]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/intel/ice/ice_xsk.c
0af1f0b951c0e2b0b92b8ec980b8fe556cb848aa
[linux.git] / drivers / net / ethernet / intel / ice / ice_xsk.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14
15 /**
16  * ice_qp_reset_stats - Resets all stats for rings of given index
17  * @vsi: VSI that contains rings of interest
18  * @q_idx: ring index in array
19  */
20 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
21 {
22         memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
23                sizeof(vsi->rx_rings[q_idx]->rx_stats));
24         memset(&vsi->tx_rings[q_idx]->stats, 0,
25                sizeof(vsi->tx_rings[q_idx]->stats));
26         if (ice_is_xdp_ena_vsi(vsi))
27                 memset(&vsi->xdp_rings[q_idx]->stats, 0,
28                        sizeof(vsi->xdp_rings[q_idx]->stats));
29 }
30
31 /**
32  * ice_qp_clean_rings - Cleans all the rings of a given index
33  * @vsi: VSI that contains rings of interest
34  * @q_idx: ring index in array
35  */
36 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
37 {
38         ice_clean_tx_ring(vsi->tx_rings[q_idx]);
39         if (ice_is_xdp_ena_vsi(vsi))
40                 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
41         ice_clean_rx_ring(vsi->rx_rings[q_idx]);
42 }
43
44 /**
45  * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
46  * @vsi: VSI that has netdev
47  * @q_vector: q_vector that has NAPI context
48  * @enable: true for enable, false for disable
49  */
50 static void
51 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
52                      bool enable)
53 {
54         if (!vsi->netdev || !q_vector)
55                 return;
56
57         if (enable)
58                 napi_enable(&q_vector->napi);
59         else
60                 napi_disable(&q_vector->napi);
61 }
62
63 /**
64  * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
65  * @vsi: the VSI that contains queue vector being un-configured
66  * @rx_ring: Rx ring that will have its IRQ disabled
67  * @q_vector: queue vector
68  */
69 static void
70 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
71                  struct ice_q_vector *q_vector)
72 {
73         struct ice_pf *pf = vsi->back;
74         struct ice_hw *hw = &pf->hw;
75         int base = vsi->base_vector;
76         u16 reg;
77         u32 val;
78
79         /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
80          * here only QINT_RQCTL
81          */
82         reg = rx_ring->reg_idx;
83         val = rd32(hw, QINT_RQCTL(reg));
84         val &= ~QINT_RQCTL_CAUSE_ENA_M;
85         wr32(hw, QINT_RQCTL(reg), val);
86
87         if (q_vector) {
88                 u16 v_idx = q_vector->v_idx;
89
90                 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
91                 ice_flush(hw);
92                 synchronize_irq(pf->msix_entries[v_idx + base].vector);
93         }
94 }
95
96 /**
97  * ice_qvec_cfg_msix - Enable IRQ for given queue vector
98  * @vsi: the VSI that contains queue vector
99  * @q_vector: queue vector
100  */
101 static void
102 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
103 {
104         u16 reg_idx = q_vector->reg_idx;
105         struct ice_pf *pf = vsi->back;
106         struct ice_hw *hw = &pf->hw;
107         struct ice_ring *ring;
108
109         ice_cfg_itr(hw, q_vector);
110
111         wr32(hw, GLINT_RATE(reg_idx),
112              ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
113
114         ice_for_each_ring(ring, q_vector->tx)
115                 ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
116                                       q_vector->tx.itr_idx);
117
118         ice_for_each_ring(ring, q_vector->rx)
119                 ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
120                                       q_vector->rx.itr_idx);
121
122         ice_flush(hw);
123 }
124
125 /**
126  * ice_qvec_ena_irq - Enable IRQ for given queue vector
127  * @vsi: the VSI that contains queue vector
128  * @q_vector: queue vector
129  */
130 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
131 {
132         struct ice_pf *pf = vsi->back;
133         struct ice_hw *hw = &pf->hw;
134
135         ice_irq_dynamic_ena(hw, vsi, q_vector);
136
137         ice_flush(hw);
138 }
139
140 /**
141  * ice_qp_dis - Disables a queue pair
142  * @vsi: VSI of interest
143  * @q_idx: ring index in array
144  *
145  * Returns 0 on success, negative on failure.
146  */
147 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
148 {
149         struct ice_txq_meta txq_meta = { };
150         struct ice_ring *tx_ring, *rx_ring;
151         struct ice_q_vector *q_vector;
152         int timeout = 50;
153         int err;
154
155         if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
156                 return -EINVAL;
157
158         tx_ring = vsi->tx_rings[q_idx];
159         rx_ring = vsi->rx_rings[q_idx];
160         q_vector = rx_ring->q_vector;
161
162         while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
163                 timeout--;
164                 if (!timeout)
165                         return -EBUSY;
166                 usleep_range(1000, 2000);
167         }
168         netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
169
170         ice_qvec_dis_irq(vsi, rx_ring, q_vector);
171
172         ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
173         err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
174         if (err)
175                 return err;
176         if (ice_is_xdp_ena_vsi(vsi)) {
177                 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
178
179                 memset(&txq_meta, 0, sizeof(txq_meta));
180                 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
181                 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
182                                            &txq_meta);
183                 if (err)
184                         return err;
185         }
186         err = ice_vsi_ctrl_rx_ring(vsi, false, q_idx);
187         if (err)
188                 return err;
189
190         ice_qvec_toggle_napi(vsi, q_vector, false);
191         ice_qp_clean_rings(vsi, q_idx);
192         ice_qp_reset_stats(vsi, q_idx);
193
194         return 0;
195 }
196
197 /**
198  * ice_qp_ena - Enables a queue pair
199  * @vsi: VSI of interest
200  * @q_idx: ring index in array
201  *
202  * Returns 0 on success, negative on failure.
203  */
204 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
205 {
206         struct ice_aqc_add_tx_qgrp *qg_buf;
207         struct ice_ring *tx_ring, *rx_ring;
208         struct ice_q_vector *q_vector;
209         int err;
210
211         if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
212                 return -EINVAL;
213
214         qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL);
215         if (!qg_buf)
216                 return -ENOMEM;
217
218         qg_buf->num_txqs = 1;
219
220         tx_ring = vsi->tx_rings[q_idx];
221         rx_ring = vsi->rx_rings[q_idx];
222         q_vector = rx_ring->q_vector;
223
224         err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
225         if (err)
226                 goto free_buf;
227
228         if (ice_is_xdp_ena_vsi(vsi)) {
229                 struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
230
231                 memset(qg_buf, 0, sizeof(*qg_buf));
232                 qg_buf->num_txqs = 1;
233                 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
234                 if (err)
235                         goto free_buf;
236                 ice_set_ring_xdp(xdp_ring);
237                 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
238         }
239
240         err = ice_setup_rx_ctx(rx_ring);
241         if (err)
242                 goto free_buf;
243
244         ice_qvec_cfg_msix(vsi, q_vector);
245
246         err = ice_vsi_ctrl_rx_ring(vsi, true, q_idx);
247         if (err)
248                 goto free_buf;
249
250         clear_bit(__ICE_CFG_BUSY, vsi->state);
251         ice_qvec_toggle_napi(vsi, q_vector, true);
252         ice_qvec_ena_irq(vsi, q_vector);
253
254         netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
255 free_buf:
256         kfree(qg_buf);
257         return err;
258 }
259
260 /**
261  * ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket
262  * @vsi: VSI to allocate the UMEM on
263  *
264  * Returns 0 on success, negative on error
265  */
266 static int ice_xsk_alloc_umems(struct ice_vsi *vsi)
267 {
268         if (vsi->xsk_umems)
269                 return 0;
270
271         vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
272                                  GFP_KERNEL);
273
274         if (!vsi->xsk_umems) {
275                 vsi->num_xsk_umems = 0;
276                 return -ENOMEM;
277         }
278
279         return 0;
280 }
281
282 /**
283  * ice_xsk_add_umem - add a UMEM region for XDP sockets
284  * @vsi: VSI to which the UMEM will be added
285  * @umem: pointer to a requested UMEM region
286  * @qid: queue ID
287  *
288  * Returns 0 on success, negative on error
289  */
290 static int ice_xsk_add_umem(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
291 {
292         int err;
293
294         err = ice_xsk_alloc_umems(vsi);
295         if (err)
296                 return err;
297
298         vsi->xsk_umems[qid] = umem;
299         vsi->num_xsk_umems_used++;
300
301         return 0;
302 }
303
304 /**
305  * ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid
306  * @vsi: VSI from which the VSI will be removed
307  * @qid: Ring/qid associated with the UMEM
308  */
309 static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid)
310 {
311         vsi->xsk_umems[qid] = NULL;
312         vsi->num_xsk_umems_used--;
313
314         if (vsi->num_xsk_umems_used == 0) {
315                 kfree(vsi->xsk_umems);
316                 vsi->xsk_umems = NULL;
317                 vsi->num_xsk_umems = 0;
318         }
319 }
320
321 /**
322  * ice_xsk_umem_dma_map - DMA map UMEM region for XDP sockets
323  * @vsi: VSI to map the UMEM region
324  * @umem: UMEM to map
325  *
326  * Returns 0 on success, negative on error
327  */
328 static int ice_xsk_umem_dma_map(struct ice_vsi *vsi, struct xdp_umem *umem)
329 {
330         struct ice_pf *pf = vsi->back;
331         struct device *dev;
332         unsigned int i;
333
334         dev = ice_pf_to_dev(pf);
335         for (i = 0; i < umem->npgs; i++) {
336                 dma_addr_t dma = dma_map_page_attrs(dev, umem->pgs[i], 0,
337                                                     PAGE_SIZE,
338                                                     DMA_BIDIRECTIONAL,
339                                                     ICE_RX_DMA_ATTR);
340                 if (dma_mapping_error(dev, dma)) {
341                         dev_dbg(dev,
342                                 "XSK UMEM DMA mapping error on page num %d", i);
343                         goto out_unmap;
344                 }
345
346                 umem->pages[i].dma = dma;
347         }
348
349         return 0;
350
351 out_unmap:
352         for (; i > 0; i--) {
353                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
354                                      DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
355                 umem->pages[i].dma = 0;
356         }
357
358         return -EFAULT;
359 }
360
361 /**
362  * ice_xsk_umem_dma_unmap - DMA unmap UMEM region for XDP sockets
363  * @vsi: VSI from which the UMEM will be unmapped
364  * @umem: UMEM to unmap
365  */
366 static void ice_xsk_umem_dma_unmap(struct ice_vsi *vsi, struct xdp_umem *umem)
367 {
368         struct ice_pf *pf = vsi->back;
369         struct device *dev;
370         unsigned int i;
371
372         dev = ice_pf_to_dev(pf);
373         for (i = 0; i < umem->npgs; i++) {
374                 dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
375                                      DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
376
377                 umem->pages[i].dma = 0;
378         }
379 }
380
381 /**
382  * ice_xsk_umem_disable - disable a UMEM region
383  * @vsi: Current VSI
384  * @qid: queue ID
385  *
386  * Returns 0 on success, negative on failure
387  */
388 static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid)
389 {
390         if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
391             !vsi->xsk_umems[qid])
392                 return -EINVAL;
393
394         ice_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]);
395         ice_xsk_remove_umem(vsi, qid);
396
397         return 0;
398 }
399
400 /**
401  * ice_xsk_umem_enable - enable a UMEM region
402  * @vsi: Current VSI
403  * @umem: pointer to a requested UMEM region
404  * @qid: queue ID
405  *
406  * Returns 0 on success, negative on failure
407  */
408 static int
409 ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
410 {
411         struct xdp_umem_fq_reuse *reuseq;
412         int err;
413
414         if (vsi->type != ICE_VSI_PF)
415                 return -EINVAL;
416
417         vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq);
418         if (qid >= vsi->num_xsk_umems)
419                 return -EINVAL;
420
421         if (vsi->xsk_umems && vsi->xsk_umems[qid])
422                 return -EBUSY;
423
424         reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
425         if (!reuseq)
426                 return -ENOMEM;
427
428         xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
429
430         err = ice_xsk_umem_dma_map(vsi, umem);
431         if (err)
432                 return err;
433
434         err = ice_xsk_add_umem(vsi, umem, qid);
435         if (err)
436                 return err;
437
438         return 0;
439 }
440
441 /**
442  * ice_xsk_umem_setup - enable/disable a UMEM region depending on its state
443  * @vsi: Current VSI
444  * @umem: UMEM to enable/associate to a ring, NULL to disable
445  * @qid: queue ID
446  *
447  * Returns 0 on success, negative on failure
448  */
449 int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
450 {
451         bool if_running, umem_present = !!umem;
452         int ret = 0, umem_failure = 0;
453
454         if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
455
456         if (if_running) {
457                 ret = ice_qp_dis(vsi, qid);
458                 if (ret) {
459                         netdev_err(vsi->netdev, "ice_qp_dis error = %d", ret);
460                         goto xsk_umem_if_up;
461                 }
462         }
463
464         umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) :
465                                       ice_xsk_umem_disable(vsi, qid);
466
467 xsk_umem_if_up:
468         if (if_running) {
469                 ret = ice_qp_ena(vsi, qid);
470                 if (!ret && umem_present)
471                         napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
472                 else if (ret)
473                         netdev_err(vsi->netdev, "ice_qp_ena error = %d", ret);
474         }
475
476         if (umem_failure) {
477                 netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d",
478                            umem_present ? "en" : "dis", umem_failure);
479                 return umem_failure;
480         }
481
482         return ret;
483 }
484
485 /**
486  * ice_zca_free - Callback for MEM_TYPE_ZERO_COPY allocations
487  * @zca: zero-cpoy allocator
488  * @handle: Buffer handle
489  */
490 void ice_zca_free(struct zero_copy_allocator *zca, unsigned long handle)
491 {
492         struct ice_rx_buf *rx_buf;
493         struct ice_ring *rx_ring;
494         struct xdp_umem *umem;
495         u64 hr, mask;
496         u16 nta;
497
498         rx_ring = container_of(zca, struct ice_ring, zca);
499         umem = rx_ring->xsk_umem;
500         hr = umem->headroom + XDP_PACKET_HEADROOM;
501
502         mask = umem->chunk_mask;
503
504         nta = rx_ring->next_to_alloc;
505         rx_buf = &rx_ring->rx_buf[nta];
506
507         nta++;
508         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
509
510         handle &= mask;
511
512         rx_buf->dma = xdp_umem_get_dma(umem, handle);
513         rx_buf->dma += hr;
514
515         rx_buf->addr = xdp_umem_get_data(umem, handle);
516         rx_buf->addr += hr;
517
518         rx_buf->handle = (u64)handle + umem->headroom;
519 }
520
521 /**
522  * ice_alloc_buf_fast_zc - Retrieve buffer address from XDP umem
523  * @rx_ring: ring with an xdp_umem bound to it
524  * @rx_buf: buffer to which xsk page address will be assigned
525  *
526  * This function allocates an Rx buffer in the hot path.
527  * The buffer can come from fill queue or recycle queue.
528  *
529  * Returns true if an assignment was successful, false if not.
530  */
531 static __always_inline bool
532 ice_alloc_buf_fast_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
533 {
534         struct xdp_umem *umem = rx_ring->xsk_umem;
535         void *addr = rx_buf->addr;
536         u64 handle, hr;
537
538         if (addr) {
539                 rx_ring->rx_stats.page_reuse_count++;
540                 return true;
541         }
542
543         if (!xsk_umem_peek_addr(umem, &handle)) {
544                 rx_ring->rx_stats.alloc_page_failed++;
545                 return false;
546         }
547
548         hr = umem->headroom + XDP_PACKET_HEADROOM;
549
550         rx_buf->dma = xdp_umem_get_dma(umem, handle);
551         rx_buf->dma += hr;
552
553         rx_buf->addr = xdp_umem_get_data(umem, handle);
554         rx_buf->addr += hr;
555
556         rx_buf->handle = handle + umem->headroom;
557
558         xsk_umem_release_addr(umem);
559         return true;
560 }
561
562 /**
563  * ice_alloc_buf_slow_zc - Retrieve buffer address from XDP umem
564  * @rx_ring: ring with an xdp_umem bound to it
565  * @rx_buf: buffer to which xsk page address will be assigned
566  *
567  * This function allocates an Rx buffer in the slow path.
568  * The buffer can come from fill queue or recycle queue.
569  *
570  * Returns true if an assignment was successful, false if not.
571  */
572 static __always_inline bool
573 ice_alloc_buf_slow_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
574 {
575         struct xdp_umem *umem = rx_ring->xsk_umem;
576         u64 handle, headroom;
577
578         if (!xsk_umem_peek_addr_rq(umem, &handle)) {
579                 rx_ring->rx_stats.alloc_page_failed++;
580                 return false;
581         }
582
583         handle &= umem->chunk_mask;
584         headroom = umem->headroom + XDP_PACKET_HEADROOM;
585
586         rx_buf->dma = xdp_umem_get_dma(umem, handle);
587         rx_buf->dma += headroom;
588
589         rx_buf->addr = xdp_umem_get_data(umem, handle);
590         rx_buf->addr += headroom;
591
592         rx_buf->handle = handle + umem->headroom;
593
594         xsk_umem_release_addr_rq(umem);
595         return true;
596 }
597
598 /**
599  * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
600  * @rx_ring: Rx ring
601  * @count: The number of buffers to allocate
602  * @alloc: the function pointer to call for allocation
603  *
604  * This function allocates a number of Rx buffers from the fill ring
605  * or the internal recycle mechanism and places them on the Rx ring.
606  *
607  * Returns false if all allocations were successful, true if any fail.
608  */
609 static bool
610 ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, int count,
611                      bool alloc(struct ice_ring *, struct ice_rx_buf *))
612 {
613         union ice_32b_rx_flex_desc *rx_desc;
614         u16 ntu = rx_ring->next_to_use;
615         struct ice_rx_buf *rx_buf;
616         bool ret = false;
617
618         if (!count)
619                 return false;
620
621         rx_desc = ICE_RX_DESC(rx_ring, ntu);
622         rx_buf = &rx_ring->rx_buf[ntu];
623
624         do {
625                 if (!alloc(rx_ring, rx_buf)) {
626                         ret = true;
627                         break;
628                 }
629
630                 dma_sync_single_range_for_device(rx_ring->dev, rx_buf->dma, 0,
631                                                  rx_ring->rx_buf_len,
632                                                  DMA_BIDIRECTIONAL);
633
634                 rx_desc->read.pkt_addr = cpu_to_le64(rx_buf->dma);
635                 rx_desc->wb.status_error0 = 0;
636
637                 rx_desc++;
638                 rx_buf++;
639                 ntu++;
640
641                 if (unlikely(ntu == rx_ring->count)) {
642                         rx_desc = ICE_RX_DESC(rx_ring, 0);
643                         rx_buf = rx_ring->rx_buf;
644                         ntu = 0;
645                 }
646         } while (--count);
647
648         if (rx_ring->next_to_use != ntu)
649                 ice_release_rx_desc(rx_ring, ntu);
650
651         return ret;
652 }
653
654 /**
655  * ice_alloc_rx_bufs_fast_zc - allocate zero copy bufs in the hot path
656  * @rx_ring: Rx ring
657  * @count: number of bufs to allocate
658  *
659  * Returns false on success, true on failure.
660  */
661 static bool ice_alloc_rx_bufs_fast_zc(struct ice_ring *rx_ring, u16 count)
662 {
663         return ice_alloc_rx_bufs_zc(rx_ring, count,
664                                     ice_alloc_buf_fast_zc);
665 }
666
667 /**
668  * ice_alloc_rx_bufs_slow_zc - allocate zero copy bufs in the slow path
669  * @rx_ring: Rx ring
670  * @count: number of bufs to allocate
671  *
672  * Returns false on success, true on failure.
673  */
674 bool ice_alloc_rx_bufs_slow_zc(struct ice_ring *rx_ring, u16 count)
675 {
676         return ice_alloc_rx_bufs_zc(rx_ring, count,
677                                     ice_alloc_buf_slow_zc);
678 }
679
680 /**
681  * ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
682  * @rx_ring: Rx ring
683  */
684 static void ice_bump_ntc(struct ice_ring *rx_ring)
685 {
686         int ntc = rx_ring->next_to_clean + 1;
687
688         ntc = (ntc < rx_ring->count) ? ntc : 0;
689         rx_ring->next_to_clean = ntc;
690         prefetch(ICE_RX_DESC(rx_ring, ntc));
691 }
692
693 /**
694  * ice_get_rx_buf_zc - Fetch the current Rx buffer
695  * @rx_ring: Rx ring
696  * @size: size of a buffer
697  *
698  * This function returns the current, received Rx buffer and does
699  * DMA synchronization.
700  *
701  * Returns a pointer to the received Rx buffer.
702  */
703 static struct ice_rx_buf *ice_get_rx_buf_zc(struct ice_ring *rx_ring, int size)
704 {
705         struct ice_rx_buf *rx_buf;
706
707         rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
708
709         dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 0,
710                                       size, DMA_BIDIRECTIONAL);
711
712         return rx_buf;
713 }
714
715 /**
716  * ice_reuse_rx_buf_zc - reuse an Rx buffer
717  * @rx_ring: Rx ring
718  * @old_buf: The buffer to recycle
719  *
720  * This function recycles a finished Rx buffer, and places it on the recycle
721  * queue (next_to_alloc).
722  */
723 static void
724 ice_reuse_rx_buf_zc(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
725 {
726         unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
727         u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
728         u16 nta = rx_ring->next_to_alloc;
729         struct ice_rx_buf *new_buf;
730
731         new_buf = &rx_ring->rx_buf[nta++];
732         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
733
734         new_buf->dma = old_buf->dma & mask;
735         new_buf->dma += hr;
736
737         new_buf->addr = (void *)((unsigned long)old_buf->addr & mask);
738         new_buf->addr += hr;
739
740         new_buf->handle = old_buf->handle & mask;
741         new_buf->handle += rx_ring->xsk_umem->headroom;
742
743         old_buf->addr = NULL;
744 }
745
746 /**
747  * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
748  * @rx_ring: Rx ring
749  * @rx_buf: zero-copy Rx buffer
750  * @xdp: XDP buffer
751  *
752  * This function allocates a new skb from a zero-copy Rx buffer.
753  *
754  * Returns the skb on success, NULL on failure.
755  */
756 static struct sk_buff *
757 ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
758                      struct xdp_buff *xdp)
759 {
760         unsigned int metasize = xdp->data - xdp->data_meta;
761         unsigned int datasize = xdp->data_end - xdp->data;
762         unsigned int datasize_hard = xdp->data_end -
763                                      xdp->data_hard_start;
764         struct sk_buff *skb;
765
766         skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
767                                GFP_ATOMIC | __GFP_NOWARN);
768         if (unlikely(!skb))
769                 return NULL;
770
771         skb_reserve(skb, xdp->data - xdp->data_hard_start);
772         memcpy(__skb_put(skb, datasize), xdp->data, datasize);
773         if (metasize)
774                 skb_metadata_set(skb, metasize);
775
776         ice_reuse_rx_buf_zc(rx_ring, rx_buf);
777
778         return skb;
779 }
780
781 /**
782  * ice_run_xdp_zc - Executes an XDP program in zero-copy path
783  * @rx_ring: Rx ring
784  * @xdp: xdp_buff used as input to the XDP program
785  *
786  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
787  */
788 static int
789 ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
790 {
791         int err, result = ICE_XDP_PASS;
792         struct bpf_prog *xdp_prog;
793         struct ice_ring *xdp_ring;
794         u32 act;
795
796         rcu_read_lock();
797         xdp_prog = READ_ONCE(rx_ring->xdp_prog);
798         if (!xdp_prog) {
799                 rcu_read_unlock();
800                 return ICE_XDP_PASS;
801         }
802
803         act = bpf_prog_run_xdp(xdp_prog, xdp);
804         xdp->handle += xdp->data - xdp->data_hard_start;
805         switch (act) {
806         case XDP_PASS:
807                 break;
808         case XDP_TX:
809                 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
810                 result = ice_xmit_xdp_buff(xdp, xdp_ring);
811                 break;
812         case XDP_REDIRECT:
813                 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
814                 result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
815                 break;
816         default:
817                 bpf_warn_invalid_xdp_action(act);
818                 /* fallthrough -- not supported action */
819         case XDP_ABORTED:
820                 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
821                 /* fallthrough -- handle aborts by dropping frame */
822         case XDP_DROP:
823                 result = ICE_XDP_CONSUMED;
824                 break;
825         }
826
827         rcu_read_unlock();
828         return result;
829 }
830
831 /**
832  * ice_clean_rx_irq_zc - consumes packets from the hardware ring
833  * @rx_ring: AF_XDP Rx ring
834  * @budget: NAPI budget
835  *
836  * Returns number of processed packets on success, remaining budget on failure.
837  */
838 int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
839 {
840         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
841         u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
842         unsigned int xdp_xmit = 0;
843         struct xdp_buff xdp;
844         bool failure = 0;
845
846         xdp.rxq = &rx_ring->xdp_rxq;
847
848         while (likely(total_rx_packets < (unsigned int)budget)) {
849                 union ice_32b_rx_flex_desc *rx_desc;
850                 unsigned int size, xdp_res = 0;
851                 struct ice_rx_buf *rx_buf;
852                 struct sk_buff *skb;
853                 u16 stat_err_bits;
854                 u16 vlan_tag = 0;
855                 u8 rx_ptype;
856
857                 if (cleaned_count >= ICE_RX_BUF_WRITE) {
858                         failure |= ice_alloc_rx_bufs_fast_zc(rx_ring,
859                                                              cleaned_count);
860                         cleaned_count = 0;
861                 }
862
863                 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
864
865                 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
866                 if (!ice_test_staterr(rx_desc, stat_err_bits))
867                         break;
868
869                 /* This memory barrier is needed to keep us from reading
870                  * any other fields out of the rx_desc until we have
871                  * verified the descriptor has been written back.
872                  */
873                 dma_rmb();
874
875                 size = le16_to_cpu(rx_desc->wb.pkt_len) &
876                                    ICE_RX_FLX_DESC_PKT_LEN_M;
877                 if (!size)
878                         break;
879
880                 rx_buf = ice_get_rx_buf_zc(rx_ring, size);
881                 if (!rx_buf->addr)
882                         break;
883
884                 xdp.data = rx_buf->addr;
885                 xdp.data_meta = xdp.data;
886                 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
887                 xdp.data_end = xdp.data + size;
888                 xdp.handle = rx_buf->handle;
889
890                 xdp_res = ice_run_xdp_zc(rx_ring, &xdp);
891                 if (xdp_res) {
892                         if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
893                                 xdp_xmit |= xdp_res;
894                                 rx_buf->addr = NULL;
895                         } else {
896                                 ice_reuse_rx_buf_zc(rx_ring, rx_buf);
897                         }
898
899                         total_rx_bytes += size;
900                         total_rx_packets++;
901                         cleaned_count++;
902
903                         ice_bump_ntc(rx_ring);
904                         continue;
905                 }
906
907                 /* XDP_PASS path */
908                 skb = ice_construct_skb_zc(rx_ring, rx_buf, &xdp);
909                 if (!skb) {
910                         rx_ring->rx_stats.alloc_buf_failed++;
911                         break;
912                 }
913
914                 cleaned_count++;
915                 ice_bump_ntc(rx_ring);
916
917                 if (eth_skb_pad(skb)) {
918                         skb = NULL;
919                         continue;
920                 }
921
922                 total_rx_bytes += skb->len;
923                 total_rx_packets++;
924
925                 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
926                 if (ice_test_staterr(rx_desc, stat_err_bits))
927                         vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
928
929                 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
930                                        ICE_RX_FLEX_DESC_PTYPE_M;
931
932                 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
933                 ice_receive_skb(rx_ring, skb, vlan_tag);
934         }
935
936         ice_finalize_xdp_rx(rx_ring, xdp_xmit);
937         ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
938
939         return failure ? budget : (int)total_rx_packets;
940 }
941
942 /**
943  * ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
944  * @xdp_ring: XDP Tx ring
945  * @budget: max number of frames to xmit
946  *
947  * Returns true if cleanup/transmission is done.
948  */
949 static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
950 {
951         struct ice_tx_desc *tx_desc = NULL;
952         bool work_done = true;
953         struct xdp_desc desc;
954         dma_addr_t dma;
955
956         while (likely(budget-- > 0)) {
957                 struct ice_tx_buf *tx_buf;
958
959                 if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
960                         xdp_ring->tx_stats.tx_busy++;
961                         work_done = false;
962                         break;
963                 }
964
965                 tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
966
967                 if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
968                         break;
969
970                 dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
971
972                 dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
973                                            DMA_BIDIRECTIONAL);
974
975                 tx_buf->bytecount = desc.len;
976
977                 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
978                 tx_desc->buf_addr = cpu_to_le64(dma);
979                 tx_desc->cmd_type_offset_bsz = build_ctob(ICE_TXD_LAST_DESC_CMD,
980                                                           0, desc.len, 0);
981
982                 xdp_ring->next_to_use++;
983                 if (xdp_ring->next_to_use == xdp_ring->count)
984                         xdp_ring->next_to_use = 0;
985         }
986
987         if (tx_desc) {
988                 ice_xdp_ring_update_tail(xdp_ring);
989                 xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
990         }
991
992         return budget > 0 && work_done;
993 }
994
995 /**
996  * ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
997  * @xdp_ring: XDP Tx ring
998  * @tx_buf: Tx buffer to clean
999  */
1000 static void
1001 ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
1002 {
1003         xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
1004         dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
1005                          dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
1006         dma_unmap_len_set(tx_buf, len, 0);
1007 }
1008
1009 /**
1010  * ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
1011  * @xdp_ring: XDP Tx ring
1012  * @budget: NAPI budget
1013  *
1014  * Returns true if cleanup/tranmission is done.
1015  */
1016 bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
1017 {
1018         int total_packets = 0, total_bytes = 0;
1019         s16 ntc = xdp_ring->next_to_clean;
1020         struct ice_tx_desc *tx_desc;
1021         struct ice_tx_buf *tx_buf;
1022         bool xmit_done = true;
1023         u32 xsk_frames = 0;
1024
1025         tx_desc = ICE_TX_DESC(xdp_ring, ntc);
1026         tx_buf = &xdp_ring->tx_buf[ntc];
1027         ntc -= xdp_ring->count;
1028
1029         do {
1030                 if (!(tx_desc->cmd_type_offset_bsz &
1031                       cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
1032                         break;
1033
1034                 total_bytes += tx_buf->bytecount;
1035                 total_packets++;
1036
1037                 if (tx_buf->raw_buf) {
1038                         ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
1039                         tx_buf->raw_buf = NULL;
1040                 } else {
1041                         xsk_frames++;
1042                 }
1043
1044                 tx_desc->cmd_type_offset_bsz = 0;
1045                 tx_buf++;
1046                 tx_desc++;
1047                 ntc++;
1048
1049                 if (unlikely(!ntc)) {
1050                         ntc -= xdp_ring->count;
1051                         tx_buf = xdp_ring->tx_buf;
1052                         tx_desc = ICE_TX_DESC(xdp_ring, 0);
1053                 }
1054
1055                 prefetch(tx_desc);
1056
1057         } while (likely(--budget));
1058
1059         ntc += xdp_ring->count;
1060         xdp_ring->next_to_clean = ntc;
1061
1062         if (xsk_frames)
1063                 xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
1064
1065         ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
1066         xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
1067
1068         return budget > 0 && xmit_done;
1069 }
1070
1071 /**
1072  * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1073  * @netdev: net_device
1074  * @queue_id: queue to wake up
1075  * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1076  *
1077  * Returns negative on error, zero otherwise.
1078  */
1079 int
1080 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1081                u32 __always_unused flags)
1082 {
1083         struct ice_netdev_priv *np = netdev_priv(netdev);
1084         struct ice_q_vector *q_vector;
1085         struct ice_vsi *vsi = np->vsi;
1086         struct ice_ring *ring;
1087
1088         if (test_bit(__ICE_DOWN, vsi->state))
1089                 return -ENETDOWN;
1090
1091         if (!ice_is_xdp_ena_vsi(vsi))
1092                 return -ENXIO;
1093
1094         if (queue_id >= vsi->num_txq)
1095                 return -ENXIO;
1096
1097         if (!vsi->xdp_rings[queue_id]->xsk_umem)
1098                 return -ENXIO;
1099
1100         ring = vsi->xdp_rings[queue_id];
1101
1102         /* The idea here is that if NAPI is running, mark a miss, so
1103          * it will run again. If not, trigger an interrupt and
1104          * schedule the NAPI from interrupt context. If NAPI would be
1105          * scheduled here, the interrupt affinity would not be
1106          * honored.
1107          */
1108         q_vector = ring->q_vector;
1109         if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1110                 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1111
1112         return 0;
1113 }
1114
1115 /**
1116  * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached
1117  * @vsi: VSI to be checked
1118  *
1119  * Returns true if any of the Rx rings has an AF_XDP UMEM attached
1120  */
1121 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1122 {
1123         int i;
1124
1125         if (!vsi->xsk_umems)
1126                 return false;
1127
1128         for (i = 0; i < vsi->num_xsk_umems; i++) {
1129                 if (vsi->xsk_umems[i])
1130                         return true;
1131         }
1132
1133         return false;
1134 }
1135
1136 /**
1137  * ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring
1138  * @rx_ring: ring to be cleaned
1139  */
1140 void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
1141 {
1142         u16 i;
1143
1144         for (i = 0; i < rx_ring->count; i++) {
1145                 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
1146
1147                 if (!rx_buf->addr)
1148                         continue;
1149
1150                 xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_buf->handle);
1151                 rx_buf->addr = NULL;
1152         }
1153 }
1154
1155 /**
1156  * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues
1157  * @xdp_ring: XDP_Tx ring
1158  */
1159 void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
1160 {
1161         u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1162         u32 xsk_frames = 0;
1163
1164         while (ntc != ntu) {
1165                 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1166
1167                 if (tx_buf->raw_buf)
1168                         ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
1169                 else
1170                         xsk_frames++;
1171
1172                 tx_buf->raw_buf = NULL;
1173
1174                 ntc++;
1175                 if (ntc >= xdp_ring->count)
1176                         ntc = 0;
1177         }
1178
1179         if (xsk_frames)
1180                 xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
1181 }