]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3_enet.c
powerpc/mm: Define MAX_PHYSMEM_BITS for all 64-bit configs
[linux.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23
24 #define hns3_set_field(origin, shift, val)      ((origin) |= ((val) << (shift)))
25
26 static void hns3_clear_all_ring(struct hnae3_handle *h);
27 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
28 static void hns3_remove_hw_addr(struct net_device *netdev);
29
30 static const char hns3_driver_name[] = "hns3";
31 const char hns3_driver_version[] = VERMAGIC_STRING;
32 static const char hns3_driver_string[] =
33                         "Hisilicon Ethernet Network Driver for Hip08 Family";
34 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
35 static struct hnae3_client client;
36
37 /* hns3_pci_tbl - PCI Device ID Table
38  *
39  * Last entry must be all 0s
40  *
41  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
42  *   Class, Class Mask, private data (not used) }
43  */
44 static const struct pci_device_id hns3_pci_tbl[] = {
45         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
46         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
47         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
48          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
50          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
52          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
54          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
56          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
57         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
58         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
59          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
60         /* required last entry */
61         {0, }
62 };
63 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
64
65 static irqreturn_t hns3_irq_handle(int irq, void *vector)
66 {
67         struct hns3_enet_tqp_vector *tqp_vector = vector;
68
69         napi_schedule(&tqp_vector->napi);
70
71         return IRQ_HANDLED;
72 }
73
74 /* This callback function is used to set affinity changes to the irq affinity
75  * masks when the irq_set_affinity_notifier function is used.
76  */
77 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
78                                          const cpumask_t *mask)
79 {
80         struct hns3_enet_tqp_vector *tqp_vectors =
81                 container_of(notify, struct hns3_enet_tqp_vector,
82                              affinity_notify);
83
84         tqp_vectors->affinity_mask = *mask;
85 }
86
87 static void hns3_nic_irq_affinity_release(struct kref *ref)
88 {
89 }
90
91 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
92 {
93         struct hns3_enet_tqp_vector *tqp_vectors;
94         unsigned int i;
95
96         for (i = 0; i < priv->vector_num; i++) {
97                 tqp_vectors = &priv->tqp_vector[i];
98
99                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
100                         continue;
101
102                 /* clear the affinity notifier and affinity mask */
103                 irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
104                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
105
106                 /* release the irq resource */
107                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
108                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
109         }
110 }
111
112 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
113 {
114         struct hns3_enet_tqp_vector *tqp_vectors;
115         int txrx_int_idx = 0;
116         int rx_int_idx = 0;
117         int tx_int_idx = 0;
118         unsigned int i;
119         int ret;
120
121         for (i = 0; i < priv->vector_num; i++) {
122                 tqp_vectors = &priv->tqp_vector[i];
123
124                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
125                         continue;
126
127                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
128                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
129                                  "%s-%s-%d", priv->netdev->name, "TxRx",
130                                  txrx_int_idx++);
131                         txrx_int_idx++;
132                 } else if (tqp_vectors->rx_group.ring) {
133                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
134                                  "%s-%s-%d", priv->netdev->name, "Rx",
135                                  rx_int_idx++);
136                 } else if (tqp_vectors->tx_group.ring) {
137                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
138                                  "%s-%s-%d", priv->netdev->name, "Tx",
139                                  tx_int_idx++);
140                 } else {
141                         /* Skip this unused q_vector */
142                         continue;
143                 }
144
145                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
146
147                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
148                                   tqp_vectors->name,
149                                        tqp_vectors);
150                 if (ret) {
151                         netdev_err(priv->netdev, "request irq(%d) fail\n",
152                                    tqp_vectors->vector_irq);
153                         return ret;
154                 }
155
156                 tqp_vectors->affinity_notify.notify =
157                                         hns3_nic_irq_affinity_notify;
158                 tqp_vectors->affinity_notify.release =
159                                         hns3_nic_irq_affinity_release;
160                 irq_set_affinity_notifier(tqp_vectors->vector_irq,
161                                           &tqp_vectors->affinity_notify);
162                 irq_set_affinity_hint(tqp_vectors->vector_irq,
163                                       &tqp_vectors->affinity_mask);
164
165                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
166         }
167
168         return 0;
169 }
170
171 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
172                                  u32 mask_en)
173 {
174         writel(mask_en, tqp_vector->mask_addr);
175 }
176
177 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
178 {
179         napi_enable(&tqp_vector->napi);
180
181         /* enable vector */
182         hns3_mask_vector_irq(tqp_vector, 1);
183 }
184
185 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
186 {
187         /* disable vector */
188         hns3_mask_vector_irq(tqp_vector, 0);
189
190         disable_irq(tqp_vector->vector_irq);
191         napi_disable(&tqp_vector->napi);
192 }
193
194 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
195                                  u32 rl_value)
196 {
197         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
198
199         /* this defines the configuration for RL (Interrupt Rate Limiter).
200          * Rl defines rate of interrupts i.e. number of interrupts-per-second
201          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
202          */
203
204         if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
205             !tqp_vector->rx_group.coal.gl_adapt_enable)
206                 /* According to the hardware, the range of rl_reg is
207                  * 0-59 and the unit is 4.
208                  */
209                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
210
211         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
212 }
213
214 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
215                                     u32 gl_value)
216 {
217         u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
218
219         writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
220 }
221
222 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
223                                     u32 gl_value)
224 {
225         u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
226
227         writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
228 }
229
230 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
231                                    struct hns3_nic_priv *priv)
232 {
233         /* initialize the configuration for interrupt coalescing.
234          * 1. GL (Interrupt Gap Limiter)
235          * 2. RL (Interrupt Rate Limiter)
236          */
237
238         /* Default: enable interrupt coalescing self-adaptive and GL */
239         tqp_vector->tx_group.coal.gl_adapt_enable = 1;
240         tqp_vector->rx_group.coal.gl_adapt_enable = 1;
241
242         tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
243         tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
244
245         tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
246         tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
247 }
248
249 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
250                                       struct hns3_nic_priv *priv)
251 {
252         struct hnae3_handle *h = priv->ae_handle;
253
254         hns3_set_vector_coalesce_tx_gl(tqp_vector,
255                                        tqp_vector->tx_group.coal.int_gl);
256         hns3_set_vector_coalesce_rx_gl(tqp_vector,
257                                        tqp_vector->rx_group.coal.int_gl);
258         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
259 }
260
261 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
262 {
263         struct hnae3_handle *h = hns3_get_handle(netdev);
264         struct hnae3_knic_private_info *kinfo = &h->kinfo;
265         unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
266         int i, ret;
267
268         if (kinfo->num_tc <= 1) {
269                 netdev_reset_tc(netdev);
270         } else {
271                 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
272                 if (ret) {
273                         netdev_err(netdev,
274                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
275                         return ret;
276                 }
277
278                 for (i = 0; i < HNAE3_MAX_TC; i++) {
279                         if (!kinfo->tc_info[i].enable)
280                                 continue;
281
282                         netdev_set_tc_queue(netdev,
283                                             kinfo->tc_info[i].tc,
284                                             kinfo->tc_info[i].tqp_count,
285                                             kinfo->tc_info[i].tqp_offset);
286                 }
287         }
288
289         ret = netif_set_real_num_tx_queues(netdev, queue_size);
290         if (ret) {
291                 netdev_err(netdev,
292                            "netif_set_real_num_tx_queues fail, ret=%d!\n",
293                            ret);
294                 return ret;
295         }
296
297         ret = netif_set_real_num_rx_queues(netdev, queue_size);
298         if (ret) {
299                 netdev_err(netdev,
300                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
301                 return ret;
302         }
303
304         return 0;
305 }
306
307 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
308 {
309         u16 alloc_tqps, max_rss_size, rss_size;
310
311         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
312         rss_size = alloc_tqps / h->kinfo.num_tc;
313
314         return min_t(u16, rss_size, max_rss_size);
315 }
316
317 static void hns3_tqp_enable(struct hnae3_queue *tqp)
318 {
319         u32 rcb_reg;
320
321         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
322         rcb_reg |= BIT(HNS3_RING_EN_B);
323         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
324 }
325
326 static void hns3_tqp_disable(struct hnae3_queue *tqp)
327 {
328         u32 rcb_reg;
329
330         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
331         rcb_reg &= ~BIT(HNS3_RING_EN_B);
332         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
333 }
334
335 static int hns3_nic_net_up(struct net_device *netdev)
336 {
337         struct hns3_nic_priv *priv = netdev_priv(netdev);
338         struct hnae3_handle *h = priv->ae_handle;
339         int i, j;
340         int ret;
341
342         ret = hns3_nic_reset_all_ring(h);
343         if (ret)
344                 return ret;
345
346         /* get irq resource for all vectors */
347         ret = hns3_nic_init_irq(priv);
348         if (ret) {
349                 netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
350                 return ret;
351         }
352
353         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
354
355         /* enable the vectors */
356         for (i = 0; i < priv->vector_num; i++)
357                 hns3_vector_enable(&priv->tqp_vector[i]);
358
359         /* enable rcb */
360         for (j = 0; j < h->kinfo.num_tqps; j++)
361                 hns3_tqp_enable(h->kinfo.tqp[j]);
362
363         /* start the ae_dev */
364         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
365         if (ret)
366                 goto out_start_err;
367
368         return 0;
369
370 out_start_err:
371         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
372         while (j--)
373                 hns3_tqp_disable(h->kinfo.tqp[j]);
374
375         for (j = i - 1; j >= 0; j--)
376                 hns3_vector_disable(&priv->tqp_vector[j]);
377
378         hns3_nic_uninit_irq(priv);
379
380         return ret;
381 }
382
383 static void hns3_config_xps(struct hns3_nic_priv *priv)
384 {
385         int i;
386
387         for (i = 0; i < priv->vector_num; i++) {
388                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
389                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
390
391                 while (ring) {
392                         int ret;
393
394                         ret = netif_set_xps_queue(priv->netdev,
395                                                   &tqp_vector->affinity_mask,
396                                                   ring->tqp->tqp_index);
397                         if (ret)
398                                 netdev_warn(priv->netdev,
399                                             "set xps queue failed: %d", ret);
400
401                         ring = ring->next;
402                 }
403         }
404 }
405
406 static int hns3_nic_net_open(struct net_device *netdev)
407 {
408         struct hns3_nic_priv *priv = netdev_priv(netdev);
409         struct hnae3_handle *h = hns3_get_handle(netdev);
410         struct hnae3_knic_private_info *kinfo;
411         int i, ret;
412
413         if (hns3_nic_resetting(netdev))
414                 return -EBUSY;
415
416         netif_carrier_off(netdev);
417
418         ret = hns3_nic_set_real_num_queue(netdev);
419         if (ret)
420                 return ret;
421
422         ret = hns3_nic_net_up(netdev);
423         if (ret) {
424                 netdev_err(netdev,
425                            "hns net up fail, ret=%d!\n", ret);
426                 return ret;
427         }
428
429         kinfo = &h->kinfo;
430         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
431                 netdev_set_prio_tc_map(netdev, i,
432                                        kinfo->prio_tc[i]);
433         }
434
435         if (h->ae_algo->ops->set_timer_task)
436                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
437
438         hns3_config_xps(priv);
439         return 0;
440 }
441
442 static void hns3_nic_net_down(struct net_device *netdev)
443 {
444         struct hns3_nic_priv *priv = netdev_priv(netdev);
445         struct hnae3_handle *h = hns3_get_handle(netdev);
446         const struct hnae3_ae_ops *ops;
447         int i;
448
449         /* disable vectors */
450         for (i = 0; i < priv->vector_num; i++)
451                 hns3_vector_disable(&priv->tqp_vector[i]);
452
453         /* disable rcb */
454         for (i = 0; i < h->kinfo.num_tqps; i++)
455                 hns3_tqp_disable(h->kinfo.tqp[i]);
456
457         /* stop ae_dev */
458         ops = priv->ae_handle->ae_algo->ops;
459         if (ops->stop)
460                 ops->stop(priv->ae_handle);
461
462         /* free irq resources */
463         hns3_nic_uninit_irq(priv);
464
465         hns3_clear_all_ring(priv->ae_handle);
466 }
467
468 static int hns3_nic_net_stop(struct net_device *netdev)
469 {
470         struct hns3_nic_priv *priv = netdev_priv(netdev);
471         struct hnae3_handle *h = hns3_get_handle(netdev);
472
473         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
474                 return 0;
475
476         if (h->ae_algo->ops->set_timer_task)
477                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
478
479         netif_tx_stop_all_queues(netdev);
480         netif_carrier_off(netdev);
481
482         hns3_nic_net_down(netdev);
483
484         return 0;
485 }
486
487 static int hns3_nic_uc_sync(struct net_device *netdev,
488                             const unsigned char *addr)
489 {
490         struct hnae3_handle *h = hns3_get_handle(netdev);
491
492         if (h->ae_algo->ops->add_uc_addr)
493                 return h->ae_algo->ops->add_uc_addr(h, addr);
494
495         return 0;
496 }
497
498 static int hns3_nic_uc_unsync(struct net_device *netdev,
499                               const unsigned char *addr)
500 {
501         struct hnae3_handle *h = hns3_get_handle(netdev);
502
503         if (h->ae_algo->ops->rm_uc_addr)
504                 return h->ae_algo->ops->rm_uc_addr(h, addr);
505
506         return 0;
507 }
508
509 static int hns3_nic_mc_sync(struct net_device *netdev,
510                             const unsigned char *addr)
511 {
512         struct hnae3_handle *h = hns3_get_handle(netdev);
513
514         if (h->ae_algo->ops->add_mc_addr)
515                 return h->ae_algo->ops->add_mc_addr(h, addr);
516
517         return 0;
518 }
519
520 static int hns3_nic_mc_unsync(struct net_device *netdev,
521                               const unsigned char *addr)
522 {
523         struct hnae3_handle *h = hns3_get_handle(netdev);
524
525         if (h->ae_algo->ops->rm_mc_addr)
526                 return h->ae_algo->ops->rm_mc_addr(h, addr);
527
528         return 0;
529 }
530
531 static u8 hns3_get_netdev_flags(struct net_device *netdev)
532 {
533         u8 flags = 0;
534
535         if (netdev->flags & IFF_PROMISC) {
536                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
537         } else {
538                 flags |= HNAE3_VLAN_FLTR;
539                 if (netdev->flags & IFF_ALLMULTI)
540                         flags |= HNAE3_USER_MPE;
541         }
542
543         return flags;
544 }
545
546 static void hns3_nic_set_rx_mode(struct net_device *netdev)
547 {
548         struct hnae3_handle *h = hns3_get_handle(netdev);
549         u8 new_flags;
550         int ret;
551
552         new_flags = hns3_get_netdev_flags(netdev);
553
554         ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
555         if (ret) {
556                 netdev_err(netdev, "sync uc address fail\n");
557                 if (ret == -ENOSPC)
558                         new_flags |= HNAE3_OVERFLOW_UPE;
559         }
560
561         if (netdev->flags & IFF_MULTICAST) {
562                 ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
563                                     hns3_nic_mc_unsync);
564                 if (ret) {
565                         netdev_err(netdev, "sync mc address fail\n");
566                         if (ret == -ENOSPC)
567                                 new_flags |= HNAE3_OVERFLOW_MPE;
568                 }
569         }
570
571         /* User mode Promisc mode enable and vlan filtering is disabled to
572          * let all packets in. MAC-VLAN Table overflow Promisc enabled and
573          * vlan fitering is enabled
574          */
575         hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
576         h->netdev_flags = new_flags;
577         hns3_update_promisc_mode(netdev, new_flags);
578 }
579
580 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
581 {
582         struct hns3_nic_priv *priv = netdev_priv(netdev);
583         struct hnae3_handle *h = priv->ae_handle;
584
585         if (h->ae_algo->ops->set_promisc_mode) {
586                 return h->ae_algo->ops->set_promisc_mode(h,
587                                                 promisc_flags & HNAE3_UPE,
588                                                 promisc_flags & HNAE3_MPE);
589         }
590
591         return 0;
592 }
593
594 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
595 {
596         struct hns3_nic_priv *priv = netdev_priv(netdev);
597         struct hnae3_handle *h = priv->ae_handle;
598         bool last_state;
599
600         if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
601                 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
602                 if (enable != last_state) {
603                         netdev_info(netdev,
604                                     "%s vlan filter\n",
605                                     enable ? "enable" : "disable");
606                         h->ae_algo->ops->enable_vlan_filter(h, enable);
607                 }
608         }
609 }
610
611 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
612                         u16 *mss, u32 *type_cs_vlan_tso)
613 {
614         u32 l4_offset, hdr_len;
615         union l3_hdr_info l3;
616         union l4_hdr_info l4;
617         u32 l4_paylen;
618         int ret;
619
620         if (!skb_is_gso(skb))
621                 return 0;
622
623         ret = skb_cow_head(skb, 0);
624         if (unlikely(ret))
625                 return ret;
626
627         l3.hdr = skb_network_header(skb);
628         l4.hdr = skb_transport_header(skb);
629
630         /* Software should clear the IPv4's checksum field when tso is
631          * needed.
632          */
633         if (l3.v4->version == 4)
634                 l3.v4->check = 0;
635
636         /* tunnel packet.*/
637         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
638                                          SKB_GSO_GRE_CSUM |
639                                          SKB_GSO_UDP_TUNNEL |
640                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
641                 if ((!(skb_shinfo(skb)->gso_type &
642                     SKB_GSO_PARTIAL)) &&
643                     (skb_shinfo(skb)->gso_type &
644                     SKB_GSO_UDP_TUNNEL_CSUM)) {
645                         /* Software should clear the udp's checksum
646                          * field when tso is needed.
647                          */
648                         l4.udp->check = 0;
649                 }
650                 /* reset l3&l4 pointers from outer to inner headers */
651                 l3.hdr = skb_inner_network_header(skb);
652                 l4.hdr = skb_inner_transport_header(skb);
653
654                 /* Software should clear the IPv4's checksum field when
655                  * tso is needed.
656                  */
657                 if (l3.v4->version == 4)
658                         l3.v4->check = 0;
659         }
660
661         /* normal or tunnel packet*/
662         l4_offset = l4.hdr - skb->data;
663         hdr_len = (l4.tcp->doff << 2) + l4_offset;
664
665         /* remove payload length from inner pseudo checksum when tso*/
666         l4_paylen = skb->len - l4_offset;
667         csum_replace_by_diff(&l4.tcp->check,
668                              (__force __wsum)htonl(l4_paylen));
669
670         /* find the txbd field values */
671         *paylen = skb->len - hdr_len;
672         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
673
674         /* get MSS for TSO */
675         *mss = skb_shinfo(skb)->gso_size;
676
677         return 0;
678 }
679
680 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
681                                 u8 *il4_proto)
682 {
683         union l3_hdr_info l3;
684         unsigned char *l4_hdr;
685         unsigned char *exthdr;
686         u8 l4_proto_tmp;
687         __be16 frag_off;
688
689         /* find outer header point */
690         l3.hdr = skb_network_header(skb);
691         l4_hdr = skb_transport_header(skb);
692
693         if (skb->protocol == htons(ETH_P_IPV6)) {
694                 exthdr = l3.hdr + sizeof(*l3.v6);
695                 l4_proto_tmp = l3.v6->nexthdr;
696                 if (l4_hdr != exthdr)
697                         ipv6_skip_exthdr(skb, exthdr - skb->data,
698                                          &l4_proto_tmp, &frag_off);
699         } else if (skb->protocol == htons(ETH_P_IP)) {
700                 l4_proto_tmp = l3.v4->protocol;
701         } else {
702                 return -EINVAL;
703         }
704
705         *ol4_proto = l4_proto_tmp;
706
707         /* tunnel packet */
708         if (!skb->encapsulation) {
709                 *il4_proto = 0;
710                 return 0;
711         }
712
713         /* find inner header point */
714         l3.hdr = skb_inner_network_header(skb);
715         l4_hdr = skb_inner_transport_header(skb);
716
717         if (l3.v6->version == 6) {
718                 exthdr = l3.hdr + sizeof(*l3.v6);
719                 l4_proto_tmp = l3.v6->nexthdr;
720                 if (l4_hdr != exthdr)
721                         ipv6_skip_exthdr(skb, exthdr - skb->data,
722                                          &l4_proto_tmp, &frag_off);
723         } else if (l3.v4->version == 4) {
724                 l4_proto_tmp = l3.v4->protocol;
725         }
726
727         *il4_proto = l4_proto_tmp;
728
729         return 0;
730 }
731
732 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
733                                 u8 il4_proto, u32 *type_cs_vlan_tso,
734                                 u32 *ol_type_vlan_len_msec)
735 {
736         union l3_hdr_info l3;
737         union l4_hdr_info l4;
738         unsigned char *l2_hdr;
739         u8 l4_proto = ol4_proto;
740         u32 ol2_len;
741         u32 ol3_len;
742         u32 ol4_len;
743         u32 l2_len;
744         u32 l3_len;
745
746         l3.hdr = skb_network_header(skb);
747         l4.hdr = skb_transport_header(skb);
748
749         /* compute L2 header size for normal packet, defined in 2 Bytes */
750         l2_len = l3.hdr - skb->data;
751         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
752
753         /* tunnel packet*/
754         if (skb->encapsulation) {
755                 /* compute OL2 header size, defined in 2 Bytes */
756                 ol2_len = l2_len;
757                 hns3_set_field(*ol_type_vlan_len_msec,
758                                HNS3_TXD_L2LEN_S, ol2_len >> 1);
759
760                 /* compute OL3 header size, defined in 4 Bytes */
761                 ol3_len = l4.hdr - l3.hdr;
762                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S,
763                                ol3_len >> 2);
764
765                 /* MAC in UDP, MAC in GRE (0x6558)*/
766                 if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
767                         /* switch MAC header ptr from outer to inner header.*/
768                         l2_hdr = skb_inner_mac_header(skb);
769
770                         /* compute OL4 header size, defined in 4 Bytes. */
771                         ol4_len = l2_hdr - l4.hdr;
772                         hns3_set_field(*ol_type_vlan_len_msec,
773                                        HNS3_TXD_L4LEN_S, ol4_len >> 2);
774
775                         /* switch IP header ptr from outer to inner header */
776                         l3.hdr = skb_inner_network_header(skb);
777
778                         /* compute inner l2 header size, defined in 2 Bytes. */
779                         l2_len = l3.hdr - l2_hdr;
780                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S,
781                                        l2_len >> 1);
782                 } else {
783                         /* skb packet types not supported by hardware,
784                          * txbd len fild doesn't be filled.
785                          */
786                         return;
787                 }
788
789                 /* switch L4 header pointer from outer to inner */
790                 l4.hdr = skb_inner_transport_header(skb);
791
792                 l4_proto = il4_proto;
793         }
794
795         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
796         l3_len = l4.hdr - l3.hdr;
797         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
798
799         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
800         switch (l4_proto) {
801         case IPPROTO_TCP:
802                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
803                                l4.tcp->doff);
804                 break;
805         case IPPROTO_SCTP:
806                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
807                                (sizeof(struct sctphdr) >> 2));
808                 break;
809         case IPPROTO_UDP:
810                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
811                                (sizeof(struct udphdr) >> 2));
812                 break;
813         default:
814                 /* skb packet types not supported by hardware,
815                  * txbd len fild doesn't be filled.
816                  */
817                 return;
818         }
819 }
820
821 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
822  * and it is udp packet, which has a dest port as the IANA assigned.
823  * the hardware is expected to do the checksum offload, but the
824  * hardware will not do the checksum offload when udp dest port is
825  * 4789.
826  */
827 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
828 {
829 #define IANA_VXLAN_PORT 4789
830         union l4_hdr_info l4;
831
832         l4.hdr = skb_transport_header(skb);
833
834         if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
835                 return false;
836
837         skb_checksum_help(skb);
838
839         return true;
840 }
841
842 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
843                                    u8 il4_proto, u32 *type_cs_vlan_tso,
844                                    u32 *ol_type_vlan_len_msec)
845 {
846         union l3_hdr_info l3;
847         u32 l4_proto = ol4_proto;
848
849         l3.hdr = skb_network_header(skb);
850
851         /* define OL3 type and tunnel type(OL4).*/
852         if (skb->encapsulation) {
853                 /* define outer network header type.*/
854                 if (skb->protocol == htons(ETH_P_IP)) {
855                         if (skb_is_gso(skb))
856                                 hns3_set_field(*ol_type_vlan_len_msec,
857                                                HNS3_TXD_OL3T_S,
858                                                HNS3_OL3T_IPV4_CSUM);
859                         else
860                                 hns3_set_field(*ol_type_vlan_len_msec,
861                                                HNS3_TXD_OL3T_S,
862                                                HNS3_OL3T_IPV4_NO_CSUM);
863
864                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
865                         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
866                                        HNS3_OL3T_IPV6);
867                 }
868
869                 /* define tunnel type(OL4).*/
870                 switch (l4_proto) {
871                 case IPPROTO_UDP:
872                         hns3_set_field(*ol_type_vlan_len_msec,
873                                        HNS3_TXD_TUNTYPE_S,
874                                        HNS3_TUN_MAC_IN_UDP);
875                         break;
876                 case IPPROTO_GRE:
877                         hns3_set_field(*ol_type_vlan_len_msec,
878                                        HNS3_TXD_TUNTYPE_S,
879                                        HNS3_TUN_NVGRE);
880                         break;
881                 default:
882                         /* drop the skb tunnel packet if hardware don't support,
883                          * because hardware can't calculate csum when TSO.
884                          */
885                         if (skb_is_gso(skb))
886                                 return -EDOM;
887
888                         /* the stack computes the IP header already,
889                          * driver calculate l4 checksum when not TSO.
890                          */
891                         skb_checksum_help(skb);
892                         return 0;
893                 }
894
895                 l3.hdr = skb_inner_network_header(skb);
896                 l4_proto = il4_proto;
897         }
898
899         if (l3.v4->version == 4) {
900                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
901                                HNS3_L3T_IPV4);
902
903                 /* the stack computes the IP header already, the only time we
904                  * need the hardware to recompute it is in the case of TSO.
905                  */
906                 if (skb_is_gso(skb))
907                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
908         } else if (l3.v6->version == 6) {
909                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
910                                HNS3_L3T_IPV6);
911         }
912
913         switch (l4_proto) {
914         case IPPROTO_TCP:
915                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
916                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
917                                HNS3_L4T_TCP);
918                 break;
919         case IPPROTO_UDP:
920                 if (hns3_tunnel_csum_bug(skb))
921                         break;
922
923                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
924                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
925                                HNS3_L4T_UDP);
926                 break;
927         case IPPROTO_SCTP:
928                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
929                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
930                                HNS3_L4T_SCTP);
931                 break;
932         default:
933                 /* drop the skb tunnel packet if hardware don't support,
934                  * because hardware can't calculate csum when TSO.
935                  */
936                 if (skb_is_gso(skb))
937                         return -EDOM;
938
939                 /* the stack computes the IP header already,
940                  * driver calculate l4 checksum when not TSO.
941                  */
942                 skb_checksum_help(skb);
943                 return 0;
944         }
945
946         return 0;
947 }
948
949 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
950 {
951         /* Config bd buffer end */
952         hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
953         hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
954 }
955
956 static int hns3_fill_desc_vtags(struct sk_buff *skb,
957                                 struct hns3_enet_ring *tx_ring,
958                                 u32 *inner_vlan_flag,
959                                 u32 *out_vlan_flag,
960                                 u16 *inner_vtag,
961                                 u16 *out_vtag)
962 {
963 #define HNS3_TX_VLAN_PRIO_SHIFT 13
964
965         if (skb->protocol == htons(ETH_P_8021Q) &&
966             !(tx_ring->tqp->handle->kinfo.netdev->features &
967             NETIF_F_HW_VLAN_CTAG_TX)) {
968                 /* When HW VLAN acceleration is turned off, and the stack
969                  * sets the protocol to 802.1q, the driver just need to
970                  * set the protocol to the encapsulated ethertype.
971                  */
972                 skb->protocol = vlan_get_protocol(skb);
973                 return 0;
974         }
975
976         if (skb_vlan_tag_present(skb)) {
977                 u16 vlan_tag;
978
979                 vlan_tag = skb_vlan_tag_get(skb);
980                 vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
981
982                 /* Based on hw strategy, use out_vtag in two layer tag case,
983                  * and use inner_vtag in one tag case.
984                  */
985                 if (skb->protocol == htons(ETH_P_8021Q)) {
986                         hns3_set_field(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
987                         *out_vtag = vlan_tag;
988                 } else {
989                         hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
990                         *inner_vtag = vlan_tag;
991                 }
992         } else if (skb->protocol == htons(ETH_P_8021Q)) {
993                 struct vlan_ethhdr *vhdr;
994                 int rc;
995
996                 rc = skb_cow_head(skb, 0);
997                 if (unlikely(rc < 0))
998                         return rc;
999                 vhdr = (struct vlan_ethhdr *)skb->data;
1000                 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1001                                         << HNS3_TX_VLAN_PRIO_SHIFT);
1002         }
1003
1004         skb->protocol = vlan_get_protocol(skb);
1005         return 0;
1006 }
1007
1008 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1009                           int size, int frag_end, enum hns_desc_type type)
1010 {
1011         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1012         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1013         struct device *dev = ring_to_dev(ring);
1014         u16 bdtp_fe_sc_vld_ra_ri = 0;
1015         struct skb_frag_struct *frag;
1016         unsigned int frag_buf_num;
1017         int k, sizeoflast;
1018         dma_addr_t dma;
1019
1020         if (type == DESC_TYPE_SKB) {
1021                 struct sk_buff *skb = (struct sk_buff *)priv;
1022                 u32 ol_type_vlan_len_msec = 0;
1023                 u32 type_cs_vlan_tso = 0;
1024                 u32 paylen = skb->len;
1025                 u16 inner_vtag = 0;
1026                 u16 out_vtag = 0;
1027                 u16 mss = 0;
1028                 int ret;
1029
1030                 ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1031                                            &ol_type_vlan_len_msec,
1032                                            &inner_vtag, &out_vtag);
1033                 if (unlikely(ret))
1034                         return ret;
1035
1036                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1037                         u8 ol4_proto, il4_proto;
1038
1039                         skb_reset_mac_len(skb);
1040
1041                         ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1042                         if (unlikely(ret))
1043                                 return ret;
1044                         hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1045                                             &type_cs_vlan_tso,
1046                                             &ol_type_vlan_len_msec);
1047                         ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1048                                                       &type_cs_vlan_tso,
1049                                                       &ol_type_vlan_len_msec);
1050                         if (unlikely(ret))
1051                                 return ret;
1052
1053                         ret = hns3_set_tso(skb, &paylen, &mss,
1054                                            &type_cs_vlan_tso);
1055                         if (unlikely(ret))
1056                                 return ret;
1057                 }
1058
1059                 /* Set txbd */
1060                 desc->tx.ol_type_vlan_len_msec =
1061                         cpu_to_le32(ol_type_vlan_len_msec);
1062                 desc->tx.type_cs_vlan_tso_len =
1063                         cpu_to_le32(type_cs_vlan_tso);
1064                 desc->tx.paylen = cpu_to_le32(paylen);
1065                 desc->tx.mss = cpu_to_le16(mss);
1066                 desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1067                 desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1068
1069                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1070         } else {
1071                 frag = (struct skb_frag_struct *)priv;
1072                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1073         }
1074
1075         if (unlikely(dma_mapping_error(ring->dev, dma))) {
1076                 ring->stats.sw_err_cnt++;
1077                 return -ENOMEM;
1078         }
1079
1080         desc_cb->length = size;
1081
1082         frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) >> HNS3_MAX_BD_SIZE_OFFSET;
1083         sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1084         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1085
1086         /* When frag size is bigger than hardware limit, split this frag */
1087         for (k = 0; k < frag_buf_num; k++) {
1088                 /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1089                 desc_cb->priv = priv;
1090                 desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1091                 desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1092                                         DESC_TYPE_SKB : DESC_TYPE_PAGE;
1093
1094                 /* now, fill the descriptor */
1095                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1096                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1097                                 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1098                 hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1099                                        frag_end && (k == frag_buf_num - 1) ?
1100                                                 1 : 0);
1101                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1102                                 cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1103
1104                 /* move ring pointer to next.*/
1105                 ring_ptr_move_fw(ring, next_to_use);
1106
1107                 desc_cb = &ring->desc_cb[ring->next_to_use];
1108                 desc = &ring->desc[ring->next_to_use];
1109         }
1110
1111         return 0;
1112 }
1113
1114 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1115                                    struct hns3_enet_ring *ring)
1116 {
1117         struct sk_buff *skb = *out_skb;
1118         struct sk_buff *new_skb = NULL;
1119         struct skb_frag_struct *frag;
1120         int bdnum_for_frag;
1121         int frag_num;
1122         int buf_num;
1123         int size;
1124         int i;
1125
1126         size = skb_headlen(skb);
1127         buf_num = (size + HNS3_MAX_BD_SIZE - 1) >> HNS3_MAX_BD_SIZE_OFFSET;
1128
1129         frag_num = skb_shinfo(skb)->nr_frags;
1130         for (i = 0; i < frag_num; i++) {
1131                 frag = &skb_shinfo(skb)->frags[i];
1132                 size = skb_frag_size(frag);
1133                 bdnum_for_frag = (size + HNS3_MAX_BD_SIZE - 1) >>
1134                                  HNS3_MAX_BD_SIZE_OFFSET;
1135                 if (unlikely(bdnum_for_frag > HNS3_MAX_BD_PER_FRAG))
1136                         return -ENOMEM;
1137
1138                 buf_num += bdnum_for_frag;
1139         }
1140
1141         if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1142                 buf_num = (skb->len + HNS3_MAX_BD_SIZE - 1) >>
1143                           HNS3_MAX_BD_SIZE_OFFSET;
1144                 if (ring_space(ring) < buf_num)
1145                         return -EBUSY;
1146                 /* manual split the send packet */
1147                 new_skb = skb_copy(skb, GFP_ATOMIC);
1148                 if (!new_skb)
1149                         return -ENOMEM;
1150                 dev_kfree_skb_any(skb);
1151                 *out_skb = new_skb;
1152         }
1153
1154         if (unlikely(ring_space(ring) < buf_num))
1155                 return -EBUSY;
1156
1157         *bnum = buf_num;
1158         return 0;
1159 }
1160
1161 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1162                                   struct hns3_enet_ring *ring)
1163 {
1164         struct sk_buff *skb = *out_skb;
1165         struct sk_buff *new_skb = NULL;
1166         int buf_num;
1167
1168         /* No. of segments (plus a header) */
1169         buf_num = skb_shinfo(skb)->nr_frags + 1;
1170
1171         if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1172                 buf_num = (skb->len + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1173                 if (ring_space(ring) < buf_num)
1174                         return -EBUSY;
1175                 /* manual split the send packet */
1176                 new_skb = skb_copy(skb, GFP_ATOMIC);
1177                 if (!new_skb)
1178                         return -ENOMEM;
1179                 dev_kfree_skb_any(skb);
1180                 *out_skb = new_skb;
1181         }
1182
1183         if (unlikely(ring_space(ring) < buf_num))
1184                 return -EBUSY;
1185
1186         *bnum = buf_num;
1187
1188         return 0;
1189 }
1190
1191 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1192 {
1193         struct device *dev = ring_to_dev(ring);
1194         unsigned int i;
1195
1196         for (i = 0; i < ring->desc_num; i++) {
1197                 /* check if this is where we started */
1198                 if (ring->next_to_use == next_to_use_orig)
1199                         break;
1200
1201                 /* unmap the descriptor dma address */
1202                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1203                         dma_unmap_single(dev,
1204                                          ring->desc_cb[ring->next_to_use].dma,
1205                                         ring->desc_cb[ring->next_to_use].length,
1206                                         DMA_TO_DEVICE);
1207                 else if (ring->desc_cb[ring->next_to_use].length)
1208                         dma_unmap_page(dev,
1209                                        ring->desc_cb[ring->next_to_use].dma,
1210                                        ring->desc_cb[ring->next_to_use].length,
1211                                        DMA_TO_DEVICE);
1212
1213                 ring->desc_cb[ring->next_to_use].length = 0;
1214
1215                 /* rollback one */
1216                 ring_ptr_move_bw(ring, next_to_use);
1217         }
1218 }
1219
1220 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1221 {
1222         struct hns3_nic_priv *priv = netdev_priv(netdev);
1223         struct hns3_nic_ring_data *ring_data =
1224                 &tx_ring_data(priv, skb->queue_mapping);
1225         struct hns3_enet_ring *ring = ring_data->ring;
1226         struct netdev_queue *dev_queue;
1227         struct skb_frag_struct *frag;
1228         int next_to_use_head;
1229         int next_to_use_frag;
1230         int buf_num;
1231         int seg_num;
1232         int size;
1233         int ret;
1234         int i;
1235
1236         /* Prefetch the data used later */
1237         prefetch(skb->data);
1238
1239         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1240         case -EBUSY:
1241                 u64_stats_update_begin(&ring->syncp);
1242                 ring->stats.tx_busy++;
1243                 u64_stats_update_end(&ring->syncp);
1244
1245                 goto out_net_tx_busy;
1246         case -ENOMEM:
1247                 u64_stats_update_begin(&ring->syncp);
1248                 ring->stats.sw_err_cnt++;
1249                 u64_stats_update_end(&ring->syncp);
1250                 netdev_err(netdev, "no memory to xmit!\n");
1251
1252                 goto out_err_tx_ok;
1253         default:
1254                 break;
1255         }
1256
1257         /* No. of segments (plus a header) */
1258         seg_num = skb_shinfo(skb)->nr_frags + 1;
1259         /* Fill the first part */
1260         size = skb_headlen(skb);
1261
1262         next_to_use_head = ring->next_to_use;
1263
1264         ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1265                              DESC_TYPE_SKB);
1266         if (unlikely(ret))
1267                 goto head_fill_err;
1268
1269         next_to_use_frag = ring->next_to_use;
1270         /* Fill the fragments */
1271         for (i = 1; i < seg_num; i++) {
1272                 frag = &skb_shinfo(skb)->frags[i - 1];
1273                 size = skb_frag_size(frag);
1274
1275                 ret = hns3_fill_desc(ring, frag, size,
1276                                      seg_num - 1 == i ? 1 : 0,
1277                                      DESC_TYPE_PAGE);
1278
1279                 if (unlikely(ret))
1280                         goto frag_fill_err;
1281         }
1282
1283         /* Complete translate all packets */
1284         dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1285         netdev_tx_sent_queue(dev_queue, skb->len);
1286
1287         wmb(); /* Commit all data before submit */
1288
1289         hnae3_queue_xmit(ring->tqp, buf_num);
1290
1291         return NETDEV_TX_OK;
1292
1293 frag_fill_err:
1294         hns3_clear_desc(ring, next_to_use_frag);
1295
1296 head_fill_err:
1297         hns3_clear_desc(ring, next_to_use_head);
1298
1299 out_err_tx_ok:
1300         dev_kfree_skb_any(skb);
1301         return NETDEV_TX_OK;
1302
1303 out_net_tx_busy:
1304         netif_stop_subqueue(netdev, ring_data->queue_index);
1305         smp_mb(); /* Commit all data before submit */
1306
1307         return NETDEV_TX_BUSY;
1308 }
1309
1310 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1311 {
1312         struct hnae3_handle *h = hns3_get_handle(netdev);
1313         struct sockaddr *mac_addr = p;
1314         int ret;
1315
1316         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1317                 return -EADDRNOTAVAIL;
1318
1319         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1320                 netdev_info(netdev, "already using mac address %pM\n",
1321                             mac_addr->sa_data);
1322                 return 0;
1323         }
1324
1325         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1326         if (ret) {
1327                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1328                 return ret;
1329         }
1330
1331         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1332
1333         return 0;
1334 }
1335
1336 static int hns3_nic_do_ioctl(struct net_device *netdev,
1337                              struct ifreq *ifr, int cmd)
1338 {
1339         struct hnae3_handle *h = hns3_get_handle(netdev);
1340
1341         if (!netif_running(netdev))
1342                 return -EINVAL;
1343
1344         if (!h->ae_algo->ops->do_ioctl)
1345                 return -EOPNOTSUPP;
1346
1347         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1348 }
1349
1350 static int hns3_nic_set_features(struct net_device *netdev,
1351                                  netdev_features_t features)
1352 {
1353         netdev_features_t changed = netdev->features ^ features;
1354         struct hns3_nic_priv *priv = netdev_priv(netdev);
1355         struct hnae3_handle *h = priv->ae_handle;
1356         bool enable;
1357         int ret;
1358
1359         if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1360                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1361                         priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1362                 else
1363                         priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1364         }
1365
1366         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1367                 enable = !!(features & NETIF_F_GRO_HW);
1368                 ret = h->ae_algo->ops->set_gro_en(h, enable);
1369                 if (ret)
1370                         return ret;
1371         }
1372
1373         if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1374             h->ae_algo->ops->enable_vlan_filter) {
1375                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1376                 h->ae_algo->ops->enable_vlan_filter(h, enable);
1377         }
1378
1379         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1380             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1381                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1382                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1383                 if (ret)
1384                         return ret;
1385         }
1386
1387         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1388                 enable = !!(features & NETIF_F_NTUPLE);
1389                 h->ae_algo->ops->enable_fd(h, enable);
1390         }
1391
1392         netdev->features = features;
1393         return 0;
1394 }
1395
1396 static void hns3_nic_get_stats64(struct net_device *netdev,
1397                                  struct rtnl_link_stats64 *stats)
1398 {
1399         struct hns3_nic_priv *priv = netdev_priv(netdev);
1400         int queue_num = priv->ae_handle->kinfo.num_tqps;
1401         struct hnae3_handle *handle = priv->ae_handle;
1402         struct hns3_enet_ring *ring;
1403         u64 rx_length_errors = 0;
1404         u64 rx_crc_errors = 0;
1405         u64 rx_multicast = 0;
1406         unsigned int start;
1407         u64 tx_errors = 0;
1408         u64 rx_errors = 0;
1409         unsigned int idx;
1410         u64 tx_bytes = 0;
1411         u64 rx_bytes = 0;
1412         u64 tx_pkts = 0;
1413         u64 rx_pkts = 0;
1414         u64 tx_drop = 0;
1415         u64 rx_drop = 0;
1416
1417         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1418                 return;
1419
1420         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1421
1422         for (idx = 0; idx < queue_num; idx++) {
1423                 /* fetch the tx stats */
1424                 ring = priv->ring_data[idx].ring;
1425                 do {
1426                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1427                         tx_bytes += ring->stats.tx_bytes;
1428                         tx_pkts += ring->stats.tx_pkts;
1429                         tx_drop += ring->stats.sw_err_cnt;
1430                         tx_errors += ring->stats.sw_err_cnt;
1431                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1432
1433                 /* fetch the rx stats */
1434                 ring = priv->ring_data[idx + queue_num].ring;
1435                 do {
1436                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1437                         rx_bytes += ring->stats.rx_bytes;
1438                         rx_pkts += ring->stats.rx_pkts;
1439                         rx_drop += ring->stats.non_vld_descs;
1440                         rx_drop += ring->stats.l2_err;
1441                         rx_errors += ring->stats.non_vld_descs;
1442                         rx_errors += ring->stats.l2_err;
1443                         rx_crc_errors += ring->stats.l2_err;
1444                         rx_crc_errors += ring->stats.l3l4_csum_err;
1445                         rx_multicast += ring->stats.rx_multicast;
1446                         rx_length_errors += ring->stats.err_pkt_len;
1447                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1448         }
1449
1450         stats->tx_bytes = tx_bytes;
1451         stats->tx_packets = tx_pkts;
1452         stats->rx_bytes = rx_bytes;
1453         stats->rx_packets = rx_pkts;
1454
1455         stats->rx_errors = rx_errors;
1456         stats->multicast = rx_multicast;
1457         stats->rx_length_errors = rx_length_errors;
1458         stats->rx_crc_errors = rx_crc_errors;
1459         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1460
1461         stats->tx_errors = tx_errors;
1462         stats->rx_dropped = rx_drop;
1463         stats->tx_dropped = tx_drop;
1464         stats->collisions = netdev->stats.collisions;
1465         stats->rx_over_errors = netdev->stats.rx_over_errors;
1466         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1467         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1468         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1469         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1470         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1471         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1472         stats->tx_window_errors = netdev->stats.tx_window_errors;
1473         stats->rx_compressed = netdev->stats.rx_compressed;
1474         stats->tx_compressed = netdev->stats.tx_compressed;
1475 }
1476
1477 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1478 {
1479         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1480         struct hnae3_handle *h = hns3_get_handle(netdev);
1481         struct hnae3_knic_private_info *kinfo = &h->kinfo;
1482         u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1483         u8 tc = mqprio_qopt->qopt.num_tc;
1484         u16 mode = mqprio_qopt->mode;
1485         u8 hw = mqprio_qopt->qopt.hw;
1486
1487         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1488                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1489                 return -EOPNOTSUPP;
1490
1491         if (tc > HNAE3_MAX_TC)
1492                 return -EINVAL;
1493
1494         if (!netdev)
1495                 return -EINVAL;
1496
1497         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1498                 kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1499 }
1500
1501 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1502                              void *type_data)
1503 {
1504         if (type != TC_SETUP_QDISC_MQPRIO)
1505                 return -EOPNOTSUPP;
1506
1507         return hns3_setup_tc(dev, type_data);
1508 }
1509
1510 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1511                                 __be16 proto, u16 vid)
1512 {
1513         struct hnae3_handle *h = hns3_get_handle(netdev);
1514         struct hns3_nic_priv *priv = netdev_priv(netdev);
1515         int ret = -EIO;
1516
1517         if (h->ae_algo->ops->set_vlan_filter)
1518                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1519
1520         if (!ret)
1521                 set_bit(vid, priv->active_vlans);
1522
1523         return ret;
1524 }
1525
1526 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1527                                  __be16 proto, u16 vid)
1528 {
1529         struct hnae3_handle *h = hns3_get_handle(netdev);
1530         struct hns3_nic_priv *priv = netdev_priv(netdev);
1531         int ret = -EIO;
1532
1533         if (h->ae_algo->ops->set_vlan_filter)
1534                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1535
1536         if (!ret)
1537                 clear_bit(vid, priv->active_vlans);
1538
1539         return ret;
1540 }
1541
1542 static int hns3_restore_vlan(struct net_device *netdev)
1543 {
1544         struct hns3_nic_priv *priv = netdev_priv(netdev);
1545         int ret = 0;
1546         u16 vid;
1547
1548         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1549                 ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1550                 if (ret) {
1551                         netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1552                                    vid, ret);
1553                         return ret;
1554                 }
1555         }
1556
1557         return ret;
1558 }
1559
1560 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1561                                 u8 qos, __be16 vlan_proto)
1562 {
1563         struct hnae3_handle *h = hns3_get_handle(netdev);
1564         int ret = -EIO;
1565
1566         if (h->ae_algo->ops->set_vf_vlan_filter)
1567                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1568                                                    qos, vlan_proto);
1569
1570         return ret;
1571 }
1572
1573 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1574 {
1575         struct hnae3_handle *h = hns3_get_handle(netdev);
1576         int ret;
1577
1578         if (!h->ae_algo->ops->set_mtu)
1579                 return -EOPNOTSUPP;
1580
1581         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1582         if (ret)
1583                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1584                            ret);
1585         else
1586                 netdev->mtu = new_mtu;
1587
1588         return ret;
1589 }
1590
1591 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1592 {
1593         struct hns3_nic_priv *priv = netdev_priv(ndev);
1594         struct hns3_enet_ring *tx_ring = NULL;
1595         int timeout_queue = 0;
1596         int hw_head, hw_tail;
1597         int i;
1598
1599         /* Find the stopped queue the same way the stack does */
1600         for (i = 0; i < ndev->real_num_tx_queues; i++) {
1601                 struct netdev_queue *q;
1602                 unsigned long trans_start;
1603
1604                 q = netdev_get_tx_queue(ndev, i);
1605                 trans_start = q->trans_start;
1606                 if (netif_xmit_stopped(q) &&
1607                     time_after(jiffies,
1608                                (trans_start + ndev->watchdog_timeo))) {
1609                         timeout_queue = i;
1610                         break;
1611                 }
1612         }
1613
1614         if (i == ndev->num_tx_queues) {
1615                 netdev_info(ndev,
1616                             "no netdev TX timeout queue found, timeout count: %llu\n",
1617                             priv->tx_timeout_count);
1618                 return false;
1619         }
1620
1621         tx_ring = priv->ring_data[timeout_queue].ring;
1622
1623         hw_head = readl_relaxed(tx_ring->tqp->io_base +
1624                                 HNS3_RING_TX_RING_HEAD_REG);
1625         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1626                                 HNS3_RING_TX_RING_TAIL_REG);
1627         netdev_info(ndev,
1628                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1629                     priv->tx_timeout_count,
1630                     timeout_queue,
1631                     tx_ring->next_to_use,
1632                     tx_ring->next_to_clean,
1633                     hw_head,
1634                     hw_tail,
1635                     readl(tx_ring->tqp_vector->mask_addr));
1636
1637         return true;
1638 }
1639
1640 static void hns3_nic_net_timeout(struct net_device *ndev)
1641 {
1642         struct hns3_nic_priv *priv = netdev_priv(ndev);
1643         struct hnae3_handle *h = priv->ae_handle;
1644
1645         if (!hns3_get_tx_timeo_queue_info(ndev))
1646                 return;
1647
1648         priv->tx_timeout_count++;
1649
1650         /* request the reset, and let the hclge to determine
1651          * which reset level should be done
1652          */
1653         if (h->ae_algo->ops->reset_event)
1654                 h->ae_algo->ops->reset_event(h->pdev, h);
1655 }
1656
1657 static const struct net_device_ops hns3_nic_netdev_ops = {
1658         .ndo_open               = hns3_nic_net_open,
1659         .ndo_stop               = hns3_nic_net_stop,
1660         .ndo_start_xmit         = hns3_nic_net_xmit,
1661         .ndo_tx_timeout         = hns3_nic_net_timeout,
1662         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
1663         .ndo_do_ioctl           = hns3_nic_do_ioctl,
1664         .ndo_change_mtu         = hns3_nic_change_mtu,
1665         .ndo_set_features       = hns3_nic_set_features,
1666         .ndo_get_stats64        = hns3_nic_get_stats64,
1667         .ndo_setup_tc           = hns3_nic_setup_tc,
1668         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
1669         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
1670         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
1671         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
1672 };
1673
1674 static bool hns3_is_phys_func(struct pci_dev *pdev)
1675 {
1676         u32 dev_id = pdev->device;
1677
1678         switch (dev_id) {
1679         case HNAE3_DEV_ID_GE:
1680         case HNAE3_DEV_ID_25GE:
1681         case HNAE3_DEV_ID_25GE_RDMA:
1682         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1683         case HNAE3_DEV_ID_50GE_RDMA:
1684         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1685         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1686                 return true;
1687         case HNAE3_DEV_ID_100G_VF:
1688         case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1689                 return false;
1690         default:
1691                 dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1692                          dev_id);
1693         }
1694
1695         return false;
1696 }
1697
1698 static void hns3_disable_sriov(struct pci_dev *pdev)
1699 {
1700         /* If our VFs are assigned we cannot shut down SR-IOV
1701          * without causing issues, so just leave the hardware
1702          * available but disabled
1703          */
1704         if (pci_vfs_assigned(pdev)) {
1705                 dev_warn(&pdev->dev,
1706                          "disabling driver while VFs are assigned\n");
1707                 return;
1708         }
1709
1710         pci_disable_sriov(pdev);
1711 }
1712
1713 static void hns3_get_dev_capability(struct pci_dev *pdev,
1714                                     struct hnae3_ae_dev *ae_dev)
1715 {
1716         if (pdev->revision >= 0x21) {
1717                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1718                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1719         }
1720 }
1721
1722 /* hns3_probe - Device initialization routine
1723  * @pdev: PCI device information struct
1724  * @ent: entry in hns3_pci_tbl
1725  *
1726  * hns3_probe initializes a PF identified by a pci_dev structure.
1727  * The OS initialization, configuring of the PF private structure,
1728  * and a hardware reset occur.
1729  *
1730  * Returns 0 on success, negative on failure
1731  */
1732 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1733 {
1734         struct hnae3_ae_dev *ae_dev;
1735         int ret;
1736
1737         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1738                               GFP_KERNEL);
1739         if (!ae_dev) {
1740                 ret = -ENOMEM;
1741                 return ret;
1742         }
1743
1744         ae_dev->pdev = pdev;
1745         ae_dev->flag = ent->driver_data;
1746         ae_dev->dev_type = HNAE3_DEV_KNIC;
1747         ae_dev->reset_type = HNAE3_NONE_RESET;
1748         hns3_get_dev_capability(pdev, ae_dev);
1749         pci_set_drvdata(pdev, ae_dev);
1750
1751         ret = hnae3_register_ae_dev(ae_dev);
1752         if (ret) {
1753                 devm_kfree(&pdev->dev, ae_dev);
1754                 pci_set_drvdata(pdev, NULL);
1755         }
1756
1757         return ret;
1758 }
1759
1760 /* hns3_remove - Device removal routine
1761  * @pdev: PCI device information struct
1762  */
1763 static void hns3_remove(struct pci_dev *pdev)
1764 {
1765         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1766
1767         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1768                 hns3_disable_sriov(pdev);
1769
1770         hnae3_unregister_ae_dev(ae_dev);
1771         pci_set_drvdata(pdev, NULL);
1772 }
1773
1774 /**
1775  * hns3_pci_sriov_configure
1776  * @pdev: pointer to a pci_dev structure
1777  * @num_vfs: number of VFs to allocate
1778  *
1779  * Enable or change the number of VFs. Called when the user updates the number
1780  * of VFs in sysfs.
1781  **/
1782 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1783 {
1784         int ret;
1785
1786         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1787                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
1788                 return -EINVAL;
1789         }
1790
1791         if (num_vfs) {
1792                 ret = pci_enable_sriov(pdev, num_vfs);
1793                 if (ret)
1794                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1795                 else
1796                         return num_vfs;
1797         } else if (!pci_vfs_assigned(pdev)) {
1798                 pci_disable_sriov(pdev);
1799         } else {
1800                 dev_warn(&pdev->dev,
1801                          "Unable to free VFs because some are assigned to VMs.\n");
1802         }
1803
1804         return 0;
1805 }
1806
1807 static void hns3_shutdown(struct pci_dev *pdev)
1808 {
1809         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1810
1811         hnae3_unregister_ae_dev(ae_dev);
1812         devm_kfree(&pdev->dev, ae_dev);
1813         pci_set_drvdata(pdev, NULL);
1814
1815         if (system_state == SYSTEM_POWER_OFF)
1816                 pci_set_power_state(pdev, PCI_D3hot);
1817 }
1818
1819 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1820                                             pci_channel_state_t state)
1821 {
1822         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1823         pci_ers_result_t ret;
1824
1825         dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1826
1827         if (state == pci_channel_io_perm_failure)
1828                 return PCI_ERS_RESULT_DISCONNECT;
1829
1830         if (!ae_dev) {
1831                 dev_err(&pdev->dev,
1832                         "Can't recover - error happened during device init\n");
1833                 return PCI_ERS_RESULT_NONE;
1834         }
1835
1836         if (ae_dev->ops->handle_hw_ras_error)
1837                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1838         else
1839                 return PCI_ERS_RESULT_NONE;
1840
1841         return ret;
1842 }
1843
1844 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1845 {
1846         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1847         struct device *dev = &pdev->dev;
1848
1849         dev_info(dev, "requesting reset due to PCI error\n");
1850
1851         /* request the reset */
1852         if (ae_dev->ops->reset_event) {
1853                 if (!ae_dev->override_pci_need_reset)
1854                         ae_dev->ops->reset_event(pdev, NULL);
1855
1856                 return PCI_ERS_RESULT_RECOVERED;
1857         }
1858
1859         return PCI_ERS_RESULT_DISCONNECT;
1860 }
1861
1862 static void hns3_reset_prepare(struct pci_dev *pdev)
1863 {
1864         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1865
1866         dev_info(&pdev->dev, "hns3 flr prepare\n");
1867         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1868                 ae_dev->ops->flr_prepare(ae_dev);
1869 }
1870
1871 static void hns3_reset_done(struct pci_dev *pdev)
1872 {
1873         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1874
1875         dev_info(&pdev->dev, "hns3 flr done\n");
1876         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1877                 ae_dev->ops->flr_done(ae_dev);
1878 }
1879
1880 static const struct pci_error_handlers hns3_err_handler = {
1881         .error_detected = hns3_error_detected,
1882         .slot_reset     = hns3_slot_reset,
1883         .reset_prepare  = hns3_reset_prepare,
1884         .reset_done     = hns3_reset_done,
1885 };
1886
1887 static struct pci_driver hns3_driver = {
1888         .name     = hns3_driver_name,
1889         .id_table = hns3_pci_tbl,
1890         .probe    = hns3_probe,
1891         .remove   = hns3_remove,
1892         .shutdown = hns3_shutdown,
1893         .sriov_configure = hns3_pci_sriov_configure,
1894         .err_handler    = &hns3_err_handler,
1895 };
1896
1897 /* set default feature to hns3 */
1898 static void hns3_set_default_feature(struct net_device *netdev)
1899 {
1900         struct hnae3_handle *h = hns3_get_handle(netdev);
1901         struct pci_dev *pdev = h->pdev;
1902
1903         netdev->priv_flags |= IFF_UNICAST_FLT;
1904
1905         netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1906                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1907                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1908                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1909                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1910
1911         netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1912
1913         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1914
1915         netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1916                 NETIF_F_HW_VLAN_CTAG_FILTER |
1917                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1918                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1919                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1920                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1921                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1922
1923         netdev->vlan_features |=
1924                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1925                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1926                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1927                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1928                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1929
1930         netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1931                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1932                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1933                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1934                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1935                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1936
1937         if (pdev->revision >= 0x21) {
1938                 netdev->hw_features |= NETIF_F_GRO_HW;
1939                 netdev->features |= NETIF_F_GRO_HW;
1940
1941                 if (!(h->flags & HNAE3_SUPPORT_VF)) {
1942                         netdev->hw_features |= NETIF_F_NTUPLE;
1943                         netdev->features |= NETIF_F_NTUPLE;
1944                 }
1945         }
1946 }
1947
1948 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1949                              struct hns3_desc_cb *cb)
1950 {
1951         unsigned int order = hnae3_page_order(ring);
1952         struct page *p;
1953
1954         p = dev_alloc_pages(order);
1955         if (!p)
1956                 return -ENOMEM;
1957
1958         cb->priv = p;
1959         cb->page_offset = 0;
1960         cb->reuse_flag = 0;
1961         cb->buf  = page_address(p);
1962         cb->length = hnae3_page_size(ring);
1963         cb->type = DESC_TYPE_PAGE;
1964
1965         return 0;
1966 }
1967
1968 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1969                              struct hns3_desc_cb *cb)
1970 {
1971         if (cb->type == DESC_TYPE_SKB)
1972                 dev_kfree_skb_any((struct sk_buff *)cb->priv);
1973         else if (!HNAE3_IS_TX_RING(ring))
1974                 put_page((struct page *)cb->priv);
1975         memset(cb, 0, sizeof(*cb));
1976 }
1977
1978 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1979 {
1980         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1981                                cb->length, ring_to_dma_dir(ring));
1982
1983         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
1984                 return -EIO;
1985
1986         return 0;
1987 }
1988
1989 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1990                               struct hns3_desc_cb *cb)
1991 {
1992         if (cb->type == DESC_TYPE_SKB)
1993                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1994                                  ring_to_dma_dir(ring));
1995         else if (cb->length)
1996                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1997                                ring_to_dma_dir(ring));
1998 }
1999
2000 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2001 {
2002         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2003         ring->desc[i].addr = 0;
2004 }
2005
2006 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2007 {
2008         struct hns3_desc_cb *cb = &ring->desc_cb[i];
2009
2010         if (!ring->desc_cb[i].dma)
2011                 return;
2012
2013         hns3_buffer_detach(ring, i);
2014         hns3_free_buffer(ring, cb);
2015 }
2016
2017 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2018 {
2019         int i;
2020
2021         for (i = 0; i < ring->desc_num; i++)
2022                 hns3_free_buffer_detach(ring, i);
2023 }
2024
2025 /* free desc along with its attached buffer */
2026 static void hns3_free_desc(struct hns3_enet_ring *ring)
2027 {
2028         int size = ring->desc_num * sizeof(ring->desc[0]);
2029
2030         hns3_free_buffers(ring);
2031
2032         if (ring->desc) {
2033                 dma_free_coherent(ring_to_dev(ring), size,
2034                                   ring->desc, ring->desc_dma_addr);
2035                 ring->desc = NULL;
2036         }
2037 }
2038
2039 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2040 {
2041         int size = ring->desc_num * sizeof(ring->desc[0]);
2042
2043         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2044                                         &ring->desc_dma_addr, GFP_KERNEL);
2045         if (!ring->desc)
2046                 return -ENOMEM;
2047
2048         return 0;
2049 }
2050
2051 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2052                                    struct hns3_desc_cb *cb)
2053 {
2054         int ret;
2055
2056         ret = hns3_alloc_buffer(ring, cb);
2057         if (ret)
2058                 goto out;
2059
2060         ret = hns3_map_buffer(ring, cb);
2061         if (ret)
2062                 goto out_with_buf;
2063
2064         return 0;
2065
2066 out_with_buf:
2067         hns3_free_buffer(ring, cb);
2068 out:
2069         return ret;
2070 }
2071
2072 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2073 {
2074         int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2075
2076         if (ret)
2077                 return ret;
2078
2079         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2080
2081         return 0;
2082 }
2083
2084 /* Allocate memory for raw pkg, and map with dma */
2085 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2086 {
2087         int i, j, ret;
2088
2089         for (i = 0; i < ring->desc_num; i++) {
2090                 ret = hns3_alloc_buffer_attach(ring, i);
2091                 if (ret)
2092                         goto out_buffer_fail;
2093         }
2094
2095         return 0;
2096
2097 out_buffer_fail:
2098         for (j = i - 1; j >= 0; j--)
2099                 hns3_free_buffer_detach(ring, j);
2100         return ret;
2101 }
2102
2103 /* detach a in-used buffer and replace with a reserved one  */
2104 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2105                                 struct hns3_desc_cb *res_cb)
2106 {
2107         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2108         ring->desc_cb[i] = *res_cb;
2109         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2110         ring->desc[i].rx.bd_base_info = 0;
2111 }
2112
2113 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2114 {
2115         ring->desc_cb[i].reuse_flag = 0;
2116         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2117                 + ring->desc_cb[i].page_offset);
2118         ring->desc[i].rx.bd_base_info = 0;
2119 }
2120
2121 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2122                                       int *pkts)
2123 {
2124         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2125
2126         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2127         (*bytes) += desc_cb->length;
2128         /* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2129         hns3_free_buffer_detach(ring, ring->next_to_clean);
2130
2131         ring_ptr_move_fw(ring, next_to_clean);
2132 }
2133
2134 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2135 {
2136         int u = ring->next_to_use;
2137         int c = ring->next_to_clean;
2138
2139         if (unlikely(h > ring->desc_num))
2140                 return 0;
2141
2142         return u > c ? (h > c && h <= u) : (h > c || h <= u);
2143 }
2144
2145 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2146 {
2147         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2148         struct hns3_nic_priv *priv = netdev_priv(netdev);
2149         struct netdev_queue *dev_queue;
2150         int bytes, pkts;
2151         int head;
2152
2153         head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2154         rmb(); /* Make sure head is ready before touch any data */
2155
2156         if (is_ring_empty(ring) || head == ring->next_to_clean)
2157                 return; /* no data to poll */
2158
2159         if (unlikely(!is_valid_clean_head(ring, head))) {
2160                 netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2161                            ring->next_to_use, ring->next_to_clean);
2162
2163                 u64_stats_update_begin(&ring->syncp);
2164                 ring->stats.io_err_cnt++;
2165                 u64_stats_update_end(&ring->syncp);
2166                 return;
2167         }
2168
2169         bytes = 0;
2170         pkts = 0;
2171         while (head != ring->next_to_clean) {
2172                 hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2173                 /* Issue prefetch for next Tx descriptor */
2174                 prefetch(&ring->desc_cb[ring->next_to_clean]);
2175         }
2176
2177         ring->tqp_vector->tx_group.total_bytes += bytes;
2178         ring->tqp_vector->tx_group.total_packets += pkts;
2179
2180         u64_stats_update_begin(&ring->syncp);
2181         ring->stats.tx_bytes += bytes;
2182         ring->stats.tx_pkts += pkts;
2183         u64_stats_update_end(&ring->syncp);
2184
2185         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2186         netdev_tx_completed_queue(dev_queue, pkts, bytes);
2187
2188         if (unlikely(pkts && netif_carrier_ok(netdev) &&
2189                      (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2190                 /* Make sure that anybody stopping the queue after this
2191                  * sees the new next_to_clean.
2192                  */
2193                 smp_mb();
2194                 if (netif_tx_queue_stopped(dev_queue) &&
2195                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2196                         netif_tx_wake_queue(dev_queue);
2197                         ring->stats.restart_queue++;
2198                 }
2199         }
2200 }
2201
2202 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2203 {
2204         int ntc = ring->next_to_clean;
2205         int ntu = ring->next_to_use;
2206
2207         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2208 }
2209
2210 static void
2211 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2212 {
2213         struct hns3_desc_cb *desc_cb;
2214         struct hns3_desc_cb res_cbs;
2215         int i, ret;
2216
2217         for (i = 0; i < cleand_count; i++) {
2218                 desc_cb = &ring->desc_cb[ring->next_to_use];
2219                 if (desc_cb->reuse_flag) {
2220                         u64_stats_update_begin(&ring->syncp);
2221                         ring->stats.reuse_pg_cnt++;
2222                         u64_stats_update_end(&ring->syncp);
2223
2224                         hns3_reuse_buffer(ring, ring->next_to_use);
2225                 } else {
2226                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
2227                         if (ret) {
2228                                 u64_stats_update_begin(&ring->syncp);
2229                                 ring->stats.sw_err_cnt++;
2230                                 u64_stats_update_end(&ring->syncp);
2231
2232                                 netdev_err(ring->tqp->handle->kinfo.netdev,
2233                                            "hnae reserve buffer map failed.\n");
2234                                 break;
2235                         }
2236                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2237                 }
2238
2239                 ring_ptr_move_fw(ring, next_to_use);
2240         }
2241
2242         wmb(); /* Make all data has been write before submit */
2243         writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2244 }
2245
2246 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2247                                 struct hns3_enet_ring *ring, int pull_len,
2248                                 struct hns3_desc_cb *desc_cb)
2249 {
2250         struct hns3_desc *desc;
2251         u32 truesize;
2252         int size;
2253         int last_offset;
2254         bool twobufs;
2255
2256         twobufs = ((PAGE_SIZE < 8192) &&
2257                 hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2258
2259         desc = &ring->desc[ring->next_to_clean];
2260         size = le16_to_cpu(desc->rx.size);
2261
2262         truesize = hnae3_buf_size(ring);
2263
2264         if (!twobufs)
2265                 last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2266
2267         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2268                         size - pull_len, truesize);
2269
2270          /* Avoid re-using remote pages,flag default unreuse */
2271         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2272                 return;
2273
2274         if (twobufs) {
2275                 /* If we are only owner of page we can reuse it */
2276                 if (likely(page_count(desc_cb->priv) == 1)) {
2277                         /* Flip page offset to other buffer */
2278                         desc_cb->page_offset ^= truesize;
2279
2280                         desc_cb->reuse_flag = 1;
2281                         /* bump ref count on page before it is given*/
2282                         get_page(desc_cb->priv);
2283                 }
2284                 return;
2285         }
2286
2287         /* Move offset up to the next cache line */
2288         desc_cb->page_offset += truesize;
2289
2290         if (desc_cb->page_offset <= last_offset) {
2291                 desc_cb->reuse_flag = 1;
2292                 /* Bump ref count on page before it is given*/
2293                 get_page(desc_cb->priv);
2294         }
2295 }
2296
2297 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2298                              struct hns3_desc *desc)
2299 {
2300         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2301         int l3_type, l4_type;
2302         u32 bd_base_info;
2303         int ol4_type;
2304         u32 l234info;
2305
2306         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2307         l234info = le32_to_cpu(desc->rx.l234_info);
2308
2309         skb->ip_summed = CHECKSUM_NONE;
2310
2311         skb_checksum_none_assert(skb);
2312
2313         if (!(netdev->features & NETIF_F_RXCSUM))
2314                 return;
2315
2316         /* We MUST enable hardware checksum before enabling hardware GRO */
2317         if (skb_shinfo(skb)->gso_size) {
2318                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2319                 return;
2320         }
2321
2322         /* check if hardware has done checksum */
2323         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2324                 return;
2325
2326         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2327                                  BIT(HNS3_RXD_OL3E_B) |
2328                                  BIT(HNS3_RXD_OL4E_B)))) {
2329                 u64_stats_update_begin(&ring->syncp);
2330                 ring->stats.l3l4_csum_err++;
2331                 u64_stats_update_end(&ring->syncp);
2332
2333                 return;
2334         }
2335
2336         ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2337                                    HNS3_RXD_OL4ID_S);
2338         switch (ol4_type) {
2339         case HNS3_OL4_TYPE_MAC_IN_UDP:
2340         case HNS3_OL4_TYPE_NVGRE:
2341                 skb->csum_level = 1;
2342                 /* fall through */
2343         case HNS3_OL4_TYPE_NO_TUN:
2344                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2345                                           HNS3_RXD_L3ID_S);
2346                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2347                                           HNS3_RXD_L4ID_S);
2348
2349                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2350                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2351                      l3_type == HNS3_L3_TYPE_IPV6) &&
2352                     (l4_type == HNS3_L4_TYPE_UDP ||
2353                      l4_type == HNS3_L4_TYPE_TCP ||
2354                      l4_type == HNS3_L4_TYPE_SCTP))
2355                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2356                 break;
2357         default:
2358                 break;
2359         }
2360 }
2361
2362 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2363 {
2364         if (skb_has_frag_list(skb))
2365                 napi_gro_flush(&ring->tqp_vector->napi, false);
2366
2367         napi_gro_receive(&ring->tqp_vector->napi, skb);
2368 }
2369
2370 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2371                                 struct hns3_desc *desc, u32 l234info,
2372                                 u16 *vlan_tag)
2373 {
2374         struct pci_dev *pdev = ring->tqp->handle->pdev;
2375
2376         if (pdev->revision == 0x20) {
2377                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2378                 if (!(*vlan_tag & VLAN_VID_MASK))
2379                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2380
2381                 return (*vlan_tag != 0);
2382         }
2383
2384 #define HNS3_STRP_OUTER_VLAN    0x1
2385 #define HNS3_STRP_INNER_VLAN    0x2
2386
2387         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2388                                 HNS3_RXD_STRP_TAGP_S)) {
2389         case HNS3_STRP_OUTER_VLAN:
2390                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2391                 return true;
2392         case HNS3_STRP_INNER_VLAN:
2393                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2394                 return true;
2395         default:
2396                 return false;
2397         }
2398 }
2399
2400 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2401                           unsigned char *va)
2402 {
2403 #define HNS3_NEED_ADD_FRAG      1
2404         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2405         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2406         struct sk_buff *skb;
2407
2408         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2409         skb = ring->skb;
2410         if (unlikely(!skb)) {
2411                 netdev_err(netdev, "alloc rx skb fail\n");
2412
2413                 u64_stats_update_begin(&ring->syncp);
2414                 ring->stats.sw_err_cnt++;
2415                 u64_stats_update_end(&ring->syncp);
2416
2417                 return -ENOMEM;
2418         }
2419
2420         prefetchw(skb->data);
2421
2422         ring->pending_buf = 1;
2423         ring->frag_num = 0;
2424         ring->tail_skb = NULL;
2425         if (length <= HNS3_RX_HEAD_SIZE) {
2426                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2427
2428                 /* We can reuse buffer as-is, just make sure it is local */
2429                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2430                         desc_cb->reuse_flag = 1;
2431                 else /* This page cannot be reused so discard it */
2432                         put_page(desc_cb->priv);
2433
2434                 ring_ptr_move_fw(ring, next_to_clean);
2435                 return 0;
2436         }
2437         u64_stats_update_begin(&ring->syncp);
2438         ring->stats.seg_pkt_cnt++;
2439         u64_stats_update_end(&ring->syncp);
2440
2441         ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2442         __skb_put(skb, ring->pull_len);
2443         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2444                             desc_cb);
2445         ring_ptr_move_fw(ring, next_to_clean);
2446
2447         return HNS3_NEED_ADD_FRAG;
2448 }
2449
2450 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2451                          struct sk_buff **out_skb, bool pending)
2452 {
2453         struct sk_buff *skb = *out_skb;
2454         struct sk_buff *head_skb = *out_skb;
2455         struct sk_buff *new_skb;
2456         struct hns3_desc_cb *desc_cb;
2457         struct hns3_desc *pre_desc;
2458         u32 bd_base_info;
2459         int pre_bd;
2460
2461         /* if there is pending bd, the SW param next_to_clean has moved
2462          * to next and the next is NULL
2463          */
2464         if (pending) {
2465                 pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2466                         ring->desc_num;
2467                 pre_desc = &ring->desc[pre_bd];
2468                 bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2469         } else {
2470                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2471         }
2472
2473         while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2474                 desc = &ring->desc[ring->next_to_clean];
2475                 desc_cb = &ring->desc_cb[ring->next_to_clean];
2476                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2477                 /* make sure HW write desc complete */
2478                 dma_rmb();
2479                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2480                         return -ENXIO;
2481
2482                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2483                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2484                                                  HNS3_RX_HEAD_SIZE);
2485                         if (unlikely(!new_skb)) {
2486                                 netdev_err(ring->tqp->handle->kinfo.netdev,
2487                                            "alloc rx skb frag fail\n");
2488                                 return -ENXIO;
2489                         }
2490                         ring->frag_num = 0;
2491
2492                         if (ring->tail_skb) {
2493                                 ring->tail_skb->next = new_skb;
2494                                 ring->tail_skb = new_skb;
2495                         } else {
2496                                 skb_shinfo(skb)->frag_list = new_skb;
2497                                 ring->tail_skb = new_skb;
2498                         }
2499                 }
2500
2501                 if (ring->tail_skb) {
2502                         head_skb->truesize += hnae3_buf_size(ring);
2503                         head_skb->data_len += le16_to_cpu(desc->rx.size);
2504                         head_skb->len += le16_to_cpu(desc->rx.size);
2505                         skb = ring->tail_skb;
2506                 }
2507
2508                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2509                 ring_ptr_move_fw(ring, next_to_clean);
2510                 ring->pending_buf++;
2511         }
2512
2513         return 0;
2514 }
2515
2516 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2517                                u32 bd_base_info)
2518 {
2519         u16 gro_count;
2520         u32 l3_type;
2521
2522         gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2523                                     HNS3_RXD_GRO_COUNT_S);
2524         /* if there is no HW GRO, do not set gro params */
2525         if (!gro_count)
2526                 return;
2527
2528         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2529          * to skb_shinfo(skb)->gso_segs
2530          */
2531         NAPI_GRO_CB(skb)->count = gro_count;
2532
2533         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2534                                   HNS3_RXD_L3ID_S);
2535         if (l3_type == HNS3_L3_TYPE_IPV4)
2536                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2537         else if (l3_type == HNS3_L3_TYPE_IPV6)
2538                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2539         else
2540                 return;
2541
2542         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2543                                                     HNS3_RXD_GRO_SIZE_M,
2544                                                     HNS3_RXD_GRO_SIZE_S);
2545         if (skb_shinfo(skb)->gso_size)
2546                 tcp_gro_complete(skb);
2547 }
2548
2549 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2550                                      struct sk_buff *skb)
2551 {
2552         struct hnae3_handle *handle = ring->tqp->handle;
2553         enum pkt_hash_types rss_type;
2554         struct hns3_desc *desc;
2555         int last_bd;
2556
2557         /* When driver handle the rss type, ring->next_to_clean indicates the
2558          * first descriptor of next packet, need -1 here.
2559          */
2560         last_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num;
2561         desc = &ring->desc[last_bd];
2562
2563         if (le32_to_cpu(desc->rx.rss_hash))
2564                 rss_type = handle->kinfo.rss_type;
2565         else
2566                 rss_type = PKT_HASH_TYPE_NONE;
2567
2568         skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2569 }
2570
2571 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2572                              struct sk_buff **out_skb)
2573 {
2574         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2575         enum hns3_pkt_l2t_type l2_frame_type;
2576         struct sk_buff *skb = ring->skb;
2577         struct hns3_desc_cb *desc_cb;
2578         struct hns3_desc *desc;
2579         u32 bd_base_info;
2580         u32 l234info;
2581         int length;
2582         int ret;
2583
2584         desc = &ring->desc[ring->next_to_clean];
2585         desc_cb = &ring->desc_cb[ring->next_to_clean];
2586
2587         prefetch(desc);
2588
2589         length = le16_to_cpu(desc->rx.size);
2590         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2591
2592         /* Check valid BD */
2593         if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2594                 return -ENXIO;
2595
2596         if (!skb)
2597                 ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2598
2599         /* Prefetch first cache line of first page
2600          * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2601          * line size is 64B so need to prefetch twice to make it 128B. But in
2602          * actual we can have greater size of caches with 128B Level 1 cache
2603          * lines. In such a case, single fetch would suffice to cache in the
2604          * relevant part of the header.
2605          */
2606         prefetch(ring->va);
2607 #if L1_CACHE_BYTES < 128
2608         prefetch(ring->va + L1_CACHE_BYTES);
2609 #endif
2610
2611         if (!skb) {
2612                 ret = hns3_alloc_skb(ring, length, ring->va);
2613                 *out_skb = skb = ring->skb;
2614
2615                 if (ret < 0) /* alloc buffer fail */
2616                         return ret;
2617                 if (ret > 0) { /* need add frag */
2618                         ret = hns3_add_frag(ring, desc, &skb, false);
2619                         if (ret)
2620                                 return ret;
2621
2622                         /* As the head data may be changed when GRO enable, copy
2623                          * the head data in after other data rx completed
2624                          */
2625                         memcpy(skb->data, ring->va,
2626                                ALIGN(ring->pull_len, sizeof(long)));
2627                 }
2628         } else {
2629                 ret = hns3_add_frag(ring, desc, &skb, true);
2630                 if (ret)
2631                         return ret;
2632
2633                 /* As the head data may be changed when GRO enable, copy
2634                  * the head data in after other data rx completed
2635                  */
2636                 memcpy(skb->data, ring->va,
2637                        ALIGN(ring->pull_len, sizeof(long)));
2638         }
2639
2640         l234info = le32_to_cpu(desc->rx.l234_info);
2641         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2642
2643         /* Based on hw strategy, the tag offloaded will be stored at
2644          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2645          * in one layer tag case.
2646          */
2647         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2648                 u16 vlan_tag;
2649
2650                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2651                         __vlan_hwaccel_put_tag(skb,
2652                                                htons(ETH_P_8021Q),
2653                                                vlan_tag);
2654         }
2655
2656         if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) {
2657                 u64_stats_update_begin(&ring->syncp);
2658                 ring->stats.non_vld_descs++;
2659                 u64_stats_update_end(&ring->syncp);
2660
2661                 dev_kfree_skb_any(skb);
2662                 return -EINVAL;
2663         }
2664
2665         if (unlikely((!desc->rx.pkt_len) ||
2666                      (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2667                                   BIT(HNS3_RXD_L2E_B))))) {
2668                 u64_stats_update_begin(&ring->syncp);
2669                 if (l234info & BIT(HNS3_RXD_L2E_B))
2670                         ring->stats.l2_err++;
2671                 else
2672                         ring->stats.err_pkt_len++;
2673                 u64_stats_update_end(&ring->syncp);
2674
2675                 dev_kfree_skb_any(skb);
2676                 return -EFAULT;
2677         }
2678
2679
2680         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2681                                         HNS3_RXD_DMAC_S);
2682         u64_stats_update_begin(&ring->syncp);
2683         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2684                 ring->stats.rx_multicast++;
2685
2686         ring->stats.rx_pkts++;
2687         ring->stats.rx_bytes += skb->len;
2688         u64_stats_update_end(&ring->syncp);
2689
2690         ring->tqp_vector->rx_group.total_bytes += skb->len;
2691
2692         /* This is needed in order to enable forwarding support */
2693         hns3_set_gro_param(skb, l234info, bd_base_info);
2694
2695         hns3_rx_checksum(ring, skb, desc);
2696         *out_skb = skb;
2697         hns3_set_rx_skb_rss_type(ring, skb);
2698
2699         return 0;
2700 }
2701
2702 int hns3_clean_rx_ring(
2703                 struct hns3_enet_ring *ring, int budget,
2704                 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2705 {
2706 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2707         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2708         int recv_pkts, recv_bds, clean_count, err;
2709         int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2710         struct sk_buff *skb = ring->skb;
2711         int num;
2712
2713         num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2714         rmb(); /* Make sure num taken effect before the other data is touched */
2715
2716         recv_pkts = 0, recv_bds = 0, clean_count = 0;
2717         num -= unused_count;
2718
2719         while (recv_pkts < budget && recv_bds < num) {
2720                 /* Reuse or realloc buffers */
2721                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2722                         hns3_nic_alloc_rx_buffers(ring,
2723                                                   clean_count + unused_count);
2724                         clean_count = 0;
2725                         unused_count = hns3_desc_unused(ring) -
2726                                         ring->pending_buf;
2727                 }
2728
2729                 /* Poll one pkt */
2730                 err = hns3_handle_rx_bd(ring, &skb);
2731                 if (unlikely(!skb)) /* This fault cannot be repaired */
2732                         goto out;
2733
2734                 if (err == -ENXIO) { /* Do not get FE for the packet */
2735                         goto out;
2736                 } else if (unlikely(err)) {  /* Do jump the err */
2737                         recv_bds += ring->pending_buf;
2738                         clean_count += ring->pending_buf;
2739                         ring->skb = NULL;
2740                         ring->pending_buf = 0;
2741                         continue;
2742                 }
2743
2744                 /* Do update ip stack process */
2745                 skb->protocol = eth_type_trans(skb, netdev);
2746                 rx_fn(ring, skb);
2747                 recv_bds += ring->pending_buf;
2748                 clean_count += ring->pending_buf;
2749                 ring->skb = NULL;
2750                 ring->pending_buf = 0;
2751
2752                 recv_pkts++;
2753         }
2754
2755 out:
2756         /* Make all data has been write before submit */
2757         if (clean_count + unused_count > 0)
2758                 hns3_nic_alloc_rx_buffers(ring,
2759                                           clean_count + unused_count);
2760
2761         return recv_pkts;
2762 }
2763
2764 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2765 {
2766         struct hns3_enet_tqp_vector *tqp_vector =
2767                                         ring_group->ring->tqp_vector;
2768         enum hns3_flow_level_range new_flow_level;
2769         int packets_per_msecs;
2770         int bytes_per_msecs;
2771         u32 time_passed_ms;
2772         u16 new_int_gl;
2773
2774         if (!tqp_vector->last_jiffies)
2775                 return false;
2776
2777         if (ring_group->total_packets == 0) {
2778                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
2779                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
2780                 return true;
2781         }
2782
2783         /* Simple throttlerate management
2784          * 0-10MB/s   lower     (50000 ints/s)
2785          * 10-20MB/s   middle    (20000 ints/s)
2786          * 20-1249MB/s high      (18000 ints/s)
2787          * > 40000pps  ultra     (8000 ints/s)
2788          */
2789         new_flow_level = ring_group->coal.flow_level;
2790         new_int_gl = ring_group->coal.int_gl;
2791         time_passed_ms =
2792                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2793
2794         if (!time_passed_ms)
2795                 return false;
2796
2797         do_div(ring_group->total_packets, time_passed_ms);
2798         packets_per_msecs = ring_group->total_packets;
2799
2800         do_div(ring_group->total_bytes, time_passed_ms);
2801         bytes_per_msecs = ring_group->total_bytes;
2802
2803 #define HNS3_RX_LOW_BYTE_RATE 10000
2804 #define HNS3_RX_MID_BYTE_RATE 20000
2805
2806         switch (new_flow_level) {
2807         case HNS3_FLOW_LOW:
2808                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2809                         new_flow_level = HNS3_FLOW_MID;
2810                 break;
2811         case HNS3_FLOW_MID:
2812                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2813                         new_flow_level = HNS3_FLOW_HIGH;
2814                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2815                         new_flow_level = HNS3_FLOW_LOW;
2816                 break;
2817         case HNS3_FLOW_HIGH:
2818         case HNS3_FLOW_ULTRA:
2819         default:
2820                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2821                         new_flow_level = HNS3_FLOW_MID;
2822                 break;
2823         }
2824
2825 #define HNS3_RX_ULTRA_PACKET_RATE 40
2826
2827         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2828             &tqp_vector->rx_group == ring_group)
2829                 new_flow_level = HNS3_FLOW_ULTRA;
2830
2831         switch (new_flow_level) {
2832         case HNS3_FLOW_LOW:
2833                 new_int_gl = HNS3_INT_GL_50K;
2834                 break;
2835         case HNS3_FLOW_MID:
2836                 new_int_gl = HNS3_INT_GL_20K;
2837                 break;
2838         case HNS3_FLOW_HIGH:
2839                 new_int_gl = HNS3_INT_GL_18K;
2840                 break;
2841         case HNS3_FLOW_ULTRA:
2842                 new_int_gl = HNS3_INT_GL_8K;
2843                 break;
2844         default:
2845                 break;
2846         }
2847
2848         ring_group->total_bytes = 0;
2849         ring_group->total_packets = 0;
2850         ring_group->coal.flow_level = new_flow_level;
2851         if (new_int_gl != ring_group->coal.int_gl) {
2852                 ring_group->coal.int_gl = new_int_gl;
2853                 return true;
2854         }
2855         return false;
2856 }
2857
2858 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2859 {
2860         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2861         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2862         bool rx_update, tx_update;
2863
2864         /* update param every 1000ms */
2865         if (time_before(jiffies,
2866                         tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2867                 return;
2868
2869         if (rx_group->coal.gl_adapt_enable) {
2870                 rx_update = hns3_get_new_int_gl(rx_group);
2871                 if (rx_update)
2872                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
2873                                                        rx_group->coal.int_gl);
2874         }
2875
2876         if (tx_group->coal.gl_adapt_enable) {
2877                 tx_update = hns3_get_new_int_gl(tx_group);
2878                 if (tx_update)
2879                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
2880                                                        tx_group->coal.int_gl);
2881         }
2882
2883         tqp_vector->last_jiffies = jiffies;
2884 }
2885
2886 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2887 {
2888         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2889         struct hns3_enet_ring *ring;
2890         int rx_pkt_total = 0;
2891
2892         struct hns3_enet_tqp_vector *tqp_vector =
2893                 container_of(napi, struct hns3_enet_tqp_vector, napi);
2894         bool clean_complete = true;
2895         int rx_budget;
2896
2897         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2898                 napi_complete(napi);
2899                 return 0;
2900         }
2901
2902         /* Since the actual Tx work is minimal, we can give the Tx a larger
2903          * budget and be more aggressive about cleaning up the Tx descriptors.
2904          */
2905         hns3_for_each_ring(ring, tqp_vector->tx_group)
2906                 hns3_clean_tx_ring(ring);
2907
2908         /* make sure rx ring budget not smaller than 1 */
2909         rx_budget = max(budget / tqp_vector->num_tqps, 1);
2910
2911         hns3_for_each_ring(ring, tqp_vector->rx_group) {
2912                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2913                                                     hns3_rx_skb);
2914
2915                 if (rx_cleaned >= rx_budget)
2916                         clean_complete = false;
2917
2918                 rx_pkt_total += rx_cleaned;
2919         }
2920
2921         tqp_vector->rx_group.total_packets += rx_pkt_total;
2922
2923         if (!clean_complete)
2924                 return budget;
2925
2926         if (napi_complete(napi) &&
2927             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2928                 hns3_update_new_int_gl(tqp_vector);
2929                 hns3_mask_vector_irq(tqp_vector, 1);
2930         }
2931
2932         return rx_pkt_total;
2933 }
2934
2935 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2936                                       struct hnae3_ring_chain_node *head)
2937 {
2938         struct pci_dev *pdev = tqp_vector->handle->pdev;
2939         struct hnae3_ring_chain_node *cur_chain = head;
2940         struct hnae3_ring_chain_node *chain;
2941         struct hns3_enet_ring *tx_ring;
2942         struct hns3_enet_ring *rx_ring;
2943
2944         tx_ring = tqp_vector->tx_group.ring;
2945         if (tx_ring) {
2946                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2947                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2948                               HNAE3_RING_TYPE_TX);
2949                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2950                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2951
2952                 cur_chain->next = NULL;
2953
2954                 while (tx_ring->next) {
2955                         tx_ring = tx_ring->next;
2956
2957                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2958                                              GFP_KERNEL);
2959                         if (!chain)
2960                                 goto err_free_chain;
2961
2962                         cur_chain->next = chain;
2963                         chain->tqp_index = tx_ring->tqp->tqp_index;
2964                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2965                                       HNAE3_RING_TYPE_TX);
2966                         hnae3_set_field(chain->int_gl_idx,
2967                                         HNAE3_RING_GL_IDX_M,
2968                                         HNAE3_RING_GL_IDX_S,
2969                                         HNAE3_RING_GL_TX);
2970
2971                         cur_chain = chain;
2972                 }
2973         }
2974
2975         rx_ring = tqp_vector->rx_group.ring;
2976         if (!tx_ring && rx_ring) {
2977                 cur_chain->next = NULL;
2978                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2979                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2980                               HNAE3_RING_TYPE_RX);
2981                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2982                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2983
2984                 rx_ring = rx_ring->next;
2985         }
2986
2987         while (rx_ring) {
2988                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2989                 if (!chain)
2990                         goto err_free_chain;
2991
2992                 cur_chain->next = chain;
2993                 chain->tqp_index = rx_ring->tqp->tqp_index;
2994                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2995                               HNAE3_RING_TYPE_RX);
2996                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2997                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2998
2999                 cur_chain = chain;
3000
3001                 rx_ring = rx_ring->next;
3002         }
3003
3004         return 0;
3005
3006 err_free_chain:
3007         cur_chain = head->next;
3008         while (cur_chain) {
3009                 chain = cur_chain->next;
3010                 devm_kfree(&pdev->dev, cur_chain);
3011                 cur_chain = chain;
3012         }
3013         head->next = NULL;
3014
3015         return -ENOMEM;
3016 }
3017
3018 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3019                                         struct hnae3_ring_chain_node *head)
3020 {
3021         struct pci_dev *pdev = tqp_vector->handle->pdev;
3022         struct hnae3_ring_chain_node *chain_tmp, *chain;
3023
3024         chain = head->next;
3025
3026         while (chain) {
3027                 chain_tmp = chain->next;
3028                 devm_kfree(&pdev->dev, chain);
3029                 chain = chain_tmp;
3030         }
3031 }
3032
3033 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3034                                    struct hns3_enet_ring *ring)
3035 {
3036         ring->next = group->ring;
3037         group->ring = ring;
3038
3039         group->count++;
3040 }
3041
3042 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3043 {
3044         struct pci_dev *pdev = priv->ae_handle->pdev;
3045         struct hns3_enet_tqp_vector *tqp_vector;
3046         int num_vectors = priv->vector_num;
3047         int numa_node;
3048         int vector_i;
3049
3050         numa_node = dev_to_node(&pdev->dev);
3051
3052         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3053                 tqp_vector = &priv->tqp_vector[vector_i];
3054                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3055                                 &tqp_vector->affinity_mask);
3056         }
3057 }
3058
3059 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3060 {
3061         struct hnae3_ring_chain_node vector_ring_chain;
3062         struct hnae3_handle *h = priv->ae_handle;
3063         struct hns3_enet_tqp_vector *tqp_vector;
3064         int ret = 0;
3065         int i;
3066
3067         hns3_nic_set_cpumask(priv);
3068
3069         for (i = 0; i < priv->vector_num; i++) {
3070                 tqp_vector = &priv->tqp_vector[i];
3071                 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3072                 tqp_vector->num_tqps = 0;
3073         }
3074
3075         for (i = 0; i < h->kinfo.num_tqps; i++) {
3076                 u16 vector_i = i % priv->vector_num;
3077                 u16 tqp_num = h->kinfo.num_tqps;
3078
3079                 tqp_vector = &priv->tqp_vector[vector_i];
3080
3081                 hns3_add_ring_to_group(&tqp_vector->tx_group,
3082                                        priv->ring_data[i].ring);
3083
3084                 hns3_add_ring_to_group(&tqp_vector->rx_group,
3085                                        priv->ring_data[i + tqp_num].ring);
3086
3087                 priv->ring_data[i].ring->tqp_vector = tqp_vector;
3088                 priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3089                 tqp_vector->num_tqps++;
3090         }
3091
3092         for (i = 0; i < priv->vector_num; i++) {
3093                 tqp_vector = &priv->tqp_vector[i];
3094
3095                 tqp_vector->rx_group.total_bytes = 0;
3096                 tqp_vector->rx_group.total_packets = 0;
3097                 tqp_vector->tx_group.total_bytes = 0;
3098                 tqp_vector->tx_group.total_packets = 0;
3099                 tqp_vector->handle = h;
3100
3101                 ret = hns3_get_vector_ring_chain(tqp_vector,
3102                                                  &vector_ring_chain);
3103                 if (ret)
3104                         goto map_ring_fail;
3105
3106                 ret = h->ae_algo->ops->map_ring_to_vector(h,
3107                         tqp_vector->vector_irq, &vector_ring_chain);
3108
3109                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3110
3111                 if (ret)
3112                         goto map_ring_fail;
3113
3114                 netif_napi_add(priv->netdev, &tqp_vector->napi,
3115                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3116         }
3117
3118         return 0;
3119
3120 map_ring_fail:
3121         while (i--)
3122                 netif_napi_del(&priv->tqp_vector[i].napi);
3123
3124         return ret;
3125 }
3126
3127 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3128 {
3129 #define HNS3_VECTOR_PF_MAX_NUM          64
3130
3131         struct hnae3_handle *h = priv->ae_handle;
3132         struct hns3_enet_tqp_vector *tqp_vector;
3133         struct hnae3_vector_info *vector;
3134         struct pci_dev *pdev = h->pdev;
3135         u16 tqp_num = h->kinfo.num_tqps;
3136         u16 vector_num;
3137         int ret = 0;
3138         u16 i;
3139
3140         /* RSS size, cpu online and vector_num should be the same */
3141         /* Should consider 2p/4p later */
3142         vector_num = min_t(u16, num_online_cpus(), tqp_num);
3143         vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3144
3145         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3146                               GFP_KERNEL);
3147         if (!vector)
3148                 return -ENOMEM;
3149
3150         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3151
3152         priv->vector_num = vector_num;
3153         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3154                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3155                              GFP_KERNEL);
3156         if (!priv->tqp_vector) {
3157                 ret = -ENOMEM;
3158                 goto out;
3159         }
3160
3161         for (i = 0; i < priv->vector_num; i++) {
3162                 tqp_vector = &priv->tqp_vector[i];
3163                 tqp_vector->idx = i;
3164                 tqp_vector->mask_addr = vector[i].io_addr;
3165                 tqp_vector->vector_irq = vector[i].vector;
3166                 hns3_vector_gl_rl_init(tqp_vector, priv);
3167         }
3168
3169 out:
3170         devm_kfree(&pdev->dev, vector);
3171         return ret;
3172 }
3173
3174 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3175 {
3176         group->ring = NULL;
3177         group->count = 0;
3178 }
3179
3180 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3181 {
3182         struct hnae3_ring_chain_node vector_ring_chain;
3183         struct hnae3_handle *h = priv->ae_handle;
3184         struct hns3_enet_tqp_vector *tqp_vector;
3185         int i;
3186
3187         for (i = 0; i < priv->vector_num; i++) {
3188                 tqp_vector = &priv->tqp_vector[i];
3189
3190                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3191                         continue;
3192
3193                 hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3194
3195                 h->ae_algo->ops->unmap_ring_from_vector(h,
3196                         tqp_vector->vector_irq, &vector_ring_chain);
3197
3198                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3199
3200                 if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3201                         irq_set_affinity_notifier(tqp_vector->vector_irq,
3202                                                   NULL);
3203                         irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3204                         free_irq(tqp_vector->vector_irq, tqp_vector);
3205                         tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3206                 }
3207
3208                 hns3_clear_ring_group(&tqp_vector->rx_group);
3209                 hns3_clear_ring_group(&tqp_vector->tx_group);
3210                 netif_napi_del(&priv->tqp_vector[i].napi);
3211         }
3212 }
3213
3214 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3215 {
3216         struct hnae3_handle *h = priv->ae_handle;
3217         struct pci_dev *pdev = h->pdev;
3218         int i, ret;
3219
3220         for (i = 0; i < priv->vector_num; i++) {
3221                 struct hns3_enet_tqp_vector *tqp_vector;
3222
3223                 tqp_vector = &priv->tqp_vector[i];
3224                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3225                 if (ret)
3226                         return ret;
3227         }
3228
3229         devm_kfree(&pdev->dev, priv->tqp_vector);
3230         return 0;
3231 }
3232
3233 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3234                              int ring_type)
3235 {
3236         struct hns3_nic_ring_data *ring_data = priv->ring_data;
3237         int queue_num = priv->ae_handle->kinfo.num_tqps;
3238         struct pci_dev *pdev = priv->ae_handle->pdev;
3239         struct hns3_enet_ring *ring;
3240         int desc_num;
3241
3242         ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3243         if (!ring)
3244                 return -ENOMEM;
3245
3246         if (ring_type == HNAE3_RING_TYPE_TX) {
3247                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3248                 ring_data[q->tqp_index].ring = ring;
3249                 ring_data[q->tqp_index].queue_index = q->tqp_index;
3250                 ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3251         } else {
3252                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3253                 ring_data[q->tqp_index + queue_num].ring = ring;
3254                 ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3255                 ring->io_base = q->io_base;
3256         }
3257
3258         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3259
3260         ring->tqp = q;
3261         ring->desc = NULL;
3262         ring->desc_cb = NULL;
3263         ring->dev = priv->dev;
3264         ring->desc_dma_addr = 0;
3265         ring->buf_size = q->buf_size;
3266         ring->desc_num = desc_num;
3267         ring->next_to_use = 0;
3268         ring->next_to_clean = 0;
3269
3270         return 0;
3271 }
3272
3273 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3274                               struct hns3_nic_priv *priv)
3275 {
3276         int ret;
3277
3278         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3279         if (ret)
3280                 return ret;
3281
3282         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3283         if (ret) {
3284                 devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3285                 return ret;
3286         }
3287
3288         return 0;
3289 }
3290
3291 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3292 {
3293         struct hnae3_handle *h = priv->ae_handle;
3294         struct pci_dev *pdev = h->pdev;
3295         int i, ret;
3296
3297         priv->ring_data =  devm_kzalloc(&pdev->dev,
3298                                         array3_size(h->kinfo.num_tqps,
3299                                                     sizeof(*priv->ring_data),
3300                                                     2),
3301                                         GFP_KERNEL);
3302         if (!priv->ring_data)
3303                 return -ENOMEM;
3304
3305         for (i = 0; i < h->kinfo.num_tqps; i++) {
3306                 ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3307                 if (ret)
3308                         goto err;
3309         }
3310
3311         return 0;
3312 err:
3313         while (i--) {
3314                 devm_kfree(priv->dev, priv->ring_data[i].ring);
3315                 devm_kfree(priv->dev,
3316                            priv->ring_data[i + h->kinfo.num_tqps].ring);
3317         }
3318
3319         devm_kfree(&pdev->dev, priv->ring_data);
3320         return ret;
3321 }
3322
3323 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3324 {
3325         struct hnae3_handle *h = priv->ae_handle;
3326         int i;
3327
3328         for (i = 0; i < h->kinfo.num_tqps; i++) {
3329                 devm_kfree(priv->dev, priv->ring_data[i].ring);
3330                 devm_kfree(priv->dev,
3331                            priv->ring_data[i + h->kinfo.num_tqps].ring);
3332         }
3333         devm_kfree(priv->dev, priv->ring_data);
3334 }
3335
3336 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3337 {
3338         int ret;
3339
3340         if (ring->desc_num <= 0 || ring->buf_size <= 0)
3341                 return -EINVAL;
3342
3343         ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3344                                 GFP_KERNEL);
3345         if (!ring->desc_cb) {
3346                 ret = -ENOMEM;
3347                 goto out;
3348         }
3349
3350         ret = hns3_alloc_desc(ring);
3351         if (ret)
3352                 goto out_with_desc_cb;
3353
3354         if (!HNAE3_IS_TX_RING(ring)) {
3355                 ret = hns3_alloc_ring_buffers(ring);
3356                 if (ret)
3357                         goto out_with_desc;
3358         }
3359
3360         return 0;
3361
3362 out_with_desc:
3363         hns3_free_desc(ring);
3364 out_with_desc_cb:
3365         kfree(ring->desc_cb);
3366         ring->desc_cb = NULL;
3367 out:
3368         return ret;
3369 }
3370
3371 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3372 {
3373         hns3_free_desc(ring);
3374         kfree(ring->desc_cb);
3375         ring->desc_cb = NULL;
3376         ring->next_to_clean = 0;
3377         ring->next_to_use = 0;
3378         ring->pending_buf = 0;
3379         if (ring->skb) {
3380                 dev_kfree_skb_any(ring->skb);
3381                 ring->skb = NULL;
3382         }
3383 }
3384
3385 static int hns3_buf_size2type(u32 buf_size)
3386 {
3387         int bd_size_type;
3388
3389         switch (buf_size) {
3390         case 512:
3391                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3392                 break;
3393         case 1024:
3394                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3395                 break;
3396         case 2048:
3397                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3398                 break;
3399         case 4096:
3400                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3401                 break;
3402         default:
3403                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3404         }
3405
3406         return bd_size_type;
3407 }
3408
3409 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3410 {
3411         dma_addr_t dma = ring->desc_dma_addr;
3412         struct hnae3_queue *q = ring->tqp;
3413
3414         if (!HNAE3_IS_TX_RING(ring)) {
3415                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3416                                (u32)dma);
3417                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3418                                (u32)((dma >> 31) >> 1));
3419
3420                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3421                                hns3_buf_size2type(ring->buf_size));
3422                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3423                                ring->desc_num / 8 - 1);
3424
3425         } else {
3426                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3427                                (u32)dma);
3428                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3429                                (u32)((dma >> 31) >> 1));
3430
3431                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3432                                ring->desc_num / 8 - 1);
3433         }
3434 }
3435
3436 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3437 {
3438         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3439         int i;
3440
3441         for (i = 0; i < HNAE3_MAX_TC; i++) {
3442                 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3443                 int j;
3444
3445                 if (!tc_info->enable)
3446                         continue;
3447
3448                 for (j = 0; j < tc_info->tqp_count; j++) {
3449                         struct hnae3_queue *q;
3450
3451                         q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3452                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3453                                        tc_info->tc);
3454                 }
3455         }
3456 }
3457
3458 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3459 {
3460         struct hnae3_handle *h = priv->ae_handle;
3461         int ring_num = h->kinfo.num_tqps * 2;
3462         int i, j;
3463         int ret;
3464
3465         for (i = 0; i < ring_num; i++) {
3466                 ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3467                 if (ret) {
3468                         dev_err(priv->dev,
3469                                 "Alloc ring memory fail! ret=%d\n", ret);
3470                         goto out_when_alloc_ring_memory;
3471                 }
3472
3473                 u64_stats_init(&priv->ring_data[i].ring->syncp);
3474         }
3475
3476         return 0;
3477
3478 out_when_alloc_ring_memory:
3479         for (j = i - 1; j >= 0; j--)
3480                 hns3_fini_ring(priv->ring_data[j].ring);
3481
3482         return -ENOMEM;
3483 }
3484
3485 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3486 {
3487         struct hnae3_handle *h = priv->ae_handle;
3488         int i;
3489
3490         for (i = 0; i < h->kinfo.num_tqps; i++) {
3491                 hns3_fini_ring(priv->ring_data[i].ring);
3492                 hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3493         }
3494         return 0;
3495 }
3496
3497 /* Set mac addr if it is configured. or leave it to the AE driver */
3498 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3499 {
3500         struct hns3_nic_priv *priv = netdev_priv(netdev);
3501         struct hnae3_handle *h = priv->ae_handle;
3502         u8 mac_addr_temp[ETH_ALEN];
3503         int ret = 0;
3504
3505         if (h->ae_algo->ops->get_mac_addr && init) {
3506                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3507                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3508         }
3509
3510         /* Check if the MAC address is valid, if not get a random one */
3511         if (!is_valid_ether_addr(netdev->dev_addr)) {
3512                 eth_hw_addr_random(netdev);
3513                 dev_warn(priv->dev, "using random MAC address %pM\n",
3514                          netdev->dev_addr);
3515         }
3516
3517         if (h->ae_algo->ops->set_mac_addr)
3518                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3519
3520         return ret;
3521 }
3522
3523 static int hns3_init_phy(struct net_device *netdev)
3524 {
3525         struct hnae3_handle *h = hns3_get_handle(netdev);
3526         int ret = 0;
3527
3528         if (h->ae_algo->ops->mac_connect_phy)
3529                 ret = h->ae_algo->ops->mac_connect_phy(h);
3530
3531         return ret;
3532 }
3533
3534 static void hns3_uninit_phy(struct net_device *netdev)
3535 {
3536         struct hnae3_handle *h = hns3_get_handle(netdev);
3537
3538         if (h->ae_algo->ops->mac_disconnect_phy)
3539                 h->ae_algo->ops->mac_disconnect_phy(h);
3540 }
3541
3542 static int hns3_restore_fd_rules(struct net_device *netdev)
3543 {
3544         struct hnae3_handle *h = hns3_get_handle(netdev);
3545         int ret = 0;
3546
3547         if (h->ae_algo->ops->restore_fd_rules)
3548                 ret = h->ae_algo->ops->restore_fd_rules(h);
3549
3550         return ret;
3551 }
3552
3553 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3554 {
3555         struct hnae3_handle *h = hns3_get_handle(netdev);
3556
3557         if (h->ae_algo->ops->del_all_fd_entries)
3558                 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3559 }
3560
3561 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3562 {
3563         struct hns3_nic_priv *priv = netdev_priv(netdev);
3564
3565         if ((netdev->features & NETIF_F_TSO) ||
3566             (netdev->features & NETIF_F_TSO6))
3567                 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3568         else
3569                 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3570 }
3571
3572 static int hns3_client_start(struct hnae3_handle *handle)
3573 {
3574         if (!handle->ae_algo->ops->client_start)
3575                 return 0;
3576
3577         return handle->ae_algo->ops->client_start(handle);
3578 }
3579
3580 static void hns3_client_stop(struct hnae3_handle *handle)
3581 {
3582         if (!handle->ae_algo->ops->client_stop)
3583                 return;
3584
3585         handle->ae_algo->ops->client_stop(handle);
3586 }
3587
3588 static int hns3_client_init(struct hnae3_handle *handle)
3589 {
3590         struct pci_dev *pdev = handle->pdev;
3591         u16 alloc_tqps, max_rss_size;
3592         struct hns3_nic_priv *priv;
3593         struct net_device *netdev;
3594         int ret;
3595
3596         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3597                                                     &max_rss_size);
3598         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3599         if (!netdev)
3600                 return -ENOMEM;
3601
3602         priv = netdev_priv(netdev);
3603         priv->dev = &pdev->dev;
3604         priv->netdev = netdev;
3605         priv->ae_handle = handle;
3606         priv->tx_timeout_count = 0;
3607         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3608
3609         handle->kinfo.netdev = netdev;
3610         handle->priv = (void *)priv;
3611
3612         hns3_init_mac_addr(netdev, true);
3613
3614         hns3_set_default_feature(netdev);
3615
3616         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3617         netdev->priv_flags |= IFF_UNICAST_FLT;
3618         netdev->netdev_ops = &hns3_nic_netdev_ops;
3619         SET_NETDEV_DEV(netdev, &pdev->dev);
3620         hns3_ethtool_set_ops(netdev);
3621         hns3_nic_set_priv_ops(netdev);
3622
3623         /* Carrier off reporting is important to ethtool even BEFORE open */
3624         netif_carrier_off(netdev);
3625
3626         ret = hns3_get_ring_config(priv);
3627         if (ret) {
3628                 ret = -ENOMEM;
3629                 goto out_get_ring_cfg;
3630         }
3631
3632         ret = hns3_nic_alloc_vector_data(priv);
3633         if (ret) {
3634                 ret = -ENOMEM;
3635                 goto out_alloc_vector_data;
3636         }
3637
3638         ret = hns3_nic_init_vector_data(priv);
3639         if (ret) {
3640                 ret = -ENOMEM;
3641                 goto out_init_vector_data;
3642         }
3643
3644         ret = hns3_init_all_ring(priv);
3645         if (ret) {
3646                 ret = -ENOMEM;
3647                 goto out_init_ring_data;
3648         }
3649
3650         ret = hns3_init_phy(netdev);
3651         if (ret)
3652                 goto out_init_phy;
3653
3654         ret = register_netdev(netdev);
3655         if (ret) {
3656                 dev_err(priv->dev, "probe register netdev fail!\n");
3657                 goto out_reg_netdev_fail;
3658         }
3659
3660         ret = hns3_client_start(handle);
3661         if (ret) {
3662                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3663                         goto out_client_start;
3664         }
3665
3666         hns3_dcbnl_setup(handle);
3667
3668         hns3_dbg_init(handle);
3669
3670         /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3671         netdev->max_mtu = HNS3_MAX_MTU;
3672
3673         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3674
3675         return ret;
3676
3677 out_client_start:
3678         unregister_netdev(netdev);
3679 out_reg_netdev_fail:
3680         hns3_uninit_phy(netdev);
3681 out_init_phy:
3682         hns3_uninit_all_ring(priv);
3683 out_init_ring_data:
3684         hns3_nic_uninit_vector_data(priv);
3685 out_init_vector_data:
3686         hns3_nic_dealloc_vector_data(priv);
3687 out_alloc_vector_data:
3688         priv->ring_data = NULL;
3689 out_get_ring_cfg:
3690         priv->ae_handle = NULL;
3691         free_netdev(netdev);
3692         return ret;
3693 }
3694
3695 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3696 {
3697         struct net_device *netdev = handle->kinfo.netdev;
3698         struct hns3_nic_priv *priv = netdev_priv(netdev);
3699         int ret;
3700
3701         hns3_client_stop(handle);
3702
3703         hns3_remove_hw_addr(netdev);
3704
3705         if (netdev->reg_state != NETREG_UNINITIALIZED)
3706                 unregister_netdev(netdev);
3707
3708         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3709                 netdev_warn(netdev, "already uninitialized\n");
3710                 goto out_netdev_free;
3711         }
3712
3713         hns3_del_all_fd_rules(netdev, true);
3714
3715         hns3_force_clear_all_rx_ring(handle);
3716
3717         hns3_uninit_phy(netdev);
3718
3719         hns3_nic_uninit_vector_data(priv);
3720
3721         ret = hns3_nic_dealloc_vector_data(priv);
3722         if (ret)
3723                 netdev_err(netdev, "dealloc vector error\n");
3724
3725         ret = hns3_uninit_all_ring(priv);
3726         if (ret)
3727                 netdev_err(netdev, "uninit ring error\n");
3728
3729         hns3_put_ring_config(priv);
3730
3731         hns3_dbg_uninit(handle);
3732
3733         priv->ring_data = NULL;
3734
3735 out_netdev_free:
3736         free_netdev(netdev);
3737 }
3738
3739 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3740 {
3741         struct net_device *netdev = handle->kinfo.netdev;
3742
3743         if (!netdev)
3744                 return;
3745
3746         if (linkup) {
3747                 netif_carrier_on(netdev);
3748                 netif_tx_wake_all_queues(netdev);
3749                 netdev_info(netdev, "link up\n");
3750         } else {
3751                 netif_carrier_off(netdev);
3752                 netif_tx_stop_all_queues(netdev);
3753                 netdev_info(netdev, "link down\n");
3754         }
3755 }
3756
3757 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3758 {
3759         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3760         struct net_device *ndev = kinfo->netdev;
3761
3762         if (tc > HNAE3_MAX_TC)
3763                 return -EINVAL;
3764
3765         if (!ndev)
3766                 return -ENODEV;
3767
3768         return hns3_nic_set_real_num_queue(ndev);
3769 }
3770
3771 static int hns3_recover_hw_addr(struct net_device *ndev)
3772 {
3773         struct netdev_hw_addr_list *list;
3774         struct netdev_hw_addr *ha, *tmp;
3775         int ret = 0;
3776
3777         /* go through and sync uc_addr entries to the device */
3778         list = &ndev->uc;
3779         list_for_each_entry_safe(ha, tmp, &list->list, list) {
3780                 ret = hns3_nic_uc_sync(ndev, ha->addr);
3781                 if (ret)
3782                         return ret;
3783         }
3784
3785         /* go through and sync mc_addr entries to the device */
3786         list = &ndev->mc;
3787         list_for_each_entry_safe(ha, tmp, &list->list, list) {
3788                 ret = hns3_nic_mc_sync(ndev, ha->addr);
3789                 if (ret)
3790                         return ret;
3791         }
3792
3793         return ret;
3794 }
3795
3796 static void hns3_remove_hw_addr(struct net_device *netdev)
3797 {
3798         struct netdev_hw_addr_list *list;
3799         struct netdev_hw_addr *ha, *tmp;
3800
3801         hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3802
3803         /* go through and unsync uc_addr entries to the device */
3804         list = &netdev->uc;
3805         list_for_each_entry_safe(ha, tmp, &list->list, list)
3806                 hns3_nic_uc_unsync(netdev, ha->addr);
3807
3808         /* go through and unsync mc_addr entries to the device */
3809         list = &netdev->mc;
3810         list_for_each_entry_safe(ha, tmp, &list->list, list)
3811                 if (ha->refcount > 1)
3812                         hns3_nic_mc_unsync(netdev, ha->addr);
3813 }
3814
3815 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3816 {
3817         while (ring->next_to_clean != ring->next_to_use) {
3818                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3819                 hns3_free_buffer_detach(ring, ring->next_to_clean);
3820                 ring_ptr_move_fw(ring, next_to_clean);
3821         }
3822 }
3823
3824 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3825 {
3826         struct hns3_desc_cb res_cbs;
3827         int ret;
3828
3829         while (ring->next_to_use != ring->next_to_clean) {
3830                 /* When a buffer is not reused, it's memory has been
3831                  * freed in hns3_handle_rx_bd or will be freed by
3832                  * stack, so we need to replace the buffer here.
3833                  */
3834                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3835                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
3836                         if (ret) {
3837                                 u64_stats_update_begin(&ring->syncp);
3838                                 ring->stats.sw_err_cnt++;
3839                                 u64_stats_update_end(&ring->syncp);
3840                                 /* if alloc new buffer fail, exit directly
3841                                  * and reclear in up flow.
3842                                  */
3843                                 netdev_warn(ring->tqp->handle->kinfo.netdev,
3844                                             "reserve buffer map failed, ret = %d\n",
3845                                             ret);
3846                                 return ret;
3847                         }
3848                         hns3_replace_buffer(ring, ring->next_to_use,
3849                                             &res_cbs);
3850                 }
3851                 ring_ptr_move_fw(ring, next_to_use);
3852         }
3853
3854         return 0;
3855 }
3856
3857 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3858 {
3859         while (ring->next_to_use != ring->next_to_clean) {
3860                 /* When a buffer is not reused, it's memory has been
3861                  * freed in hns3_handle_rx_bd or will be freed by
3862                  * stack, so only need to unmap the buffer here.
3863                  */
3864                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3865                         hns3_unmap_buffer(ring,
3866                                           &ring->desc_cb[ring->next_to_use]);
3867                         ring->desc_cb[ring->next_to_use].dma = 0;
3868                 }
3869
3870                 ring_ptr_move_fw(ring, next_to_use);
3871         }
3872 }
3873
3874 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3875 {
3876         struct net_device *ndev = h->kinfo.netdev;
3877         struct hns3_nic_priv *priv = netdev_priv(ndev);
3878         struct hns3_enet_ring *ring;
3879         u32 i;
3880
3881         for (i = 0; i < h->kinfo.num_tqps; i++) {
3882                 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3883                 hns3_force_clear_rx_ring(ring);
3884         }
3885 }
3886
3887 static void hns3_clear_all_ring(struct hnae3_handle *h)
3888 {
3889         struct net_device *ndev = h->kinfo.netdev;
3890         struct hns3_nic_priv *priv = netdev_priv(ndev);
3891         u32 i;
3892
3893         for (i = 0; i < h->kinfo.num_tqps; i++) {
3894                 struct netdev_queue *dev_queue;
3895                 struct hns3_enet_ring *ring;
3896
3897                 ring = priv->ring_data[i].ring;
3898                 hns3_clear_tx_ring(ring);
3899                 dev_queue = netdev_get_tx_queue(ndev,
3900                                                 priv->ring_data[i].queue_index);
3901                 netdev_tx_reset_queue(dev_queue);
3902
3903                 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3904                 /* Continue to clear other rings even if clearing some
3905                  * rings failed.
3906                  */
3907                 hns3_clear_rx_ring(ring);
3908         }
3909 }
3910
3911 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3912 {
3913         struct net_device *ndev = h->kinfo.netdev;
3914         struct hns3_nic_priv *priv = netdev_priv(ndev);
3915         struct hns3_enet_ring *rx_ring;
3916         int i, j;
3917         int ret;
3918
3919         for (i = 0; i < h->kinfo.num_tqps; i++) {
3920                 ret = h->ae_algo->ops->reset_queue(h, i);
3921                 if (ret)
3922                         return ret;
3923
3924                 hns3_init_ring_hw(priv->ring_data[i].ring);
3925
3926                 /* We need to clear tx ring here because self test will
3927                  * use the ring and will not run down before up
3928                  */
3929                 hns3_clear_tx_ring(priv->ring_data[i].ring);
3930                 priv->ring_data[i].ring->next_to_clean = 0;
3931                 priv->ring_data[i].ring->next_to_use = 0;
3932
3933                 rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3934                 hns3_init_ring_hw(rx_ring);
3935                 ret = hns3_clear_rx_ring(rx_ring);
3936                 if (ret)
3937                         return ret;
3938
3939                 /* We can not know the hardware head and tail when this
3940                  * function is called in reset flow, so we reuse all desc.
3941                  */
3942                 for (j = 0; j < rx_ring->desc_num; j++)
3943                         hns3_reuse_buffer(rx_ring, j);
3944
3945                 rx_ring->next_to_clean = 0;
3946                 rx_ring->next_to_use = 0;
3947         }
3948
3949         hns3_init_tx_ring_tc(priv);
3950
3951         return 0;
3952 }
3953
3954 static void hns3_store_coal(struct hns3_nic_priv *priv)
3955 {
3956         /* ethtool only support setting and querying one coal
3957          * configuation for now, so save the vector 0' coal
3958          * configuation here in order to restore it.
3959          */
3960         memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3961                sizeof(struct hns3_enet_coalesce));
3962         memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3963                sizeof(struct hns3_enet_coalesce));
3964 }
3965
3966 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3967 {
3968         u16 vector_num = priv->vector_num;
3969         int i;
3970
3971         for (i = 0; i < vector_num; i++) {
3972                 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3973                        sizeof(struct hns3_enet_coalesce));
3974                 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
3975                        sizeof(struct hns3_enet_coalesce));
3976         }
3977 }
3978
3979 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3980 {
3981         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
3982         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3983         struct net_device *ndev = kinfo->netdev;
3984         struct hns3_nic_priv *priv = netdev_priv(ndev);
3985
3986         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
3987                 return 0;
3988
3989         /* it is cumbersome for hardware to pick-and-choose entries for deletion
3990          * from table space. Hence, for function reset software intervention is
3991          * required to delete the entries
3992          */
3993         if (hns3_dev_ongoing_func_reset(ae_dev)) {
3994                 hns3_remove_hw_addr(ndev);
3995                 hns3_del_all_fd_rules(ndev, false);
3996         }
3997
3998         if (!netif_running(ndev))
3999                 return 0;
4000
4001         return hns3_nic_net_stop(ndev);
4002 }
4003
4004 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4005 {
4006         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4007         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4008         int ret = 0;
4009
4010         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4011
4012         if (netif_running(kinfo->netdev)) {
4013                 ret = hns3_nic_net_open(kinfo->netdev);
4014                 if (ret) {
4015                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4016                         netdev_err(kinfo->netdev,
4017                                    "hns net up fail, ret=%d!\n", ret);
4018                         return ret;
4019                 }
4020         }
4021
4022         return ret;
4023 }
4024
4025 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4026 {
4027         struct net_device *netdev = handle->kinfo.netdev;
4028         struct hns3_nic_priv *priv = netdev_priv(netdev);
4029         int ret;
4030
4031         /* Carrier off reporting is important to ethtool even BEFORE open */
4032         netif_carrier_off(netdev);
4033
4034         ret = hns3_get_ring_config(priv);
4035         if (ret)
4036                 return ret;
4037
4038         ret = hns3_nic_alloc_vector_data(priv);
4039         if (ret)
4040                 goto err_put_ring;
4041
4042         hns3_restore_coal(priv);
4043
4044         ret = hns3_nic_init_vector_data(priv);
4045         if (ret)
4046                 goto err_dealloc_vector;
4047
4048         ret = hns3_init_all_ring(priv);
4049         if (ret)
4050                 goto err_uninit_vector;
4051
4052         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4053
4054         return ret;
4055
4056 err_uninit_vector:
4057         hns3_nic_uninit_vector_data(priv);
4058         priv->ring_data = NULL;
4059 err_dealloc_vector:
4060         hns3_nic_dealloc_vector_data(priv);
4061 err_put_ring:
4062         hns3_put_ring_config(priv);
4063         priv->ring_data = NULL;
4064
4065         return ret;
4066 }
4067
4068 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4069 {
4070         struct net_device *netdev = handle->kinfo.netdev;
4071         bool vlan_filter_enable;
4072         int ret;
4073
4074         ret = hns3_init_mac_addr(netdev, false);
4075         if (ret)
4076                 return ret;
4077
4078         ret = hns3_recover_hw_addr(netdev);
4079         if (ret)
4080                 return ret;
4081
4082         ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4083         if (ret)
4084                 return ret;
4085
4086         vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4087         hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4088
4089         /* Hardware table is only clear when pf resets */
4090         if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4091                 ret = hns3_restore_vlan(netdev);
4092                 if (ret)
4093                         return ret;
4094         }
4095
4096         return hns3_restore_fd_rules(netdev);
4097 }
4098
4099 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4100 {
4101         struct net_device *netdev = handle->kinfo.netdev;
4102         struct hns3_nic_priv *priv = netdev_priv(netdev);
4103         int ret;
4104
4105         if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4106                 netdev_warn(netdev, "already uninitialized\n");
4107                 return 0;
4108         }
4109
4110         hns3_force_clear_all_rx_ring(handle);
4111
4112         hns3_nic_uninit_vector_data(priv);
4113
4114         hns3_store_coal(priv);
4115
4116         ret = hns3_nic_dealloc_vector_data(priv);
4117         if (ret)
4118                 netdev_err(netdev, "dealloc vector error\n");
4119
4120         ret = hns3_uninit_all_ring(priv);
4121         if (ret)
4122                 netdev_err(netdev, "uninit ring error\n");
4123
4124         hns3_put_ring_config(priv);
4125         priv->ring_data = NULL;
4126
4127         clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
4128
4129         return ret;
4130 }
4131
4132 static int hns3_reset_notify(struct hnae3_handle *handle,
4133                              enum hnae3_reset_notify_type type)
4134 {
4135         int ret = 0;
4136
4137         switch (type) {
4138         case HNAE3_UP_CLIENT:
4139                 ret = hns3_reset_notify_up_enet(handle);
4140                 break;
4141         case HNAE3_DOWN_CLIENT:
4142                 ret = hns3_reset_notify_down_enet(handle);
4143                 break;
4144         case HNAE3_INIT_CLIENT:
4145                 ret = hns3_reset_notify_init_enet(handle);
4146                 break;
4147         case HNAE3_UNINIT_CLIENT:
4148                 ret = hns3_reset_notify_uninit_enet(handle);
4149                 break;
4150         case HNAE3_RESTORE_CLIENT:
4151                 ret = hns3_reset_notify_restore_enet(handle);
4152                 break;
4153         default:
4154                 break;
4155         }
4156
4157         return ret;
4158 }
4159
4160 int hns3_set_channels(struct net_device *netdev,
4161                       struct ethtool_channels *ch)
4162 {
4163         struct hnae3_handle *h = hns3_get_handle(netdev);
4164         struct hnae3_knic_private_info *kinfo = &h->kinfo;
4165         bool rxfh_configured = netif_is_rxfh_configured(netdev);
4166         u32 new_tqp_num = ch->combined_count;
4167         u16 org_tqp_num;
4168         int ret;
4169
4170         if (ch->rx_count || ch->tx_count)
4171                 return -EINVAL;
4172
4173         if (new_tqp_num > hns3_get_max_available_channels(h) ||
4174             new_tqp_num < 1) {
4175                 dev_err(&netdev->dev,
4176                         "Change tqps fail, the tqp range is from 1 to %d",
4177                         hns3_get_max_available_channels(h));
4178                 return -EINVAL;
4179         }
4180
4181         if (kinfo->rss_size == new_tqp_num)
4182                 return 0;
4183
4184         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4185         if (ret)
4186                 return ret;
4187
4188         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4189         if (ret)
4190                 return ret;
4191
4192         org_tqp_num = h->kinfo.num_tqps;
4193         ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4194         if (ret) {
4195                 ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4196                                                     rxfh_configured);
4197                 if (ret) {
4198                         /* If revert to old tqp failed, fatal error occurred */
4199                         dev_err(&netdev->dev,
4200                                 "Revert to old tqp num fail, ret=%d", ret);
4201                         return ret;
4202                 }
4203                 dev_info(&netdev->dev,
4204                          "Change tqp num fail, Revert to old tqp num");
4205         }
4206         ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4207         if (ret)
4208                 return ret;
4209
4210         return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4211 }
4212
4213 static const struct hnae3_client_ops client_ops = {
4214         .init_instance = hns3_client_init,
4215         .uninit_instance = hns3_client_uninit,
4216         .link_status_change = hns3_link_status_change,
4217         .setup_tc = hns3_client_setup_tc,
4218         .reset_notify = hns3_reset_notify,
4219 };
4220
4221 /* hns3_init_module - Driver registration routine
4222  * hns3_init_module is the first routine called when the driver is
4223  * loaded. All it does is register with the PCI subsystem.
4224  */
4225 static int __init hns3_init_module(void)
4226 {
4227         int ret;
4228
4229         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4230         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4231
4232         client.type = HNAE3_CLIENT_KNIC;
4233         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4234                  hns3_driver_name);
4235
4236         client.ops = &client_ops;
4237
4238         INIT_LIST_HEAD(&client.node);
4239
4240         hns3_dbg_register_debugfs(hns3_driver_name);
4241
4242         ret = hnae3_register_client(&client);
4243         if (ret)
4244                 goto err_reg_client;
4245
4246         ret = pci_register_driver(&hns3_driver);
4247         if (ret)
4248                 goto err_reg_driver;
4249
4250         return ret;
4251
4252 err_reg_driver:
4253         hnae3_unregister_client(&client);
4254 err_reg_client:
4255         hns3_dbg_unregister_debugfs();
4256         return ret;
4257 }
4258 module_init(hns3_init_module);
4259
4260 /* hns3_exit_module - Driver exit cleanup routine
4261  * hns3_exit_module is called just before the driver is removed
4262  * from memory.
4263  */
4264 static void __exit hns3_exit_module(void)
4265 {
4266         pci_unregister_driver(&hns3_driver);
4267         hnae3_unregister_client(&client);
4268         hns3_dbg_unregister_debugfs();
4269 }
4270 module_exit(hns3_exit_module);
4271
4272 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4273 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4274 MODULE_LICENSE("GPL");
4275 MODULE_ALIAS("pci:hns-nic");
4276 MODULE_VERSION(HNS3_MOD_VERSION);