]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/intel/iavf/iavf_main.c
ab4e3573f9dbfd188b1b302f2e31a3f65a180226
[linux.git] / drivers / net / ethernet / intel / iavf / iavf_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8  * be included exactly once across the whole kernel with
9  * CREATE_TRACE_POINTS defined
10  */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17
18 char iavf_driver_name[] = "iavf";
19 static const char iavf_driver_string[] =
20         "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
21
22 #define DRV_KERN "-k"
23
24 #define DRV_VERSION_MAJOR 3
25 #define DRV_VERSION_MINOR 2
26 #define DRV_VERSION_BUILD 3
27 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
28              __stringify(DRV_VERSION_MINOR) "." \
29              __stringify(DRV_VERSION_BUILD) \
30              DRV_KERN
31 const char iavf_driver_version[] = DRV_VERSION;
32 static const char iavf_copyright[] =
33         "Copyright (c) 2013 - 2018 Intel Corporation.";
34
35 /* iavf_pci_tbl - PCI Device ID Table
36  *
37  * Wildcard entries (PCI_ANY_ID) should come last
38  * Last entry must be all 0s
39  *
40  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
41  *   Class, Class Mask, private data (not used) }
42  */
43 static const struct pci_device_id iavf_pci_tbl[] = {
44         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
45         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
46         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
47         {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
48         /* required last entry */
49         {0, }
50 };
51
52 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
53
54 MODULE_ALIAS("i40evf");
55 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
56 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
57 MODULE_LICENSE("GPL v2");
58 MODULE_VERSION(DRV_VERSION);
59
60 static struct workqueue_struct *iavf_wq;
61
62 /**
63  * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
64  * @hw:   pointer to the HW structure
65  * @mem:  ptr to mem struct to fill out
66  * @size: size of memory requested
67  * @alignment: what to align the allocation to
68  **/
69 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
70                                          struct iavf_dma_mem *mem,
71                                          u64 size, u32 alignment)
72 {
73         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
74
75         if (!mem)
76                 return I40E_ERR_PARAM;
77
78         mem->size = ALIGN(size, alignment);
79         mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
80                                      (dma_addr_t *)&mem->pa, GFP_KERNEL);
81         if (mem->va)
82                 return 0;
83         else
84                 return I40E_ERR_NO_MEMORY;
85 }
86
87 /**
88  * iavf_free_dma_mem_d - OS specific memory free for shared code
89  * @hw:   pointer to the HW structure
90  * @mem:  ptr to mem struct to free
91  **/
92 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
93                                      struct iavf_dma_mem *mem)
94 {
95         struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
96
97         if (!mem || !mem->va)
98                 return I40E_ERR_PARAM;
99         dma_free_coherent(&adapter->pdev->dev, mem->size,
100                           mem->va, (dma_addr_t)mem->pa);
101         return 0;
102 }
103
104 /**
105  * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
106  * @hw:   pointer to the HW structure
107  * @mem:  ptr to mem struct to fill out
108  * @size: size of memory requested
109  **/
110 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
111                                           struct iavf_virt_mem *mem, u32 size)
112 {
113         if (!mem)
114                 return I40E_ERR_PARAM;
115
116         mem->size = size;
117         mem->va = kzalloc(size, GFP_KERNEL);
118
119         if (mem->va)
120                 return 0;
121         else
122                 return I40E_ERR_NO_MEMORY;
123 }
124
125 /**
126  * iavf_free_virt_mem_d - OS specific memory free for shared code
127  * @hw:   pointer to the HW structure
128  * @mem:  ptr to mem struct to free
129  **/
130 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
131                                       struct iavf_virt_mem *mem)
132 {
133         if (!mem)
134                 return I40E_ERR_PARAM;
135
136         /* it's ok to kfree a NULL pointer */
137         kfree(mem->va);
138
139         return 0;
140 }
141
142 /**
143  * iavf_debug_d - OS dependent version of debug printing
144  * @hw:  pointer to the HW structure
145  * @mask: debug level mask
146  * @fmt_str: printf-type format description
147  **/
148 void iavf_debug_d(void *hw, u32 mask, char *fmt_str, ...)
149 {
150         char buf[512];
151         va_list argptr;
152
153         if (!(mask & ((struct iavf_hw *)hw)->debug_mask))
154                 return;
155
156         va_start(argptr, fmt_str);
157         vsnprintf(buf, sizeof(buf), fmt_str, argptr);
158         va_end(argptr);
159
160         /* the debug string is already formatted with a newline */
161         pr_info("%s", buf);
162 }
163
164 /**
165  * iavf_schedule_reset - Set the flags and schedule a reset event
166  * @adapter: board private structure
167  **/
168 void iavf_schedule_reset(struct iavf_adapter *adapter)
169 {
170         if (!(adapter->flags &
171               (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
172                 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
173                 schedule_work(&adapter->reset_task);
174         }
175 }
176
177 /**
178  * iavf_tx_timeout - Respond to a Tx Hang
179  * @netdev: network interface device structure
180  **/
181 static void iavf_tx_timeout(struct net_device *netdev)
182 {
183         struct iavf_adapter *adapter = netdev_priv(netdev);
184
185         adapter->tx_timeout_count++;
186         iavf_schedule_reset(adapter);
187 }
188
189 /**
190  * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
191  * @adapter: board private structure
192  **/
193 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
194 {
195         struct iavf_hw *hw = &adapter->hw;
196
197         if (!adapter->msix_entries)
198                 return;
199
200         wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
201
202         iavf_flush(hw);
203
204         synchronize_irq(adapter->msix_entries[0].vector);
205 }
206
207 /**
208  * iavf_misc_irq_enable - Enable default interrupt generation settings
209  * @adapter: board private structure
210  **/
211 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
212 {
213         struct iavf_hw *hw = &adapter->hw;
214
215         wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
216                                        IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
217         wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
218
219         iavf_flush(hw);
220 }
221
222 /**
223  * iavf_irq_disable - Mask off interrupt generation on the NIC
224  * @adapter: board private structure
225  **/
226 static void iavf_irq_disable(struct iavf_adapter *adapter)
227 {
228         int i;
229         struct iavf_hw *hw = &adapter->hw;
230
231         if (!adapter->msix_entries)
232                 return;
233
234         for (i = 1; i < adapter->num_msix_vectors; i++) {
235                 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
236                 synchronize_irq(adapter->msix_entries[i].vector);
237         }
238         iavf_flush(hw);
239 }
240
241 /**
242  * iavf_irq_enable_queues - Enable interrupt for specified queues
243  * @adapter: board private structure
244  * @mask: bitmap of queues to enable
245  **/
246 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
247 {
248         struct iavf_hw *hw = &adapter->hw;
249         int i;
250
251         for (i = 1; i < adapter->num_msix_vectors; i++) {
252                 if (mask & BIT(i - 1)) {
253                         wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
254                              IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
255                              IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
256                 }
257         }
258 }
259
260 /**
261  * iavf_irq_enable - Enable default interrupt generation settings
262  * @adapter: board private structure
263  * @flush: boolean value whether to run rd32()
264  **/
265 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
266 {
267         struct iavf_hw *hw = &adapter->hw;
268
269         iavf_misc_irq_enable(adapter);
270         iavf_irq_enable_queues(adapter, ~0);
271
272         if (flush)
273                 iavf_flush(hw);
274 }
275
276 /**
277  * iavf_msix_aq - Interrupt handler for vector 0
278  * @irq: interrupt number
279  * @data: pointer to netdev
280  **/
281 static irqreturn_t iavf_msix_aq(int irq, void *data)
282 {
283         struct net_device *netdev = data;
284         struct iavf_adapter *adapter = netdev_priv(netdev);
285         struct iavf_hw *hw = &adapter->hw;
286
287         /* handle non-queue interrupts, these reads clear the registers */
288         rd32(hw, IAVF_VFINT_ICR01);
289         rd32(hw, IAVF_VFINT_ICR0_ENA1);
290
291         /* schedule work on the private workqueue */
292         schedule_work(&adapter->adminq_task);
293
294         return IRQ_HANDLED;
295 }
296
297 /**
298  * iavf_msix_clean_rings - MSIX mode Interrupt Handler
299  * @irq: interrupt number
300  * @data: pointer to a q_vector
301  **/
302 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
303 {
304         struct iavf_q_vector *q_vector = data;
305
306         if (!q_vector->tx.ring && !q_vector->rx.ring)
307                 return IRQ_HANDLED;
308
309         napi_schedule_irqoff(&q_vector->napi);
310
311         return IRQ_HANDLED;
312 }
313
314 /**
315  * iavf_map_vector_to_rxq - associate irqs with rx queues
316  * @adapter: board private structure
317  * @v_idx: interrupt number
318  * @r_idx: queue number
319  **/
320 static void
321 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
322 {
323         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
324         struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
325         struct iavf_hw *hw = &adapter->hw;
326
327         rx_ring->q_vector = q_vector;
328         rx_ring->next = q_vector->rx.ring;
329         rx_ring->vsi = &adapter->vsi;
330         q_vector->rx.ring = rx_ring;
331         q_vector->rx.count++;
332         q_vector->rx.next_update = jiffies + 1;
333         q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
334         q_vector->ring_mask |= BIT(r_idx);
335         wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
336              q_vector->rx.current_itr);
337         q_vector->rx.current_itr = q_vector->rx.target_itr;
338 }
339
340 /**
341  * iavf_map_vector_to_txq - associate irqs with tx queues
342  * @adapter: board private structure
343  * @v_idx: interrupt number
344  * @t_idx: queue number
345  **/
346 static void
347 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
348 {
349         struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
350         struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
351         struct iavf_hw *hw = &adapter->hw;
352
353         tx_ring->q_vector = q_vector;
354         tx_ring->next = q_vector->tx.ring;
355         tx_ring->vsi = &adapter->vsi;
356         q_vector->tx.ring = tx_ring;
357         q_vector->tx.count++;
358         q_vector->tx.next_update = jiffies + 1;
359         q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
360         q_vector->num_ringpairs++;
361         wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
362              q_vector->tx.target_itr);
363         q_vector->tx.current_itr = q_vector->tx.target_itr;
364 }
365
366 /**
367  * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
368  * @adapter: board private structure to initialize
369  *
370  * This function maps descriptor rings to the queue-specific vectors
371  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
372  * one vector per ring/queue, but on a constrained vector budget, we
373  * group the rings as "efficiently" as possible.  You would add new
374  * mapping configurations in here.
375  **/
376 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
377 {
378         int rings_remaining = adapter->num_active_queues;
379         int ridx = 0, vidx = 0;
380         int q_vectors;
381
382         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
383
384         for (; ridx < rings_remaining; ridx++) {
385                 iavf_map_vector_to_rxq(adapter, vidx, ridx);
386                 iavf_map_vector_to_txq(adapter, vidx, ridx);
387
388                 /* In the case where we have more queues than vectors, continue
389                  * round-robin on vectors until all queues are mapped.
390                  */
391                 if (++vidx >= q_vectors)
392                         vidx = 0;
393         }
394
395         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
396 }
397
398 /**
399  * iavf_irq_affinity_notify - Callback for affinity changes
400  * @notify: context as to what irq was changed
401  * @mask: the new affinity mask
402  *
403  * This is a callback function used by the irq_set_affinity_notifier function
404  * so that we may register to receive changes to the irq affinity masks.
405  **/
406 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
407                                      const cpumask_t *mask)
408 {
409         struct iavf_q_vector *q_vector =
410                 container_of(notify, struct iavf_q_vector, affinity_notify);
411
412         cpumask_copy(&q_vector->affinity_mask, mask);
413 }
414
415 /**
416  * iavf_irq_affinity_release - Callback for affinity notifier release
417  * @ref: internal core kernel usage
418  *
419  * This is a callback function used by the irq_set_affinity_notifier function
420  * to inform the current notification subscriber that they will no longer
421  * receive notifications.
422  **/
423 static void iavf_irq_affinity_release(struct kref *ref) {}
424
425 /**
426  * iavf_request_traffic_irqs - Initialize MSI-X interrupts
427  * @adapter: board private structure
428  * @basename: device basename
429  *
430  * Allocates MSI-X vectors for tx and rx handling, and requests
431  * interrupts from the kernel.
432  **/
433 static int
434 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
435 {
436         unsigned int vector, q_vectors;
437         unsigned int rx_int_idx = 0, tx_int_idx = 0;
438         int irq_num, err;
439         int cpu;
440
441         iavf_irq_disable(adapter);
442         /* Decrement for Other and TCP Timer vectors */
443         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
444
445         for (vector = 0; vector < q_vectors; vector++) {
446                 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
447
448                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
449
450                 if (q_vector->tx.ring && q_vector->rx.ring) {
451                         snprintf(q_vector->name, sizeof(q_vector->name),
452                                  "iavf-%s-TxRx-%d", basename, rx_int_idx++);
453                         tx_int_idx++;
454                 } else if (q_vector->rx.ring) {
455                         snprintf(q_vector->name, sizeof(q_vector->name),
456                                  "iavf-%s-rx-%d", basename, rx_int_idx++);
457                 } else if (q_vector->tx.ring) {
458                         snprintf(q_vector->name, sizeof(q_vector->name),
459                                  "iavf-%s-tx-%d", basename, tx_int_idx++);
460                 } else {
461                         /* skip this unused q_vector */
462                         continue;
463                 }
464                 err = request_irq(irq_num,
465                                   iavf_msix_clean_rings,
466                                   0,
467                                   q_vector->name,
468                                   q_vector);
469                 if (err) {
470                         dev_info(&adapter->pdev->dev,
471                                  "Request_irq failed, error: %d\n", err);
472                         goto free_queue_irqs;
473                 }
474                 /* register for affinity change notifications */
475                 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
476                 q_vector->affinity_notify.release =
477                                                    iavf_irq_affinity_release;
478                 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
479                 /* Spread the IRQ affinity hints across online CPUs. Note that
480                  * get_cpu_mask returns a mask with a permanent lifetime so
481                  * it's safe to use as a hint for irq_set_affinity_hint.
482                  */
483                 cpu = cpumask_local_spread(q_vector->v_idx, -1);
484                 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
485         }
486
487         return 0;
488
489 free_queue_irqs:
490         while (vector) {
491                 vector--;
492                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
493                 irq_set_affinity_notifier(irq_num, NULL);
494                 irq_set_affinity_hint(irq_num, NULL);
495                 free_irq(irq_num, &adapter->q_vectors[vector]);
496         }
497         return err;
498 }
499
500 /**
501  * iavf_request_misc_irq - Initialize MSI-X interrupts
502  * @adapter: board private structure
503  *
504  * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
505  * vector is only for the admin queue, and stays active even when the netdev
506  * is closed.
507  **/
508 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
509 {
510         struct net_device *netdev = adapter->netdev;
511         int err;
512
513         snprintf(adapter->misc_vector_name,
514                  sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
515                  dev_name(&adapter->pdev->dev));
516         err = request_irq(adapter->msix_entries[0].vector,
517                           &iavf_msix_aq, 0,
518                           adapter->misc_vector_name, netdev);
519         if (err) {
520                 dev_err(&adapter->pdev->dev,
521                         "request_irq for %s failed: %d\n",
522                         adapter->misc_vector_name, err);
523                 free_irq(adapter->msix_entries[0].vector, netdev);
524         }
525         return err;
526 }
527
528 /**
529  * iavf_free_traffic_irqs - Free MSI-X interrupts
530  * @adapter: board private structure
531  *
532  * Frees all MSI-X vectors other than 0.
533  **/
534 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
535 {
536         int vector, irq_num, q_vectors;
537
538         if (!adapter->msix_entries)
539                 return;
540
541         q_vectors = adapter->num_msix_vectors - NONQ_VECS;
542
543         for (vector = 0; vector < q_vectors; vector++) {
544                 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
545                 irq_set_affinity_notifier(irq_num, NULL);
546                 irq_set_affinity_hint(irq_num, NULL);
547                 free_irq(irq_num, &adapter->q_vectors[vector]);
548         }
549 }
550
551 /**
552  * iavf_free_misc_irq - Free MSI-X miscellaneous vector
553  * @adapter: board private structure
554  *
555  * Frees MSI-X vector 0.
556  **/
557 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
558 {
559         struct net_device *netdev = adapter->netdev;
560
561         if (!adapter->msix_entries)
562                 return;
563
564         free_irq(adapter->msix_entries[0].vector, netdev);
565 }
566
567 /**
568  * iavf_configure_tx - Configure Transmit Unit after Reset
569  * @adapter: board private structure
570  *
571  * Configure the Tx unit of the MAC after a reset.
572  **/
573 static void iavf_configure_tx(struct iavf_adapter *adapter)
574 {
575         struct iavf_hw *hw = &adapter->hw;
576         int i;
577
578         for (i = 0; i < adapter->num_active_queues; i++)
579                 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
580 }
581
582 /**
583  * iavf_configure_rx - Configure Receive Unit after Reset
584  * @adapter: board private structure
585  *
586  * Configure the Rx unit of the MAC after a reset.
587  **/
588 static void iavf_configure_rx(struct iavf_adapter *adapter)
589 {
590         unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
591         struct iavf_hw *hw = &adapter->hw;
592         int i;
593
594         /* Legacy Rx will always default to a 2048 buffer size. */
595 #if (PAGE_SIZE < 8192)
596         if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
597                 struct net_device *netdev = adapter->netdev;
598
599                 /* For jumbo frames on systems with 4K pages we have to use
600                  * an order 1 page, so we might as well increase the size
601                  * of our Rx buffer to make better use of the available space
602                  */
603                 rx_buf_len = IAVF_RXBUFFER_3072;
604
605                 /* We use a 1536 buffer size for configurations with
606                  * standard Ethernet mtu.  On x86 this gives us enough room
607                  * for shared info and 192 bytes of padding.
608                  */
609                 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
610                     (netdev->mtu <= ETH_DATA_LEN))
611                         rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
612         }
613 #endif
614
615         for (i = 0; i < adapter->num_active_queues; i++) {
616                 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
617                 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
618
619                 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
620                         clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
621                 else
622                         set_ring_build_skb_enabled(&adapter->rx_rings[i]);
623         }
624 }
625
626 /**
627  * iavf_find_vlan - Search filter list for specific vlan filter
628  * @adapter: board private structure
629  * @vlan: vlan tag
630  *
631  * Returns ptr to the filter object or NULL. Must be called while holding the
632  * mac_vlan_list_lock.
633  **/
634 static struct
635 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
636 {
637         struct iavf_vlan_filter *f;
638
639         list_for_each_entry(f, &adapter->vlan_filter_list, list) {
640                 if (vlan == f->vlan)
641                         return f;
642         }
643         return NULL;
644 }
645
646 /**
647  * iavf_add_vlan - Add a vlan filter to the list
648  * @adapter: board private structure
649  * @vlan: VLAN tag
650  *
651  * Returns ptr to the filter object or NULL when no memory available.
652  **/
653 static struct
654 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
655 {
656         struct iavf_vlan_filter *f = NULL;
657
658         spin_lock_bh(&adapter->mac_vlan_list_lock);
659
660         f = iavf_find_vlan(adapter, vlan);
661         if (!f) {
662                 f = kzalloc(sizeof(*f), GFP_KERNEL);
663                 if (!f)
664                         goto clearout;
665
666                 f->vlan = vlan;
667
668                 INIT_LIST_HEAD(&f->list);
669                 list_add(&f->list, &adapter->vlan_filter_list);
670                 f->add = true;
671                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
672         }
673
674 clearout:
675         spin_unlock_bh(&adapter->mac_vlan_list_lock);
676         return f;
677 }
678
679 /**
680  * iavf_del_vlan - Remove a vlan filter from the list
681  * @adapter: board private structure
682  * @vlan: VLAN tag
683  **/
684 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
685 {
686         struct iavf_vlan_filter *f;
687
688         spin_lock_bh(&adapter->mac_vlan_list_lock);
689
690         f = iavf_find_vlan(adapter, vlan);
691         if (f) {
692                 f->remove = true;
693                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
694         }
695
696         spin_unlock_bh(&adapter->mac_vlan_list_lock);
697 }
698
699 /**
700  * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
701  * @netdev: network device struct
702  * @proto: unused protocol data
703  * @vid: VLAN tag
704  **/
705 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
706                                 __always_unused __be16 proto, u16 vid)
707 {
708         struct iavf_adapter *adapter = netdev_priv(netdev);
709
710         if (!VLAN_ALLOWED(adapter))
711                 return -EIO;
712         if (iavf_add_vlan(adapter, vid) == NULL)
713                 return -ENOMEM;
714         return 0;
715 }
716
717 /**
718  * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
719  * @netdev: network device struct
720  * @proto: unused protocol data
721  * @vid: VLAN tag
722  **/
723 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
724                                  __always_unused __be16 proto, u16 vid)
725 {
726         struct iavf_adapter *adapter = netdev_priv(netdev);
727
728         if (VLAN_ALLOWED(adapter)) {
729                 iavf_del_vlan(adapter, vid);
730                 return 0;
731         }
732         return -EIO;
733 }
734
735 /**
736  * iavf_find_filter - Search filter list for specific mac filter
737  * @adapter: board private structure
738  * @macaddr: the MAC address
739  *
740  * Returns ptr to the filter object or NULL. Must be called while holding the
741  * mac_vlan_list_lock.
742  **/
743 static struct
744 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
745                                   const u8 *macaddr)
746 {
747         struct iavf_mac_filter *f;
748
749         if (!macaddr)
750                 return NULL;
751
752         list_for_each_entry(f, &adapter->mac_filter_list, list) {
753                 if (ether_addr_equal(macaddr, f->macaddr))
754                         return f;
755         }
756         return NULL;
757 }
758
759 /**
760  * iavf_add_filter - Add a mac filter to the filter list
761  * @adapter: board private structure
762  * @macaddr: the MAC address
763  *
764  * Returns ptr to the filter object or NULL when no memory available.
765  **/
766 static struct
767 iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
768                                  const u8 *macaddr)
769 {
770         struct iavf_mac_filter *f;
771
772         if (!macaddr)
773                 return NULL;
774
775         f = iavf_find_filter(adapter, macaddr);
776         if (!f) {
777                 f = kzalloc(sizeof(*f), GFP_ATOMIC);
778                 if (!f)
779                         return f;
780
781                 ether_addr_copy(f->macaddr, macaddr);
782
783                 list_add_tail(&f->list, &adapter->mac_filter_list);
784                 f->add = true;
785                 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
786         } else {
787                 f->remove = false;
788         }
789
790         return f;
791 }
792
793 /**
794  * iavf_set_mac - NDO callback to set port mac address
795  * @netdev: network interface device structure
796  * @p: pointer to an address structure
797  *
798  * Returns 0 on success, negative on failure
799  **/
800 static int iavf_set_mac(struct net_device *netdev, void *p)
801 {
802         struct iavf_adapter *adapter = netdev_priv(netdev);
803         struct iavf_hw *hw = &adapter->hw;
804         struct iavf_mac_filter *f;
805         struct sockaddr *addr = p;
806
807         if (!is_valid_ether_addr(addr->sa_data))
808                 return -EADDRNOTAVAIL;
809
810         if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
811                 return 0;
812
813         if (adapter->flags & IAVF_FLAG_ADDR_SET_BY_PF)
814                 return -EPERM;
815
816         spin_lock_bh(&adapter->mac_vlan_list_lock);
817
818         f = iavf_find_filter(adapter, hw->mac.addr);
819         if (f) {
820                 f->remove = true;
821                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
822         }
823
824         f = iavf_add_filter(adapter, addr->sa_data);
825
826         spin_unlock_bh(&adapter->mac_vlan_list_lock);
827
828         if (f) {
829                 ether_addr_copy(hw->mac.addr, addr->sa_data);
830                 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
831         }
832
833         return (f == NULL) ? -ENOMEM : 0;
834 }
835
836 /**
837  * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
838  * @netdev: the netdevice
839  * @addr: address to add
840  *
841  * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
842  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
843  */
844 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
845 {
846         struct iavf_adapter *adapter = netdev_priv(netdev);
847
848         if (iavf_add_filter(adapter, addr))
849                 return 0;
850         else
851                 return -ENOMEM;
852 }
853
854 /**
855  * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
856  * @netdev: the netdevice
857  * @addr: address to add
858  *
859  * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
860  * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
861  */
862 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
863 {
864         struct iavf_adapter *adapter = netdev_priv(netdev);
865         struct iavf_mac_filter *f;
866
867         /* Under some circumstances, we might receive a request to delete
868          * our own device address from our uc list. Because we store the
869          * device address in the VSI's MAC/VLAN filter list, we need to ignore
870          * such requests and not delete our device address from this list.
871          */
872         if (ether_addr_equal(addr, netdev->dev_addr))
873                 return 0;
874
875         f = iavf_find_filter(adapter, addr);
876         if (f) {
877                 f->remove = true;
878                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
879         }
880         return 0;
881 }
882
883 /**
884  * iavf_set_rx_mode - NDO callback to set the netdev filters
885  * @netdev: network interface device structure
886  **/
887 static void iavf_set_rx_mode(struct net_device *netdev)
888 {
889         struct iavf_adapter *adapter = netdev_priv(netdev);
890
891         spin_lock_bh(&adapter->mac_vlan_list_lock);
892         __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
893         __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
894         spin_unlock_bh(&adapter->mac_vlan_list_lock);
895
896         if (netdev->flags & IFF_PROMISC &&
897             !(adapter->flags & IAVF_FLAG_PROMISC_ON))
898                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
899         else if (!(netdev->flags & IFF_PROMISC) &&
900                  adapter->flags & IAVF_FLAG_PROMISC_ON)
901                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
902
903         if (netdev->flags & IFF_ALLMULTI &&
904             !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
905                 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
906         else if (!(netdev->flags & IFF_ALLMULTI) &&
907                  adapter->flags & IAVF_FLAG_ALLMULTI_ON)
908                 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
909 }
910
911 /**
912  * iavf_napi_enable_all - enable NAPI on all queue vectors
913  * @adapter: board private structure
914  **/
915 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
916 {
917         int q_idx;
918         struct iavf_q_vector *q_vector;
919         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
920
921         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
922                 struct napi_struct *napi;
923
924                 q_vector = &adapter->q_vectors[q_idx];
925                 napi = &q_vector->napi;
926                 napi_enable(napi);
927         }
928 }
929
930 /**
931  * iavf_napi_disable_all - disable NAPI on all queue vectors
932  * @adapter: board private structure
933  **/
934 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
935 {
936         int q_idx;
937         struct iavf_q_vector *q_vector;
938         int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
939
940         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
941                 q_vector = &adapter->q_vectors[q_idx];
942                 napi_disable(&q_vector->napi);
943         }
944 }
945
946 /**
947  * iavf_configure - set up transmit and receive data structures
948  * @adapter: board private structure
949  **/
950 static void iavf_configure(struct iavf_adapter *adapter)
951 {
952         struct net_device *netdev = adapter->netdev;
953         int i;
954
955         iavf_set_rx_mode(netdev);
956
957         iavf_configure_tx(adapter);
958         iavf_configure_rx(adapter);
959         adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
960
961         for (i = 0; i < adapter->num_active_queues; i++) {
962                 struct iavf_ring *ring = &adapter->rx_rings[i];
963
964                 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
965         }
966 }
967
968 /**
969  * iavf_up_complete - Finish the last steps of bringing up a connection
970  * @adapter: board private structure
971  *
972  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
973  **/
974 static void iavf_up_complete(struct iavf_adapter *adapter)
975 {
976         adapter->state = __IAVF_RUNNING;
977         clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
978
979         iavf_napi_enable_all(adapter);
980
981         adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
982         if (CLIENT_ENABLED(adapter))
983                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
984         mod_timer_pending(&adapter->watchdog_timer, jiffies + 1);
985 }
986
987 /**
988  * iavf_down - Shutdown the connection processing
989  * @adapter: board private structure
990  *
991  * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
992  **/
993 void iavf_down(struct iavf_adapter *adapter)
994 {
995         struct net_device *netdev = adapter->netdev;
996         struct iavf_vlan_filter *vlf;
997         struct iavf_mac_filter *f;
998         struct iavf_cloud_filter *cf;
999
1000         if (adapter->state <= __IAVF_DOWN_PENDING)
1001                 return;
1002
1003         netif_carrier_off(netdev);
1004         netif_tx_disable(netdev);
1005         adapter->link_up = false;
1006         iavf_napi_disable_all(adapter);
1007         iavf_irq_disable(adapter);
1008
1009         spin_lock_bh(&adapter->mac_vlan_list_lock);
1010
1011         /* clear the sync flag on all filters */
1012         __dev_uc_unsync(adapter->netdev, NULL);
1013         __dev_mc_unsync(adapter->netdev, NULL);
1014
1015         /* remove all MAC filters */
1016         list_for_each_entry(f, &adapter->mac_filter_list, list) {
1017                 f->remove = true;
1018         }
1019
1020         /* remove all VLAN filters */
1021         list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1022                 vlf->remove = true;
1023         }
1024
1025         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1026
1027         /* remove all cloud filters */
1028         spin_lock_bh(&adapter->cloud_filter_list_lock);
1029         list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1030                 cf->del = true;
1031         }
1032         spin_unlock_bh(&adapter->cloud_filter_list_lock);
1033
1034         if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1035             adapter->state != __IAVF_RESETTING) {
1036                 /* cancel any current operation */
1037                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1038                 /* Schedule operations to close down the HW. Don't wait
1039                  * here for this to complete. The watchdog is still running
1040                  * and it will take care of this.
1041                  */
1042                 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1043                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1044                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1045                 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1046         }
1047
1048         mod_timer_pending(&adapter->watchdog_timer, jiffies + 1);
1049 }
1050
1051 /**
1052  * iavf_acquire_msix_vectors - Setup the MSIX capability
1053  * @adapter: board private structure
1054  * @vectors: number of vectors to request
1055  *
1056  * Work with the OS to set up the MSIX vectors needed.
1057  *
1058  * Returns 0 on success, negative on failure
1059  **/
1060 static int
1061 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1062 {
1063         int err, vector_threshold;
1064
1065         /* We'll want at least 3 (vector_threshold):
1066          * 0) Other (Admin Queue and link, mostly)
1067          * 1) TxQ[0] Cleanup
1068          * 2) RxQ[0] Cleanup
1069          */
1070         vector_threshold = MIN_MSIX_COUNT;
1071
1072         /* The more we get, the more we will assign to Tx/Rx Cleanup
1073          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1074          * Right now, we simply care about how many we'll get; we'll
1075          * set them up later while requesting irq's.
1076          */
1077         err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1078                                     vector_threshold, vectors);
1079         if (err < 0) {
1080                 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1081                 kfree(adapter->msix_entries);
1082                 adapter->msix_entries = NULL;
1083                 return err;
1084         }
1085
1086         /* Adjust for only the vectors we'll use, which is minimum
1087          * of max_msix_q_vectors + NONQ_VECS, or the number of
1088          * vectors we were allocated.
1089          */
1090         adapter->num_msix_vectors = err;
1091         return 0;
1092 }
1093
1094 /**
1095  * iavf_free_queues - Free memory for all rings
1096  * @adapter: board private structure to initialize
1097  *
1098  * Free all of the memory associated with queue pairs.
1099  **/
1100 static void iavf_free_queues(struct iavf_adapter *adapter)
1101 {
1102         if (!adapter->vsi_res)
1103                 return;
1104         adapter->num_active_queues = 0;
1105         kfree(adapter->tx_rings);
1106         adapter->tx_rings = NULL;
1107         kfree(adapter->rx_rings);
1108         adapter->rx_rings = NULL;
1109 }
1110
1111 /**
1112  * iavf_alloc_queues - Allocate memory for all rings
1113  * @adapter: board private structure to initialize
1114  *
1115  * We allocate one ring per queue at run-time since we don't know the
1116  * number of queues at compile-time.  The polling_netdev array is
1117  * intended for Multiqueue, but should work fine with a single queue.
1118  **/
1119 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1120 {
1121         int i, num_active_queues;
1122
1123         /* If we're in reset reallocating queues we don't actually know yet for
1124          * certain the PF gave us the number of queues we asked for but we'll
1125          * assume it did.  Once basic reset is finished we'll confirm once we
1126          * start negotiating config with PF.
1127          */
1128         if (adapter->num_req_queues)
1129                 num_active_queues = adapter->num_req_queues;
1130         else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1131                  adapter->num_tc)
1132                 num_active_queues = adapter->ch_config.total_qps;
1133         else
1134                 num_active_queues = min_t(int,
1135                                           adapter->vsi_res->num_queue_pairs,
1136                                           (int)(num_online_cpus()));
1137
1138
1139         adapter->tx_rings = kcalloc(num_active_queues,
1140                                     sizeof(struct iavf_ring), GFP_KERNEL);
1141         if (!adapter->tx_rings)
1142                 goto err_out;
1143         adapter->rx_rings = kcalloc(num_active_queues,
1144                                     sizeof(struct iavf_ring), GFP_KERNEL);
1145         if (!adapter->rx_rings)
1146                 goto err_out;
1147
1148         for (i = 0; i < num_active_queues; i++) {
1149                 struct iavf_ring *tx_ring;
1150                 struct iavf_ring *rx_ring;
1151
1152                 tx_ring = &adapter->tx_rings[i];
1153
1154                 tx_ring->queue_index = i;
1155                 tx_ring->netdev = adapter->netdev;
1156                 tx_ring->dev = &adapter->pdev->dev;
1157                 tx_ring->count = adapter->tx_desc_count;
1158                 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1159                 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1160                         tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1161
1162                 rx_ring = &adapter->rx_rings[i];
1163                 rx_ring->queue_index = i;
1164                 rx_ring->netdev = adapter->netdev;
1165                 rx_ring->dev = &adapter->pdev->dev;
1166                 rx_ring->count = adapter->rx_desc_count;
1167                 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1168         }
1169
1170         adapter->num_active_queues = num_active_queues;
1171
1172         return 0;
1173
1174 err_out:
1175         iavf_free_queues(adapter);
1176         return -ENOMEM;
1177 }
1178
1179 /**
1180  * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1181  * @adapter: board private structure to initialize
1182  *
1183  * Attempt to configure the interrupts using the best available
1184  * capabilities of the hardware and the kernel.
1185  **/
1186 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1187 {
1188         int vector, v_budget;
1189         int pairs = 0;
1190         int err = 0;
1191
1192         if (!adapter->vsi_res) {
1193                 err = -EIO;
1194                 goto out;
1195         }
1196         pairs = adapter->num_active_queues;
1197
1198         /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1199          * us much good if we have more vectors than CPUs. However, we already
1200          * limit the total number of queues by the number of CPUs so we do not
1201          * need any further limiting here.
1202          */
1203         v_budget = min_t(int, pairs + NONQ_VECS,
1204                          (int)adapter->vf_res->max_vectors);
1205
1206         adapter->msix_entries = kcalloc(v_budget,
1207                                         sizeof(struct msix_entry), GFP_KERNEL);
1208         if (!adapter->msix_entries) {
1209                 err = -ENOMEM;
1210                 goto out;
1211         }
1212
1213         for (vector = 0; vector < v_budget; vector++)
1214                 adapter->msix_entries[vector].entry = vector;
1215
1216         err = iavf_acquire_msix_vectors(adapter, v_budget);
1217
1218 out:
1219         netif_set_real_num_rx_queues(adapter->netdev, pairs);
1220         netif_set_real_num_tx_queues(adapter->netdev, pairs);
1221         return err;
1222 }
1223
1224 /**
1225  * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1226  * @adapter: board private structure
1227  *
1228  * Return 0 on success, negative on failure
1229  **/
1230 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1231 {
1232         struct i40e_aqc_get_set_rss_key_data *rss_key =
1233                 (struct i40e_aqc_get_set_rss_key_data *)adapter->rss_key;
1234         struct iavf_hw *hw = &adapter->hw;
1235         int ret = 0;
1236
1237         if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1238                 /* bail because we already have a command pending */
1239                 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1240                         adapter->current_op);
1241                 return -EBUSY;
1242         }
1243
1244         ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1245         if (ret) {
1246                 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1247                         iavf_stat_str(hw, ret),
1248                         iavf_aq_str(hw, hw->aq.asq_last_status));
1249                 return ret;
1250
1251         }
1252
1253         ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1254                                   adapter->rss_lut, adapter->rss_lut_size);
1255         if (ret) {
1256                 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1257                         iavf_stat_str(hw, ret),
1258                         iavf_aq_str(hw, hw->aq.asq_last_status));
1259         }
1260
1261         return ret;
1262
1263 }
1264
1265 /**
1266  * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1267  * @adapter: board private structure
1268  *
1269  * Returns 0 on success, negative on failure
1270  **/
1271 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1272 {
1273         struct iavf_hw *hw = &adapter->hw;
1274         u32 *dw;
1275         u16 i;
1276
1277         dw = (u32 *)adapter->rss_key;
1278         for (i = 0; i <= adapter->rss_key_size / 4; i++)
1279                 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1280
1281         dw = (u32 *)adapter->rss_lut;
1282         for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1283                 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1284
1285         iavf_flush(hw);
1286
1287         return 0;
1288 }
1289
1290 /**
1291  * iavf_config_rss - Configure RSS keys and lut
1292  * @adapter: board private structure
1293  *
1294  * Returns 0 on success, negative on failure
1295  **/
1296 int iavf_config_rss(struct iavf_adapter *adapter)
1297 {
1298
1299         if (RSS_PF(adapter)) {
1300                 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1301                                         IAVF_FLAG_AQ_SET_RSS_KEY;
1302                 return 0;
1303         } else if (RSS_AQ(adapter)) {
1304                 return iavf_config_rss_aq(adapter);
1305         } else {
1306                 return iavf_config_rss_reg(adapter);
1307         }
1308 }
1309
1310 /**
1311  * iavf_fill_rss_lut - Fill the lut with default values
1312  * @adapter: board private structure
1313  **/
1314 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1315 {
1316         u16 i;
1317
1318         for (i = 0; i < adapter->rss_lut_size; i++)
1319                 adapter->rss_lut[i] = i % adapter->num_active_queues;
1320 }
1321
1322 /**
1323  * iavf_init_rss - Prepare for RSS
1324  * @adapter: board private structure
1325  *
1326  * Return 0 on success, negative on failure
1327  **/
1328 static int iavf_init_rss(struct iavf_adapter *adapter)
1329 {
1330         struct iavf_hw *hw = &adapter->hw;
1331         int ret;
1332
1333         if (!RSS_PF(adapter)) {
1334                 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1335                 if (adapter->vf_res->vf_cap_flags &
1336                     VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1337                         adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1338                 else
1339                         adapter->hena = IAVF_DEFAULT_RSS_HENA;
1340
1341                 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1342                 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1343         }
1344
1345         iavf_fill_rss_lut(adapter);
1346         netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1347         ret = iavf_config_rss(adapter);
1348
1349         return ret;
1350 }
1351
1352 /**
1353  * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1354  * @adapter: board private structure to initialize
1355  *
1356  * We allocate one q_vector per queue interrupt.  If allocation fails we
1357  * return -ENOMEM.
1358  **/
1359 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1360 {
1361         int q_idx = 0, num_q_vectors;
1362         struct iavf_q_vector *q_vector;
1363
1364         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1365         adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1366                                      GFP_KERNEL);
1367         if (!adapter->q_vectors)
1368                 return -ENOMEM;
1369
1370         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1371                 q_vector = &adapter->q_vectors[q_idx];
1372                 q_vector->adapter = adapter;
1373                 q_vector->vsi = &adapter->vsi;
1374                 q_vector->v_idx = q_idx;
1375                 q_vector->reg_idx = q_idx;
1376                 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1377                 netif_napi_add(adapter->netdev, &q_vector->napi,
1378                                iavf_napi_poll, NAPI_POLL_WEIGHT);
1379         }
1380
1381         return 0;
1382 }
1383
1384 /**
1385  * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1386  * @adapter: board private structure to initialize
1387  *
1388  * This function frees the memory allocated to the q_vectors.  In addition if
1389  * NAPI is enabled it will delete any references to the NAPI struct prior
1390  * to freeing the q_vector.
1391  **/
1392 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1393 {
1394         int q_idx, num_q_vectors;
1395         int napi_vectors;
1396
1397         if (!adapter->q_vectors)
1398                 return;
1399
1400         num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1401         napi_vectors = adapter->num_active_queues;
1402
1403         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1404                 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1405
1406                 if (q_idx < napi_vectors)
1407                         netif_napi_del(&q_vector->napi);
1408         }
1409         kfree(adapter->q_vectors);
1410         adapter->q_vectors = NULL;
1411 }
1412
1413 /**
1414  * iavf_reset_interrupt_capability - Reset MSIX setup
1415  * @adapter: board private structure
1416  *
1417  **/
1418 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1419 {
1420         if (!adapter->msix_entries)
1421                 return;
1422
1423         pci_disable_msix(adapter->pdev);
1424         kfree(adapter->msix_entries);
1425         adapter->msix_entries = NULL;
1426 }
1427
1428 /**
1429  * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1430  * @adapter: board private structure to initialize
1431  *
1432  **/
1433 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1434 {
1435         int err;
1436
1437         err = iavf_alloc_queues(adapter);
1438         if (err) {
1439                 dev_err(&adapter->pdev->dev,
1440                         "Unable to allocate memory for queues\n");
1441                 goto err_alloc_queues;
1442         }
1443
1444         rtnl_lock();
1445         err = iavf_set_interrupt_capability(adapter);
1446         rtnl_unlock();
1447         if (err) {
1448                 dev_err(&adapter->pdev->dev,
1449                         "Unable to setup interrupt capabilities\n");
1450                 goto err_set_interrupt;
1451         }
1452
1453         err = iavf_alloc_q_vectors(adapter);
1454         if (err) {
1455                 dev_err(&adapter->pdev->dev,
1456                         "Unable to allocate memory for queue vectors\n");
1457                 goto err_alloc_q_vectors;
1458         }
1459
1460         /* If we've made it so far while ADq flag being ON, then we haven't
1461          * bailed out anywhere in middle. And ADq isn't just enabled but actual
1462          * resources have been allocated in the reset path.
1463          * Now we can truly claim that ADq is enabled.
1464          */
1465         if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1466             adapter->num_tc)
1467                 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1468                          adapter->num_tc);
1469
1470         dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1471                  (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1472                  adapter->num_active_queues);
1473
1474         return 0;
1475 err_alloc_q_vectors:
1476         iavf_reset_interrupt_capability(adapter);
1477 err_set_interrupt:
1478         iavf_free_queues(adapter);
1479 err_alloc_queues:
1480         return err;
1481 }
1482
1483 /**
1484  * iavf_free_rss - Free memory used by RSS structs
1485  * @adapter: board private structure
1486  **/
1487 static void iavf_free_rss(struct iavf_adapter *adapter)
1488 {
1489         kfree(adapter->rss_key);
1490         adapter->rss_key = NULL;
1491
1492         kfree(adapter->rss_lut);
1493         adapter->rss_lut = NULL;
1494 }
1495
1496 /**
1497  * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1498  * @adapter: board private structure
1499  *
1500  * Returns 0 on success, negative on failure
1501  **/
1502 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1503 {
1504         struct net_device *netdev = adapter->netdev;
1505         int err;
1506
1507         if (netif_running(netdev))
1508                 iavf_free_traffic_irqs(adapter);
1509         iavf_free_misc_irq(adapter);
1510         iavf_reset_interrupt_capability(adapter);
1511         iavf_free_q_vectors(adapter);
1512         iavf_free_queues(adapter);
1513
1514         err =  iavf_init_interrupt_scheme(adapter);
1515         if (err)
1516                 goto err;
1517
1518         netif_tx_stop_all_queues(netdev);
1519
1520         err = iavf_request_misc_irq(adapter);
1521         if (err)
1522                 goto err;
1523
1524         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1525
1526         iavf_map_rings_to_vectors(adapter);
1527
1528         if (RSS_AQ(adapter))
1529                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1530         else
1531                 err = iavf_init_rss(adapter);
1532 err:
1533         return err;
1534 }
1535
1536 /**
1537  * iavf_watchdog_timer - Periodic call-back timer
1538  * @data: pointer to adapter disguised as unsigned long
1539  **/
1540 static void iavf_watchdog_timer(struct timer_list *t)
1541 {
1542         struct iavf_adapter *adapter = from_timer(adapter, t,
1543                                                     watchdog_timer);
1544
1545         schedule_work(&adapter->watchdog_task);
1546         /* timer will be rescheduled in watchdog task */
1547 }
1548
1549 /**
1550  * iavf_watchdog_task - Periodic call-back task
1551  * @work: pointer to work_struct
1552  **/
1553 static void iavf_watchdog_task(struct work_struct *work)
1554 {
1555         struct iavf_adapter *adapter = container_of(work,
1556                                                       struct iavf_adapter,
1557                                                       watchdog_task);
1558         struct iavf_hw *hw = &adapter->hw;
1559         u32 reg_val;
1560
1561         if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1562                 goto restart_watchdog;
1563
1564         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
1565                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1566                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1567                 if ((reg_val == VIRTCHNL_VFR_VFACTIVE) ||
1568                     (reg_val == VIRTCHNL_VFR_COMPLETED)) {
1569                         /* A chance for redemption! */
1570                         dev_err(&adapter->pdev->dev, "Hardware came out of reset. Attempting reinit.\n");
1571                         adapter->state = __IAVF_STARTUP;
1572                         adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1573                         schedule_delayed_work(&adapter->init_task, 10);
1574                         clear_bit(__IAVF_IN_CRITICAL_TASK,
1575                                   &adapter->crit_section);
1576                         /* Don't reschedule the watchdog, since we've restarted
1577                          * the init task. When init_task contacts the PF and
1578                          * gets everything set up again, it'll restart the
1579                          * watchdog for us. Down, boy. Sit. Stay. Woof.
1580                          */
1581                         return;
1582                 }
1583                 adapter->aq_required = 0;
1584                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1585                 goto watchdog_done;
1586         }
1587
1588         if ((adapter->state < __IAVF_DOWN) ||
1589             (adapter->flags & IAVF_FLAG_RESET_PENDING))
1590                 goto watchdog_done;
1591
1592         /* check for reset */
1593         reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1594         if (!(adapter->flags & IAVF_FLAG_RESET_PENDING) && !reg_val) {
1595                 adapter->state = __IAVF_RESETTING;
1596                 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1597                 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1598                 schedule_work(&adapter->reset_task);
1599                 adapter->aq_required = 0;
1600                 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1601                 goto watchdog_done;
1602         }
1603
1604         /* Process admin queue tasks. After init, everything gets done
1605          * here so we don't race on the admin queue.
1606          */
1607         if (adapter->current_op) {
1608                 if (!iavf_asq_done(hw)) {
1609                         dev_dbg(&adapter->pdev->dev, "Admin queue timeout\n");
1610                         iavf_send_api_ver(adapter);
1611                 }
1612                 goto watchdog_done;
1613         }
1614         if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG) {
1615                 iavf_send_vf_config_msg(adapter);
1616                 goto watchdog_done;
1617         }
1618
1619         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1620                 iavf_disable_queues(adapter);
1621                 goto watchdog_done;
1622         }
1623
1624         if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1625                 iavf_map_queues(adapter);
1626                 goto watchdog_done;
1627         }
1628
1629         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1630                 iavf_add_ether_addrs(adapter);
1631                 goto watchdog_done;
1632         }
1633
1634         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1635                 iavf_add_vlans(adapter);
1636                 goto watchdog_done;
1637         }
1638
1639         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1640                 iavf_del_ether_addrs(adapter);
1641                 goto watchdog_done;
1642         }
1643
1644         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1645                 iavf_del_vlans(adapter);
1646                 goto watchdog_done;
1647         }
1648
1649         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1650                 iavf_enable_vlan_stripping(adapter);
1651                 goto watchdog_done;
1652         }
1653
1654         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1655                 iavf_disable_vlan_stripping(adapter);
1656                 goto watchdog_done;
1657         }
1658
1659         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1660                 iavf_configure_queues(adapter);
1661                 goto watchdog_done;
1662         }
1663
1664         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1665                 iavf_enable_queues(adapter);
1666                 goto watchdog_done;
1667         }
1668
1669         if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1670                 /* This message goes straight to the firmware, not the
1671                  * PF, so we don't have to set current_op as we will
1672                  * not get a response through the ARQ.
1673                  */
1674                 iavf_init_rss(adapter);
1675                 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1676                 goto watchdog_done;
1677         }
1678         if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1679                 iavf_get_hena(adapter);
1680                 goto watchdog_done;
1681         }
1682         if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1683                 iavf_set_hena(adapter);
1684                 goto watchdog_done;
1685         }
1686         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1687                 iavf_set_rss_key(adapter);
1688                 goto watchdog_done;
1689         }
1690         if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1691                 iavf_set_rss_lut(adapter);
1692                 goto watchdog_done;
1693         }
1694
1695         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1696                 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1697                                        FLAG_VF_MULTICAST_PROMISC);
1698                 goto watchdog_done;
1699         }
1700
1701         if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1702                 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1703                 goto watchdog_done;
1704         }
1705
1706         if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1707             (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1708                 iavf_set_promiscuous(adapter, 0);
1709                 goto watchdog_done;
1710         }
1711
1712         if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1713                 iavf_enable_channels(adapter);
1714                 goto watchdog_done;
1715         }
1716
1717         if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1718                 iavf_disable_channels(adapter);
1719                 goto watchdog_done;
1720         }
1721
1722         if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1723                 iavf_add_cloud_filter(adapter);
1724                 goto watchdog_done;
1725         }
1726
1727         if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1728                 iavf_del_cloud_filter(adapter);
1729                 goto watchdog_done;
1730         }
1731
1732         schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1733
1734         if (adapter->state == __IAVF_RUNNING)
1735                 iavf_request_stats(adapter);
1736 watchdog_done:
1737         if (adapter->state == __IAVF_RUNNING)
1738                 iavf_detect_recover_hung(&adapter->vsi);
1739         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1740 restart_watchdog:
1741         if (adapter->state == __IAVF_REMOVE)
1742                 return;
1743         if (adapter->aq_required)
1744                 mod_timer(&adapter->watchdog_timer,
1745                           jiffies + msecs_to_jiffies(20));
1746         else
1747                 mod_timer(&adapter->watchdog_timer, jiffies + (HZ * 2));
1748         schedule_work(&adapter->adminq_task);
1749 }
1750
1751 static void iavf_disable_vf(struct iavf_adapter *adapter)
1752 {
1753         struct iavf_mac_filter *f, *ftmp;
1754         struct iavf_vlan_filter *fv, *fvtmp;
1755         struct iavf_cloud_filter *cf, *cftmp;
1756
1757         adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1758
1759         /* We don't use netif_running() because it may be true prior to
1760          * ndo_open() returning, so we can't assume it means all our open
1761          * tasks have finished, since we're not holding the rtnl_lock here.
1762          */
1763         if (adapter->state == __IAVF_RUNNING) {
1764                 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1765                 netif_carrier_off(adapter->netdev);
1766                 netif_tx_disable(adapter->netdev);
1767                 adapter->link_up = false;
1768                 iavf_napi_disable_all(adapter);
1769                 iavf_irq_disable(adapter);
1770                 iavf_free_traffic_irqs(adapter);
1771                 iavf_free_all_tx_resources(adapter);
1772                 iavf_free_all_rx_resources(adapter);
1773         }
1774
1775         spin_lock_bh(&adapter->mac_vlan_list_lock);
1776
1777         /* Delete all of the filters */
1778         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
1779                 list_del(&f->list);
1780                 kfree(f);
1781         }
1782
1783         list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
1784                 list_del(&fv->list);
1785                 kfree(fv);
1786         }
1787
1788         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1789
1790         spin_lock_bh(&adapter->cloud_filter_list_lock);
1791         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
1792                 list_del(&cf->list);
1793                 kfree(cf);
1794                 adapter->num_cloud_filters--;
1795         }
1796         spin_unlock_bh(&adapter->cloud_filter_list_lock);
1797
1798         iavf_free_misc_irq(adapter);
1799         iavf_reset_interrupt_capability(adapter);
1800         iavf_free_queues(adapter);
1801         iavf_free_q_vectors(adapter);
1802         kfree(adapter->vf_res);
1803         iavf_shutdown_adminq(&adapter->hw);
1804         adapter->netdev->flags &= ~IFF_UP;
1805         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1806         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1807         adapter->state = __IAVF_DOWN;
1808         wake_up(&adapter->down_waitqueue);
1809         dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
1810 }
1811
1812 #define IAVF_RESET_WAIT_MS 10
1813 #define IAVF_RESET_WAIT_COUNT 500
1814 /**
1815  * iavf_reset_task - Call-back task to handle hardware reset
1816  * @work: pointer to work_struct
1817  *
1818  * During reset we need to shut down and reinitialize the admin queue
1819  * before we can use it to communicate with the PF again. We also clear
1820  * and reinit the rings because that context is lost as well.
1821  **/
1822 static void iavf_reset_task(struct work_struct *work)
1823 {
1824         struct iavf_adapter *adapter = container_of(work,
1825                                                       struct iavf_adapter,
1826                                                       reset_task);
1827         struct virtchnl_vf_resource *vfres = adapter->vf_res;
1828         struct net_device *netdev = adapter->netdev;
1829         struct iavf_hw *hw = &adapter->hw;
1830         struct iavf_vlan_filter *vlf;
1831         struct iavf_cloud_filter *cf;
1832         struct iavf_mac_filter *f;
1833         u32 reg_val;
1834         int i = 0, err;
1835         bool running;
1836
1837         /* When device is being removed it doesn't make sense to run the reset
1838          * task, just return in such a case.
1839          */
1840         if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
1841                 return;
1842
1843         while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
1844                                 &adapter->crit_section))
1845                 usleep_range(500, 1000);
1846         if (CLIENT_ENABLED(adapter)) {
1847                 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
1848                                     IAVF_FLAG_CLIENT_NEEDS_CLOSE |
1849                                     IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
1850                                     IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
1851                 cancel_delayed_work_sync(&adapter->client_task);
1852                 iavf_notify_client_close(&adapter->vsi, true);
1853         }
1854         iavf_misc_irq_disable(adapter);
1855         if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
1856                 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
1857                 /* Restart the AQ here. If we have been reset but didn't
1858                  * detect it, or if the PF had to reinit, our AQ will be hosed.
1859                  */
1860                 iavf_shutdown_adminq(hw);
1861                 iavf_init_adminq(hw);
1862                 iavf_request_reset(adapter);
1863         }
1864         adapter->flags |= IAVF_FLAG_RESET_PENDING;
1865
1866         /* poll until we see the reset actually happen */
1867         for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
1868                 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
1869                           IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1870                 if (!reg_val)
1871                         break;
1872                 usleep_range(5000, 10000);
1873         }
1874         if (i == IAVF_RESET_WAIT_COUNT) {
1875                 dev_info(&adapter->pdev->dev, "Never saw reset\n");
1876                 goto continue_reset; /* act like the reset happened */
1877         }
1878
1879         /* wait until the reset is complete and the PF is responding to us */
1880         for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
1881                 /* sleep first to make sure a minimum wait time is met */
1882                 msleep(IAVF_RESET_WAIT_MS);
1883
1884                 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1885                           IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1886                 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
1887                         break;
1888         }
1889
1890         pci_set_master(adapter->pdev);
1891
1892         if (i == IAVF_RESET_WAIT_COUNT) {
1893                 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
1894                         reg_val);
1895                 iavf_disable_vf(adapter);
1896                 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
1897                 return; /* Do not attempt to reinit. It's dead, Jim. */
1898         }
1899
1900 continue_reset:
1901         /* We don't use netif_running() because it may be true prior to
1902          * ndo_open() returning, so we can't assume it means all our open
1903          * tasks have finished, since we're not holding the rtnl_lock here.
1904          */
1905         running = ((adapter->state == __IAVF_RUNNING) ||
1906                    (adapter->state == __IAVF_RESETTING));
1907
1908         if (running) {
1909                 netif_carrier_off(netdev);
1910                 netif_tx_stop_all_queues(netdev);
1911                 adapter->link_up = false;
1912                 iavf_napi_disable_all(adapter);
1913         }
1914         iavf_irq_disable(adapter);
1915
1916         adapter->state = __IAVF_RESETTING;
1917         adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1918
1919         /* free the Tx/Rx rings and descriptors, might be better to just
1920          * re-use them sometime in the future
1921          */
1922         iavf_free_all_rx_resources(adapter);
1923         iavf_free_all_tx_resources(adapter);
1924
1925         adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
1926         /* kill and reinit the admin queue */
1927         iavf_shutdown_adminq(hw);
1928         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1929         err = iavf_init_adminq(hw);
1930         if (err)
1931                 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
1932                          err);
1933         adapter->aq_required = 0;
1934
1935         if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
1936                 err = iavf_reinit_interrupt_scheme(adapter);
1937                 if (err)
1938                         goto reset_err;
1939         }
1940
1941         adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
1942         adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
1943
1944         spin_lock_bh(&adapter->mac_vlan_list_lock);
1945
1946         /* re-add all MAC filters */
1947         list_for_each_entry(f, &adapter->mac_filter_list, list) {
1948                 f->add = true;
1949         }
1950         /* re-add all VLAN filters */
1951         list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
1952                 vlf->add = true;
1953         }
1954
1955         spin_unlock_bh(&adapter->mac_vlan_list_lock);
1956
1957         /* check if TCs are running and re-add all cloud filters */
1958         spin_lock_bh(&adapter->cloud_filter_list_lock);
1959         if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1960             adapter->num_tc) {
1961                 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1962                         cf->add = true;
1963                 }
1964         }
1965         spin_unlock_bh(&adapter->cloud_filter_list_lock);
1966
1967         adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1968         adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
1969         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
1970         iavf_misc_irq_enable(adapter);
1971
1972         mod_timer(&adapter->watchdog_timer, jiffies + 2);
1973
1974         /* We were running when the reset started, so we need to restore some
1975          * state here.
1976          */
1977         if (running) {
1978                 /* allocate transmit descriptors */
1979                 err = iavf_setup_all_tx_resources(adapter);
1980                 if (err)
1981                         goto reset_err;
1982
1983                 /* allocate receive descriptors */
1984                 err = iavf_setup_all_rx_resources(adapter);
1985                 if (err)
1986                         goto reset_err;
1987
1988                 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
1989                         err = iavf_request_traffic_irqs(adapter, netdev->name);
1990                         if (err)
1991                                 goto reset_err;
1992
1993                         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
1994                 }
1995
1996                 iavf_configure(adapter);
1997
1998                 iavf_up_complete(adapter);
1999
2000                 iavf_irq_enable(adapter, true);
2001         } else {
2002                 adapter->state = __IAVF_DOWN;
2003                 wake_up(&adapter->down_waitqueue);
2004         }
2005         clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2006         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2007
2008         return;
2009 reset_err:
2010         clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2011         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2012         dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2013         iavf_close(netdev);
2014 }
2015
2016 /**
2017  * iavf_adminq_task - worker thread to clean the admin queue
2018  * @work: pointer to work_struct containing our data
2019  **/
2020 static void iavf_adminq_task(struct work_struct *work)
2021 {
2022         struct iavf_adapter *adapter =
2023                 container_of(work, struct iavf_adapter, adminq_task);
2024         struct iavf_hw *hw = &adapter->hw;
2025         struct i40e_arq_event_info event;
2026         enum virtchnl_ops v_op;
2027         enum iavf_status ret, v_ret;
2028         u32 val, oldval;
2029         u16 pending;
2030
2031         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2032                 goto out;
2033
2034         event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2035         event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2036         if (!event.msg_buf)
2037                 goto out;
2038
2039         do {
2040                 ret = iavf_clean_arq_element(hw, &event, &pending);
2041                 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2042                 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2043
2044                 if (ret || !v_op)
2045                         break; /* No event to process or error cleaning ARQ */
2046
2047                 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2048                                          event.msg_len);
2049                 if (pending != 0)
2050                         memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2051         } while (pending);
2052
2053         if ((adapter->flags &
2054              (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2055             adapter->state == __IAVF_RESETTING)
2056                 goto freedom;
2057
2058         /* check for error indications */
2059         val = rd32(hw, hw->aq.arq.len);
2060         if (val == 0xdeadbeef) /* indicates device in reset */
2061                 goto freedom;
2062         oldval = val;
2063         if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2064                 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2065                 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2066         }
2067         if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2068                 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2069                 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2070         }
2071         if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2072                 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2073                 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2074         }
2075         if (oldval != val)
2076                 wr32(hw, hw->aq.arq.len, val);
2077
2078         val = rd32(hw, hw->aq.asq.len);
2079         oldval = val;
2080         if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2081                 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2082                 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2083         }
2084         if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2085                 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2086                 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2087         }
2088         if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2089                 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2090                 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2091         }
2092         if (oldval != val)
2093                 wr32(hw, hw->aq.asq.len, val);
2094
2095 freedom:
2096         kfree(event.msg_buf);
2097 out:
2098         /* re-enable Admin queue interrupt cause */
2099         iavf_misc_irq_enable(adapter);
2100 }
2101
2102 /**
2103  * iavf_client_task - worker thread to perform client work
2104  * @work: pointer to work_struct containing our data
2105  *
2106  * This task handles client interactions. Because client calls can be
2107  * reentrant, we can't handle them in the watchdog.
2108  **/
2109 static void iavf_client_task(struct work_struct *work)
2110 {
2111         struct iavf_adapter *adapter =
2112                 container_of(work, struct iavf_adapter, client_task.work);
2113
2114         /* If we can't get the client bit, just give up. We'll be rescheduled
2115          * later.
2116          */
2117
2118         if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2119                 return;
2120
2121         if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2122                 iavf_client_subtask(adapter);
2123                 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2124                 goto out;
2125         }
2126         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2127                 iavf_notify_client_l2_params(&adapter->vsi);
2128                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2129                 goto out;
2130         }
2131         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2132                 iavf_notify_client_close(&adapter->vsi, false);
2133                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2134                 goto out;
2135         }
2136         if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2137                 iavf_notify_client_open(&adapter->vsi);
2138                 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2139         }
2140 out:
2141         clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2142 }
2143
2144 /**
2145  * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2146  * @adapter: board private structure
2147  *
2148  * Free all transmit software resources
2149  **/
2150 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2151 {
2152         int i;
2153
2154         if (!adapter->tx_rings)
2155                 return;
2156
2157         for (i = 0; i < adapter->num_active_queues; i++)
2158                 if (adapter->tx_rings[i].desc)
2159                         iavf_free_tx_resources(&adapter->tx_rings[i]);
2160 }
2161
2162 /**
2163  * iavf_setup_all_tx_resources - allocate all queues Tx resources
2164  * @adapter: board private structure
2165  *
2166  * If this function returns with an error, then it's possible one or
2167  * more of the rings is populated (while the rest are not).  It is the
2168  * callers duty to clean those orphaned rings.
2169  *
2170  * Return 0 on success, negative on failure
2171  **/
2172 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2173 {
2174         int i, err = 0;
2175
2176         for (i = 0; i < adapter->num_active_queues; i++) {
2177                 adapter->tx_rings[i].count = adapter->tx_desc_count;
2178                 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2179                 if (!err)
2180                         continue;
2181                 dev_err(&adapter->pdev->dev,
2182                         "Allocation for Tx Queue %u failed\n", i);
2183                 break;
2184         }
2185
2186         return err;
2187 }
2188
2189 /**
2190  * iavf_setup_all_rx_resources - allocate all queues Rx resources
2191  * @adapter: board private structure
2192  *
2193  * If this function returns with an error, then it's possible one or
2194  * more of the rings is populated (while the rest are not).  It is the
2195  * callers duty to clean those orphaned rings.
2196  *
2197  * Return 0 on success, negative on failure
2198  **/
2199 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2200 {
2201         int i, err = 0;
2202
2203         for (i = 0; i < adapter->num_active_queues; i++) {
2204                 adapter->rx_rings[i].count = adapter->rx_desc_count;
2205                 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2206                 if (!err)
2207                         continue;
2208                 dev_err(&adapter->pdev->dev,
2209                         "Allocation for Rx Queue %u failed\n", i);
2210                 break;
2211         }
2212         return err;
2213 }
2214
2215 /**
2216  * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2217  * @adapter: board private structure
2218  *
2219  * Free all receive software resources
2220  **/
2221 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2222 {
2223         int i;
2224
2225         if (!adapter->rx_rings)
2226                 return;
2227
2228         for (i = 0; i < adapter->num_active_queues; i++)
2229                 if (adapter->rx_rings[i].desc)
2230                         iavf_free_rx_resources(&adapter->rx_rings[i]);
2231 }
2232
2233 /**
2234  * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2235  * @adapter: board private structure
2236  * @max_tx_rate: max Tx bw for a tc
2237  **/
2238 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2239                                       u64 max_tx_rate)
2240 {
2241         int speed = 0, ret = 0;
2242
2243         switch (adapter->link_speed) {
2244         case I40E_LINK_SPEED_40GB:
2245                 speed = 40000;
2246                 break;
2247         case I40E_LINK_SPEED_25GB:
2248                 speed = 25000;
2249                 break;
2250         case I40E_LINK_SPEED_20GB:
2251                 speed = 20000;
2252                 break;
2253         case I40E_LINK_SPEED_10GB:
2254                 speed = 10000;
2255                 break;
2256         case I40E_LINK_SPEED_1GB:
2257                 speed = 1000;
2258                 break;
2259         case I40E_LINK_SPEED_100MB:
2260                 speed = 100;
2261                 break;
2262         default:
2263                 break;
2264         }
2265
2266         if (max_tx_rate > speed) {
2267                 dev_err(&adapter->pdev->dev,
2268                         "Invalid tx rate specified\n");
2269                 ret = -EINVAL;
2270         }
2271
2272         return ret;
2273 }
2274
2275 /**
2276  * iavf_validate_channel_config - validate queue mapping info
2277  * @adapter: board private structure
2278  * @mqprio_qopt: queue parameters
2279  *
2280  * This function validates if the config provided by the user to
2281  * configure queue channels is valid or not. Returns 0 on a valid
2282  * config.
2283  **/
2284 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2285                                    struct tc_mqprio_qopt_offload *mqprio_qopt)
2286 {
2287         u64 total_max_rate = 0;
2288         int i, num_qps = 0;
2289         u64 tx_rate = 0;
2290         int ret = 0;
2291
2292         if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2293             mqprio_qopt->qopt.num_tc < 1)
2294                 return -EINVAL;
2295
2296         for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2297                 if (!mqprio_qopt->qopt.count[i] ||
2298                     mqprio_qopt->qopt.offset[i] != num_qps)
2299                         return -EINVAL;
2300                 if (mqprio_qopt->min_rate[i]) {
2301                         dev_err(&adapter->pdev->dev,
2302                                 "Invalid min tx rate (greater than 0) specified\n");
2303                         return -EINVAL;
2304                 }
2305                 /*convert to Mbps */
2306                 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2307                                   IAVF_MBPS_DIVISOR);
2308                 total_max_rate += tx_rate;
2309                 num_qps += mqprio_qopt->qopt.count[i];
2310         }
2311         if (num_qps > IAVF_MAX_REQ_QUEUES)
2312                 return -EINVAL;
2313
2314         ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2315         return ret;
2316 }
2317
2318 /**
2319  * iavf_del_all_cloud_filters - delete all cloud filters
2320  * on the traffic classes
2321  **/
2322 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2323 {
2324         struct iavf_cloud_filter *cf, *cftmp;
2325
2326         spin_lock_bh(&adapter->cloud_filter_list_lock);
2327         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2328                                  list) {
2329                 list_del(&cf->list);
2330                 kfree(cf);
2331                 adapter->num_cloud_filters--;
2332         }
2333         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2334 }
2335
2336 /**
2337  * __iavf_setup_tc - configure multiple traffic classes
2338  * @netdev: network interface device structure
2339  * @type_date: tc offload data
2340  *
2341  * This function processes the config information provided by the
2342  * user to configure traffic classes/queue channels and packages the
2343  * information to request the PF to setup traffic classes.
2344  *
2345  * Returns 0 on success.
2346  **/
2347 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2348 {
2349         struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2350         struct iavf_adapter *adapter = netdev_priv(netdev);
2351         struct virtchnl_vf_resource *vfres = adapter->vf_res;
2352         u8 num_tc = 0, total_qps = 0;
2353         int ret = 0, netdev_tc = 0;
2354         u64 max_tx_rate;
2355         u16 mode;
2356         int i;
2357
2358         num_tc = mqprio_qopt->qopt.num_tc;
2359         mode = mqprio_qopt->mode;
2360
2361         /* delete queue_channel */
2362         if (!mqprio_qopt->qopt.hw) {
2363                 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2364                         /* reset the tc configuration */
2365                         netdev_reset_tc(netdev);
2366                         adapter->num_tc = 0;
2367                         netif_tx_stop_all_queues(netdev);
2368                         netif_tx_disable(netdev);
2369                         iavf_del_all_cloud_filters(adapter);
2370                         adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2371                         goto exit;
2372                 } else {
2373                         return -EINVAL;
2374                 }
2375         }
2376
2377         /* add queue channel */
2378         if (mode == TC_MQPRIO_MODE_CHANNEL) {
2379                 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2380                         dev_err(&adapter->pdev->dev, "ADq not supported\n");
2381                         return -EOPNOTSUPP;
2382                 }
2383                 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2384                         dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2385                         return -EINVAL;
2386                 }
2387
2388                 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2389                 if (ret)
2390                         return ret;
2391                 /* Return if same TC config is requested */
2392                 if (adapter->num_tc == num_tc)
2393                         return 0;
2394                 adapter->num_tc = num_tc;
2395
2396                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2397                         if (i < num_tc) {
2398                                 adapter->ch_config.ch_info[i].count =
2399                                         mqprio_qopt->qopt.count[i];
2400                                 adapter->ch_config.ch_info[i].offset =
2401                                         mqprio_qopt->qopt.offset[i];
2402                                 total_qps += mqprio_qopt->qopt.count[i];
2403                                 max_tx_rate = mqprio_qopt->max_rate[i];
2404                                 /* convert to Mbps */
2405                                 max_tx_rate = div_u64(max_tx_rate,
2406                                                       IAVF_MBPS_DIVISOR);
2407                                 adapter->ch_config.ch_info[i].max_tx_rate =
2408                                         max_tx_rate;
2409                         } else {
2410                                 adapter->ch_config.ch_info[i].count = 1;
2411                                 adapter->ch_config.ch_info[i].offset = 0;
2412                         }
2413                 }
2414                 adapter->ch_config.total_qps = total_qps;
2415                 netif_tx_stop_all_queues(netdev);
2416                 netif_tx_disable(netdev);
2417                 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2418                 netdev_reset_tc(netdev);
2419                 /* Report the tc mapping up the stack */
2420                 netdev_set_num_tc(adapter->netdev, num_tc);
2421                 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2422                         u16 qcount = mqprio_qopt->qopt.count[i];
2423                         u16 qoffset = mqprio_qopt->qopt.offset[i];
2424
2425                         if (i < num_tc)
2426                                 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2427                                                     qoffset);
2428                 }
2429         }
2430 exit:
2431         return ret;
2432 }
2433
2434 /**
2435  * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2436  * @adapter: board private structure
2437  * @cls_flower: pointer to struct tc_cls_flower_offload
2438  * @filter: pointer to cloud filter structure
2439  */
2440 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2441                                  struct tc_cls_flower_offload *f,
2442                                  struct iavf_cloud_filter *filter)
2443 {
2444         struct flow_rule *rule = tc_cls_flower_offload_flow_rule(f);
2445         struct flow_dissector *dissector = rule->match.dissector;
2446         u16 n_proto_mask = 0;
2447         u16 n_proto_key = 0;
2448         u8 field_flags = 0;
2449         u16 addr_type = 0;
2450         u16 n_proto = 0;
2451         int i = 0;
2452         struct virtchnl_filter *vf = &filter->f;
2453
2454         if (dissector->used_keys &
2455             ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2456               BIT(FLOW_DISSECTOR_KEY_BASIC) |
2457               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2458               BIT(FLOW_DISSECTOR_KEY_VLAN) |
2459               BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2460               BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2461               BIT(FLOW_DISSECTOR_KEY_PORTS) |
2462               BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2463                 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2464                         dissector->used_keys);
2465                 return -EOPNOTSUPP;
2466         }
2467
2468         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2469                 struct flow_match_enc_keyid match;
2470
2471                 flow_rule_match_enc_keyid(rule, &match);
2472                 if (match.mask->keyid != 0)
2473                         field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2474         }
2475
2476         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2477                 struct flow_match_basic match;
2478
2479                 flow_rule_match_basic(rule, &match);
2480                 n_proto_key = ntohs(match.key->n_proto);
2481                 n_proto_mask = ntohs(match.mask->n_proto);
2482
2483                 if (n_proto_key == ETH_P_ALL) {
2484                         n_proto_key = 0;
2485                         n_proto_mask = 0;
2486                 }
2487                 n_proto = n_proto_key & n_proto_mask;
2488                 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2489                         return -EINVAL;
2490                 if (n_proto == ETH_P_IPV6) {
2491                         /* specify flow type as TCP IPv6 */
2492                         vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2493                 }
2494
2495                 if (match.key->ip_proto != IPPROTO_TCP) {
2496                         dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2497                         return -EINVAL;
2498                 }
2499         }
2500
2501         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2502                 struct flow_match_eth_addrs match;
2503
2504                 flow_rule_match_eth_addrs(rule, &match);
2505
2506                 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2507                 if (!is_zero_ether_addr(match.mask->dst)) {
2508                         if (is_broadcast_ether_addr(match.mask->dst)) {
2509                                 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2510                         } else {
2511                                 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2512                                         match.mask->dst);
2513                                 return I40E_ERR_CONFIG;
2514                         }
2515                 }
2516
2517                 if (!is_zero_ether_addr(match.mask->src)) {
2518                         if (is_broadcast_ether_addr(match.mask->src)) {
2519                                 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2520                         } else {
2521                                 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2522                                         match.mask->src);
2523                                 return I40E_ERR_CONFIG;
2524                         }
2525                 }
2526
2527                 if (!is_zero_ether_addr(match.key->dst))
2528                         if (is_valid_ether_addr(match.key->dst) ||
2529                             is_multicast_ether_addr(match.key->dst)) {
2530                                 /* set the mask if a valid dst_mac address */
2531                                 for (i = 0; i < ETH_ALEN; i++)
2532                                         vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2533                                 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2534                                                 match.key->dst);
2535                         }
2536
2537                 if (!is_zero_ether_addr(match.key->src))
2538                         if (is_valid_ether_addr(match.key->src) ||
2539                             is_multicast_ether_addr(match.key->src)) {
2540                                 /* set the mask if a valid dst_mac address */
2541                                 for (i = 0; i < ETH_ALEN; i++)
2542                                         vf->mask.tcp_spec.src_mac[i] |= 0xff;
2543                                 ether_addr_copy(vf->data.tcp_spec.src_mac,
2544                                                 match.key->src);
2545                 }
2546         }
2547
2548         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2549                 struct flow_match_vlan match;
2550
2551                 flow_rule_match_vlan(rule, &match);
2552                 if (match.mask->vlan_id) {
2553                         if (match.mask->vlan_id == VLAN_VID_MASK) {
2554                                 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2555                         } else {
2556                                 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2557                                         match.mask->vlan_id);
2558                                 return I40E_ERR_CONFIG;
2559                         }
2560                 }
2561                 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2562                 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2563         }
2564
2565         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2566                 struct flow_match_control match;
2567
2568                 flow_rule_match_control(rule, &match);
2569                 addr_type = match.key->addr_type;
2570         }
2571
2572         if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2573                 struct flow_match_ipv4_addrs match;
2574
2575                 flow_rule_match_ipv4_addrs(rule, &match);
2576                 if (match.mask->dst) {
2577                         if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2578                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2579                         } else {
2580                                 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2581                                         be32_to_cpu(match.mask->dst));
2582                                 return I40E_ERR_CONFIG;
2583                         }
2584                 }
2585
2586                 if (match.mask->src) {
2587                         if (match.mask->src == cpu_to_be32(0xffffffff)) {
2588                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2589                         } else {
2590                                 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2591                                         be32_to_cpu(match.mask->dst));
2592                                 return I40E_ERR_CONFIG;
2593                         }
2594                 }
2595
2596                 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2597                         dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2598                         return I40E_ERR_CONFIG;
2599                 }
2600                 if (match.key->dst) {
2601                         vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2602                         vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2603                 }
2604                 if (match.key->src) {
2605                         vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2606                         vf->data.tcp_spec.src_ip[0] = match.key->src;
2607                 }
2608         }
2609
2610         if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2611                 struct flow_match_ipv6_addrs match;
2612
2613                 flow_rule_match_ipv6_addrs(rule, &match);
2614
2615                 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2616                 if (ipv6_addr_any(&match.mask->dst)) {
2617                         dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2618                                 IPV6_ADDR_ANY);
2619                         return I40E_ERR_CONFIG;
2620                 }
2621
2622                 /* src and dest IPv6 address should not be LOOPBACK
2623                  * (0:0:0:0:0:0:0:1) which can be represented as ::1
2624                  */
2625                 if (ipv6_addr_loopback(&match.key->dst) ||
2626                     ipv6_addr_loopback(&match.key->src)) {
2627                         dev_err(&adapter->pdev->dev,
2628                                 "ipv6 addr should not be loopback\n");
2629                         return I40E_ERR_CONFIG;
2630                 }
2631                 if (!ipv6_addr_any(&match.mask->dst) ||
2632                     !ipv6_addr_any(&match.mask->src))
2633                         field_flags |= IAVF_CLOUD_FIELD_IIP;
2634
2635                 for (i = 0; i < 4; i++)
2636                         vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2637                 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2638                        sizeof(vf->data.tcp_spec.dst_ip));
2639                 for (i = 0; i < 4; i++)
2640                         vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2641                 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2642                        sizeof(vf->data.tcp_spec.src_ip));
2643         }
2644         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2645                 struct flow_match_ports match;
2646
2647                 flow_rule_match_ports(rule, &match);
2648                 if (match.mask->src) {
2649                         if (match.mask->src == cpu_to_be16(0xffff)) {
2650                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2651                         } else {
2652                                 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2653                                         be16_to_cpu(match.mask->src));
2654                                 return I40E_ERR_CONFIG;
2655                         }
2656                 }
2657
2658                 if (match.mask->dst) {
2659                         if (match.mask->dst == cpu_to_be16(0xffff)) {
2660                                 field_flags |= IAVF_CLOUD_FIELD_IIP;
2661                         } else {
2662                                 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2663                                         be16_to_cpu(match.mask->dst));
2664                                 return I40E_ERR_CONFIG;
2665                         }
2666                 }
2667                 if (match.key->dst) {
2668                         vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2669                         vf->data.tcp_spec.dst_port = match.key->dst;
2670                 }
2671
2672                 if (match.key->src) {
2673                         vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2674                         vf->data.tcp_spec.src_port = match.key->src;
2675                 }
2676         }
2677         vf->field_flags = field_flags;
2678
2679         return 0;
2680 }
2681
2682 /**
2683  * iavf_handle_tclass - Forward to a traffic class on the device
2684  * @adapter: board private structure
2685  * @tc: traffic class index on the device
2686  * @filter: pointer to cloud filter structure
2687  */
2688 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2689                               struct iavf_cloud_filter *filter)
2690 {
2691         if (tc == 0)
2692                 return 0;
2693         if (tc < adapter->num_tc) {
2694                 if (!filter->f.data.tcp_spec.dst_port) {
2695                         dev_err(&adapter->pdev->dev,
2696                                 "Specify destination port to redirect to traffic class other than TC0\n");
2697                         return -EINVAL;
2698                 }
2699         }
2700         /* redirect to a traffic class on the same device */
2701         filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2702         filter->f.action_meta = tc;
2703         return 0;
2704 }
2705
2706 /**
2707  * iavf_configure_clsflower - Add tc flower filters
2708  * @adapter: board private structure
2709  * @cls_flower: Pointer to struct tc_cls_flower_offload
2710  */
2711 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2712                                     struct tc_cls_flower_offload *cls_flower)
2713 {
2714         int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2715         struct iavf_cloud_filter *filter = NULL;
2716         int err = -EINVAL, count = 50;
2717
2718         if (tc < 0) {
2719                 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2720                 return -EINVAL;
2721         }
2722
2723         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2724         if (!filter)
2725                 return -ENOMEM;
2726
2727         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2728                                 &adapter->crit_section)) {
2729                 if (--count == 0)
2730                         goto err;
2731                 udelay(1);
2732         }
2733
2734         filter->cookie = cls_flower->cookie;
2735
2736         /* set the mask to all zeroes to begin with */
2737         memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2738         /* start out with flow type and eth type IPv4 to begin with */
2739         filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2740         err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2741         if (err < 0)
2742                 goto err;
2743
2744         err = iavf_handle_tclass(adapter, tc, filter);
2745         if (err < 0)
2746                 goto err;
2747
2748         /* add filter to the list */
2749         spin_lock_bh(&adapter->cloud_filter_list_lock);
2750         list_add_tail(&filter->list, &adapter->cloud_filter_list);
2751         adapter->num_cloud_filters++;
2752         filter->add = true;
2753         adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2754         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2755 err:
2756         if (err)
2757                 kfree(filter);
2758
2759         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2760         return err;
2761 }
2762
2763 /* iavf_find_cf - Find the cloud filter in the list
2764  * @adapter: Board private structure
2765  * @cookie: filter specific cookie
2766  *
2767  * Returns ptr to the filter object or NULL. Must be called while holding the
2768  * cloud_filter_list_lock.
2769  */
2770 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
2771                                               unsigned long *cookie)
2772 {
2773         struct iavf_cloud_filter *filter = NULL;
2774
2775         if (!cookie)
2776                 return NULL;
2777
2778         list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
2779                 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
2780                         return filter;
2781         }
2782         return NULL;
2783 }
2784
2785 /**
2786  * iavf_delete_clsflower - Remove tc flower filters
2787  * @adapter: board private structure
2788  * @cls_flower: Pointer to struct tc_cls_flower_offload
2789  */
2790 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
2791                                  struct tc_cls_flower_offload *cls_flower)
2792 {
2793         struct iavf_cloud_filter *filter = NULL;
2794         int err = 0;
2795
2796         spin_lock_bh(&adapter->cloud_filter_list_lock);
2797         filter = iavf_find_cf(adapter, &cls_flower->cookie);
2798         if (filter) {
2799                 filter->del = true;
2800                 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
2801         } else {
2802                 err = -EINVAL;
2803         }
2804         spin_unlock_bh(&adapter->cloud_filter_list_lock);
2805
2806         return err;
2807 }
2808
2809 /**
2810  * iavf_setup_tc_cls_flower - flower classifier offloads
2811  * @netdev: net device to configure
2812  * @type_data: offload data
2813  */
2814 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
2815                                     struct tc_cls_flower_offload *cls_flower)
2816 {
2817         if (cls_flower->common.chain_index)
2818                 return -EOPNOTSUPP;
2819
2820         switch (cls_flower->command) {
2821         case TC_CLSFLOWER_REPLACE:
2822                 return iavf_configure_clsflower(adapter, cls_flower);
2823         case TC_CLSFLOWER_DESTROY:
2824                 return iavf_delete_clsflower(adapter, cls_flower);
2825         case TC_CLSFLOWER_STATS:
2826                 return -EOPNOTSUPP;
2827         default:
2828                 return -EOPNOTSUPP;
2829         }
2830 }
2831
2832 /**
2833  * iavf_setup_tc_block_cb - block callback for tc
2834  * @type: type of offload
2835  * @type_data: offload data
2836  * @cb_priv:
2837  *
2838  * This function is the block callback for traffic classes
2839  **/
2840 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2841                                   void *cb_priv)
2842 {
2843         switch (type) {
2844         case TC_SETUP_CLSFLOWER:
2845                 return iavf_setup_tc_cls_flower(cb_priv, type_data);
2846         default:
2847                 return -EOPNOTSUPP;
2848         }
2849 }
2850
2851 /**
2852  * iavf_setup_tc_block - register callbacks for tc
2853  * @netdev: network interface device structure
2854  * @f: tc offload data
2855  *
2856  * This function registers block callbacks for tc
2857  * offloads
2858  **/
2859 static int iavf_setup_tc_block(struct net_device *dev,
2860                                struct tc_block_offload *f)
2861 {
2862         struct iavf_adapter *adapter = netdev_priv(dev);
2863
2864         if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2865                 return -EOPNOTSUPP;
2866
2867         switch (f->command) {
2868         case TC_BLOCK_BIND:
2869                 return tcf_block_cb_register(f->block, iavf_setup_tc_block_cb,
2870                                              adapter, adapter, f->extack);
2871         case TC_BLOCK_UNBIND:
2872                 tcf_block_cb_unregister(f->block, iavf_setup_tc_block_cb,
2873                                         adapter);
2874                 return 0;
2875         default:
2876                 return -EOPNOTSUPP;
2877         }
2878 }
2879
2880 /**
2881  * iavf_setup_tc - configure multiple traffic classes
2882  * @netdev: network interface device structure
2883  * @type: type of offload
2884  * @type_date: tc offload data
2885  *
2886  * This function is the callback to ndo_setup_tc in the
2887  * netdev_ops.
2888  *
2889  * Returns 0 on success
2890  **/
2891 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
2892                          void *type_data)
2893 {
2894         switch (type) {
2895         case TC_SETUP_QDISC_MQPRIO:
2896                 return __iavf_setup_tc(netdev, type_data);
2897         case TC_SETUP_BLOCK:
2898                 return iavf_setup_tc_block(netdev, type_data);
2899         default:
2900                 return -EOPNOTSUPP;
2901         }
2902 }
2903
2904 /**
2905  * iavf_open - Called when a network interface is made active
2906  * @netdev: network interface device structure
2907  *
2908  * Returns 0 on success, negative value on failure
2909  *
2910  * The open entry point is called when a network interface is made
2911  * active by the system (IFF_UP).  At this point all resources needed
2912  * for transmit and receive operations are allocated, the interrupt
2913  * handler is registered with the OS, the watchdog timer is started,
2914  * and the stack is notified that the interface is ready.
2915  **/
2916 static int iavf_open(struct net_device *netdev)
2917 {
2918         struct iavf_adapter *adapter = netdev_priv(netdev);
2919         int err;
2920
2921         if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
2922                 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
2923                 return -EIO;
2924         }
2925
2926         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2927                                 &adapter->crit_section))
2928                 usleep_range(500, 1000);
2929
2930         if (adapter->state != __IAVF_DOWN) {
2931                 err = -EBUSY;
2932                 goto err_unlock;
2933         }
2934
2935         /* allocate transmit descriptors */
2936         err = iavf_setup_all_tx_resources(adapter);
2937         if (err)
2938                 goto err_setup_tx;
2939
2940         /* allocate receive descriptors */
2941         err = iavf_setup_all_rx_resources(adapter);
2942         if (err)
2943                 goto err_setup_rx;
2944
2945         /* clear any pending interrupts, may auto mask */
2946         err = iavf_request_traffic_irqs(adapter, netdev->name);
2947         if (err)
2948                 goto err_req_irq;
2949
2950         spin_lock_bh(&adapter->mac_vlan_list_lock);
2951
2952         iavf_add_filter(adapter, adapter->hw.mac.addr);
2953
2954         spin_unlock_bh(&adapter->mac_vlan_list_lock);
2955
2956         iavf_configure(adapter);
2957
2958         iavf_up_complete(adapter);
2959
2960         iavf_irq_enable(adapter, true);
2961
2962         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2963
2964         return 0;
2965
2966 err_req_irq:
2967         iavf_down(adapter);
2968         iavf_free_traffic_irqs(adapter);
2969 err_setup_rx:
2970         iavf_free_all_rx_resources(adapter);
2971 err_setup_tx:
2972         iavf_free_all_tx_resources(adapter);
2973 err_unlock:
2974         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2975
2976         return err;
2977 }
2978
2979 /**
2980  * iavf_close - Disables a network interface
2981  * @netdev: network interface device structure
2982  *
2983  * Returns 0, this is not allowed to fail
2984  *
2985  * The close entry point is called when an interface is de-activated
2986  * by the OS.  The hardware is still under the drivers control, but
2987  * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
2988  * are freed, along with all transmit and receive resources.
2989  **/
2990 static int iavf_close(struct net_device *netdev)
2991 {
2992         struct iavf_adapter *adapter = netdev_priv(netdev);
2993         int status;
2994
2995         if (adapter->state <= __IAVF_DOWN_PENDING)
2996                 return 0;
2997
2998         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2999                                 &adapter->crit_section))
3000                 usleep_range(500, 1000);
3001
3002         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3003         if (CLIENT_ENABLED(adapter))
3004                 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3005
3006         iavf_down(adapter);
3007         adapter->state = __IAVF_DOWN_PENDING;
3008         iavf_free_traffic_irqs(adapter);
3009
3010         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3011
3012         /* We explicitly don't free resources here because the hardware is
3013          * still active and can DMA into memory. Resources are cleared in
3014          * iavf_virtchnl_completion() after we get confirmation from the PF
3015          * driver that the rings have been stopped.
3016          *
3017          * Also, we wait for state to transition to __IAVF_DOWN before
3018          * returning. State change occurs in iavf_virtchnl_completion() after
3019          * VF resources are released (which occurs after PF driver processes and
3020          * responds to admin queue commands).
3021          */
3022
3023         status = wait_event_timeout(adapter->down_waitqueue,
3024                                     adapter->state == __IAVF_DOWN,
3025                                     msecs_to_jiffies(200));
3026         if (!status)
3027                 netdev_warn(netdev, "Device resources not yet released\n");
3028         return 0;
3029 }
3030
3031 /**
3032  * iavf_change_mtu - Change the Maximum Transfer Unit
3033  * @netdev: network interface device structure
3034  * @new_mtu: new value for maximum frame size
3035  *
3036  * Returns 0 on success, negative on failure
3037  **/
3038 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3039 {
3040         struct iavf_adapter *adapter = netdev_priv(netdev);
3041
3042         netdev->mtu = new_mtu;
3043         if (CLIENT_ENABLED(adapter)) {
3044                 iavf_notify_client_l2_params(&adapter->vsi);
3045                 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3046         }
3047         adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3048         schedule_work(&adapter->reset_task);
3049
3050         return 0;
3051 }
3052
3053 /**
3054  * iavf_set_features - set the netdev feature flags
3055  * @netdev: ptr to the netdev being adjusted
3056  * @features: the feature set that the stack is suggesting
3057  * Note: expects to be called while under rtnl_lock()
3058  **/
3059 static int iavf_set_features(struct net_device *netdev,
3060                              netdev_features_t features)
3061 {
3062         struct iavf_adapter *adapter = netdev_priv(netdev);
3063
3064         /* Don't allow changing VLAN_RX flag when adapter is not capable
3065          * of VLAN offload
3066          */
3067         if (!VLAN_ALLOWED(adapter)) {
3068                 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3069                         return -EINVAL;
3070         } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3071                 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3072                         adapter->aq_required |=
3073                                 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3074                 else
3075                         adapter->aq_required |=
3076                                 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3077         }
3078
3079         return 0;
3080 }
3081
3082 /**
3083  * iavf_features_check - Validate encapsulated packet conforms to limits
3084  * @skb: skb buff
3085  * @dev: This physical port's netdev
3086  * @features: Offload features that the stack believes apply
3087  **/
3088 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3089                                              struct net_device *dev,
3090                                              netdev_features_t features)
3091 {
3092         size_t len;
3093
3094         /* No point in doing any of this if neither checksum nor GSO are
3095          * being requested for this frame.  We can rule out both by just
3096          * checking for CHECKSUM_PARTIAL
3097          */
3098         if (skb->ip_summed != CHECKSUM_PARTIAL)
3099                 return features;
3100
3101         /* We cannot support GSO if the MSS is going to be less than
3102          * 64 bytes.  If it is then we need to drop support for GSO.
3103          */
3104         if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3105                 features &= ~NETIF_F_GSO_MASK;
3106
3107         /* MACLEN can support at most 63 words */
3108         len = skb_network_header(skb) - skb->data;
3109         if (len & ~(63 * 2))
3110                 goto out_err;
3111
3112         /* IPLEN and EIPLEN can support at most 127 dwords */
3113         len = skb_transport_header(skb) - skb_network_header(skb);
3114         if (len & ~(127 * 4))
3115                 goto out_err;
3116
3117         if (skb->encapsulation) {
3118                 /* L4TUNLEN can support 127 words */
3119                 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3120                 if (len & ~(127 * 2))
3121                         goto out_err;
3122
3123                 /* IPLEN can support at most 127 dwords */
3124                 len = skb_inner_transport_header(skb) -
3125                       skb_inner_network_header(skb);
3126                 if (len & ~(127 * 4))
3127                         goto out_err;
3128         }
3129
3130         /* No need to validate L4LEN as TCP is the only protocol with a
3131          * a flexible value and we support all possible values supported
3132          * by TCP, which is at most 15 dwords
3133          */
3134
3135         return features;
3136 out_err:
3137         return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3138 }
3139
3140 /**
3141  * iavf_fix_features - fix up the netdev feature bits
3142  * @netdev: our net device
3143  * @features: desired feature bits
3144  *
3145  * Returns fixed-up features bits
3146  **/
3147 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3148                                            netdev_features_t features)
3149 {
3150         struct iavf_adapter *adapter = netdev_priv(netdev);
3151
3152         if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3153                 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3154                               NETIF_F_HW_VLAN_CTAG_RX |
3155                               NETIF_F_HW_VLAN_CTAG_FILTER);
3156
3157         return features;
3158 }
3159
3160 static const struct net_device_ops iavf_netdev_ops = {
3161         .ndo_open               = iavf_open,
3162         .ndo_stop               = iavf_close,
3163         .ndo_start_xmit         = iavf_xmit_frame,
3164         .ndo_set_rx_mode        = iavf_set_rx_mode,
3165         .ndo_validate_addr      = eth_validate_addr,
3166         .ndo_set_mac_address    = iavf_set_mac,
3167         .ndo_change_mtu         = iavf_change_mtu,
3168         .ndo_tx_timeout         = iavf_tx_timeout,
3169         .ndo_vlan_rx_add_vid    = iavf_vlan_rx_add_vid,
3170         .ndo_vlan_rx_kill_vid   = iavf_vlan_rx_kill_vid,
3171         .ndo_features_check     = iavf_features_check,
3172         .ndo_fix_features       = iavf_fix_features,
3173         .ndo_set_features       = iavf_set_features,
3174         .ndo_setup_tc           = iavf_setup_tc,
3175 };
3176
3177 /**
3178  * iavf_check_reset_complete - check that VF reset is complete
3179  * @hw: pointer to hw struct
3180  *
3181  * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3182  **/
3183 static int iavf_check_reset_complete(struct iavf_hw *hw)
3184 {
3185         u32 rstat;
3186         int i;
3187
3188         for (i = 0; i < 100; i++) {
3189                 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3190                              IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3191                 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3192                     (rstat == VIRTCHNL_VFR_COMPLETED))
3193                         return 0;
3194                 usleep_range(10, 20);
3195         }
3196         return -EBUSY;
3197 }
3198
3199 /**
3200  * iavf_process_config - Process the config information we got from the PF
3201  * @adapter: board private structure
3202  *
3203  * Verify that we have a valid config struct, and set up our netdev features
3204  * and our VSI struct.
3205  **/
3206 int iavf_process_config(struct iavf_adapter *adapter)
3207 {
3208         struct virtchnl_vf_resource *vfres = adapter->vf_res;
3209         int i, num_req_queues = adapter->num_req_queues;
3210         struct net_device *netdev = adapter->netdev;
3211         struct iavf_vsi *vsi = &adapter->vsi;
3212         netdev_features_t hw_enc_features;
3213         netdev_features_t hw_features;
3214
3215         /* got VF config message back from PF, now we can parse it */
3216         for (i = 0; i < vfres->num_vsis; i++) {
3217                 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3218                         adapter->vsi_res = &vfres->vsi_res[i];
3219         }
3220         if (!adapter->vsi_res) {
3221                 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3222                 return -ENODEV;
3223         }
3224
3225         if (num_req_queues &&
3226             num_req_queues != adapter->vsi_res->num_queue_pairs) {
3227                 /* Problem.  The PF gave us fewer queues than what we had
3228                  * negotiated in our request.  Need a reset to see if we can't
3229                  * get back to a working state.
3230                  */
3231                 dev_err(&adapter->pdev->dev,
3232                         "Requested %d queues, but PF only gave us %d.\n",
3233                         num_req_queues,
3234                         adapter->vsi_res->num_queue_pairs);
3235                 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3236                 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3237                 iavf_schedule_reset(adapter);
3238                 return -ENODEV;
3239         }
3240         adapter->num_req_queues = 0;
3241
3242         hw_enc_features = NETIF_F_SG                    |
3243                           NETIF_F_IP_CSUM               |
3244                           NETIF_F_IPV6_CSUM             |
3245                           NETIF_F_HIGHDMA               |
3246                           NETIF_F_SOFT_FEATURES |
3247                           NETIF_F_TSO                   |
3248                           NETIF_F_TSO_ECN               |
3249                           NETIF_F_TSO6                  |
3250                           NETIF_F_SCTP_CRC              |
3251                           NETIF_F_RXHASH                |
3252                           NETIF_F_RXCSUM                |
3253                           0;
3254
3255         /* advertise to stack only if offloads for encapsulated packets is
3256          * supported
3257          */
3258         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3259                 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL       |
3260                                    NETIF_F_GSO_GRE              |
3261                                    NETIF_F_GSO_GRE_CSUM         |
3262                                    NETIF_F_GSO_IPXIP4           |
3263                                    NETIF_F_GSO_IPXIP6           |
3264                                    NETIF_F_GSO_UDP_TUNNEL_CSUM  |
3265                                    NETIF_F_GSO_PARTIAL          |
3266                                    0;
3267
3268                 if (!(vfres->vf_cap_flags &
3269                       VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3270                         netdev->gso_partial_features |=
3271                                 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3272
3273                 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3274                 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3275                 netdev->hw_enc_features |= hw_enc_features;
3276         }
3277         /* record features VLANs can make use of */
3278         netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3279
3280         /* Write features and hw_features separately to avoid polluting
3281          * with, or dropping, features that are set when we registered.
3282          */
3283         hw_features = hw_enc_features;
3284
3285         /* Enable VLAN features if supported */
3286         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3287                 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3288                                 NETIF_F_HW_VLAN_CTAG_RX);
3289         /* Enable cloud filter if ADQ is supported */
3290         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3291                 hw_features |= NETIF_F_HW_TC;
3292
3293         netdev->hw_features |= hw_features;
3294
3295         netdev->features |= hw_features;
3296
3297         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3298                 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3299
3300         netdev->priv_flags |= IFF_UNICAST_FLT;
3301
3302         /* Do not turn on offloads when they are requested to be turned off.
3303          * TSO needs minimum 576 bytes to work correctly.
3304          */
3305         if (netdev->wanted_features) {
3306                 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3307                     netdev->mtu < 576)
3308                         netdev->features &= ~NETIF_F_TSO;
3309                 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3310                     netdev->mtu < 576)
3311                         netdev->features &= ~NETIF_F_TSO6;
3312                 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3313                         netdev->features &= ~NETIF_F_TSO_ECN;
3314                 if (!(netdev->wanted_features & NETIF_F_GRO))
3315                         netdev->features &= ~NETIF_F_GRO;
3316                 if (!(netdev->wanted_features & NETIF_F_GSO))
3317                         netdev->features &= ~NETIF_F_GSO;
3318         }
3319
3320         adapter->vsi.id = adapter->vsi_res->vsi_id;
3321
3322         adapter->vsi.back = adapter;
3323         adapter->vsi.base_vector = 1;
3324         adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3325         vsi->netdev = adapter->netdev;
3326         vsi->qs_handle = adapter->vsi_res->qset_handle;
3327         if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3328                 adapter->rss_key_size = vfres->rss_key_size;
3329                 adapter->rss_lut_size = vfres->rss_lut_size;
3330         } else {
3331                 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3332                 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3333         }
3334
3335         return 0;
3336 }
3337
3338 /**
3339  * iavf_init_task - worker thread to perform delayed initialization
3340  * @work: pointer to work_struct containing our data
3341  *
3342  * This task completes the work that was begun in probe. Due to the nature
3343  * of VF-PF communications, we may need to wait tens of milliseconds to get
3344  * responses back from the PF. Rather than busy-wait in probe and bog down the
3345  * whole system, we'll do it in a task so we can sleep.
3346  * This task only runs during driver init. Once we've established
3347  * communications with the PF driver and set up our netdev, the watchdog
3348  * takes over.
3349  **/
3350 static void iavf_init_task(struct work_struct *work)
3351 {
3352         struct iavf_adapter *adapter = container_of(work,
3353                                                       struct iavf_adapter,
3354                                                       init_task.work);
3355         struct net_device *netdev = adapter->netdev;
3356         struct iavf_hw *hw = &adapter->hw;
3357         struct pci_dev *pdev = adapter->pdev;
3358         int err;
3359
3360         switch (adapter->state) {
3361         case __IAVF_STARTUP:
3362                 /* driver loaded, probe complete */
3363                 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
3364                 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3365                 err = iavf_set_mac_type(hw);
3366                 if (err) {
3367                         dev_err(&pdev->dev, "Failed to set MAC type (%d)\n",
3368                                 err);
3369                         goto err;
3370                 }
3371                 err = iavf_check_reset_complete(hw);
3372                 if (err) {
3373                         dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
3374                                  err);
3375                         goto err;
3376                 }
3377                 hw->aq.num_arq_entries = IAVF_AQ_LEN;
3378                 hw->aq.num_asq_entries = IAVF_AQ_LEN;
3379                 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
3380                 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
3381
3382                 err = iavf_init_adminq(hw);
3383                 if (err) {
3384                         dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
3385                                 err);
3386                         goto err;
3387                 }
3388                 err = iavf_send_api_ver(adapter);
3389                 if (err) {
3390                         dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
3391                         iavf_shutdown_adminq(hw);
3392                         goto err;
3393                 }
3394                 adapter->state = __IAVF_INIT_VERSION_CHECK;
3395                 goto restart;
3396         case __IAVF_INIT_VERSION_CHECK:
3397                 if (!iavf_asq_done(hw)) {
3398                         dev_err(&pdev->dev, "Admin queue command never completed\n");
3399                         iavf_shutdown_adminq(hw);
3400                         adapter->state = __IAVF_STARTUP;
3401                         goto err;
3402                 }
3403
3404                 /* aq msg sent, awaiting reply */
3405                 err = iavf_verify_api_ver(adapter);
3406                 if (err) {
3407                         if (err == I40E_ERR_ADMIN_QUEUE_NO_WORK)
3408                                 err = iavf_send_api_ver(adapter);
3409                         else
3410                                 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
3411                                         adapter->pf_version.major,
3412                                         adapter->pf_version.minor,
3413                                         VIRTCHNL_VERSION_MAJOR,
3414                                         VIRTCHNL_VERSION_MINOR);
3415                         goto err;
3416                 }
3417                 err = iavf_send_vf_config_msg(adapter);
3418                 if (err) {
3419                         dev_err(&pdev->dev, "Unable to send config request (%d)\n",
3420                                 err);
3421                         goto err;
3422                 }
3423                 adapter->state = __IAVF_INIT_GET_RESOURCES;
3424                 goto restart;
3425         case __IAVF_INIT_GET_RESOURCES:
3426                 /* aq msg sent, awaiting reply */
3427                 if (!adapter->vf_res) {
3428                         adapter->vf_res = kzalloc(struct_size(adapter->vf_res,
3429                                                   vsi_res, IAVF_MAX_VF_VSI),
3430                                                   GFP_KERNEL);
3431                         if (!adapter->vf_res)
3432                                 goto err;
3433                 }
3434                 err = iavf_get_vf_config(adapter);
3435                 if (err == I40E_ERR_ADMIN_QUEUE_NO_WORK) {
3436                         err = iavf_send_vf_config_msg(adapter);
3437                         goto err;
3438                 } else if (err == I40E_ERR_PARAM) {
3439                         /* We only get ERR_PARAM if the device is in a very bad
3440                          * state or if we've been disabled for previous bad
3441                          * behavior. Either way, we're done now.
3442                          */
3443                         iavf_shutdown_adminq(hw);
3444                         dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
3445                         return;
3446                 }
3447                 if (err) {
3448                         dev_err(&pdev->dev, "Unable to get VF config (%d)\n",
3449                                 err);
3450                         goto err_alloc;
3451                 }
3452                 adapter->state = __IAVF_INIT_SW;
3453                 break;
3454         default:
3455                 goto err_alloc;
3456         }
3457
3458         if (iavf_process_config(adapter))
3459                 goto err_alloc;
3460         adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3461
3462         adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
3463
3464         netdev->netdev_ops = &iavf_netdev_ops;
3465         iavf_set_ethtool_ops(netdev);
3466         netdev->watchdog_timeo = 5 * HZ;
3467
3468         /* MTU range: 68 - 9710 */
3469         netdev->min_mtu = ETH_MIN_MTU;
3470         netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
3471
3472         if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
3473                 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
3474                          adapter->hw.mac.addr);
3475                 eth_hw_addr_random(netdev);
3476                 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
3477         } else {
3478                 adapter->flags |= IAVF_FLAG_ADDR_SET_BY_PF;
3479                 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
3480                 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
3481         }
3482
3483         timer_setup(&adapter->watchdog_timer, iavf_watchdog_timer, 0);
3484         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3485
3486         adapter->tx_desc_count = IAVF_DEFAULT_TXD;
3487         adapter->rx_desc_count = IAVF_DEFAULT_RXD;
3488         err = iavf_init_interrupt_scheme(adapter);
3489         if (err)
3490                 goto err_sw_init;
3491         iavf_map_rings_to_vectors(adapter);
3492         if (adapter->vf_res->vf_cap_flags &
3493             VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
3494                 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
3495
3496         err = iavf_request_misc_irq(adapter);
3497         if (err)
3498                 goto err_sw_init;
3499
3500         netif_carrier_off(netdev);
3501         adapter->link_up = false;
3502
3503         if (!adapter->netdev_registered) {
3504                 err = register_netdev(netdev);
3505                 if (err)
3506                         goto err_register;
3507         }
3508
3509         adapter->netdev_registered = true;
3510
3511         netif_tx_stop_all_queues(netdev);
3512         if (CLIENT_ALLOWED(adapter)) {
3513                 err = iavf_lan_add_device(adapter);
3514                 if (err)
3515                         dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
3516                                  err);
3517         }
3518
3519         dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
3520         if (netdev->features & NETIF_F_GRO)
3521                 dev_info(&pdev->dev, "GRO is enabled\n");
3522
3523         adapter->state = __IAVF_DOWN;
3524         set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3525         iavf_misc_irq_enable(adapter);
3526         wake_up(&adapter->down_waitqueue);
3527
3528         adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
3529         adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
3530         if (!adapter->rss_key || !adapter->rss_lut)
3531                 goto err_mem;
3532
3533         if (RSS_AQ(adapter)) {
3534                 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3535                 mod_timer_pending(&adapter->watchdog_timer, jiffies + 1);
3536         } else {
3537                 iavf_init_rss(adapter);
3538         }
3539         return;
3540 restart:
3541         schedule_delayed_work(&adapter->init_task, msecs_to_jiffies(30));
3542         return;
3543 err_mem:
3544         iavf_free_rss(adapter);
3545 err_register:
3546         iavf_free_misc_irq(adapter);
3547 err_sw_init:
3548         iavf_reset_interrupt_capability(adapter);
3549 err_alloc:
3550         kfree(adapter->vf_res);
3551         adapter->vf_res = NULL;
3552 err:
3553         /* Things went into the weeds, so try again later */
3554         if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3555                 dev_err(&pdev->dev, "Failed to communicate with PF; waiting before retry\n");
3556                 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3557                 iavf_shutdown_adminq(hw);
3558                 adapter->state = __IAVF_STARTUP;
3559                 schedule_delayed_work(&adapter->init_task, HZ * 5);
3560                 return;
3561         }
3562         schedule_delayed_work(&adapter->init_task, HZ);
3563 }
3564
3565 /**
3566  * iavf_shutdown - Shutdown the device in preparation for a reboot
3567  * @pdev: pci device structure
3568  **/
3569 static void iavf_shutdown(struct pci_dev *pdev)
3570 {
3571         struct net_device *netdev = pci_get_drvdata(pdev);
3572         struct iavf_adapter *adapter = netdev_priv(netdev);
3573
3574         netif_device_detach(netdev);
3575
3576         if (netif_running(netdev))
3577                 iavf_close(netdev);
3578
3579         /* Prevent the watchdog from running. */
3580         adapter->state = __IAVF_REMOVE;
3581         adapter->aq_required = 0;
3582
3583 #ifdef CONFIG_PM
3584         pci_save_state(pdev);
3585
3586 #endif
3587         pci_disable_device(pdev);
3588 }
3589
3590 /**
3591  * iavf_probe - Device Initialization Routine
3592  * @pdev: PCI device information struct
3593  * @ent: entry in iavf_pci_tbl
3594  *
3595  * Returns 0 on success, negative on failure
3596  *
3597  * iavf_probe initializes an adapter identified by a pci_dev structure.
3598  * The OS initialization, configuring of the adapter private structure,
3599  * and a hardware reset occur.
3600  **/
3601 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3602 {
3603         struct net_device *netdev;
3604         struct iavf_adapter *adapter = NULL;
3605         struct iavf_hw *hw = NULL;
3606         int err;
3607
3608         err = pci_enable_device(pdev);
3609         if (err)
3610                 return err;
3611
3612         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3613         if (err) {
3614                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3615                 if (err) {
3616                         dev_err(&pdev->dev,
3617                                 "DMA configuration failed: 0x%x\n", err);
3618                         goto err_dma;
3619                 }
3620         }
3621
3622         err = pci_request_regions(pdev, iavf_driver_name);
3623         if (err) {
3624                 dev_err(&pdev->dev,
3625                         "pci_request_regions failed 0x%x\n", err);
3626                 goto err_pci_reg;
3627         }
3628
3629         pci_enable_pcie_error_reporting(pdev);
3630
3631         pci_set_master(pdev);
3632
3633         netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3634                                    IAVF_MAX_REQ_QUEUES);
3635         if (!netdev) {
3636                 err = -ENOMEM;
3637                 goto err_alloc_etherdev;
3638         }
3639
3640         SET_NETDEV_DEV(netdev, &pdev->dev);
3641
3642         pci_set_drvdata(pdev, netdev);
3643         adapter = netdev_priv(netdev);
3644
3645         adapter->netdev = netdev;
3646         adapter->pdev = pdev;
3647
3648         hw = &adapter->hw;
3649         hw->back = adapter;
3650
3651         adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3652         adapter->state = __IAVF_STARTUP;
3653
3654         /* Call save state here because it relies on the adapter struct. */
3655         pci_save_state(pdev);
3656
3657         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3658                               pci_resource_len(pdev, 0));
3659         if (!hw->hw_addr) {
3660                 err = -EIO;
3661                 goto err_ioremap;
3662         }
3663         hw->vendor_id = pdev->vendor;
3664         hw->device_id = pdev->device;
3665         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3666         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3667         hw->subsystem_device_id = pdev->subsystem_device;
3668         hw->bus.device = PCI_SLOT(pdev->devfn);
3669         hw->bus.func = PCI_FUNC(pdev->devfn);
3670         hw->bus.bus_id = pdev->bus->number;
3671
3672         /* set up the locks for the AQ, do this only once in probe
3673          * and destroy them only once in remove
3674          */
3675         mutex_init(&hw->aq.asq_mutex);
3676         mutex_init(&hw->aq.arq_mutex);
3677
3678         spin_lock_init(&adapter->mac_vlan_list_lock);
3679         spin_lock_init(&adapter->cloud_filter_list_lock);
3680
3681         INIT_LIST_HEAD(&adapter->mac_filter_list);
3682         INIT_LIST_HEAD(&adapter->vlan_filter_list);
3683         INIT_LIST_HEAD(&adapter->cloud_filter_list);
3684
3685         INIT_WORK(&adapter->reset_task, iavf_reset_task);
3686         INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3687         INIT_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3688         INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3689         INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3690         schedule_delayed_work(&adapter->init_task,
3691                               msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3692
3693         /* Setup the wait queue for indicating transition to down status */
3694         init_waitqueue_head(&adapter->down_waitqueue);
3695
3696         return 0;
3697
3698 err_ioremap:
3699         free_netdev(netdev);
3700 err_alloc_etherdev:
3701         pci_release_regions(pdev);
3702 err_pci_reg:
3703 err_dma:
3704         pci_disable_device(pdev);
3705         return err;
3706 }
3707
3708 #ifdef CONFIG_PM
3709 /**
3710  * iavf_suspend - Power management suspend routine
3711  * @pdev: PCI device information struct
3712  * @state: unused
3713  *
3714  * Called when the system (VM) is entering sleep/suspend.
3715  **/
3716 static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3717 {
3718         struct net_device *netdev = pci_get_drvdata(pdev);
3719         struct iavf_adapter *adapter = netdev_priv(netdev);
3720         int retval = 0;
3721
3722         netif_device_detach(netdev);
3723
3724         while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3725                                 &adapter->crit_section))
3726                 usleep_range(500, 1000);
3727
3728         if (netif_running(netdev)) {
3729                 rtnl_lock();
3730                 iavf_down(adapter);
3731                 rtnl_unlock();
3732         }
3733         iavf_free_misc_irq(adapter);
3734         iavf_reset_interrupt_capability(adapter);
3735
3736         clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3737
3738         retval = pci_save_state(pdev);
3739         if (retval)
3740                 return retval;
3741
3742         pci_disable_device(pdev);
3743
3744         return 0;
3745 }
3746
3747 /**
3748  * iavf_resume - Power management resume routine
3749  * @pdev: PCI device information struct
3750  *
3751  * Called when the system (VM) is resumed from sleep/suspend.
3752  **/
3753 static int iavf_resume(struct pci_dev *pdev)
3754 {
3755         struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3756         struct net_device *netdev = adapter->netdev;
3757         u32 err;
3758
3759         pci_set_power_state(pdev, PCI_D0);
3760         pci_restore_state(pdev);
3761         /* pci_restore_state clears dev->state_saved so call
3762          * pci_save_state to restore it.
3763          */
3764         pci_save_state(pdev);
3765
3766         err = pci_enable_device_mem(pdev);
3767         if (err) {
3768                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3769                 return err;
3770         }
3771         pci_set_master(pdev);
3772
3773         rtnl_lock();
3774         err = iavf_set_interrupt_capability(adapter);
3775         if (err) {
3776                 rtnl_unlock();
3777                 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3778                 return err;
3779         }
3780         err = iavf_request_misc_irq(adapter);
3781         rtnl_unlock();
3782         if (err) {
3783                 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3784                 return err;
3785         }
3786
3787         schedule_work(&adapter->reset_task);
3788
3789         netif_device_attach(netdev);
3790
3791         return err;
3792 }
3793
3794 #endif /* CONFIG_PM */
3795 /**
3796  * iavf_remove - Device Removal Routine
3797  * @pdev: PCI device information struct
3798  *
3799  * iavf_remove is called by the PCI subsystem to alert the driver
3800  * that it should release a PCI device.  The could be caused by a
3801  * Hot-Plug event, or because the driver is going to be removed from
3802  * memory.
3803  **/
3804 static void iavf_remove(struct pci_dev *pdev)
3805 {
3806         struct net_device *netdev = pci_get_drvdata(pdev);
3807         struct iavf_adapter *adapter = netdev_priv(netdev);
3808         struct iavf_vlan_filter *vlf, *vlftmp;
3809         struct iavf_mac_filter *f, *ftmp;
3810         struct iavf_cloud_filter *cf, *cftmp;
3811         struct iavf_hw *hw = &adapter->hw;
3812         int err;
3813         /* Indicate we are in remove and not to run reset_task */
3814         set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3815         cancel_delayed_work_sync(&adapter->init_task);
3816         cancel_work_sync(&adapter->reset_task);
3817         cancel_delayed_work_sync(&adapter->client_task);
3818         if (adapter->netdev_registered) {
3819                 unregister_netdev(netdev);
3820                 adapter->netdev_registered = false;
3821         }
3822         if (CLIENT_ALLOWED(adapter)) {
3823                 err = iavf_lan_del_device(adapter);
3824                 if (err)
3825                         dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3826                                  err);
3827         }
3828
3829         /* Shut down all the garbage mashers on the detention level */
3830         adapter->state = __IAVF_REMOVE;
3831         adapter->aq_required = 0;
3832         adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3833         iavf_request_reset(adapter);
3834         msleep(50);
3835         /* If the FW isn't responding, kick it once, but only once. */
3836         if (!iavf_asq_done(hw)) {
3837                 iavf_request_reset(adapter);
3838                 msleep(50);
3839         }
3840         iavf_free_all_tx_resources(adapter);
3841         iavf_free_all_rx_resources(adapter);
3842         iavf_misc_irq_disable(adapter);
3843         iavf_free_misc_irq(adapter);
3844         iavf_reset_interrupt_capability(adapter);
3845         iavf_free_q_vectors(adapter);
3846
3847         if (adapter->watchdog_timer.function)
3848                 del_timer_sync(&adapter->watchdog_timer);
3849
3850         cancel_work_sync(&adapter->adminq_task);
3851
3852         iavf_free_rss(adapter);
3853
3854         if (hw->aq.asq.count)
3855                 iavf_shutdown_adminq(hw);
3856
3857         /* destroy the locks only once, here */
3858         mutex_destroy(&hw->aq.arq_mutex);
3859         mutex_destroy(&hw->aq.asq_mutex);
3860
3861         iounmap(hw->hw_addr);
3862         pci_release_regions(pdev);
3863         iavf_free_all_tx_resources(adapter);
3864         iavf_free_all_rx_resources(adapter);
3865         iavf_free_queues(adapter);
3866         kfree(adapter->vf_res);
3867         spin_lock_bh(&adapter->mac_vlan_list_lock);
3868         /* If we got removed before an up/down sequence, we've got a filter
3869          * hanging out there that we need to get rid of.
3870          */
3871         list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3872                 list_del(&f->list);
3873                 kfree(f);
3874         }
3875         list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3876                                  list) {
3877                 list_del(&vlf->list);
3878                 kfree(vlf);
3879         }
3880
3881         spin_unlock_bh(&adapter->mac_vlan_list_lock);
3882
3883         spin_lock_bh(&adapter->cloud_filter_list_lock);
3884         list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3885                 list_del(&cf->list);
3886                 kfree(cf);
3887         }
3888         spin_unlock_bh(&adapter->cloud_filter_list_lock);
3889
3890         free_netdev(netdev);
3891
3892         pci_disable_pcie_error_reporting(pdev);
3893
3894         pci_disable_device(pdev);
3895 }
3896
3897 static struct pci_driver iavf_driver = {
3898         .name     = iavf_driver_name,
3899         .id_table = iavf_pci_tbl,
3900         .probe    = iavf_probe,
3901         .remove   = iavf_remove,
3902 #ifdef CONFIG_PM
3903         .suspend  = iavf_suspend,
3904         .resume   = iavf_resume,
3905 #endif
3906         .shutdown = iavf_shutdown,
3907 };
3908
3909 /**
3910  * iavf_init_module - Driver Registration Routine
3911  *
3912  * iavf_init_module is the first routine called when the driver is
3913  * loaded. All it does is register with the PCI subsystem.
3914  **/
3915 static int __init iavf_init_module(void)
3916 {
3917         int ret;
3918
3919         pr_info("iavf: %s - version %s\n", iavf_driver_string,
3920                 iavf_driver_version);
3921
3922         pr_info("%s\n", iavf_copyright);
3923
3924         iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3925                                   iavf_driver_name);
3926         if (!iavf_wq) {
3927                 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3928                 return -ENOMEM;
3929         }
3930         ret = pci_register_driver(&iavf_driver);
3931         return ret;
3932 }
3933
3934 module_init(iavf_init_module);
3935
3936 /**
3937  * iavf_exit_module - Driver Exit Cleanup Routine
3938  *
3939  * iavf_exit_module is called just before the driver is removed
3940  * from memory.
3941  **/
3942 static void __exit iavf_exit_module(void)
3943 {
3944         pci_unregister_driver(&iavf_driver);
3945         destroy_workqueue(iavf_wq);
3946 }
3947
3948 module_exit(iavf_exit_module);
3949
3950 /* iavf_main.c */