]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3_enet.c
Merge branch 'fixes' into next
[linux.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23
24 #define hns3_set_field(origin, shift, val)      ((origin) |= ((val) << (shift)))
25 #define hns3_tx_bd_count(S)     DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
26
27 static void hns3_clear_all_ring(struct hnae3_handle *h);
28 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
29 static void hns3_remove_hw_addr(struct net_device *netdev);
30
31 static const char hns3_driver_name[] = "hns3";
32 const char hns3_driver_version[] = VERMAGIC_STRING;
33 static const char hns3_driver_string[] =
34                         "Hisilicon Ethernet Network Driver for Hip08 Family";
35 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
36 static struct hnae3_client client;
37
38 /* hns3_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43  *   Class, Class Mask, private data (not used) }
44  */
45 static const struct pci_device_id hns3_pci_tbl[] = {
46         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
47         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
48         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
49          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
50         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
51          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
52         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
53          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
54         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
55          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
56         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
57          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
59         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
60          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
61         /* required last entry */
62         {0, }
63 };
64 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
65
66 static irqreturn_t hns3_irq_handle(int irq, void *vector)
67 {
68         struct hns3_enet_tqp_vector *tqp_vector = vector;
69
70         napi_schedule(&tqp_vector->napi);
71
72         return IRQ_HANDLED;
73 }
74
75 /* This callback function is used to set affinity changes to the irq affinity
76  * masks when the irq_set_affinity_notifier function is used.
77  */
78 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
79                                          const cpumask_t *mask)
80 {
81         struct hns3_enet_tqp_vector *tqp_vectors =
82                 container_of(notify, struct hns3_enet_tqp_vector,
83                              affinity_notify);
84
85         tqp_vectors->affinity_mask = *mask;
86 }
87
88 static void hns3_nic_irq_affinity_release(struct kref *ref)
89 {
90 }
91
92 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
93 {
94         struct hns3_enet_tqp_vector *tqp_vectors;
95         unsigned int i;
96
97         for (i = 0; i < priv->vector_num; i++) {
98                 tqp_vectors = &priv->tqp_vector[i];
99
100                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
101                         continue;
102
103                 /* clear the affinity notifier and affinity mask */
104                 irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
105                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
106
107                 /* release the irq resource */
108                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
109                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
110         }
111 }
112
113 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
114 {
115         struct hns3_enet_tqp_vector *tqp_vectors;
116         int txrx_int_idx = 0;
117         int rx_int_idx = 0;
118         int tx_int_idx = 0;
119         unsigned int i;
120         int ret;
121
122         for (i = 0; i < priv->vector_num; i++) {
123                 tqp_vectors = &priv->tqp_vector[i];
124
125                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
126                         continue;
127
128                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
129                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
130                                  "%s-%s-%d", priv->netdev->name, "TxRx",
131                                  txrx_int_idx++);
132                         txrx_int_idx++;
133                 } else if (tqp_vectors->rx_group.ring) {
134                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
135                                  "%s-%s-%d", priv->netdev->name, "Rx",
136                                  rx_int_idx++);
137                 } else if (tqp_vectors->tx_group.ring) {
138                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
139                                  "%s-%s-%d", priv->netdev->name, "Tx",
140                                  tx_int_idx++);
141                 } else {
142                         /* Skip this unused q_vector */
143                         continue;
144                 }
145
146                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
147
148                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
149                                   tqp_vectors->name,
150                                        tqp_vectors);
151                 if (ret) {
152                         netdev_err(priv->netdev, "request irq(%d) fail\n",
153                                    tqp_vectors->vector_irq);
154                         return ret;
155                 }
156
157                 tqp_vectors->affinity_notify.notify =
158                                         hns3_nic_irq_affinity_notify;
159                 tqp_vectors->affinity_notify.release =
160                                         hns3_nic_irq_affinity_release;
161                 irq_set_affinity_notifier(tqp_vectors->vector_irq,
162                                           &tqp_vectors->affinity_notify);
163                 irq_set_affinity_hint(tqp_vectors->vector_irq,
164                                       &tqp_vectors->affinity_mask);
165
166                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
167         }
168
169         return 0;
170 }
171
172 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
173                                  u32 mask_en)
174 {
175         writel(mask_en, tqp_vector->mask_addr);
176 }
177
178 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
179 {
180         napi_enable(&tqp_vector->napi);
181
182         /* enable vector */
183         hns3_mask_vector_irq(tqp_vector, 1);
184 }
185
186 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188         /* disable vector */
189         hns3_mask_vector_irq(tqp_vector, 0);
190
191         disable_irq(tqp_vector->vector_irq);
192         napi_disable(&tqp_vector->napi);
193 }
194
195 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
196                                  u32 rl_value)
197 {
198         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
199
200         /* this defines the configuration for RL (Interrupt Rate Limiter).
201          * Rl defines rate of interrupts i.e. number of interrupts-per-second
202          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
203          */
204
205         if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
206             !tqp_vector->rx_group.coal.gl_adapt_enable)
207                 /* According to the hardware, the range of rl_reg is
208                  * 0-59 and the unit is 4.
209                  */
210                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
211
212         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
213 }
214
215 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
216                                     u32 gl_value)
217 {
218         u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
219
220         writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
221 }
222
223 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
224                                     u32 gl_value)
225 {
226         u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
227
228         writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
229 }
230
231 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
232                                    struct hns3_nic_priv *priv)
233 {
234         /* initialize the configuration for interrupt coalescing.
235          * 1. GL (Interrupt Gap Limiter)
236          * 2. RL (Interrupt Rate Limiter)
237          */
238
239         /* Default: enable interrupt coalescing self-adaptive and GL */
240         tqp_vector->tx_group.coal.gl_adapt_enable = 1;
241         tqp_vector->rx_group.coal.gl_adapt_enable = 1;
242
243         tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
244         tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
245
246         tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
247         tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
248 }
249
250 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
251                                       struct hns3_nic_priv *priv)
252 {
253         struct hnae3_handle *h = priv->ae_handle;
254
255         hns3_set_vector_coalesce_tx_gl(tqp_vector,
256                                        tqp_vector->tx_group.coal.int_gl);
257         hns3_set_vector_coalesce_rx_gl(tqp_vector,
258                                        tqp_vector->rx_group.coal.int_gl);
259         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
260 }
261
262 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
263 {
264         struct hnae3_handle *h = hns3_get_handle(netdev);
265         struct hnae3_knic_private_info *kinfo = &h->kinfo;
266         unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
267         int i, ret;
268
269         if (kinfo->num_tc <= 1) {
270                 netdev_reset_tc(netdev);
271         } else {
272                 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
273                 if (ret) {
274                         netdev_err(netdev,
275                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
276                         return ret;
277                 }
278
279                 for (i = 0; i < HNAE3_MAX_TC; i++) {
280                         if (!kinfo->tc_info[i].enable)
281                                 continue;
282
283                         netdev_set_tc_queue(netdev,
284                                             kinfo->tc_info[i].tc,
285                                             kinfo->tc_info[i].tqp_count,
286                                             kinfo->tc_info[i].tqp_offset);
287                 }
288         }
289
290         ret = netif_set_real_num_tx_queues(netdev, queue_size);
291         if (ret) {
292                 netdev_err(netdev,
293                            "netif_set_real_num_tx_queues fail, ret=%d!\n",
294                            ret);
295                 return ret;
296         }
297
298         ret = netif_set_real_num_rx_queues(netdev, queue_size);
299         if (ret) {
300                 netdev_err(netdev,
301                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
302                 return ret;
303         }
304
305         return 0;
306 }
307
308 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
309 {
310         u16 alloc_tqps, max_rss_size, rss_size;
311
312         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
313         rss_size = alloc_tqps / h->kinfo.num_tc;
314
315         return min_t(u16, rss_size, max_rss_size);
316 }
317
318 static void hns3_tqp_enable(struct hnae3_queue *tqp)
319 {
320         u32 rcb_reg;
321
322         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
323         rcb_reg |= BIT(HNS3_RING_EN_B);
324         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
325 }
326
327 static void hns3_tqp_disable(struct hnae3_queue *tqp)
328 {
329         u32 rcb_reg;
330
331         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
332         rcb_reg &= ~BIT(HNS3_RING_EN_B);
333         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
334 }
335
336 static int hns3_nic_net_up(struct net_device *netdev)
337 {
338         struct hns3_nic_priv *priv = netdev_priv(netdev);
339         struct hnae3_handle *h = priv->ae_handle;
340         int i, j;
341         int ret;
342
343         ret = hns3_nic_reset_all_ring(h);
344         if (ret)
345                 return ret;
346
347         /* get irq resource for all vectors */
348         ret = hns3_nic_init_irq(priv);
349         if (ret) {
350                 netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
351                 return ret;
352         }
353
354         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
355
356         /* enable the vectors */
357         for (i = 0; i < priv->vector_num; i++)
358                 hns3_vector_enable(&priv->tqp_vector[i]);
359
360         /* enable rcb */
361         for (j = 0; j < h->kinfo.num_tqps; j++)
362                 hns3_tqp_enable(h->kinfo.tqp[j]);
363
364         /* start the ae_dev */
365         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
366         if (ret)
367                 goto out_start_err;
368
369         return 0;
370
371 out_start_err:
372         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
373         while (j--)
374                 hns3_tqp_disable(h->kinfo.tqp[j]);
375
376         for (j = i - 1; j >= 0; j--)
377                 hns3_vector_disable(&priv->tqp_vector[j]);
378
379         hns3_nic_uninit_irq(priv);
380
381         return ret;
382 }
383
384 static void hns3_config_xps(struct hns3_nic_priv *priv)
385 {
386         int i;
387
388         for (i = 0; i < priv->vector_num; i++) {
389                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
390                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
391
392                 while (ring) {
393                         int ret;
394
395                         ret = netif_set_xps_queue(priv->netdev,
396                                                   &tqp_vector->affinity_mask,
397                                                   ring->tqp->tqp_index);
398                         if (ret)
399                                 netdev_warn(priv->netdev,
400                                             "set xps queue failed: %d", ret);
401
402                         ring = ring->next;
403                 }
404         }
405 }
406
407 static int hns3_nic_net_open(struct net_device *netdev)
408 {
409         struct hns3_nic_priv *priv = netdev_priv(netdev);
410         struct hnae3_handle *h = hns3_get_handle(netdev);
411         struct hnae3_knic_private_info *kinfo;
412         int i, ret;
413
414         if (hns3_nic_resetting(netdev))
415                 return -EBUSY;
416
417         netif_carrier_off(netdev);
418
419         ret = hns3_nic_set_real_num_queue(netdev);
420         if (ret)
421                 return ret;
422
423         ret = hns3_nic_net_up(netdev);
424         if (ret) {
425                 netdev_err(netdev,
426                            "hns net up fail, ret=%d!\n", ret);
427                 return ret;
428         }
429
430         kinfo = &h->kinfo;
431         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
432                 netdev_set_prio_tc_map(netdev, i,
433                                        kinfo->prio_tc[i]);
434         }
435
436         if (h->ae_algo->ops->set_timer_task)
437                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
438
439         hns3_config_xps(priv);
440         return 0;
441 }
442
443 static void hns3_nic_net_down(struct net_device *netdev)
444 {
445         struct hns3_nic_priv *priv = netdev_priv(netdev);
446         struct hnae3_handle *h = hns3_get_handle(netdev);
447         const struct hnae3_ae_ops *ops;
448         int i;
449
450         /* disable vectors */
451         for (i = 0; i < priv->vector_num; i++)
452                 hns3_vector_disable(&priv->tqp_vector[i]);
453
454         /* disable rcb */
455         for (i = 0; i < h->kinfo.num_tqps; i++)
456                 hns3_tqp_disable(h->kinfo.tqp[i]);
457
458         /* stop ae_dev */
459         ops = priv->ae_handle->ae_algo->ops;
460         if (ops->stop)
461                 ops->stop(priv->ae_handle);
462
463         /* free irq resources */
464         hns3_nic_uninit_irq(priv);
465
466         hns3_clear_all_ring(priv->ae_handle);
467 }
468
469 static int hns3_nic_net_stop(struct net_device *netdev)
470 {
471         struct hns3_nic_priv *priv = netdev_priv(netdev);
472         struct hnae3_handle *h = hns3_get_handle(netdev);
473
474         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
475                 return 0;
476
477         if (h->ae_algo->ops->set_timer_task)
478                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
479
480         netif_tx_stop_all_queues(netdev);
481         netif_carrier_off(netdev);
482
483         hns3_nic_net_down(netdev);
484
485         return 0;
486 }
487
488 static int hns3_nic_uc_sync(struct net_device *netdev,
489                             const unsigned char *addr)
490 {
491         struct hnae3_handle *h = hns3_get_handle(netdev);
492
493         if (h->ae_algo->ops->add_uc_addr)
494                 return h->ae_algo->ops->add_uc_addr(h, addr);
495
496         return 0;
497 }
498
499 static int hns3_nic_uc_unsync(struct net_device *netdev,
500                               const unsigned char *addr)
501 {
502         struct hnae3_handle *h = hns3_get_handle(netdev);
503
504         if (h->ae_algo->ops->rm_uc_addr)
505                 return h->ae_algo->ops->rm_uc_addr(h, addr);
506
507         return 0;
508 }
509
510 static int hns3_nic_mc_sync(struct net_device *netdev,
511                             const unsigned char *addr)
512 {
513         struct hnae3_handle *h = hns3_get_handle(netdev);
514
515         if (h->ae_algo->ops->add_mc_addr)
516                 return h->ae_algo->ops->add_mc_addr(h, addr);
517
518         return 0;
519 }
520
521 static int hns3_nic_mc_unsync(struct net_device *netdev,
522                               const unsigned char *addr)
523 {
524         struct hnae3_handle *h = hns3_get_handle(netdev);
525
526         if (h->ae_algo->ops->rm_mc_addr)
527                 return h->ae_algo->ops->rm_mc_addr(h, addr);
528
529         return 0;
530 }
531
532 static u8 hns3_get_netdev_flags(struct net_device *netdev)
533 {
534         u8 flags = 0;
535
536         if (netdev->flags & IFF_PROMISC) {
537                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
538         } else {
539                 flags |= HNAE3_VLAN_FLTR;
540                 if (netdev->flags & IFF_ALLMULTI)
541                         flags |= HNAE3_USER_MPE;
542         }
543
544         return flags;
545 }
546
547 static void hns3_nic_set_rx_mode(struct net_device *netdev)
548 {
549         struct hnae3_handle *h = hns3_get_handle(netdev);
550         u8 new_flags;
551         int ret;
552
553         new_flags = hns3_get_netdev_flags(netdev);
554
555         ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
556         if (ret) {
557                 netdev_err(netdev, "sync uc address fail\n");
558                 if (ret == -ENOSPC)
559                         new_flags |= HNAE3_OVERFLOW_UPE;
560         }
561
562         if (netdev->flags & IFF_MULTICAST) {
563                 ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
564                                     hns3_nic_mc_unsync);
565                 if (ret) {
566                         netdev_err(netdev, "sync mc address fail\n");
567                         if (ret == -ENOSPC)
568                                 new_flags |= HNAE3_OVERFLOW_MPE;
569                 }
570         }
571
572         /* User mode Promisc mode enable and vlan filtering is disabled to
573          * let all packets in. MAC-VLAN Table overflow Promisc enabled and
574          * vlan fitering is enabled
575          */
576         hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
577         h->netdev_flags = new_flags;
578         hns3_update_promisc_mode(netdev, new_flags);
579 }
580
581 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
582 {
583         struct hns3_nic_priv *priv = netdev_priv(netdev);
584         struct hnae3_handle *h = priv->ae_handle;
585
586         if (h->ae_algo->ops->set_promisc_mode) {
587                 return h->ae_algo->ops->set_promisc_mode(h,
588                                                 promisc_flags & HNAE3_UPE,
589                                                 promisc_flags & HNAE3_MPE);
590         }
591
592         return 0;
593 }
594
595 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
596 {
597         struct hns3_nic_priv *priv = netdev_priv(netdev);
598         struct hnae3_handle *h = priv->ae_handle;
599         bool last_state;
600
601         if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
602                 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
603                 if (enable != last_state) {
604                         netdev_info(netdev,
605                                     "%s vlan filter\n",
606                                     enable ? "enable" : "disable");
607                         h->ae_algo->ops->enable_vlan_filter(h, enable);
608                 }
609         }
610 }
611
612 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
613                         u16 *mss, u32 *type_cs_vlan_tso)
614 {
615         u32 l4_offset, hdr_len;
616         union l3_hdr_info l3;
617         union l4_hdr_info l4;
618         u32 l4_paylen;
619         int ret;
620
621         if (!skb_is_gso(skb))
622                 return 0;
623
624         ret = skb_cow_head(skb, 0);
625         if (unlikely(ret))
626                 return ret;
627
628         l3.hdr = skb_network_header(skb);
629         l4.hdr = skb_transport_header(skb);
630
631         /* Software should clear the IPv4's checksum field when tso is
632          * needed.
633          */
634         if (l3.v4->version == 4)
635                 l3.v4->check = 0;
636
637         /* tunnel packet.*/
638         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
639                                          SKB_GSO_GRE_CSUM |
640                                          SKB_GSO_UDP_TUNNEL |
641                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
642                 if ((!(skb_shinfo(skb)->gso_type &
643                     SKB_GSO_PARTIAL)) &&
644                     (skb_shinfo(skb)->gso_type &
645                     SKB_GSO_UDP_TUNNEL_CSUM)) {
646                         /* Software should clear the udp's checksum
647                          * field when tso is needed.
648                          */
649                         l4.udp->check = 0;
650                 }
651                 /* reset l3&l4 pointers from outer to inner headers */
652                 l3.hdr = skb_inner_network_header(skb);
653                 l4.hdr = skb_inner_transport_header(skb);
654
655                 /* Software should clear the IPv4's checksum field when
656                  * tso is needed.
657                  */
658                 if (l3.v4->version == 4)
659                         l3.v4->check = 0;
660         }
661
662         /* normal or tunnel packet*/
663         l4_offset = l4.hdr - skb->data;
664         hdr_len = (l4.tcp->doff << 2) + l4_offset;
665
666         /* remove payload length from inner pseudo checksum when tso*/
667         l4_paylen = skb->len - l4_offset;
668         csum_replace_by_diff(&l4.tcp->check,
669                              (__force __wsum)htonl(l4_paylen));
670
671         /* find the txbd field values */
672         *paylen = skb->len - hdr_len;
673         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
674
675         /* get MSS for TSO */
676         *mss = skb_shinfo(skb)->gso_size;
677
678         return 0;
679 }
680
681 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
682                                 u8 *il4_proto)
683 {
684         union l3_hdr_info l3;
685         unsigned char *l4_hdr;
686         unsigned char *exthdr;
687         u8 l4_proto_tmp;
688         __be16 frag_off;
689
690         /* find outer header point */
691         l3.hdr = skb_network_header(skb);
692         l4_hdr = skb_transport_header(skb);
693
694         if (skb->protocol == htons(ETH_P_IPV6)) {
695                 exthdr = l3.hdr + sizeof(*l3.v6);
696                 l4_proto_tmp = l3.v6->nexthdr;
697                 if (l4_hdr != exthdr)
698                         ipv6_skip_exthdr(skb, exthdr - skb->data,
699                                          &l4_proto_tmp, &frag_off);
700         } else if (skb->protocol == htons(ETH_P_IP)) {
701                 l4_proto_tmp = l3.v4->protocol;
702         } else {
703                 return -EINVAL;
704         }
705
706         *ol4_proto = l4_proto_tmp;
707
708         /* tunnel packet */
709         if (!skb->encapsulation) {
710                 *il4_proto = 0;
711                 return 0;
712         }
713
714         /* find inner header point */
715         l3.hdr = skb_inner_network_header(skb);
716         l4_hdr = skb_inner_transport_header(skb);
717
718         if (l3.v6->version == 6) {
719                 exthdr = l3.hdr + sizeof(*l3.v6);
720                 l4_proto_tmp = l3.v6->nexthdr;
721                 if (l4_hdr != exthdr)
722                         ipv6_skip_exthdr(skb, exthdr - skb->data,
723                                          &l4_proto_tmp, &frag_off);
724         } else if (l3.v4->version == 4) {
725                 l4_proto_tmp = l3.v4->protocol;
726         }
727
728         *il4_proto = l4_proto_tmp;
729
730         return 0;
731 }
732
733 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
734                                 u8 il4_proto, u32 *type_cs_vlan_tso,
735                                 u32 *ol_type_vlan_len_msec)
736 {
737         union l3_hdr_info l3;
738         union l4_hdr_info l4;
739         unsigned char *l2_hdr;
740         u8 l4_proto = ol4_proto;
741         u32 ol2_len;
742         u32 ol3_len;
743         u32 ol4_len;
744         u32 l2_len;
745         u32 l3_len;
746
747         l3.hdr = skb_network_header(skb);
748         l4.hdr = skb_transport_header(skb);
749
750         /* compute L2 header size for normal packet, defined in 2 Bytes */
751         l2_len = l3.hdr - skb->data;
752         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
753
754         /* tunnel packet*/
755         if (skb->encapsulation) {
756                 /* compute OL2 header size, defined in 2 Bytes */
757                 ol2_len = l2_len;
758                 hns3_set_field(*ol_type_vlan_len_msec,
759                                HNS3_TXD_L2LEN_S, ol2_len >> 1);
760
761                 /* compute OL3 header size, defined in 4 Bytes */
762                 ol3_len = l4.hdr - l3.hdr;
763                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S,
764                                ol3_len >> 2);
765
766                 /* MAC in UDP, MAC in GRE (0x6558)*/
767                 if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
768                         /* switch MAC header ptr from outer to inner header.*/
769                         l2_hdr = skb_inner_mac_header(skb);
770
771                         /* compute OL4 header size, defined in 4 Bytes. */
772                         ol4_len = l2_hdr - l4.hdr;
773                         hns3_set_field(*ol_type_vlan_len_msec,
774                                        HNS3_TXD_L4LEN_S, ol4_len >> 2);
775
776                         /* switch IP header ptr from outer to inner header */
777                         l3.hdr = skb_inner_network_header(skb);
778
779                         /* compute inner l2 header size, defined in 2 Bytes. */
780                         l2_len = l3.hdr - l2_hdr;
781                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S,
782                                        l2_len >> 1);
783                 } else {
784                         /* skb packet types not supported by hardware,
785                          * txbd len fild doesn't be filled.
786                          */
787                         return;
788                 }
789
790                 /* switch L4 header pointer from outer to inner */
791                 l4.hdr = skb_inner_transport_header(skb);
792
793                 l4_proto = il4_proto;
794         }
795
796         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
797         l3_len = l4.hdr - l3.hdr;
798         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
799
800         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
801         switch (l4_proto) {
802         case IPPROTO_TCP:
803                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
804                                l4.tcp->doff);
805                 break;
806         case IPPROTO_SCTP:
807                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
808                                (sizeof(struct sctphdr) >> 2));
809                 break;
810         case IPPROTO_UDP:
811                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
812                                (sizeof(struct udphdr) >> 2));
813                 break;
814         default:
815                 /* skb packet types not supported by hardware,
816                  * txbd len fild doesn't be filled.
817                  */
818                 return;
819         }
820 }
821
822 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
823  * and it is udp packet, which has a dest port as the IANA assigned.
824  * the hardware is expected to do the checksum offload, but the
825  * hardware will not do the checksum offload when udp dest port is
826  * 4789.
827  */
828 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
829 {
830 #define IANA_VXLAN_PORT 4789
831         union l4_hdr_info l4;
832
833         l4.hdr = skb_transport_header(skb);
834
835         if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
836                 return false;
837
838         skb_checksum_help(skb);
839
840         return true;
841 }
842
843 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
844                                    u8 il4_proto, u32 *type_cs_vlan_tso,
845                                    u32 *ol_type_vlan_len_msec)
846 {
847         union l3_hdr_info l3;
848         u32 l4_proto = ol4_proto;
849
850         l3.hdr = skb_network_header(skb);
851
852         /* define OL3 type and tunnel type(OL4).*/
853         if (skb->encapsulation) {
854                 /* define outer network header type.*/
855                 if (skb->protocol == htons(ETH_P_IP)) {
856                         if (skb_is_gso(skb))
857                                 hns3_set_field(*ol_type_vlan_len_msec,
858                                                HNS3_TXD_OL3T_S,
859                                                HNS3_OL3T_IPV4_CSUM);
860                         else
861                                 hns3_set_field(*ol_type_vlan_len_msec,
862                                                HNS3_TXD_OL3T_S,
863                                                HNS3_OL3T_IPV4_NO_CSUM);
864
865                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
866                         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
867                                        HNS3_OL3T_IPV6);
868                 }
869
870                 /* define tunnel type(OL4).*/
871                 switch (l4_proto) {
872                 case IPPROTO_UDP:
873                         hns3_set_field(*ol_type_vlan_len_msec,
874                                        HNS3_TXD_TUNTYPE_S,
875                                        HNS3_TUN_MAC_IN_UDP);
876                         break;
877                 case IPPROTO_GRE:
878                         hns3_set_field(*ol_type_vlan_len_msec,
879                                        HNS3_TXD_TUNTYPE_S,
880                                        HNS3_TUN_NVGRE);
881                         break;
882                 default:
883                         /* drop the skb tunnel packet if hardware don't support,
884                          * because hardware can't calculate csum when TSO.
885                          */
886                         if (skb_is_gso(skb))
887                                 return -EDOM;
888
889                         /* the stack computes the IP header already,
890                          * driver calculate l4 checksum when not TSO.
891                          */
892                         skb_checksum_help(skb);
893                         return 0;
894                 }
895
896                 l3.hdr = skb_inner_network_header(skb);
897                 l4_proto = il4_proto;
898         }
899
900         if (l3.v4->version == 4) {
901                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
902                                HNS3_L3T_IPV4);
903
904                 /* the stack computes the IP header already, the only time we
905                  * need the hardware to recompute it is in the case of TSO.
906                  */
907                 if (skb_is_gso(skb))
908                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
909         } else if (l3.v6->version == 6) {
910                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
911                                HNS3_L3T_IPV6);
912         }
913
914         switch (l4_proto) {
915         case IPPROTO_TCP:
916                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
917                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
918                                HNS3_L4T_TCP);
919                 break;
920         case IPPROTO_UDP:
921                 if (hns3_tunnel_csum_bug(skb))
922                         break;
923
924                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
925                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
926                                HNS3_L4T_UDP);
927                 break;
928         case IPPROTO_SCTP:
929                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931                                HNS3_L4T_SCTP);
932                 break;
933         default:
934                 /* drop the skb tunnel packet if hardware don't support,
935                  * because hardware can't calculate csum when TSO.
936                  */
937                 if (skb_is_gso(skb))
938                         return -EDOM;
939
940                 /* the stack computes the IP header already,
941                  * driver calculate l4 checksum when not TSO.
942                  */
943                 skb_checksum_help(skb);
944                 return 0;
945         }
946
947         return 0;
948 }
949
950 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
951 {
952         /* Config bd buffer end */
953         hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
954         hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
955 }
956
957 static int hns3_fill_desc_vtags(struct sk_buff *skb,
958                                 struct hns3_enet_ring *tx_ring,
959                                 u32 *inner_vlan_flag,
960                                 u32 *out_vlan_flag,
961                                 u16 *inner_vtag,
962                                 u16 *out_vtag)
963 {
964 #define HNS3_TX_VLAN_PRIO_SHIFT 13
965
966         if (skb->protocol == htons(ETH_P_8021Q) &&
967             !(tx_ring->tqp->handle->kinfo.netdev->features &
968             NETIF_F_HW_VLAN_CTAG_TX)) {
969                 /* When HW VLAN acceleration is turned off, and the stack
970                  * sets the protocol to 802.1q, the driver just need to
971                  * set the protocol to the encapsulated ethertype.
972                  */
973                 skb->protocol = vlan_get_protocol(skb);
974                 return 0;
975         }
976
977         if (skb_vlan_tag_present(skb)) {
978                 u16 vlan_tag;
979
980                 vlan_tag = skb_vlan_tag_get(skb);
981                 vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
982
983                 /* Based on hw strategy, use out_vtag in two layer tag case,
984                  * and use inner_vtag in one tag case.
985                  */
986                 if (skb->protocol == htons(ETH_P_8021Q)) {
987                         hns3_set_field(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
988                         *out_vtag = vlan_tag;
989                 } else {
990                         hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
991                         *inner_vtag = vlan_tag;
992                 }
993         } else if (skb->protocol == htons(ETH_P_8021Q)) {
994                 struct vlan_ethhdr *vhdr;
995                 int rc;
996
997                 rc = skb_cow_head(skb, 0);
998                 if (unlikely(rc < 0))
999                         return rc;
1000                 vhdr = (struct vlan_ethhdr *)skb->data;
1001                 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1002                                         << HNS3_TX_VLAN_PRIO_SHIFT);
1003         }
1004
1005         skb->protocol = vlan_get_protocol(skb);
1006         return 0;
1007 }
1008
1009 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1010                           int size, int frag_end, enum hns_desc_type type)
1011 {
1012         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1013         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1014         struct device *dev = ring_to_dev(ring);
1015         u16 bdtp_fe_sc_vld_ra_ri = 0;
1016         struct skb_frag_struct *frag;
1017         unsigned int frag_buf_num;
1018         int k, sizeoflast;
1019         dma_addr_t dma;
1020
1021         if (type == DESC_TYPE_SKB) {
1022                 struct sk_buff *skb = (struct sk_buff *)priv;
1023                 u32 ol_type_vlan_len_msec = 0;
1024                 u32 type_cs_vlan_tso = 0;
1025                 u32 paylen = skb->len;
1026                 u16 inner_vtag = 0;
1027                 u16 out_vtag = 0;
1028                 u16 mss = 0;
1029                 int ret;
1030
1031                 ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1032                                            &ol_type_vlan_len_msec,
1033                                            &inner_vtag, &out_vtag);
1034                 if (unlikely(ret))
1035                         return ret;
1036
1037                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1038                         u8 ol4_proto, il4_proto;
1039
1040                         skb_reset_mac_len(skb);
1041
1042                         ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1043                         if (unlikely(ret))
1044                                 return ret;
1045                         hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1046                                             &type_cs_vlan_tso,
1047                                             &ol_type_vlan_len_msec);
1048                         ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1049                                                       &type_cs_vlan_tso,
1050                                                       &ol_type_vlan_len_msec);
1051                         if (unlikely(ret))
1052                                 return ret;
1053
1054                         ret = hns3_set_tso(skb, &paylen, &mss,
1055                                            &type_cs_vlan_tso);
1056                         if (unlikely(ret))
1057                                 return ret;
1058                 }
1059
1060                 /* Set txbd */
1061                 desc->tx.ol_type_vlan_len_msec =
1062                         cpu_to_le32(ol_type_vlan_len_msec);
1063                 desc->tx.type_cs_vlan_tso_len =
1064                         cpu_to_le32(type_cs_vlan_tso);
1065                 desc->tx.paylen = cpu_to_le32(paylen);
1066                 desc->tx.mss = cpu_to_le16(mss);
1067                 desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1068                 desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1069
1070                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1071         } else {
1072                 frag = (struct skb_frag_struct *)priv;
1073                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1074         }
1075
1076         if (unlikely(dma_mapping_error(ring->dev, dma))) {
1077                 ring->stats.sw_err_cnt++;
1078                 return -ENOMEM;
1079         }
1080
1081         desc_cb->length = size;
1082
1083         frag_buf_num = hns3_tx_bd_count(size);
1084         sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1085         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1086
1087         /* When frag size is bigger than hardware limit, split this frag */
1088         for (k = 0; k < frag_buf_num; k++) {
1089                 /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1090                 desc_cb->priv = priv;
1091                 desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1092                 desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1093                                         DESC_TYPE_SKB : DESC_TYPE_PAGE;
1094
1095                 /* now, fill the descriptor */
1096                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1097                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1098                                 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1099                 hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1100                                        frag_end && (k == frag_buf_num - 1) ?
1101                                                 1 : 0);
1102                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1103                                 cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1104
1105                 /* move ring pointer to next.*/
1106                 ring_ptr_move_fw(ring, next_to_use);
1107
1108                 desc_cb = &ring->desc_cb[ring->next_to_use];
1109                 desc = &ring->desc[ring->next_to_use];
1110         }
1111
1112         return 0;
1113 }
1114
1115 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1116                                    struct hns3_enet_ring *ring)
1117 {
1118         struct sk_buff *skb = *out_skb;
1119         struct sk_buff *new_skb = NULL;
1120         struct skb_frag_struct *frag;
1121         int bdnum_for_frag;
1122         int frag_num;
1123         int buf_num;
1124         int size;
1125         int i;
1126
1127         size = skb_headlen(skb);
1128         buf_num = hns3_tx_bd_count(size);
1129
1130         frag_num = skb_shinfo(skb)->nr_frags;
1131         for (i = 0; i < frag_num; i++) {
1132                 frag = &skb_shinfo(skb)->frags[i];
1133                 size = skb_frag_size(frag);
1134                 bdnum_for_frag = hns3_tx_bd_count(size);
1135                 if (unlikely(bdnum_for_frag > HNS3_MAX_BD_PER_FRAG))
1136                         return -ENOMEM;
1137
1138                 buf_num += bdnum_for_frag;
1139         }
1140
1141         if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1142                 buf_num = hns3_tx_bd_count(skb->len);
1143                 if (ring_space(ring) < buf_num)
1144                         return -EBUSY;
1145                 /* manual split the send packet */
1146                 new_skb = skb_copy(skb, GFP_ATOMIC);
1147                 if (!new_skb)
1148                         return -ENOMEM;
1149                 dev_kfree_skb_any(skb);
1150                 *out_skb = new_skb;
1151         }
1152
1153         if (unlikely(ring_space(ring) < buf_num))
1154                 return -EBUSY;
1155
1156         *bnum = buf_num;
1157         return 0;
1158 }
1159
1160 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1161                                   struct hns3_enet_ring *ring)
1162 {
1163         struct sk_buff *skb = *out_skb;
1164         struct sk_buff *new_skb = NULL;
1165         int buf_num;
1166
1167         /* No. of segments (plus a header) */
1168         buf_num = skb_shinfo(skb)->nr_frags + 1;
1169
1170         if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1171                 buf_num = hns3_tx_bd_count(skb->len);
1172                 if (ring_space(ring) < buf_num)
1173                         return -EBUSY;
1174                 /* manual split the send packet */
1175                 new_skb = skb_copy(skb, GFP_ATOMIC);
1176                 if (!new_skb)
1177                         return -ENOMEM;
1178                 dev_kfree_skb_any(skb);
1179                 *out_skb = new_skb;
1180         }
1181
1182         if (unlikely(ring_space(ring) < buf_num))
1183                 return -EBUSY;
1184
1185         *bnum = buf_num;
1186
1187         return 0;
1188 }
1189
1190 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1191 {
1192         struct device *dev = ring_to_dev(ring);
1193         unsigned int i;
1194
1195         for (i = 0; i < ring->desc_num; i++) {
1196                 /* check if this is where we started */
1197                 if (ring->next_to_use == next_to_use_orig)
1198                         break;
1199
1200                 /* unmap the descriptor dma address */
1201                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1202                         dma_unmap_single(dev,
1203                                          ring->desc_cb[ring->next_to_use].dma,
1204                                         ring->desc_cb[ring->next_to_use].length,
1205                                         DMA_TO_DEVICE);
1206                 else if (ring->desc_cb[ring->next_to_use].length)
1207                         dma_unmap_page(dev,
1208                                        ring->desc_cb[ring->next_to_use].dma,
1209                                        ring->desc_cb[ring->next_to_use].length,
1210                                        DMA_TO_DEVICE);
1211
1212                 ring->desc_cb[ring->next_to_use].length = 0;
1213
1214                 /* rollback one */
1215                 ring_ptr_move_bw(ring, next_to_use);
1216         }
1217 }
1218
1219 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1220 {
1221         struct hns3_nic_priv *priv = netdev_priv(netdev);
1222         struct hns3_nic_ring_data *ring_data =
1223                 &tx_ring_data(priv, skb->queue_mapping);
1224         struct hns3_enet_ring *ring = ring_data->ring;
1225         struct netdev_queue *dev_queue;
1226         struct skb_frag_struct *frag;
1227         int next_to_use_head;
1228         int next_to_use_frag;
1229         int buf_num;
1230         int seg_num;
1231         int size;
1232         int ret;
1233         int i;
1234
1235         /* Prefetch the data used later */
1236         prefetch(skb->data);
1237
1238         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1239         case -EBUSY:
1240                 u64_stats_update_begin(&ring->syncp);
1241                 ring->stats.tx_busy++;
1242                 u64_stats_update_end(&ring->syncp);
1243
1244                 goto out_net_tx_busy;
1245         case -ENOMEM:
1246                 u64_stats_update_begin(&ring->syncp);
1247                 ring->stats.sw_err_cnt++;
1248                 u64_stats_update_end(&ring->syncp);
1249                 netdev_err(netdev, "no memory to xmit!\n");
1250
1251                 goto out_err_tx_ok;
1252         default:
1253                 break;
1254         }
1255
1256         /* No. of segments (plus a header) */
1257         seg_num = skb_shinfo(skb)->nr_frags + 1;
1258         /* Fill the first part */
1259         size = skb_headlen(skb);
1260
1261         next_to_use_head = ring->next_to_use;
1262
1263         ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1264                              DESC_TYPE_SKB);
1265         if (unlikely(ret))
1266                 goto head_fill_err;
1267
1268         next_to_use_frag = ring->next_to_use;
1269         /* Fill the fragments */
1270         for (i = 1; i < seg_num; i++) {
1271                 frag = &skb_shinfo(skb)->frags[i - 1];
1272                 size = skb_frag_size(frag);
1273
1274                 ret = hns3_fill_desc(ring, frag, size,
1275                                      seg_num - 1 == i ? 1 : 0,
1276                                      DESC_TYPE_PAGE);
1277
1278                 if (unlikely(ret))
1279                         goto frag_fill_err;
1280         }
1281
1282         /* Complete translate all packets */
1283         dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1284         netdev_tx_sent_queue(dev_queue, skb->len);
1285
1286         wmb(); /* Commit all data before submit */
1287
1288         hnae3_queue_xmit(ring->tqp, buf_num);
1289
1290         return NETDEV_TX_OK;
1291
1292 frag_fill_err:
1293         hns3_clear_desc(ring, next_to_use_frag);
1294
1295 head_fill_err:
1296         hns3_clear_desc(ring, next_to_use_head);
1297
1298 out_err_tx_ok:
1299         dev_kfree_skb_any(skb);
1300         return NETDEV_TX_OK;
1301
1302 out_net_tx_busy:
1303         netif_stop_subqueue(netdev, ring_data->queue_index);
1304         smp_mb(); /* Commit all data before submit */
1305
1306         return NETDEV_TX_BUSY;
1307 }
1308
1309 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1310 {
1311         struct hnae3_handle *h = hns3_get_handle(netdev);
1312         struct sockaddr *mac_addr = p;
1313         int ret;
1314
1315         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1316                 return -EADDRNOTAVAIL;
1317
1318         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1319                 netdev_info(netdev, "already using mac address %pM\n",
1320                             mac_addr->sa_data);
1321                 return 0;
1322         }
1323
1324         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1325         if (ret) {
1326                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1327                 return ret;
1328         }
1329
1330         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1331
1332         return 0;
1333 }
1334
1335 static int hns3_nic_do_ioctl(struct net_device *netdev,
1336                              struct ifreq *ifr, int cmd)
1337 {
1338         struct hnae3_handle *h = hns3_get_handle(netdev);
1339
1340         if (!netif_running(netdev))
1341                 return -EINVAL;
1342
1343         if (!h->ae_algo->ops->do_ioctl)
1344                 return -EOPNOTSUPP;
1345
1346         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1347 }
1348
1349 static int hns3_nic_set_features(struct net_device *netdev,
1350                                  netdev_features_t features)
1351 {
1352         netdev_features_t changed = netdev->features ^ features;
1353         struct hns3_nic_priv *priv = netdev_priv(netdev);
1354         struct hnae3_handle *h = priv->ae_handle;
1355         bool enable;
1356         int ret;
1357
1358         if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1359                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1360                         priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1361                 else
1362                         priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1363         }
1364
1365         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1366                 enable = !!(features & NETIF_F_GRO_HW);
1367                 ret = h->ae_algo->ops->set_gro_en(h, enable);
1368                 if (ret)
1369                         return ret;
1370         }
1371
1372         if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1373             h->ae_algo->ops->enable_vlan_filter) {
1374                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1375                 h->ae_algo->ops->enable_vlan_filter(h, enable);
1376         }
1377
1378         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1379             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1380                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1381                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1382                 if (ret)
1383                         return ret;
1384         }
1385
1386         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1387                 enable = !!(features & NETIF_F_NTUPLE);
1388                 h->ae_algo->ops->enable_fd(h, enable);
1389         }
1390
1391         netdev->features = features;
1392         return 0;
1393 }
1394
1395 static void hns3_nic_get_stats64(struct net_device *netdev,
1396                                  struct rtnl_link_stats64 *stats)
1397 {
1398         struct hns3_nic_priv *priv = netdev_priv(netdev);
1399         int queue_num = priv->ae_handle->kinfo.num_tqps;
1400         struct hnae3_handle *handle = priv->ae_handle;
1401         struct hns3_enet_ring *ring;
1402         u64 rx_length_errors = 0;
1403         u64 rx_crc_errors = 0;
1404         u64 rx_multicast = 0;
1405         unsigned int start;
1406         u64 tx_errors = 0;
1407         u64 rx_errors = 0;
1408         unsigned int idx;
1409         u64 tx_bytes = 0;
1410         u64 rx_bytes = 0;
1411         u64 tx_pkts = 0;
1412         u64 rx_pkts = 0;
1413         u64 tx_drop = 0;
1414         u64 rx_drop = 0;
1415
1416         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1417                 return;
1418
1419         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1420
1421         for (idx = 0; idx < queue_num; idx++) {
1422                 /* fetch the tx stats */
1423                 ring = priv->ring_data[idx].ring;
1424                 do {
1425                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1426                         tx_bytes += ring->stats.tx_bytes;
1427                         tx_pkts += ring->stats.tx_pkts;
1428                         tx_drop += ring->stats.sw_err_cnt;
1429                         tx_errors += ring->stats.sw_err_cnt;
1430                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1431
1432                 /* fetch the rx stats */
1433                 ring = priv->ring_data[idx + queue_num].ring;
1434                 do {
1435                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1436                         rx_bytes += ring->stats.rx_bytes;
1437                         rx_pkts += ring->stats.rx_pkts;
1438                         rx_drop += ring->stats.non_vld_descs;
1439                         rx_drop += ring->stats.l2_err;
1440                         rx_errors += ring->stats.non_vld_descs;
1441                         rx_errors += ring->stats.l2_err;
1442                         rx_crc_errors += ring->stats.l2_err;
1443                         rx_crc_errors += ring->stats.l3l4_csum_err;
1444                         rx_multicast += ring->stats.rx_multicast;
1445                         rx_length_errors += ring->stats.err_pkt_len;
1446                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1447         }
1448
1449         stats->tx_bytes = tx_bytes;
1450         stats->tx_packets = tx_pkts;
1451         stats->rx_bytes = rx_bytes;
1452         stats->rx_packets = rx_pkts;
1453
1454         stats->rx_errors = rx_errors;
1455         stats->multicast = rx_multicast;
1456         stats->rx_length_errors = rx_length_errors;
1457         stats->rx_crc_errors = rx_crc_errors;
1458         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1459
1460         stats->tx_errors = tx_errors;
1461         stats->rx_dropped = rx_drop;
1462         stats->tx_dropped = tx_drop;
1463         stats->collisions = netdev->stats.collisions;
1464         stats->rx_over_errors = netdev->stats.rx_over_errors;
1465         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1466         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1467         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1468         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1469         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1470         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1471         stats->tx_window_errors = netdev->stats.tx_window_errors;
1472         stats->rx_compressed = netdev->stats.rx_compressed;
1473         stats->tx_compressed = netdev->stats.tx_compressed;
1474 }
1475
1476 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1477 {
1478         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1479         struct hnae3_handle *h = hns3_get_handle(netdev);
1480         struct hnae3_knic_private_info *kinfo = &h->kinfo;
1481         u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1482         u8 tc = mqprio_qopt->qopt.num_tc;
1483         u16 mode = mqprio_qopt->mode;
1484         u8 hw = mqprio_qopt->qopt.hw;
1485
1486         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1487                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1488                 return -EOPNOTSUPP;
1489
1490         if (tc > HNAE3_MAX_TC)
1491                 return -EINVAL;
1492
1493         if (!netdev)
1494                 return -EINVAL;
1495
1496         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1497                 kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1498 }
1499
1500 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1501                              void *type_data)
1502 {
1503         if (type != TC_SETUP_QDISC_MQPRIO)
1504                 return -EOPNOTSUPP;
1505
1506         return hns3_setup_tc(dev, type_data);
1507 }
1508
1509 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1510                                 __be16 proto, u16 vid)
1511 {
1512         struct hnae3_handle *h = hns3_get_handle(netdev);
1513         struct hns3_nic_priv *priv = netdev_priv(netdev);
1514         int ret = -EIO;
1515
1516         if (h->ae_algo->ops->set_vlan_filter)
1517                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1518
1519         if (!ret)
1520                 set_bit(vid, priv->active_vlans);
1521
1522         return ret;
1523 }
1524
1525 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1526                                  __be16 proto, u16 vid)
1527 {
1528         struct hnae3_handle *h = hns3_get_handle(netdev);
1529         struct hns3_nic_priv *priv = netdev_priv(netdev);
1530         int ret = -EIO;
1531
1532         if (h->ae_algo->ops->set_vlan_filter)
1533                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1534
1535         if (!ret)
1536                 clear_bit(vid, priv->active_vlans);
1537
1538         return ret;
1539 }
1540
1541 static int hns3_restore_vlan(struct net_device *netdev)
1542 {
1543         struct hns3_nic_priv *priv = netdev_priv(netdev);
1544         int ret = 0;
1545         u16 vid;
1546
1547         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1548                 ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1549                 if (ret) {
1550                         netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1551                                    vid, ret);
1552                         return ret;
1553                 }
1554         }
1555
1556         return ret;
1557 }
1558
1559 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1560                                 u8 qos, __be16 vlan_proto)
1561 {
1562         struct hnae3_handle *h = hns3_get_handle(netdev);
1563         int ret = -EIO;
1564
1565         if (h->ae_algo->ops->set_vf_vlan_filter)
1566                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1567                                                    qos, vlan_proto);
1568
1569         return ret;
1570 }
1571
1572 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1573 {
1574         struct hnae3_handle *h = hns3_get_handle(netdev);
1575         int ret;
1576
1577         if (!h->ae_algo->ops->set_mtu)
1578                 return -EOPNOTSUPP;
1579
1580         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1581         if (ret)
1582                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1583                            ret);
1584         else
1585                 netdev->mtu = new_mtu;
1586
1587         return ret;
1588 }
1589
1590 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1591 {
1592         struct hns3_nic_priv *priv = netdev_priv(ndev);
1593         struct hns3_enet_ring *tx_ring = NULL;
1594         int timeout_queue = 0;
1595         int hw_head, hw_tail;
1596         int i;
1597
1598         /* Find the stopped queue the same way the stack does */
1599         for (i = 0; i < ndev->real_num_tx_queues; i++) {
1600                 struct netdev_queue *q;
1601                 unsigned long trans_start;
1602
1603                 q = netdev_get_tx_queue(ndev, i);
1604                 trans_start = q->trans_start;
1605                 if (netif_xmit_stopped(q) &&
1606                     time_after(jiffies,
1607                                (trans_start + ndev->watchdog_timeo))) {
1608                         timeout_queue = i;
1609                         break;
1610                 }
1611         }
1612
1613         if (i == ndev->num_tx_queues) {
1614                 netdev_info(ndev,
1615                             "no netdev TX timeout queue found, timeout count: %llu\n",
1616                             priv->tx_timeout_count);
1617                 return false;
1618         }
1619
1620         tx_ring = priv->ring_data[timeout_queue].ring;
1621
1622         hw_head = readl_relaxed(tx_ring->tqp->io_base +
1623                                 HNS3_RING_TX_RING_HEAD_REG);
1624         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1625                                 HNS3_RING_TX_RING_TAIL_REG);
1626         netdev_info(ndev,
1627                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1628                     priv->tx_timeout_count,
1629                     timeout_queue,
1630                     tx_ring->next_to_use,
1631                     tx_ring->next_to_clean,
1632                     hw_head,
1633                     hw_tail,
1634                     readl(tx_ring->tqp_vector->mask_addr));
1635
1636         return true;
1637 }
1638
1639 static void hns3_nic_net_timeout(struct net_device *ndev)
1640 {
1641         struct hns3_nic_priv *priv = netdev_priv(ndev);
1642         struct hnae3_handle *h = priv->ae_handle;
1643
1644         if (!hns3_get_tx_timeo_queue_info(ndev))
1645                 return;
1646
1647         priv->tx_timeout_count++;
1648
1649         /* request the reset, and let the hclge to determine
1650          * which reset level should be done
1651          */
1652         if (h->ae_algo->ops->reset_event)
1653                 h->ae_algo->ops->reset_event(h->pdev, h);
1654 }
1655
1656 static const struct net_device_ops hns3_nic_netdev_ops = {
1657         .ndo_open               = hns3_nic_net_open,
1658         .ndo_stop               = hns3_nic_net_stop,
1659         .ndo_start_xmit         = hns3_nic_net_xmit,
1660         .ndo_tx_timeout         = hns3_nic_net_timeout,
1661         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
1662         .ndo_do_ioctl           = hns3_nic_do_ioctl,
1663         .ndo_change_mtu         = hns3_nic_change_mtu,
1664         .ndo_set_features       = hns3_nic_set_features,
1665         .ndo_get_stats64        = hns3_nic_get_stats64,
1666         .ndo_setup_tc           = hns3_nic_setup_tc,
1667         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
1668         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
1669         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
1670         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
1671 };
1672
1673 static bool hns3_is_phys_func(struct pci_dev *pdev)
1674 {
1675         u32 dev_id = pdev->device;
1676
1677         switch (dev_id) {
1678         case HNAE3_DEV_ID_GE:
1679         case HNAE3_DEV_ID_25GE:
1680         case HNAE3_DEV_ID_25GE_RDMA:
1681         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1682         case HNAE3_DEV_ID_50GE_RDMA:
1683         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1684         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1685                 return true;
1686         case HNAE3_DEV_ID_100G_VF:
1687         case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1688                 return false;
1689         default:
1690                 dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1691                          dev_id);
1692         }
1693
1694         return false;
1695 }
1696
1697 static void hns3_disable_sriov(struct pci_dev *pdev)
1698 {
1699         /* If our VFs are assigned we cannot shut down SR-IOV
1700          * without causing issues, so just leave the hardware
1701          * available but disabled
1702          */
1703         if (pci_vfs_assigned(pdev)) {
1704                 dev_warn(&pdev->dev,
1705                          "disabling driver while VFs are assigned\n");
1706                 return;
1707         }
1708
1709         pci_disable_sriov(pdev);
1710 }
1711
1712 static void hns3_get_dev_capability(struct pci_dev *pdev,
1713                                     struct hnae3_ae_dev *ae_dev)
1714 {
1715         if (pdev->revision >= 0x21) {
1716                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1717                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1718         }
1719 }
1720
1721 /* hns3_probe - Device initialization routine
1722  * @pdev: PCI device information struct
1723  * @ent: entry in hns3_pci_tbl
1724  *
1725  * hns3_probe initializes a PF identified by a pci_dev structure.
1726  * The OS initialization, configuring of the PF private structure,
1727  * and a hardware reset occur.
1728  *
1729  * Returns 0 on success, negative on failure
1730  */
1731 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1732 {
1733         struct hnae3_ae_dev *ae_dev;
1734         int ret;
1735
1736         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1737                               GFP_KERNEL);
1738         if (!ae_dev) {
1739                 ret = -ENOMEM;
1740                 return ret;
1741         }
1742
1743         ae_dev->pdev = pdev;
1744         ae_dev->flag = ent->driver_data;
1745         ae_dev->dev_type = HNAE3_DEV_KNIC;
1746         ae_dev->reset_type = HNAE3_NONE_RESET;
1747         hns3_get_dev_capability(pdev, ae_dev);
1748         pci_set_drvdata(pdev, ae_dev);
1749
1750         ret = hnae3_register_ae_dev(ae_dev);
1751         if (ret) {
1752                 devm_kfree(&pdev->dev, ae_dev);
1753                 pci_set_drvdata(pdev, NULL);
1754         }
1755
1756         return ret;
1757 }
1758
1759 /* hns3_remove - Device removal routine
1760  * @pdev: PCI device information struct
1761  */
1762 static void hns3_remove(struct pci_dev *pdev)
1763 {
1764         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1765
1766         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1767                 hns3_disable_sriov(pdev);
1768
1769         hnae3_unregister_ae_dev(ae_dev);
1770         pci_set_drvdata(pdev, NULL);
1771 }
1772
1773 /**
1774  * hns3_pci_sriov_configure
1775  * @pdev: pointer to a pci_dev structure
1776  * @num_vfs: number of VFs to allocate
1777  *
1778  * Enable or change the number of VFs. Called when the user updates the number
1779  * of VFs in sysfs.
1780  **/
1781 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1782 {
1783         int ret;
1784
1785         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1786                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
1787                 return -EINVAL;
1788         }
1789
1790         if (num_vfs) {
1791                 ret = pci_enable_sriov(pdev, num_vfs);
1792                 if (ret)
1793                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1794                 else
1795                         return num_vfs;
1796         } else if (!pci_vfs_assigned(pdev)) {
1797                 pci_disable_sriov(pdev);
1798         } else {
1799                 dev_warn(&pdev->dev,
1800                          "Unable to free VFs because some are assigned to VMs.\n");
1801         }
1802
1803         return 0;
1804 }
1805
1806 static void hns3_shutdown(struct pci_dev *pdev)
1807 {
1808         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1809
1810         hnae3_unregister_ae_dev(ae_dev);
1811         devm_kfree(&pdev->dev, ae_dev);
1812         pci_set_drvdata(pdev, NULL);
1813
1814         if (system_state == SYSTEM_POWER_OFF)
1815                 pci_set_power_state(pdev, PCI_D3hot);
1816 }
1817
1818 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1819                                             pci_channel_state_t state)
1820 {
1821         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1822         pci_ers_result_t ret;
1823
1824         dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1825
1826         if (state == pci_channel_io_perm_failure)
1827                 return PCI_ERS_RESULT_DISCONNECT;
1828
1829         if (!ae_dev) {
1830                 dev_err(&pdev->dev,
1831                         "Can't recover - error happened during device init\n");
1832                 return PCI_ERS_RESULT_NONE;
1833         }
1834
1835         if (ae_dev->ops->handle_hw_ras_error)
1836                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1837         else
1838                 return PCI_ERS_RESULT_NONE;
1839
1840         return ret;
1841 }
1842
1843 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1844 {
1845         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1846         struct device *dev = &pdev->dev;
1847
1848         dev_info(dev, "requesting reset due to PCI error\n");
1849
1850         /* request the reset */
1851         if (ae_dev->ops->reset_event) {
1852                 if (!ae_dev->override_pci_need_reset)
1853                         ae_dev->ops->reset_event(pdev, NULL);
1854
1855                 return PCI_ERS_RESULT_RECOVERED;
1856         }
1857
1858         return PCI_ERS_RESULT_DISCONNECT;
1859 }
1860
1861 static void hns3_reset_prepare(struct pci_dev *pdev)
1862 {
1863         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1864
1865         dev_info(&pdev->dev, "hns3 flr prepare\n");
1866         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1867                 ae_dev->ops->flr_prepare(ae_dev);
1868 }
1869
1870 static void hns3_reset_done(struct pci_dev *pdev)
1871 {
1872         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1873
1874         dev_info(&pdev->dev, "hns3 flr done\n");
1875         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1876                 ae_dev->ops->flr_done(ae_dev);
1877 }
1878
1879 static const struct pci_error_handlers hns3_err_handler = {
1880         .error_detected = hns3_error_detected,
1881         .slot_reset     = hns3_slot_reset,
1882         .reset_prepare  = hns3_reset_prepare,
1883         .reset_done     = hns3_reset_done,
1884 };
1885
1886 static struct pci_driver hns3_driver = {
1887         .name     = hns3_driver_name,
1888         .id_table = hns3_pci_tbl,
1889         .probe    = hns3_probe,
1890         .remove   = hns3_remove,
1891         .shutdown = hns3_shutdown,
1892         .sriov_configure = hns3_pci_sriov_configure,
1893         .err_handler    = &hns3_err_handler,
1894 };
1895
1896 /* set default feature to hns3 */
1897 static void hns3_set_default_feature(struct net_device *netdev)
1898 {
1899         struct hnae3_handle *h = hns3_get_handle(netdev);
1900         struct pci_dev *pdev = h->pdev;
1901
1902         netdev->priv_flags |= IFF_UNICAST_FLT;
1903
1904         netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1905                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1906                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1907                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1908                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1909
1910         netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1911
1912         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1913
1914         netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1915                 NETIF_F_HW_VLAN_CTAG_FILTER |
1916                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1917                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1918                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1919                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1920                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1921
1922         netdev->vlan_features |=
1923                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1924                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1925                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1926                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1927                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1928
1929         netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1930                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1931                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1932                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1933                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1934                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1935
1936         if (pdev->revision >= 0x21) {
1937                 netdev->hw_features |= NETIF_F_GRO_HW;
1938                 netdev->features |= NETIF_F_GRO_HW;
1939
1940                 if (!(h->flags & HNAE3_SUPPORT_VF)) {
1941                         netdev->hw_features |= NETIF_F_NTUPLE;
1942                         netdev->features |= NETIF_F_NTUPLE;
1943                 }
1944         }
1945 }
1946
1947 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1948                              struct hns3_desc_cb *cb)
1949 {
1950         unsigned int order = hnae3_page_order(ring);
1951         struct page *p;
1952
1953         p = dev_alloc_pages(order);
1954         if (!p)
1955                 return -ENOMEM;
1956
1957         cb->priv = p;
1958         cb->page_offset = 0;
1959         cb->reuse_flag = 0;
1960         cb->buf  = page_address(p);
1961         cb->length = hnae3_page_size(ring);
1962         cb->type = DESC_TYPE_PAGE;
1963
1964         return 0;
1965 }
1966
1967 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1968                              struct hns3_desc_cb *cb)
1969 {
1970         if (cb->type == DESC_TYPE_SKB)
1971                 dev_kfree_skb_any((struct sk_buff *)cb->priv);
1972         else if (!HNAE3_IS_TX_RING(ring))
1973                 put_page((struct page *)cb->priv);
1974         memset(cb, 0, sizeof(*cb));
1975 }
1976
1977 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1978 {
1979         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1980                                cb->length, ring_to_dma_dir(ring));
1981
1982         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
1983                 return -EIO;
1984
1985         return 0;
1986 }
1987
1988 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1989                               struct hns3_desc_cb *cb)
1990 {
1991         if (cb->type == DESC_TYPE_SKB)
1992                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1993                                  ring_to_dma_dir(ring));
1994         else if (cb->length)
1995                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1996                                ring_to_dma_dir(ring));
1997 }
1998
1999 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2000 {
2001         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2002         ring->desc[i].addr = 0;
2003 }
2004
2005 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2006 {
2007         struct hns3_desc_cb *cb = &ring->desc_cb[i];
2008
2009         if (!ring->desc_cb[i].dma)
2010                 return;
2011
2012         hns3_buffer_detach(ring, i);
2013         hns3_free_buffer(ring, cb);
2014 }
2015
2016 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2017 {
2018         int i;
2019
2020         for (i = 0; i < ring->desc_num; i++)
2021                 hns3_free_buffer_detach(ring, i);
2022 }
2023
2024 /* free desc along with its attached buffer */
2025 static void hns3_free_desc(struct hns3_enet_ring *ring)
2026 {
2027         int size = ring->desc_num * sizeof(ring->desc[0]);
2028
2029         hns3_free_buffers(ring);
2030
2031         if (ring->desc) {
2032                 dma_free_coherent(ring_to_dev(ring), size,
2033                                   ring->desc, ring->desc_dma_addr);
2034                 ring->desc = NULL;
2035         }
2036 }
2037
2038 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2039 {
2040         int size = ring->desc_num * sizeof(ring->desc[0]);
2041
2042         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2043                                         &ring->desc_dma_addr, GFP_KERNEL);
2044         if (!ring->desc)
2045                 return -ENOMEM;
2046
2047         return 0;
2048 }
2049
2050 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2051                                    struct hns3_desc_cb *cb)
2052 {
2053         int ret;
2054
2055         ret = hns3_alloc_buffer(ring, cb);
2056         if (ret)
2057                 goto out;
2058
2059         ret = hns3_map_buffer(ring, cb);
2060         if (ret)
2061                 goto out_with_buf;
2062
2063         return 0;
2064
2065 out_with_buf:
2066         hns3_free_buffer(ring, cb);
2067 out:
2068         return ret;
2069 }
2070
2071 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2072 {
2073         int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2074
2075         if (ret)
2076                 return ret;
2077
2078         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2079
2080         return 0;
2081 }
2082
2083 /* Allocate memory for raw pkg, and map with dma */
2084 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2085 {
2086         int i, j, ret;
2087
2088         for (i = 0; i < ring->desc_num; i++) {
2089                 ret = hns3_alloc_buffer_attach(ring, i);
2090                 if (ret)
2091                         goto out_buffer_fail;
2092         }
2093
2094         return 0;
2095
2096 out_buffer_fail:
2097         for (j = i - 1; j >= 0; j--)
2098                 hns3_free_buffer_detach(ring, j);
2099         return ret;
2100 }
2101
2102 /* detach a in-used buffer and replace with a reserved one  */
2103 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2104                                 struct hns3_desc_cb *res_cb)
2105 {
2106         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2107         ring->desc_cb[i] = *res_cb;
2108         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2109         ring->desc[i].rx.bd_base_info = 0;
2110 }
2111
2112 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2113 {
2114         ring->desc_cb[i].reuse_flag = 0;
2115         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2116                 + ring->desc_cb[i].page_offset);
2117         ring->desc[i].rx.bd_base_info = 0;
2118 }
2119
2120 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2121                                       int *pkts)
2122 {
2123         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2124
2125         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2126         (*bytes) += desc_cb->length;
2127         /* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2128         hns3_free_buffer_detach(ring, ring->next_to_clean);
2129
2130         ring_ptr_move_fw(ring, next_to_clean);
2131 }
2132
2133 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2134 {
2135         int u = ring->next_to_use;
2136         int c = ring->next_to_clean;
2137
2138         if (unlikely(h > ring->desc_num))
2139                 return 0;
2140
2141         return u > c ? (h > c && h <= u) : (h > c || h <= u);
2142 }
2143
2144 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2145 {
2146         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2147         struct hns3_nic_priv *priv = netdev_priv(netdev);
2148         struct netdev_queue *dev_queue;
2149         int bytes, pkts;
2150         int head;
2151
2152         head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2153         rmb(); /* Make sure head is ready before touch any data */
2154
2155         if (is_ring_empty(ring) || head == ring->next_to_clean)
2156                 return; /* no data to poll */
2157
2158         if (unlikely(!is_valid_clean_head(ring, head))) {
2159                 netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2160                            ring->next_to_use, ring->next_to_clean);
2161
2162                 u64_stats_update_begin(&ring->syncp);
2163                 ring->stats.io_err_cnt++;
2164                 u64_stats_update_end(&ring->syncp);
2165                 return;
2166         }
2167
2168         bytes = 0;
2169         pkts = 0;
2170         while (head != ring->next_to_clean) {
2171                 hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2172                 /* Issue prefetch for next Tx descriptor */
2173                 prefetch(&ring->desc_cb[ring->next_to_clean]);
2174         }
2175
2176         ring->tqp_vector->tx_group.total_bytes += bytes;
2177         ring->tqp_vector->tx_group.total_packets += pkts;
2178
2179         u64_stats_update_begin(&ring->syncp);
2180         ring->stats.tx_bytes += bytes;
2181         ring->stats.tx_pkts += pkts;
2182         u64_stats_update_end(&ring->syncp);
2183
2184         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2185         netdev_tx_completed_queue(dev_queue, pkts, bytes);
2186
2187         if (unlikely(pkts && netif_carrier_ok(netdev) &&
2188                      (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2189                 /* Make sure that anybody stopping the queue after this
2190                  * sees the new next_to_clean.
2191                  */
2192                 smp_mb();
2193                 if (netif_tx_queue_stopped(dev_queue) &&
2194                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2195                         netif_tx_wake_queue(dev_queue);
2196                         ring->stats.restart_queue++;
2197                 }
2198         }
2199 }
2200
2201 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2202 {
2203         int ntc = ring->next_to_clean;
2204         int ntu = ring->next_to_use;
2205
2206         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2207 }
2208
2209 static void
2210 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2211 {
2212         struct hns3_desc_cb *desc_cb;
2213         struct hns3_desc_cb res_cbs;
2214         int i, ret;
2215
2216         for (i = 0; i < cleand_count; i++) {
2217                 desc_cb = &ring->desc_cb[ring->next_to_use];
2218                 if (desc_cb->reuse_flag) {
2219                         u64_stats_update_begin(&ring->syncp);
2220                         ring->stats.reuse_pg_cnt++;
2221                         u64_stats_update_end(&ring->syncp);
2222
2223                         hns3_reuse_buffer(ring, ring->next_to_use);
2224                 } else {
2225                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
2226                         if (ret) {
2227                                 u64_stats_update_begin(&ring->syncp);
2228                                 ring->stats.sw_err_cnt++;
2229                                 u64_stats_update_end(&ring->syncp);
2230
2231                                 netdev_err(ring->tqp->handle->kinfo.netdev,
2232                                            "hnae reserve buffer map failed.\n");
2233                                 break;
2234                         }
2235                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2236                 }
2237
2238                 ring_ptr_move_fw(ring, next_to_use);
2239         }
2240
2241         wmb(); /* Make all data has been write before submit */
2242         writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2243 }
2244
2245 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2246                                 struct hns3_enet_ring *ring, int pull_len,
2247                                 struct hns3_desc_cb *desc_cb)
2248 {
2249         struct hns3_desc *desc;
2250         u32 truesize;
2251         int size;
2252         int last_offset;
2253         bool twobufs;
2254
2255         twobufs = ((PAGE_SIZE < 8192) &&
2256                 hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2257
2258         desc = &ring->desc[ring->next_to_clean];
2259         size = le16_to_cpu(desc->rx.size);
2260
2261         truesize = hnae3_buf_size(ring);
2262
2263         if (!twobufs)
2264                 last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2265
2266         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2267                         size - pull_len, truesize);
2268
2269          /* Avoid re-using remote pages,flag default unreuse */
2270         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2271                 return;
2272
2273         if (twobufs) {
2274                 /* If we are only owner of page we can reuse it */
2275                 if (likely(page_count(desc_cb->priv) == 1)) {
2276                         /* Flip page offset to other buffer */
2277                         desc_cb->page_offset ^= truesize;
2278
2279                         desc_cb->reuse_flag = 1;
2280                         /* bump ref count on page before it is given*/
2281                         get_page(desc_cb->priv);
2282                 }
2283                 return;
2284         }
2285
2286         /* Move offset up to the next cache line */
2287         desc_cb->page_offset += truesize;
2288
2289         if (desc_cb->page_offset <= last_offset) {
2290                 desc_cb->reuse_flag = 1;
2291                 /* Bump ref count on page before it is given*/
2292                 get_page(desc_cb->priv);
2293         }
2294 }
2295
2296 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2297                              struct hns3_desc *desc)
2298 {
2299         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2300         int l3_type, l4_type;
2301         u32 bd_base_info;
2302         int ol4_type;
2303         u32 l234info;
2304
2305         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2306         l234info = le32_to_cpu(desc->rx.l234_info);
2307
2308         skb->ip_summed = CHECKSUM_NONE;
2309
2310         skb_checksum_none_assert(skb);
2311
2312         if (!(netdev->features & NETIF_F_RXCSUM))
2313                 return;
2314
2315         /* We MUST enable hardware checksum before enabling hardware GRO */
2316         if (skb_shinfo(skb)->gso_size) {
2317                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2318                 return;
2319         }
2320
2321         /* check if hardware has done checksum */
2322         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2323                 return;
2324
2325         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2326                                  BIT(HNS3_RXD_OL3E_B) |
2327                                  BIT(HNS3_RXD_OL4E_B)))) {
2328                 u64_stats_update_begin(&ring->syncp);
2329                 ring->stats.l3l4_csum_err++;
2330                 u64_stats_update_end(&ring->syncp);
2331
2332                 return;
2333         }
2334
2335         ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2336                                    HNS3_RXD_OL4ID_S);
2337         switch (ol4_type) {
2338         case HNS3_OL4_TYPE_MAC_IN_UDP:
2339         case HNS3_OL4_TYPE_NVGRE:
2340                 skb->csum_level = 1;
2341                 /* fall through */
2342         case HNS3_OL4_TYPE_NO_TUN:
2343                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2344                                           HNS3_RXD_L3ID_S);
2345                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2346                                           HNS3_RXD_L4ID_S);
2347
2348                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2349                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2350                      l3_type == HNS3_L3_TYPE_IPV6) &&
2351                     (l4_type == HNS3_L4_TYPE_UDP ||
2352                      l4_type == HNS3_L4_TYPE_TCP ||
2353                      l4_type == HNS3_L4_TYPE_SCTP))
2354                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2355                 break;
2356         default:
2357                 break;
2358         }
2359 }
2360
2361 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2362 {
2363         if (skb_has_frag_list(skb))
2364                 napi_gro_flush(&ring->tqp_vector->napi, false);
2365
2366         napi_gro_receive(&ring->tqp_vector->napi, skb);
2367 }
2368
2369 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2370                                 struct hns3_desc *desc, u32 l234info,
2371                                 u16 *vlan_tag)
2372 {
2373         struct pci_dev *pdev = ring->tqp->handle->pdev;
2374
2375         if (pdev->revision == 0x20) {
2376                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2377                 if (!(*vlan_tag & VLAN_VID_MASK))
2378                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2379
2380                 return (*vlan_tag != 0);
2381         }
2382
2383 #define HNS3_STRP_OUTER_VLAN    0x1
2384 #define HNS3_STRP_INNER_VLAN    0x2
2385
2386         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2387                                 HNS3_RXD_STRP_TAGP_S)) {
2388         case HNS3_STRP_OUTER_VLAN:
2389                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2390                 return true;
2391         case HNS3_STRP_INNER_VLAN:
2392                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2393                 return true;
2394         default:
2395                 return false;
2396         }
2397 }
2398
2399 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2400                           unsigned char *va)
2401 {
2402 #define HNS3_NEED_ADD_FRAG      1
2403         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2404         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2405         struct sk_buff *skb;
2406
2407         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2408         skb = ring->skb;
2409         if (unlikely(!skb)) {
2410                 netdev_err(netdev, "alloc rx skb fail\n");
2411
2412                 u64_stats_update_begin(&ring->syncp);
2413                 ring->stats.sw_err_cnt++;
2414                 u64_stats_update_end(&ring->syncp);
2415
2416                 return -ENOMEM;
2417         }
2418
2419         prefetchw(skb->data);
2420
2421         ring->pending_buf = 1;
2422         ring->frag_num = 0;
2423         ring->tail_skb = NULL;
2424         if (length <= HNS3_RX_HEAD_SIZE) {
2425                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2426
2427                 /* We can reuse buffer as-is, just make sure it is local */
2428                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2429                         desc_cb->reuse_flag = 1;
2430                 else /* This page cannot be reused so discard it */
2431                         put_page(desc_cb->priv);
2432
2433                 ring_ptr_move_fw(ring, next_to_clean);
2434                 return 0;
2435         }
2436         u64_stats_update_begin(&ring->syncp);
2437         ring->stats.seg_pkt_cnt++;
2438         u64_stats_update_end(&ring->syncp);
2439
2440         ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2441         __skb_put(skb, ring->pull_len);
2442         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2443                             desc_cb);
2444         ring_ptr_move_fw(ring, next_to_clean);
2445
2446         return HNS3_NEED_ADD_FRAG;
2447 }
2448
2449 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2450                          struct sk_buff **out_skb, bool pending)
2451 {
2452         struct sk_buff *skb = *out_skb;
2453         struct sk_buff *head_skb = *out_skb;
2454         struct sk_buff *new_skb;
2455         struct hns3_desc_cb *desc_cb;
2456         struct hns3_desc *pre_desc;
2457         u32 bd_base_info;
2458         int pre_bd;
2459
2460         /* if there is pending bd, the SW param next_to_clean has moved
2461          * to next and the next is NULL
2462          */
2463         if (pending) {
2464                 pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2465                         ring->desc_num;
2466                 pre_desc = &ring->desc[pre_bd];
2467                 bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2468         } else {
2469                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2470         }
2471
2472         while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2473                 desc = &ring->desc[ring->next_to_clean];
2474                 desc_cb = &ring->desc_cb[ring->next_to_clean];
2475                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2476                 /* make sure HW write desc complete */
2477                 dma_rmb();
2478                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2479                         return -ENXIO;
2480
2481                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2482                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2483                                                  HNS3_RX_HEAD_SIZE);
2484                         if (unlikely(!new_skb)) {
2485                                 netdev_err(ring->tqp->handle->kinfo.netdev,
2486                                            "alloc rx skb frag fail\n");
2487                                 return -ENXIO;
2488                         }
2489                         ring->frag_num = 0;
2490
2491                         if (ring->tail_skb) {
2492                                 ring->tail_skb->next = new_skb;
2493                                 ring->tail_skb = new_skb;
2494                         } else {
2495                                 skb_shinfo(skb)->frag_list = new_skb;
2496                                 ring->tail_skb = new_skb;
2497                         }
2498                 }
2499
2500                 if (ring->tail_skb) {
2501                         head_skb->truesize += hnae3_buf_size(ring);
2502                         head_skb->data_len += le16_to_cpu(desc->rx.size);
2503                         head_skb->len += le16_to_cpu(desc->rx.size);
2504                         skb = ring->tail_skb;
2505                 }
2506
2507                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2508                 ring_ptr_move_fw(ring, next_to_clean);
2509                 ring->pending_buf++;
2510         }
2511
2512         return 0;
2513 }
2514
2515 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2516                                u32 bd_base_info)
2517 {
2518         u16 gro_count;
2519         u32 l3_type;
2520
2521         gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2522                                     HNS3_RXD_GRO_COUNT_S);
2523         /* if there is no HW GRO, do not set gro params */
2524         if (!gro_count)
2525                 return;
2526
2527         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2528          * to skb_shinfo(skb)->gso_segs
2529          */
2530         NAPI_GRO_CB(skb)->count = gro_count;
2531
2532         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2533                                   HNS3_RXD_L3ID_S);
2534         if (l3_type == HNS3_L3_TYPE_IPV4)
2535                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2536         else if (l3_type == HNS3_L3_TYPE_IPV6)
2537                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2538         else
2539                 return;
2540
2541         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2542                                                     HNS3_RXD_GRO_SIZE_M,
2543                                                     HNS3_RXD_GRO_SIZE_S);
2544         if (skb_shinfo(skb)->gso_size)
2545                 tcp_gro_complete(skb);
2546 }
2547
2548 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2549                                      struct sk_buff *skb)
2550 {
2551         struct hnae3_handle *handle = ring->tqp->handle;
2552         enum pkt_hash_types rss_type;
2553         struct hns3_desc *desc;
2554         int last_bd;
2555
2556         /* When driver handle the rss type, ring->next_to_clean indicates the
2557          * first descriptor of next packet, need -1 here.
2558          */
2559         last_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num;
2560         desc = &ring->desc[last_bd];
2561
2562         if (le32_to_cpu(desc->rx.rss_hash))
2563                 rss_type = handle->kinfo.rss_type;
2564         else
2565                 rss_type = PKT_HASH_TYPE_NONE;
2566
2567         skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2568 }
2569
2570 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2571                              struct sk_buff **out_skb)
2572 {
2573         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2574         enum hns3_pkt_l2t_type l2_frame_type;
2575         struct sk_buff *skb = ring->skb;
2576         struct hns3_desc_cb *desc_cb;
2577         struct hns3_desc *desc;
2578         u32 bd_base_info;
2579         u32 l234info;
2580         int length;
2581         int ret;
2582
2583         desc = &ring->desc[ring->next_to_clean];
2584         desc_cb = &ring->desc_cb[ring->next_to_clean];
2585
2586         prefetch(desc);
2587
2588         length = le16_to_cpu(desc->rx.size);
2589         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2590
2591         /* Check valid BD */
2592         if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2593                 return -ENXIO;
2594
2595         if (!skb)
2596                 ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2597
2598         /* Prefetch first cache line of first page
2599          * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2600          * line size is 64B so need to prefetch twice to make it 128B. But in
2601          * actual we can have greater size of caches with 128B Level 1 cache
2602          * lines. In such a case, single fetch would suffice to cache in the
2603          * relevant part of the header.
2604          */
2605         prefetch(ring->va);
2606 #if L1_CACHE_BYTES < 128
2607         prefetch(ring->va + L1_CACHE_BYTES);
2608 #endif
2609
2610         if (!skb) {
2611                 ret = hns3_alloc_skb(ring, length, ring->va);
2612                 *out_skb = skb = ring->skb;
2613
2614                 if (ret < 0) /* alloc buffer fail */
2615                         return ret;
2616                 if (ret > 0) { /* need add frag */
2617                         ret = hns3_add_frag(ring, desc, &skb, false);
2618                         if (ret)
2619                                 return ret;
2620
2621                         /* As the head data may be changed when GRO enable, copy
2622                          * the head data in after other data rx completed
2623                          */
2624                         memcpy(skb->data, ring->va,
2625                                ALIGN(ring->pull_len, sizeof(long)));
2626                 }
2627         } else {
2628                 ret = hns3_add_frag(ring, desc, &skb, true);
2629                 if (ret)
2630                         return ret;
2631
2632                 /* As the head data may be changed when GRO enable, copy
2633                  * the head data in after other data rx completed
2634                  */
2635                 memcpy(skb->data, ring->va,
2636                        ALIGN(ring->pull_len, sizeof(long)));
2637         }
2638
2639         l234info = le32_to_cpu(desc->rx.l234_info);
2640         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2641
2642         /* Based on hw strategy, the tag offloaded will be stored at
2643          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2644          * in one layer tag case.
2645          */
2646         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2647                 u16 vlan_tag;
2648
2649                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2650                         __vlan_hwaccel_put_tag(skb,
2651                                                htons(ETH_P_8021Q),
2652                                                vlan_tag);
2653         }
2654
2655         if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) {
2656                 u64_stats_update_begin(&ring->syncp);
2657                 ring->stats.non_vld_descs++;
2658                 u64_stats_update_end(&ring->syncp);
2659
2660                 dev_kfree_skb_any(skb);
2661                 return -EINVAL;
2662         }
2663
2664         if (unlikely((!desc->rx.pkt_len) ||
2665                      (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2666                                   BIT(HNS3_RXD_L2E_B))))) {
2667                 u64_stats_update_begin(&ring->syncp);
2668                 if (l234info & BIT(HNS3_RXD_L2E_B))
2669                         ring->stats.l2_err++;
2670                 else
2671                         ring->stats.err_pkt_len++;
2672                 u64_stats_update_end(&ring->syncp);
2673
2674                 dev_kfree_skb_any(skb);
2675                 return -EFAULT;
2676         }
2677
2678
2679         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2680                                         HNS3_RXD_DMAC_S);
2681         u64_stats_update_begin(&ring->syncp);
2682         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2683                 ring->stats.rx_multicast++;
2684
2685         ring->stats.rx_pkts++;
2686         ring->stats.rx_bytes += skb->len;
2687         u64_stats_update_end(&ring->syncp);
2688
2689         ring->tqp_vector->rx_group.total_bytes += skb->len;
2690
2691         /* This is needed in order to enable forwarding support */
2692         hns3_set_gro_param(skb, l234info, bd_base_info);
2693
2694         hns3_rx_checksum(ring, skb, desc);
2695         *out_skb = skb;
2696         hns3_set_rx_skb_rss_type(ring, skb);
2697
2698         return 0;
2699 }
2700
2701 int hns3_clean_rx_ring(
2702                 struct hns3_enet_ring *ring, int budget,
2703                 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2704 {
2705 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2706         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2707         int recv_pkts, recv_bds, clean_count, err;
2708         int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2709         struct sk_buff *skb = ring->skb;
2710         int num;
2711
2712         num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2713         rmb(); /* Make sure num taken effect before the other data is touched */
2714
2715         recv_pkts = 0, recv_bds = 0, clean_count = 0;
2716         num -= unused_count;
2717
2718         while (recv_pkts < budget && recv_bds < num) {
2719                 /* Reuse or realloc buffers */
2720                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2721                         hns3_nic_alloc_rx_buffers(ring,
2722                                                   clean_count + unused_count);
2723                         clean_count = 0;
2724                         unused_count = hns3_desc_unused(ring) -
2725                                         ring->pending_buf;
2726                 }
2727
2728                 /* Poll one pkt */
2729                 err = hns3_handle_rx_bd(ring, &skb);
2730                 if (unlikely(!skb)) /* This fault cannot be repaired */
2731                         goto out;
2732
2733                 if (err == -ENXIO) { /* Do not get FE for the packet */
2734                         goto out;
2735                 } else if (unlikely(err)) {  /* Do jump the err */
2736                         recv_bds += ring->pending_buf;
2737                         clean_count += ring->pending_buf;
2738                         ring->skb = NULL;
2739                         ring->pending_buf = 0;
2740                         continue;
2741                 }
2742
2743                 /* Do update ip stack process */
2744                 skb->protocol = eth_type_trans(skb, netdev);
2745                 rx_fn(ring, skb);
2746                 recv_bds += ring->pending_buf;
2747                 clean_count += ring->pending_buf;
2748                 ring->skb = NULL;
2749                 ring->pending_buf = 0;
2750
2751                 recv_pkts++;
2752         }
2753
2754 out:
2755         /* Make all data has been write before submit */
2756         if (clean_count + unused_count > 0)
2757                 hns3_nic_alloc_rx_buffers(ring,
2758                                           clean_count + unused_count);
2759
2760         return recv_pkts;
2761 }
2762
2763 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2764 {
2765         struct hns3_enet_tqp_vector *tqp_vector =
2766                                         ring_group->ring->tqp_vector;
2767         enum hns3_flow_level_range new_flow_level;
2768         int packets_per_msecs;
2769         int bytes_per_msecs;
2770         u32 time_passed_ms;
2771         u16 new_int_gl;
2772
2773         if (!tqp_vector->last_jiffies)
2774                 return false;
2775
2776         if (ring_group->total_packets == 0) {
2777                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
2778                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
2779                 return true;
2780         }
2781
2782         /* Simple throttlerate management
2783          * 0-10MB/s   lower     (50000 ints/s)
2784          * 10-20MB/s   middle    (20000 ints/s)
2785          * 20-1249MB/s high      (18000 ints/s)
2786          * > 40000pps  ultra     (8000 ints/s)
2787          */
2788         new_flow_level = ring_group->coal.flow_level;
2789         new_int_gl = ring_group->coal.int_gl;
2790         time_passed_ms =
2791                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2792
2793         if (!time_passed_ms)
2794                 return false;
2795
2796         do_div(ring_group->total_packets, time_passed_ms);
2797         packets_per_msecs = ring_group->total_packets;
2798
2799         do_div(ring_group->total_bytes, time_passed_ms);
2800         bytes_per_msecs = ring_group->total_bytes;
2801
2802 #define HNS3_RX_LOW_BYTE_RATE 10000
2803 #define HNS3_RX_MID_BYTE_RATE 20000
2804
2805         switch (new_flow_level) {
2806         case HNS3_FLOW_LOW:
2807                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2808                         new_flow_level = HNS3_FLOW_MID;
2809                 break;
2810         case HNS3_FLOW_MID:
2811                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2812                         new_flow_level = HNS3_FLOW_HIGH;
2813                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2814                         new_flow_level = HNS3_FLOW_LOW;
2815                 break;
2816         case HNS3_FLOW_HIGH:
2817         case HNS3_FLOW_ULTRA:
2818         default:
2819                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2820                         new_flow_level = HNS3_FLOW_MID;
2821                 break;
2822         }
2823
2824 #define HNS3_RX_ULTRA_PACKET_RATE 40
2825
2826         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2827             &tqp_vector->rx_group == ring_group)
2828                 new_flow_level = HNS3_FLOW_ULTRA;
2829
2830         switch (new_flow_level) {
2831         case HNS3_FLOW_LOW:
2832                 new_int_gl = HNS3_INT_GL_50K;
2833                 break;
2834         case HNS3_FLOW_MID:
2835                 new_int_gl = HNS3_INT_GL_20K;
2836                 break;
2837         case HNS3_FLOW_HIGH:
2838                 new_int_gl = HNS3_INT_GL_18K;
2839                 break;
2840         case HNS3_FLOW_ULTRA:
2841                 new_int_gl = HNS3_INT_GL_8K;
2842                 break;
2843         default:
2844                 break;
2845         }
2846
2847         ring_group->total_bytes = 0;
2848         ring_group->total_packets = 0;
2849         ring_group->coal.flow_level = new_flow_level;
2850         if (new_int_gl != ring_group->coal.int_gl) {
2851                 ring_group->coal.int_gl = new_int_gl;
2852                 return true;
2853         }
2854         return false;
2855 }
2856
2857 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2858 {
2859         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2860         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2861         bool rx_update, tx_update;
2862
2863         /* update param every 1000ms */
2864         if (time_before(jiffies,
2865                         tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2866                 return;
2867
2868         if (rx_group->coal.gl_adapt_enable) {
2869                 rx_update = hns3_get_new_int_gl(rx_group);
2870                 if (rx_update)
2871                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
2872                                                        rx_group->coal.int_gl);
2873         }
2874
2875         if (tx_group->coal.gl_adapt_enable) {
2876                 tx_update = hns3_get_new_int_gl(tx_group);
2877                 if (tx_update)
2878                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
2879                                                        tx_group->coal.int_gl);
2880         }
2881
2882         tqp_vector->last_jiffies = jiffies;
2883 }
2884
2885 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2886 {
2887         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2888         struct hns3_enet_ring *ring;
2889         int rx_pkt_total = 0;
2890
2891         struct hns3_enet_tqp_vector *tqp_vector =
2892                 container_of(napi, struct hns3_enet_tqp_vector, napi);
2893         bool clean_complete = true;
2894         int rx_budget;
2895
2896         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2897                 napi_complete(napi);
2898                 return 0;
2899         }
2900
2901         /* Since the actual Tx work is minimal, we can give the Tx a larger
2902          * budget and be more aggressive about cleaning up the Tx descriptors.
2903          */
2904         hns3_for_each_ring(ring, tqp_vector->tx_group)
2905                 hns3_clean_tx_ring(ring);
2906
2907         /* make sure rx ring budget not smaller than 1 */
2908         rx_budget = max(budget / tqp_vector->num_tqps, 1);
2909
2910         hns3_for_each_ring(ring, tqp_vector->rx_group) {
2911                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2912                                                     hns3_rx_skb);
2913
2914                 if (rx_cleaned >= rx_budget)
2915                         clean_complete = false;
2916
2917                 rx_pkt_total += rx_cleaned;
2918         }
2919
2920         tqp_vector->rx_group.total_packets += rx_pkt_total;
2921
2922         if (!clean_complete)
2923                 return budget;
2924
2925         if (napi_complete(napi) &&
2926             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2927                 hns3_update_new_int_gl(tqp_vector);
2928                 hns3_mask_vector_irq(tqp_vector, 1);
2929         }
2930
2931         return rx_pkt_total;
2932 }
2933
2934 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2935                                       struct hnae3_ring_chain_node *head)
2936 {
2937         struct pci_dev *pdev = tqp_vector->handle->pdev;
2938         struct hnae3_ring_chain_node *cur_chain = head;
2939         struct hnae3_ring_chain_node *chain;
2940         struct hns3_enet_ring *tx_ring;
2941         struct hns3_enet_ring *rx_ring;
2942
2943         tx_ring = tqp_vector->tx_group.ring;
2944         if (tx_ring) {
2945                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2946                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2947                               HNAE3_RING_TYPE_TX);
2948                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2949                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2950
2951                 cur_chain->next = NULL;
2952
2953                 while (tx_ring->next) {
2954                         tx_ring = tx_ring->next;
2955
2956                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2957                                              GFP_KERNEL);
2958                         if (!chain)
2959                                 goto err_free_chain;
2960
2961                         cur_chain->next = chain;
2962                         chain->tqp_index = tx_ring->tqp->tqp_index;
2963                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2964                                       HNAE3_RING_TYPE_TX);
2965                         hnae3_set_field(chain->int_gl_idx,
2966                                         HNAE3_RING_GL_IDX_M,
2967                                         HNAE3_RING_GL_IDX_S,
2968                                         HNAE3_RING_GL_TX);
2969
2970                         cur_chain = chain;
2971                 }
2972         }
2973
2974         rx_ring = tqp_vector->rx_group.ring;
2975         if (!tx_ring && rx_ring) {
2976                 cur_chain->next = NULL;
2977                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2978                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2979                               HNAE3_RING_TYPE_RX);
2980                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2981                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2982
2983                 rx_ring = rx_ring->next;
2984         }
2985
2986         while (rx_ring) {
2987                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2988                 if (!chain)
2989                         goto err_free_chain;
2990
2991                 cur_chain->next = chain;
2992                 chain->tqp_index = rx_ring->tqp->tqp_index;
2993                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2994                               HNAE3_RING_TYPE_RX);
2995                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2996                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2997
2998                 cur_chain = chain;
2999
3000                 rx_ring = rx_ring->next;
3001         }
3002
3003         return 0;
3004
3005 err_free_chain:
3006         cur_chain = head->next;
3007         while (cur_chain) {
3008                 chain = cur_chain->next;
3009                 devm_kfree(&pdev->dev, cur_chain);
3010                 cur_chain = chain;
3011         }
3012         head->next = NULL;
3013
3014         return -ENOMEM;
3015 }
3016
3017 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3018                                         struct hnae3_ring_chain_node *head)
3019 {
3020         struct pci_dev *pdev = tqp_vector->handle->pdev;
3021         struct hnae3_ring_chain_node *chain_tmp, *chain;
3022
3023         chain = head->next;
3024
3025         while (chain) {
3026                 chain_tmp = chain->next;
3027                 devm_kfree(&pdev->dev, chain);
3028                 chain = chain_tmp;
3029         }
3030 }
3031
3032 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3033                                    struct hns3_enet_ring *ring)
3034 {
3035         ring->next = group->ring;
3036         group->ring = ring;
3037
3038         group->count++;
3039 }
3040
3041 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3042 {
3043         struct pci_dev *pdev = priv->ae_handle->pdev;
3044         struct hns3_enet_tqp_vector *tqp_vector;
3045         int num_vectors = priv->vector_num;
3046         int numa_node;
3047         int vector_i;
3048
3049         numa_node = dev_to_node(&pdev->dev);
3050
3051         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3052                 tqp_vector = &priv->tqp_vector[vector_i];
3053                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3054                                 &tqp_vector->affinity_mask);
3055         }
3056 }
3057
3058 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3059 {
3060         struct hnae3_ring_chain_node vector_ring_chain;
3061         struct hnae3_handle *h = priv->ae_handle;
3062         struct hns3_enet_tqp_vector *tqp_vector;
3063         int ret = 0;
3064         int i;
3065
3066         hns3_nic_set_cpumask(priv);
3067
3068         for (i = 0; i < priv->vector_num; i++) {
3069                 tqp_vector = &priv->tqp_vector[i];
3070                 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3071                 tqp_vector->num_tqps = 0;
3072         }
3073
3074         for (i = 0; i < h->kinfo.num_tqps; i++) {
3075                 u16 vector_i = i % priv->vector_num;
3076                 u16 tqp_num = h->kinfo.num_tqps;
3077
3078                 tqp_vector = &priv->tqp_vector[vector_i];
3079
3080                 hns3_add_ring_to_group(&tqp_vector->tx_group,
3081                                        priv->ring_data[i].ring);
3082
3083                 hns3_add_ring_to_group(&tqp_vector->rx_group,
3084                                        priv->ring_data[i + tqp_num].ring);
3085
3086                 priv->ring_data[i].ring->tqp_vector = tqp_vector;
3087                 priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3088                 tqp_vector->num_tqps++;
3089         }
3090
3091         for (i = 0; i < priv->vector_num; i++) {
3092                 tqp_vector = &priv->tqp_vector[i];
3093
3094                 tqp_vector->rx_group.total_bytes = 0;
3095                 tqp_vector->rx_group.total_packets = 0;
3096                 tqp_vector->tx_group.total_bytes = 0;
3097                 tqp_vector->tx_group.total_packets = 0;
3098                 tqp_vector->handle = h;
3099
3100                 ret = hns3_get_vector_ring_chain(tqp_vector,
3101                                                  &vector_ring_chain);
3102                 if (ret)
3103                         goto map_ring_fail;
3104
3105                 ret = h->ae_algo->ops->map_ring_to_vector(h,
3106                         tqp_vector->vector_irq, &vector_ring_chain);
3107
3108                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3109
3110                 if (ret)
3111                         goto map_ring_fail;
3112
3113                 netif_napi_add(priv->netdev, &tqp_vector->napi,
3114                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3115         }
3116
3117         return 0;
3118
3119 map_ring_fail:
3120         while (i--)
3121                 netif_napi_del(&priv->tqp_vector[i].napi);
3122
3123         return ret;
3124 }
3125
3126 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3127 {
3128 #define HNS3_VECTOR_PF_MAX_NUM          64
3129
3130         struct hnae3_handle *h = priv->ae_handle;
3131         struct hns3_enet_tqp_vector *tqp_vector;
3132         struct hnae3_vector_info *vector;
3133         struct pci_dev *pdev = h->pdev;
3134         u16 tqp_num = h->kinfo.num_tqps;
3135         u16 vector_num;
3136         int ret = 0;
3137         u16 i;
3138
3139         /* RSS size, cpu online and vector_num should be the same */
3140         /* Should consider 2p/4p later */
3141         vector_num = min_t(u16, num_online_cpus(), tqp_num);
3142         vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3143
3144         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3145                               GFP_KERNEL);
3146         if (!vector)
3147                 return -ENOMEM;
3148
3149         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3150
3151         priv->vector_num = vector_num;
3152         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3153                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3154                              GFP_KERNEL);
3155         if (!priv->tqp_vector) {
3156                 ret = -ENOMEM;
3157                 goto out;
3158         }
3159
3160         for (i = 0; i < priv->vector_num; i++) {
3161                 tqp_vector = &priv->tqp_vector[i];
3162                 tqp_vector->idx = i;
3163                 tqp_vector->mask_addr = vector[i].io_addr;
3164                 tqp_vector->vector_irq = vector[i].vector;
3165                 hns3_vector_gl_rl_init(tqp_vector, priv);
3166         }
3167
3168 out:
3169         devm_kfree(&pdev->dev, vector);
3170         return ret;
3171 }
3172
3173 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3174 {
3175         group->ring = NULL;
3176         group->count = 0;
3177 }
3178
3179 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3180 {
3181         struct hnae3_ring_chain_node vector_ring_chain;
3182         struct hnae3_handle *h = priv->ae_handle;
3183         struct hns3_enet_tqp_vector *tqp_vector;
3184         int i;
3185
3186         for (i = 0; i < priv->vector_num; i++) {
3187                 tqp_vector = &priv->tqp_vector[i];
3188
3189                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3190                         continue;
3191
3192                 hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3193
3194                 h->ae_algo->ops->unmap_ring_from_vector(h,
3195                         tqp_vector->vector_irq, &vector_ring_chain);
3196
3197                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3198
3199                 if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3200                         irq_set_affinity_notifier(tqp_vector->vector_irq,
3201                                                   NULL);
3202                         irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3203                         free_irq(tqp_vector->vector_irq, tqp_vector);
3204                         tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3205                 }
3206
3207                 hns3_clear_ring_group(&tqp_vector->rx_group);
3208                 hns3_clear_ring_group(&tqp_vector->tx_group);
3209                 netif_napi_del(&priv->tqp_vector[i].napi);
3210         }
3211 }
3212
3213 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3214 {
3215         struct hnae3_handle *h = priv->ae_handle;
3216         struct pci_dev *pdev = h->pdev;
3217         int i, ret;
3218
3219         for (i = 0; i < priv->vector_num; i++) {
3220                 struct hns3_enet_tqp_vector *tqp_vector;
3221
3222                 tqp_vector = &priv->tqp_vector[i];
3223                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3224                 if (ret)
3225                         return ret;
3226         }
3227
3228         devm_kfree(&pdev->dev, priv->tqp_vector);
3229         return 0;
3230 }
3231
3232 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3233                              int ring_type)
3234 {
3235         struct hns3_nic_ring_data *ring_data = priv->ring_data;
3236         int queue_num = priv->ae_handle->kinfo.num_tqps;
3237         struct pci_dev *pdev = priv->ae_handle->pdev;
3238         struct hns3_enet_ring *ring;
3239         int desc_num;
3240
3241         ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3242         if (!ring)
3243                 return -ENOMEM;
3244
3245         if (ring_type == HNAE3_RING_TYPE_TX) {
3246                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3247                 ring_data[q->tqp_index].ring = ring;
3248                 ring_data[q->tqp_index].queue_index = q->tqp_index;
3249                 ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3250         } else {
3251                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3252                 ring_data[q->tqp_index + queue_num].ring = ring;
3253                 ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3254                 ring->io_base = q->io_base;
3255         }
3256
3257         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3258
3259         ring->tqp = q;
3260         ring->desc = NULL;
3261         ring->desc_cb = NULL;
3262         ring->dev = priv->dev;
3263         ring->desc_dma_addr = 0;
3264         ring->buf_size = q->buf_size;
3265         ring->desc_num = desc_num;
3266         ring->next_to_use = 0;
3267         ring->next_to_clean = 0;
3268
3269         return 0;
3270 }
3271
3272 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3273                               struct hns3_nic_priv *priv)
3274 {
3275         int ret;
3276
3277         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3278         if (ret)
3279                 return ret;
3280
3281         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3282         if (ret) {
3283                 devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3284                 return ret;
3285         }
3286
3287         return 0;
3288 }
3289
3290 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3291 {
3292         struct hnae3_handle *h = priv->ae_handle;
3293         struct pci_dev *pdev = h->pdev;
3294         int i, ret;
3295
3296         priv->ring_data =  devm_kzalloc(&pdev->dev,
3297                                         array3_size(h->kinfo.num_tqps,
3298                                                     sizeof(*priv->ring_data),
3299                                                     2),
3300                                         GFP_KERNEL);
3301         if (!priv->ring_data)
3302                 return -ENOMEM;
3303
3304         for (i = 0; i < h->kinfo.num_tqps; i++) {
3305                 ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3306                 if (ret)
3307                         goto err;
3308         }
3309
3310         return 0;
3311 err:
3312         while (i--) {
3313                 devm_kfree(priv->dev, priv->ring_data[i].ring);
3314                 devm_kfree(priv->dev,
3315                            priv->ring_data[i + h->kinfo.num_tqps].ring);
3316         }
3317
3318         devm_kfree(&pdev->dev, priv->ring_data);
3319         return ret;
3320 }
3321
3322 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3323 {
3324         struct hnae3_handle *h = priv->ae_handle;
3325         int i;
3326
3327         for (i = 0; i < h->kinfo.num_tqps; i++) {
3328                 devm_kfree(priv->dev, priv->ring_data[i].ring);
3329                 devm_kfree(priv->dev,
3330                            priv->ring_data[i + h->kinfo.num_tqps].ring);
3331         }
3332         devm_kfree(priv->dev, priv->ring_data);
3333 }
3334
3335 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3336 {
3337         int ret;
3338
3339         if (ring->desc_num <= 0 || ring->buf_size <= 0)
3340                 return -EINVAL;
3341
3342         ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3343                                 GFP_KERNEL);
3344         if (!ring->desc_cb) {
3345                 ret = -ENOMEM;
3346                 goto out;
3347         }
3348
3349         ret = hns3_alloc_desc(ring);
3350         if (ret)
3351                 goto out_with_desc_cb;
3352
3353         if (!HNAE3_IS_TX_RING(ring)) {
3354                 ret = hns3_alloc_ring_buffers(ring);
3355                 if (ret)
3356                         goto out_with_desc;
3357         }
3358
3359         return 0;
3360
3361 out_with_desc:
3362         hns3_free_desc(ring);
3363 out_with_desc_cb:
3364         kfree(ring->desc_cb);
3365         ring->desc_cb = NULL;
3366 out:
3367         return ret;
3368 }
3369
3370 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3371 {
3372         hns3_free_desc(ring);
3373         kfree(ring->desc_cb);
3374         ring->desc_cb = NULL;
3375         ring->next_to_clean = 0;
3376         ring->next_to_use = 0;
3377         ring->pending_buf = 0;
3378         if (ring->skb) {
3379                 dev_kfree_skb_any(ring->skb);
3380                 ring->skb = NULL;
3381         }
3382 }
3383
3384 static int hns3_buf_size2type(u32 buf_size)
3385 {
3386         int bd_size_type;
3387
3388         switch (buf_size) {
3389         case 512:
3390                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3391                 break;
3392         case 1024:
3393                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3394                 break;
3395         case 2048:
3396                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3397                 break;
3398         case 4096:
3399                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3400                 break;
3401         default:
3402                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3403         }
3404
3405         return bd_size_type;
3406 }
3407
3408 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3409 {
3410         dma_addr_t dma = ring->desc_dma_addr;
3411         struct hnae3_queue *q = ring->tqp;
3412
3413         if (!HNAE3_IS_TX_RING(ring)) {
3414                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3415                                (u32)dma);
3416                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3417                                (u32)((dma >> 31) >> 1));
3418
3419                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3420                                hns3_buf_size2type(ring->buf_size));
3421                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3422                                ring->desc_num / 8 - 1);
3423
3424         } else {
3425                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3426                                (u32)dma);
3427                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3428                                (u32)((dma >> 31) >> 1));
3429
3430                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3431                                ring->desc_num / 8 - 1);
3432         }
3433 }
3434
3435 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3436 {
3437         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3438         int i;
3439
3440         for (i = 0; i < HNAE3_MAX_TC; i++) {
3441                 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3442                 int j;
3443
3444                 if (!tc_info->enable)
3445                         continue;
3446
3447                 for (j = 0; j < tc_info->tqp_count; j++) {
3448                         struct hnae3_queue *q;
3449
3450                         q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3451                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3452                                        tc_info->tc);
3453                 }
3454         }
3455 }
3456
3457 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3458 {
3459         struct hnae3_handle *h = priv->ae_handle;
3460         int ring_num = h->kinfo.num_tqps * 2;
3461         int i, j;
3462         int ret;
3463
3464         for (i = 0; i < ring_num; i++) {
3465                 ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3466                 if (ret) {
3467                         dev_err(priv->dev,
3468                                 "Alloc ring memory fail! ret=%d\n", ret);
3469                         goto out_when_alloc_ring_memory;
3470                 }
3471
3472                 u64_stats_init(&priv->ring_data[i].ring->syncp);
3473         }
3474
3475         return 0;
3476
3477 out_when_alloc_ring_memory:
3478         for (j = i - 1; j >= 0; j--)
3479                 hns3_fini_ring(priv->ring_data[j].ring);
3480
3481         return -ENOMEM;
3482 }
3483
3484 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3485 {
3486         struct hnae3_handle *h = priv->ae_handle;
3487         int i;
3488
3489         for (i = 0; i < h->kinfo.num_tqps; i++) {
3490                 hns3_fini_ring(priv->ring_data[i].ring);
3491                 hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3492         }
3493         return 0;
3494 }
3495
3496 /* Set mac addr if it is configured. or leave it to the AE driver */
3497 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3498 {
3499         struct hns3_nic_priv *priv = netdev_priv(netdev);
3500         struct hnae3_handle *h = priv->ae_handle;
3501         u8 mac_addr_temp[ETH_ALEN];
3502         int ret = 0;
3503
3504         if (h->ae_algo->ops->get_mac_addr && init) {
3505                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3506                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3507         }
3508
3509         /* Check if the MAC address is valid, if not get a random one */
3510         if (!is_valid_ether_addr(netdev->dev_addr)) {
3511                 eth_hw_addr_random(netdev);
3512                 dev_warn(priv->dev, "using random MAC address %pM\n",
3513                          netdev->dev_addr);
3514         }
3515
3516         if (h->ae_algo->ops->set_mac_addr)
3517                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3518
3519         return ret;
3520 }
3521
3522 static int hns3_init_phy(struct net_device *netdev)
3523 {
3524         struct hnae3_handle *h = hns3_get_handle(netdev);
3525         int ret = 0;
3526
3527         if (h->ae_algo->ops->mac_connect_phy)
3528                 ret = h->ae_algo->ops->mac_connect_phy(h);
3529
3530         return ret;
3531 }
3532
3533 static void hns3_uninit_phy(struct net_device *netdev)
3534 {
3535         struct hnae3_handle *h = hns3_get_handle(netdev);
3536
3537         if (h->ae_algo->ops->mac_disconnect_phy)
3538                 h->ae_algo->ops->mac_disconnect_phy(h);
3539 }
3540
3541 static int hns3_restore_fd_rules(struct net_device *netdev)
3542 {
3543         struct hnae3_handle *h = hns3_get_handle(netdev);
3544         int ret = 0;
3545
3546         if (h->ae_algo->ops->restore_fd_rules)
3547                 ret = h->ae_algo->ops->restore_fd_rules(h);
3548
3549         return ret;
3550 }
3551
3552 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3553 {
3554         struct hnae3_handle *h = hns3_get_handle(netdev);
3555
3556         if (h->ae_algo->ops->del_all_fd_entries)
3557                 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3558 }
3559
3560 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3561 {
3562         struct hns3_nic_priv *priv = netdev_priv(netdev);
3563
3564         if ((netdev->features & NETIF_F_TSO) ||
3565             (netdev->features & NETIF_F_TSO6))
3566                 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3567         else
3568                 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3569 }
3570
3571 static int hns3_client_start(struct hnae3_handle *handle)
3572 {
3573         if (!handle->ae_algo->ops->client_start)
3574                 return 0;
3575
3576         return handle->ae_algo->ops->client_start(handle);
3577 }
3578
3579 static void hns3_client_stop(struct hnae3_handle *handle)
3580 {
3581         if (!handle->ae_algo->ops->client_stop)
3582                 return;
3583
3584         handle->ae_algo->ops->client_stop(handle);
3585 }
3586
3587 static int hns3_client_init(struct hnae3_handle *handle)
3588 {
3589         struct pci_dev *pdev = handle->pdev;
3590         u16 alloc_tqps, max_rss_size;
3591         struct hns3_nic_priv *priv;
3592         struct net_device *netdev;
3593         int ret;
3594
3595         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3596                                                     &max_rss_size);
3597         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3598         if (!netdev)
3599                 return -ENOMEM;
3600
3601         priv = netdev_priv(netdev);
3602         priv->dev = &pdev->dev;
3603         priv->netdev = netdev;
3604         priv->ae_handle = handle;
3605         priv->tx_timeout_count = 0;
3606         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3607
3608         handle->kinfo.netdev = netdev;
3609         handle->priv = (void *)priv;
3610
3611         hns3_init_mac_addr(netdev, true);
3612
3613         hns3_set_default_feature(netdev);
3614
3615         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3616         netdev->priv_flags |= IFF_UNICAST_FLT;
3617         netdev->netdev_ops = &hns3_nic_netdev_ops;
3618         SET_NETDEV_DEV(netdev, &pdev->dev);
3619         hns3_ethtool_set_ops(netdev);
3620         hns3_nic_set_priv_ops(netdev);
3621
3622         /* Carrier off reporting is important to ethtool even BEFORE open */
3623         netif_carrier_off(netdev);
3624
3625         ret = hns3_get_ring_config(priv);
3626         if (ret) {
3627                 ret = -ENOMEM;
3628                 goto out_get_ring_cfg;
3629         }
3630
3631         ret = hns3_nic_alloc_vector_data(priv);
3632         if (ret) {
3633                 ret = -ENOMEM;
3634                 goto out_alloc_vector_data;
3635         }
3636
3637         ret = hns3_nic_init_vector_data(priv);
3638         if (ret) {
3639                 ret = -ENOMEM;
3640                 goto out_init_vector_data;
3641         }
3642
3643         ret = hns3_init_all_ring(priv);
3644         if (ret) {
3645                 ret = -ENOMEM;
3646                 goto out_init_ring_data;
3647         }
3648
3649         ret = hns3_init_phy(netdev);
3650         if (ret)
3651                 goto out_init_phy;
3652
3653         ret = register_netdev(netdev);
3654         if (ret) {
3655                 dev_err(priv->dev, "probe register netdev fail!\n");
3656                 goto out_reg_netdev_fail;
3657         }
3658
3659         ret = hns3_client_start(handle);
3660         if (ret) {
3661                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3662                         goto out_client_start;
3663         }
3664
3665         hns3_dcbnl_setup(handle);
3666
3667         hns3_dbg_init(handle);
3668
3669         /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3670         netdev->max_mtu = HNS3_MAX_MTU;
3671
3672         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3673
3674         return ret;
3675
3676 out_client_start:
3677         unregister_netdev(netdev);
3678 out_reg_netdev_fail:
3679         hns3_uninit_phy(netdev);
3680 out_init_phy:
3681         hns3_uninit_all_ring(priv);
3682 out_init_ring_data:
3683         hns3_nic_uninit_vector_data(priv);
3684 out_init_vector_data:
3685         hns3_nic_dealloc_vector_data(priv);
3686 out_alloc_vector_data:
3687         priv->ring_data = NULL;
3688 out_get_ring_cfg:
3689         priv->ae_handle = NULL;
3690         free_netdev(netdev);
3691         return ret;
3692 }
3693
3694 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3695 {
3696         struct net_device *netdev = handle->kinfo.netdev;
3697         struct hns3_nic_priv *priv = netdev_priv(netdev);
3698         int ret;
3699
3700         hns3_client_stop(handle);
3701
3702         hns3_remove_hw_addr(netdev);
3703
3704         if (netdev->reg_state != NETREG_UNINITIALIZED)
3705                 unregister_netdev(netdev);
3706
3707         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3708                 netdev_warn(netdev, "already uninitialized\n");
3709                 goto out_netdev_free;
3710         }
3711
3712         hns3_del_all_fd_rules(netdev, true);
3713
3714         hns3_force_clear_all_rx_ring(handle);
3715
3716         hns3_uninit_phy(netdev);
3717
3718         hns3_nic_uninit_vector_data(priv);
3719
3720         ret = hns3_nic_dealloc_vector_data(priv);
3721         if (ret)
3722                 netdev_err(netdev, "dealloc vector error\n");
3723
3724         ret = hns3_uninit_all_ring(priv);
3725         if (ret)
3726                 netdev_err(netdev, "uninit ring error\n");
3727
3728         hns3_put_ring_config(priv);
3729
3730         hns3_dbg_uninit(handle);
3731
3732         priv->ring_data = NULL;
3733
3734 out_netdev_free:
3735         free_netdev(netdev);
3736 }
3737
3738 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3739 {
3740         struct net_device *netdev = handle->kinfo.netdev;
3741
3742         if (!netdev)
3743                 return;
3744
3745         if (linkup) {
3746                 netif_carrier_on(netdev);
3747                 netif_tx_wake_all_queues(netdev);
3748                 netdev_info(netdev, "link up\n");
3749         } else {
3750                 netif_carrier_off(netdev);
3751                 netif_tx_stop_all_queues(netdev);
3752                 netdev_info(netdev, "link down\n");
3753         }
3754 }
3755
3756 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3757 {
3758         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3759         struct net_device *ndev = kinfo->netdev;
3760
3761         if (tc > HNAE3_MAX_TC)
3762                 return -EINVAL;
3763
3764         if (!ndev)
3765                 return -ENODEV;
3766
3767         return hns3_nic_set_real_num_queue(ndev);
3768 }
3769
3770 static int hns3_recover_hw_addr(struct net_device *ndev)
3771 {
3772         struct netdev_hw_addr_list *list;
3773         struct netdev_hw_addr *ha, *tmp;
3774         int ret = 0;
3775
3776         /* go through and sync uc_addr entries to the device */
3777         list = &ndev->uc;
3778         list_for_each_entry_safe(ha, tmp, &list->list, list) {
3779                 ret = hns3_nic_uc_sync(ndev, ha->addr);
3780                 if (ret)
3781                         return ret;
3782         }
3783
3784         /* go through and sync mc_addr entries to the device */
3785         list = &ndev->mc;
3786         list_for_each_entry_safe(ha, tmp, &list->list, list) {
3787                 ret = hns3_nic_mc_sync(ndev, ha->addr);
3788                 if (ret)
3789                         return ret;
3790         }
3791
3792         return ret;
3793 }
3794
3795 static void hns3_remove_hw_addr(struct net_device *netdev)
3796 {
3797         struct netdev_hw_addr_list *list;
3798         struct netdev_hw_addr *ha, *tmp;
3799
3800         hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3801
3802         /* go through and unsync uc_addr entries to the device */
3803         list = &netdev->uc;
3804         list_for_each_entry_safe(ha, tmp, &list->list, list)
3805                 hns3_nic_uc_unsync(netdev, ha->addr);
3806
3807         /* go through and unsync mc_addr entries to the device */
3808         list = &netdev->mc;
3809         list_for_each_entry_safe(ha, tmp, &list->list, list)
3810                 if (ha->refcount > 1)
3811                         hns3_nic_mc_unsync(netdev, ha->addr);
3812 }
3813
3814 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3815 {
3816         while (ring->next_to_clean != ring->next_to_use) {
3817                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3818                 hns3_free_buffer_detach(ring, ring->next_to_clean);
3819                 ring_ptr_move_fw(ring, next_to_clean);
3820         }
3821 }
3822
3823 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3824 {
3825         struct hns3_desc_cb res_cbs;
3826         int ret;
3827
3828         while (ring->next_to_use != ring->next_to_clean) {
3829                 /* When a buffer is not reused, it's memory has been
3830                  * freed in hns3_handle_rx_bd or will be freed by
3831                  * stack, so we need to replace the buffer here.
3832                  */
3833                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3834                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
3835                         if (ret) {
3836                                 u64_stats_update_begin(&ring->syncp);
3837                                 ring->stats.sw_err_cnt++;
3838                                 u64_stats_update_end(&ring->syncp);
3839                                 /* if alloc new buffer fail, exit directly
3840                                  * and reclear in up flow.
3841                                  */
3842                                 netdev_warn(ring->tqp->handle->kinfo.netdev,
3843                                             "reserve buffer map failed, ret = %d\n",
3844                                             ret);
3845                                 return ret;
3846                         }
3847                         hns3_replace_buffer(ring, ring->next_to_use,
3848                                             &res_cbs);
3849                 }
3850                 ring_ptr_move_fw(ring, next_to_use);
3851         }
3852
3853         return 0;
3854 }
3855
3856 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3857 {
3858         while (ring->next_to_use != ring->next_to_clean) {
3859                 /* When a buffer is not reused, it's memory has been
3860                  * freed in hns3_handle_rx_bd or will be freed by
3861                  * stack, so only need to unmap the buffer here.
3862                  */
3863                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3864                         hns3_unmap_buffer(ring,
3865                                           &ring->desc_cb[ring->next_to_use]);
3866                         ring->desc_cb[ring->next_to_use].dma = 0;
3867                 }
3868
3869                 ring_ptr_move_fw(ring, next_to_use);
3870         }
3871 }
3872
3873 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3874 {
3875         struct net_device *ndev = h->kinfo.netdev;
3876         struct hns3_nic_priv *priv = netdev_priv(ndev);
3877         struct hns3_enet_ring *ring;
3878         u32 i;
3879
3880         for (i = 0; i < h->kinfo.num_tqps; i++) {
3881                 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3882                 hns3_force_clear_rx_ring(ring);
3883         }
3884 }
3885
3886 static void hns3_clear_all_ring(struct hnae3_handle *h)
3887 {
3888         struct net_device *ndev = h->kinfo.netdev;
3889         struct hns3_nic_priv *priv = netdev_priv(ndev);
3890         u32 i;
3891
3892         for (i = 0; i < h->kinfo.num_tqps; i++) {
3893                 struct netdev_queue *dev_queue;
3894                 struct hns3_enet_ring *ring;
3895
3896                 ring = priv->ring_data[i].ring;
3897                 hns3_clear_tx_ring(ring);
3898                 dev_queue = netdev_get_tx_queue(ndev,
3899                                                 priv->ring_data[i].queue_index);
3900                 netdev_tx_reset_queue(dev_queue);
3901
3902                 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3903                 /* Continue to clear other rings even if clearing some
3904                  * rings failed.
3905                  */
3906                 hns3_clear_rx_ring(ring);
3907         }
3908 }
3909
3910 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3911 {
3912         struct net_device *ndev = h->kinfo.netdev;
3913         struct hns3_nic_priv *priv = netdev_priv(ndev);
3914         struct hns3_enet_ring *rx_ring;
3915         int i, j;
3916         int ret;
3917
3918         for (i = 0; i < h->kinfo.num_tqps; i++) {
3919                 ret = h->ae_algo->ops->reset_queue(h, i);
3920                 if (ret)
3921                         return ret;
3922
3923                 hns3_init_ring_hw(priv->ring_data[i].ring);
3924
3925                 /* We need to clear tx ring here because self test will
3926                  * use the ring and will not run down before up
3927                  */
3928                 hns3_clear_tx_ring(priv->ring_data[i].ring);
3929                 priv->ring_data[i].ring->next_to_clean = 0;
3930                 priv->ring_data[i].ring->next_to_use = 0;
3931
3932                 rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3933                 hns3_init_ring_hw(rx_ring);
3934                 ret = hns3_clear_rx_ring(rx_ring);
3935                 if (ret)
3936                         return ret;
3937
3938                 /* We can not know the hardware head and tail when this
3939                  * function is called in reset flow, so we reuse all desc.
3940                  */
3941                 for (j = 0; j < rx_ring->desc_num; j++)
3942                         hns3_reuse_buffer(rx_ring, j);
3943
3944                 rx_ring->next_to_clean = 0;
3945                 rx_ring->next_to_use = 0;
3946         }
3947
3948         hns3_init_tx_ring_tc(priv);
3949
3950         return 0;
3951 }
3952
3953 static void hns3_store_coal(struct hns3_nic_priv *priv)
3954 {
3955         /* ethtool only support setting and querying one coal
3956          * configuation for now, so save the vector 0' coal
3957          * configuation here in order to restore it.
3958          */
3959         memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3960                sizeof(struct hns3_enet_coalesce));
3961         memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3962                sizeof(struct hns3_enet_coalesce));
3963 }
3964
3965 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3966 {
3967         u16 vector_num = priv->vector_num;
3968         int i;
3969
3970         for (i = 0; i < vector_num; i++) {
3971                 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3972                        sizeof(struct hns3_enet_coalesce));
3973                 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
3974                        sizeof(struct hns3_enet_coalesce));
3975         }
3976 }
3977
3978 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3979 {
3980         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
3981         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3982         struct net_device *ndev = kinfo->netdev;
3983         struct hns3_nic_priv *priv = netdev_priv(ndev);
3984
3985         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
3986                 return 0;
3987
3988         /* it is cumbersome for hardware to pick-and-choose entries for deletion
3989          * from table space. Hence, for function reset software intervention is
3990          * required to delete the entries
3991          */
3992         if (hns3_dev_ongoing_func_reset(ae_dev)) {
3993                 hns3_remove_hw_addr(ndev);
3994                 hns3_del_all_fd_rules(ndev, false);
3995         }
3996
3997         if (!netif_running(ndev))
3998                 return 0;
3999
4000         return hns3_nic_net_stop(ndev);
4001 }
4002
4003 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4004 {
4005         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4006         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4007         int ret = 0;
4008
4009         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4010
4011         if (netif_running(kinfo->netdev)) {
4012                 ret = hns3_nic_net_open(kinfo->netdev);
4013                 if (ret) {
4014                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4015                         netdev_err(kinfo->netdev,
4016                                    "hns net up fail, ret=%d!\n", ret);
4017                         return ret;
4018                 }
4019         }
4020
4021         return ret;
4022 }
4023
4024 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4025 {
4026         struct net_device *netdev = handle->kinfo.netdev;
4027         struct hns3_nic_priv *priv = netdev_priv(netdev);
4028         int ret;
4029
4030         /* Carrier off reporting is important to ethtool even BEFORE open */
4031         netif_carrier_off(netdev);
4032
4033         ret = hns3_get_ring_config(priv);
4034         if (ret)
4035                 return ret;
4036
4037         ret = hns3_nic_alloc_vector_data(priv);
4038         if (ret)
4039                 goto err_put_ring;
4040
4041         hns3_restore_coal(priv);
4042
4043         ret = hns3_nic_init_vector_data(priv);
4044         if (ret)
4045                 goto err_dealloc_vector;
4046
4047         ret = hns3_init_all_ring(priv);
4048         if (ret)
4049                 goto err_uninit_vector;
4050
4051         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4052
4053         return ret;
4054
4055 err_uninit_vector:
4056         hns3_nic_uninit_vector_data(priv);
4057         priv->ring_data = NULL;
4058 err_dealloc_vector:
4059         hns3_nic_dealloc_vector_data(priv);
4060 err_put_ring:
4061         hns3_put_ring_config(priv);
4062         priv->ring_data = NULL;
4063
4064         return ret;
4065 }
4066
4067 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4068 {
4069         struct net_device *netdev = handle->kinfo.netdev;
4070         bool vlan_filter_enable;
4071         int ret;
4072
4073         ret = hns3_init_mac_addr(netdev, false);
4074         if (ret)
4075                 return ret;
4076
4077         ret = hns3_recover_hw_addr(netdev);
4078         if (ret)
4079                 return ret;
4080
4081         ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4082         if (ret)
4083                 return ret;
4084
4085         vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4086         hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4087
4088         /* Hardware table is only clear when pf resets */
4089         if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4090                 ret = hns3_restore_vlan(netdev);
4091                 if (ret)
4092                         return ret;
4093         }
4094
4095         return hns3_restore_fd_rules(netdev);
4096 }
4097
4098 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4099 {
4100         struct net_device *netdev = handle->kinfo.netdev;
4101         struct hns3_nic_priv *priv = netdev_priv(netdev);
4102         int ret;
4103
4104         if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4105                 netdev_warn(netdev, "already uninitialized\n");
4106                 return 0;
4107         }
4108
4109         hns3_force_clear_all_rx_ring(handle);
4110
4111         hns3_nic_uninit_vector_data(priv);
4112
4113         hns3_store_coal(priv);
4114
4115         ret = hns3_nic_dealloc_vector_data(priv);
4116         if (ret)
4117                 netdev_err(netdev, "dealloc vector error\n");
4118
4119         ret = hns3_uninit_all_ring(priv);
4120         if (ret)
4121                 netdev_err(netdev, "uninit ring error\n");
4122
4123         hns3_put_ring_config(priv);
4124         priv->ring_data = NULL;
4125
4126         clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
4127
4128         return ret;
4129 }
4130
4131 static int hns3_reset_notify(struct hnae3_handle *handle,
4132                              enum hnae3_reset_notify_type type)
4133 {
4134         int ret = 0;
4135
4136         switch (type) {
4137         case HNAE3_UP_CLIENT:
4138                 ret = hns3_reset_notify_up_enet(handle);
4139                 break;
4140         case HNAE3_DOWN_CLIENT:
4141                 ret = hns3_reset_notify_down_enet(handle);
4142                 break;
4143         case HNAE3_INIT_CLIENT:
4144                 ret = hns3_reset_notify_init_enet(handle);
4145                 break;
4146         case HNAE3_UNINIT_CLIENT:
4147                 ret = hns3_reset_notify_uninit_enet(handle);
4148                 break;
4149         case HNAE3_RESTORE_CLIENT:
4150                 ret = hns3_reset_notify_restore_enet(handle);
4151                 break;
4152         default:
4153                 break;
4154         }
4155
4156         return ret;
4157 }
4158
4159 int hns3_set_channels(struct net_device *netdev,
4160                       struct ethtool_channels *ch)
4161 {
4162         struct hnae3_handle *h = hns3_get_handle(netdev);
4163         struct hnae3_knic_private_info *kinfo = &h->kinfo;
4164         bool rxfh_configured = netif_is_rxfh_configured(netdev);
4165         u32 new_tqp_num = ch->combined_count;
4166         u16 org_tqp_num;
4167         int ret;
4168
4169         if (ch->rx_count || ch->tx_count)
4170                 return -EINVAL;
4171
4172         if (new_tqp_num > hns3_get_max_available_channels(h) ||
4173             new_tqp_num < 1) {
4174                 dev_err(&netdev->dev,
4175                         "Change tqps fail, the tqp range is from 1 to %d",
4176                         hns3_get_max_available_channels(h));
4177                 return -EINVAL;
4178         }
4179
4180         if (kinfo->rss_size == new_tqp_num)
4181                 return 0;
4182
4183         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4184         if (ret)
4185                 return ret;
4186
4187         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4188         if (ret)
4189                 return ret;
4190
4191         org_tqp_num = h->kinfo.num_tqps;
4192         ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4193         if (ret) {
4194                 ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4195                                                     rxfh_configured);
4196                 if (ret) {
4197                         /* If revert to old tqp failed, fatal error occurred */
4198                         dev_err(&netdev->dev,
4199                                 "Revert to old tqp num fail, ret=%d", ret);
4200                         return ret;
4201                 }
4202                 dev_info(&netdev->dev,
4203                          "Change tqp num fail, Revert to old tqp num");
4204         }
4205         ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4206         if (ret)
4207                 return ret;
4208
4209         return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4210 }
4211
4212 static const struct hnae3_client_ops client_ops = {
4213         .init_instance = hns3_client_init,
4214         .uninit_instance = hns3_client_uninit,
4215         .link_status_change = hns3_link_status_change,
4216         .setup_tc = hns3_client_setup_tc,
4217         .reset_notify = hns3_reset_notify,
4218 };
4219
4220 /* hns3_init_module - Driver registration routine
4221  * hns3_init_module is the first routine called when the driver is
4222  * loaded. All it does is register with the PCI subsystem.
4223  */
4224 static int __init hns3_init_module(void)
4225 {
4226         int ret;
4227
4228         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4229         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4230
4231         client.type = HNAE3_CLIENT_KNIC;
4232         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4233                  hns3_driver_name);
4234
4235         client.ops = &client_ops;
4236
4237         INIT_LIST_HEAD(&client.node);
4238
4239         hns3_dbg_register_debugfs(hns3_driver_name);
4240
4241         ret = hnae3_register_client(&client);
4242         if (ret)
4243                 goto err_reg_client;
4244
4245         ret = pci_register_driver(&hns3_driver);
4246         if (ret)
4247                 goto err_reg_driver;
4248
4249         return ret;
4250
4251 err_reg_driver:
4252         hnae3_unregister_client(&client);
4253 err_reg_client:
4254         hns3_dbg_unregister_debugfs();
4255         return ret;
4256 }
4257 module_init(hns3_init_module);
4258
4259 /* hns3_exit_module - Driver exit cleanup routine
4260  * hns3_exit_module is called just before the driver is removed
4261  * from memory.
4262  */
4263 static void __exit hns3_exit_module(void)
4264 {
4265         pci_unregister_driver(&hns3_driver);
4266         hnae3_unregister_client(&client);
4267         hns3_dbg_unregister_debugfs();
4268 }
4269 module_exit(hns3_exit_module);
4270
4271 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4272 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4273 MODULE_LICENSE("GPL");
4274 MODULE_ALIAS("pci:hns-nic");
4275 MODULE_VERSION(HNS3_MOD_VERSION);