]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3_enet.c
3cb43b1f1c2e69d590c4ad9361b1423fc7a7aefc
[linux.git] / drivers / net / ethernet / hisilicon / hns3 / hns3_enet.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23
24 #define hns3_set_field(origin, shift, val)      ((origin) |= ((val) << (shift)))
25
26 static void hns3_clear_all_ring(struct hnae3_handle *h);
27 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
28 static void hns3_remove_hw_addr(struct net_device *netdev);
29
30 static const char hns3_driver_name[] = "hns3";
31 const char hns3_driver_version[] = VERMAGIC_STRING;
32 static const char hns3_driver_string[] =
33                         "Hisilicon Ethernet Network Driver for Hip08 Family";
34 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
35 static struct hnae3_client client;
36
37 /* hns3_pci_tbl - PCI Device ID Table
38  *
39  * Last entry must be all 0s
40  *
41  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
42  *   Class, Class Mask, private data (not used) }
43  */
44 static const struct pci_device_id hns3_pci_tbl[] = {
45         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
46         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
47         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
48          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
50          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
52          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
54          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
56          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
57         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
58         {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
59          HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
60         /* required last entry */
61         {0, }
62 };
63 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
64
65 static irqreturn_t hns3_irq_handle(int irq, void *vector)
66 {
67         struct hns3_enet_tqp_vector *tqp_vector = vector;
68
69         napi_schedule(&tqp_vector->napi);
70
71         return IRQ_HANDLED;
72 }
73
74 /* This callback function is used to set affinity changes to the irq affinity
75  * masks when the irq_set_affinity_notifier function is used.
76  */
77 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
78                                          const cpumask_t *mask)
79 {
80         struct hns3_enet_tqp_vector *tqp_vectors =
81                 container_of(notify, struct hns3_enet_tqp_vector,
82                              affinity_notify);
83
84         tqp_vectors->affinity_mask = *mask;
85 }
86
87 static void hns3_nic_irq_affinity_release(struct kref *ref)
88 {
89 }
90
91 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
92 {
93         struct hns3_enet_tqp_vector *tqp_vectors;
94         unsigned int i;
95
96         for (i = 0; i < priv->vector_num; i++) {
97                 tqp_vectors = &priv->tqp_vector[i];
98
99                 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
100                         continue;
101
102                 /* clear the affinity notifier and affinity mask */
103                 irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
104                 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
105
106                 /* release the irq resource */
107                 free_irq(tqp_vectors->vector_irq, tqp_vectors);
108                 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
109         }
110 }
111
112 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
113 {
114         struct hns3_enet_tqp_vector *tqp_vectors;
115         int txrx_int_idx = 0;
116         int rx_int_idx = 0;
117         int tx_int_idx = 0;
118         unsigned int i;
119         int ret;
120
121         for (i = 0; i < priv->vector_num; i++) {
122                 tqp_vectors = &priv->tqp_vector[i];
123
124                 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
125                         continue;
126
127                 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
128                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
129                                  "%s-%s-%d", priv->netdev->name, "TxRx",
130                                  txrx_int_idx++);
131                         txrx_int_idx++;
132                 } else if (tqp_vectors->rx_group.ring) {
133                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
134                                  "%s-%s-%d", priv->netdev->name, "Rx",
135                                  rx_int_idx++);
136                 } else if (tqp_vectors->tx_group.ring) {
137                         snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
138                                  "%s-%s-%d", priv->netdev->name, "Tx",
139                                  tx_int_idx++);
140                 } else {
141                         /* Skip this unused q_vector */
142                         continue;
143                 }
144
145                 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
146
147                 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
148                                   tqp_vectors->name,
149                                        tqp_vectors);
150                 if (ret) {
151                         netdev_err(priv->netdev, "request irq(%d) fail\n",
152                                    tqp_vectors->vector_irq);
153                         return ret;
154                 }
155
156                 tqp_vectors->affinity_notify.notify =
157                                         hns3_nic_irq_affinity_notify;
158                 tqp_vectors->affinity_notify.release =
159                                         hns3_nic_irq_affinity_release;
160                 irq_set_affinity_notifier(tqp_vectors->vector_irq,
161                                           &tqp_vectors->affinity_notify);
162                 irq_set_affinity_hint(tqp_vectors->vector_irq,
163                                       &tqp_vectors->affinity_mask);
164
165                 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
166         }
167
168         return 0;
169 }
170
171 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
172                                  u32 mask_en)
173 {
174         writel(mask_en, tqp_vector->mask_addr);
175 }
176
177 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
178 {
179         napi_enable(&tqp_vector->napi);
180
181         /* enable vector */
182         hns3_mask_vector_irq(tqp_vector, 1);
183 }
184
185 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
186 {
187         /* disable vector */
188         hns3_mask_vector_irq(tqp_vector, 0);
189
190         disable_irq(tqp_vector->vector_irq);
191         napi_disable(&tqp_vector->napi);
192 }
193
194 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
195                                  u32 rl_value)
196 {
197         u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
198
199         /* this defines the configuration for RL (Interrupt Rate Limiter).
200          * Rl defines rate of interrupts i.e. number of interrupts-per-second
201          * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
202          */
203
204         if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
205             !tqp_vector->rx_group.coal.gl_adapt_enable)
206                 /* According to the hardware, the range of rl_reg is
207                  * 0-59 and the unit is 4.
208                  */
209                 rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
210
211         writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
212 }
213
214 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
215                                     u32 gl_value)
216 {
217         u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
218
219         writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
220 }
221
222 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
223                                     u32 gl_value)
224 {
225         u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
226
227         writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
228 }
229
230 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
231                                    struct hns3_nic_priv *priv)
232 {
233         /* initialize the configuration for interrupt coalescing.
234          * 1. GL (Interrupt Gap Limiter)
235          * 2. RL (Interrupt Rate Limiter)
236          */
237
238         /* Default: enable interrupt coalescing self-adaptive and GL */
239         tqp_vector->tx_group.coal.gl_adapt_enable = 1;
240         tqp_vector->rx_group.coal.gl_adapt_enable = 1;
241
242         tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
243         tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
244
245         tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
246         tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
247 }
248
249 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
250                                       struct hns3_nic_priv *priv)
251 {
252         struct hnae3_handle *h = priv->ae_handle;
253
254         hns3_set_vector_coalesce_tx_gl(tqp_vector,
255                                        tqp_vector->tx_group.coal.int_gl);
256         hns3_set_vector_coalesce_rx_gl(tqp_vector,
257                                        tqp_vector->rx_group.coal.int_gl);
258         hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
259 }
260
261 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
262 {
263         struct hnae3_handle *h = hns3_get_handle(netdev);
264         struct hnae3_knic_private_info *kinfo = &h->kinfo;
265         unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
266         int i, ret;
267
268         if (kinfo->num_tc <= 1) {
269                 netdev_reset_tc(netdev);
270         } else {
271                 ret = netdev_set_num_tc(netdev, kinfo->num_tc);
272                 if (ret) {
273                         netdev_err(netdev,
274                                    "netdev_set_num_tc fail, ret=%d!\n", ret);
275                         return ret;
276                 }
277
278                 for (i = 0; i < HNAE3_MAX_TC; i++) {
279                         if (!kinfo->tc_info[i].enable)
280                                 continue;
281
282                         netdev_set_tc_queue(netdev,
283                                             kinfo->tc_info[i].tc,
284                                             kinfo->tc_info[i].tqp_count,
285                                             kinfo->tc_info[i].tqp_offset);
286                 }
287         }
288
289         ret = netif_set_real_num_tx_queues(netdev, queue_size);
290         if (ret) {
291                 netdev_err(netdev,
292                            "netif_set_real_num_tx_queues fail, ret=%d!\n",
293                            ret);
294                 return ret;
295         }
296
297         ret = netif_set_real_num_rx_queues(netdev, queue_size);
298         if (ret) {
299                 netdev_err(netdev,
300                            "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
301                 return ret;
302         }
303
304         return 0;
305 }
306
307 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
308 {
309         u16 alloc_tqps, max_rss_size, rss_size;
310
311         h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
312         rss_size = alloc_tqps / h->kinfo.num_tc;
313
314         return min_t(u16, rss_size, max_rss_size);
315 }
316
317 static void hns3_tqp_enable(struct hnae3_queue *tqp)
318 {
319         u32 rcb_reg;
320
321         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
322         rcb_reg |= BIT(HNS3_RING_EN_B);
323         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
324 }
325
326 static void hns3_tqp_disable(struct hnae3_queue *tqp)
327 {
328         u32 rcb_reg;
329
330         rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
331         rcb_reg &= ~BIT(HNS3_RING_EN_B);
332         hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
333 }
334
335 static int hns3_nic_net_up(struct net_device *netdev)
336 {
337         struct hns3_nic_priv *priv = netdev_priv(netdev);
338         struct hnae3_handle *h = priv->ae_handle;
339         int i, j;
340         int ret;
341
342         ret = hns3_nic_reset_all_ring(h);
343         if (ret)
344                 return ret;
345
346         /* get irq resource for all vectors */
347         ret = hns3_nic_init_irq(priv);
348         if (ret) {
349                 netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
350                 return ret;
351         }
352
353         clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
354
355         /* enable the vectors */
356         for (i = 0; i < priv->vector_num; i++)
357                 hns3_vector_enable(&priv->tqp_vector[i]);
358
359         /* enable rcb */
360         for (j = 0; j < h->kinfo.num_tqps; j++)
361                 hns3_tqp_enable(h->kinfo.tqp[j]);
362
363         /* start the ae_dev */
364         ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
365         if (ret)
366                 goto out_start_err;
367
368         return 0;
369
370 out_start_err:
371         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
372         while (j--)
373                 hns3_tqp_disable(h->kinfo.tqp[j]);
374
375         for (j = i - 1; j >= 0; j--)
376                 hns3_vector_disable(&priv->tqp_vector[j]);
377
378         hns3_nic_uninit_irq(priv);
379
380         return ret;
381 }
382
383 static void hns3_config_xps(struct hns3_nic_priv *priv)
384 {
385         int i;
386
387         for (i = 0; i < priv->vector_num; i++) {
388                 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
389                 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
390
391                 while (ring) {
392                         int ret;
393
394                         ret = netif_set_xps_queue(priv->netdev,
395                                                   &tqp_vector->affinity_mask,
396                                                   ring->tqp->tqp_index);
397                         if (ret)
398                                 netdev_warn(priv->netdev,
399                                             "set xps queue failed: %d", ret);
400
401                         ring = ring->next;
402                 }
403         }
404 }
405
406 static int hns3_nic_net_open(struct net_device *netdev)
407 {
408         struct hns3_nic_priv *priv = netdev_priv(netdev);
409         struct hnae3_handle *h = hns3_get_handle(netdev);
410         struct hnae3_knic_private_info *kinfo;
411         int i, ret;
412
413         if (hns3_nic_resetting(netdev))
414                 return -EBUSY;
415
416         netif_carrier_off(netdev);
417
418         ret = hns3_nic_set_real_num_queue(netdev);
419         if (ret)
420                 return ret;
421
422         ret = hns3_nic_net_up(netdev);
423         if (ret) {
424                 netdev_err(netdev,
425                            "hns net up fail, ret=%d!\n", ret);
426                 return ret;
427         }
428
429         kinfo = &h->kinfo;
430         for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
431                 netdev_set_prio_tc_map(netdev, i,
432                                        kinfo->prio_tc[i]);
433         }
434
435         if (h->ae_algo->ops->set_timer_task)
436                 h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
437
438         hns3_config_xps(priv);
439         return 0;
440 }
441
442 static void hns3_nic_net_down(struct net_device *netdev)
443 {
444         struct hns3_nic_priv *priv = netdev_priv(netdev);
445         struct hnae3_handle *h = hns3_get_handle(netdev);
446         const struct hnae3_ae_ops *ops;
447         int i;
448
449         /* disable vectors */
450         for (i = 0; i < priv->vector_num; i++)
451                 hns3_vector_disable(&priv->tqp_vector[i]);
452
453         /* disable rcb */
454         for (i = 0; i < h->kinfo.num_tqps; i++)
455                 hns3_tqp_disable(h->kinfo.tqp[i]);
456
457         /* stop ae_dev */
458         ops = priv->ae_handle->ae_algo->ops;
459         if (ops->stop)
460                 ops->stop(priv->ae_handle);
461
462         /* free irq resources */
463         hns3_nic_uninit_irq(priv);
464
465         hns3_clear_all_ring(priv->ae_handle);
466 }
467
468 static int hns3_nic_net_stop(struct net_device *netdev)
469 {
470         struct hns3_nic_priv *priv = netdev_priv(netdev);
471         struct hnae3_handle *h = hns3_get_handle(netdev);
472
473         if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
474                 return 0;
475
476         if (h->ae_algo->ops->set_timer_task)
477                 h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
478
479         netif_tx_stop_all_queues(netdev);
480         netif_carrier_off(netdev);
481
482         hns3_nic_net_down(netdev);
483
484         return 0;
485 }
486
487 static int hns3_nic_uc_sync(struct net_device *netdev,
488                             const unsigned char *addr)
489 {
490         struct hnae3_handle *h = hns3_get_handle(netdev);
491
492         if (h->ae_algo->ops->add_uc_addr)
493                 return h->ae_algo->ops->add_uc_addr(h, addr);
494
495         return 0;
496 }
497
498 static int hns3_nic_uc_unsync(struct net_device *netdev,
499                               const unsigned char *addr)
500 {
501         struct hnae3_handle *h = hns3_get_handle(netdev);
502
503         if (h->ae_algo->ops->rm_uc_addr)
504                 return h->ae_algo->ops->rm_uc_addr(h, addr);
505
506         return 0;
507 }
508
509 static int hns3_nic_mc_sync(struct net_device *netdev,
510                             const unsigned char *addr)
511 {
512         struct hnae3_handle *h = hns3_get_handle(netdev);
513
514         if (h->ae_algo->ops->add_mc_addr)
515                 return h->ae_algo->ops->add_mc_addr(h, addr);
516
517         return 0;
518 }
519
520 static int hns3_nic_mc_unsync(struct net_device *netdev,
521                               const unsigned char *addr)
522 {
523         struct hnae3_handle *h = hns3_get_handle(netdev);
524
525         if (h->ae_algo->ops->rm_mc_addr)
526                 return h->ae_algo->ops->rm_mc_addr(h, addr);
527
528         return 0;
529 }
530
531 static u8 hns3_get_netdev_flags(struct net_device *netdev)
532 {
533         u8 flags = 0;
534
535         if (netdev->flags & IFF_PROMISC) {
536                 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
537         } else {
538                 flags |= HNAE3_VLAN_FLTR;
539                 if (netdev->flags & IFF_ALLMULTI)
540                         flags |= HNAE3_USER_MPE;
541         }
542
543         return flags;
544 }
545
546 static void hns3_nic_set_rx_mode(struct net_device *netdev)
547 {
548         struct hnae3_handle *h = hns3_get_handle(netdev);
549         u8 new_flags;
550         int ret;
551
552         new_flags = hns3_get_netdev_flags(netdev);
553
554         ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
555         if (ret) {
556                 netdev_err(netdev, "sync uc address fail\n");
557                 if (ret == -ENOSPC)
558                         new_flags |= HNAE3_OVERFLOW_UPE;
559         }
560
561         if (netdev->flags & IFF_MULTICAST) {
562                 ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
563                                     hns3_nic_mc_unsync);
564                 if (ret) {
565                         netdev_err(netdev, "sync mc address fail\n");
566                         if (ret == -ENOSPC)
567                                 new_flags |= HNAE3_OVERFLOW_MPE;
568                 }
569         }
570
571         /* User mode Promisc mode enable and vlan filtering is disabled to
572          * let all packets in. MAC-VLAN Table overflow Promisc enabled and
573          * vlan fitering is enabled
574          */
575         hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
576         h->netdev_flags = new_flags;
577         hns3_update_promisc_mode(netdev, new_flags);
578 }
579
580 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
581 {
582         struct hns3_nic_priv *priv = netdev_priv(netdev);
583         struct hnae3_handle *h = priv->ae_handle;
584
585         if (h->ae_algo->ops->set_promisc_mode) {
586                 return h->ae_algo->ops->set_promisc_mode(h,
587                                                 promisc_flags & HNAE3_UPE,
588                                                 promisc_flags & HNAE3_MPE);
589         }
590
591         return 0;
592 }
593
594 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
595 {
596         struct hns3_nic_priv *priv = netdev_priv(netdev);
597         struct hnae3_handle *h = priv->ae_handle;
598         bool last_state;
599
600         if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
601                 last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
602                 if (enable != last_state) {
603                         netdev_info(netdev,
604                                     "%s vlan filter\n",
605                                     enable ? "enable" : "disable");
606                         h->ae_algo->ops->enable_vlan_filter(h, enable);
607                 }
608         }
609 }
610
611 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
612                         u16 *mss, u32 *type_cs_vlan_tso)
613 {
614         u32 l4_offset, hdr_len;
615         union l3_hdr_info l3;
616         union l4_hdr_info l4;
617         u32 l4_paylen;
618         int ret;
619
620         if (!skb_is_gso(skb))
621                 return 0;
622
623         ret = skb_cow_head(skb, 0);
624         if (unlikely(ret))
625                 return ret;
626
627         l3.hdr = skb_network_header(skb);
628         l4.hdr = skb_transport_header(skb);
629
630         /* Software should clear the IPv4's checksum field when tso is
631          * needed.
632          */
633         if (l3.v4->version == 4)
634                 l3.v4->check = 0;
635
636         /* tunnel packet.*/
637         if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
638                                          SKB_GSO_GRE_CSUM |
639                                          SKB_GSO_UDP_TUNNEL |
640                                          SKB_GSO_UDP_TUNNEL_CSUM)) {
641                 if ((!(skb_shinfo(skb)->gso_type &
642                     SKB_GSO_PARTIAL)) &&
643                     (skb_shinfo(skb)->gso_type &
644                     SKB_GSO_UDP_TUNNEL_CSUM)) {
645                         /* Software should clear the udp's checksum
646                          * field when tso is needed.
647                          */
648                         l4.udp->check = 0;
649                 }
650                 /* reset l3&l4 pointers from outer to inner headers */
651                 l3.hdr = skb_inner_network_header(skb);
652                 l4.hdr = skb_inner_transport_header(skb);
653
654                 /* Software should clear the IPv4's checksum field when
655                  * tso is needed.
656                  */
657                 if (l3.v4->version == 4)
658                         l3.v4->check = 0;
659         }
660
661         /* normal or tunnel packet*/
662         l4_offset = l4.hdr - skb->data;
663         hdr_len = (l4.tcp->doff << 2) + l4_offset;
664
665         /* remove payload length from inner pseudo checksum when tso*/
666         l4_paylen = skb->len - l4_offset;
667         csum_replace_by_diff(&l4.tcp->check,
668                              (__force __wsum)htonl(l4_paylen));
669
670         /* find the txbd field values */
671         *paylen = skb->len - hdr_len;
672         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
673
674         /* get MSS for TSO */
675         *mss = skb_shinfo(skb)->gso_size;
676
677         return 0;
678 }
679
680 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
681                                 u8 *il4_proto)
682 {
683         union l3_hdr_info l3;
684         unsigned char *l4_hdr;
685         unsigned char *exthdr;
686         u8 l4_proto_tmp;
687         __be16 frag_off;
688
689         /* find outer header point */
690         l3.hdr = skb_network_header(skb);
691         l4_hdr = skb_transport_header(skb);
692
693         if (skb->protocol == htons(ETH_P_IPV6)) {
694                 exthdr = l3.hdr + sizeof(*l3.v6);
695                 l4_proto_tmp = l3.v6->nexthdr;
696                 if (l4_hdr != exthdr)
697                         ipv6_skip_exthdr(skb, exthdr - skb->data,
698                                          &l4_proto_tmp, &frag_off);
699         } else if (skb->protocol == htons(ETH_P_IP)) {
700                 l4_proto_tmp = l3.v4->protocol;
701         } else {
702                 return -EINVAL;
703         }
704
705         *ol4_proto = l4_proto_tmp;
706
707         /* tunnel packet */
708         if (!skb->encapsulation) {
709                 *il4_proto = 0;
710                 return 0;
711         }
712
713         /* find inner header point */
714         l3.hdr = skb_inner_network_header(skb);
715         l4_hdr = skb_inner_transport_header(skb);
716
717         if (l3.v6->version == 6) {
718                 exthdr = l3.hdr + sizeof(*l3.v6);
719                 l4_proto_tmp = l3.v6->nexthdr;
720                 if (l4_hdr != exthdr)
721                         ipv6_skip_exthdr(skb, exthdr - skb->data,
722                                          &l4_proto_tmp, &frag_off);
723         } else if (l3.v4->version == 4) {
724                 l4_proto_tmp = l3.v4->protocol;
725         }
726
727         *il4_proto = l4_proto_tmp;
728
729         return 0;
730 }
731
732 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
733                                 u8 il4_proto, u32 *type_cs_vlan_tso,
734                                 u32 *ol_type_vlan_len_msec)
735 {
736         union l3_hdr_info l3;
737         union l4_hdr_info l4;
738         unsigned char *l2_hdr;
739         u8 l4_proto = ol4_proto;
740         u32 ol2_len;
741         u32 ol3_len;
742         u32 ol4_len;
743         u32 l2_len;
744         u32 l3_len;
745
746         l3.hdr = skb_network_header(skb);
747         l4.hdr = skb_transport_header(skb);
748
749         /* compute L2 header size for normal packet, defined in 2 Bytes */
750         l2_len = l3.hdr - skb->data;
751         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
752
753         /* tunnel packet*/
754         if (skb->encapsulation) {
755                 /* compute OL2 header size, defined in 2 Bytes */
756                 ol2_len = l2_len;
757                 hns3_set_field(*ol_type_vlan_len_msec,
758                                HNS3_TXD_L2LEN_S, ol2_len >> 1);
759
760                 /* compute OL3 header size, defined in 4 Bytes */
761                 ol3_len = l4.hdr - l3.hdr;
762                 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S,
763                                ol3_len >> 2);
764
765                 /* MAC in UDP, MAC in GRE (0x6558)*/
766                 if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
767                         /* switch MAC header ptr from outer to inner header.*/
768                         l2_hdr = skb_inner_mac_header(skb);
769
770                         /* compute OL4 header size, defined in 4 Bytes. */
771                         ol4_len = l2_hdr - l4.hdr;
772                         hns3_set_field(*ol_type_vlan_len_msec,
773                                        HNS3_TXD_L4LEN_S, ol4_len >> 2);
774
775                         /* switch IP header ptr from outer to inner header */
776                         l3.hdr = skb_inner_network_header(skb);
777
778                         /* compute inner l2 header size, defined in 2 Bytes. */
779                         l2_len = l3.hdr - l2_hdr;
780                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S,
781                                        l2_len >> 1);
782                 } else {
783                         /* skb packet types not supported by hardware,
784                          * txbd len fild doesn't be filled.
785                          */
786                         return;
787                 }
788
789                 /* switch L4 header pointer from outer to inner */
790                 l4.hdr = skb_inner_transport_header(skb);
791
792                 l4_proto = il4_proto;
793         }
794
795         /* compute inner(/normal) L3 header size, defined in 4 Bytes */
796         l3_len = l4.hdr - l3.hdr;
797         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
798
799         /* compute inner(/normal) L4 header size, defined in 4 Bytes */
800         switch (l4_proto) {
801         case IPPROTO_TCP:
802                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
803                                l4.tcp->doff);
804                 break;
805         case IPPROTO_SCTP:
806                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
807                                (sizeof(struct sctphdr) >> 2));
808                 break;
809         case IPPROTO_UDP:
810                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
811                                (sizeof(struct udphdr) >> 2));
812                 break;
813         default:
814                 /* skb packet types not supported by hardware,
815                  * txbd len fild doesn't be filled.
816                  */
817                 return;
818         }
819 }
820
821 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
822  * and it is udp packet, which has a dest port as the IANA assigned.
823  * the hardware is expected to do the checksum offload, but the
824  * hardware will not do the checksum offload when udp dest port is
825  * 4789.
826  */
827 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
828 {
829 #define IANA_VXLAN_PORT 4789
830         union l4_hdr_info l4;
831
832         l4.hdr = skb_transport_header(skb);
833
834         if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
835                 return false;
836
837         skb_checksum_help(skb);
838
839         return true;
840 }
841
842 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
843                                    u8 il4_proto, u32 *type_cs_vlan_tso,
844                                    u32 *ol_type_vlan_len_msec)
845 {
846         union l3_hdr_info l3;
847         u32 l4_proto = ol4_proto;
848
849         l3.hdr = skb_network_header(skb);
850
851         /* define OL3 type and tunnel type(OL4).*/
852         if (skb->encapsulation) {
853                 /* define outer network header type.*/
854                 if (skb->protocol == htons(ETH_P_IP)) {
855                         if (skb_is_gso(skb))
856                                 hns3_set_field(*ol_type_vlan_len_msec,
857                                                HNS3_TXD_OL3T_S,
858                                                HNS3_OL3T_IPV4_CSUM);
859                         else
860                                 hns3_set_field(*ol_type_vlan_len_msec,
861                                                HNS3_TXD_OL3T_S,
862                                                HNS3_OL3T_IPV4_NO_CSUM);
863
864                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
865                         hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
866                                        HNS3_OL3T_IPV6);
867                 }
868
869                 /* define tunnel type(OL4).*/
870                 switch (l4_proto) {
871                 case IPPROTO_UDP:
872                         hns3_set_field(*ol_type_vlan_len_msec,
873                                        HNS3_TXD_TUNTYPE_S,
874                                        HNS3_TUN_MAC_IN_UDP);
875                         break;
876                 case IPPROTO_GRE:
877                         hns3_set_field(*ol_type_vlan_len_msec,
878                                        HNS3_TXD_TUNTYPE_S,
879                                        HNS3_TUN_NVGRE);
880                         break;
881                 default:
882                         /* drop the skb tunnel packet if hardware don't support,
883                          * because hardware can't calculate csum when TSO.
884                          */
885                         if (skb_is_gso(skb))
886                                 return -EDOM;
887
888                         /* the stack computes the IP header already,
889                          * driver calculate l4 checksum when not TSO.
890                          */
891                         skb_checksum_help(skb);
892                         return 0;
893                 }
894
895                 l3.hdr = skb_inner_network_header(skb);
896                 l4_proto = il4_proto;
897         }
898
899         if (l3.v4->version == 4) {
900                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
901                                HNS3_L3T_IPV4);
902
903                 /* the stack computes the IP header already, the only time we
904                  * need the hardware to recompute it is in the case of TSO.
905                  */
906                 if (skb_is_gso(skb))
907                         hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
908         } else if (l3.v6->version == 6) {
909                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
910                                HNS3_L3T_IPV6);
911         }
912
913         switch (l4_proto) {
914         case IPPROTO_TCP:
915                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
916                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
917                                HNS3_L4T_TCP);
918                 break;
919         case IPPROTO_UDP:
920                 if (hns3_tunnel_csum_bug(skb))
921                         break;
922
923                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
924                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
925                                HNS3_L4T_UDP);
926                 break;
927         case IPPROTO_SCTP:
928                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
929                 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
930                                HNS3_L4T_SCTP);
931                 break;
932         default:
933                 /* drop the skb tunnel packet if hardware don't support,
934                  * because hardware can't calculate csum when TSO.
935                  */
936                 if (skb_is_gso(skb))
937                         return -EDOM;
938
939                 /* the stack computes the IP header already,
940                  * driver calculate l4 checksum when not TSO.
941                  */
942                 skb_checksum_help(skb);
943                 return 0;
944         }
945
946         return 0;
947 }
948
949 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
950 {
951         /* Config bd buffer end */
952         hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
953         hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
954 }
955
956 static int hns3_fill_desc_vtags(struct sk_buff *skb,
957                                 struct hns3_enet_ring *tx_ring,
958                                 u32 *inner_vlan_flag,
959                                 u32 *out_vlan_flag,
960                                 u16 *inner_vtag,
961                                 u16 *out_vtag)
962 {
963 #define HNS3_TX_VLAN_PRIO_SHIFT 13
964
965         if (skb->protocol == htons(ETH_P_8021Q) &&
966             !(tx_ring->tqp->handle->kinfo.netdev->features &
967             NETIF_F_HW_VLAN_CTAG_TX)) {
968                 /* When HW VLAN acceleration is turned off, and the stack
969                  * sets the protocol to 802.1q, the driver just need to
970                  * set the protocol to the encapsulated ethertype.
971                  */
972                 skb->protocol = vlan_get_protocol(skb);
973                 return 0;
974         }
975
976         if (skb_vlan_tag_present(skb)) {
977                 u16 vlan_tag;
978
979                 vlan_tag = skb_vlan_tag_get(skb);
980                 vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
981
982                 /* Based on hw strategy, use out_vtag in two layer tag case,
983                  * and use inner_vtag in one tag case.
984                  */
985                 if (skb->protocol == htons(ETH_P_8021Q)) {
986                         hns3_set_field(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
987                         *out_vtag = vlan_tag;
988                 } else {
989                         hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
990                         *inner_vtag = vlan_tag;
991                 }
992         } else if (skb->protocol == htons(ETH_P_8021Q)) {
993                 struct vlan_ethhdr *vhdr;
994                 int rc;
995
996                 rc = skb_cow_head(skb, 0);
997                 if (unlikely(rc < 0))
998                         return rc;
999                 vhdr = (struct vlan_ethhdr *)skb->data;
1000                 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1001                                         << HNS3_TX_VLAN_PRIO_SHIFT);
1002         }
1003
1004         skb->protocol = vlan_get_protocol(skb);
1005         return 0;
1006 }
1007
1008 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1009                           int size, int frag_end, enum hns_desc_type type)
1010 {
1011         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1012         struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1013         struct device *dev = ring_to_dev(ring);
1014         u16 bdtp_fe_sc_vld_ra_ri = 0;
1015         struct skb_frag_struct *frag;
1016         unsigned int frag_buf_num;
1017         int k, sizeoflast;
1018         dma_addr_t dma;
1019
1020         if (type == DESC_TYPE_SKB) {
1021                 struct sk_buff *skb = (struct sk_buff *)priv;
1022                 u32 ol_type_vlan_len_msec = 0;
1023                 u32 type_cs_vlan_tso = 0;
1024                 u32 paylen = skb->len;
1025                 u16 inner_vtag = 0;
1026                 u16 out_vtag = 0;
1027                 u16 mss = 0;
1028                 int ret;
1029
1030                 ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1031                                            &ol_type_vlan_len_msec,
1032                                            &inner_vtag, &out_vtag);
1033                 if (unlikely(ret))
1034                         return ret;
1035
1036                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1037                         u8 ol4_proto, il4_proto;
1038
1039                         skb_reset_mac_len(skb);
1040
1041                         ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1042                         if (unlikely(ret))
1043                                 return ret;
1044                         hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1045                                             &type_cs_vlan_tso,
1046                                             &ol_type_vlan_len_msec);
1047                         ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1048                                                       &type_cs_vlan_tso,
1049                                                       &ol_type_vlan_len_msec);
1050                         if (unlikely(ret))
1051                                 return ret;
1052
1053                         ret = hns3_set_tso(skb, &paylen, &mss,
1054                                            &type_cs_vlan_tso);
1055                         if (unlikely(ret))
1056                                 return ret;
1057                 }
1058
1059                 /* Set txbd */
1060                 desc->tx.ol_type_vlan_len_msec =
1061                         cpu_to_le32(ol_type_vlan_len_msec);
1062                 desc->tx.type_cs_vlan_tso_len =
1063                         cpu_to_le32(type_cs_vlan_tso);
1064                 desc->tx.paylen = cpu_to_le32(paylen);
1065                 desc->tx.mss = cpu_to_le16(mss);
1066                 desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1067                 desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1068
1069                 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1070         } else {
1071                 frag = (struct skb_frag_struct *)priv;
1072                 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1073         }
1074
1075         if (unlikely(dma_mapping_error(ring->dev, dma))) {
1076                 ring->stats.sw_err_cnt++;
1077                 return -ENOMEM;
1078         }
1079
1080         desc_cb->length = size;
1081
1082         frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) >> HNS3_MAX_BD_SIZE_OFFSET;
1083         sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1084         sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1085
1086         /* When frag size is bigger than hardware limit, split this frag */
1087         for (k = 0; k < frag_buf_num; k++) {
1088                 /* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1089                 desc_cb->priv = priv;
1090                 desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1091                 desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1092                                         DESC_TYPE_SKB : DESC_TYPE_PAGE;
1093
1094                 /* now, fill the descriptor */
1095                 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1096                 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1097                                 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1098                 hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1099                                        frag_end && (k == frag_buf_num - 1) ?
1100                                                 1 : 0);
1101                 desc->tx.bdtp_fe_sc_vld_ra_ri =
1102                                 cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1103
1104                 /* move ring pointer to next.*/
1105                 ring_ptr_move_fw(ring, next_to_use);
1106
1107                 desc_cb = &ring->desc_cb[ring->next_to_use];
1108                 desc = &ring->desc[ring->next_to_use];
1109         }
1110
1111         return 0;
1112 }
1113
1114 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1115                                    struct hns3_enet_ring *ring)
1116 {
1117         struct sk_buff *skb = *out_skb;
1118         struct sk_buff *new_skb = NULL;
1119         struct skb_frag_struct *frag;
1120         int bdnum_for_frag;
1121         int frag_num;
1122         int buf_num;
1123         int size;
1124         int i;
1125
1126         size = skb_headlen(skb);
1127         buf_num = (size + HNS3_MAX_BD_SIZE - 1) >> HNS3_MAX_BD_SIZE_OFFSET;
1128
1129         frag_num = skb_shinfo(skb)->nr_frags;
1130         for (i = 0; i < frag_num; i++) {
1131                 frag = &skb_shinfo(skb)->frags[i];
1132                 size = skb_frag_size(frag);
1133                 bdnum_for_frag = (size + HNS3_MAX_BD_SIZE - 1) >>
1134                                  HNS3_MAX_BD_SIZE_OFFSET;
1135                 if (unlikely(bdnum_for_frag > HNS3_MAX_BD_PER_FRAG))
1136                         return -ENOMEM;
1137
1138                 buf_num += bdnum_for_frag;
1139         }
1140
1141         if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1142                 buf_num = (skb->len + HNS3_MAX_BD_SIZE - 1) >>
1143                           HNS3_MAX_BD_SIZE_OFFSET;
1144                 if (ring_space(ring) < buf_num)
1145                         return -EBUSY;
1146                 /* manual split the send packet */
1147                 new_skb = skb_copy(skb, GFP_ATOMIC);
1148                 if (!new_skb)
1149                         return -ENOMEM;
1150                 dev_kfree_skb_any(skb);
1151                 *out_skb = new_skb;
1152         }
1153
1154         if (unlikely(ring_space(ring) < buf_num))
1155                 return -EBUSY;
1156
1157         *bnum = buf_num;
1158         return 0;
1159 }
1160
1161 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1162                                   struct hns3_enet_ring *ring)
1163 {
1164         struct sk_buff *skb = *out_skb;
1165         struct sk_buff *new_skb = NULL;
1166         int buf_num;
1167
1168         /* No. of segments (plus a header) */
1169         buf_num = skb_shinfo(skb)->nr_frags + 1;
1170
1171         if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1172                 buf_num = (skb->len + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1173                 if (ring_space(ring) < buf_num)
1174                         return -EBUSY;
1175                 /* manual split the send packet */
1176                 new_skb = skb_copy(skb, GFP_ATOMIC);
1177                 if (!new_skb)
1178                         return -ENOMEM;
1179                 dev_kfree_skb_any(skb);
1180                 *out_skb = new_skb;
1181         }
1182
1183         if (unlikely(ring_space(ring) < buf_num))
1184                 return -EBUSY;
1185
1186         *bnum = buf_num;
1187
1188         return 0;
1189 }
1190
1191 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1192 {
1193         struct device *dev = ring_to_dev(ring);
1194         unsigned int i;
1195
1196         for (i = 0; i < ring->desc_num; i++) {
1197                 /* check if this is where we started */
1198                 if (ring->next_to_use == next_to_use_orig)
1199                         break;
1200
1201                 /* unmap the descriptor dma address */
1202                 if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1203                         dma_unmap_single(dev,
1204                                          ring->desc_cb[ring->next_to_use].dma,
1205                                         ring->desc_cb[ring->next_to_use].length,
1206                                         DMA_TO_DEVICE);
1207                 else if (ring->desc_cb[ring->next_to_use].length)
1208                         dma_unmap_page(dev,
1209                                        ring->desc_cb[ring->next_to_use].dma,
1210                                        ring->desc_cb[ring->next_to_use].length,
1211                                        DMA_TO_DEVICE);
1212
1213                 ring->desc_cb[ring->next_to_use].length = 0;
1214
1215                 /* rollback one */
1216                 ring_ptr_move_bw(ring, next_to_use);
1217         }
1218 }
1219
1220 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1221 {
1222         struct hns3_nic_priv *priv = netdev_priv(netdev);
1223         struct hns3_nic_ring_data *ring_data =
1224                 &tx_ring_data(priv, skb->queue_mapping);
1225         struct hns3_enet_ring *ring = ring_data->ring;
1226         struct netdev_queue *dev_queue;
1227         struct skb_frag_struct *frag;
1228         int next_to_use_head;
1229         int next_to_use_frag;
1230         int buf_num;
1231         int seg_num;
1232         int size;
1233         int ret;
1234         int i;
1235
1236         /* Prefetch the data used later */
1237         prefetch(skb->data);
1238
1239         switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1240         case -EBUSY:
1241                 u64_stats_update_begin(&ring->syncp);
1242                 ring->stats.tx_busy++;
1243                 u64_stats_update_end(&ring->syncp);
1244
1245                 goto out_net_tx_busy;
1246         case -ENOMEM:
1247                 u64_stats_update_begin(&ring->syncp);
1248                 ring->stats.sw_err_cnt++;
1249                 u64_stats_update_end(&ring->syncp);
1250                 netdev_err(netdev, "no memory to xmit!\n");
1251
1252                 goto out_err_tx_ok;
1253         default:
1254                 break;
1255         }
1256
1257         /* No. of segments (plus a header) */
1258         seg_num = skb_shinfo(skb)->nr_frags + 1;
1259         /* Fill the first part */
1260         size = skb_headlen(skb);
1261
1262         next_to_use_head = ring->next_to_use;
1263
1264         ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1265                              DESC_TYPE_SKB);
1266         if (unlikely(ret))
1267                 goto head_fill_err;
1268
1269         next_to_use_frag = ring->next_to_use;
1270         /* Fill the fragments */
1271         for (i = 1; i < seg_num; i++) {
1272                 frag = &skb_shinfo(skb)->frags[i - 1];
1273                 size = skb_frag_size(frag);
1274
1275                 ret = hns3_fill_desc(ring, frag, size,
1276                                      seg_num - 1 == i ? 1 : 0,
1277                                      DESC_TYPE_PAGE);
1278
1279                 if (unlikely(ret))
1280                         goto frag_fill_err;
1281         }
1282
1283         /* Complete translate all packets */
1284         dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1285         netdev_tx_sent_queue(dev_queue, skb->len);
1286
1287         wmb(); /* Commit all data before submit */
1288
1289         hnae3_queue_xmit(ring->tqp, buf_num);
1290
1291         return NETDEV_TX_OK;
1292
1293 frag_fill_err:
1294         hns3_clear_desc(ring, next_to_use_frag);
1295
1296 head_fill_err:
1297         hns3_clear_desc(ring, next_to_use_head);
1298
1299 out_err_tx_ok:
1300         dev_kfree_skb_any(skb);
1301         return NETDEV_TX_OK;
1302
1303 out_net_tx_busy:
1304         netif_stop_subqueue(netdev, ring_data->queue_index);
1305         smp_mb(); /* Commit all data before submit */
1306
1307         return NETDEV_TX_BUSY;
1308 }
1309
1310 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1311 {
1312         struct hnae3_handle *h = hns3_get_handle(netdev);
1313         struct sockaddr *mac_addr = p;
1314         int ret;
1315
1316         if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1317                 return -EADDRNOTAVAIL;
1318
1319         if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1320                 netdev_info(netdev, "already using mac address %pM\n",
1321                             mac_addr->sa_data);
1322                 return 0;
1323         }
1324
1325         ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1326         if (ret) {
1327                 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1328                 return ret;
1329         }
1330
1331         ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1332
1333         return 0;
1334 }
1335
1336 static int hns3_nic_do_ioctl(struct net_device *netdev,
1337                              struct ifreq *ifr, int cmd)
1338 {
1339         struct hnae3_handle *h = hns3_get_handle(netdev);
1340
1341         if (!netif_running(netdev))
1342                 return -EINVAL;
1343
1344         if (!h->ae_algo->ops->do_ioctl)
1345                 return -EOPNOTSUPP;
1346
1347         return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1348 }
1349
1350 static int hns3_nic_set_features(struct net_device *netdev,
1351                                  netdev_features_t features)
1352 {
1353         netdev_features_t changed = netdev->features ^ features;
1354         struct hns3_nic_priv *priv = netdev_priv(netdev);
1355         struct hnae3_handle *h = priv->ae_handle;
1356         bool enable;
1357         int ret;
1358
1359         if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1360                 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1361                         priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1362                 else
1363                         priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1364         }
1365
1366         if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1367                 enable = !!(features & NETIF_F_GRO_HW);
1368                 ret = h->ae_algo->ops->set_gro_en(h, enable);
1369                 if (ret)
1370                         return ret;
1371         }
1372
1373         if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1374             h->ae_algo->ops->enable_vlan_filter) {
1375                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1376                 h->ae_algo->ops->enable_vlan_filter(h, enable);
1377         }
1378
1379         if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1380             h->ae_algo->ops->enable_hw_strip_rxvtag) {
1381                 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1382                 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1383                 if (ret)
1384                         return ret;
1385         }
1386
1387         if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1388                 enable = !!(features & NETIF_F_NTUPLE);
1389                 h->ae_algo->ops->enable_fd(h, enable);
1390         }
1391
1392         netdev->features = features;
1393         return 0;
1394 }
1395
1396 static void hns3_nic_get_stats64(struct net_device *netdev,
1397                                  struct rtnl_link_stats64 *stats)
1398 {
1399         struct hns3_nic_priv *priv = netdev_priv(netdev);
1400         int queue_num = priv->ae_handle->kinfo.num_tqps;
1401         struct hnae3_handle *handle = priv->ae_handle;
1402         struct hns3_enet_ring *ring;
1403         u64 rx_length_errors = 0;
1404         u64 rx_crc_errors = 0;
1405         u64 rx_multicast = 0;
1406         unsigned int start;
1407         u64 tx_errors = 0;
1408         u64 rx_errors = 0;
1409         unsigned int idx;
1410         u64 tx_bytes = 0;
1411         u64 rx_bytes = 0;
1412         u64 tx_pkts = 0;
1413         u64 rx_pkts = 0;
1414         u64 tx_drop = 0;
1415         u64 rx_drop = 0;
1416
1417         if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1418                 return;
1419
1420         handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1421
1422         for (idx = 0; idx < queue_num; idx++) {
1423                 /* fetch the tx stats */
1424                 ring = priv->ring_data[idx].ring;
1425                 do {
1426                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1427                         tx_bytes += ring->stats.tx_bytes;
1428                         tx_pkts += ring->stats.tx_pkts;
1429                         tx_drop += ring->stats.sw_err_cnt;
1430                         tx_errors += ring->stats.sw_err_cnt;
1431                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1432
1433                 /* fetch the rx stats */
1434                 ring = priv->ring_data[idx + queue_num].ring;
1435                 do {
1436                         start = u64_stats_fetch_begin_irq(&ring->syncp);
1437                         rx_bytes += ring->stats.rx_bytes;
1438                         rx_pkts += ring->stats.rx_pkts;
1439                         rx_drop += ring->stats.non_vld_descs;
1440                         rx_drop += ring->stats.l2_err;
1441                         rx_errors += ring->stats.non_vld_descs;
1442                         rx_errors += ring->stats.l2_err;
1443                         rx_crc_errors += ring->stats.l2_err;
1444                         rx_crc_errors += ring->stats.l3l4_csum_err;
1445                         rx_multicast += ring->stats.rx_multicast;
1446                         rx_length_errors += ring->stats.err_pkt_len;
1447                 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1448         }
1449
1450         stats->tx_bytes = tx_bytes;
1451         stats->tx_packets = tx_pkts;
1452         stats->rx_bytes = rx_bytes;
1453         stats->rx_packets = rx_pkts;
1454
1455         stats->rx_errors = rx_errors;
1456         stats->multicast = rx_multicast;
1457         stats->rx_length_errors = rx_length_errors;
1458         stats->rx_crc_errors = rx_crc_errors;
1459         stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1460
1461         stats->tx_errors = tx_errors;
1462         stats->rx_dropped = rx_drop;
1463         stats->tx_dropped = tx_drop;
1464         stats->collisions = netdev->stats.collisions;
1465         stats->rx_over_errors = netdev->stats.rx_over_errors;
1466         stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1467         stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1468         stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1469         stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1470         stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1471         stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1472         stats->tx_window_errors = netdev->stats.tx_window_errors;
1473         stats->rx_compressed = netdev->stats.rx_compressed;
1474         stats->tx_compressed = netdev->stats.tx_compressed;
1475 }
1476
1477 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1478 {
1479         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1480         struct hnae3_handle *h = hns3_get_handle(netdev);
1481         struct hnae3_knic_private_info *kinfo = &h->kinfo;
1482         u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1483         u8 tc = mqprio_qopt->qopt.num_tc;
1484         u16 mode = mqprio_qopt->mode;
1485         u8 hw = mqprio_qopt->qopt.hw;
1486
1487         if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1488                mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1489                 return -EOPNOTSUPP;
1490
1491         if (tc > HNAE3_MAX_TC)
1492                 return -EINVAL;
1493
1494         if (!netdev)
1495                 return -EINVAL;
1496
1497         return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1498                 kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1499 }
1500
1501 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1502                              void *type_data)
1503 {
1504         if (type != TC_SETUP_QDISC_MQPRIO)
1505                 return -EOPNOTSUPP;
1506
1507         return hns3_setup_tc(dev, type_data);
1508 }
1509
1510 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1511                                 __be16 proto, u16 vid)
1512 {
1513         struct hnae3_handle *h = hns3_get_handle(netdev);
1514         struct hns3_nic_priv *priv = netdev_priv(netdev);
1515         int ret = -EIO;
1516
1517         if (h->ae_algo->ops->set_vlan_filter)
1518                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1519
1520         if (!ret)
1521                 set_bit(vid, priv->active_vlans);
1522
1523         return ret;
1524 }
1525
1526 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1527                                  __be16 proto, u16 vid)
1528 {
1529         struct hnae3_handle *h = hns3_get_handle(netdev);
1530         struct hns3_nic_priv *priv = netdev_priv(netdev);
1531         int ret = -EIO;
1532
1533         if (h->ae_algo->ops->set_vlan_filter)
1534                 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1535
1536         if (!ret)
1537                 clear_bit(vid, priv->active_vlans);
1538
1539         return ret;
1540 }
1541
1542 static int hns3_restore_vlan(struct net_device *netdev)
1543 {
1544         struct hns3_nic_priv *priv = netdev_priv(netdev);
1545         int ret = 0;
1546         u16 vid;
1547
1548         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1549                 ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1550                 if (ret) {
1551                         netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1552                                    vid, ret);
1553                         return ret;
1554                 }
1555         }
1556
1557         return ret;
1558 }
1559
1560 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1561                                 u8 qos, __be16 vlan_proto)
1562 {
1563         struct hnae3_handle *h = hns3_get_handle(netdev);
1564         int ret = -EIO;
1565
1566         if (h->ae_algo->ops->set_vf_vlan_filter)
1567                 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1568                                                    qos, vlan_proto);
1569
1570         return ret;
1571 }
1572
1573 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1574 {
1575         struct hnae3_handle *h = hns3_get_handle(netdev);
1576         int ret;
1577
1578         if (!h->ae_algo->ops->set_mtu)
1579                 return -EOPNOTSUPP;
1580
1581         ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1582         if (ret)
1583                 netdev_err(netdev, "failed to change MTU in hardware %d\n",
1584                            ret);
1585         else
1586                 netdev->mtu = new_mtu;
1587
1588         return ret;
1589 }
1590
1591 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1592 {
1593         struct hns3_nic_priv *priv = netdev_priv(ndev);
1594         struct hns3_enet_ring *tx_ring = NULL;
1595         int timeout_queue = 0;
1596         int hw_head, hw_tail;
1597         int i;
1598
1599         /* Find the stopped queue the same way the stack does */
1600         for (i = 0; i < ndev->real_num_tx_queues; i++) {
1601                 struct netdev_queue *q;
1602                 unsigned long trans_start;
1603
1604                 q = netdev_get_tx_queue(ndev, i);
1605                 trans_start = q->trans_start;
1606                 if (netif_xmit_stopped(q) &&
1607                     time_after(jiffies,
1608                                (trans_start + ndev->watchdog_timeo))) {
1609                         timeout_queue = i;
1610                         break;
1611                 }
1612         }
1613
1614         if (i == ndev->num_tx_queues) {
1615                 netdev_info(ndev,
1616                             "no netdev TX timeout queue found, timeout count: %llu\n",
1617                             priv->tx_timeout_count);
1618                 return false;
1619         }
1620
1621         tx_ring = priv->ring_data[timeout_queue].ring;
1622
1623         hw_head = readl_relaxed(tx_ring->tqp->io_base +
1624                                 HNS3_RING_TX_RING_HEAD_REG);
1625         hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1626                                 HNS3_RING_TX_RING_TAIL_REG);
1627         netdev_info(ndev,
1628                     "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1629                     priv->tx_timeout_count,
1630                     timeout_queue,
1631                     tx_ring->next_to_use,
1632                     tx_ring->next_to_clean,
1633                     hw_head,
1634                     hw_tail,
1635                     readl(tx_ring->tqp_vector->mask_addr));
1636
1637         return true;
1638 }
1639
1640 static void hns3_nic_net_timeout(struct net_device *ndev)
1641 {
1642         struct hns3_nic_priv *priv = netdev_priv(ndev);
1643         struct hnae3_handle *h = priv->ae_handle;
1644
1645         if (!hns3_get_tx_timeo_queue_info(ndev))
1646                 return;
1647
1648         priv->tx_timeout_count++;
1649
1650         /* request the reset, and let the hclge to determine
1651          * which reset level should be done
1652          */
1653         if (h->ae_algo->ops->reset_event)
1654                 h->ae_algo->ops->reset_event(h->pdev, h);
1655 }
1656
1657 static const struct net_device_ops hns3_nic_netdev_ops = {
1658         .ndo_open               = hns3_nic_net_open,
1659         .ndo_stop               = hns3_nic_net_stop,
1660         .ndo_start_xmit         = hns3_nic_net_xmit,
1661         .ndo_tx_timeout         = hns3_nic_net_timeout,
1662         .ndo_set_mac_address    = hns3_nic_net_set_mac_address,
1663         .ndo_do_ioctl           = hns3_nic_do_ioctl,
1664         .ndo_change_mtu         = hns3_nic_change_mtu,
1665         .ndo_set_features       = hns3_nic_set_features,
1666         .ndo_get_stats64        = hns3_nic_get_stats64,
1667         .ndo_setup_tc           = hns3_nic_setup_tc,
1668         .ndo_set_rx_mode        = hns3_nic_set_rx_mode,
1669         .ndo_vlan_rx_add_vid    = hns3_vlan_rx_add_vid,
1670         .ndo_vlan_rx_kill_vid   = hns3_vlan_rx_kill_vid,
1671         .ndo_set_vf_vlan        = hns3_ndo_set_vf_vlan,
1672 };
1673
1674 static bool hns3_is_phys_func(struct pci_dev *pdev)
1675 {
1676         u32 dev_id = pdev->device;
1677
1678         switch (dev_id) {
1679         case HNAE3_DEV_ID_GE:
1680         case HNAE3_DEV_ID_25GE:
1681         case HNAE3_DEV_ID_25GE_RDMA:
1682         case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1683         case HNAE3_DEV_ID_50GE_RDMA:
1684         case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1685         case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1686                 return true;
1687         case HNAE3_DEV_ID_100G_VF:
1688         case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1689                 return false;
1690         default:
1691                 dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1692                          dev_id);
1693         }
1694
1695         return false;
1696 }
1697
1698 static void hns3_disable_sriov(struct pci_dev *pdev)
1699 {
1700         /* If our VFs are assigned we cannot shut down SR-IOV
1701          * without causing issues, so just leave the hardware
1702          * available but disabled
1703          */
1704         if (pci_vfs_assigned(pdev)) {
1705                 dev_warn(&pdev->dev,
1706                          "disabling driver while VFs are assigned\n");
1707                 return;
1708         }
1709
1710         pci_disable_sriov(pdev);
1711 }
1712
1713 static void hns3_get_dev_capability(struct pci_dev *pdev,
1714                                     struct hnae3_ae_dev *ae_dev)
1715 {
1716         if (pdev->revision >= 0x21) {
1717                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1718                 hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1719         }
1720 }
1721
1722 /* hns3_probe - Device initialization routine
1723  * @pdev: PCI device information struct
1724  * @ent: entry in hns3_pci_tbl
1725  *
1726  * hns3_probe initializes a PF identified by a pci_dev structure.
1727  * The OS initialization, configuring of the PF private structure,
1728  * and a hardware reset occur.
1729  *
1730  * Returns 0 on success, negative on failure
1731  */
1732 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1733 {
1734         struct hnae3_ae_dev *ae_dev;
1735         int ret;
1736
1737         ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1738                               GFP_KERNEL);
1739         if (!ae_dev) {
1740                 ret = -ENOMEM;
1741                 return ret;
1742         }
1743
1744         ae_dev->pdev = pdev;
1745         ae_dev->flag = ent->driver_data;
1746         ae_dev->dev_type = HNAE3_DEV_KNIC;
1747         ae_dev->reset_type = HNAE3_NONE_RESET;
1748         hns3_get_dev_capability(pdev, ae_dev);
1749         pci_set_drvdata(pdev, ae_dev);
1750
1751         ret = hnae3_register_ae_dev(ae_dev);
1752         if (ret) {
1753                 devm_kfree(&pdev->dev, ae_dev);
1754                 pci_set_drvdata(pdev, NULL);
1755         }
1756
1757         return ret;
1758 }
1759
1760 /* hns3_remove - Device removal routine
1761  * @pdev: PCI device information struct
1762  */
1763 static void hns3_remove(struct pci_dev *pdev)
1764 {
1765         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1766
1767         if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1768                 hns3_disable_sriov(pdev);
1769
1770         hnae3_unregister_ae_dev(ae_dev);
1771         pci_set_drvdata(pdev, NULL);
1772 }
1773
1774 /**
1775  * hns3_pci_sriov_configure
1776  * @pdev: pointer to a pci_dev structure
1777  * @num_vfs: number of VFs to allocate
1778  *
1779  * Enable or change the number of VFs. Called when the user updates the number
1780  * of VFs in sysfs.
1781  **/
1782 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1783 {
1784         int ret;
1785
1786         if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1787                 dev_warn(&pdev->dev, "Can not config SRIOV\n");
1788                 return -EINVAL;
1789         }
1790
1791         if (num_vfs) {
1792                 ret = pci_enable_sriov(pdev, num_vfs);
1793                 if (ret)
1794                         dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1795                 else
1796                         return num_vfs;
1797         } else if (!pci_vfs_assigned(pdev)) {
1798                 pci_disable_sriov(pdev);
1799         } else {
1800                 dev_warn(&pdev->dev,
1801                          "Unable to free VFs because some are assigned to VMs.\n");
1802         }
1803
1804         return 0;
1805 }
1806
1807 static void hns3_shutdown(struct pci_dev *pdev)
1808 {
1809         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1810
1811         hnae3_unregister_ae_dev(ae_dev);
1812         devm_kfree(&pdev->dev, ae_dev);
1813         pci_set_drvdata(pdev, NULL);
1814
1815         if (system_state == SYSTEM_POWER_OFF)
1816                 pci_set_power_state(pdev, PCI_D3hot);
1817 }
1818
1819 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1820                                             pci_channel_state_t state)
1821 {
1822         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1823         pci_ers_result_t ret;
1824
1825         dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1826
1827         if (state == pci_channel_io_perm_failure)
1828                 return PCI_ERS_RESULT_DISCONNECT;
1829
1830         if (!ae_dev) {
1831                 dev_err(&pdev->dev,
1832                         "Can't recover - error happened during device init\n");
1833                 return PCI_ERS_RESULT_NONE;
1834         }
1835
1836         if (ae_dev->ops->handle_hw_ras_error)
1837                 ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1838         else
1839                 return PCI_ERS_RESULT_NONE;
1840
1841         return ret;
1842 }
1843
1844 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1845 {
1846         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1847         struct device *dev = &pdev->dev;
1848
1849         dev_info(dev, "requesting reset due to PCI error\n");
1850
1851         /* request the reset */
1852         if (ae_dev->ops->reset_event) {
1853                 ae_dev->ops->reset_event(pdev, NULL);
1854                 return PCI_ERS_RESULT_RECOVERED;
1855         }
1856
1857         return PCI_ERS_RESULT_DISCONNECT;
1858 }
1859
1860 static void hns3_reset_prepare(struct pci_dev *pdev)
1861 {
1862         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1863
1864         dev_info(&pdev->dev, "hns3 flr prepare\n");
1865         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1866                 ae_dev->ops->flr_prepare(ae_dev);
1867 }
1868
1869 static void hns3_reset_done(struct pci_dev *pdev)
1870 {
1871         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1872
1873         dev_info(&pdev->dev, "hns3 flr done\n");
1874         if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1875                 ae_dev->ops->flr_done(ae_dev);
1876 }
1877
1878 static const struct pci_error_handlers hns3_err_handler = {
1879         .error_detected = hns3_error_detected,
1880         .slot_reset     = hns3_slot_reset,
1881         .reset_prepare  = hns3_reset_prepare,
1882         .reset_done     = hns3_reset_done,
1883 };
1884
1885 static struct pci_driver hns3_driver = {
1886         .name     = hns3_driver_name,
1887         .id_table = hns3_pci_tbl,
1888         .probe    = hns3_probe,
1889         .remove   = hns3_remove,
1890         .shutdown = hns3_shutdown,
1891         .sriov_configure = hns3_pci_sriov_configure,
1892         .err_handler    = &hns3_err_handler,
1893 };
1894
1895 /* set default feature to hns3 */
1896 static void hns3_set_default_feature(struct net_device *netdev)
1897 {
1898         struct hnae3_handle *h = hns3_get_handle(netdev);
1899         struct pci_dev *pdev = h->pdev;
1900
1901         netdev->priv_flags |= IFF_UNICAST_FLT;
1902
1903         netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1904                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1905                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1906                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1907                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1908
1909         netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1910
1911         netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1912
1913         netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1914                 NETIF_F_HW_VLAN_CTAG_FILTER |
1915                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1916                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1917                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1918                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1919                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1920
1921         netdev->vlan_features |=
1922                 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1923                 NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1924                 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1925                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1926                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1927
1928         netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1929                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1930                 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1931                 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1932                 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1933                 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1934
1935         if (pdev->revision >= 0x21) {
1936                 netdev->hw_features |= NETIF_F_GRO_HW;
1937                 netdev->features |= NETIF_F_GRO_HW;
1938
1939                 if (!(h->flags & HNAE3_SUPPORT_VF)) {
1940                         netdev->hw_features |= NETIF_F_NTUPLE;
1941                         netdev->features |= NETIF_F_NTUPLE;
1942                 }
1943         }
1944 }
1945
1946 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1947                              struct hns3_desc_cb *cb)
1948 {
1949         unsigned int order = hnae3_page_order(ring);
1950         struct page *p;
1951
1952         p = dev_alloc_pages(order);
1953         if (!p)
1954                 return -ENOMEM;
1955
1956         cb->priv = p;
1957         cb->page_offset = 0;
1958         cb->reuse_flag = 0;
1959         cb->buf  = page_address(p);
1960         cb->length = hnae3_page_size(ring);
1961         cb->type = DESC_TYPE_PAGE;
1962
1963         return 0;
1964 }
1965
1966 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1967                              struct hns3_desc_cb *cb)
1968 {
1969         if (cb->type == DESC_TYPE_SKB)
1970                 dev_kfree_skb_any((struct sk_buff *)cb->priv);
1971         else if (!HNAE3_IS_TX_RING(ring))
1972                 put_page((struct page *)cb->priv);
1973         memset(cb, 0, sizeof(*cb));
1974 }
1975
1976 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1977 {
1978         cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1979                                cb->length, ring_to_dma_dir(ring));
1980
1981         if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
1982                 return -EIO;
1983
1984         return 0;
1985 }
1986
1987 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1988                               struct hns3_desc_cb *cb)
1989 {
1990         if (cb->type == DESC_TYPE_SKB)
1991                 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1992                                  ring_to_dma_dir(ring));
1993         else if (cb->length)
1994                 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1995                                ring_to_dma_dir(ring));
1996 }
1997
1998 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1999 {
2000         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2001         ring->desc[i].addr = 0;
2002 }
2003
2004 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2005 {
2006         struct hns3_desc_cb *cb = &ring->desc_cb[i];
2007
2008         if (!ring->desc_cb[i].dma)
2009                 return;
2010
2011         hns3_buffer_detach(ring, i);
2012         hns3_free_buffer(ring, cb);
2013 }
2014
2015 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2016 {
2017         int i;
2018
2019         for (i = 0; i < ring->desc_num; i++)
2020                 hns3_free_buffer_detach(ring, i);
2021 }
2022
2023 /* free desc along with its attached buffer */
2024 static void hns3_free_desc(struct hns3_enet_ring *ring)
2025 {
2026         int size = ring->desc_num * sizeof(ring->desc[0]);
2027
2028         hns3_free_buffers(ring);
2029
2030         if (ring->desc) {
2031                 dma_free_coherent(ring_to_dev(ring), size,
2032                                   ring->desc, ring->desc_dma_addr);
2033                 ring->desc = NULL;
2034         }
2035 }
2036
2037 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2038 {
2039         int size = ring->desc_num * sizeof(ring->desc[0]);
2040
2041         ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2042                                         &ring->desc_dma_addr, GFP_KERNEL);
2043         if (!ring->desc)
2044                 return -ENOMEM;
2045
2046         return 0;
2047 }
2048
2049 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2050                                    struct hns3_desc_cb *cb)
2051 {
2052         int ret;
2053
2054         ret = hns3_alloc_buffer(ring, cb);
2055         if (ret)
2056                 goto out;
2057
2058         ret = hns3_map_buffer(ring, cb);
2059         if (ret)
2060                 goto out_with_buf;
2061
2062         return 0;
2063
2064 out_with_buf:
2065         hns3_free_buffer(ring, cb);
2066 out:
2067         return ret;
2068 }
2069
2070 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2071 {
2072         int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2073
2074         if (ret)
2075                 return ret;
2076
2077         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2078
2079         return 0;
2080 }
2081
2082 /* Allocate memory for raw pkg, and map with dma */
2083 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2084 {
2085         int i, j, ret;
2086
2087         for (i = 0; i < ring->desc_num; i++) {
2088                 ret = hns3_alloc_buffer_attach(ring, i);
2089                 if (ret)
2090                         goto out_buffer_fail;
2091         }
2092
2093         return 0;
2094
2095 out_buffer_fail:
2096         for (j = i - 1; j >= 0; j--)
2097                 hns3_free_buffer_detach(ring, j);
2098         return ret;
2099 }
2100
2101 /* detach a in-used buffer and replace with a reserved one  */
2102 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2103                                 struct hns3_desc_cb *res_cb)
2104 {
2105         hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2106         ring->desc_cb[i] = *res_cb;
2107         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2108         ring->desc[i].rx.bd_base_info = 0;
2109 }
2110
2111 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2112 {
2113         ring->desc_cb[i].reuse_flag = 0;
2114         ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2115                 + ring->desc_cb[i].page_offset);
2116         ring->desc[i].rx.bd_base_info = 0;
2117 }
2118
2119 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2120                                       int *pkts)
2121 {
2122         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2123
2124         (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2125         (*bytes) += desc_cb->length;
2126         /* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2127         hns3_free_buffer_detach(ring, ring->next_to_clean);
2128
2129         ring_ptr_move_fw(ring, next_to_clean);
2130 }
2131
2132 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2133 {
2134         int u = ring->next_to_use;
2135         int c = ring->next_to_clean;
2136
2137         if (unlikely(h > ring->desc_num))
2138                 return 0;
2139
2140         return u > c ? (h > c && h <= u) : (h > c || h <= u);
2141 }
2142
2143 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2144 {
2145         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2146         struct hns3_nic_priv *priv = netdev_priv(netdev);
2147         struct netdev_queue *dev_queue;
2148         int bytes, pkts;
2149         int head;
2150
2151         head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2152         rmb(); /* Make sure head is ready before touch any data */
2153
2154         if (is_ring_empty(ring) || head == ring->next_to_clean)
2155                 return; /* no data to poll */
2156
2157         if (unlikely(!is_valid_clean_head(ring, head))) {
2158                 netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2159                            ring->next_to_use, ring->next_to_clean);
2160
2161                 u64_stats_update_begin(&ring->syncp);
2162                 ring->stats.io_err_cnt++;
2163                 u64_stats_update_end(&ring->syncp);
2164                 return;
2165         }
2166
2167         bytes = 0;
2168         pkts = 0;
2169         while (head != ring->next_to_clean) {
2170                 hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2171                 /* Issue prefetch for next Tx descriptor */
2172                 prefetch(&ring->desc_cb[ring->next_to_clean]);
2173         }
2174
2175         ring->tqp_vector->tx_group.total_bytes += bytes;
2176         ring->tqp_vector->tx_group.total_packets += pkts;
2177
2178         u64_stats_update_begin(&ring->syncp);
2179         ring->stats.tx_bytes += bytes;
2180         ring->stats.tx_pkts += pkts;
2181         u64_stats_update_end(&ring->syncp);
2182
2183         dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2184         netdev_tx_completed_queue(dev_queue, pkts, bytes);
2185
2186         if (unlikely(pkts && netif_carrier_ok(netdev) &&
2187                      (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2188                 /* Make sure that anybody stopping the queue after this
2189                  * sees the new next_to_clean.
2190                  */
2191                 smp_mb();
2192                 if (netif_tx_queue_stopped(dev_queue) &&
2193                     !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2194                         netif_tx_wake_queue(dev_queue);
2195                         ring->stats.restart_queue++;
2196                 }
2197         }
2198 }
2199
2200 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2201 {
2202         int ntc = ring->next_to_clean;
2203         int ntu = ring->next_to_use;
2204
2205         return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2206 }
2207
2208 static void
2209 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2210 {
2211         struct hns3_desc_cb *desc_cb;
2212         struct hns3_desc_cb res_cbs;
2213         int i, ret;
2214
2215         for (i = 0; i < cleand_count; i++) {
2216                 desc_cb = &ring->desc_cb[ring->next_to_use];
2217                 if (desc_cb->reuse_flag) {
2218                         u64_stats_update_begin(&ring->syncp);
2219                         ring->stats.reuse_pg_cnt++;
2220                         u64_stats_update_end(&ring->syncp);
2221
2222                         hns3_reuse_buffer(ring, ring->next_to_use);
2223                 } else {
2224                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
2225                         if (ret) {
2226                                 u64_stats_update_begin(&ring->syncp);
2227                                 ring->stats.sw_err_cnt++;
2228                                 u64_stats_update_end(&ring->syncp);
2229
2230                                 netdev_err(ring->tqp->handle->kinfo.netdev,
2231                                            "hnae reserve buffer map failed.\n");
2232                                 break;
2233                         }
2234                         hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2235                 }
2236
2237                 ring_ptr_move_fw(ring, next_to_use);
2238         }
2239
2240         wmb(); /* Make all data has been write before submit */
2241         writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2242 }
2243
2244 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2245                                 struct hns3_enet_ring *ring, int pull_len,
2246                                 struct hns3_desc_cb *desc_cb)
2247 {
2248         struct hns3_desc *desc;
2249         u32 truesize;
2250         int size;
2251         int last_offset;
2252         bool twobufs;
2253
2254         twobufs = ((PAGE_SIZE < 8192) &&
2255                 hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2256
2257         desc = &ring->desc[ring->next_to_clean];
2258         size = le16_to_cpu(desc->rx.size);
2259
2260         truesize = hnae3_buf_size(ring);
2261
2262         if (!twobufs)
2263                 last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2264
2265         skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2266                         size - pull_len, truesize);
2267
2268          /* Avoid re-using remote pages,flag default unreuse */
2269         if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2270                 return;
2271
2272         if (twobufs) {
2273                 /* If we are only owner of page we can reuse it */
2274                 if (likely(page_count(desc_cb->priv) == 1)) {
2275                         /* Flip page offset to other buffer */
2276                         desc_cb->page_offset ^= truesize;
2277
2278                         desc_cb->reuse_flag = 1;
2279                         /* bump ref count on page before it is given*/
2280                         get_page(desc_cb->priv);
2281                 }
2282                 return;
2283         }
2284
2285         /* Move offset up to the next cache line */
2286         desc_cb->page_offset += truesize;
2287
2288         if (desc_cb->page_offset <= last_offset) {
2289                 desc_cb->reuse_flag = 1;
2290                 /* Bump ref count on page before it is given*/
2291                 get_page(desc_cb->priv);
2292         }
2293 }
2294
2295 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2296                              struct hns3_desc *desc)
2297 {
2298         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2299         int l3_type, l4_type;
2300         u32 bd_base_info;
2301         int ol4_type;
2302         u32 l234info;
2303
2304         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2305         l234info = le32_to_cpu(desc->rx.l234_info);
2306
2307         skb->ip_summed = CHECKSUM_NONE;
2308
2309         skb_checksum_none_assert(skb);
2310
2311         if (!(netdev->features & NETIF_F_RXCSUM))
2312                 return;
2313
2314         /* We MUST enable hardware checksum before enabling hardware GRO */
2315         if (skb_shinfo(skb)->gso_size) {
2316                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2317                 return;
2318         }
2319
2320         /* check if hardware has done checksum */
2321         if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2322                 return;
2323
2324         if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) ||
2325                                  BIT(HNS3_RXD_OL3E_B) ||
2326                                  BIT(HNS3_RXD_OL4E_B)))) {
2327                 u64_stats_update_begin(&ring->syncp);
2328                 ring->stats.l3l4_csum_err++;
2329                 u64_stats_update_end(&ring->syncp);
2330
2331                 return;
2332         }
2333
2334         ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2335                                    HNS3_RXD_OL4ID_S);
2336         switch (ol4_type) {
2337         case HNS3_OL4_TYPE_MAC_IN_UDP:
2338         case HNS3_OL4_TYPE_NVGRE:
2339                 skb->csum_level = 1;
2340                 /* fall through */
2341         case HNS3_OL4_TYPE_NO_TUN:
2342                 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2343                                           HNS3_RXD_L3ID_S);
2344                 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2345                                           HNS3_RXD_L4ID_S);
2346
2347                 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2348                 if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2349                      l3_type == HNS3_L3_TYPE_IPV6) &&
2350                     (l4_type == HNS3_L4_TYPE_UDP ||
2351                      l4_type == HNS3_L4_TYPE_TCP ||
2352                      l4_type == HNS3_L4_TYPE_SCTP))
2353                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2354                 break;
2355         default:
2356                 break;
2357         }
2358 }
2359
2360 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2361 {
2362         if (skb_has_frag_list(skb))
2363                 napi_gro_flush(&ring->tqp_vector->napi, false);
2364
2365         napi_gro_receive(&ring->tqp_vector->napi, skb);
2366 }
2367
2368 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2369                                 struct hns3_desc *desc, u32 l234info,
2370                                 u16 *vlan_tag)
2371 {
2372         struct pci_dev *pdev = ring->tqp->handle->pdev;
2373
2374         if (pdev->revision == 0x20) {
2375                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2376                 if (!(*vlan_tag & VLAN_VID_MASK))
2377                         *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2378
2379                 return (*vlan_tag != 0);
2380         }
2381
2382 #define HNS3_STRP_OUTER_VLAN    0x1
2383 #define HNS3_STRP_INNER_VLAN    0x2
2384
2385         switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2386                                 HNS3_RXD_STRP_TAGP_S)) {
2387         case HNS3_STRP_OUTER_VLAN:
2388                 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2389                 return true;
2390         case HNS3_STRP_INNER_VLAN:
2391                 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2392                 return true;
2393         default:
2394                 return false;
2395         }
2396 }
2397
2398 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2399                           unsigned char *va)
2400 {
2401 #define HNS3_NEED_ADD_FRAG      1
2402         struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2403         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2404         struct sk_buff *skb;
2405
2406         ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2407         skb = ring->skb;
2408         if (unlikely(!skb)) {
2409                 netdev_err(netdev, "alloc rx skb fail\n");
2410
2411                 u64_stats_update_begin(&ring->syncp);
2412                 ring->stats.sw_err_cnt++;
2413                 u64_stats_update_end(&ring->syncp);
2414
2415                 return -ENOMEM;
2416         }
2417
2418         prefetchw(skb->data);
2419
2420         ring->pending_buf = 1;
2421         ring->frag_num = 0;
2422         ring->tail_skb = NULL;
2423         if (length <= HNS3_RX_HEAD_SIZE) {
2424                 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2425
2426                 /* We can reuse buffer as-is, just make sure it is local */
2427                 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2428                         desc_cb->reuse_flag = 1;
2429                 else /* This page cannot be reused so discard it */
2430                         put_page(desc_cb->priv);
2431
2432                 ring_ptr_move_fw(ring, next_to_clean);
2433                 return 0;
2434         }
2435         u64_stats_update_begin(&ring->syncp);
2436         ring->stats.seg_pkt_cnt++;
2437         u64_stats_update_end(&ring->syncp);
2438
2439         ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2440         __skb_put(skb, ring->pull_len);
2441         hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2442                             desc_cb);
2443         ring_ptr_move_fw(ring, next_to_clean);
2444
2445         return HNS3_NEED_ADD_FRAG;
2446 }
2447
2448 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2449                          struct sk_buff **out_skb, bool pending)
2450 {
2451         struct sk_buff *skb = *out_skb;
2452         struct sk_buff *head_skb = *out_skb;
2453         struct sk_buff *new_skb;
2454         struct hns3_desc_cb *desc_cb;
2455         struct hns3_desc *pre_desc;
2456         u32 bd_base_info;
2457         int pre_bd;
2458
2459         /* if there is pending bd, the SW param next_to_clean has moved
2460          * to next and the next is NULL
2461          */
2462         if (pending) {
2463                 pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2464                         ring->desc_num;
2465                 pre_desc = &ring->desc[pre_bd];
2466                 bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2467         } else {
2468                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2469         }
2470
2471         while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2472                 desc = &ring->desc[ring->next_to_clean];
2473                 desc_cb = &ring->desc_cb[ring->next_to_clean];
2474                 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2475                 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2476                         return -ENXIO;
2477
2478                 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2479                         new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2480                                                  HNS3_RX_HEAD_SIZE);
2481                         if (unlikely(!new_skb)) {
2482                                 netdev_err(ring->tqp->handle->kinfo.netdev,
2483                                            "alloc rx skb frag fail\n");
2484                                 return -ENXIO;
2485                         }
2486                         ring->frag_num = 0;
2487
2488                         if (ring->tail_skb) {
2489                                 ring->tail_skb->next = new_skb;
2490                                 ring->tail_skb = new_skb;
2491                         } else {
2492                                 skb_shinfo(skb)->frag_list = new_skb;
2493                                 ring->tail_skb = new_skb;
2494                         }
2495                 }
2496
2497                 if (ring->tail_skb) {
2498                         head_skb->truesize += hnae3_buf_size(ring);
2499                         head_skb->data_len += le16_to_cpu(desc->rx.size);
2500                         head_skb->len += le16_to_cpu(desc->rx.size);
2501                         skb = ring->tail_skb;
2502                 }
2503
2504                 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2505                 ring_ptr_move_fw(ring, next_to_clean);
2506                 ring->pending_buf++;
2507         }
2508
2509         return 0;
2510 }
2511
2512 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2513                                u32 bd_base_info)
2514 {
2515         u16 gro_count;
2516         u32 l3_type;
2517
2518         gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2519                                     HNS3_RXD_GRO_COUNT_S);
2520         /* if there is no HW GRO, do not set gro params */
2521         if (!gro_count)
2522                 return;
2523
2524         /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2525          * to skb_shinfo(skb)->gso_segs
2526          */
2527         NAPI_GRO_CB(skb)->count = gro_count;
2528
2529         l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2530                                   HNS3_RXD_L3ID_S);
2531         if (l3_type == HNS3_L3_TYPE_IPV4)
2532                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2533         else if (l3_type == HNS3_L3_TYPE_IPV6)
2534                 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2535         else
2536                 return;
2537
2538         skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2539                                                     HNS3_RXD_GRO_SIZE_M,
2540                                                     HNS3_RXD_GRO_SIZE_S);
2541         if (skb_shinfo(skb)->gso_size)
2542                 tcp_gro_complete(skb);
2543 }
2544
2545 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2546                                      struct sk_buff *skb)
2547 {
2548         struct hnae3_handle *handle = ring->tqp->handle;
2549         enum pkt_hash_types rss_type;
2550         struct hns3_desc *desc;
2551         int last_bd;
2552
2553         /* When driver handle the rss type, ring->next_to_clean indicates the
2554          * first descriptor of next packet, need -1 here.
2555          */
2556         last_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num;
2557         desc = &ring->desc[last_bd];
2558
2559         if (le32_to_cpu(desc->rx.rss_hash))
2560                 rss_type = handle->kinfo.rss_type;
2561         else
2562                 rss_type = PKT_HASH_TYPE_NONE;
2563
2564         skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2565 }
2566
2567 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2568                              struct sk_buff **out_skb)
2569 {
2570         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2571         enum hns3_pkt_l2t_type l2_frame_type;
2572         struct sk_buff *skb = ring->skb;
2573         struct hns3_desc_cb *desc_cb;
2574         struct hns3_desc *desc;
2575         u32 bd_base_info;
2576         u32 l234info;
2577         int length;
2578         int ret;
2579
2580         desc = &ring->desc[ring->next_to_clean];
2581         desc_cb = &ring->desc_cb[ring->next_to_clean];
2582
2583         prefetch(desc);
2584
2585         length = le16_to_cpu(desc->rx.size);
2586         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2587
2588         /* Check valid BD */
2589         if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2590                 return -ENXIO;
2591
2592         if (!skb)
2593                 ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2594
2595         /* Prefetch first cache line of first page
2596          * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2597          * line size is 64B so need to prefetch twice to make it 128B. But in
2598          * actual we can have greater size of caches with 128B Level 1 cache
2599          * lines. In such a case, single fetch would suffice to cache in the
2600          * relevant part of the header.
2601          */
2602         prefetch(ring->va);
2603 #if L1_CACHE_BYTES < 128
2604         prefetch(ring->va + L1_CACHE_BYTES);
2605 #endif
2606
2607         if (!skb) {
2608                 ret = hns3_alloc_skb(ring, length, ring->va);
2609                 *out_skb = skb = ring->skb;
2610
2611                 if (ret < 0) /* alloc buffer fail */
2612                         return ret;
2613                 if (ret > 0) { /* need add frag */
2614                         ret = hns3_add_frag(ring, desc, &skb, false);
2615                         if (ret)
2616                                 return ret;
2617
2618                         /* As the head data may be changed when GRO enable, copy
2619                          * the head data in after other data rx completed
2620                          */
2621                         memcpy(skb->data, ring->va,
2622                                ALIGN(ring->pull_len, sizeof(long)));
2623                 }
2624         } else {
2625                 ret = hns3_add_frag(ring, desc, &skb, true);
2626                 if (ret)
2627                         return ret;
2628
2629                 /* As the head data may be changed when GRO enable, copy
2630                  * the head data in after other data rx completed
2631                  */
2632                 memcpy(skb->data, ring->va,
2633                        ALIGN(ring->pull_len, sizeof(long)));
2634         }
2635
2636         l234info = le32_to_cpu(desc->rx.l234_info);
2637         bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2638
2639         /* Based on hw strategy, the tag offloaded will be stored at
2640          * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2641          * in one layer tag case.
2642          */
2643         if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2644                 u16 vlan_tag;
2645
2646                 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2647                         __vlan_hwaccel_put_tag(skb,
2648                                                htons(ETH_P_8021Q),
2649                                                vlan_tag);
2650         }
2651
2652         if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) {
2653                 u64_stats_update_begin(&ring->syncp);
2654                 ring->stats.non_vld_descs++;
2655                 u64_stats_update_end(&ring->syncp);
2656
2657                 dev_kfree_skb_any(skb);
2658                 return -EINVAL;
2659         }
2660
2661         if (unlikely((!desc->rx.pkt_len) ||
2662                      (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2663                                   BIT(HNS3_RXD_L2E_B))))) {
2664                 u64_stats_update_begin(&ring->syncp);
2665                 if (l234info & BIT(HNS3_RXD_L2E_B))
2666                         ring->stats.l2_err++;
2667                 else
2668                         ring->stats.err_pkt_len++;
2669                 u64_stats_update_end(&ring->syncp);
2670
2671                 dev_kfree_skb_any(skb);
2672                 return -EFAULT;
2673         }
2674
2675
2676         l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2677                                         HNS3_RXD_DMAC_S);
2678         u64_stats_update_begin(&ring->syncp);
2679         if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2680                 ring->stats.rx_multicast++;
2681
2682         ring->stats.rx_pkts++;
2683         ring->stats.rx_bytes += skb->len;
2684         u64_stats_update_end(&ring->syncp);
2685
2686         ring->tqp_vector->rx_group.total_bytes += skb->len;
2687
2688         /* This is needed in order to enable forwarding support */
2689         hns3_set_gro_param(skb, l234info, bd_base_info);
2690
2691         hns3_rx_checksum(ring, skb, desc);
2692         *out_skb = skb;
2693         hns3_set_rx_skb_rss_type(ring, skb);
2694
2695         return 0;
2696 }
2697
2698 int hns3_clean_rx_ring(
2699                 struct hns3_enet_ring *ring, int budget,
2700                 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2701 {
2702 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2703         struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2704         int recv_pkts, recv_bds, clean_count, err;
2705         int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2706         struct sk_buff *skb = ring->skb;
2707         int num;
2708
2709         num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2710         rmb(); /* Make sure num taken effect before the other data is touched */
2711
2712         recv_pkts = 0, recv_bds = 0, clean_count = 0;
2713         num -= unused_count;
2714
2715         while (recv_pkts < budget && recv_bds < num) {
2716                 /* Reuse or realloc buffers */
2717                 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2718                         hns3_nic_alloc_rx_buffers(ring,
2719                                                   clean_count + unused_count);
2720                         clean_count = 0;
2721                         unused_count = hns3_desc_unused(ring) -
2722                                         ring->pending_buf;
2723                 }
2724
2725                 /* Poll one pkt */
2726                 err = hns3_handle_rx_bd(ring, &skb);
2727                 if (unlikely(!skb)) /* This fault cannot be repaired */
2728                         goto out;
2729
2730                 if (err == -ENXIO) { /* Do not get FE for the packet */
2731                         goto out;
2732                 } else if (unlikely(err)) {  /* Do jump the err */
2733                         recv_bds += ring->pending_buf;
2734                         clean_count += ring->pending_buf;
2735                         ring->skb = NULL;
2736                         ring->pending_buf = 0;
2737                         continue;
2738                 }
2739
2740                 /* Do update ip stack process */
2741                 skb->protocol = eth_type_trans(skb, netdev);
2742                 rx_fn(ring, skb);
2743                 recv_bds += ring->pending_buf;
2744                 clean_count += ring->pending_buf;
2745                 ring->skb = NULL;
2746                 ring->pending_buf = 0;
2747
2748                 recv_pkts++;
2749         }
2750
2751 out:
2752         /* Make all data has been write before submit */
2753         if (clean_count + unused_count > 0)
2754                 hns3_nic_alloc_rx_buffers(ring,
2755                                           clean_count + unused_count);
2756
2757         return recv_pkts;
2758 }
2759
2760 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2761 {
2762         struct hns3_enet_tqp_vector *tqp_vector =
2763                                         ring_group->ring->tqp_vector;
2764         enum hns3_flow_level_range new_flow_level;
2765         int packets_per_msecs;
2766         int bytes_per_msecs;
2767         u32 time_passed_ms;
2768         u16 new_int_gl;
2769
2770         if (!tqp_vector->last_jiffies)
2771                 return false;
2772
2773         if (ring_group->total_packets == 0) {
2774                 ring_group->coal.int_gl = HNS3_INT_GL_50K;
2775                 ring_group->coal.flow_level = HNS3_FLOW_LOW;
2776                 return true;
2777         }
2778
2779         /* Simple throttlerate management
2780          * 0-10MB/s   lower     (50000 ints/s)
2781          * 10-20MB/s   middle    (20000 ints/s)
2782          * 20-1249MB/s high      (18000 ints/s)
2783          * > 40000pps  ultra     (8000 ints/s)
2784          */
2785         new_flow_level = ring_group->coal.flow_level;
2786         new_int_gl = ring_group->coal.int_gl;
2787         time_passed_ms =
2788                 jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2789
2790         if (!time_passed_ms)
2791                 return false;
2792
2793         do_div(ring_group->total_packets, time_passed_ms);
2794         packets_per_msecs = ring_group->total_packets;
2795
2796         do_div(ring_group->total_bytes, time_passed_ms);
2797         bytes_per_msecs = ring_group->total_bytes;
2798
2799 #define HNS3_RX_LOW_BYTE_RATE 10000
2800 #define HNS3_RX_MID_BYTE_RATE 20000
2801
2802         switch (new_flow_level) {
2803         case HNS3_FLOW_LOW:
2804                 if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2805                         new_flow_level = HNS3_FLOW_MID;
2806                 break;
2807         case HNS3_FLOW_MID:
2808                 if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2809                         new_flow_level = HNS3_FLOW_HIGH;
2810                 else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2811                         new_flow_level = HNS3_FLOW_LOW;
2812                 break;
2813         case HNS3_FLOW_HIGH:
2814         case HNS3_FLOW_ULTRA:
2815         default:
2816                 if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2817                         new_flow_level = HNS3_FLOW_MID;
2818                 break;
2819         }
2820
2821 #define HNS3_RX_ULTRA_PACKET_RATE 40
2822
2823         if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2824             &tqp_vector->rx_group == ring_group)
2825                 new_flow_level = HNS3_FLOW_ULTRA;
2826
2827         switch (new_flow_level) {
2828         case HNS3_FLOW_LOW:
2829                 new_int_gl = HNS3_INT_GL_50K;
2830                 break;
2831         case HNS3_FLOW_MID:
2832                 new_int_gl = HNS3_INT_GL_20K;
2833                 break;
2834         case HNS3_FLOW_HIGH:
2835                 new_int_gl = HNS3_INT_GL_18K;
2836                 break;
2837         case HNS3_FLOW_ULTRA:
2838                 new_int_gl = HNS3_INT_GL_8K;
2839                 break;
2840         default:
2841                 break;
2842         }
2843
2844         ring_group->total_bytes = 0;
2845         ring_group->total_packets = 0;
2846         ring_group->coal.flow_level = new_flow_level;
2847         if (new_int_gl != ring_group->coal.int_gl) {
2848                 ring_group->coal.int_gl = new_int_gl;
2849                 return true;
2850         }
2851         return false;
2852 }
2853
2854 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2855 {
2856         struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2857         struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2858         bool rx_update, tx_update;
2859
2860         /* update param every 1000ms */
2861         if (time_before(jiffies,
2862                         tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2863                 return;
2864
2865         if (rx_group->coal.gl_adapt_enable) {
2866                 rx_update = hns3_get_new_int_gl(rx_group);
2867                 if (rx_update)
2868                         hns3_set_vector_coalesce_rx_gl(tqp_vector,
2869                                                        rx_group->coal.int_gl);
2870         }
2871
2872         if (tx_group->coal.gl_adapt_enable) {
2873                 tx_update = hns3_get_new_int_gl(tx_group);
2874                 if (tx_update)
2875                         hns3_set_vector_coalesce_tx_gl(tqp_vector,
2876                                                        tx_group->coal.int_gl);
2877         }
2878
2879         tqp_vector->last_jiffies = jiffies;
2880 }
2881
2882 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2883 {
2884         struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2885         struct hns3_enet_ring *ring;
2886         int rx_pkt_total = 0;
2887
2888         struct hns3_enet_tqp_vector *tqp_vector =
2889                 container_of(napi, struct hns3_enet_tqp_vector, napi);
2890         bool clean_complete = true;
2891         int rx_budget;
2892
2893         if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2894                 napi_complete(napi);
2895                 return 0;
2896         }
2897
2898         /* Since the actual Tx work is minimal, we can give the Tx a larger
2899          * budget and be more aggressive about cleaning up the Tx descriptors.
2900          */
2901         hns3_for_each_ring(ring, tqp_vector->tx_group)
2902                 hns3_clean_tx_ring(ring);
2903
2904         /* make sure rx ring budget not smaller than 1 */
2905         rx_budget = max(budget / tqp_vector->num_tqps, 1);
2906
2907         hns3_for_each_ring(ring, tqp_vector->rx_group) {
2908                 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2909                                                     hns3_rx_skb);
2910
2911                 if (rx_cleaned >= rx_budget)
2912                         clean_complete = false;
2913
2914                 rx_pkt_total += rx_cleaned;
2915         }
2916
2917         tqp_vector->rx_group.total_packets += rx_pkt_total;
2918
2919         if (!clean_complete)
2920                 return budget;
2921
2922         if (napi_complete(napi) &&
2923             likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2924                 hns3_update_new_int_gl(tqp_vector);
2925                 hns3_mask_vector_irq(tqp_vector, 1);
2926         }
2927
2928         return rx_pkt_total;
2929 }
2930
2931 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2932                                       struct hnae3_ring_chain_node *head)
2933 {
2934         struct pci_dev *pdev = tqp_vector->handle->pdev;
2935         struct hnae3_ring_chain_node *cur_chain = head;
2936         struct hnae3_ring_chain_node *chain;
2937         struct hns3_enet_ring *tx_ring;
2938         struct hns3_enet_ring *rx_ring;
2939
2940         tx_ring = tqp_vector->tx_group.ring;
2941         if (tx_ring) {
2942                 cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2943                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2944                               HNAE3_RING_TYPE_TX);
2945                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2946                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2947
2948                 cur_chain->next = NULL;
2949
2950                 while (tx_ring->next) {
2951                         tx_ring = tx_ring->next;
2952
2953                         chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2954                                              GFP_KERNEL);
2955                         if (!chain)
2956                                 goto err_free_chain;
2957
2958                         cur_chain->next = chain;
2959                         chain->tqp_index = tx_ring->tqp->tqp_index;
2960                         hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2961                                       HNAE3_RING_TYPE_TX);
2962                         hnae3_set_field(chain->int_gl_idx,
2963                                         HNAE3_RING_GL_IDX_M,
2964                                         HNAE3_RING_GL_IDX_S,
2965                                         HNAE3_RING_GL_TX);
2966
2967                         cur_chain = chain;
2968                 }
2969         }
2970
2971         rx_ring = tqp_vector->rx_group.ring;
2972         if (!tx_ring && rx_ring) {
2973                 cur_chain->next = NULL;
2974                 cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2975                 hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2976                               HNAE3_RING_TYPE_RX);
2977                 hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2978                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2979
2980                 rx_ring = rx_ring->next;
2981         }
2982
2983         while (rx_ring) {
2984                 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2985                 if (!chain)
2986                         goto err_free_chain;
2987
2988                 cur_chain->next = chain;
2989                 chain->tqp_index = rx_ring->tqp->tqp_index;
2990                 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2991                               HNAE3_RING_TYPE_RX);
2992                 hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2993                                 HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2994
2995                 cur_chain = chain;
2996
2997                 rx_ring = rx_ring->next;
2998         }
2999
3000         return 0;
3001
3002 err_free_chain:
3003         cur_chain = head->next;
3004         while (cur_chain) {
3005                 chain = cur_chain->next;
3006                 devm_kfree(&pdev->dev, cur_chain);
3007                 cur_chain = chain;
3008         }
3009         head->next = NULL;
3010
3011         return -ENOMEM;
3012 }
3013
3014 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3015                                         struct hnae3_ring_chain_node *head)
3016 {
3017         struct pci_dev *pdev = tqp_vector->handle->pdev;
3018         struct hnae3_ring_chain_node *chain_tmp, *chain;
3019
3020         chain = head->next;
3021
3022         while (chain) {
3023                 chain_tmp = chain->next;
3024                 devm_kfree(&pdev->dev, chain);
3025                 chain = chain_tmp;
3026         }
3027 }
3028
3029 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3030                                    struct hns3_enet_ring *ring)
3031 {
3032         ring->next = group->ring;
3033         group->ring = ring;
3034
3035         group->count++;
3036 }
3037
3038 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3039 {
3040         struct pci_dev *pdev = priv->ae_handle->pdev;
3041         struct hns3_enet_tqp_vector *tqp_vector;
3042         int num_vectors = priv->vector_num;
3043         int numa_node;
3044         int vector_i;
3045
3046         numa_node = dev_to_node(&pdev->dev);
3047
3048         for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3049                 tqp_vector = &priv->tqp_vector[vector_i];
3050                 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3051                                 &tqp_vector->affinity_mask);
3052         }
3053 }
3054
3055 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3056 {
3057         struct hnae3_ring_chain_node vector_ring_chain;
3058         struct hnae3_handle *h = priv->ae_handle;
3059         struct hns3_enet_tqp_vector *tqp_vector;
3060         int ret = 0;
3061         int i;
3062
3063         hns3_nic_set_cpumask(priv);
3064
3065         for (i = 0; i < priv->vector_num; i++) {
3066                 tqp_vector = &priv->tqp_vector[i];
3067                 hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3068                 tqp_vector->num_tqps = 0;
3069         }
3070
3071         for (i = 0; i < h->kinfo.num_tqps; i++) {
3072                 u16 vector_i = i % priv->vector_num;
3073                 u16 tqp_num = h->kinfo.num_tqps;
3074
3075                 tqp_vector = &priv->tqp_vector[vector_i];
3076
3077                 hns3_add_ring_to_group(&tqp_vector->tx_group,
3078                                        priv->ring_data[i].ring);
3079
3080                 hns3_add_ring_to_group(&tqp_vector->rx_group,
3081                                        priv->ring_data[i + tqp_num].ring);
3082
3083                 priv->ring_data[i].ring->tqp_vector = tqp_vector;
3084                 priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3085                 tqp_vector->num_tqps++;
3086         }
3087
3088         for (i = 0; i < priv->vector_num; i++) {
3089                 tqp_vector = &priv->tqp_vector[i];
3090
3091                 tqp_vector->rx_group.total_bytes = 0;
3092                 tqp_vector->rx_group.total_packets = 0;
3093                 tqp_vector->tx_group.total_bytes = 0;
3094                 tqp_vector->tx_group.total_packets = 0;
3095                 tqp_vector->handle = h;
3096
3097                 ret = hns3_get_vector_ring_chain(tqp_vector,
3098                                                  &vector_ring_chain);
3099                 if (ret)
3100                         goto map_ring_fail;
3101
3102                 ret = h->ae_algo->ops->map_ring_to_vector(h,
3103                         tqp_vector->vector_irq, &vector_ring_chain);
3104
3105                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3106
3107                 if (ret)
3108                         goto map_ring_fail;
3109
3110                 netif_napi_add(priv->netdev, &tqp_vector->napi,
3111                                hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3112         }
3113
3114         return 0;
3115
3116 map_ring_fail:
3117         while (i--)
3118                 netif_napi_del(&priv->tqp_vector[i].napi);
3119
3120         return ret;
3121 }
3122
3123 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3124 {
3125 #define HNS3_VECTOR_PF_MAX_NUM          64
3126
3127         struct hnae3_handle *h = priv->ae_handle;
3128         struct hns3_enet_tqp_vector *tqp_vector;
3129         struct hnae3_vector_info *vector;
3130         struct pci_dev *pdev = h->pdev;
3131         u16 tqp_num = h->kinfo.num_tqps;
3132         u16 vector_num;
3133         int ret = 0;
3134         u16 i;
3135
3136         /* RSS size, cpu online and vector_num should be the same */
3137         /* Should consider 2p/4p later */
3138         vector_num = min_t(u16, num_online_cpus(), tqp_num);
3139         vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3140
3141         vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3142                               GFP_KERNEL);
3143         if (!vector)
3144                 return -ENOMEM;
3145
3146         vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3147
3148         priv->vector_num = vector_num;
3149         priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3150                 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3151                              GFP_KERNEL);
3152         if (!priv->tqp_vector) {
3153                 ret = -ENOMEM;
3154                 goto out;
3155         }
3156
3157         for (i = 0; i < priv->vector_num; i++) {
3158                 tqp_vector = &priv->tqp_vector[i];
3159                 tqp_vector->idx = i;
3160                 tqp_vector->mask_addr = vector[i].io_addr;
3161                 tqp_vector->vector_irq = vector[i].vector;
3162                 hns3_vector_gl_rl_init(tqp_vector, priv);
3163         }
3164
3165 out:
3166         devm_kfree(&pdev->dev, vector);
3167         return ret;
3168 }
3169
3170 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3171 {
3172         group->ring = NULL;
3173         group->count = 0;
3174 }
3175
3176 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3177 {
3178         struct hnae3_ring_chain_node vector_ring_chain;
3179         struct hnae3_handle *h = priv->ae_handle;
3180         struct hns3_enet_tqp_vector *tqp_vector;
3181         int i;
3182
3183         for (i = 0; i < priv->vector_num; i++) {
3184                 tqp_vector = &priv->tqp_vector[i];
3185
3186                 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3187                         continue;
3188
3189                 hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3190
3191                 h->ae_algo->ops->unmap_ring_from_vector(h,
3192                         tqp_vector->vector_irq, &vector_ring_chain);
3193
3194                 hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3195
3196                 if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3197                         irq_set_affinity_notifier(tqp_vector->vector_irq,
3198                                                   NULL);
3199                         irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3200                         free_irq(tqp_vector->vector_irq, tqp_vector);
3201                         tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3202                 }
3203
3204                 hns3_clear_ring_group(&tqp_vector->rx_group);
3205                 hns3_clear_ring_group(&tqp_vector->tx_group);
3206                 netif_napi_del(&priv->tqp_vector[i].napi);
3207         }
3208 }
3209
3210 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3211 {
3212         struct hnae3_handle *h = priv->ae_handle;
3213         struct pci_dev *pdev = h->pdev;
3214         int i, ret;
3215
3216         for (i = 0; i < priv->vector_num; i++) {
3217                 struct hns3_enet_tqp_vector *tqp_vector;
3218
3219                 tqp_vector = &priv->tqp_vector[i];
3220                 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3221                 if (ret)
3222                         return ret;
3223         }
3224
3225         devm_kfree(&pdev->dev, priv->tqp_vector);
3226         return 0;
3227 }
3228
3229 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3230                              int ring_type)
3231 {
3232         struct hns3_nic_ring_data *ring_data = priv->ring_data;
3233         int queue_num = priv->ae_handle->kinfo.num_tqps;
3234         struct pci_dev *pdev = priv->ae_handle->pdev;
3235         struct hns3_enet_ring *ring;
3236         int desc_num;
3237
3238         ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3239         if (!ring)
3240                 return -ENOMEM;
3241
3242         if (ring_type == HNAE3_RING_TYPE_TX) {
3243                 desc_num = priv->ae_handle->kinfo.num_tx_desc;
3244                 ring_data[q->tqp_index].ring = ring;
3245                 ring_data[q->tqp_index].queue_index = q->tqp_index;
3246                 ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3247         } else {
3248                 desc_num = priv->ae_handle->kinfo.num_rx_desc;
3249                 ring_data[q->tqp_index + queue_num].ring = ring;
3250                 ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3251                 ring->io_base = q->io_base;
3252         }
3253
3254         hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3255
3256         ring->tqp = q;
3257         ring->desc = NULL;
3258         ring->desc_cb = NULL;
3259         ring->dev = priv->dev;
3260         ring->desc_dma_addr = 0;
3261         ring->buf_size = q->buf_size;
3262         ring->desc_num = desc_num;
3263         ring->next_to_use = 0;
3264         ring->next_to_clean = 0;
3265
3266         return 0;
3267 }
3268
3269 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3270                               struct hns3_nic_priv *priv)
3271 {
3272         int ret;
3273
3274         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3275         if (ret)
3276                 return ret;
3277
3278         ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3279         if (ret) {
3280                 devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3281                 return ret;
3282         }
3283
3284         return 0;
3285 }
3286
3287 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3288 {
3289         struct hnae3_handle *h = priv->ae_handle;
3290         struct pci_dev *pdev = h->pdev;
3291         int i, ret;
3292
3293         priv->ring_data =  devm_kzalloc(&pdev->dev,
3294                                         array3_size(h->kinfo.num_tqps,
3295                                                     sizeof(*priv->ring_data),
3296                                                     2),
3297                                         GFP_KERNEL);
3298         if (!priv->ring_data)
3299                 return -ENOMEM;
3300
3301         for (i = 0; i < h->kinfo.num_tqps; i++) {
3302                 ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3303                 if (ret)
3304                         goto err;
3305         }
3306
3307         return 0;
3308 err:
3309         while (i--) {
3310                 devm_kfree(priv->dev, priv->ring_data[i].ring);
3311                 devm_kfree(priv->dev,
3312                            priv->ring_data[i + h->kinfo.num_tqps].ring);
3313         }
3314
3315         devm_kfree(&pdev->dev, priv->ring_data);
3316         return ret;
3317 }
3318
3319 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3320 {
3321         struct hnae3_handle *h = priv->ae_handle;
3322         int i;
3323
3324         for (i = 0; i < h->kinfo.num_tqps; i++) {
3325                 devm_kfree(priv->dev, priv->ring_data[i].ring);
3326                 devm_kfree(priv->dev,
3327                            priv->ring_data[i + h->kinfo.num_tqps].ring);
3328         }
3329         devm_kfree(priv->dev, priv->ring_data);
3330 }
3331
3332 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3333 {
3334         int ret;
3335
3336         if (ring->desc_num <= 0 || ring->buf_size <= 0)
3337                 return -EINVAL;
3338
3339         ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3340                                 GFP_KERNEL);
3341         if (!ring->desc_cb) {
3342                 ret = -ENOMEM;
3343                 goto out;
3344         }
3345
3346         ret = hns3_alloc_desc(ring);
3347         if (ret)
3348                 goto out_with_desc_cb;
3349
3350         if (!HNAE3_IS_TX_RING(ring)) {
3351                 ret = hns3_alloc_ring_buffers(ring);
3352                 if (ret)
3353                         goto out_with_desc;
3354         }
3355
3356         return 0;
3357
3358 out_with_desc:
3359         hns3_free_desc(ring);
3360 out_with_desc_cb:
3361         kfree(ring->desc_cb);
3362         ring->desc_cb = NULL;
3363 out:
3364         return ret;
3365 }
3366
3367 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3368 {
3369         hns3_free_desc(ring);
3370         kfree(ring->desc_cb);
3371         ring->desc_cb = NULL;
3372         ring->next_to_clean = 0;
3373         ring->next_to_use = 0;
3374         ring->pending_buf = 0;
3375         if (ring->skb) {
3376                 dev_kfree_skb_any(ring->skb);
3377                 ring->skb = NULL;
3378         }
3379 }
3380
3381 static int hns3_buf_size2type(u32 buf_size)
3382 {
3383         int bd_size_type;
3384
3385         switch (buf_size) {
3386         case 512:
3387                 bd_size_type = HNS3_BD_SIZE_512_TYPE;
3388                 break;
3389         case 1024:
3390                 bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3391                 break;
3392         case 2048:
3393                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3394                 break;
3395         case 4096:
3396                 bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3397                 break;
3398         default:
3399                 bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3400         }
3401
3402         return bd_size_type;
3403 }
3404
3405 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3406 {
3407         dma_addr_t dma = ring->desc_dma_addr;
3408         struct hnae3_queue *q = ring->tqp;
3409
3410         if (!HNAE3_IS_TX_RING(ring)) {
3411                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3412                                (u32)dma);
3413                 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3414                                (u32)((dma >> 31) >> 1));
3415
3416                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3417                                hns3_buf_size2type(ring->buf_size));
3418                 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3419                                ring->desc_num / 8 - 1);
3420
3421         } else {
3422                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3423                                (u32)dma);
3424                 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3425                                (u32)((dma >> 31) >> 1));
3426
3427                 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3428                                ring->desc_num / 8 - 1);
3429         }
3430 }
3431
3432 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3433 {
3434         struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3435         int i;
3436
3437         for (i = 0; i < HNAE3_MAX_TC; i++) {
3438                 struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3439                 int j;
3440
3441                 if (!tc_info->enable)
3442                         continue;
3443
3444                 for (j = 0; j < tc_info->tqp_count; j++) {
3445                         struct hnae3_queue *q;
3446
3447                         q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3448                         hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3449                                        tc_info->tc);
3450                 }
3451         }
3452 }
3453
3454 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3455 {
3456         struct hnae3_handle *h = priv->ae_handle;
3457         int ring_num = h->kinfo.num_tqps * 2;
3458         int i, j;
3459         int ret;
3460
3461         for (i = 0; i < ring_num; i++) {
3462                 ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3463                 if (ret) {
3464                         dev_err(priv->dev,
3465                                 "Alloc ring memory fail! ret=%d\n", ret);
3466                         goto out_when_alloc_ring_memory;
3467                 }
3468
3469                 u64_stats_init(&priv->ring_data[i].ring->syncp);
3470         }
3471
3472         return 0;
3473
3474 out_when_alloc_ring_memory:
3475         for (j = i - 1; j >= 0; j--)
3476                 hns3_fini_ring(priv->ring_data[j].ring);
3477
3478         return -ENOMEM;
3479 }
3480
3481 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3482 {
3483         struct hnae3_handle *h = priv->ae_handle;
3484         int i;
3485
3486         for (i = 0; i < h->kinfo.num_tqps; i++) {
3487                 hns3_fini_ring(priv->ring_data[i].ring);
3488                 hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3489         }
3490         return 0;
3491 }
3492
3493 /* Set mac addr if it is configured. or leave it to the AE driver */
3494 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3495 {
3496         struct hns3_nic_priv *priv = netdev_priv(netdev);
3497         struct hnae3_handle *h = priv->ae_handle;
3498         u8 mac_addr_temp[ETH_ALEN];
3499         int ret = 0;
3500
3501         if (h->ae_algo->ops->get_mac_addr && init) {
3502                 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3503                 ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3504         }
3505
3506         /* Check if the MAC address is valid, if not get a random one */
3507         if (!is_valid_ether_addr(netdev->dev_addr)) {
3508                 eth_hw_addr_random(netdev);
3509                 dev_warn(priv->dev, "using random MAC address %pM\n",
3510                          netdev->dev_addr);
3511         }
3512
3513         if (h->ae_algo->ops->set_mac_addr)
3514                 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3515
3516         return ret;
3517 }
3518
3519 static int hns3_init_phy(struct net_device *netdev)
3520 {
3521         struct hnae3_handle *h = hns3_get_handle(netdev);
3522         int ret = 0;
3523
3524         if (h->ae_algo->ops->mac_connect_phy)
3525                 ret = h->ae_algo->ops->mac_connect_phy(h);
3526
3527         return ret;
3528 }
3529
3530 static void hns3_uninit_phy(struct net_device *netdev)
3531 {
3532         struct hnae3_handle *h = hns3_get_handle(netdev);
3533
3534         if (h->ae_algo->ops->mac_disconnect_phy)
3535                 h->ae_algo->ops->mac_disconnect_phy(h);
3536 }
3537
3538 static int hns3_restore_fd_rules(struct net_device *netdev)
3539 {
3540         struct hnae3_handle *h = hns3_get_handle(netdev);
3541         int ret = 0;
3542
3543         if (h->ae_algo->ops->restore_fd_rules)
3544                 ret = h->ae_algo->ops->restore_fd_rules(h);
3545
3546         return ret;
3547 }
3548
3549 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3550 {
3551         struct hnae3_handle *h = hns3_get_handle(netdev);
3552
3553         if (h->ae_algo->ops->del_all_fd_entries)
3554                 h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3555 }
3556
3557 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3558 {
3559         struct hns3_nic_priv *priv = netdev_priv(netdev);
3560
3561         if ((netdev->features & NETIF_F_TSO) ||
3562             (netdev->features & NETIF_F_TSO6))
3563                 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3564         else
3565                 priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3566 }
3567
3568 static int hns3_client_start(struct hnae3_handle *handle)
3569 {
3570         if (!handle->ae_algo->ops->client_start)
3571                 return 0;
3572
3573         return handle->ae_algo->ops->client_start(handle);
3574 }
3575
3576 static void hns3_client_stop(struct hnae3_handle *handle)
3577 {
3578         if (!handle->ae_algo->ops->client_stop)
3579                 return;
3580
3581         handle->ae_algo->ops->client_stop(handle);
3582 }
3583
3584 static int hns3_client_init(struct hnae3_handle *handle)
3585 {
3586         struct pci_dev *pdev = handle->pdev;
3587         u16 alloc_tqps, max_rss_size;
3588         struct hns3_nic_priv *priv;
3589         struct net_device *netdev;
3590         int ret;
3591
3592         handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3593                                                     &max_rss_size);
3594         netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3595         if (!netdev)
3596                 return -ENOMEM;
3597
3598         priv = netdev_priv(netdev);
3599         priv->dev = &pdev->dev;
3600         priv->netdev = netdev;
3601         priv->ae_handle = handle;
3602         priv->tx_timeout_count = 0;
3603         set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3604
3605         handle->kinfo.netdev = netdev;
3606         handle->priv = (void *)priv;
3607
3608         hns3_init_mac_addr(netdev, true);
3609
3610         hns3_set_default_feature(netdev);
3611
3612         netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3613         netdev->priv_flags |= IFF_UNICAST_FLT;
3614         netdev->netdev_ops = &hns3_nic_netdev_ops;
3615         SET_NETDEV_DEV(netdev, &pdev->dev);
3616         hns3_ethtool_set_ops(netdev);
3617         hns3_nic_set_priv_ops(netdev);
3618
3619         /* Carrier off reporting is important to ethtool even BEFORE open */
3620         netif_carrier_off(netdev);
3621
3622         ret = hns3_get_ring_config(priv);
3623         if (ret) {
3624                 ret = -ENOMEM;
3625                 goto out_get_ring_cfg;
3626         }
3627
3628         ret = hns3_nic_alloc_vector_data(priv);
3629         if (ret) {
3630                 ret = -ENOMEM;
3631                 goto out_alloc_vector_data;
3632         }
3633
3634         ret = hns3_nic_init_vector_data(priv);
3635         if (ret) {
3636                 ret = -ENOMEM;
3637                 goto out_init_vector_data;
3638         }
3639
3640         ret = hns3_init_all_ring(priv);
3641         if (ret) {
3642                 ret = -ENOMEM;
3643                 goto out_init_ring_data;
3644         }
3645
3646         ret = hns3_init_phy(netdev);
3647         if (ret)
3648                 goto out_init_phy;
3649
3650         ret = register_netdev(netdev);
3651         if (ret) {
3652                 dev_err(priv->dev, "probe register netdev fail!\n");
3653                 goto out_reg_netdev_fail;
3654         }
3655
3656         ret = hns3_client_start(handle);
3657         if (ret) {
3658                 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3659                         goto out_client_start;
3660         }
3661
3662         hns3_dcbnl_setup(handle);
3663
3664         hns3_dbg_init(handle);
3665
3666         /* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3667         netdev->max_mtu = HNS3_MAX_MTU;
3668
3669         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3670
3671         return ret;
3672
3673 out_client_start:
3674         unregister_netdev(netdev);
3675 out_reg_netdev_fail:
3676         hns3_uninit_phy(netdev);
3677 out_init_phy:
3678         hns3_uninit_all_ring(priv);
3679 out_init_ring_data:
3680         hns3_nic_uninit_vector_data(priv);
3681 out_init_vector_data:
3682         hns3_nic_dealloc_vector_data(priv);
3683 out_alloc_vector_data:
3684         priv->ring_data = NULL;
3685 out_get_ring_cfg:
3686         priv->ae_handle = NULL;
3687         free_netdev(netdev);
3688         return ret;
3689 }
3690
3691 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3692 {
3693         struct net_device *netdev = handle->kinfo.netdev;
3694         struct hns3_nic_priv *priv = netdev_priv(netdev);
3695         int ret;
3696
3697         hns3_client_stop(handle);
3698
3699         hns3_remove_hw_addr(netdev);
3700
3701         if (netdev->reg_state != NETREG_UNINITIALIZED)
3702                 unregister_netdev(netdev);
3703
3704         if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3705                 netdev_warn(netdev, "already uninitialized\n");
3706                 goto out_netdev_free;
3707         }
3708
3709         hns3_del_all_fd_rules(netdev, true);
3710
3711         hns3_force_clear_all_rx_ring(handle);
3712
3713         hns3_uninit_phy(netdev);
3714
3715         hns3_nic_uninit_vector_data(priv);
3716
3717         ret = hns3_nic_dealloc_vector_data(priv);
3718         if (ret)
3719                 netdev_err(netdev, "dealloc vector error\n");
3720
3721         ret = hns3_uninit_all_ring(priv);
3722         if (ret)
3723                 netdev_err(netdev, "uninit ring error\n");
3724
3725         hns3_put_ring_config(priv);
3726
3727         hns3_dbg_uninit(handle);
3728
3729         priv->ring_data = NULL;
3730
3731 out_netdev_free:
3732         free_netdev(netdev);
3733 }
3734
3735 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3736 {
3737         struct net_device *netdev = handle->kinfo.netdev;
3738
3739         if (!netdev)
3740                 return;
3741
3742         if (linkup) {
3743                 netif_carrier_on(netdev);
3744                 netif_tx_wake_all_queues(netdev);
3745                 netdev_info(netdev, "link up\n");
3746         } else {
3747                 netif_carrier_off(netdev);
3748                 netif_tx_stop_all_queues(netdev);
3749                 netdev_info(netdev, "link down\n");
3750         }
3751 }
3752
3753 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3754 {
3755         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3756         struct net_device *ndev = kinfo->netdev;
3757
3758         if (tc > HNAE3_MAX_TC)
3759                 return -EINVAL;
3760
3761         if (!ndev)
3762                 return -ENODEV;
3763
3764         return hns3_nic_set_real_num_queue(ndev);
3765 }
3766
3767 static int hns3_recover_hw_addr(struct net_device *ndev)
3768 {
3769         struct netdev_hw_addr_list *list;
3770         struct netdev_hw_addr *ha, *tmp;
3771         int ret = 0;
3772
3773         /* go through and sync uc_addr entries to the device */
3774         list = &ndev->uc;
3775         list_for_each_entry_safe(ha, tmp, &list->list, list) {
3776                 ret = hns3_nic_uc_sync(ndev, ha->addr);
3777                 if (ret)
3778                         return ret;
3779         }
3780
3781         /* go through and sync mc_addr entries to the device */
3782         list = &ndev->mc;
3783         list_for_each_entry_safe(ha, tmp, &list->list, list) {
3784                 ret = hns3_nic_mc_sync(ndev, ha->addr);
3785                 if (ret)
3786                         return ret;
3787         }
3788
3789         return ret;
3790 }
3791
3792 static void hns3_remove_hw_addr(struct net_device *netdev)
3793 {
3794         struct netdev_hw_addr_list *list;
3795         struct netdev_hw_addr *ha, *tmp;
3796
3797         hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3798
3799         /* go through and unsync uc_addr entries to the device */
3800         list = &netdev->uc;
3801         list_for_each_entry_safe(ha, tmp, &list->list, list)
3802                 hns3_nic_uc_unsync(netdev, ha->addr);
3803
3804         /* go through and unsync mc_addr entries to the device */
3805         list = &netdev->mc;
3806         list_for_each_entry_safe(ha, tmp, &list->list, list)
3807                 if (ha->refcount > 1)
3808                         hns3_nic_mc_unsync(netdev, ha->addr);
3809 }
3810
3811 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3812 {
3813         while (ring->next_to_clean != ring->next_to_use) {
3814                 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3815                 hns3_free_buffer_detach(ring, ring->next_to_clean);
3816                 ring_ptr_move_fw(ring, next_to_clean);
3817         }
3818 }
3819
3820 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3821 {
3822         struct hns3_desc_cb res_cbs;
3823         int ret;
3824
3825         while (ring->next_to_use != ring->next_to_clean) {
3826                 /* When a buffer is not reused, it's memory has been
3827                  * freed in hns3_handle_rx_bd or will be freed by
3828                  * stack, so we need to replace the buffer here.
3829                  */
3830                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3831                         ret = hns3_reserve_buffer_map(ring, &res_cbs);
3832                         if (ret) {
3833                                 u64_stats_update_begin(&ring->syncp);
3834                                 ring->stats.sw_err_cnt++;
3835                                 u64_stats_update_end(&ring->syncp);
3836                                 /* if alloc new buffer fail, exit directly
3837                                  * and reclear in up flow.
3838                                  */
3839                                 netdev_warn(ring->tqp->handle->kinfo.netdev,
3840                                             "reserve buffer map failed, ret = %d\n",
3841                                             ret);
3842                                 return ret;
3843                         }
3844                         hns3_replace_buffer(ring, ring->next_to_use,
3845                                             &res_cbs);
3846                 }
3847                 ring_ptr_move_fw(ring, next_to_use);
3848         }
3849
3850         return 0;
3851 }
3852
3853 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3854 {
3855         while (ring->next_to_use != ring->next_to_clean) {
3856                 /* When a buffer is not reused, it's memory has been
3857                  * freed in hns3_handle_rx_bd or will be freed by
3858                  * stack, so only need to unmap the buffer here.
3859                  */
3860                 if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3861                         hns3_unmap_buffer(ring,
3862                                           &ring->desc_cb[ring->next_to_use]);
3863                         ring->desc_cb[ring->next_to_use].dma = 0;
3864                 }
3865
3866                 ring_ptr_move_fw(ring, next_to_use);
3867         }
3868 }
3869
3870 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3871 {
3872         struct net_device *ndev = h->kinfo.netdev;
3873         struct hns3_nic_priv *priv = netdev_priv(ndev);
3874         struct hns3_enet_ring *ring;
3875         u32 i;
3876
3877         for (i = 0; i < h->kinfo.num_tqps; i++) {
3878                 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3879                 hns3_force_clear_rx_ring(ring);
3880         }
3881 }
3882
3883 static void hns3_clear_all_ring(struct hnae3_handle *h)
3884 {
3885         struct net_device *ndev = h->kinfo.netdev;
3886         struct hns3_nic_priv *priv = netdev_priv(ndev);
3887         u32 i;
3888
3889         for (i = 0; i < h->kinfo.num_tqps; i++) {
3890                 struct netdev_queue *dev_queue;
3891                 struct hns3_enet_ring *ring;
3892
3893                 ring = priv->ring_data[i].ring;
3894                 hns3_clear_tx_ring(ring);
3895                 dev_queue = netdev_get_tx_queue(ndev,
3896                                                 priv->ring_data[i].queue_index);
3897                 netdev_tx_reset_queue(dev_queue);
3898
3899                 ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3900                 /* Continue to clear other rings even if clearing some
3901                  * rings failed.
3902                  */
3903                 hns3_clear_rx_ring(ring);
3904         }
3905 }
3906
3907 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3908 {
3909         struct net_device *ndev = h->kinfo.netdev;
3910         struct hns3_nic_priv *priv = netdev_priv(ndev);
3911         struct hns3_enet_ring *rx_ring;
3912         int i, j;
3913         int ret;
3914
3915         for (i = 0; i < h->kinfo.num_tqps; i++) {
3916                 ret = h->ae_algo->ops->reset_queue(h, i);
3917                 if (ret)
3918                         return ret;
3919
3920                 hns3_init_ring_hw(priv->ring_data[i].ring);
3921
3922                 /* We need to clear tx ring here because self test will
3923                  * use the ring and will not run down before up
3924                  */
3925                 hns3_clear_tx_ring(priv->ring_data[i].ring);
3926                 priv->ring_data[i].ring->next_to_clean = 0;
3927                 priv->ring_data[i].ring->next_to_use = 0;
3928
3929                 rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3930                 hns3_init_ring_hw(rx_ring);
3931                 ret = hns3_clear_rx_ring(rx_ring);
3932                 if (ret)
3933                         return ret;
3934
3935                 /* We can not know the hardware head and tail when this
3936                  * function is called in reset flow, so we reuse all desc.
3937                  */
3938                 for (j = 0; j < rx_ring->desc_num; j++)
3939                         hns3_reuse_buffer(rx_ring, j);
3940
3941                 rx_ring->next_to_clean = 0;
3942                 rx_ring->next_to_use = 0;
3943         }
3944
3945         hns3_init_tx_ring_tc(priv);
3946
3947         return 0;
3948 }
3949
3950 static void hns3_store_coal(struct hns3_nic_priv *priv)
3951 {
3952         /* ethtool only support setting and querying one coal
3953          * configuation for now, so save the vector 0' coal
3954          * configuation here in order to restore it.
3955          */
3956         memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3957                sizeof(struct hns3_enet_coalesce));
3958         memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3959                sizeof(struct hns3_enet_coalesce));
3960 }
3961
3962 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3963 {
3964         u16 vector_num = priv->vector_num;
3965         int i;
3966
3967         for (i = 0; i < vector_num; i++) {
3968                 memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3969                        sizeof(struct hns3_enet_coalesce));
3970                 memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
3971                        sizeof(struct hns3_enet_coalesce));
3972         }
3973 }
3974
3975 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3976 {
3977         struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
3978         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3979         struct net_device *ndev = kinfo->netdev;
3980         struct hns3_nic_priv *priv = netdev_priv(ndev);
3981
3982         if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
3983                 return 0;
3984
3985         /* it is cumbersome for hardware to pick-and-choose entries for deletion
3986          * from table space. Hence, for function reset software intervention is
3987          * required to delete the entries
3988          */
3989         if (hns3_dev_ongoing_func_reset(ae_dev)) {
3990                 hns3_remove_hw_addr(ndev);
3991                 hns3_del_all_fd_rules(ndev, false);
3992         }
3993
3994         if (!netif_running(ndev))
3995                 return 0;
3996
3997         return hns3_nic_net_stop(ndev);
3998 }
3999
4000 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4001 {
4002         struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4003         struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4004         int ret = 0;
4005
4006         clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4007
4008         if (netif_running(kinfo->netdev)) {
4009                 ret = hns3_nic_net_open(kinfo->netdev);
4010                 if (ret) {
4011                         set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4012                         netdev_err(kinfo->netdev,
4013                                    "hns net up fail, ret=%d!\n", ret);
4014                         return ret;
4015                 }
4016         }
4017
4018         return ret;
4019 }
4020
4021 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4022 {
4023         struct net_device *netdev = handle->kinfo.netdev;
4024         struct hns3_nic_priv *priv = netdev_priv(netdev);
4025         int ret;
4026
4027         /* Carrier off reporting is important to ethtool even BEFORE open */
4028         netif_carrier_off(netdev);
4029
4030         ret = hns3_get_ring_config(priv);
4031         if (ret)
4032                 return ret;
4033
4034         ret = hns3_nic_alloc_vector_data(priv);
4035         if (ret)
4036                 goto err_put_ring;
4037
4038         hns3_restore_coal(priv);
4039
4040         ret = hns3_nic_init_vector_data(priv);
4041         if (ret)
4042                 goto err_dealloc_vector;
4043
4044         ret = hns3_init_all_ring(priv);
4045         if (ret)
4046                 goto err_uninit_vector;
4047
4048         set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4049
4050         return ret;
4051
4052 err_uninit_vector:
4053         hns3_nic_uninit_vector_data(priv);
4054         priv->ring_data = NULL;
4055 err_dealloc_vector:
4056         hns3_nic_dealloc_vector_data(priv);
4057 err_put_ring:
4058         hns3_put_ring_config(priv);
4059         priv->ring_data = NULL;
4060
4061         return ret;
4062 }
4063
4064 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4065 {
4066         struct net_device *netdev = handle->kinfo.netdev;
4067         bool vlan_filter_enable;
4068         int ret;
4069
4070         ret = hns3_init_mac_addr(netdev, false);
4071         if (ret)
4072                 return ret;
4073
4074         ret = hns3_recover_hw_addr(netdev);
4075         if (ret)
4076                 return ret;
4077
4078         ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4079         if (ret)
4080                 return ret;
4081
4082         vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4083         hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4084
4085         /* Hardware table is only clear when pf resets */
4086         if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4087                 ret = hns3_restore_vlan(netdev);
4088                 if (ret)
4089                         return ret;
4090         }
4091
4092         return hns3_restore_fd_rules(netdev);
4093 }
4094
4095 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4096 {
4097         struct net_device *netdev = handle->kinfo.netdev;
4098         struct hns3_nic_priv *priv = netdev_priv(netdev);
4099         int ret;
4100
4101         if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4102                 netdev_warn(netdev, "already uninitialized\n");
4103                 return 0;
4104         }
4105
4106         hns3_force_clear_all_rx_ring(handle);
4107
4108         hns3_nic_uninit_vector_data(priv);
4109
4110         hns3_store_coal(priv);
4111
4112         ret = hns3_nic_dealloc_vector_data(priv);
4113         if (ret)
4114                 netdev_err(netdev, "dealloc vector error\n");
4115
4116         ret = hns3_uninit_all_ring(priv);
4117         if (ret)
4118                 netdev_err(netdev, "uninit ring error\n");
4119
4120         hns3_put_ring_config(priv);
4121         priv->ring_data = NULL;
4122
4123         clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
4124
4125         return ret;
4126 }
4127
4128 static int hns3_reset_notify(struct hnae3_handle *handle,
4129                              enum hnae3_reset_notify_type type)
4130 {
4131         int ret = 0;
4132
4133         switch (type) {
4134         case HNAE3_UP_CLIENT:
4135                 ret = hns3_reset_notify_up_enet(handle);
4136                 break;
4137         case HNAE3_DOWN_CLIENT:
4138                 ret = hns3_reset_notify_down_enet(handle);
4139                 break;
4140         case HNAE3_INIT_CLIENT:
4141                 ret = hns3_reset_notify_init_enet(handle);
4142                 break;
4143         case HNAE3_UNINIT_CLIENT:
4144                 ret = hns3_reset_notify_uninit_enet(handle);
4145                 break;
4146         case HNAE3_RESTORE_CLIENT:
4147                 ret = hns3_reset_notify_restore_enet(handle);
4148                 break;
4149         default:
4150                 break;
4151         }
4152
4153         return ret;
4154 }
4155
4156 int hns3_set_channels(struct net_device *netdev,
4157                       struct ethtool_channels *ch)
4158 {
4159         struct hnae3_handle *h = hns3_get_handle(netdev);
4160         struct hnae3_knic_private_info *kinfo = &h->kinfo;
4161         bool rxfh_configured = netif_is_rxfh_configured(netdev);
4162         u32 new_tqp_num = ch->combined_count;
4163         u16 org_tqp_num;
4164         int ret;
4165
4166         if (ch->rx_count || ch->tx_count)
4167                 return -EINVAL;
4168
4169         if (new_tqp_num > hns3_get_max_available_channels(h) ||
4170             new_tqp_num < 1) {
4171                 dev_err(&netdev->dev,
4172                         "Change tqps fail, the tqp range is from 1 to %d",
4173                         hns3_get_max_available_channels(h));
4174                 return -EINVAL;
4175         }
4176
4177         if (kinfo->rss_size == new_tqp_num)
4178                 return 0;
4179
4180         ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4181         if (ret)
4182                 return ret;
4183
4184         ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4185         if (ret)
4186                 return ret;
4187
4188         org_tqp_num = h->kinfo.num_tqps;
4189         ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4190         if (ret) {
4191                 ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4192                                                     rxfh_configured);
4193                 if (ret) {
4194                         /* If revert to old tqp failed, fatal error occurred */
4195                         dev_err(&netdev->dev,
4196                                 "Revert to old tqp num fail, ret=%d", ret);
4197                         return ret;
4198                 }
4199                 dev_info(&netdev->dev,
4200                          "Change tqp num fail, Revert to old tqp num");
4201         }
4202         ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4203         if (ret)
4204                 return ret;
4205
4206         return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4207 }
4208
4209 static const struct hnae3_client_ops client_ops = {
4210         .init_instance = hns3_client_init,
4211         .uninit_instance = hns3_client_uninit,
4212         .link_status_change = hns3_link_status_change,
4213         .setup_tc = hns3_client_setup_tc,
4214         .reset_notify = hns3_reset_notify,
4215 };
4216
4217 /* hns3_init_module - Driver registration routine
4218  * hns3_init_module is the first routine called when the driver is
4219  * loaded. All it does is register with the PCI subsystem.
4220  */
4221 static int __init hns3_init_module(void)
4222 {
4223         int ret;
4224
4225         pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4226         pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4227
4228         client.type = HNAE3_CLIENT_KNIC;
4229         snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4230                  hns3_driver_name);
4231
4232         client.ops = &client_ops;
4233
4234         INIT_LIST_HEAD(&client.node);
4235
4236         hns3_dbg_register_debugfs(hns3_driver_name);
4237
4238         ret = hnae3_register_client(&client);
4239         if (ret)
4240                 goto err_reg_client;
4241
4242         ret = pci_register_driver(&hns3_driver);
4243         if (ret)
4244                 goto err_reg_driver;
4245
4246         return ret;
4247
4248 err_reg_driver:
4249         hnae3_unregister_client(&client);
4250 err_reg_client:
4251         hns3_dbg_unregister_debugfs();
4252         return ret;
4253 }
4254 module_init(hns3_init_module);
4255
4256 /* hns3_exit_module - Driver exit cleanup routine
4257  * hns3_exit_module is called just before the driver is removed
4258  * from memory.
4259  */
4260 static void __exit hns3_exit_module(void)
4261 {
4262         pci_unregister_driver(&hns3_driver);
4263         hnae3_unregister_client(&client);
4264         hns3_dbg_unregister_debugfs();
4265 }
4266 module_exit(hns3_exit_module);
4267
4268 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4269 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4270 MODULE_LICENSE("GPL");
4271 MODULE_ALIAS("pci:hns-nic");
4272 MODULE_VERSION(HNS3_MOD_VERSION);