for which checksum is supported */
513         if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
514                 return;
515
516         /* check for any(not just checksum)flagged L3 protocol errors */
517         if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
518                 return;
519
520         /* we do not support checksum of fragmented packets */
521         if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
522                 return;
523
524         /*  check L4 protocol for which checksum is supported */
525         if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
526             (l4id != HNS_RX_FLAG_L4ID_UDP) &&
527             (l4id != HNS_RX_FLAG_L4ID_SCTP))
528                 return;
529
530         /* check for any(not just checksum)flagged L4 protocol errors */
531         if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
532                 return;
533
534         /* now, this has to be a packet with valid RX checksum */
535         skb->ip_summed = CHECKSUM_UNNECESSARY;
536 }
537
538 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
539                                struct sk_buff **out_skb, int *out_bnum)
540 {
541         struct hnae_ring *ring = ring_data->ring;
542         struct net_device *ndev = ring_data->napi.dev;
543         struct hns_nic_priv *priv = netdev_priv(ndev);
544         struct sk_buff *skb;
545         struct hnae_desc *desc;
546         struct hnae_desc_cb *desc_cb;
547         unsigned char *va;
548         int bnum, length, i;
549         int pull_len;
550         u32 bnum_flag;
551
552         desc = &ring->desc[ring->next_to_clean];
553         desc_cb = &ring->desc_cb[ring->next_to_clean];
554
555         prefetch(desc);
556
557         va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
558
559         /* prefetch first cache line of first page */
560         prefetch(va);
561 #if L1_CACHE_BYTES < 128
562         prefetch(va + L1_CACHE_BYTES);
563 #endif
564
565         skb = *out_skb = napi_alloc_skb(&ring_data->napi,
566                                         HNS_RX_HEAD_SIZE);
567         if (unlikely(!skb)) {
568                 netdev_err(ndev, "alloc rx skb fail\n");
569                 ring->stats.sw_err_cnt++;
570                 return -ENOMEM;
571         }
572
573         prefetchw(skb->data);
574         length = le16_to_cpu(desc->rx.pkt_len);
575         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
576         priv->ops.get_rxd_bnum(bnum_flag, &bnum);
577         *out_bnum = bnum;
578
579         if (length <= HNS_RX_HEAD_SIZE) {
580                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
581
582                 /* we can reuse buffer as-is, just make sure it is local */
583                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
584                         desc_cb->reuse_flag = 1;
585                 else /* this page cannot be reused so discard it */
586                         put_page(desc_cb->priv);
587
588                 ring_ptr_move_fw(ring, next_to_clean);
589
590                 if (unlikely(bnum != 1)) { /* check err*/
591                         *out_bnum = 1;
592                         goto out_bnum_err;
593                 }
594         } else {
595                 ring->stats.seg_pkt_cnt++;
596
597                 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
598                 memcpy(__skb_put(skb, pull_len), va,
599                        ALIGN(pull_len, sizeof(long)));
600
601                 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
602                 ring_ptr_move_fw(ring, next_to_clean);
603
604                 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
605                         *out_bnum = 1;
606                         goto out_bnum_err;
607                 }
608                 for (i = 1; i < bnum; i++) {
609                         desc = &ring->desc[ring->next_to_clean];
610                         desc_cb = &ring->desc_cb[ring->next_to_clean];
611
612                         hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
613                         ring_ptr_move_fw(ring, next_to_clean);
614                 }
615         }
616
617         /* check except process, free skb and jump the desc */
618         if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
619 out_bnum_err:
620                 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
621                 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
622                            bnum, ring->max_desc_num_per_pkt,
623                            length, (int)MAX_SKB_FRAGS,
624                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
625                 ring->stats.err_bd_num++;
626                 dev_kfree_skb_any(skb);
627                 return -EDOM;
628         }
629
630         bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
631
632         if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
633                 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
634                            ((u64 *)desc)[0], ((u64 *)desc)[1]);
635                 ring->stats.non_vld_descs++;
636                 dev_kfree_skb_any(skb);
637                 return -EINVAL;
638         }
639
640         if (unlikely((!desc->rx.pkt_len) ||
641                      hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
642                 ring->stats.err_pkt_len++;
643                 dev_kfree_skb_any(skb);
644                 return -EFAULT;
645         }
646
647         if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
648                 ring->stats.l2_err++;
649                 dev_kfree_skb_any(skb);
650                 return -EFAULT;
651         }
652
653         ring->stats.rx_pkts++;
654         ring->stats.rx_bytes += skb->len;
655
656         /* indicate to upper stack if our hardware has already calculated
657          * the RX checksum
658          */
659         hns_nic_rx_checksum(ring_data, skb, bnum_flag);
660
661         return 0;
662 }
663
664 static void
665 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
666 {
667         int i, ret;
668         struct hnae_desc_cb res_cbs;
669         struct hnae_desc_cb *desc_cb;
670         struct hnae_ring *ring = ring_data->ring;
671         struct net_device *ndev = ring_data->napi.dev;
672
673         for (i = 0; i < cleand_count; i++) {
674                 desc_cb = &ring->desc_cb[ring->next_to_use];
675                 if (desc_cb->reuse_flag) {
676                         ring->stats.reuse_pg_cnt++;
677                         hnae_reuse_buffer(ring, ring->next_to_use);
678                 } else {
679                         ret = hnae_reserve_buffer_map(ring, &res_cbs);
680                         if (ret) {
681                                 ring->stats.sw_err_cnt++;
682                                 netdev_err(ndev, "hnae reserve buffer map failed.\n");
683                                 break;
684                         }
685                         hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
686                 }
687
688                 ring_ptr_move_fw(ring, next_to_use);
689         }
690
691         wmb(); /* make all data has been write before submit */
692         writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
693 }
694
695 /* return error number for error or number of desc left to take
696  */
697 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
698                               struct sk_buff *skb)
699 {
700         struct net_device *ndev = ring_data->napi.dev;
701
702         skb->protocol = eth_type_trans(skb, ndev);
703         (void)napi_gro_receive(&ring_data->napi, skb);
704 }
705
706 static int hns_desc_unused(struct hnae_ring *ring)
707 {
708         int ntc = ring->next_to_clean;
709         int ntu = ring->next_to_use;
710
711         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
712 }
713
714 #define HNS_LOWEST_LATENCY_RATE         27      /* 27 MB/s */
715 #define HNS_LOW_LATENCY_RATE                    80      /* 80 MB/s */
716
717 #define HNS_COAL_BDNUM                  3
718
719 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
720 {
721         bool coal_enable = ring->q->handle->coal_adapt_en;
722
723         if (coal_enable &&
724             ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
725                 return HNS_COAL_BDNUM;
726         else
727                 return 0;
728 }
729
730 static void hns_update_rx_rate(struct hnae_ring *ring)
731 {
732         bool coal_enable = ring->q->handle->coal_adapt_en;
733         u32 time_passed_ms;
734         u64 total_bytes;
735
736         if (!coal_enable ||
737             time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
738                 return;
739
740         /* ring->stats.rx_bytes overflowed */
741         if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
742                 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
743                 ring->coal_last_jiffies = jiffies;
744                 return;
745         }
746
747         total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
748         time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
749         do_div(total_bytes, time_passed_ms);
750         ring->coal_rx_rate = total_bytes >> 10;
751
752         ring->coal_last_rx_bytes = ring->stats.rx_bytes;
753         ring->coal_last_jiffies = jiffies;
754 }
755
756 /**
757  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
758  **/
759 static u32 smooth_alg(u32 new_param, u32 old_param)
760 {
761         u32 gap = (new_param > old_param) ? new_param - old_param
762                                           : old_param - new_param;
763
764         if (gap > 8)
765                 gap >>= 3;
766
767         if (new_param > old_param)
768                 return old_param + gap;
769         else
770                 return old_param - gap;
771 }
772
773 /**
774  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
775  * @ring_data: pointer to hns_nic_ring_data
776  **/
777 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
778 {
779         struct hnae_ring *ring = ring_data->ring;
780         struct hnae_handle *handle = ring->q->handle;
781         u32 new_coal_param, old_coal_param = ring->coal_param;
782
783         if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
784                 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
785         else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
786                 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
787         else
788                 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
789
790         if (new_coal_param == old_coal_param &&
791             new_coal_param == handle->coal_param)
792                 return;
793
794         new_coal_param = smooth_alg(new_coal_param, old_coal_param);
795         ring->coal_param = new_coal_param;
796
797         /**
798          * Because all ring in one port has one coalesce param, when one ring
799          * calculate its own coalesce param, it cannot write to hardware at
800          * once. There are three conditions as follows:
801          *       1. current ring's coalesce param is larger than the hardware.
802          *       2. or ring which adapt last time can change again.
803          *       3. timeout.
804          */
805         if (new_coal_param == handle->coal_param) {
806                 handle->coal_last_jiffies = jiffies;
807                 handle->coal_ring_idx = ring_data->queue_index;
808         } else if (new_coal_param > handle->coal_param ||
809                    handle->coal_ring_idx == ring_data->queue_index ||
810                    time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
811                 handle->dev->ops->set_coalesce_usecs(handle,
812                                         new_coal_param);
813                 handle->dev->ops->set_coalesce_frames(handle,
814                                         1, new_coal_param);
815                 handle->coal_param = new_coal_param;
816                 handle->coal_ring_idx = ring_data->queue_index;
817                 handle->coal_last_jiffies = jiffies;
818         }
819 }
820
821 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
822                                int budget, void *v)
823 {
824         struct hnae_ring *ring = ring_data->ring;
825         struct sk_buff *skb;
826         int num, bnum;
827 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
828         int recv_pkts, recv_bds, clean_count, err;
829         int unused_count = hns_desc_unused(ring);
830
831         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
832         rmb(); /* make sure num taken effect before the other data is touched */
833
834         recv_pkts = 0, recv_bds = 0, clean_count = 0;
835         num -= unused_count;
836
837         while (recv_pkts < budget && recv_bds < num) {
838                 /* reuse or realloc buffers */
839                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
840                         hns_nic_alloc_rx_buffers(ring_data,
841                                                  clean_count + unused_count);
842                         clean_count = 0;
843                         unused_count = hns_desc_unused(ring);
844                 }
845
846                 /* poll one pkt */
847                 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
848                 if (unlikely(!skb)) /* this fault cannot be repaired */
849                         goto out;
850
851                 recv_bds += bnum;
852                 clean_count += bnum;
853                 if (unlikely(err)) {  /* do jump the err */
854                         recv_pkts++;
855                         continue;
856                 }
857
858                 /* do update ip stack process*/
859                 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
860                                                         ring_data, skb);
861                 recv_pkts++;
862         }
863
864 out:
865         /* make all data has been write before submit */
866         if (clean_count + unused_count > 0)
867                 hns_nic_alloc_rx_buffers(ring_data,
868                                          clean_count + unused_count);
869
870         return recv_pkts;
871 }
872
873 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
874 {
875         struct hnae_ring *ring = ring_data->ring;
876         int num = 0;
877         bool rx_stopped;
878
879         hns_update_rx_rate(ring);
880
881         /* for hardware bug fixed */
882         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
883         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
884
885         if (num <= hns_coal_rx_bdnum(ring)) {
886                 if (ring->q->handle->coal_adapt_en)
887                         hns_nic_adpt_coalesce(ring_data);
888
889                 rx_stopped = true;
890         } else {
891                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
892                         ring_data->ring, 1);
893
894                 rx_stopped = false;
895         }
896
897         return rx_stopped;
898 }
899
900 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
901 {
902         struct hnae_ring *ring = ring_data->ring;
903         int num;
904
905         hns_update_rx_rate(ring);
906         num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
907
908         if (num <= hns_coal_rx_bdnum(ring)) {
909                 if (ring->q->handle->coal_adapt_en)
910                         hns_nic_adpt_coalesce(ring_data);
911
912                 return true;
913         }
914
915         return false;
916 }
917
918 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
919                                             int *bytes, int *pkts)
920 {
921         struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
922
923         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
924         (*bytes) += desc_cb->length;
925         /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
926         hnae_free_buffer_detach(ring, ring->next_to_clean);
927
928         ring_ptr_move_fw(ring, next_to_clean);
929 }
930
931 static int is_valid_clean_head(struct hnae_ring *ring, int h)
932 {
933         int u = ring->next_to_use;
934         int c = ring->next_to_clean;
935
936         if (unlikely(h > ring->desc_num))
937                 return 0;
938
939         assert(u > 0 && u < ring->desc_num);
940         assert(c > 0 && c < ring->desc_num);
941         assert(u != c && h != c); /* must be checked before call this func */
942
943         return u > c ? (h > c && h <= u) : (h > c || h <= u);
944 }
945
946 /* netif_tx_lock will turn down the performance, set only when necessary */
947 #ifdef CONFIG_NET_POLL_CONTROLLER
948 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
949 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
950 #else
951 #define NETIF_TX_LOCK(ring)
952 #define NETIF_TX_UNLOCK(ring)
953 #endif
954
955 /* reclaim all desc in one budget
956  * return error or number of desc left
957  */
958 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
959                                int budget, void *v)
960 {
961         struct hnae_ring *ring = ring_data->ring;
962         struct net_device *ndev = ring_data->napi.dev;
963         struct netdev_queue *dev_queue;
964         struct hns_nic_priv *priv = netdev_priv(ndev);
965         int head;
966         int bytes, pkts;
967
968         NETIF_TX_LOCK(ring);
969
970         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
971         rmb(); /* make sure head is ready before touch any data */
972
973         if (is_ring_empty(ring) || head == ring->next_to_clean) {
974                 NETIF_TX_UNLOCK(ring);
975                 return 0; /* no data to poll */
976         }
977
978         if (!is_valid_clean_head(ring, head)) {
979                 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
980                            ring->next_to_use, ring->next_to_clean);
981                 ring->stats.io_err_cnt++;
982                 NETIF_TX_UNLOCK(ring);
983                 return -EIO;
984         }
985
986         bytes = 0;
987         pkts = 0;
988         while (head != ring->next_to_clean) {
989                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
990                 /* issue prefetch for next Tx descriptor */
991                 prefetch(&ring->desc_cb[ring->next_to_clean]);
992         }
993         /* update tx ring statistics. */
994         ring->stats.tx_pkts += pkts;
995         ring->stats.tx_bytes += bytes;
996
997         NETIF_TX_UNLOCK(ring);
998
999         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1000         netdev_tx_completed_queue(dev_queue, pkts, bytes);
1001
1002         if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1003                 netif_carrier_on(ndev);
1004
1005         if (unlikely(pkts && netif_carrier_ok(ndev) &&
1006                      (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1007                 /* Make sure that anybody stopping the queue after this
1008                  * sees the new next_to_clean.
1009                  */
1010                 smp_mb();
1011                 if (netif_tx_queue_stopped(dev_queue) &&
1012                     !test_bit(NIC_STATE_DOWN, &priv->state)) {
1013                         netif_tx_wake_queue(dev_queue);
1014                         ring->stats.restart_queue++;
1015                 }
1016         }
1017         return 0;
1018 }
1019
1020 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1021 {
1022         struct hnae_ring *ring = ring_data->ring;
1023         int head;
1024
1025         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1026
1027         head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1028
1029         if (head != ring->next_to_clean) {
1030                 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1031                         ring_data->ring, 1);
1032
1033                 return false;
1034         } else {
1035                 return true;
1036         }
1037 }
1038
1039 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1040 {
1041         struct hnae_ring *ring = ring_data->ring;
1042         int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1043
1044         if (head == ring->next_to_clean)
1045                 return true;
1046         else
1047                 return false;
1048 }
1049
1050 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1051 {
1052         struct hnae_ring *ring = ring_data->ring;
1053         struct net_device *ndev = ring_data->napi.dev;
1054         struct netdev_queue *dev_queue;
1055         int head;
1056         int bytes, pkts;
1057
1058         NETIF_TX_LOCK(ring);
1059
1060         head = ring->next_to_use; /* ntu :soft setted ring position*/
1061         bytes = 0;
1062         pkts = 0;
1063         while (head != ring->next_to_clean)
1064                 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1065
1066         NETIF_TX_UNLOCK(ring);
1067
1068         dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1069         netdev_tx_reset_queue(dev_queue);
1070 }
1071
1072 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1073 {
1074         int clean_complete = 0;
1075         struct hns_nic_ring_data *ring_data =
1076                 container_of(napi, struct hns_nic_ring_data, napi);
1077         struct hnae_ring *ring = ring_data->ring;
1078
1079 try_again:
1080         clean_complete += ring_data->poll_one(
1081                                 ring_data, budget - clean_complete,
1082                                 ring_data->ex_process);
1083
1084         if (clean_complete < budget) {
1085                 if (ring_data->fini_process(ring_data)) {
1086                         napi_complete(napi);
1087                         ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1088                 } else {
1089                         goto try_again;
1090                 }
1091         }
1092
1093         return clean_complete;
1094 }
1095
1096 static irqreturn_t hns_irq_handle(int irq, void *dev)
1097 {
1098         struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1099
1100         ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1101                 ring_data->ring, 1);
1102         napi_schedule(&ring_data->napi);
1103
1104         return IRQ_HANDLED;
1105 }
1106
1107 /**
1108  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1109  *@ndev: net device
1110  */
1111 static void hns_nic_adjust_link(struct net_device *ndev)
1112 {
1113         struct hns_nic_priv *priv = netdev_priv(ndev);
1114         struct hnae_handle *h = priv->ae_handle;
1115         int state = 1;
1116
1117         /* If there is no phy, do not need adjust link */
1118         if (ndev->phydev) {
1119                 /* When phy link down, do nothing */
1120                 if (ndev->phydev->link == 0)
1121                         return;
1122
1123                 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1124                                                   ndev->phydev->duplex)) {
1125                         /* because Hi161X chip don't support to change gmac
1126                          * speed and duplex with traffic. Delay 200ms to
1127                          * make sure there is no more data in chip FIFO.
1128                          */
1129                         netif_carrier_off(ndev);
1130                         msleep(200);
1131                         h->dev->ops->adjust_link(h, ndev->phydev->speed,
1132                                                  ndev->phydev->duplex);
1133                         netif_carrier_on(ndev);
1134                 }
1135         }
1136
1137         state = state && h->dev->ops->get_status(h);
1138
1139         if (state != priv->link) {
1140                 if (state) {
1141                         netif_carrier_on(ndev);
1142                         netif_tx_wake_all_queues(ndev);
1143                         netdev_info(ndev, "link up\n");
1144                 } else {
1145                         netif_carrier_off(ndev);
1146                         netdev_info(ndev, "link down\n");
1147                 }
1148                 priv->link = state;
1149         }
1150 }
1151
1152 /**
1153  *hns_nic_init_phy - init phy
1154  *@ndev: net device
1155  *@h: ae handle
1156  * Return 0 on success, negative on failure
1157  */
1158 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1159 {
1160         __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1161         struct phy_device *phy_dev = h->phy_dev;
1162         int ret;
1163
1164         if (!h->phy_dev)
1165                 return 0;
1166
1167         ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1168         linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1169         linkmode_copy(phy_dev->advertising, phy_dev->supported);
1170
1171         if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1172                 phy_dev->autoneg = false;
1173
1174         if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1175                 phy_dev->dev_flags = 0;
1176
1177                 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1178                                          h->phy_if);
1179         } else {
1180                 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1181         }
1182         if (unlikely(ret))
1183                 return -ENODEV;
1184
1185         phy_attached_info(phy_dev);
1186
1187         return 0;
1188 }
1189
1190 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1191 {
1192         struct hns_nic_priv *priv = netdev_priv(netdev);
1193         struct hnae_handle *h = priv->ae_handle;
1194
1195         napi_enable(&priv->ring_data[idx].napi);
1196
1197         enable_irq(priv->ring_data[idx].ring->irq);
1198         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1199
1200         return 0;
1201 }
1202
1203 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1204 {
1205         struct hns_nic_priv *priv = netdev_priv(ndev);
1206         struct hnae_handle *h = priv->ae_handle;
1207         struct sockaddr *mac_addr = p;
1208         int ret;
1209
1210         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1211                 return -EADDRNOTAVAIL;
1212
1213         ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1214         if (ret) {
1215                 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1216                 return ret;
1217         }
1218
1219         memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1220
1221         return 0;
1222 }
1223
1224 static void hns_nic_update_stats(struct net_device *netdev)
1225 {
1226         struct hns_nic_priv *priv = netdev_priv(netdev);
1227         struct hnae_handle *h = priv->ae_handle;
1228
1229         h->dev->ops->update_stats(h, &netdev->stats);
1230 }
1231
1232 /* set mac addr if it is configed. or leave it to the AE driver */
1233 static void hns_init_mac_addr(struct net_device *ndev)
1234 {
1235         struct hns_nic_priv *priv = netdev_priv(ndev);
1236
1237         if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1238                 eth_hw_addr_random(ndev);
1239                 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1240                          ndev->dev_addr);
1241         }
1242 }
1243
1244 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1245 {
1246         struct hns_nic_priv *priv = netdev_priv(netdev);
1247         struct hnae_handle *h = priv->ae_handle;
1248
1249         h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1250         disable_irq(priv->ring_data[idx].ring->irq);
1251
1252         napi_disable(&priv->ring_data[idx].napi);
1253 }
1254
1255 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1256                                       struct hnae_ring *ring, cpumask_t *mask)
1257 {
1258         int cpu;
1259
1260         /* Diffrent irq banlance between 16core and 32core.
1261          * The cpu mask set by ring index according to the ring flag
1262          * which indicate the ring is tx or rx.
1263          */
1264         if (q_num == num_possible_cpus()) {
1265                 if (is_tx_ring(ring))
1266                         cpu = ring_idx;
1267                 else
1268                         cpu = ring_idx - q_num;
1269         } else {
1270                 if (is_tx_ring(ring))
1271                         cpu = ring_idx * 2;
1272                 else
1273                         cpu = (ring_idx - q_num) * 2 + 1;
1274         }
1275
1276         cpumask_clear(mask);
1277         cpumask_set_cpu(cpu, mask);
1278
1279         return cpu;
1280 }
1281
1282 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1283 {
1284         int i;
1285
1286         for (i = 0; i < q_num * 2; i++) {
1287                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1288                         irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1289                                               NULL);
1290                         free_irq(priv->ring_data[i].ring->irq,
1291                                  &priv->ring_data[i]);
1292                         priv->ring_data[i].ring->irq_init_flag =
1293                                 RCB_IRQ_NOT_INITED;
1294                 }
1295         }
1296 }
1297
1298 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1299 {
1300         struct hnae_handle *h = priv->ae_handle;
1301         struct hns_nic_ring_data *rd;
1302         int i;
1303         int ret;
1304         int cpu;
1305
1306         for (i = 0; i < h->q_num * 2; i++) {
1307                 rd = &priv->ring_data[i];
1308
1309                 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1310                         break;
1311
1312                 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1313                          "%s-%s%d", priv->netdev->name,
1314                          (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1315
1316                 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1317
1318                 ret = request_irq(rd->ring->irq,
1319                                   hns_irq_handle, 0, rd->ring->ring_name, rd);
1320                 if (ret) {
1321                         netdev_err(priv->netdev, "request irq(%d) fail\n",
1322                                    rd->ring->irq);
1323                         goto out_free_irq;
1324                 }
1325                 disable_irq(rd->ring->irq);
1326
1327                 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1328                                                  rd->ring, &rd->mask);
1329
1330                 if (cpu_online(cpu))
1331                         irq_set_affinity_hint(rd->ring->irq,
1332                                               &rd->mask);
1333
1334                 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1335         }
1336
1337         return 0;
1338
1339 out_free_irq:
1340         hns_nic_free_irq(h->q_num, priv);
1341         return ret;
1342 }
1343
1344 static int hns_nic_net_up(struct net_device *ndev)
1345 {
1346         struct hns_nic_priv *priv = netdev_priv(ndev);
1347         struct hnae_handle *h = priv->ae_handle;
1348         int i, j;
1349         int ret;
1350
1351         if (!test_bit(NIC_STATE_DOWN, &priv->state))
1352                 return 0;
1353
1354         ret = hns_nic_init_irq(priv);
1355         if (ret != 0) {
1356                 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1357                 return ret;
1358         }
1359
1360         for (i = 0; i < h->q_num * 2; i++) {
1361                 ret = hns_nic_ring_open(ndev, i);
1362                 if (ret)
1363                         goto out_has_some_queues;
1364         }
1365
1366         ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1367         if (ret)
1368                 goto out_set_mac_addr_err;
1369
1370         ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1371         if (ret)
1372                 goto out_start_err;
1373
1374         if (ndev->phydev)
1375                 phy_start(ndev->phydev);
1376
1377         clear_bit(NIC_STATE_DOWN, &priv->state);
1378         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1379
1380         return 0;
1381
1382 out_start_err:
1383         netif_stop_queue(ndev);
1384 out_set_mac_addr_err:
1385 out_has_some_queues:
1386         for (j = i - 1; j >= 0; j--)
1387                 hns_nic_ring_close(ndev, j);
1388
1389         hns_nic_free_irq(h->q_num, priv);
1390         set_bit(NIC_STATE_DOWN, &priv->state);
1391
1392         return ret;
1393 }
1394
1395 static void hns_nic_net_down(struct net_device *ndev)
1396 {
1397         int i;
1398         struct hnae_ae_ops *ops;
1399         struct hns_nic_priv *priv = netdev_priv(ndev);
1400
1401         if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1402                 return;
1403
1404         (void)del_timer_sync(&priv->service_timer);
1405         netif_tx_stop_all_queues(ndev);
1406         netif_carrier_off(ndev);
1407         netif_tx_disable(ndev);
1408         priv->link = 0;
1409
1410         if (ndev->phydev)
1411                 phy_stop(ndev->phydev);
1412
1413         ops = priv->ae_handle->dev->ops;
1414
1415         if (ops->stop)
1416                 ops->stop(priv->ae_handle);
1417
1418         netif_tx_stop_all_queues(ndev);
1419
1420         for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1421                 hns_nic_ring_close(ndev, i);
1422                 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1423
1424                 /* clean tx buffers*/
1425                 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1426         }
1427 }
1428
1429 void hns_nic_net_reset(struct net_device *ndev)
1430 {
1431         struct hns_nic_priv *priv = netdev_priv(ndev);
1432         struct hnae_handle *handle = priv->ae_handle;
1433
1434         while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1435                 usleep_range(1000, 2000);
1436
1437         (void)hnae_reinit_handle(handle);
1438
1439         clear_bit(NIC_STATE_RESETTING, &priv->state);
1440 }
1441
1442 void hns_nic_net_reinit(struct net_device *netdev)
1443 {
1444         struct hns_nic_priv *priv = netdev_priv(netdev);
1445         enum hnae_port_type type = priv->ae_handle->port_type;
1446
1447         netif_trans_update(priv->netdev);
1448         while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1449                 usleep_range(1000, 2000);
1450
1451         hns_nic_net_down(netdev);
1452
1453         /* Only do hns_nic_net_reset in debug mode
1454          * because of hardware limitation.
1455          */
1456         if (type == HNAE_PORT_DEBUG)
1457                 hns_nic_net_reset(netdev);
1458
1459         (void)hns_nic_net_up(netdev);
1460         clear_bit(NIC_STATE_REINITING, &priv->state);
1461 }
1462
1463 static int hns_nic_net_open(struct net_device *ndev)
1464 {
1465         struct hns_nic_priv *priv = netdev_priv(ndev);
1466         struct hnae_handle *h = priv->ae_handle;
1467         int ret;
1468
1469         if (test_bit(NIC_STATE_TESTING, &priv->state))
1470                 return -EBUSY;
1471
1472         priv->link = 0;
1473         netif_carrier_off(ndev);
1474
1475         ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1476         if (ret < 0) {
1477                 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1478                            ret);
1479                 return ret;
1480         }
1481
1482         ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1483         if (ret < 0) {
1484                 netdev_err(ndev,
1485                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1486                 return ret;
1487         }
1488
1489         ret = hns_nic_net_up(ndev);
1490         if (ret) {
1491                 netdev_err(ndev,
1492                            "hns net up fail, ret=%d!\n", ret);
1493                 return ret;
1494         }
1495
1496         return 0;
1497 }
1498
1499 static int hns_nic_net_stop(struct net_device *ndev)
1500 {
1501         hns_nic_net_down(ndev);
1502
1503         return 0;
1504 }
1505
1506 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1507 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1508 static void hns_nic_net_timeout(struct net_device *ndev)
1509 {
1510         struct hns_nic_priv *priv = netdev_priv(ndev);
1511
1512         if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1513                 ndev->watchdog_timeo *= 2;
1514                 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1515                             ndev->watchdog_timeo);
1516         } else {
1517                 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1518                 hns_tx_timeout_reset(priv);
1519         }
1520 }
1521
1522 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1523                             int cmd)
1524 {
1525         struct phy_device *phy_dev = netdev->phydev;
1526
1527         if (!netif_running(netdev))
1528                 return -EINVAL;
1529
1530         if (!phy_dev)
1531                 return -ENOTSUPP;
1532
1533         return phy_mii_ioctl(phy_dev, ifr, cmd);
1534 }
1535
1536 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1537                                     struct net_device *ndev)
1538 {
1539         struct hns_nic_priv *priv = netdev_priv(ndev);
1540
1541         assert(skb->queue_mapping < ndev->ae_handle->q_num);
1542
1543         return hns_nic_net_xmit_hw(ndev, skb,
1544                                    &tx_ring_data(priv, skb->queue_mapping));
1545 }
1546
1547 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1548                                   struct sk_buff *skb)
1549 {
1550         dev_kfree_skb_any(skb);
1551 }
1552
1553 #define HNS_LB_TX_RING  0
1554 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1555 {
1556         struct sk_buff *skb;
1557         struct ethhdr *ethhdr;
1558         int frame_len;
1559
1560         /* allocate test skb */
1561         skb = alloc_skb(64, GFP_KERNEL);
1562         if (!skb)
1563                 return NULL;
1564
1565         skb_put(skb, 64);
1566         skb->dev = ndev;
1567         memset(skb->data, 0xFF, skb->len);
1568
1569         /* must be tcp/ip package */
1570         ethhdr = (struct ethhdr *)skb->data;
1571         ethhdr->h_proto = htons(ETH_P_IP);
1572
1573         frame_len = skb->len & (~1ul);
1574         memset(&skb->data[frame_len / 2], 0xAA,
1575                frame_len / 2 - 1);
1576
1577         skb->queue_mapping = HNS_LB_TX_RING;
1578
1579         return skb;
1580 }
1581
1582 static int hns_enable_serdes_lb(struct net_device *ndev)
1583 {
1584         struct hns_nic_priv *priv = netdev_priv(ndev);
1585         struct hnae_handle *h = priv->ae_handle;
1586         struct hnae_ae_ops *ops = h->dev->ops;
1587         int speed, duplex;
1588         int ret;
1589
1590         ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1591         if (ret)
1592                 return ret;
1593
1594         ret = ops->start ? ops->start(h) : 0;
1595         if (ret)
1596                 return ret;
1597
1598         /* link adjust duplex*/
1599         if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1600                 speed = 1000;
1601         else
1602                 speed = 10000;
1603         duplex = 1;
1604
1605         ops->adjust_link(h, speed, duplex);
1606
1607         /* wait h/w ready */
1608         mdelay(300);
1609
1610         return 0;
1611 }
1612
1613 static void hns_disable_serdes_lb(struct net_device *ndev)
1614 {
1615         struct hns_nic_priv *priv = netdev_priv(ndev);
1616         struct hnae_handle *h = priv->ae_handle;
1617         struct hnae_ae_ops *ops = h->dev->ops;
1618
1619         ops->stop(h);
1620         ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1621 }
1622
1623 /**
1624  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1625  *function as follows:
1626  *    1. if one rx ring has found the page_offset is not equal 0 between head
1627  *       and tail, it means that the chip fetched the wrong descs for the ring
1628  *       which buffer size is 4096.
1629  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1630  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1631  *       recieving all packages and it will fetch new descriptions.
1632  *    4. recover to the original state.
1633  *
1634  *@ndev: net device
1635  */
1636 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1637 {
1638         struct hns_nic_priv *priv = netdev_priv(ndev);
1639         struct hnae_handle *h = priv->ae_handle;
1640         struct hnae_ae_ops *ops = h->dev->ops;
1641         struct hns_nic_ring_data *rd;
1642         struct hnae_ring *ring;
1643         struct sk_buff *skb;
1644         u32 *org_indir;
1645         u32 *cur_indir;
1646         int indir_size;
1647         int head, tail;
1648         int fetch_num;
1649         int i, j;
1650         bool found;
1651         int retry_times;
1652         int ret = 0;
1653
1654         /* alloc indir memory */
1655         indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1656         org_indir = kzalloc(indir_size, GFP_KERNEL);
1657         if (!org_indir)
1658                 return -ENOMEM;
1659
1660         /* store the orginal indirection */
1661         ops->get_rss(h, org_indir, NULL, NULL);
1662
1663         cur_indir = kzalloc(indir_size, GFP_KERNEL);
1664         if (!cur_indir) {
1665                 ret = -ENOMEM;
1666                 goto cur_indir_alloc_err;
1667         }
1668
1669         /* set loopback */
1670         if (hns_enable_serdes_lb(ndev)) {
1671                 ret = -EINVAL;
1672                 goto enable_serdes_lb_err;
1673         }
1674
1675         /* foreach every rx ring to clear fetch desc */
1676         for (i = 0; i < h->q_num; i++) {
1677                 ring = &h->qs[i]->rx_ring;
1678                 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1679                 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1680                 found = false;
1681                 fetch_num = ring_dist(ring, head, tail);
1682
1683                 while (head != tail) {
1684                         if (ring->desc_cb[head].page_offset != 0) {
1685                                 found = true;
1686                                 break;
1687                         }
1688
1689                         head++;
1690                         if (head == ring->desc_num)
1691                                 head = 0;
1692                 }
1693
1694                 if (found) {
1695                         for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1696                                 cur_indir[j] = i;
1697                         ops->set_rss(h, cur_indir, NULL, 0);
1698
1699                         for (j = 0; j < fetch_num; j++) {
1700                                 /* alloc one skb and init */
1701                                 skb = hns_assemble_skb(ndev);
1702                                 if (!skb)
1703                                         goto out;
1704                                 rd = &tx_ring_data(priv, skb->queue_mapping);
1705                                 hns_nic_net_xmit_hw(ndev, skb, rd);
1706
1707                                 retry_times = 0;
1708                                 while (retry_times++ < 10) {
1709                                         mdelay(10);
1710                                         /* clean rx */
1711                                         rd = &rx_ring_data(priv, i);
1712                                         if (rd->poll_one(rd, fetch_num,
1713                                                          hns_nic_drop_rx_fetch))
1714                                                 break;
1715                                 }
1716
1717                                 retry_times = 0;
1718                                 while (retry_times++ < 10) {
1719                                         mdelay(10);
1720                                         /* clean tx ring 0 send package */
1721                                         rd = &tx_ring_data(priv,
1722                                                            HNS_LB_TX_RING);
1723                                         if (rd->poll_one(rd, fetch_num, NULL))
1724                                                 break;
1725                                 }
1726                         }
1727                 }
1728         }
1729
1730 out:
1731         /* restore everything */
1732         ops->set_rss(h, org_indir, NULL, 0);
1733         hns_disable_serdes_lb(ndev);
1734 enable_serdes_lb_err:
1735         kfree(cur_indir);
1736 cur_indir_alloc_err:
1737         kfree(org_indir);
1738
1739         return ret;
1740 }
1741
1742 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1743 {
1744         struct hns_nic_priv *priv = netdev_priv(ndev);
1745         struct hnae_handle *h = priv->ae_handle;
1746         bool if_running = netif_running(ndev);
1747         int ret;
1748
1749         /* MTU < 68 is an error and causes problems on some kernels */
1750         if (new_mtu < 68)
1751                 return -EINVAL;
1752
1753         /* MTU no change */
1754         if (new_mtu == ndev->mtu)
1755                 return 0;
1756
1757         if (!h->dev->ops->set_mtu)
1758                 return -ENOTSUPP;
1759
1760         if (if_running) {
1761                 (void)hns_nic_net_stop(ndev);
1762                 msleep(100);
1763         }
1764
1765         if (priv->enet_ver != AE_VERSION_1 &&
1766             ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1767             new_mtu > BD_SIZE_2048_MAX_MTU) {
1768                 /* update desc */
1769                 hnae_reinit_all_ring_desc(h);
1770
1771                 /* clear the package which the chip has fetched */
1772                 ret = hns_nic_clear_all_rx_fetch(ndev);
1773
1774                 /* the page offset must be consist with desc */
1775                 hnae_reinit_all_ring_page_off(h);
1776
1777                 if (ret) {
1778                         netdev_err(ndev, "clear the fetched desc fail\n");
1779                         goto out;
1780                 }
1781         }
1782
1783         ret = h->dev->ops->set_mtu(h, new_mtu);
1784         if (ret) {
1785                 netdev_err(ndev, "set mtu fail, return value %d\n",
1786                            ret);
1787                 goto out;
1788         }
1789
1790         /* finally, set new mtu to netdevice */
1791         ndev->mtu = new_mtu;
1792
1793 out:
1794         if (if_running) {
1795                 if (hns_nic_net_open(ndev)) {
1796                         netdev_err(ndev, "hns net open fail\n");
1797                         ret = -EINVAL;
1798                 }
1799         }
1800
1801         return ret;
1802 }
1803
1804 static int hns_nic_set_features(struct net_device *netdev,
1805                                 netdev_features_t features)
1806 {
1807         struct hns_nic_priv *priv = netdev_priv(netdev);
1808
1809         switch (priv->enet_ver) {
1810         case AE_VERSION_1:
1811                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1812                         netdev_info(netdev, "enet v1 do not support tso!\n");
1813                 break;
1814         default:
1815                 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1816                         priv->ops.fill_desc = fill_tso_desc;
1817                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1818                         /* The chip only support 7*4096 */
1819                         netif_set_gso_max_size(netdev, 7 * 4096);
1820                 } else {
1821                         priv->ops.fill_desc = fill_v2_desc;
1822                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1823                 }
1824                 break;
1825         }
1826         netdev->features = features;
1827         return 0;
1828 }
1829
1830 static netdev_features_t hns_nic_fix_features(
1831                 struct net_device *netdev, netdev_features_t features)
1832 {
1833         struct hns_nic_priv *priv = netdev_priv(netdev);
1834
1835         switch (priv->enet_ver) {
1836         case AE_VERSION_1:
1837                 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1838                                 NETIF_F_HW_VLAN_CTAG_FILTER);
1839                 break;
1840         default:
1841                 break;
1842         }
1843         return features;
1844 }
1845
1846 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1847 {
1848         struct hns_nic_priv *priv = netdev_priv(netdev);
1849         struct hnae_handle *h = priv->ae_handle;
1850
1851         if (h->dev->ops->add_uc_addr)
1852                 return h->dev->ops->add_uc_addr(h, addr);
1853
1854         return 0;
1855 }
1856
1857 static int hns_nic_uc_unsync(struct net_device *netdev,
1858                              const unsigned char *addr)
1859 {
1860         struct hns_nic_priv *priv = netdev_priv(netdev);
1861         struct hnae_handle *h = priv->ae_handle;
1862
1863         if (h->dev->ops->rm_uc_addr)
1864                 return h->dev->ops->rm_uc_addr(h, addr);
1865
1866         return 0;
1867 }
1868
1869 /**
1870  * nic_set_multicast_list - set mutl mac address
1871  * @netdev: net device
1872  * @p: mac address
1873  *
1874  * return void
1875  */
1876 static void hns_set_multicast_list(struct net_device *ndev)
1877 {
1878         struct hns_nic_priv *priv = netdev_priv(ndev);
1879         struct hnae_handle *h = priv->ae_handle;
1880         struct netdev_hw_addr *ha = NULL;
1881
1882         if (!h) {
1883                 netdev_err(ndev, "hnae handle is null\n");
1884                 return;
1885         }
1886
1887         if (h->dev->ops->clr_mc_addr)
1888                 if (h->dev->ops->clr_mc_addr(h))
1889                         netdev_err(ndev, "clear multicast address fail\n");
1890
1891         if (h->dev->ops->set_mc_addr) {
1892                 netdev_for_each_mc_addr(ha, ndev)
1893                         if (h->dev->ops->set_mc_addr(h, ha->addr))
1894                                 netdev_err(ndev, "set multicast fail\n");
1895         }
1896 }
1897
1898 static void hns_nic_set_rx_mode(struct net_device *ndev)
1899 {
1900         struct hns_nic_priv *priv = netdev_priv(ndev);
1901         struct hnae_handle *h = priv->ae_handle;
1902
1903         if (h->dev->ops->set_promisc_mode) {
1904                 if (ndev->flags & IFF_PROMISC)
1905                         h->dev->ops->set_promisc_mode(h, 1);
1906                 else
1907                         h->dev->ops->set_promisc_mode(h, 0);
1908         }
1909
1910         hns_set_multicast_list(ndev);
1911
1912         if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1913                 netdev_err(ndev, "sync uc address fail\n");
1914 }
1915
1916 static void hns_nic_get_stats64(struct net_device *ndev,
1917                                 struct rtnl_link_stats64 *stats)
1918 {
1919         int idx = 0;
1920         u64 tx_bytes = 0;
1921         u64 rx_bytes = 0;
1922         u64 tx_pkts = 0;
1923         u64 rx_pkts = 0;
1924         struct hns_nic_priv *priv = netdev_priv(ndev);
1925         struct hnae_handle *h = priv->ae_handle;
1926
1927         for (idx = 0; idx < h->q_num; idx++) {
1928                 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1929                 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1930                 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1931                 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1932         }
1933
1934         stats->tx_bytes = tx_bytes;
1935         stats->tx_packets = tx_pkts;
1936         stats->rx_bytes = rx_bytes;
1937         stats->rx_packets = rx_pkts;
1938
1939         stats->rx_errors = ndev->stats.rx_errors;
1940         stats->multicast = ndev->stats.multicast;
1941         stats->rx_length_errors = ndev->stats.rx_length_errors;
1942         stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1943         stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1944
1945         stats->tx_errors = ndev->stats.tx_errors;
1946         stats->rx_dropped = ndev->stats.rx_dropped;
1947         stats->tx_dropped = ndev->stats.tx_dropped;
1948         stats->collisions = ndev->stats.collisions;
1949         stats->rx_over_errors = ndev->stats.rx_over_errors;
1950         stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1951         stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1952         stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1953         stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1954         stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1955         stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1956         stats->tx_window_errors = ndev->stats.tx_window_errors;
1957         stats->rx_compressed = ndev->stats.rx_compressed;
1958         stats->tx_compressed = ndev->stats.tx_compressed;
1959 }
1960
1961 static u16
1962 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1963                      struct net_device *sb_dev)
1964 {
1965         struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1966         struct hns_nic_priv *priv = netdev_priv(ndev);
1967
1968         /* fix hardware broadcast/multicast packets queue loopback */
1969         if (!AE_IS_VER1(priv->enet_ver) &&
1970             is_multicast_ether_addr(eth_hdr->h_dest))
1971                 return 0;
1972         else
1973                 return netdev_pick_tx(ndev, skb, NULL);
1974 }
1975
1976 static const struct net_device_ops hns_nic_netdev_ops = {
1977         .ndo_open = hns_nic_net_open,
1978         .ndo_stop = hns_nic_net_stop,
1979         .ndo_start_xmit = hns_nic_net_xmit,
1980         .ndo_tx_timeout = hns_nic_net_timeout,
1981         .ndo_set_mac_address = hns_nic_net_set_mac_address,
1982         .ndo_change_mtu = hns_nic_change_mtu,
1983         .ndo_do_ioctl = hns_nic_do_ioctl,
1984         .ndo_set_features = hns_nic_set_features,
1985         .ndo_fix_features = hns_nic_fix_features,
1986         .ndo_get_stats64 = hns_nic_get_stats64,
1987         .ndo_set_rx_mode = hns_nic_set_rx_mode,
1988         .ndo_select_queue = hns_nic_select_queue,
1989 };
1990
1991 static void hns_nic_update_link_status(struct net_device *netdev)
1992 {
1993         struct hns_nic_priv *priv = netdev_priv(netdev);
1994
1995         struct hnae_handle *h = priv->ae_handle;
1996
1997         if (h->phy_dev) {
1998                 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1999                         return;
2000
2001                 (void)genphy_read_status(h->phy_dev);
2002         }
2003         hns_nic_adjust_link(netdev);
2004 }
2005
2006 /* for dumping key regs*/
2007 static void hns_nic_dump(struct hns_nic_priv *priv)
2008 {
2009         struct hnae_handle *h = priv->ae_handle;
2010         struct hnae_ae_ops *ops = h->dev->ops;
2011         u32 *data, reg_num, i;
2012
2013         if (ops->get_regs_len && ops->get_regs) {
2014                 reg_num = ops->get_regs_len(priv->ae_handle);
2015                 reg_num = (reg_num + 3ul) & ~3ul;
2016                 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2017                 if (data) {
2018                         ops->get_regs(priv->ae_handle, data);
2019                         for (i = 0; i < reg_num; i += 4)
2020                                 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2021                                         i, data[i], data[i + 1],
2022                                         data[i + 2], data[i + 3]);
2023                         kfree(data);
2024                 }
2025         }
2026
2027         for (i = 0; i < h->q_num; i++) {
2028                 pr_info("tx_queue%d_next_to_clean:%d\n",
2029                         i, h->qs[i]->tx_ring.next_to_clean);
2030                 pr_info("tx_queue%d_next_to_use:%d\n",
2031                         i, h->qs[i]->tx_ring.next_to_use);
2032                 pr_info("rx_queue%d_next_to_clean:%d\n",
2033                         i, h->qs[i]->rx_ring.next_to_clean);
2034                 pr_info("rx_queue%d_next_to_use:%d\n",
2035                         i, h->qs[i]->rx_ring.next_to_use);
2036         }
2037 }
2038
2039 /* for resetting subtask */
2040 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2041 {
2042         enum hnae_port_type type = priv->ae_handle->port_type;
2043
2044         if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2045                 return;
2046         clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2047
2048         /* If we're already down, removing or resetting, just bail */
2049         if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2050             test_bit(NIC_STATE_REMOVING, &priv->state) ||
2051             test_bit(NIC_STATE_RESETTING, &priv->state))
2052                 return;
2053
2054         hns_nic_dump(priv);
2055         netdev_info(priv->netdev, "try to reset %s port!\n",
2056                     (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2057
2058         rtnl_lock();
2059         /* put off any impending NetWatchDogTimeout */
2060         netif_trans_update(priv->netdev);
2061         hns_nic_net_reinit(priv->netdev);
2062
2063         rtnl_unlock();
2064 }
2065
2066 /* for doing service complete*/
2067 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2068 {
2069         WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2070         /* make sure to commit the things */
2071         smp_mb__before_atomic();
2072         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2073 }
2074
2075 static void hns_nic_service_task(struct work_struct *work)
2076 {
2077         struct hns_nic_priv *priv
2078                 = container_of(work, struct hns_nic_priv, service_task);
2079         struct hnae_handle *h = priv->ae_handle;
2080
2081         hns_nic_reset_subtask(priv);
2082         hns_nic_update_link_status(priv->netdev);
2083         h->dev->ops->update_led_status(h);
2084         hns_nic_update_stats(priv->netdev);
2085
2086         hns_nic_service_event_complete(priv);
2087 }
2088
2089 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2090 {
2091         if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2092             !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2093             !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2094                 (void)schedule_work(&priv->service_task);
2095 }
2096
2097 static void hns_nic_service_timer(struct timer_list *t)
2098 {
2099         struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2100
2101         (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2102
2103         hns_nic_task_schedule(priv);
2104 }
2105
2106 /**
2107  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2108  * @priv: driver private struct
2109  **/
2110 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2111 {
2112         /* Do the reset outside of interrupt context */
2113         if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2114                 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2115                 netdev_warn(priv->netdev,
2116                             "initiating reset due to tx timeout(%llu,0x%lx)\n",
2117                             priv->tx_timeout_count, priv->state);
2118                 priv->tx_timeout_count++;
2119                 hns_nic_task_schedule(priv);
2120         }
2121 }
2122
2123 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2124 {
2125         struct hnae_handle *h = priv->ae_handle;
2126         struct hns_nic_ring_data *rd;
2127         bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2128         int i;
2129
2130         if (h->q_num > NIC_MAX_Q_PER_VF) {
2131                 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2132                 return -EINVAL;
2133         }
2134
2135         priv->ring_data = kzalloc(array3_size(h->q_num,
2136                                               sizeof(*priv->ring_data), 2),
2137                                   GFP_KERNEL);
2138         if (!priv->ring_data)
2139                 return -ENOMEM;
2140
2141         for (i = 0; i < h->q_num; i++) {
2142                 rd = &priv->ring_data[i];
2143                 rd->queue_index = i;
2144                 rd->ring = &h->qs[i]->tx_ring;
2145                 rd->poll_one = hns_nic_tx_poll_one;
2146                 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2147                         hns_nic_tx_fini_pro_v2;
2148
2149                 netif_napi_add(priv->netdev, &rd->napi,
2150                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2151                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2152         }
2153         for (i = h->q_num; i < h->q_num * 2; i++) {
2154                 rd = &priv->ring_data[i];
2155                 rd->queue_index = i - h->q_num;
2156                 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2157                 rd->poll_one = hns_nic_rx_poll_one;
2158                 rd->ex_process = hns_nic_rx_up_pro;
2159                 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2160                         hns_nic_rx_fini_pro_v2;
2161
2162                 netif_napi_add(priv->netdev, &rd->napi,
2163                                hns_nic_common_poll, NAPI_POLL_WEIGHT);
2164                 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2165         }
2166
2167         return 0;
2168 }
2169
2170 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2171 {
2172         struct hnae_handle *h = priv->ae_handle;
2173         int i;
2174
2175         for (i = 0; i < h->q_num * 2; i++) {
2176                 netif_napi_del(&priv->ring_data[i].napi);
2177                 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2178                         (void)irq_set_affinity_hint(
2179                                 priv->ring_data[i].ring->irq,
2180                                 NULL);
2181                         free_irq(priv->ring_data[i].ring->irq,
2182                                  &priv->ring_data[i]);
2183                 }
2184
2185                 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2186         }
2187         kfree(priv->ring_data);
2188 }
2189
2190 static void hns_nic_set_priv_ops(struct net_device *netdev)
2191 {
2192         struct hns_nic_priv *priv = netdev_priv(netdev);
2193         struct hnae_handle *h = priv->ae_handle;
2194
2195         if (AE_IS_VER1(priv->enet_ver)) {
2196                 priv->ops.fill_desc = fill_desc;
2197                 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2198                 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2199         } else {
2200                 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2201                 if ((netdev->features & NETIF_F_TSO) ||
2202                     (netdev->features & NETIF_F_TSO6)) {
2203                         priv->ops.fill_desc = fill_tso_desc;
2204                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2205                         /* This chip only support 7*4096 */
2206                         netif_set_gso_max_size(netdev, 7 * 4096);
2207                 } else {
2208                         priv->ops.fill_desc = fill_v2_desc;
2209                         priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2210                 }
2211                 /* enable tso when init
2212                  * control tso on/off through TSE bit in bd
2213                  */
2214                 h->dev->ops->set_tso_stats(h, 1);
2215         }
2216 }
2217
2218 static int hns_nic_try_get_ae(struct net_device *ndev)
2219 {
2220         struct hns_nic_priv *priv = netdev_priv(ndev);
2221         struct hnae_handle *h;
2222         int ret;
2223
2224         h = hnae_get_handle(&priv->netdev->dev,
2225                             priv->fwnode, priv->port_id, NULL);
2226         if (IS_ERR_OR_NULL(h)) {
2227                 ret = -ENODEV;
2228                 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2229                 goto out;
2230         }
2231         priv->ae_handle = h;
2232
2233         ret = hns_nic_init_phy(ndev, h);
2234         if (ret) {
2235                 dev_err(priv->dev, "probe phy device fail!\n");
2236                 goto out_init_phy;
2237         }
2238
2239         ret = hns_nic_init_ring_data(priv);
2240         if (ret) {
2241                 ret = -ENOMEM;
2242                 goto out_init_ring_data;
2243         }
2244
2245         hns_nic_set_priv_ops(ndev);
2246
2247         ret = register_netdev(ndev);
2248         if (ret) {
2249                 dev_err(priv->dev, "probe register netdev fail!\n");
2250                 goto out_reg_ndev_fail;
2251         }
2252         return 0;
2253
2254 out_reg_ndev_fail:
2255         hns_nic_uninit_ring_data(priv);
2256         priv->ring_data = NULL;
2257 out_init_phy:
2258 out_init_ring_data:
2259         hnae_put_handle(priv->ae_handle);
2260         priv->ae_handle = NULL;
2261 out:
2262         return ret;
2263 }
2264
2265 static int hns_nic_notifier_action(struct notifier_block *nb,
2266                                    unsigned long action, void *data)
2267 {
2268         struct hns_nic_priv *priv =
2269                 container_of(nb, struct hns_nic_priv, notifier_block);
2270
2271         assert(action == HNAE_AE_REGISTER);
2272
2273         if (!hns_nic_try_get_ae(priv->netdev)) {
2274                 hnae_unregister_notifier(&priv->notifier_block);
2275                 priv->notifier_block.notifier_call = NULL;
2276         }
2277         return 0;
2278 }
2279
2280 static int hns_nic_dev_probe(struct platform_device *pdev)
2281 {
2282         struct device *dev = &pdev->dev;
2283         struct net_device *ndev;
2284         struct hns_nic_priv *priv;
2285         u32 port_id;
2286         int ret;
2287
2288         ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2289         if (!ndev)
2290                 return -ENOMEM;
2291
2292         platform_set_drvdata(pdev, ndev);
2293
2294         priv = netdev_priv(ndev);
2295         priv->dev = dev;
2296         priv->netdev = ndev;
2297
2298         if (dev_of_node(dev)) {
2299                 struct device_node *ae_node;
2300
2301                 if (of_device_is_compatible(dev->of_node,
2302                                             "hisilicon,hns-nic-v1"))
2303                         priv->enet_ver = AE_VERSION_1;
2304                 else
2305                         priv->enet_ver = AE_VERSION_2;
2306
2307                 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2308                 if (!ae_node) {
2309                         ret = -ENODEV;
2310                         dev_err(dev, "not find ae-handle\n");
2311                         goto out_read_prop_fail;
2312                 }
2313                 priv->fwnode = &ae_node->fwnode;
2314         } else if (is_acpi_node(dev->fwnode)) {
2315                 struct fwnode_reference_args args;
2316
2317                 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2318                         priv->enet_ver = AE_VERSION_1;
2319                 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2320                         priv->enet_ver = AE_VERSION_2;
2321                 else
2322                         return -ENXIO;
2323
2324                 /* try to find port-idx-in-ae first */
2325                 ret = acpi_node_get_property_reference(dev->fwnode,
2326                                                        "ae-handle", 0, &args);
2327                 if (ret) {
2328                         dev_err(dev, "not find ae-handle\n");
2329                         goto out_read_prop_fail;
2330                 }
2331                 if (!is_acpi_device_node(args.fwnode)) {
2332                         ret = -EINVAL;
2333                         goto out_read_prop_fail;
2334                 }
2335                 priv->fwnode = args.fwnode;
2336         } else {
2337                 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2338                 return -ENXIO;
2339         }
2340
2341         ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2342         if (ret) {
2343                 /* only for old code compatible */
2344                 ret = device_property_read_u32(dev, "port-id", &port_id);
2345                 if (ret)
2346                         goto out_read_prop_fail;
2347                 /* for old dts, we need to caculate the port offset */
2348                 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2349                         : port_id - HNS_SRV_OFFSET;
2350         }
2351         priv->port_id = port_id;
2352
2353         hns_init_mac_addr(ndev);
2354
2355         ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2356         ndev->priv_flags |= IFF_UNICAST_FLT;
2357         ndev->netdev_ops = &hns_nic_netdev_ops;
2358         hns_ethtool_set_ops(ndev);
2359
2360         ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2361                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2362                 NETIF_F_GRO;
2363         ndev->vlan_features |=
2364                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2365         ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2366
2367         /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2368         ndev->min_mtu = MAC_MIN_MTU;
2369         switch (priv->enet_ver) {
2370         case AE_VERSION_2:
2371                 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2372                 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2373                         NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2374                         NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2375                 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2376                 ndev->max_mtu = MAC_MAX_MTU_V2 -
2377                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2378                 break;
2379         default:
2380                 ndev->max_mtu = MAC_MAX_MTU -
2381                                 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2382                 break;
2383         }
2384
2385         SET_NETDEV_DEV(ndev, dev);
2386
2387         if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2388                 dev_dbg(dev, "set mask to 64bit\n");
2389         else
2390                 dev_err(dev, "set mask to 64bit fail!\n");
2391
2392         /* carrier off reporting is important to ethtool even BEFORE open */
2393         netif_carrier_off(ndev);
2394
2395         timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2396         INIT_WORK(&priv->service_task, hns_nic_service_task);
2397
2398         set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2399         clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2400         set_bit(NIC_STATE_DOWN, &priv->state);
2401
2402         if (hns_nic_try_get_ae(priv->netdev)) {
2403                 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2404                 ret = hnae_register_notifier(&priv->notifier_block);
2405                 if (ret) {
2406                         dev_err(dev, "register notifier fail!\n");
2407                         goto out_notify_fail;
2408                 }
2409                 dev_dbg(dev, "has not handle, register notifier!\n");
2410         }
2411
2412         return 0;
2413
2414 out_notify_fail:
2415         (void)cancel_work_sync(&priv->service_task);
2416 out_read_prop_fail:
2417         /* safe for ACPI FW */
2418         of_node_put(to_of_node(priv->fwnode));
2419         free_netdev(ndev);
2420         return ret;
2421 }
2422
2423 static int hns_nic_dev_remove(struct platform_device *pdev)
2424 {
2425         struct net_device *ndev = platform_get_drvdata(pdev);
2426         struct hns_nic_priv *priv = netdev_priv(ndev);
2427
2428         if (ndev->reg_state != NETREG_UNINITIALIZED)
2429                 unregister_netdev(ndev);
2430
2431         if (priv->ring_data)
2432                 hns_nic_uninit_ring_data(priv);
2433         priv->ring_data = NULL;
2434
2435         if (ndev->phydev)
2436                 phy_disconnect(ndev->phydev);
2437
2438         if (!IS_ERR_OR_NULL(priv->ae_handle))
2439                 hnae_put_handle(priv->ae_handle);
2440         priv->ae_handle = NULL;
2441         if (priv->notifier_block.notifier_call)
2442                 hnae_unregister_notifier(&priv->notifier_block);
2443         priv->notifier_block.notifier_call = NULL;
2444
2445         set_bit(NIC_STATE_REMOVING, &priv->state);
2446         (void)cancel_work_sync(&priv->service_task);
2447
2448         /* safe for ACPI FW */
2449         of_node_put(to_of_node(priv->fwnode));
2450
2451         free_netdev(ndev);
2452         return 0;
2453 }
2454
2455 static const struct of_device_id hns_enet_of_match[] = {
2456         {.compatible = "hisilicon,hns-nic-v1",},
2457         {.compatible = "hisilicon,hns-nic-v2",},
2458         {},
2459 };
2460
2461 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2462
2463 static struct platform_driver hns_nic_dev_driver = {
2464         .driver = {
2465                 .name = "hns-nic",
2466                 .of_match_table = hns_enet_of_match,
2467                 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2468         },
2469         .probe = hns_nic_dev_probe,
2470         .remove = hns_nic_dev_remove,
2471 };
2472
2473 module_platform_driver(hns_nic_dev_driver);
2474
2475 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2476 MODULE_AUTHOR("Hisilicon, Inc.");
2477 MODULE_LICENSE("GPL");
2478 MODULE_ALIAS("platform:hns-nic");