]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
igb/igc: Don't warn on fatal read failures when the device is removed
[linux.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40
41 #define MAJ 5
42 #define MIN 6
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46
47 enum queue_mode {
48         QUEUE_MODE_STRICT_PRIORITY,
49         QUEUE_MODE_STREAM_RESERVATION,
50 };
51
52 enum tx_queue_prio {
53         TX_QUEUE_PRIO_HIGH,
54         TX_QUEUE_PRIO_LOW,
55 };
56
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60                                 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62                                 "Copyright (c) 2007-2014 Intel Corporation.";
63
64 static const struct e1000_info *igb_info_tbl[] = {
65         [board_82575] = &e1000_82575_info,
66 };
67
68 static const struct pci_device_id igb_pci_tbl[] = {
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104         /* required last entry */
105         {0, }
106 };
107
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133                             struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152                           netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172                                    bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174                                 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196                         igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203         .notifier_call  = igb_notify_dca,
204         .next           = NULL,
205         .priority       = 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215                      pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218
219 static const struct pci_error_handlers igb_err_handler = {
220         .error_detected = igb_io_error_detected,
221         .slot_reset = igb_io_slot_reset,
222         .resume = igb_io_resume,
223 };
224
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227 static struct pci_driver igb_driver = {
228         .name     = igb_driver_name,
229         .id_table = igb_pci_tbl,
230         .probe    = igb_probe,
231         .remove   = igb_remove,
232 #ifdef CONFIG_PM
233         .driver.pm = &igb_pm_ops,
234 #endif
235         .shutdown = igb_shutdown,
236         .sriov_configure = igb_pci_sriov_configure,
237         .err_handler = &igb_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 struct igb_reg_info {
251         u32 ofs;
252         char *name;
253 };
254
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257         /* General Registers */
258         {E1000_CTRL, "CTRL"},
259         {E1000_STATUS, "STATUS"},
260         {E1000_CTRL_EXT, "CTRL_EXT"},
261
262         /* Interrupt Registers */
263         {E1000_ICR, "ICR"},
264
265         /* RX Registers */
266         {E1000_RCTL, "RCTL"},
267         {E1000_RDLEN(0), "RDLEN"},
268         {E1000_RDH(0), "RDH"},
269         {E1000_RDT(0), "RDT"},
270         {E1000_RXDCTL(0), "RXDCTL"},
271         {E1000_RDBAL(0), "RDBAL"},
272         {E1000_RDBAH(0), "RDBAH"},
273
274         /* TX Registers */
275         {E1000_TCTL, "TCTL"},
276         {E1000_TDBAL(0), "TDBAL"},
277         {E1000_TDBAH(0), "TDBAH"},
278         {E1000_TDLEN(0), "TDLEN"},
279         {E1000_TDH(0), "TDH"},
280         {E1000_TDT(0), "TDT"},
281         {E1000_TXDCTL(0), "TXDCTL"},
282         {E1000_TDFH, "TDFH"},
283         {E1000_TDFT, "TDFT"},
284         {E1000_TDFHS, "TDFHS"},
285         {E1000_TDFPC, "TDFPC"},
286
287         /* List Terminator */
288         {}
289 };
290
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294         int n = 0;
295         char rname[16];
296         u32 regs[8];
297
298         switch (reginfo->ofs) {
299         case E1000_RDLEN(0):
300                 for (n = 0; n < 4; n++)
301                         regs[n] = rd32(E1000_RDLEN(n));
302                 break;
303         case E1000_RDH(0):
304                 for (n = 0; n < 4; n++)
305                         regs[n] = rd32(E1000_RDH(n));
306                 break;
307         case E1000_RDT(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDT(n));
310                 break;
311         case E1000_RXDCTL(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RXDCTL(n));
314                 break;
315         case E1000_RDBAL(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RDBAL(n));
318                 break;
319         case E1000_RDBAH(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_RDBAH(n));
322                 break;
323         case E1000_TDBAL(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_RDBAL(n));
326                 break;
327         case E1000_TDBAH(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_TDBAH(n));
330                 break;
331         case E1000_TDLEN(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_TDLEN(n));
334                 break;
335         case E1000_TDH(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TDH(n));
338                 break;
339         case E1000_TDT(0):
340                 for (n = 0; n < 4; n++)
341                         regs[n] = rd32(E1000_TDT(n));
342                 break;
343         case E1000_TXDCTL(0):
344                 for (n = 0; n < 4; n++)
345                         regs[n] = rd32(E1000_TXDCTL(n));
346                 break;
347         default:
348                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349                 return;
350         }
351
352         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354                 regs[2], regs[3]);
355 }
356
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
359 {
360         struct net_device *netdev = adapter->netdev;
361         struct e1000_hw *hw = &adapter->hw;
362         struct igb_reg_info *reginfo;
363         struct igb_ring *tx_ring;
364         union e1000_adv_tx_desc *tx_desc;
365         struct my_u0 { u64 a; u64 b; } *u0;
366         struct igb_ring *rx_ring;
367         union e1000_adv_rx_desc *rx_desc;
368         u32 staterr;
369         u16 i, n;
370
371         if (!netif_msg_hw(adapter))
372                 return;
373
374         /* Print netdevice Info */
375         if (netdev) {
376                 dev_info(&adapter->pdev->dev, "Net device Info\n");
377                 pr_info("Device Name     state            trans_start\n");
378                 pr_info("%-15s %016lX %016lX\n", netdev->name,
379                         netdev->state, dev_trans_start(netdev));
380         }
381
382         /* Print Registers */
383         dev_info(&adapter->pdev->dev, "Register Dump\n");
384         pr_info(" Register Name   Value\n");
385         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386              reginfo->name; reginfo++) {
387                 igb_regdump(hw, reginfo);
388         }
389
390         /* Print TX Ring Summary */
391         if (!netdev || !netif_running(netdev))
392                 goto exit;
393
394         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
396         for (n = 0; n < adapter->num_tx_queues; n++) {
397                 struct igb_tx_buffer *buffer_info;
398                 tx_ring = adapter->tx_ring[n];
399                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
402                         (u64)dma_unmap_addr(buffer_info, dma),
403                         dma_unmap_len(buffer_info, len),
404                         buffer_info->next_to_watch,
405                         (u64)buffer_info->time_stamp);
406         }
407
408         /* Print TX Rings */
409         if (!netif_msg_tx_done(adapter))
410                 goto rx_ring_summary;
411
412         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413
414         /* Transmit Descriptor Formats
415          *
416          * Advanced Transmit Descriptor
417          *   +--------------------------------------------------------------+
418          * 0 |         Buffer Address [63:0]                                |
419          *   +--------------------------------------------------------------+
420          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
421          *   +--------------------------------------------------------------+
422          *   63      46 45    40 39 38 36 35 32 31   24             15       0
423          */
424
425         for (n = 0; n < adapter->num_tx_queues; n++) {
426                 tx_ring = adapter->tx_ring[n];
427                 pr_info("------------------------------------\n");
428                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429                 pr_info("------------------------------------\n");
430                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
431
432                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433                         const char *next_desc;
434                         struct igb_tx_buffer *buffer_info;
435                         tx_desc = IGB_TX_DESC(tx_ring, i);
436                         buffer_info = &tx_ring->tx_buffer_info[i];
437                         u0 = (struct my_u0 *)tx_desc;
438                         if (i == tx_ring->next_to_use &&
439                             i == tx_ring->next_to_clean)
440                                 next_desc = " NTC/U";
441                         else if (i == tx_ring->next_to_use)
442                                 next_desc = " NTU";
443                         else if (i == tx_ring->next_to_clean)
444                                 next_desc = " NTC";
445                         else
446                                 next_desc = "";
447
448                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
449                                 i, le64_to_cpu(u0->a),
450                                 le64_to_cpu(u0->b),
451                                 (u64)dma_unmap_addr(buffer_info, dma),
452                                 dma_unmap_len(buffer_info, len),
453                                 buffer_info->next_to_watch,
454                                 (u64)buffer_info->time_stamp,
455                                 buffer_info->skb, next_desc);
456
457                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
458                                 print_hex_dump(KERN_INFO, "",
459                                         DUMP_PREFIX_ADDRESS,
460                                         16, 1, buffer_info->skb->data,
461                                         dma_unmap_len(buffer_info, len),
462                                         true);
463                 }
464         }
465
466         /* Print RX Rings Summary */
467 rx_ring_summary:
468         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469         pr_info("Queue [NTU] [NTC]\n");
470         for (n = 0; n < adapter->num_rx_queues; n++) {
471                 rx_ring = adapter->rx_ring[n];
472                 pr_info(" %5d %5X %5X\n",
473                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
474         }
475
476         /* Print RX Rings */
477         if (!netif_msg_rx_status(adapter))
478                 goto exit;
479
480         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481
482         /* Advanced Receive Descriptor (Read) Format
483          *    63                                           1        0
484          *    +-----------------------------------------------------+
485          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
486          *    +----------------------------------------------+------+
487          *  8 |       Header Buffer Address [63:1]           |  DD  |
488          *    +-----------------------------------------------------+
489          *
490          *
491          * Advanced Receive Descriptor (Write-Back) Format
492          *
493          *   63       48 47    32 31  30      21 20 17 16   4 3     0
494          *   +------------------------------------------------------+
495          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
496          *   | Checksum   Ident  |   |           |    | Type | Type |
497          *   +------------------------------------------------------+
498          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499          *   +------------------------------------------------------+
500          *   63       48 47    32 31            20 19               0
501          */
502
503         for (n = 0; n < adapter->num_rx_queues; n++) {
504                 rx_ring = adapter->rx_ring[n];
505                 pr_info("------------------------------------\n");
506                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507                 pr_info("------------------------------------\n");
508                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
509                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510
511                 for (i = 0; i < rx_ring->count; i++) {
512                         const char *next_desc;
513                         struct igb_rx_buffer *buffer_info;
514                         buffer_info = &rx_ring->rx_buffer_info[i];
515                         rx_desc = IGB_RX_DESC(rx_ring, i);
516                         u0 = (struct my_u0 *)rx_desc;
517                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518
519                         if (i == rx_ring->next_to_use)
520                                 next_desc = " NTU";
521                         else if (i == rx_ring->next_to_clean)
522                                 next_desc = " NTC";
523                         else
524                                 next_desc = "";
525
526                         if (staterr & E1000_RXD_STAT_DD) {
527                                 /* Descriptor Done */
528                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
529                                         "RWB", i,
530                                         le64_to_cpu(u0->a),
531                                         le64_to_cpu(u0->b),
532                                         next_desc);
533                         } else {
534                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
535                                         "R  ", i,
536                                         le64_to_cpu(u0->a),
537                                         le64_to_cpu(u0->b),
538                                         (u64)buffer_info->dma,
539                                         next_desc);
540
541                                 if (netif_msg_pktdata(adapter) &&
542                                     buffer_info->dma && buffer_info->page) {
543                                         print_hex_dump(KERN_INFO, "",
544                                           DUMP_PREFIX_ADDRESS,
545                                           16, 1,
546                                           page_address(buffer_info->page) +
547                                                       buffer_info->page_offset,
548                                           igb_rx_bufsz(rx_ring), true);
549                                 }
550                         }
551                 }
552         }
553
554 exit:
555         return;
556 }
557
558 /**
559  *  igb_get_i2c_data - Reads the I2C SDA data bit
560  *  @hw: pointer to hardware structure
561  *  @i2cctl: Current value of I2CCTL register
562  *
563  *  Returns the I2C data bit value
564  **/
565 static int igb_get_i2c_data(void *data)
566 {
567         struct igb_adapter *adapter = (struct igb_adapter *)data;
568         struct e1000_hw *hw = &adapter->hw;
569         s32 i2cctl = rd32(E1000_I2CPARAMS);
570
571         return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573
574 /**
575  *  igb_set_i2c_data - Sets the I2C data bit
576  *  @data: pointer to hardware structure
577  *  @state: I2C data value (0 or 1) to set
578  *
579  *  Sets the I2C data bit
580  **/
581 static void igb_set_i2c_data(void *data, int state)
582 {
583         struct igb_adapter *adapter = (struct igb_adapter *)data;
584         struct e1000_hw *hw = &adapter->hw;
585         s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587         if (state)
588                 i2cctl |= E1000_I2C_DATA_OUT;
589         else
590                 i2cctl &= ~E1000_I2C_DATA_OUT;
591
592         i2cctl &= ~E1000_I2C_DATA_OE_N;
593         i2cctl |= E1000_I2C_CLK_OE_N;
594         wr32(E1000_I2CPARAMS, i2cctl);
595         wrfl();
596
597 }
598
599 /**
600  *  igb_set_i2c_clk - Sets the I2C SCL clock
601  *  @data: pointer to hardware structure
602  *  @state: state to set clock
603  *
604  *  Sets the I2C clock line to state
605  **/
606 static void igb_set_i2c_clk(void *data, int state)
607 {
608         struct igb_adapter *adapter = (struct igb_adapter *)data;
609         struct e1000_hw *hw = &adapter->hw;
610         s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612         if (state) {
613                 i2cctl |= E1000_I2C_CLK_OUT;
614                 i2cctl &= ~E1000_I2C_CLK_OE_N;
615         } else {
616                 i2cctl &= ~E1000_I2C_CLK_OUT;
617                 i2cctl &= ~E1000_I2C_CLK_OE_N;
618         }
619         wr32(E1000_I2CPARAMS, i2cctl);
620         wrfl();
621 }
622
623 /**
624  *  igb_get_i2c_clk - Gets the I2C SCL clock state
625  *  @data: pointer to hardware structure
626  *
627  *  Gets the I2C clock state
628  **/
629 static int igb_get_i2c_clk(void *data)
630 {
631         struct igb_adapter *adapter = (struct igb_adapter *)data;
632         struct e1000_hw *hw = &adapter->hw;
633         s32 i2cctl = rd32(E1000_I2CPARAMS);
634
635         return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639         .setsda         = igb_set_i2c_data,
640         .setscl         = igb_set_i2c_clk,
641         .getsda         = igb_get_i2c_data,
642         .getscl         = igb_get_i2c_clk,
643         .udelay         = 5,
644         .timeout        = 20,
645 };
646
647 /**
648  *  igb_get_hw_dev - return device
649  *  @hw: pointer to hardware structure
650  *
651  *  used by hardware layer to print debugging information
652  **/
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655         struct igb_adapter *adapter = hw->back;
656         return adapter->netdev;
657 }
658
659 /**
660  *  igb_init_module - Driver Registration Routine
661  *
662  *  igb_init_module is the first routine called when the driver is
663  *  loaded. All it does is register with the PCI subsystem.
664  **/
665 static int __init igb_init_module(void)
666 {
667         int ret;
668
669         pr_info("%s - version %s\n",
670                igb_driver_string, igb_driver_version);
671         pr_info("%s\n", igb_copyright);
672
673 #ifdef CONFIG_IGB_DCA
674         dca_register_notify(&dca_notifier);
675 #endif
676         ret = pci_register_driver(&igb_driver);
677         return ret;
678 }
679
680 module_init(igb_init_module);
681
682 /**
683  *  igb_exit_module - Driver Exit Cleanup Routine
684  *
685  *  igb_exit_module is called just before the driver is removed
686  *  from memory.
687  **/
688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691         dca_unregister_notify(&dca_notifier);
692 #endif
693         pci_unregister_driver(&igb_driver);
694 }
695
696 module_exit(igb_exit_module);
697
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700  *  igb_cache_ring_register - Descriptor ring to register mapping
701  *  @adapter: board private structure to initialize
702  *
703  *  Once we know the feature-set enabled for the device, we'll cache
704  *  the register offset the descriptor ring is assigned to.
705  **/
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708         int i = 0, j = 0;
709         u32 rbase_offset = adapter->vfs_allocated_count;
710
711         switch (adapter->hw.mac.type) {
712         case e1000_82576:
713                 /* The queues are allocated for virtualization such that VF 0
714                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715                  * In order to avoid collision we start at the first free queue
716                  * and continue consuming queues in the same sequence
717                  */
718                 if (adapter->vfs_allocated_count) {
719                         for (; i < adapter->rss_queues; i++)
720                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
721                                                                Q_IDX_82576(i);
722                 }
723                 /* Fall through */
724         case e1000_82575:
725         case e1000_82580:
726         case e1000_i350:
727         case e1000_i354:
728         case e1000_i210:
729         case e1000_i211:
730                 /* Fall through */
731         default:
732                 for (; i < adapter->num_rx_queues; i++)
733                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734                 for (; j < adapter->num_tx_queues; j++)
735                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736                 break;
737         }
738 }
739
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744         u32 value = 0;
745
746         if (E1000_REMOVED(hw_addr))
747                 return ~value;
748
749         value = readl(&hw_addr[reg]);
750
751         /* reads should not return all F's */
752         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753                 struct net_device *netdev = igb->netdev;
754                 hw->hw_addr = NULL;
755                 netdev_err(netdev, "PCIe link lost\n");
756                 WARN(pci_device_is_present(igb->pdev),
757                      "igb: Failed to read reg 0x%x!\n", reg);
758         }
759
760         return value;
761 }
762
763 /**
764  *  igb_write_ivar - configure ivar for given MSI-X vector
765  *  @hw: pointer to the HW structure
766  *  @msix_vector: vector number we are allocating to a given ring
767  *  @index: row index of IVAR register to write within IVAR table
768  *  @offset: column offset of in IVAR, should be multiple of 8
769  *
770  *  This function is intended to handle the writing of the IVAR register
771  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
772  *  each containing an cause allocation for an Rx and Tx ring, and a
773  *  variable number of rows depending on the number of queues supported.
774  **/
775 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
776                            int index, int offset)
777 {
778         u32 ivar = array_rd32(E1000_IVAR0, index);
779
780         /* clear any bits that are currently set */
781         ivar &= ~((u32)0xFF << offset);
782
783         /* write vector and valid bit */
784         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
785
786         array_wr32(E1000_IVAR0, index, ivar);
787 }
788
789 #define IGB_N0_QUEUE -1
790 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
791 {
792         struct igb_adapter *adapter = q_vector->adapter;
793         struct e1000_hw *hw = &adapter->hw;
794         int rx_queue = IGB_N0_QUEUE;
795         int tx_queue = IGB_N0_QUEUE;
796         u32 msixbm = 0;
797
798         if (q_vector->rx.ring)
799                 rx_queue = q_vector->rx.ring->reg_idx;
800         if (q_vector->tx.ring)
801                 tx_queue = q_vector->tx.ring->reg_idx;
802
803         switch (hw->mac.type) {
804         case e1000_82575:
805                 /* The 82575 assigns vectors using a bitmask, which matches the
806                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
807                  * or more queues to a vector, we write the appropriate bits
808                  * into the MSIXBM register for that vector.
809                  */
810                 if (rx_queue > IGB_N0_QUEUE)
811                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
812                 if (tx_queue > IGB_N0_QUEUE)
813                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
814                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
815                         msixbm |= E1000_EIMS_OTHER;
816                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
817                 q_vector->eims_value = msixbm;
818                 break;
819         case e1000_82576:
820                 /* 82576 uses a table that essentially consists of 2 columns
821                  * with 8 rows.  The ordering is column-major so we use the
822                  * lower 3 bits as the row index, and the 4th bit as the
823                  * column offset.
824                  */
825                 if (rx_queue > IGB_N0_QUEUE)
826                         igb_write_ivar(hw, msix_vector,
827                                        rx_queue & 0x7,
828                                        (rx_queue & 0x8) << 1);
829                 if (tx_queue > IGB_N0_QUEUE)
830                         igb_write_ivar(hw, msix_vector,
831                                        tx_queue & 0x7,
832                                        ((tx_queue & 0x8) << 1) + 8);
833                 q_vector->eims_value = BIT(msix_vector);
834                 break;
835         case e1000_82580:
836         case e1000_i350:
837         case e1000_i354:
838         case e1000_i210:
839         case e1000_i211:
840                 /* On 82580 and newer adapters the scheme is similar to 82576
841                  * however instead of ordering column-major we have things
842                  * ordered row-major.  So we traverse the table by using
843                  * bit 0 as the column offset, and the remaining bits as the
844                  * row index.
845                  */
846                 if (rx_queue > IGB_N0_QUEUE)
847                         igb_write_ivar(hw, msix_vector,
848                                        rx_queue >> 1,
849                                        (rx_queue & 0x1) << 4);
850                 if (tx_queue > IGB_N0_QUEUE)
851                         igb_write_ivar(hw, msix_vector,
852                                        tx_queue >> 1,
853                                        ((tx_queue & 0x1) << 4) + 8);
854                 q_vector->eims_value = BIT(msix_vector);
855                 break;
856         default:
857                 BUG();
858                 break;
859         }
860
861         /* add q_vector eims value to global eims_enable_mask */
862         adapter->eims_enable_mask |= q_vector->eims_value;
863
864         /* configure q_vector to set itr on first interrupt */
865         q_vector->set_itr = 1;
866 }
867
868 /**
869  *  igb_configure_msix - Configure MSI-X hardware
870  *  @adapter: board private structure to initialize
871  *
872  *  igb_configure_msix sets up the hardware to properly
873  *  generate MSI-X interrupts.
874  **/
875 static void igb_configure_msix(struct igb_adapter *adapter)
876 {
877         u32 tmp;
878         int i, vector = 0;
879         struct e1000_hw *hw = &adapter->hw;
880
881         adapter->eims_enable_mask = 0;
882
883         /* set vector for other causes, i.e. link changes */
884         switch (hw->mac.type) {
885         case e1000_82575:
886                 tmp = rd32(E1000_CTRL_EXT);
887                 /* enable MSI-X PBA support*/
888                 tmp |= E1000_CTRL_EXT_PBA_CLR;
889
890                 /* Auto-Mask interrupts upon ICR read. */
891                 tmp |= E1000_CTRL_EXT_EIAME;
892                 tmp |= E1000_CTRL_EXT_IRCA;
893
894                 wr32(E1000_CTRL_EXT, tmp);
895
896                 /* enable msix_other interrupt */
897                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
898                 adapter->eims_other = E1000_EIMS_OTHER;
899
900                 break;
901
902         case e1000_82576:
903         case e1000_82580:
904         case e1000_i350:
905         case e1000_i354:
906         case e1000_i210:
907         case e1000_i211:
908                 /* Turn on MSI-X capability first, or our settings
909                  * won't stick.  And it will take days to debug.
910                  */
911                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
912                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
913                      E1000_GPIE_NSICR);
914
915                 /* enable msix_other interrupt */
916                 adapter->eims_other = BIT(vector);
917                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
918
919                 wr32(E1000_IVAR_MISC, tmp);
920                 break;
921         default:
922                 /* do nothing, since nothing else supports MSI-X */
923                 break;
924         } /* switch (hw->mac.type) */
925
926         adapter->eims_enable_mask |= adapter->eims_other;
927
928         for (i = 0; i < adapter->num_q_vectors; i++)
929                 igb_assign_vector(adapter->q_vector[i], vector++);
930
931         wrfl();
932 }
933
934 /**
935  *  igb_request_msix - Initialize MSI-X interrupts
936  *  @adapter: board private structure to initialize
937  *
938  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
939  *  kernel.
940  **/
941 static int igb_request_msix(struct igb_adapter *adapter)
942 {
943         struct net_device *netdev = adapter->netdev;
944         int i, err = 0, vector = 0, free_vector = 0;
945
946         err = request_irq(adapter->msix_entries[vector].vector,
947                           igb_msix_other, 0, netdev->name, adapter);
948         if (err)
949                 goto err_out;
950
951         for (i = 0; i < adapter->num_q_vectors; i++) {
952                 struct igb_q_vector *q_vector = adapter->q_vector[i];
953
954                 vector++;
955
956                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
957
958                 if (q_vector->rx.ring && q_vector->tx.ring)
959                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
960                                 q_vector->rx.ring->queue_index);
961                 else if (q_vector->tx.ring)
962                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
963                                 q_vector->tx.ring->queue_index);
964                 else if (q_vector->rx.ring)
965                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
966                                 q_vector->rx.ring->queue_index);
967                 else
968                         sprintf(q_vector->name, "%s-unused", netdev->name);
969
970                 err = request_irq(adapter->msix_entries[vector].vector,
971                                   igb_msix_ring, 0, q_vector->name,
972                                   q_vector);
973                 if (err)
974                         goto err_free;
975         }
976
977         igb_configure_msix(adapter);
978         return 0;
979
980 err_free:
981         /* free already assigned IRQs */
982         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
983
984         vector--;
985         for (i = 0; i < vector; i++) {
986                 free_irq(adapter->msix_entries[free_vector++].vector,
987                          adapter->q_vector[i]);
988         }
989 err_out:
990         return err;
991 }
992
993 /**
994  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
995  *  @adapter: board private structure to initialize
996  *  @v_idx: Index of vector to be freed
997  *
998  *  This function frees the memory allocated to the q_vector.
999  **/
1000 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1001 {
1002         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1003
1004         adapter->q_vector[v_idx] = NULL;
1005
1006         /* igb_get_stats64() might access the rings on this vector,
1007          * we must wait a grace period before freeing it.
1008          */
1009         if (q_vector)
1010                 kfree_rcu(q_vector, rcu);
1011 }
1012
1013 /**
1014  *  igb_reset_q_vector - Reset config for interrupt vector
1015  *  @adapter: board private structure to initialize
1016  *  @v_idx: Index of vector to be reset
1017  *
1018  *  If NAPI is enabled it will delete any references to the
1019  *  NAPI struct. This is preparation for igb_free_q_vector.
1020  **/
1021 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1022 {
1023         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1024
1025         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1026          * allocated. So, q_vector is NULL so we should stop here.
1027          */
1028         if (!q_vector)
1029                 return;
1030
1031         if (q_vector->tx.ring)
1032                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1033
1034         if (q_vector->rx.ring)
1035                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1036
1037         netif_napi_del(&q_vector->napi);
1038
1039 }
1040
1041 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1042 {
1043         int v_idx = adapter->num_q_vectors;
1044
1045         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1046                 pci_disable_msix(adapter->pdev);
1047         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1048                 pci_disable_msi(adapter->pdev);
1049
1050         while (v_idx--)
1051                 igb_reset_q_vector(adapter, v_idx);
1052 }
1053
1054 /**
1055  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1056  *  @adapter: board private structure to initialize
1057  *
1058  *  This function frees the memory allocated to the q_vectors.  In addition if
1059  *  NAPI is enabled it will delete any references to the NAPI struct prior
1060  *  to freeing the q_vector.
1061  **/
1062 static void igb_free_q_vectors(struct igb_adapter *adapter)
1063 {
1064         int v_idx = adapter->num_q_vectors;
1065
1066         adapter->num_tx_queues = 0;
1067         adapter->num_rx_queues = 0;
1068         adapter->num_q_vectors = 0;
1069
1070         while (v_idx--) {
1071                 igb_reset_q_vector(adapter, v_idx);
1072                 igb_free_q_vector(adapter, v_idx);
1073         }
1074 }
1075
1076 /**
1077  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1078  *  @adapter: board private structure to initialize
1079  *
1080  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1081  *  MSI-X interrupts allocated.
1082  */
1083 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1084 {
1085         igb_free_q_vectors(adapter);
1086         igb_reset_interrupt_capability(adapter);
1087 }
1088
1089 /**
1090  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1091  *  @adapter: board private structure to initialize
1092  *  @msix: boolean value of MSIX capability
1093  *
1094  *  Attempt to configure interrupts using the best available
1095  *  capabilities of the hardware and kernel.
1096  **/
1097 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1098 {
1099         int err;
1100         int numvecs, i;
1101
1102         if (!msix)
1103                 goto msi_only;
1104         adapter->flags |= IGB_FLAG_HAS_MSIX;
1105
1106         /* Number of supported queues. */
1107         adapter->num_rx_queues = adapter->rss_queues;
1108         if (adapter->vfs_allocated_count)
1109                 adapter->num_tx_queues = 1;
1110         else
1111                 adapter->num_tx_queues = adapter->rss_queues;
1112
1113         /* start with one vector for every Rx queue */
1114         numvecs = adapter->num_rx_queues;
1115
1116         /* if Tx handler is separate add 1 for every Tx queue */
1117         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1118                 numvecs += adapter->num_tx_queues;
1119
1120         /* store the number of vectors reserved for queues */
1121         adapter->num_q_vectors = numvecs;
1122
1123         /* add 1 vector for link status interrupts */
1124         numvecs++;
1125         for (i = 0; i < numvecs; i++)
1126                 adapter->msix_entries[i].entry = i;
1127
1128         err = pci_enable_msix_range(adapter->pdev,
1129                                     adapter->msix_entries,
1130                                     numvecs,
1131                                     numvecs);
1132         if (err > 0)
1133                 return;
1134
1135         igb_reset_interrupt_capability(adapter);
1136
1137         /* If we can't do MSI-X, try MSI */
1138 msi_only:
1139         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1140 #ifdef CONFIG_PCI_IOV
1141         /* disable SR-IOV for non MSI-X configurations */
1142         if (adapter->vf_data) {
1143                 struct e1000_hw *hw = &adapter->hw;
1144                 /* disable iov and allow time for transactions to clear */
1145                 pci_disable_sriov(adapter->pdev);
1146                 msleep(500);
1147
1148                 kfree(adapter->vf_mac_list);
1149                 adapter->vf_mac_list = NULL;
1150                 kfree(adapter->vf_data);
1151                 adapter->vf_data = NULL;
1152                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1153                 wrfl();
1154                 msleep(100);
1155                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1156         }
1157 #endif
1158         adapter->vfs_allocated_count = 0;
1159         adapter->rss_queues = 1;
1160         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1161         adapter->num_rx_queues = 1;
1162         adapter->num_tx_queues = 1;
1163         adapter->num_q_vectors = 1;
1164         if (!pci_enable_msi(adapter->pdev))
1165                 adapter->flags |= IGB_FLAG_HAS_MSI;
1166 }
1167
1168 static void igb_add_ring(struct igb_ring *ring,
1169                          struct igb_ring_container *head)
1170 {
1171         head->ring = ring;
1172         head->count++;
1173 }
1174
1175 /**
1176  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1177  *  @adapter: board private structure to initialize
1178  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1179  *  @v_idx: index of vector in adapter struct
1180  *  @txr_count: total number of Tx rings to allocate
1181  *  @txr_idx: index of first Tx ring to allocate
1182  *  @rxr_count: total number of Rx rings to allocate
1183  *  @rxr_idx: index of first Rx ring to allocate
1184  *
1185  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1186  **/
1187 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1188                               int v_count, int v_idx,
1189                               int txr_count, int txr_idx,
1190                               int rxr_count, int rxr_idx)
1191 {
1192         struct igb_q_vector *q_vector;
1193         struct igb_ring *ring;
1194         int ring_count;
1195         size_t size;
1196
1197         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1198         if (txr_count > 1 || rxr_count > 1)
1199                 return -ENOMEM;
1200
1201         ring_count = txr_count + rxr_count;
1202         size = struct_size(q_vector, ring, ring_count);
1203
1204         /* allocate q_vector and rings */
1205         q_vector = adapter->q_vector[v_idx];
1206         if (!q_vector) {
1207                 q_vector = kzalloc(size, GFP_KERNEL);
1208         } else if (size > ksize(q_vector)) {
1209                 kfree_rcu(q_vector, rcu);
1210                 q_vector = kzalloc(size, GFP_KERNEL);
1211         } else {
1212                 memset(q_vector, 0, size);
1213         }
1214         if (!q_vector)
1215                 return -ENOMEM;
1216
1217         /* initialize NAPI */
1218         netif_napi_add(adapter->netdev, &q_vector->napi,
1219                        igb_poll, 64);
1220
1221         /* tie q_vector and adapter together */
1222         adapter->q_vector[v_idx] = q_vector;
1223         q_vector->adapter = adapter;
1224
1225         /* initialize work limits */
1226         q_vector->tx.work_limit = adapter->tx_work_limit;
1227
1228         /* initialize ITR configuration */
1229         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1230         q_vector->itr_val = IGB_START_ITR;
1231
1232         /* initialize pointer to rings */
1233         ring = q_vector->ring;
1234
1235         /* intialize ITR */
1236         if (rxr_count) {
1237                 /* rx or rx/tx vector */
1238                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1239                         q_vector->itr_val = adapter->rx_itr_setting;
1240         } else {
1241                 /* tx only vector */
1242                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1243                         q_vector->itr_val = adapter->tx_itr_setting;
1244         }
1245
1246         if (txr_count) {
1247                 /* assign generic ring traits */
1248                 ring->dev = &adapter->pdev->dev;
1249                 ring->netdev = adapter->netdev;
1250
1251                 /* configure backlink on ring */
1252                 ring->q_vector = q_vector;
1253
1254                 /* update q_vector Tx values */
1255                 igb_add_ring(ring, &q_vector->tx);
1256
1257                 /* For 82575, context index must be unique per ring. */
1258                 if (adapter->hw.mac.type == e1000_82575)
1259                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1260
1261                 /* apply Tx specific ring traits */
1262                 ring->count = adapter->tx_ring_count;
1263                 ring->queue_index = txr_idx;
1264
1265                 ring->cbs_enable = false;
1266                 ring->idleslope = 0;
1267                 ring->sendslope = 0;
1268                 ring->hicredit = 0;
1269                 ring->locredit = 0;
1270
1271                 u64_stats_init(&ring->tx_syncp);
1272                 u64_stats_init(&ring->tx_syncp2);
1273
1274                 /* assign ring to adapter */
1275                 adapter->tx_ring[txr_idx] = ring;
1276
1277                 /* push pointer to next ring */
1278                 ring++;
1279         }
1280
1281         if (rxr_count) {
1282                 /* assign generic ring traits */
1283                 ring->dev = &adapter->pdev->dev;
1284                 ring->netdev = adapter->netdev;
1285
1286                 /* configure backlink on ring */
1287                 ring->q_vector = q_vector;
1288
1289                 /* update q_vector Rx values */
1290                 igb_add_ring(ring, &q_vector->rx);
1291
1292                 /* set flag indicating ring supports SCTP checksum offload */
1293                 if (adapter->hw.mac.type >= e1000_82576)
1294                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1295
1296                 /* On i350, i354, i210, and i211, loopback VLAN packets
1297                  * have the tag byte-swapped.
1298                  */
1299                 if (adapter->hw.mac.type >= e1000_i350)
1300                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1301
1302                 /* apply Rx specific ring traits */
1303                 ring->count = adapter->rx_ring_count;
1304                 ring->queue_index = rxr_idx;
1305
1306                 u64_stats_init(&ring->rx_syncp);
1307
1308                 /* assign ring to adapter */
1309                 adapter->rx_ring[rxr_idx] = ring;
1310         }
1311
1312         return 0;
1313 }
1314
1315
1316 /**
1317  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1318  *  @adapter: board private structure to initialize
1319  *
1320  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1321  *  return -ENOMEM.
1322  **/
1323 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1324 {
1325         int q_vectors = adapter->num_q_vectors;
1326         int rxr_remaining = adapter->num_rx_queues;
1327         int txr_remaining = adapter->num_tx_queues;
1328         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1329         int err;
1330
1331         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1332                 for (; rxr_remaining; v_idx++) {
1333                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1334                                                  0, 0, 1, rxr_idx);
1335
1336                         if (err)
1337                                 goto err_out;
1338
1339                         /* update counts and index */
1340                         rxr_remaining--;
1341                         rxr_idx++;
1342                 }
1343         }
1344
1345         for (; v_idx < q_vectors; v_idx++) {
1346                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1347                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1348
1349                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1350                                          tqpv, txr_idx, rqpv, rxr_idx);
1351
1352                 if (err)
1353                         goto err_out;
1354
1355                 /* update counts and index */
1356                 rxr_remaining -= rqpv;
1357                 txr_remaining -= tqpv;
1358                 rxr_idx++;
1359                 txr_idx++;
1360         }
1361
1362         return 0;
1363
1364 err_out:
1365         adapter->num_tx_queues = 0;
1366         adapter->num_rx_queues = 0;
1367         adapter->num_q_vectors = 0;
1368
1369         while (v_idx--)
1370                 igb_free_q_vector(adapter, v_idx);
1371
1372         return -ENOMEM;
1373 }
1374
1375 /**
1376  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1377  *  @adapter: board private structure to initialize
1378  *  @msix: boolean value of MSIX capability
1379  *
1380  *  This function initializes the interrupts and allocates all of the queues.
1381  **/
1382 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1383 {
1384         struct pci_dev *pdev = adapter->pdev;
1385         int err;
1386
1387         igb_set_interrupt_capability(adapter, msix);
1388
1389         err = igb_alloc_q_vectors(adapter);
1390         if (err) {
1391                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1392                 goto err_alloc_q_vectors;
1393         }
1394
1395         igb_cache_ring_register(adapter);
1396
1397         return 0;
1398
1399 err_alloc_q_vectors:
1400         igb_reset_interrupt_capability(adapter);
1401         return err;
1402 }
1403
1404 /**
1405  *  igb_request_irq - initialize interrupts
1406  *  @adapter: board private structure to initialize
1407  *
1408  *  Attempts to configure interrupts using the best available
1409  *  capabilities of the hardware and kernel.
1410  **/
1411 static int igb_request_irq(struct igb_adapter *adapter)
1412 {
1413         struct net_device *netdev = adapter->netdev;
1414         struct pci_dev *pdev = adapter->pdev;
1415         int err = 0;
1416
1417         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1418                 err = igb_request_msix(adapter);
1419                 if (!err)
1420                         goto request_done;
1421                 /* fall back to MSI */
1422                 igb_free_all_tx_resources(adapter);
1423                 igb_free_all_rx_resources(adapter);
1424
1425                 igb_clear_interrupt_scheme(adapter);
1426                 err = igb_init_interrupt_scheme(adapter, false);
1427                 if (err)
1428                         goto request_done;
1429
1430                 igb_setup_all_tx_resources(adapter);
1431                 igb_setup_all_rx_resources(adapter);
1432                 igb_configure(adapter);
1433         }
1434
1435         igb_assign_vector(adapter->q_vector[0], 0);
1436
1437         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1438                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1439                                   netdev->name, adapter);
1440                 if (!err)
1441                         goto request_done;
1442
1443                 /* fall back to legacy interrupts */
1444                 igb_reset_interrupt_capability(adapter);
1445                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1446         }
1447
1448         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1449                           netdev->name, adapter);
1450
1451         if (err)
1452                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1453                         err);
1454
1455 request_done:
1456         return err;
1457 }
1458
1459 static void igb_free_irq(struct igb_adapter *adapter)
1460 {
1461         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1462                 int vector = 0, i;
1463
1464                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1465
1466                 for (i = 0; i < adapter->num_q_vectors; i++)
1467                         free_irq(adapter->msix_entries[vector++].vector,
1468                                  adapter->q_vector[i]);
1469         } else {
1470                 free_irq(adapter->pdev->irq, adapter);
1471         }
1472 }
1473
1474 /**
1475  *  igb_irq_disable - Mask off interrupt generation on the NIC
1476  *  @adapter: board private structure
1477  **/
1478 static void igb_irq_disable(struct igb_adapter *adapter)
1479 {
1480         struct e1000_hw *hw = &adapter->hw;
1481
1482         /* we need to be careful when disabling interrupts.  The VFs are also
1483          * mapped into these registers and so clearing the bits can cause
1484          * issues on the VF drivers so we only need to clear what we set
1485          */
1486         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1487                 u32 regval = rd32(E1000_EIAM);
1488
1489                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1490                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1491                 regval = rd32(E1000_EIAC);
1492                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1493         }
1494
1495         wr32(E1000_IAM, 0);
1496         wr32(E1000_IMC, ~0);
1497         wrfl();
1498         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1499                 int i;
1500
1501                 for (i = 0; i < adapter->num_q_vectors; i++)
1502                         synchronize_irq(adapter->msix_entries[i].vector);
1503         } else {
1504                 synchronize_irq(adapter->pdev->irq);
1505         }
1506 }
1507
1508 /**
1509  *  igb_irq_enable - Enable default interrupt generation settings
1510  *  @adapter: board private structure
1511  **/
1512 static void igb_irq_enable(struct igb_adapter *adapter)
1513 {
1514         struct e1000_hw *hw = &adapter->hw;
1515
1516         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1517                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1518                 u32 regval = rd32(E1000_EIAC);
1519
1520                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1521                 regval = rd32(E1000_EIAM);
1522                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1523                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1524                 if (adapter->vfs_allocated_count) {
1525                         wr32(E1000_MBVFIMR, 0xFF);
1526                         ims |= E1000_IMS_VMMB;
1527                 }
1528                 wr32(E1000_IMS, ims);
1529         } else {
1530                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1531                                 E1000_IMS_DRSTA);
1532                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1533                                 E1000_IMS_DRSTA);
1534         }
1535 }
1536
1537 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1538 {
1539         struct e1000_hw *hw = &adapter->hw;
1540         u16 pf_id = adapter->vfs_allocated_count;
1541         u16 vid = adapter->hw.mng_cookie.vlan_id;
1542         u16 old_vid = adapter->mng_vlan_id;
1543
1544         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1545                 /* add VID to filter table */
1546                 igb_vfta_set(hw, vid, pf_id, true, true);
1547                 adapter->mng_vlan_id = vid;
1548         } else {
1549                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1550         }
1551
1552         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1553             (vid != old_vid) &&
1554             !test_bit(old_vid, adapter->active_vlans)) {
1555                 /* remove VID from filter table */
1556                 igb_vfta_set(hw, vid, pf_id, false, true);
1557         }
1558 }
1559
1560 /**
1561  *  igb_release_hw_control - release control of the h/w to f/w
1562  *  @adapter: address of board private structure
1563  *
1564  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1565  *  For ASF and Pass Through versions of f/w this means that the
1566  *  driver is no longer loaded.
1567  **/
1568 static void igb_release_hw_control(struct igb_adapter *adapter)
1569 {
1570         struct e1000_hw *hw = &adapter->hw;
1571         u32 ctrl_ext;
1572
1573         /* Let firmware take over control of h/w */
1574         ctrl_ext = rd32(E1000_CTRL_EXT);
1575         wr32(E1000_CTRL_EXT,
1576                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1577 }
1578
1579 /**
1580  *  igb_get_hw_control - get control of the h/w from f/w
1581  *  @adapter: address of board private structure
1582  *
1583  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1584  *  For ASF and Pass Through versions of f/w this means that
1585  *  the driver is loaded.
1586  **/
1587 static void igb_get_hw_control(struct igb_adapter *adapter)
1588 {
1589         struct e1000_hw *hw = &adapter->hw;
1590         u32 ctrl_ext;
1591
1592         /* Let firmware know the driver has taken over */
1593         ctrl_ext = rd32(E1000_CTRL_EXT);
1594         wr32(E1000_CTRL_EXT,
1595                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1596 }
1597
1598 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1599 {
1600         struct net_device *netdev = adapter->netdev;
1601         struct e1000_hw *hw = &adapter->hw;
1602
1603         WARN_ON(hw->mac.type != e1000_i210);
1604
1605         if (enable)
1606                 adapter->flags |= IGB_FLAG_FQTSS;
1607         else
1608                 adapter->flags &= ~IGB_FLAG_FQTSS;
1609
1610         if (netif_running(netdev))
1611                 schedule_work(&adapter->reset_task);
1612 }
1613
1614 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1615 {
1616         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1617 }
1618
1619 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1620                                    enum tx_queue_prio prio)
1621 {
1622         u32 val;
1623
1624         WARN_ON(hw->mac.type != e1000_i210);
1625         WARN_ON(queue < 0 || queue > 4);
1626
1627         val = rd32(E1000_I210_TXDCTL(queue));
1628
1629         if (prio == TX_QUEUE_PRIO_HIGH)
1630                 val |= E1000_TXDCTL_PRIORITY;
1631         else
1632                 val &= ~E1000_TXDCTL_PRIORITY;
1633
1634         wr32(E1000_I210_TXDCTL(queue), val);
1635 }
1636
1637 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1638 {
1639         u32 val;
1640
1641         WARN_ON(hw->mac.type != e1000_i210);
1642         WARN_ON(queue < 0 || queue > 1);
1643
1644         val = rd32(E1000_I210_TQAVCC(queue));
1645
1646         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1647                 val |= E1000_TQAVCC_QUEUEMODE;
1648         else
1649                 val &= ~E1000_TQAVCC_QUEUEMODE;
1650
1651         wr32(E1000_I210_TQAVCC(queue), val);
1652 }
1653
1654 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1655 {
1656         int i;
1657
1658         for (i = 0; i < adapter->num_tx_queues; i++) {
1659                 if (adapter->tx_ring[i]->cbs_enable)
1660                         return true;
1661         }
1662
1663         return false;
1664 }
1665
1666 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1667 {
1668         int i;
1669
1670         for (i = 0; i < adapter->num_tx_queues; i++) {
1671                 if (adapter->tx_ring[i]->launchtime_enable)
1672                         return true;
1673         }
1674
1675         return false;
1676 }
1677
1678 /**
1679  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1680  *  @adapter: pointer to adapter struct
1681  *  @queue: queue number
1682  *
1683  *  Configure CBS and Launchtime for a given hardware queue.
1684  *  Parameters are retrieved from the correct Tx ring, so
1685  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1686  *  for setting those correctly prior to this function being called.
1687  **/
1688 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1689 {
1690         struct igb_ring *ring = adapter->tx_ring[queue];
1691         struct net_device *netdev = adapter->netdev;
1692         struct e1000_hw *hw = &adapter->hw;
1693         u32 tqavcc, tqavctrl;
1694         u16 value;
1695
1696         WARN_ON(hw->mac.type != e1000_i210);
1697         WARN_ON(queue < 0 || queue > 1);
1698
1699         /* If any of the Qav features is enabled, configure queues as SR and
1700          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701          * as SP.
1702          */
1703         if (ring->cbs_enable || ring->launchtime_enable) {
1704                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1705                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1706         } else {
1707                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1708                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1709         }
1710
1711         /* If CBS is enabled, set DataTranARB and config its parameters. */
1712         if (ring->cbs_enable || queue == 0) {
1713                 /* i210 does not allow the queue 0 to be in the Strict
1714                  * Priority mode while the Qav mode is enabled, so,
1715                  * instead of disabling strict priority mode, we give
1716                  * queue 0 the maximum of credits possible.
1717                  *
1718                  * See section 8.12.19 of the i210 datasheet, "Note:
1719                  * Queue0 QueueMode must be set to 1b when
1720                  * TransmitMode is set to Qav."
1721                  */
1722                 if (queue == 0 && !ring->cbs_enable) {
1723                         /* max "linkspeed" idleslope in kbps */
1724                         ring->idleslope = 1000000;
1725                         ring->hicredit = ETH_FRAME_LEN;
1726                 }
1727
1728                 /* Always set data transfer arbitration to credit-based
1729                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730                  * the queues.
1731                  */
1732                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735
1736                 /* According to i210 datasheet section 7.2.7.7, we should set
1737                  * the 'idleSlope' field from TQAVCC register following the
1738                  * equation:
1739                  *
1740                  * For 100 Mbps link speed:
1741                  *
1742                  *     value = BW * 0x7735 * 0.2                          (E1)
1743                  *
1744                  * For 1000Mbps link speed:
1745                  *
1746                  *     value = BW * 0x7735 * 2                            (E2)
1747                  *
1748                  * E1 and E2 can be merged into one equation as shown below.
1749                  * Note that 'link-speed' is in Mbps.
1750                  *
1751                  *     value = BW * 0x7735 * 2 * link-speed
1752                  *                           --------------               (E3)
1753                  *                                1000
1754                  *
1755                  * 'BW' is the percentage bandwidth out of full link speed
1756                  * which can be found with the following equation. Note that
1757                  * idleSlope here is the parameter from this function which
1758                  * is in kbps.
1759                  *
1760                  *     BW =     idleSlope
1761                  *          -----------------                             (E4)
1762                  *          link-speed * 1000
1763                  *
1764                  * That said, we can come up with a generic equation to
1765                  * calculate the value we should set it TQAVCC register by
1766                  * replacing 'BW' in E3 by E4. The resulting equation is:
1767                  *
1768                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1769                  *         -----------------            --------------    (E5)
1770                  *         link-speed * 1000                 1000
1771                  *
1772                  * 'link-speed' is present in both sides of the fraction so
1773                  * it is canceled out. The final equation is the following:
1774                  *
1775                  *     value = idleSlope * 61034
1776                  *             -----------------                          (E6)
1777                  *                  1000000
1778                  *
1779                  * NOTE: For i210, given the above, we can see that idleslope
1780                  *       is represented in 16.38431 kbps units by the value at
1781                  *       the TQAVCC register (1Gbps / 61034), which reduces
1782                  *       the granularity for idleslope increments.
1783                  *       For instance, if you want to configure a 2576kbps
1784                  *       idleslope, the value to be written on the register
1785                  *       would have to be 157.23. If rounded down, you end
1786                  *       up with less bandwidth available than originally
1787                  *       required (~2572 kbps). If rounded up, you end up
1788                  *       with a higher bandwidth (~2589 kbps). Below the
1789                  *       approach we take is to always round up the
1790                  *       calculated value, so the resulting bandwidth might
1791                  *       be slightly higher for some configurations.
1792                  */
1793                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794
1795                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797                 tqavcc |= value;
1798                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800                 wr32(E1000_I210_TQAVHC(queue),
1801                      0x80000000 + ring->hicredit * 0x7735);
1802         } else {
1803
1804                 /* Set idleSlope to zero. */
1805                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808
1809                 /* Set hiCredit to zero. */
1810                 wr32(E1000_I210_TQAVHC(queue), 0);
1811
1812                 /* If CBS is not enabled for any queues anymore, then return to
1813                  * the default state of Data Transmission Arbitration on
1814                  * TQAVCTRL.
1815                  */
1816                 if (!is_any_cbs_enabled(adapter)) {
1817                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820                 }
1821         }
1822
1823         /* If LaunchTime is enabled, set DataTranTIM. */
1824         if (ring->launchtime_enable) {
1825                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826                  * for any of the SR queues, and configure fetchtime delta.
1827                  * XXX NOTE:
1828                  *     - LaunchTime will be enabled for all SR queues.
1829                  *     - A fixed offset can be added relative to the launch
1830                  *       time of all packets if configured at reg LAUNCH_OS0.
1831                  *       We are keeping it as 0 for now (default value).
1832                  */
1833                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1836                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837         } else {
1838                 /* If Launchtime is not enabled for any SR queues anymore,
1839                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840                  * effectively disabling Launchtime.
1841                  */
1842                 if (!is_any_txtime_enabled(adapter)) {
1843                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847                 }
1848         }
1849
1850         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1851          * CBS are not configurable by software so we don't do any 'controller
1852          * configuration' in respect to these parameters.
1853          */
1854
1855         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856                    ring->cbs_enable ? "enabled" : "disabled",
1857                    ring->launchtime_enable ? "enabled" : "disabled",
1858                    queue,
1859                    ring->idleslope, ring->sendslope,
1860                    ring->hicredit, ring->locredit);
1861 }
1862
1863 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864                                   bool enable)
1865 {
1866         struct igb_ring *ring;
1867
1868         if (queue < 0 || queue > adapter->num_tx_queues)
1869                 return -EINVAL;
1870
1871         ring = adapter->tx_ring[queue];
1872         ring->launchtime_enable = enable;
1873
1874         return 0;
1875 }
1876
1877 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878                                bool enable, int idleslope, int sendslope,
1879                                int hicredit, int locredit)
1880 {
1881         struct igb_ring *ring;
1882
1883         if (queue < 0 || queue > adapter->num_tx_queues)
1884                 return -EINVAL;
1885
1886         ring = adapter->tx_ring[queue];
1887
1888         ring->cbs_enable = enable;
1889         ring->idleslope = idleslope;
1890         ring->sendslope = sendslope;
1891         ring->hicredit = hicredit;
1892         ring->locredit = locredit;
1893
1894         return 0;
1895 }
1896
1897 /**
1898  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899  *  @adapter: pointer to adapter struct
1900  *
1901  *  Configure TQAVCTRL register switching the controller's Tx mode
1902  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1903  *  a call to igb_config_tx_modes() per queue so any previously saved
1904  *  Tx parameters are applied.
1905  **/
1906 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907 {
1908         struct net_device *netdev = adapter->netdev;
1909         struct e1000_hw *hw = &adapter->hw;
1910         u32 val;
1911
1912         /* Only i210 controller supports changing the transmission mode. */
1913         if (hw->mac.type != e1000_i210)
1914                 return;
1915
1916         if (is_fqtss_enabled(adapter)) {
1917                 int i, max_queue;
1918
1919                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921                  * so SP queues wait for SR ones.
1922                  */
1923                 val = rd32(E1000_I210_TQAVCTRL);
1924                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926                 wr32(E1000_I210_TQAVCTRL, val);
1927
1928                 /* Configure Tx and Rx packet buffers sizes as described in
1929                  * i210 datasheet section 7.2.7.7.
1930                  */
1931                 val = rd32(E1000_TXPBS);
1932                 val &= ~I210_TXPBSIZE_MASK;
1933                 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1934                         I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1935                 wr32(E1000_TXPBS, val);
1936
1937                 val = rd32(E1000_RXPBS);
1938                 val &= ~I210_RXPBSIZE_MASK;
1939                 val |= I210_RXPBSIZE_PB_30KB;
1940                 wr32(E1000_RXPBS, val);
1941
1942                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943                  * register should not exceed the buffer size programmed in
1944                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1946                  * 4kB / 64.
1947                  *
1948                  * However, when we do so, no frame from queue 2 and 3 are
1949                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1950                  * or _equal_ to the buffer size programmed in TXPBS. For this
1951                  * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952                  */
1953                 val = (4096 - 1) / 64;
1954                 wr32(E1000_I210_DTXMXPKTSZ, val);
1955
1956                 /* Since FQTSS mode is enabled, apply any CBS configuration
1957                  * previously set. If no previous CBS configuration has been
1958                  * done, then the initial configuration is applied, which means
1959                  * CBS is disabled.
1960                  */
1961                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963
1964                 for (i = 0; i < max_queue; i++) {
1965                         igb_config_tx_modes(adapter, i);
1966                 }
1967         } else {
1968                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971
1972                 val = rd32(E1000_I210_TQAVCTRL);
1973                 /* According to Section 8.12.21, the other flags we've set when
1974                  * enabling FQTSS are not relevant when disabling FQTSS so we
1975                  * don't set they here.
1976                  */
1977                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978                 wr32(E1000_I210_TQAVCTRL, val);
1979         }
1980
1981         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982                    "enabled" : "disabled");
1983 }
1984
1985 /**
1986  *  igb_configure - configure the hardware for RX and TX
1987  *  @adapter: private board structure
1988  **/
1989 static void igb_configure(struct igb_adapter *adapter)
1990 {
1991         struct net_device *netdev = adapter->netdev;
1992         int i;
1993
1994         igb_get_hw_control(adapter);
1995         igb_set_rx_mode(netdev);
1996         igb_setup_tx_mode(adapter);
1997
1998         igb_restore_vlan(adapter);
1999
2000         igb_setup_tctl(adapter);
2001         igb_setup_mrqc(adapter);
2002         igb_setup_rctl(adapter);
2003
2004         igb_nfc_filter_restore(adapter);
2005         igb_configure_tx(adapter);
2006         igb_configure_rx(adapter);
2007
2008         igb_rx_fifo_flush_82575(&adapter->hw);
2009
2010         /* call igb_desc_unused which always leaves
2011          * at least 1 descriptor unused to make sure
2012          * next_to_use != next_to_clean
2013          */
2014         for (i = 0; i < adapter->num_rx_queues; i++) {
2015                 struct igb_ring *ring = adapter->rx_ring[i];
2016                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017         }
2018 }
2019
2020 /**
2021  *  igb_power_up_link - Power up the phy/serdes link
2022  *  @adapter: address of board private structure
2023  **/
2024 void igb_power_up_link(struct igb_adapter *adapter)
2025 {
2026         igb_reset_phy(&adapter->hw);
2027
2028         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029                 igb_power_up_phy_copper(&adapter->hw);
2030         else
2031                 igb_power_up_serdes_link_82575(&adapter->hw);
2032
2033         igb_setup_link(&adapter->hw);
2034 }
2035
2036 /**
2037  *  igb_power_down_link - Power down the phy/serdes link
2038  *  @adapter: address of board private structure
2039  */
2040 static void igb_power_down_link(struct igb_adapter *adapter)
2041 {
2042         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043                 igb_power_down_phy_copper_82575(&adapter->hw);
2044         else
2045                 igb_shutdown_serdes_link_82575(&adapter->hw);
2046 }
2047
2048 /**
2049  * Detect and switch function for Media Auto Sense
2050  * @adapter: address of the board private structure
2051  **/
2052 static void igb_check_swap_media(struct igb_adapter *adapter)
2053 {
2054         struct e1000_hw *hw = &adapter->hw;
2055         u32 ctrl_ext, connsw;
2056         bool swap_now = false;
2057
2058         ctrl_ext = rd32(E1000_CTRL_EXT);
2059         connsw = rd32(E1000_CONNSW);
2060
2061         /* need to live swap if current media is copper and we have fiber/serdes
2062          * to go to.
2063          */
2064
2065         if ((hw->phy.media_type == e1000_media_type_copper) &&
2066             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067                 swap_now = true;
2068         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2069                 /* copper signal takes time to appear */
2070                 if (adapter->copper_tries < 4) {
2071                         adapter->copper_tries++;
2072                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2073                         wr32(E1000_CONNSW, connsw);
2074                         return;
2075                 } else {
2076                         adapter->copper_tries = 0;
2077                         if ((connsw & E1000_CONNSW_PHYSD) &&
2078                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2079                                 swap_now = true;
2080                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2081                                 wr32(E1000_CONNSW, connsw);
2082                         }
2083                 }
2084         }
2085
2086         if (!swap_now)
2087                 return;
2088
2089         switch (hw->phy.media_type) {
2090         case e1000_media_type_copper:
2091                 netdev_info(adapter->netdev,
2092                         "MAS: changing media to fiber/serdes\n");
2093                 ctrl_ext |=
2094                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2095                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2096                 adapter->copper_tries = 0;
2097                 break;
2098         case e1000_media_type_internal_serdes:
2099         case e1000_media_type_fiber:
2100                 netdev_info(adapter->netdev,
2101                         "MAS: changing media to copper\n");
2102                 ctrl_ext &=
2103                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2104                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2105                 break;
2106         default:
2107                 /* shouldn't get here during regular operation */
2108                 netdev_err(adapter->netdev,
2109                         "AMS: Invalid media type found, returning\n");
2110                 break;
2111         }
2112         wr32(E1000_CTRL_EXT, ctrl_ext);
2113 }
2114
2115 /**
2116  *  igb_up - Open the interface and prepare it to handle traffic
2117  *  @adapter: board private structure
2118  **/
2119 int igb_up(struct igb_adapter *adapter)
2120 {
2121         struct e1000_hw *hw = &adapter->hw;
2122         int i;
2123
2124         /* hardware has been reset, we need to reload some things */
2125         igb_configure(adapter);
2126
2127         clear_bit(__IGB_DOWN, &adapter->state);
2128
2129         for (i = 0; i < adapter->num_q_vectors; i++)
2130                 napi_enable(&(adapter->q_vector[i]->napi));
2131
2132         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2133                 igb_configure_msix(adapter);
2134         else
2135                 igb_assign_vector(adapter->q_vector[0], 0);
2136
2137         /* Clear any pending interrupts. */
2138         rd32(E1000_TSICR);
2139         rd32(E1000_ICR);
2140         igb_irq_enable(adapter);
2141
2142         /* notify VFs that reset has been completed */
2143         if (adapter->vfs_allocated_count) {
2144                 u32 reg_data = rd32(E1000_CTRL_EXT);
2145
2146                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2147                 wr32(E1000_CTRL_EXT, reg_data);
2148         }
2149
2150         netif_tx_start_all_queues(adapter->netdev);
2151
2152         /* start the watchdog. */
2153         hw->mac.get_link_status = 1;
2154         schedule_work(&adapter->watchdog_task);
2155
2156         if ((adapter->flags & IGB_FLAG_EEE) &&
2157             (!hw->dev_spec._82575.eee_disable))
2158                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2159
2160         return 0;
2161 }
2162
2163 void igb_down(struct igb_adapter *adapter)
2164 {
2165         struct net_device *netdev = adapter->netdev;
2166         struct e1000_hw *hw = &adapter->hw;
2167         u32 tctl, rctl;
2168         int i;
2169
2170         /* signal that we're down so the interrupt handler does not
2171          * reschedule our watchdog timer
2172          */
2173         set_bit(__IGB_DOWN, &adapter->state);
2174
2175         /* disable receives in the hardware */
2176         rctl = rd32(E1000_RCTL);
2177         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2178         /* flush and sleep below */
2179
2180         igb_nfc_filter_exit(adapter);
2181
2182         netif_carrier_off(netdev);
2183         netif_tx_stop_all_queues(netdev);
2184
2185         /* disable transmits in the hardware */
2186         tctl = rd32(E1000_TCTL);
2187         tctl &= ~E1000_TCTL_EN;
2188         wr32(E1000_TCTL, tctl);
2189         /* flush both disables and wait for them to finish */
2190         wrfl();
2191         usleep_range(10000, 11000);
2192
2193         igb_irq_disable(adapter);
2194
2195         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2196
2197         for (i = 0; i < adapter->num_q_vectors; i++) {
2198                 if (adapter->q_vector[i]) {
2199                         napi_synchronize(&adapter->q_vector[i]->napi);
2200                         napi_disable(&adapter->q_vector[i]->napi);
2201                 }
2202         }
2203
2204         del_timer_sync(&adapter->watchdog_timer);
2205         del_timer_sync(&adapter->phy_info_timer);
2206
2207         /* record the stats before reset*/
2208         spin_lock(&adapter->stats64_lock);
2209         igb_update_stats(adapter);
2210         spin_unlock(&adapter->stats64_lock);
2211
2212         adapter->link_speed = 0;
2213         adapter->link_duplex = 0;
2214
2215         if (!pci_channel_offline(adapter->pdev))
2216                 igb_reset(adapter);
2217
2218         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2219         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2220
2221         igb_clean_all_tx_rings(adapter);
2222         igb_clean_all_rx_rings(adapter);
2223 #ifdef CONFIG_IGB_DCA
2224
2225         /* since we reset the hardware DCA settings were cleared */
2226         igb_setup_dca(adapter);
2227 #endif
2228 }
2229
2230 void igb_reinit_locked(struct igb_adapter *adapter)
2231 {
2232         WARN_ON(in_interrupt());
2233         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2234                 usleep_range(1000, 2000);
2235         igb_down(adapter);
2236         igb_up(adapter);
2237         clear_bit(__IGB_RESETTING, &adapter->state);
2238 }
2239
2240 /** igb_enable_mas - Media Autosense re-enable after swap
2241  *
2242  * @adapter: adapter struct
2243  **/
2244 static void igb_enable_mas(struct igb_adapter *adapter)
2245 {
2246         struct e1000_hw *hw = &adapter->hw;
2247         u32 connsw = rd32(E1000_CONNSW);
2248
2249         /* configure for SerDes media detect */
2250         if ((hw->phy.media_type == e1000_media_type_copper) &&
2251             (!(connsw & E1000_CONNSW_SERDESD))) {
2252                 connsw |= E1000_CONNSW_ENRGSRC;
2253                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254                 wr32(E1000_CONNSW, connsw);
2255                 wrfl();
2256         }
2257 }
2258
2259 void igb_reset(struct igb_adapter *adapter)
2260 {
2261         struct pci_dev *pdev = adapter->pdev;
2262         struct e1000_hw *hw = &adapter->hw;
2263         struct e1000_mac_info *mac = &hw->mac;
2264         struct e1000_fc_info *fc = &hw->fc;
2265         u32 pba, hwm;
2266
2267         /* Repartition Pba for greater than 9k mtu
2268          * To take effect CTRL.RST is required.
2269          */
2270         switch (mac->type) {
2271         case e1000_i350:
2272         case e1000_i354:
2273         case e1000_82580:
2274                 pba = rd32(E1000_RXPBS);
2275                 pba = igb_rxpbs_adjust_82580(pba);
2276                 break;
2277         case e1000_82576:
2278                 pba = rd32(E1000_RXPBS);
2279                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2280                 break;
2281         case e1000_82575:
2282         case e1000_i210:
2283         case e1000_i211:
2284         default:
2285                 pba = E1000_PBA_34K;
2286                 break;
2287         }
2288
2289         if (mac->type == e1000_82575) {
2290                 u32 min_rx_space, min_tx_space, needed_tx_space;
2291
2292                 /* write Rx PBA so that hardware can report correct Tx PBA */
2293                 wr32(E1000_PBA, pba);
2294
2295                 /* To maintain wire speed transmits, the Tx FIFO should be
2296                  * large enough to accommodate two full transmit packets,
2297                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2298                  * the Rx FIFO should be large enough to accommodate at least
2299                  * one full receive packet and is similarly rounded up and
2300                  * expressed in KB.
2301                  */
2302                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2303
2304                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2305                  * but don't include Ethernet FCS because hardware appends it.
2306                  * We only need to round down to the nearest 512 byte block
2307                  * count since the value we care about is 2 frames, not 1.
2308                  */
2309                 min_tx_space = adapter->max_frame_size;
2310                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2311                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2312
2313                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2314                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2315
2316                 /* If current Tx allocation is less than the min Tx FIFO size,
2317                  * and the min Tx FIFO size is less than the current Rx FIFO
2318                  * allocation, take space away from current Rx allocation.
2319                  */
2320                 if (needed_tx_space < pba) {
2321                         pba -= needed_tx_space;
2322
2323                         /* if short on Rx space, Rx wins and must trump Tx
2324                          * adjustment
2325                          */
2326                         if (pba < min_rx_space)
2327                                 pba = min_rx_space;
2328                 }
2329
2330                 /* adjust PBA for jumbo frames */
2331                 wr32(E1000_PBA, pba);
2332         }
2333
2334         /* flow control settings
2335          * The high water mark must be low enough to fit one full frame
2336          * after transmitting the pause frame.  As such we must have enough
2337          * space to allow for us to complete our current transmit and then
2338          * receive the frame that is in progress from the link partner.
2339          * Set it to:
2340          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2341          */
2342         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2343
2344         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2345         fc->low_water = fc->high_water - 16;
2346         fc->pause_time = 0xFFFF;
2347         fc->send_xon = 1;
2348         fc->current_mode = fc->requested_mode;
2349
2350         /* disable receive for all VFs and wait one second */
2351         if (adapter->vfs_allocated_count) {
2352                 int i;
2353
2354                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2355                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2356
2357                 /* ping all the active vfs to let them know we are going down */
2358                 igb_ping_all_vfs(adapter);
2359
2360                 /* disable transmits and receives */
2361                 wr32(E1000_VFRE, 0);
2362                 wr32(E1000_VFTE, 0);
2363         }
2364
2365         /* Allow time for pending master requests to run */
2366         hw->mac.ops.reset_hw(hw);
2367         wr32(E1000_WUC, 0);
2368
2369         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2370                 /* need to resetup here after media swap */
2371                 adapter->ei.get_invariants(hw);
2372                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2373         }
2374         if ((mac->type == e1000_82575) &&
2375             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2376                 igb_enable_mas(adapter);
2377         }
2378         if (hw->mac.ops.init_hw(hw))
2379                 dev_err(&pdev->dev, "Hardware Error\n");
2380
2381         /* RAR registers were cleared during init_hw, clear mac table */
2382         igb_flush_mac_table(adapter);
2383         __dev_uc_unsync(adapter->netdev, NULL);
2384
2385         /* Recover default RAR entry */
2386         igb_set_default_mac_filter(adapter);
2387
2388         /* Flow control settings reset on hardware reset, so guarantee flow
2389          * control is off when forcing speed.
2390          */
2391         if (!hw->mac.autoneg)
2392                 igb_force_mac_fc(hw);
2393
2394         igb_init_dmac(adapter, pba);
2395 #ifdef CONFIG_IGB_HWMON
2396         /* Re-initialize the thermal sensor on i350 devices. */
2397         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2398                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2399                         /* If present, re-initialize the external thermal sensor
2400                          * interface.
2401                          */
2402                         if (adapter->ets)
2403                                 mac->ops.init_thermal_sensor_thresh(hw);
2404                 }
2405         }
2406 #endif
2407         /* Re-establish EEE setting */
2408         if (hw->phy.media_type == e1000_media_type_copper) {
2409                 switch (mac->type) {
2410                 case e1000_i350:
2411                 case e1000_i210:
2412                 case e1000_i211:
2413                         igb_set_eee_i350(hw, true, true);
2414                         break;
2415                 case e1000_i354:
2416                         igb_set_eee_i354(hw, true, true);
2417                         break;
2418                 default:
2419                         break;
2420                 }
2421         }
2422         if (!netif_running(adapter->netdev))
2423                 igb_power_down_link(adapter);
2424
2425         igb_update_mng_vlan(adapter);
2426
2427         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2428         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2429
2430         /* Re-enable PTP, where applicable. */
2431         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2432                 igb_ptp_reset(adapter);
2433
2434         igb_get_phy_info(hw);
2435 }
2436
2437 static netdev_features_t igb_fix_features(struct net_device *netdev,
2438         netdev_features_t features)
2439 {
2440         /* Since there is no support for separate Rx/Tx vlan accel
2441          * enable/disable make sure Tx flag is always in same state as Rx.
2442          */
2443         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2444                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2445         else
2446                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2447
2448         return features;
2449 }
2450
2451 static int igb_set_features(struct net_device *netdev,
2452         netdev_features_t features)
2453 {
2454         netdev_features_t changed = netdev->features ^ features;
2455         struct igb_adapter *adapter = netdev_priv(netdev);
2456
2457         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2458                 igb_vlan_mode(netdev, features);
2459
2460         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2461                 return 0;
2462
2463         if (!(features & NETIF_F_NTUPLE)) {
2464                 struct hlist_node *node2;
2465                 struct igb_nfc_filter *rule;
2466
2467                 spin_lock(&adapter->nfc_lock);
2468                 hlist_for_each_entry_safe(rule, node2,
2469                                           &adapter->nfc_filter_list, nfc_node) {
2470                         igb_erase_filter(adapter, rule);
2471                         hlist_del(&rule->nfc_node);
2472                         kfree(rule);
2473                 }
2474                 spin_unlock(&adapter->nfc_lock);
2475                 adapter->nfc_filter_count = 0;
2476         }
2477
2478         netdev->features = features;
2479
2480         if (netif_running(netdev))
2481                 igb_reinit_locked(adapter);
2482         else
2483                 igb_reset(adapter);
2484
2485         return 1;
2486 }
2487
2488 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2489                            struct net_device *dev,
2490                            const unsigned char *addr, u16 vid,
2491                            u16 flags,
2492                            struct netlink_ext_ack *extack)
2493 {
2494         /* guarantee we can provide a unique filter for the unicast address */
2495         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2496                 struct igb_adapter *adapter = netdev_priv(dev);
2497                 int vfn = adapter->vfs_allocated_count;
2498
2499                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2500                         return -ENOMEM;
2501         }
2502
2503         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2504 }
2505
2506 #define IGB_MAX_MAC_HDR_LEN     127
2507 #define IGB_MAX_NETWORK_HDR_LEN 511
2508
2509 static netdev_features_t
2510 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2511                    netdev_features_t features)
2512 {
2513         unsigned int network_hdr_len, mac_hdr_len;
2514
2515         /* Make certain the headers can be described by a context descriptor */
2516         mac_hdr_len = skb_network_header(skb) - skb->data;
2517         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2518                 return features & ~(NETIF_F_HW_CSUM |
2519                                     NETIF_F_SCTP_CRC |
2520                                     NETIF_F_HW_VLAN_CTAG_TX |
2521                                     NETIF_F_TSO |
2522                                     NETIF_F_TSO6);
2523
2524         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2525         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2526                 return features & ~(NETIF_F_HW_CSUM |
2527                                     NETIF_F_SCTP_CRC |
2528                                     NETIF_F_TSO |
2529                                     NETIF_F_TSO6);
2530
2531         /* We can only support IPV4 TSO in tunnels if we can mangle the
2532          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2533          */
2534         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2535                 features &= ~NETIF_F_TSO;
2536
2537         return features;
2538 }
2539
2540 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2541 {
2542         if (!is_fqtss_enabled(adapter)) {
2543                 enable_fqtss(adapter, true);
2544                 return;
2545         }
2546
2547         igb_config_tx_modes(adapter, queue);
2548
2549         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2550                 enable_fqtss(adapter, false);
2551 }
2552
2553 static int igb_offload_cbs(struct igb_adapter *adapter,
2554                            struct tc_cbs_qopt_offload *qopt)
2555 {
2556         struct e1000_hw *hw = &adapter->hw;
2557         int err;
2558
2559         /* CBS offloading is only supported by i210 controller. */
2560         if (hw->mac.type != e1000_i210)
2561                 return -EOPNOTSUPP;
2562
2563         /* CBS offloading is only supported by queue 0 and queue 1. */
2564         if (qopt->queue < 0 || qopt->queue > 1)
2565                 return -EINVAL;
2566
2567         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2568                                   qopt->idleslope, qopt->sendslope,
2569                                   qopt->hicredit, qopt->locredit);
2570         if (err)
2571                 return err;
2572
2573         igb_offload_apply(adapter, qopt->queue);
2574
2575         return 0;
2576 }
2577
2578 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2579 #define VLAN_PRIO_FULL_MASK (0x07)
2580
2581 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2582                                 struct flow_cls_offload *f,
2583                                 int traffic_class,
2584                                 struct igb_nfc_filter *input)
2585 {
2586         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2587         struct flow_dissector *dissector = rule->match.dissector;
2588         struct netlink_ext_ack *extack = f->common.extack;
2589
2590         if (dissector->used_keys &
2591             ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2592               BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2593               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2594               BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2595                 NL_SET_ERR_MSG_MOD(extack,
2596                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2597                 return -EOPNOTSUPP;
2598         }
2599
2600         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2601                 struct flow_match_eth_addrs match;
2602
2603                 flow_rule_match_eth_addrs(rule, &match);
2604                 if (!is_zero_ether_addr(match.mask->dst)) {
2605                         if (!is_broadcast_ether_addr(match.mask->dst)) {
2606                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2607                                 return -EINVAL;
2608                         }
2609
2610                         input->filter.match_flags |=
2611                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2612                         ether_addr_copy(input->filter.dst_addr, match.key->dst);
2613                 }
2614
2615                 if (!is_zero_ether_addr(match.mask->src)) {
2616                         if (!is_broadcast_ether_addr(match.mask->src)) {
2617                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2618                                 return -EINVAL;
2619                         }
2620
2621                         input->filter.match_flags |=
2622                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2623                         ether_addr_copy(input->filter.src_addr, match.key->src);
2624                 }
2625         }
2626
2627         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2628                 struct flow_match_basic match;
2629
2630                 flow_rule_match_basic(rule, &match);
2631                 if (match.mask->n_proto) {
2632                         if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2633                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2634                                 return -EINVAL;
2635                         }
2636
2637                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2638                         input->filter.etype = match.key->n_proto;
2639                 }
2640         }
2641
2642         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2643                 struct flow_match_vlan match;
2644
2645                 flow_rule_match_vlan(rule, &match);
2646                 if (match.mask->vlan_priority) {
2647                         if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2648                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2649                                 return -EINVAL;
2650                         }
2651
2652                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2653                         input->filter.vlan_tci = match.key->vlan_priority;
2654                 }
2655         }
2656
2657         input->action = traffic_class;
2658         input->cookie = f->cookie;
2659
2660         return 0;
2661 }
2662
2663 static int igb_configure_clsflower(struct igb_adapter *adapter,
2664                                    struct flow_cls_offload *cls_flower)
2665 {
2666         struct netlink_ext_ack *extack = cls_flower->common.extack;
2667         struct igb_nfc_filter *filter, *f;
2668         int err, tc;
2669
2670         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2671         if (tc < 0) {
2672                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2673                 return -EINVAL;
2674         }
2675
2676         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2677         if (!filter)
2678                 return -ENOMEM;
2679
2680         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2681         if (err < 0)
2682                 goto err_parse;
2683
2684         spin_lock(&adapter->nfc_lock);
2685
2686         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2687                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2688                         err = -EEXIST;
2689                         NL_SET_ERR_MSG_MOD(extack,
2690                                            "This filter is already set in ethtool");
2691                         goto err_locked;
2692                 }
2693         }
2694
2695         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2696                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2697                         err = -EEXIST;
2698                         NL_SET_ERR_MSG_MOD(extack,
2699                                            "This filter is already set in cls_flower");
2700                         goto err_locked;
2701                 }
2702         }
2703
2704         err = igb_add_filter(adapter, filter);
2705         if (err < 0) {
2706                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2707                 goto err_locked;
2708         }
2709
2710         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2711
2712         spin_unlock(&adapter->nfc_lock);
2713
2714         return 0;
2715
2716 err_locked:
2717         spin_unlock(&adapter->nfc_lock);
2718
2719 err_parse:
2720         kfree(filter);
2721
2722         return err;
2723 }
2724
2725 static int igb_delete_clsflower(struct igb_adapter *adapter,
2726                                 struct flow_cls_offload *cls_flower)
2727 {
2728         struct igb_nfc_filter *filter;
2729         int err;
2730
2731         spin_lock(&adapter->nfc_lock);
2732
2733         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2734                 if (filter->cookie == cls_flower->cookie)
2735                         break;
2736
2737         if (!filter) {
2738                 err = -ENOENT;
2739                 goto out;
2740         }
2741
2742         err = igb_erase_filter(adapter, filter);
2743         if (err < 0)
2744                 goto out;
2745
2746         hlist_del(&filter->nfc_node);
2747         kfree(filter);
2748
2749 out:
2750         spin_unlock(&adapter->nfc_lock);
2751
2752         return err;
2753 }
2754
2755 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2756                                    struct flow_cls_offload *cls_flower)
2757 {
2758         switch (cls_flower->command) {
2759         case FLOW_CLS_REPLACE:
2760                 return igb_configure_clsflower(adapter, cls_flower);
2761         case FLOW_CLS_DESTROY:
2762                 return igb_delete_clsflower(adapter, cls_flower);
2763         case FLOW_CLS_STATS:
2764                 return -EOPNOTSUPP;
2765         default:
2766                 return -EOPNOTSUPP;
2767         }
2768 }
2769
2770 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2771                                  void *cb_priv)
2772 {
2773         struct igb_adapter *adapter = cb_priv;
2774
2775         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2776                 return -EOPNOTSUPP;
2777
2778         switch (type) {
2779         case TC_SETUP_CLSFLOWER:
2780                 return igb_setup_tc_cls_flower(adapter, type_data);
2781
2782         default:
2783                 return -EOPNOTSUPP;
2784         }
2785 }
2786
2787 static int igb_offload_txtime(struct igb_adapter *adapter,
2788                               struct tc_etf_qopt_offload *qopt)
2789 {
2790         struct e1000_hw *hw = &adapter->hw;
2791         int err;
2792
2793         /* Launchtime offloading is only supported by i210 controller. */
2794         if (hw->mac.type != e1000_i210)
2795                 return -EOPNOTSUPP;
2796
2797         /* Launchtime offloading is only supported by queues 0 and 1. */
2798         if (qopt->queue < 0 || qopt->queue > 1)
2799                 return -EINVAL;
2800
2801         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2802         if (err)
2803                 return err;
2804
2805         igb_offload_apply(adapter, qopt->queue);
2806
2807         return 0;
2808 }
2809
2810 static LIST_HEAD(igb_block_cb_list);
2811
2812 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2813                         void *type_data)
2814 {
2815         struct igb_adapter *adapter = netdev_priv(dev);
2816
2817         switch (type) {
2818         case TC_SETUP_QDISC_CBS:
2819                 return igb_offload_cbs(adapter, type_data);
2820         case TC_SETUP_BLOCK:
2821                 return flow_block_cb_setup_simple(type_data,
2822                                                   &igb_block_cb_list,
2823                                                   igb_setup_tc_block_cb,
2824                                                   adapter, adapter, true);
2825
2826         case TC_SETUP_QDISC_ETF:
2827                 return igb_offload_txtime(adapter, type_data);
2828
2829         default:
2830                 return -EOPNOTSUPP;
2831         }
2832 }
2833
2834 static const struct net_device_ops igb_netdev_ops = {
2835         .ndo_open               = igb_open,
2836         .ndo_stop               = igb_close,
2837         .ndo_start_xmit         = igb_xmit_frame,
2838         .ndo_get_stats64        = igb_get_stats64,
2839         .ndo_set_rx_mode        = igb_set_rx_mode,
2840         .ndo_set_mac_address    = igb_set_mac,
2841         .ndo_change_mtu         = igb_change_mtu,
2842         .ndo_do_ioctl           = igb_ioctl,
2843         .ndo_tx_timeout         = igb_tx_timeout,
2844         .ndo_validate_addr      = eth_validate_addr,
2845         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2846         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2847         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2848         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2849         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2850         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2851         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
2852         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2853         .ndo_fix_features       = igb_fix_features,
2854         .ndo_set_features       = igb_set_features,
2855         .ndo_fdb_add            = igb_ndo_fdb_add,
2856         .ndo_features_check     = igb_features_check,
2857         .ndo_setup_tc           = igb_setup_tc,
2858 };
2859
2860 /**
2861  * igb_set_fw_version - Configure version string for ethtool
2862  * @adapter: adapter struct
2863  **/
2864 void igb_set_fw_version(struct igb_adapter *adapter)
2865 {
2866         struct e1000_hw *hw = &adapter->hw;
2867         struct e1000_fw_version fw;
2868
2869         igb_get_fw_version(hw, &fw);
2870
2871         switch (hw->mac.type) {
2872         case e1000_i210:
2873         case e1000_i211:
2874                 if (!(igb_get_flash_presence_i210(hw))) {
2875                         snprintf(adapter->fw_version,
2876                                  sizeof(adapter->fw_version),
2877                                  "%2d.%2d-%d",
2878                                  fw.invm_major, fw.invm_minor,
2879                                  fw.invm_img_type);
2880                         break;
2881                 }
2882                 /* fall through */
2883         default:
2884                 /* if option is rom valid, display its version too */
2885                 if (fw.or_valid) {
2886                         snprintf(adapter->fw_version,
2887                                  sizeof(adapter->fw_version),
2888                                  "%d.%d, 0x%08x, %d.%d.%d",
2889                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2890                                  fw.or_major, fw.or_build, fw.or_patch);
2891                 /* no option rom */
2892                 } else if (fw.etrack_id != 0X0000) {
2893                         snprintf(adapter->fw_version,
2894                             sizeof(adapter->fw_version),
2895                             "%d.%d, 0x%08x",
2896                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2897                 } else {
2898                 snprintf(adapter->fw_version,
2899                     sizeof(adapter->fw_version),
2900                     "%d.%d.%d",
2901                     fw.eep_major, fw.eep_minor, fw.eep_build);
2902                 }
2903                 break;
2904         }
2905 }
2906
2907 /**
2908  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2909  *
2910  * @adapter: adapter struct
2911  **/
2912 static void igb_init_mas(struct igb_adapter *adapter)
2913 {
2914         struct e1000_hw *hw = &adapter->hw;
2915         u16 eeprom_data;
2916
2917         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2918         switch (hw->bus.func) {
2919         case E1000_FUNC_0:
2920                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2921                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2922                         netdev_info(adapter->netdev,
2923                                 "MAS: Enabling Media Autosense for port %d\n",
2924                                 hw->bus.func);
2925                 }
2926                 break;
2927         case E1000_FUNC_1:
2928                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2929                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2930                         netdev_info(adapter->netdev,
2931                                 "MAS: Enabling Media Autosense for port %d\n",
2932                                 hw->bus.func);
2933                 }
2934                 break;
2935         case E1000_FUNC_2:
2936                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2937                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2938                         netdev_info(adapter->netdev,
2939                                 "MAS: Enabling Media Autosense for port %d\n",
2940                                 hw->bus.func);
2941                 }
2942                 break;
2943         case E1000_FUNC_3:
2944                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2945                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2946                         netdev_info(adapter->netdev,
2947                                 "MAS: Enabling Media Autosense for port %d\n",
2948                                 hw->bus.func);
2949                 }
2950                 break;
2951         default:
2952                 /* Shouldn't get here */
2953                 netdev_err(adapter->netdev,
2954                         "MAS: Invalid port configuration, returning\n");
2955                 break;
2956         }
2957 }
2958
2959 /**
2960  *  igb_init_i2c - Init I2C interface
2961  *  @adapter: pointer to adapter structure
2962  **/
2963 static s32 igb_init_i2c(struct igb_adapter *adapter)
2964 {
2965         s32 status = 0;
2966
2967         /* I2C interface supported on i350 devices */
2968         if (adapter->hw.mac.type != e1000_i350)
2969                 return 0;
2970
2971         /* Initialize the i2c bus which is controlled by the registers.
2972          * This bus will use the i2c_algo_bit structue that implements
2973          * the protocol through toggling of the 4 bits in the register.
2974          */
2975         adapter->i2c_adap.owner = THIS_MODULE;
2976         adapter->i2c_algo = igb_i2c_algo;
2977         adapter->i2c_algo.data = adapter;
2978         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2979         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2980         strlcpy(adapter->i2c_adap.name, "igb BB",
2981                 sizeof(adapter->i2c_adap.name));
2982         status = i2c_bit_add_bus(&adapter->i2c_adap);
2983         return status;
2984 }
2985
2986 /**
2987  *  igb_probe - Device Initialization Routine
2988  *  @pdev: PCI device information struct
2989  *  @ent: entry in igb_pci_tbl
2990  *
2991  *  Returns 0 on success, negative on failure
2992  *
2993  *  igb_probe initializes an adapter identified by a pci_dev structure.
2994  *  The OS initialization, configuring of the adapter private structure,
2995  *  and a hardware reset occur.
2996  **/
2997 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2998 {
2999         struct net_device *netdev;
3000         struct igb_adapter *adapter;
3001         struct e1000_hw *hw;
3002         u16 eeprom_data = 0;
3003         s32 ret_val;
3004         static int global_quad_port_a; /* global quad port a indication */
3005         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3006         int err, pci_using_dac;
3007         u8 part_str[E1000_PBANUM_LENGTH];
3008
3009         /* Catch broken hardware that put the wrong VF device ID in
3010          * the PCIe SR-IOV capability.
3011          */
3012         if (pdev->is_virtfn) {
3013                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3014                         pci_name(pdev), pdev->vendor, pdev->device);
3015                 return -EINVAL;
3016         }
3017
3018         err = pci_enable_device_mem(pdev);
3019         if (err)
3020                 return err;
3021
3022         pci_using_dac = 0;
3023         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3024         if (!err) {
3025                 pci_using_dac = 1;
3026         } else {
3027                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3028                 if (err) {
3029                         dev_err(&pdev->dev,
3030                                 "No usable DMA configuration, aborting\n");
3031                         goto err_dma;
3032                 }
3033         }
3034
3035         err = pci_request_mem_regions(pdev, igb_driver_name);
3036         if (err)
3037                 goto err_pci_reg;
3038
3039         pci_enable_pcie_error_reporting(pdev);
3040
3041         pci_set_master(pdev);
3042         pci_save_state(pdev);
3043
3044         err = -ENOMEM;
3045         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3046                                    IGB_MAX_TX_QUEUES);
3047         if (!netdev)
3048                 goto err_alloc_etherdev;
3049
3050         SET_NETDEV_DEV(netdev, &pdev->dev);
3051
3052         pci_set_drvdata(pdev, netdev);
3053         adapter = netdev_priv(netdev);
3054         adapter->netdev = netdev;
3055         adapter->pdev = pdev;
3056         hw = &adapter->hw;
3057         hw->back = adapter;
3058         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3059
3060         err = -EIO;
3061         adapter->io_addr = pci_iomap(pdev, 0, 0);
3062         if (!adapter->io_addr)
3063                 goto err_ioremap;
3064         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3065         hw->hw_addr = adapter->io_addr;
3066
3067         netdev->netdev_ops = &igb_netdev_ops;
3068         igb_set_ethtool_ops(netdev);
3069         netdev->watchdog_timeo = 5 * HZ;
3070
3071         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3072
3073         netdev->mem_start = pci_resource_start(pdev, 0);
3074         netdev->mem_end = pci_resource_end(pdev, 0);
3075
3076         /* PCI config space info */
3077         hw->vendor_id = pdev->vendor;
3078         hw->device_id = pdev->device;
3079         hw->revision_id = pdev->revision;
3080         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3081         hw->subsystem_device_id = pdev->subsystem_device;
3082
3083         /* Copy the default MAC, PHY and NVM function pointers */
3084         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3085         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3086         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3087         /* Initialize skew-specific constants */
3088         err = ei->get_invariants(hw);
3089         if (err)
3090                 goto err_sw_init;
3091
3092         /* setup the private structure */
3093         err = igb_sw_init(adapter);
3094         if (err)
3095                 goto err_sw_init;
3096
3097         igb_get_bus_info_pcie(hw);
3098
3099         hw->phy.autoneg_wait_to_complete = false;
3100
3101         /* Copper options */
3102         if (hw->phy.media_type == e1000_media_type_copper) {
3103                 hw->phy.mdix = AUTO_ALL_MODES;
3104                 hw->phy.disable_polarity_correction = false;
3105                 hw->phy.ms_type = e1000_ms_hw_default;
3106         }
3107
3108         if (igb_check_reset_block(hw))
3109                 dev_info(&pdev->dev,
3110                         "PHY reset is blocked due to SOL/IDER session.\n");
3111
3112         /* features is initialized to 0 in allocation, it might have bits
3113          * set by igb_sw_init so we should use an or instead of an
3114          * assignment.
3115          */
3116         netdev->features |= NETIF_F_SG |
3117                             NETIF_F_TSO |
3118                             NETIF_F_TSO6 |
3119                             NETIF_F_RXHASH |
3120                             NETIF_F_RXCSUM |
3121                             NETIF_F_HW_CSUM;
3122
3123         if (hw->mac.type >= e1000_82576)
3124                 netdev->features |= NETIF_F_SCTP_CRC;
3125
3126         if (hw->mac.type >= e1000_i350)
3127                 netdev->features |= NETIF_F_HW_TC;
3128
3129 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3130                                   NETIF_F_GSO_GRE_CSUM | \
3131                                   NETIF_F_GSO_IPXIP4 | \
3132                                   NETIF_F_GSO_IPXIP6 | \
3133                                   NETIF_F_GSO_UDP_TUNNEL | \
3134                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3135
3136         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3137         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3138
3139         /* copy netdev features into list of user selectable features */
3140         netdev->hw_features |= netdev->features |
3141                                NETIF_F_HW_VLAN_CTAG_RX |
3142                                NETIF_F_HW_VLAN_CTAG_TX |
3143                                NETIF_F_RXALL;
3144
3145         if (hw->mac.type >= e1000_i350)
3146                 netdev->hw_features |= NETIF_F_NTUPLE;
3147
3148         if (pci_using_dac)
3149                 netdev->features |= NETIF_F_HIGHDMA;
3150
3151         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3152         netdev->mpls_features |= NETIF_F_HW_CSUM;
3153         netdev->hw_enc_features |= netdev->vlan_features;
3154
3155         /* set this bit last since it cannot be part of vlan_features */
3156         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3157                             NETIF_F_HW_VLAN_CTAG_RX |
3158                             NETIF_F_HW_VLAN_CTAG_TX;
3159
3160         netdev->priv_flags |= IFF_SUPP_NOFCS;
3161
3162         netdev->priv_flags |= IFF_UNICAST_FLT;
3163
3164         /* MTU range: 68 - 9216 */
3165         netdev->min_mtu = ETH_MIN_MTU;
3166         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3167
3168         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3169
3170         /* before reading the NVM, reset the controller to put the device in a
3171          * known good starting state
3172          */
3173         hw->mac.ops.reset_hw(hw);
3174
3175         /* make sure the NVM is good , i211/i210 parts can have special NVM
3176          * that doesn't contain a checksum
3177          */
3178         switch (hw->mac.type) {
3179         case e1000_i210:
3180         case e1000_i211:
3181                 if (igb_get_flash_presence_i210(hw)) {
3182                         if (hw->nvm.ops.validate(hw) < 0) {
3183                                 dev_err(&pdev->dev,
3184                                         "The NVM Checksum Is Not Valid\n");
3185                                 err = -EIO;
3186                                 goto err_eeprom;
3187                         }
3188                 }
3189                 break;
3190         default:
3191                 if (hw->nvm.ops.validate(hw) < 0) {
3192                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3193                         err = -EIO;
3194                         goto err_eeprom;
3195                 }
3196                 break;
3197         }
3198
3199         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3200                 /* copy the MAC address out of the NVM */
3201                 if (hw->mac.ops.read_mac_addr(hw))
3202                         dev_err(&pdev->dev, "NVM Read Error\n");
3203         }
3204
3205         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3206
3207         if (!is_valid_ether_addr(netdev->dev_addr)) {
3208                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3209                 err = -EIO;
3210                 goto err_eeprom;
3211         }
3212
3213         igb_set_default_mac_filter(adapter);
3214
3215         /* get firmware version for ethtool -i */
3216         igb_set_fw_version(adapter);
3217
3218         /* configure RXPBSIZE and TXPBSIZE */
3219         if (hw->mac.type == e1000_i210) {
3220                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3221                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3222         }
3223
3224         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3225         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3226
3227         INIT_WORK(&adapter->reset_task, igb_reset_task);
3228         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3229
3230         /* Initialize link properties that are user-changeable */
3231         adapter->fc_autoneg = true;
3232         hw->mac.autoneg = true;
3233         hw->phy.autoneg_advertised = 0x2f;
3234
3235         hw->fc.requested_mode = e1000_fc_default;
3236         hw->fc.current_mode = e1000_fc_default;
3237
3238         igb_validate_mdi_setting(hw);
3239
3240         /* By default, support wake on port A */
3241         if (hw->bus.func == 0)
3242                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3243
3244         /* Check the NVM for wake support on non-port A ports */
3245         if (hw->mac.type >= e1000_82580)
3246                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3247                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3248                                  &eeprom_data);
3249         else if (hw->bus.func == 1)
3250                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3251
3252         if (eeprom_data & IGB_EEPROM_APME)
3253                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3254
3255         /* now that we have the eeprom settings, apply the special cases where
3256          * the eeprom may be wrong or the board simply won't support wake on
3257          * lan on a particular port
3258          */
3259         switch (pdev->device) {
3260         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3261                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3262                 break;
3263         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3264         case E1000_DEV_ID_82576_FIBER:
3265         case E1000_DEV_ID_82576_SERDES:
3266                 /* Wake events only supported on port A for dual fiber
3267                  * regardless of eeprom setting
3268                  */
3269                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3270                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3271                 break;
3272         case E1000_DEV_ID_82576_QUAD_COPPER:
3273         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3274                 /* if quad port adapter, disable WoL on all but port A */
3275                 if (global_quad_port_a != 0)
3276                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3277                 else
3278                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3279                 /* Reset for multiple quad port adapters */
3280                 if (++global_quad_port_a == 4)
3281                         global_quad_port_a = 0;
3282                 break;
3283         default:
3284                 /* If the device can't wake, don't set software support */
3285                 if (!device_can_wakeup(&adapter->pdev->dev))
3286                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3287         }
3288
3289         /* initialize the wol settings based on the eeprom settings */
3290         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3291                 adapter->wol |= E1000_WUFC_MAG;
3292
3293         /* Some vendors want WoL disabled by default, but still supported */
3294         if ((hw->mac.type == e1000_i350) &&
3295             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3296                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3297                 adapter->wol = 0;
3298         }
3299
3300         /* Some vendors want the ability to Use the EEPROM setting as
3301          * enable/disable only, and not for capability
3302          */
3303         if (((hw->mac.type == e1000_i350) ||
3304              (hw->mac.type == e1000_i354)) &&
3305             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3306                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3307                 adapter->wol = 0;
3308         }
3309         if (hw->mac.type == e1000_i350) {
3310                 if (((pdev->subsystem_device == 0x5001) ||
3311                      (pdev->subsystem_device == 0x5002)) &&
3312                                 (hw->bus.func == 0)) {
3313                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3314                         adapter->wol = 0;
3315                 }
3316                 if (pdev->subsystem_device == 0x1F52)
3317                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3318         }
3319
3320         device_set_wakeup_enable(&adapter->pdev->dev,
3321                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3322
3323         /* reset the hardware with the new settings */
3324         igb_reset(adapter);
3325
3326         /* Init the I2C interface */
3327         err = igb_init_i2c(adapter);
3328         if (err) {
3329                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3330                 goto err_eeprom;
3331         }
3332
3333         /* let the f/w know that the h/w is now under the control of the
3334          * driver.
3335          */
3336         igb_get_hw_control(adapter);
3337
3338         strcpy(netdev->name, "eth%d");
3339         err = register_netdev(netdev);
3340         if (err)
3341                 goto err_register;
3342
3343         /* carrier off reporting is important to ethtool even BEFORE open */
3344         netif_carrier_off(netdev);
3345
3346 #ifdef CONFIG_IGB_DCA
3347         if (dca_add_requester(&pdev->dev) == 0) {
3348                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3349                 dev_info(&pdev->dev, "DCA enabled\n");
3350                 igb_setup_dca(adapter);
3351         }
3352
3353 #endif
3354 #ifdef CONFIG_IGB_HWMON
3355         /* Initialize the thermal sensor on i350 devices. */
3356         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3357                 u16 ets_word;
3358
3359                 /* Read the NVM to determine if this i350 device supports an
3360                  * external thermal sensor.
3361                  */
3362                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3363                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3364                         adapter->ets = true;
3365                 else
3366                         adapter->ets = false;
3367                 if (igb_sysfs_init(adapter))
3368                         dev_err(&pdev->dev,
3369                                 "failed to allocate sysfs resources\n");
3370         } else {
3371                 adapter->ets = false;
3372         }
3373 #endif
3374         /* Check if Media Autosense is enabled */
3375         adapter->ei = *ei;
3376         if (hw->dev_spec._82575.mas_capable)
3377                 igb_init_mas(adapter);
3378
3379         /* do hw tstamp init after resetting */
3380         igb_ptp_init(adapter);
3381
3382         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3383         /* print bus type/speed/width info, not applicable to i354 */
3384         if (hw->mac.type != e1000_i354) {
3385                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3386                          netdev->name,
3387                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3388                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3389                            "unknown"),
3390                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3391                           "Width x4" :
3392                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3393                           "Width x2" :
3394                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3395                           "Width x1" : "unknown"), netdev->dev_addr);
3396         }
3397
3398         if ((hw->mac.type >= e1000_i210 ||
3399              igb_get_flash_presence_i210(hw))) {
3400                 ret_val = igb_read_part_string(hw, part_str,
3401                                                E1000_PBANUM_LENGTH);
3402         } else {
3403                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3404         }
3405
3406         if (ret_val)
3407                 strcpy(part_str, "Unknown");
3408         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3409         dev_info(&pdev->dev,
3410                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3411                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3412                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3413                 adapter->num_rx_queues, adapter->num_tx_queues);
3414         if (hw->phy.media_type == e1000_media_type_copper) {
3415                 switch (hw->mac.type) {
3416                 case e1000_i350:
3417                 case e1000_i210:
3418                 case e1000_i211:
3419                         /* Enable EEE for internal copper PHY devices */
3420                         err = igb_set_eee_i350(hw, true, true);
3421                         if ((!err) &&
3422                             (!hw->dev_spec._82575.eee_disable)) {
3423                                 adapter->eee_advert =
3424                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3425                                 adapter->flags |= IGB_FLAG_EEE;
3426                         }
3427                         break;
3428                 case e1000_i354:
3429                         if ((rd32(E1000_CTRL_EXT) &
3430                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3431                                 err = igb_set_eee_i354(hw, true, true);
3432                                 if ((!err) &&
3433                                         (!hw->dev_spec._82575.eee_disable)) {
3434                                         adapter->eee_advert =
3435                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3436                                         adapter->flags |= IGB_FLAG_EEE;
3437                                 }
3438                         }
3439                         break;
3440                 default:
3441                         break;
3442                 }
3443         }
3444
3445         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3446
3447         pm_runtime_put_noidle(&pdev->dev);
3448         return 0;
3449
3450 err_register:
3451         igb_release_hw_control(adapter);
3452         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3453 err_eeprom:
3454         if (!igb_check_reset_block(hw))
3455                 igb_reset_phy(hw);
3456
3457         if (hw->flash_address)
3458                 iounmap(hw->flash_address);
3459 err_sw_init:
3460         kfree(adapter->mac_table);
3461         kfree(adapter->shadow_vfta);
3462         igb_clear_interrupt_scheme(adapter);
3463 #ifdef CONFIG_PCI_IOV
3464         igb_disable_sriov(pdev);
3465 #endif
3466         pci_iounmap(pdev, adapter->io_addr);
3467 err_ioremap:
3468         free_netdev(netdev);
3469 err_alloc_etherdev:
3470         pci_release_mem_regions(pdev);
3471 err_pci_reg:
3472 err_dma:
3473         pci_disable_device(pdev);
3474         return err;
3475 }
3476
3477 #ifdef CONFIG_PCI_IOV
3478 static int igb_disable_sriov(struct pci_dev *pdev)
3479 {
3480         struct net_device *netdev = pci_get_drvdata(pdev);
3481         struct igb_adapter *adapter = netdev_priv(netdev);
3482         struct e1000_hw *hw = &adapter->hw;
3483
3484         /* reclaim resources allocated to VFs */
3485         if (adapter->vf_data) {
3486                 /* disable iov and allow time for transactions to clear */
3487                 if (pci_vfs_assigned(pdev)) {
3488                         dev_warn(&pdev->dev,
3489                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3490                         return -EPERM;
3491                 } else {
3492                         pci_disable_sriov(pdev);
3493                         msleep(500);
3494                 }
3495
3496                 kfree(adapter->vf_mac_list);
3497                 adapter->vf_mac_list = NULL;
3498                 kfree(adapter->vf_data);
3499                 adapter->vf_data = NULL;
3500                 adapter->vfs_allocated_count = 0;
3501                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3502                 wrfl();
3503                 msleep(100);
3504                 dev_info(&pdev->dev, "IOV Disabled\n");
3505
3506                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3507                 adapter->flags |= IGB_FLAG_DMAC;
3508         }
3509
3510         return 0;
3511 }
3512
3513 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3514 {
3515         struct net_device *netdev = pci_get_drvdata(pdev);
3516         struct igb_adapter *adapter = netdev_priv(netdev);
3517         int old_vfs = pci_num_vf(pdev);
3518         struct vf_mac_filter *mac_list;
3519         int err = 0;
3520         int num_vf_mac_filters, i;
3521
3522         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3523                 err = -EPERM;
3524                 goto out;
3525         }
3526         if (!num_vfs)
3527                 goto out;
3528
3529         if (old_vfs) {
3530                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3531                          old_vfs, max_vfs);
3532                 adapter->vfs_allocated_count = old_vfs;
3533         } else
3534                 adapter->vfs_allocated_count = num_vfs;
3535
3536         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3537                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3538
3539         /* if allocation failed then we do not support SR-IOV */
3540         if (!adapter->vf_data) {
3541                 adapter->vfs_allocated_count = 0;
3542                 err = -ENOMEM;
3543                 goto out;
3544         }
3545
3546         /* Due to the limited number of RAR entries calculate potential
3547          * number of MAC filters available for the VFs. Reserve entries
3548          * for PF default MAC, PF MAC filters and at least one RAR entry
3549          * for each VF for VF MAC.
3550          */
3551         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3552                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3553                               adapter->vfs_allocated_count);
3554
3555         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3556                                        sizeof(struct vf_mac_filter),
3557                                        GFP_KERNEL);
3558
3559         mac_list = adapter->vf_mac_list;
3560         INIT_LIST_HEAD(&adapter->vf_macs.l);
3561
3562         if (adapter->vf_mac_list) {
3563                 /* Initialize list of VF MAC filters */
3564                 for (i = 0; i < num_vf_mac_filters; i++) {
3565                         mac_list->vf = -1;
3566                         mac_list->free = true;
3567                         list_add(&mac_list->l, &adapter->vf_macs.l);
3568                         mac_list++;
3569                 }
3570         } else {
3571                 /* If we could not allocate memory for the VF MAC filters
3572                  * we can continue without this feature but warn user.
3573                  */
3574                 dev_err(&pdev->dev,
3575                         "Unable to allocate memory for VF MAC filter list\n");
3576         }
3577
3578         /* only call pci_enable_sriov() if no VFs are allocated already */
3579         if (!old_vfs) {
3580                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3581                 if (err)
3582                         goto err_out;
3583         }
3584         dev_info(&pdev->dev, "%d VFs allocated\n",
3585                  adapter->vfs_allocated_count);
3586         for (i = 0; i < adapter->vfs_allocated_count; i++)
3587                 igb_vf_configure(adapter, i);
3588
3589         /* DMA Coalescing is not supported in IOV mode. */
3590         adapter->flags &= ~IGB_FLAG_DMAC;
3591         goto out;
3592
3593 err_out:
3594         kfree(adapter->vf_mac_list);
3595         adapter->vf_mac_list = NULL;
3596         kfree(adapter->vf_data);
3597         adapter->vf_data = NULL;
3598         adapter->vfs_allocated_count = 0;
3599 out:
3600         return err;
3601 }
3602
3603 #endif
3604 /**
3605  *  igb_remove_i2c - Cleanup  I2C interface
3606  *  @adapter: pointer to adapter structure
3607  **/
3608 static void igb_remove_i2c(struct igb_adapter *adapter)
3609 {
3610         /* free the adapter bus structure */
3611         i2c_del_adapter(&adapter->i2c_adap);
3612 }
3613
3614 /**
3615  *  igb_remove - Device Removal Routine
3616  *  @pdev: PCI device information struct
3617  *
3618  *  igb_remove is called by the PCI subsystem to alert the driver
3619  *  that it should release a PCI device.  The could be caused by a
3620  *  Hot-Plug event, or because the driver is going to be removed from
3621  *  memory.
3622  **/
3623 static void igb_remove(struct pci_dev *pdev)
3624 {
3625         struct net_device *netdev = pci_get_drvdata(pdev);
3626         struct igb_adapter *adapter = netdev_priv(netdev);
3627         struct e1000_hw *hw = &adapter->hw;
3628
3629         pm_runtime_get_noresume(&pdev->dev);
3630 #ifdef CONFIG_IGB_HWMON
3631         igb_sysfs_exit(adapter);
3632 #endif
3633         igb_remove_i2c(adapter);
3634         igb_ptp_stop(adapter);
3635         /* The watchdog timer may be rescheduled, so explicitly
3636          * disable watchdog from being rescheduled.
3637          */
3638         set_bit(__IGB_DOWN, &adapter->state);
3639         del_timer_sync(&adapter->watchdog_timer);
3640         del_timer_sync(&adapter->phy_info_timer);
3641
3642         cancel_work_sync(&adapter->reset_task);
3643         cancel_work_sync(&adapter->watchdog_task);
3644
3645 #ifdef CONFIG_IGB_DCA
3646         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3647                 dev_info(&pdev->dev, "DCA disabled\n");
3648                 dca_remove_requester(&pdev->dev);
3649                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3650                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3651         }
3652 #endif
3653
3654         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3655          * would have already happened in close and is redundant.
3656          */
3657         igb_release_hw_control(adapter);
3658
3659 #ifdef CONFIG_PCI_IOV
3660         igb_disable_sriov(pdev);
3661 #endif
3662
3663         unregister_netdev(netdev);
3664
3665         igb_clear_interrupt_scheme(adapter);
3666
3667         pci_iounmap(pdev, adapter->io_addr);
3668         if (hw->flash_address)
3669                 iounmap(hw->flash_address);
3670         pci_release_mem_regions(pdev);
3671
3672         kfree(adapter->mac_table);
3673         kfree(adapter->shadow_vfta);
3674         free_netdev(netdev);
3675
3676         pci_disable_pcie_error_reporting(pdev);
3677
3678         pci_disable_device(pdev);
3679 }
3680
3681 /**
3682  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3683  *  @adapter: board private structure to initialize
3684  *
3685  *  This function initializes the vf specific data storage and then attempts to
3686  *  allocate the VFs.  The reason for ordering it this way is because it is much
3687  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3688  *  the memory for the VFs.
3689  **/
3690 static void igb_probe_vfs(struct igb_adapter *adapter)
3691 {
3692 #ifdef CONFIG_PCI_IOV
3693         struct pci_dev *pdev = adapter->pdev;
3694         struct e1000_hw *hw = &adapter->hw;
3695
3696         /* Virtualization features not supported on i210 family. */
3697         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3698                 return;
3699
3700         /* Of the below we really only want the effect of getting
3701          * IGB_FLAG_HAS_MSIX set (if available), without which
3702          * igb_enable_sriov() has no effect.
3703          */
3704         igb_set_interrupt_capability(adapter, true);
3705         igb_reset_interrupt_capability(adapter);
3706
3707         pci_sriov_set_totalvfs(pdev, 7);
3708         igb_enable_sriov(pdev, max_vfs);
3709
3710 #endif /* CONFIG_PCI_IOV */
3711 }
3712
3713 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3714 {
3715         struct e1000_hw *hw = &adapter->hw;
3716         unsigned int max_rss_queues;
3717
3718         /* Determine the maximum number of RSS queues supported. */
3719         switch (hw->mac.type) {
3720         case e1000_i211:
3721                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3722                 break;
3723         case e1000_82575:
3724         case e1000_i210:
3725                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3726                 break;
3727         case e1000_i350:
3728                 /* I350 cannot do RSS and SR-IOV at the same time */
3729                 if (!!adapter->vfs_allocated_count) {
3730                         max_rss_queues = 1;
3731                         break;
3732                 }
3733                 /* fall through */
3734         case e1000_82576:
3735                 if (!!adapter->vfs_allocated_count) {
3736                         max_rss_queues = 2;
3737                         break;
3738                 }
3739                 /* fall through */
3740         case e1000_82580:
3741         case e1000_i354:
3742         default:
3743                 max_rss_queues = IGB_MAX_RX_QUEUES;
3744                 break;
3745         }
3746
3747         return max_rss_queues;
3748 }
3749
3750 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3751 {
3752         u32 max_rss_queues;
3753
3754         max_rss_queues = igb_get_max_rss_queues(adapter);
3755         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3756
3757         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3758 }
3759
3760 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3761                               const u32 max_rss_queues)
3762 {
3763         struct e1000_hw *hw = &adapter->hw;
3764
3765         /* Determine if we need to pair queues. */
3766         switch (hw->mac.type) {
3767         case e1000_82575:
3768         case e1000_i211:
3769                 /* Device supports enough interrupts without queue pairing. */
3770                 break;
3771         case e1000_82576:
3772         case e1000_82580:
3773         case e1000_i350:
3774         case e1000_i354:
3775         case e1000_i210:
3776         default:
3777                 /* If rss_queues > half of max_rss_queues, pair the queues in
3778                  * order to conserve interrupts due to limited supply.
3779                  */
3780                 if (adapter->rss_queues > (max_rss_queues / 2))
3781                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3782                 else
3783                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3784                 break;
3785         }
3786 }
3787
3788 /**
3789  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3790  *  @adapter: board private structure to initialize
3791  *
3792  *  igb_sw_init initializes the Adapter private data structure.
3793  *  Fields are initialized based on PCI device information and
3794  *  OS network device settings (MTU size).
3795  **/
3796 static int igb_sw_init(struct igb_adapter *adapter)
3797 {
3798         struct e1000_hw *hw = &adapter->hw;
3799         struct net_device *netdev = adapter->netdev;
3800         struct pci_dev *pdev = adapter->pdev;
3801
3802         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3803
3804         /* set default ring sizes */
3805         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3806         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3807
3808         /* set default ITR values */
3809         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3810         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3811
3812         /* set default work limits */
3813         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3814
3815         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3816                                   VLAN_HLEN;
3817         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3818
3819         spin_lock_init(&adapter->nfc_lock);
3820         spin_lock_init(&adapter->stats64_lock);
3821 #ifdef CONFIG_PCI_IOV
3822         switch (hw->mac.type) {
3823         case e1000_82576:
3824         case e1000_i350:
3825                 if (max_vfs > 7) {
3826                         dev_warn(&pdev->dev,
3827                                  "Maximum of 7 VFs per PF, using max\n");
3828                         max_vfs = adapter->vfs_allocated_count = 7;
3829                 } else
3830                         adapter->vfs_allocated_count = max_vfs;
3831                 if (adapter->vfs_allocated_count)
3832                         dev_warn(&pdev->dev,
3833                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3834                 break;
3835         default:
3836                 break;
3837         }
3838 #endif /* CONFIG_PCI_IOV */
3839
3840         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3841         adapter->flags |= IGB_FLAG_HAS_MSIX;
3842
3843         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3844                                      sizeof(struct igb_mac_addr),
3845                                      GFP_KERNEL);
3846         if (!adapter->mac_table)
3847                 return -ENOMEM;
3848
3849         igb_probe_vfs(adapter);
3850
3851         igb_init_queue_configuration(adapter);
3852
3853         /* Setup and initialize a copy of the hw vlan table array */
3854         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3855                                        GFP_KERNEL);
3856         if (!adapter->shadow_vfta)
3857                 return -ENOMEM;
3858
3859         /* This call may decrease the number of queues */
3860         if (igb_init_interrupt_scheme(adapter, true)) {
3861                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3862                 return -ENOMEM;
3863         }
3864
3865         /* Explicitly disable IRQ since the NIC can be in any state. */
3866         igb_irq_disable(adapter);
3867
3868         if (hw->mac.type >= e1000_i350)
3869                 adapter->flags &= ~IGB_FLAG_DMAC;
3870
3871         set_bit(__IGB_DOWN, &adapter->state);
3872         return 0;
3873 }
3874
3875 /**
3876  *  igb_open - Called when a network interface is made active
3877  *  @netdev: network interface device structure
3878  *
3879  *  Returns 0 on success, negative value on failure
3880  *
3881  *  The open entry point is called when a network interface is made
3882  *  active by the system (IFF_UP).  At this point all resources needed
3883  *  for transmit and receive operations are allocated, the interrupt
3884  *  handler is registered with the OS, the watchdog timer is started,
3885  *  and the stack is notified that the interface is ready.
3886  **/
3887 static int __igb_open(struct net_device *netdev, bool resuming)
3888 {
3889         struct igb_adapter *adapter = netdev_priv(netdev);
3890         struct e1000_hw *hw = &adapter->hw;
3891         struct pci_dev *pdev = adapter->pdev;
3892         int err;
3893         int i;
3894
3895         /* disallow open during test */
3896         if (test_bit(__IGB_TESTING, &adapter->state)) {
3897                 WARN_ON(resuming);
3898                 return -EBUSY;
3899         }
3900
3901         if (!resuming)
3902                 pm_runtime_get_sync(&pdev->dev);
3903
3904         netif_carrier_off(netdev);
3905
3906         /* allocate transmit descriptors */
3907         err = igb_setup_all_tx_resources(adapter);
3908         if (err)
3909                 goto err_setup_tx;
3910
3911         /* allocate receive descriptors */
3912         err = igb_setup_all_rx_resources(adapter);
3913         if (err)
3914                 goto err_setup_rx;
3915
3916         igb_power_up_link(adapter);
3917
3918         /* before we allocate an interrupt, we must be ready to handle it.
3919          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3920          * as soon as we call pci_request_irq, so we have to setup our
3921          * clean_rx handler before we do so.
3922          */
3923         igb_configure(adapter);
3924
3925         err = igb_request_irq(adapter);
3926         if (err)
3927                 goto err_req_irq;
3928
3929         /* Notify the stack of the actual queue counts. */
3930         err = netif_set_real_num_tx_queues(adapter->netdev,
3931                                            adapter->num_tx_queues);
3932         if (err)
3933                 goto err_set_queues;
3934
3935         err = netif_set_real_num_rx_queues(adapter->netdev,
3936                                            adapter->num_rx_queues);
3937         if (err)
3938                 goto err_set_queues;
3939
3940         /* From here on the code is the same as igb_up() */
3941         clear_bit(__IGB_DOWN, &adapter->state);
3942
3943         for (i = 0; i < adapter->num_q_vectors; i++)
3944                 napi_enable(&(adapter->q_vector[i]->napi));
3945
3946         /* Clear any pending interrupts. */
3947         rd32(E1000_TSICR);
3948         rd32(E1000_ICR);
3949
3950         igb_irq_enable(adapter);
3951
3952         /* notify VFs that reset has been completed */
3953         if (adapter->vfs_allocated_count) {
3954                 u32 reg_data = rd32(E1000_CTRL_EXT);
3955
3956                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3957                 wr32(E1000_CTRL_EXT, reg_data);
3958         }
3959
3960         netif_tx_start_all_queues(netdev);
3961
3962         if (!resuming)
3963                 pm_runtime_put(&pdev->dev);
3964
3965         /* start the watchdog. */
3966         hw->mac.get_link_status = 1;
3967         schedule_work(&adapter->watchdog_task);
3968
3969         return 0;
3970
3971 err_set_queues:
3972         igb_free_irq(adapter);
3973 err_req_irq:
3974         igb_release_hw_control(adapter);
3975         igb_power_down_link(adapter);
3976         igb_free_all_rx_resources(adapter);
3977 err_setup_rx:
3978         igb_free_all_tx_resources(adapter);
3979 err_setup_tx:
3980         igb_reset(adapter);
3981         if (!resuming)
3982                 pm_runtime_put(&pdev->dev);
3983
3984         return err;
3985 }
3986
3987 int igb_open(struct net_device *netdev)
3988 {
3989         return __igb_open(netdev, false);
3990 }
3991
3992 /**
3993  *  igb_close - Disables a network interface
3994  *  @netdev: network interface device structure
3995  *
3996  *  Returns 0, this is not allowed to fail
3997  *
3998  *  The close entry point is called when an interface is de-activated
3999  *  by the OS.  The hardware is still under the driver's control, but
4000  *  needs to be disabled.  A global MAC reset is issued to stop the
4001  *  hardware, and all transmit and receive resources are freed.
4002  **/
4003 static int __igb_close(struct net_device *netdev, bool suspending)
4004 {
4005         struct igb_adapter *adapter = netdev_priv(netdev);
4006         struct pci_dev *pdev = adapter->pdev;
4007
4008         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4009
4010         if (!suspending)
4011                 pm_runtime_get_sync(&pdev->dev);
4012
4013         igb_down(adapter);
4014         igb_free_irq(adapter);
4015
4016         igb_free_all_tx_resources(adapter);
4017         igb_free_all_rx_resources(adapter);
4018
4019         if (!suspending)
4020                 pm_runtime_put_sync(&pdev->dev);
4021         return 0;
4022 }
4023
4024 int igb_close(struct net_device *netdev)
4025 {
4026         if (netif_device_present(netdev) || netdev->dismantle)
4027                 return __igb_close(netdev, false);
4028         return 0;
4029 }
4030
4031 /**
4032  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4033  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4034  *
4035  *  Return 0 on success, negative on failure
4036  **/
4037 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4038 {
4039         struct device *dev = tx_ring->dev;
4040         int size;
4041
4042         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4043
4044         tx_ring->tx_buffer_info = vmalloc(size);
4045         if (!tx_ring->tx_buffer_info)
4046                 goto err;
4047
4048         /* round up to nearest 4K */
4049         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4050         tx_ring->size = ALIGN(tx_ring->size, 4096);
4051
4052         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4053                                            &tx_ring->dma, GFP_KERNEL);
4054         if (!tx_ring->desc)
4055                 goto err;
4056
4057         tx_ring->next_to_use = 0;
4058         tx_ring->next_to_clean = 0;
4059
4060         return 0;
4061
4062 err:
4063         vfree(tx_ring->tx_buffer_info);
4064         tx_ring->tx_buffer_info = NULL;
4065         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4066         return -ENOMEM;
4067 }
4068
4069 /**
4070  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4071  *                               (Descriptors) for all queues
4072  *  @adapter: board private structure
4073  *
4074  *  Return 0 on success, negative on failure
4075  **/
4076 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4077 {
4078         struct pci_dev *pdev = adapter->pdev;
4079         int i, err = 0;
4080
4081         for (i = 0; i < adapter->num_tx_queues; i++) {
4082                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4083                 if (err) {
4084                         dev_err(&pdev->dev,
4085                                 "Allocation for Tx Queue %u failed\n", i);
4086                         for (i--; i >= 0; i--)
4087                                 igb_free_tx_resources(adapter->tx_ring[i]);
4088                         break;
4089                 }
4090         }
4091
4092         return err;
4093 }
4094
4095 /**
4096  *  igb_setup_tctl - configure the transmit control registers
4097  *  @adapter: Board private structure
4098  **/
4099 void igb_setup_tctl(struct igb_adapter *adapter)
4100 {
4101         struct e1000_hw *hw = &adapter->hw;
4102         u32 tctl;
4103
4104         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4105         wr32(E1000_TXDCTL(0), 0);
4106
4107         /* Program the Transmit Control Register */
4108         tctl = rd32(E1000_TCTL);
4109         tctl &= ~E1000_TCTL_CT;
4110         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4111                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4112
4113         igb_config_collision_dist(hw);
4114
4115         /* Enable transmits */
4116         tctl |= E1000_TCTL_EN;
4117
4118         wr32(E1000_TCTL, tctl);
4119 }
4120
4121 /**
4122  *  igb_configure_tx_ring - Configure transmit ring after Reset
4123  *  @adapter: board private structure
4124  *  @ring: tx ring to configure
4125  *
4126  *  Configure a transmit ring after a reset.
4127  **/
4128 void igb_configure_tx_ring(struct igb_adapter *adapter,
4129                            struct igb_ring *ring)
4130 {
4131         struct e1000_hw *hw = &adapter->hw;
4132         u32 txdctl = 0;
4133         u64 tdba = ring->dma;
4134         int reg_idx = ring->reg_idx;
4135
4136         wr32(E1000_TDLEN(reg_idx),
4137              ring->count * sizeof(union e1000_adv_tx_desc));
4138         wr32(E1000_TDBAL(reg_idx),
4139              tdba & 0x00000000ffffffffULL);
4140         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4141
4142         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4143         wr32(E1000_TDH(reg_idx), 0);
4144         writel(0, ring->tail);
4145
4146         txdctl |= IGB_TX_PTHRESH;
4147         txdctl |= IGB_TX_HTHRESH << 8;
4148         txdctl |= IGB_TX_WTHRESH << 16;
4149
4150         /* reinitialize tx_buffer_info */
4151         memset(ring->tx_buffer_info, 0,
4152                sizeof(struct igb_tx_buffer) * ring->count);
4153
4154         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4155         wr32(E1000_TXDCTL(reg_idx), txdctl);
4156 }
4157
4158 /**
4159  *  igb_configure_tx - Configure transmit Unit after Reset
4160  *  @adapter: board private structure
4161  *
4162  *  Configure the Tx unit of the MAC after a reset.
4163  **/
4164 static void igb_configure_tx(struct igb_adapter *adapter)
4165 {
4166         struct e1000_hw *hw = &adapter->hw;
4167         int i;
4168
4169         /* disable the queues */
4170         for (i = 0; i < adapter->num_tx_queues; i++)
4171                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4172
4173         wrfl();
4174         usleep_range(10000, 20000);
4175
4176         for (i = 0; i < adapter->num_tx_queues; i++)
4177                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4178 }
4179
4180 /**
4181  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4182  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4183  *
4184  *  Returns 0 on success, negative on failure
4185  **/
4186 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4187 {
4188         struct device *dev = rx_ring->dev;
4189         int size;
4190
4191         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4192
4193         rx_ring->rx_buffer_info = vmalloc(size);
4194         if (!rx_ring->rx_buffer_info)
4195                 goto err;
4196
4197         /* Round up to nearest 4K */
4198         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4199         rx_ring->size = ALIGN(rx_ring->size, 4096);
4200
4201         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4202                                            &rx_ring->dma, GFP_KERNEL);
4203         if (!rx_ring->desc)
4204                 goto err;
4205
4206         rx_ring->next_to_alloc = 0;
4207         rx_ring->next_to_clean = 0;
4208         rx_ring->next_to_use = 0;
4209
4210         return 0;
4211
4212 err:
4213         vfree(rx_ring->rx_buffer_info);
4214         rx_ring->rx_buffer_info = NULL;
4215         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4216         return -ENOMEM;
4217 }
4218
4219 /**
4220  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4221  *                               (Descriptors) for all queues
4222  *  @adapter: board private structure
4223  *
4224  *  Return 0 on success, negative on failure
4225  **/
4226 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4227 {
4228         struct pci_dev *pdev = adapter->pdev;
4229         int i, err = 0;
4230
4231         for (i = 0; i < adapter->num_rx_queues; i++) {
4232                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4233                 if (err) {
4234                         dev_err(&pdev->dev,
4235                                 "Allocation for Rx Queue %u failed\n", i);
4236                         for (i--; i >= 0; i--)
4237                                 igb_free_rx_resources(adapter->rx_ring[i]);
4238                         break;
4239                 }
4240         }
4241
4242         return err;
4243 }
4244
4245 /**
4246  *  igb_setup_mrqc - configure the multiple receive queue control registers
4247  *  @adapter: Board private structure
4248  **/
4249 static void igb_setup_mrqc(struct igb_adapter *adapter)
4250 {
4251         struct e1000_hw *hw = &adapter->hw;
4252         u32 mrqc, rxcsum;
4253         u32 j, num_rx_queues;
4254         u32 rss_key[10];
4255
4256         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4257         for (j = 0; j < 10; j++)
4258                 wr32(E1000_RSSRK(j), rss_key[j]);
4259
4260         num_rx_queues = adapter->rss_queues;
4261
4262         switch (hw->mac.type) {
4263         case e1000_82576:
4264                 /* 82576 supports 2 RSS queues for SR-IOV */
4265                 if (adapter->vfs_allocated_count)
4266                         num_rx_queues = 2;
4267                 break;
4268         default:
4269                 break;
4270         }
4271
4272         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4273                 for (j = 0; j < IGB_RETA_SIZE; j++)
4274                         adapter->rss_indir_tbl[j] =
4275                         (j * num_rx_queues) / IGB_RETA_SIZE;
4276                 adapter->rss_indir_tbl_init = num_rx_queues;
4277         }
4278         igb_write_rss_indir_tbl(adapter);
4279
4280         /* Disable raw packet checksumming so that RSS hash is placed in
4281          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4282          * offloads as they are enabled by default
4283          */
4284         rxcsum = rd32(E1000_RXCSUM);
4285         rxcsum |= E1000_RXCSUM_PCSD;
4286
4287         if (adapter->hw.mac.type >= e1000_82576)
4288                 /* Enable Receive Checksum Offload for SCTP */
4289                 rxcsum |= E1000_RXCSUM_CRCOFL;
4290
4291         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4292         wr32(E1000_RXCSUM, rxcsum);
4293
4294         /* Generate RSS hash based on packet types, TCP/UDP
4295          * port numbers and/or IPv4/v6 src and dst addresses
4296          */
4297         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4298                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4299                E1000_MRQC_RSS_FIELD_IPV6 |
4300                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4301                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4302
4303         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4304                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4305         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4306                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4307
4308         /* If VMDq is enabled then we set the appropriate mode for that, else
4309          * we default to RSS so that an RSS hash is calculated per packet even
4310          * if we are only using one queue
4311          */
4312         if (adapter->vfs_allocated_count) {
4313                 if (hw->mac.type > e1000_82575) {
4314                         /* Set the default pool for the PF's first queue */
4315                         u32 vtctl = rd32(E1000_VT_CTL);
4316
4317                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4318                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4319                         vtctl |= adapter->vfs_allocated_count <<
4320                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4321                         wr32(E1000_VT_CTL, vtctl);
4322                 }
4323                 if (adapter->rss_queues > 1)
4324                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4325                 else
4326                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4327         } else {
4328                 if (hw->mac.type != e1000_i211)
4329                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4330         }
4331         igb_vmm_control(adapter);
4332
4333         wr32(E1000_MRQC, mrqc);
4334 }
4335
4336 /**
4337  *  igb_setup_rctl - configure the receive control registers
4338  *  @adapter: Board private structure
4339  **/
4340 void igb_setup_rctl(struct igb_adapter *adapter)
4341 {
4342         struct e1000_hw *hw = &adapter->hw;
4343         u32 rctl;
4344
4345         rctl = rd32(E1000_RCTL);
4346
4347         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4348         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4349
4350         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4351                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4352
4353         /* enable stripping of CRC. It's unlikely this will break BMC
4354          * redirection as it did with e1000. Newer features require
4355          * that the HW strips the CRC.
4356          */
4357         rctl |= E1000_RCTL_SECRC;
4358
4359         /* disable store bad packets and clear size bits. */
4360         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4361
4362         /* enable LPE to allow for reception of jumbo frames */
4363         rctl |= E1000_RCTL_LPE;
4364
4365         /* disable queue 0 to prevent tail write w/o re-config */
4366         wr32(E1000_RXDCTL(0), 0);
4367
4368         /* Attention!!!  For SR-IOV PF driver operations you must enable
4369          * queue drop for all VF and PF queues to prevent head of line blocking
4370          * if an un-trusted VF does not provide descriptors to hardware.
4371          */
4372         if (adapter->vfs_allocated_count) {
4373                 /* set all queue drop enable bits */
4374                 wr32(E1000_QDE, ALL_QUEUES);
4375         }
4376
4377         /* This is useful for sniffing bad packets. */
4378         if (adapter->netdev->features & NETIF_F_RXALL) {
4379                 /* UPE and MPE will be handled by normal PROMISC logic
4380                  * in e1000e_set_rx_mode
4381                  */
4382                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4383                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4384                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4385
4386                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4387                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4388                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4389                  * and that breaks VLANs.
4390                  */
4391         }
4392
4393         wr32(E1000_RCTL, rctl);
4394 }
4395
4396 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4397                                    int vfn)
4398 {
4399         struct e1000_hw *hw = &adapter->hw;
4400         u32 vmolr;
4401
4402         if (size > MAX_JUMBO_FRAME_SIZE)
4403                 size = MAX_JUMBO_FRAME_SIZE;
4404
4405         vmolr = rd32(E1000_VMOLR(vfn));
4406         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4407         vmolr |= size | E1000_VMOLR_LPE;
4408         wr32(E1000_VMOLR(vfn), vmolr);
4409
4410         return 0;
4411 }
4412
4413 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4414                                          int vfn, bool enable)
4415 {
4416         struct e1000_hw *hw = &adapter->hw;
4417         u32 val, reg;
4418
4419         if (hw->mac.type < e1000_82576)
4420                 return;
4421
4422         if (hw->mac.type == e1000_i350)
4423                 reg = E1000_DVMOLR(vfn);
4424         else
4425                 reg = E1000_VMOLR(vfn);
4426
4427         val = rd32(reg);
4428         if (enable)
4429                 val |= E1000_VMOLR_STRVLAN;
4430         else
4431                 val &= ~(E1000_VMOLR_STRVLAN);
4432         wr32(reg, val);
4433 }
4434
4435 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4436                                  int vfn, bool aupe)
4437 {
4438         struct e1000_hw *hw = &adapter->hw;
4439         u32 vmolr;
4440
4441         /* This register exists only on 82576 and newer so if we are older then
4442          * we should exit and do nothing
4443          */
4444         if (hw->mac.type < e1000_82576)
4445                 return;
4446
4447         vmolr = rd32(E1000_VMOLR(vfn));
4448         if (aupe)
4449                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4450         else
4451                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4452
4453         /* clear all bits that might not be set */
4454         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4455
4456         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4457                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4458         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4459          * multicast packets
4460          */
4461         if (vfn <= adapter->vfs_allocated_count)
4462                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4463
4464         wr32(E1000_VMOLR(vfn), vmolr);
4465 }
4466
4467 /**
4468  *  igb_configure_rx_ring - Configure a receive ring after Reset
4469  *  @adapter: board private structure
4470  *  @ring: receive ring to be configured
4471  *
4472  *  Configure the Rx unit of the MAC after a reset.
4473  **/
4474 void igb_configure_rx_ring(struct igb_adapter *adapter,
4475                            struct igb_ring *ring)
4476 {
4477         struct e1000_hw *hw = &adapter->hw;
4478         union e1000_adv_rx_desc *rx_desc;
4479         u64 rdba = ring->dma;
4480         int reg_idx = ring->reg_idx;
4481         u32 srrctl = 0, rxdctl = 0;
4482
4483         /* disable the queue */
4484         wr32(E1000_RXDCTL(reg_idx), 0);
4485
4486         /* Set DMA base address registers */
4487         wr32(E1000_RDBAL(reg_idx),
4488              rdba & 0x00000000ffffffffULL);
4489         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4490         wr32(E1000_RDLEN(reg_idx),
4491              ring->count * sizeof(union e1000_adv_rx_desc));
4492
4493         /* initialize head and tail */
4494         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4495         wr32(E1000_RDH(reg_idx), 0);
4496         writel(0, ring->tail);
4497
4498         /* set descriptor configuration */
4499         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4500         if (ring_uses_large_buffer(ring))
4501                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4502         else
4503                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4504         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4505         if (hw->mac.type >= e1000_82580)
4506                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4507         /* Only set Drop Enable if we are supporting multiple queues */
4508         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4509                 srrctl |= E1000_SRRCTL_DROP_EN;
4510
4511         wr32(E1000_SRRCTL(reg_idx), srrctl);
4512
4513         /* set filtering for VMDQ pools */
4514         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4515
4516         rxdctl |= IGB_RX_PTHRESH;
4517         rxdctl |= IGB_RX_HTHRESH << 8;
4518         rxdctl |= IGB_RX_WTHRESH << 16;
4519
4520         /* initialize rx_buffer_info */
4521         memset(ring->rx_buffer_info, 0,
4522                sizeof(struct igb_rx_buffer) * ring->count);
4523
4524         /* initialize Rx descriptor 0 */
4525         rx_desc = IGB_RX_DESC(ring, 0);
4526         rx_desc->wb.upper.length = 0;
4527
4528         /* enable receive descriptor fetching */
4529         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4530         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4531 }
4532
4533 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4534                                   struct igb_ring *rx_ring)
4535 {
4536         /* set build_skb and buffer size flags */
4537         clear_ring_build_skb_enabled(rx_ring);
4538         clear_ring_uses_large_buffer(rx_ring);
4539
4540         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4541                 return;
4542
4543         set_ring_build_skb_enabled(rx_ring);
4544
4545 #if (PAGE_SIZE < 8192)
4546         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4547                 return;
4548
4549         set_ring_uses_large_buffer(rx_ring);
4550 #endif
4551 }
4552
4553 /**
4554  *  igb_configure_rx - Configure receive Unit after Reset
4555  *  @adapter: board private structure
4556  *
4557  *  Configure the Rx unit of the MAC after a reset.
4558  **/
4559 static void igb_configure_rx(struct igb_adapter *adapter)
4560 {
4561         int i;
4562
4563         /* set the correct pool for the PF default MAC address in entry 0 */
4564         igb_set_default_mac_filter(adapter);
4565
4566         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4567          * the Base and Length of the Rx Descriptor Ring
4568          */
4569         for (i = 0; i < adapter->num_rx_queues; i++) {
4570                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4571
4572                 igb_set_rx_buffer_len(adapter, rx_ring);
4573                 igb_configure_rx_ring(adapter, rx_ring);
4574         }
4575 }
4576
4577 /**
4578  *  igb_free_tx_resources - Free Tx Resources per Queue
4579  *  @tx_ring: Tx descriptor ring for a specific queue
4580  *
4581  *  Free all transmit software resources
4582  **/
4583 void igb_free_tx_resources(struct igb_ring *tx_ring)
4584 {
4585         igb_clean_tx_ring(tx_ring);
4586
4587         vfree(tx_ring->tx_buffer_info);
4588         tx_ring->tx_buffer_info = NULL;
4589
4590         /* if not set, then don't free */
4591         if (!tx_ring->desc)
4592                 return;
4593
4594         dma_free_coherent(tx_ring->dev, tx_ring->size,
4595                           tx_ring->desc, tx_ring->dma);
4596
4597         tx_ring->desc = NULL;
4598 }
4599
4600 /**
4601  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4602  *  @adapter: board private structure
4603  *
4604  *  Free all transmit software resources
4605  **/
4606 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4607 {
4608         int i;
4609
4610         for (i = 0; i < adapter->num_tx_queues; i++)
4611                 if (adapter->tx_ring[i])
4612                         igb_free_tx_resources(adapter->tx_ring[i]);
4613 }
4614
4615 /**
4616  *  igb_clean_tx_ring - Free Tx Buffers
4617  *  @tx_ring: ring to be cleaned
4618  **/
4619 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4620 {
4621         u16 i = tx_ring->next_to_clean;
4622         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4623
4624         while (i != tx_ring->next_to_use) {
4625                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4626
4627                 /* Free all the Tx ring sk_buffs */
4628                 dev_kfree_skb_any(tx_buffer->skb);
4629
4630                 /* unmap skb header data */
4631                 dma_unmap_single(tx_ring->dev,
4632                                  dma_unmap_addr(tx_buffer, dma),
4633                                  dma_unmap_len(tx_buffer, len),
4634                                  DMA_TO_DEVICE);
4635
4636                 /* check for eop_desc to determine the end of the packet */
4637                 eop_desc = tx_buffer->next_to_watch;
4638                 tx_desc = IGB_TX_DESC(tx_ring, i);
4639
4640                 /* unmap remaining buffers */
4641                 while (tx_desc != eop_desc) {
4642                         tx_buffer++;
4643                         tx_desc++;
4644                         i++;
4645                         if (unlikely(i == tx_ring->count)) {
4646                                 i = 0;
4647                                 tx_buffer = tx_ring->tx_buffer_info;
4648                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4649                         }
4650
4651                         /* unmap any remaining paged data */
4652                         if (dma_unmap_len(tx_buffer, len))
4653                                 dma_unmap_page(tx_ring->dev,
4654                                                dma_unmap_addr(tx_buffer, dma),
4655                                                dma_unmap_len(tx_buffer, len),
4656                                                DMA_TO_DEVICE);
4657                 }
4658
4659                 /* move us one more past the eop_desc for start of next pkt */
4660                 tx_buffer++;
4661                 i++;
4662                 if (unlikely(i == tx_ring->count)) {
4663                         i = 0;
4664                         tx_buffer = tx_ring->tx_buffer_info;
4665                 }
4666         }
4667
4668         /* reset BQL for queue */
4669         netdev_tx_reset_queue(txring_txq(tx_ring));
4670
4671         /* reset next_to_use and next_to_clean */
4672         tx_ring->next_to_use = 0;
4673         tx_ring->next_to_clean = 0;
4674 }
4675
4676 /**
4677  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4678  *  @adapter: board private structure
4679  **/
4680 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4681 {
4682         int i;
4683
4684         for (i = 0; i < adapter->num_tx_queues; i++)
4685                 if (adapter->tx_ring[i])
4686                         igb_clean_tx_ring(adapter->tx_ring[i]);
4687 }
4688
4689 /**
4690  *  igb_free_rx_resources - Free Rx Resources
4691  *  @rx_ring: ring to clean the resources from
4692  *
4693  *  Free all receive software resources
4694  **/
4695 void igb_free_rx_resources(struct igb_ring *rx_ring)
4696 {
4697         igb_clean_rx_ring(rx_ring);
4698
4699         vfree(rx_ring->rx_buffer_info);
4700         rx_ring->rx_buffer_info = NULL;
4701
4702         /* if not set, then don't free */
4703         if (!rx_ring->desc)
4704                 return;
4705
4706         dma_free_coherent(rx_ring->dev, rx_ring->size,
4707                           rx_ring->desc, rx_ring->dma);
4708
4709         rx_ring->desc = NULL;
4710 }
4711
4712 /**
4713  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4714  *  @adapter: board private structure
4715  *
4716  *  Free all receive software resources
4717  **/
4718 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4719 {
4720         int i;
4721
4722         for (i = 0; i < adapter->num_rx_queues; i++)
4723                 if (adapter->rx_ring[i])
4724                         igb_free_rx_resources(adapter->rx_ring[i]);
4725 }
4726
4727 /**
4728  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4729  *  @rx_ring: ring to free buffers from
4730  **/
4731 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4732 {
4733         u16 i = rx_ring->next_to_clean;
4734
4735         dev_kfree_skb(rx_ring->skb);
4736         rx_ring->skb = NULL;
4737
4738         /* Free all the Rx ring sk_buffs */
4739         while (i != rx_ring->next_to_alloc) {
4740                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4741
4742                 /* Invalidate cache lines that may have been written to by
4743                  * device so that we avoid corrupting memory.
4744                  */
4745                 dma_sync_single_range_for_cpu(rx_ring->dev,
4746                                               buffer_info->dma,
4747                                               buffer_info->page_offset,
4748                                               igb_rx_bufsz(rx_ring),
4749                                               DMA_FROM_DEVICE);
4750
4751                 /* free resources associated with mapping */
4752                 dma_unmap_page_attrs(rx_ring->dev,
4753                                      buffer_info->dma,
4754                                      igb_rx_pg_size(rx_ring),
4755                                      DMA_FROM_DEVICE,
4756                                      IGB_RX_DMA_ATTR);
4757                 __page_frag_cache_drain(buffer_info->page,
4758                                         buffer_info->pagecnt_bias);
4759
4760                 i++;
4761                 if (i == rx_ring->count)
4762                         i = 0;
4763         }
4764
4765         rx_ring->next_to_alloc = 0;
4766         rx_ring->next_to_clean = 0;
4767         rx_ring->next_to_use = 0;
4768 }
4769
4770 /**
4771  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4772  *  @adapter: board private structure
4773  **/
4774 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4775 {
4776         int i;
4777
4778         for (i = 0; i < adapter->num_rx_queues; i++)
4779                 if (adapter->rx_ring[i])
4780                         igb_clean_rx_ring(adapter->rx_ring[i]);
4781 }
4782
4783 /**
4784  *  igb_set_mac - Change the Ethernet Address of the NIC
4785  *  @netdev: network interface device structure
4786  *  @p: pointer to an address structure
4787  *
4788  *  Returns 0 on success, negative on failure
4789  **/
4790 static int igb_set_mac(struct net_device *netdev, void *p)
4791 {
4792         struct igb_adapter *adapter = netdev_priv(netdev);
4793         struct e1000_hw *hw = &adapter->hw;
4794         struct sockaddr *addr = p;
4795
4796         if (!is_valid_ether_addr(addr->sa_data))
4797                 return -EADDRNOTAVAIL;
4798
4799         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4800         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4801
4802         /* set the correct pool for the new PF MAC address in entry 0 */
4803         igb_set_default_mac_filter(adapter);
4804
4805         return 0;
4806 }
4807
4808 /**
4809  *  igb_write_mc_addr_list - write multicast addresses to MTA
4810  *  @netdev: network interface device structure
4811  *
4812  *  Writes multicast address list to the MTA hash table.
4813  *  Returns: -ENOMEM on failure
4814  *           0 on no addresses written
4815  *           X on writing X addresses to MTA
4816  **/
4817 static int igb_write_mc_addr_list(struct net_device *netdev)
4818 {
4819         struct igb_adapter *adapter = netdev_priv(netdev);
4820         struct e1000_hw *hw = &adapter->hw;
4821         struct netdev_hw_addr *ha;
4822         u8  *mta_list;
4823         int i;
4824
4825         if (netdev_mc_empty(netdev)) {
4826                 /* nothing to program, so clear mc list */
4827                 igb_update_mc_addr_list(hw, NULL, 0);
4828                 igb_restore_vf_multicasts(adapter);
4829                 return 0;
4830         }
4831
4832         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4833         if (!mta_list)
4834                 return -ENOMEM;
4835
4836         /* The shared function expects a packed array of only addresses. */
4837         i = 0;
4838         netdev_for_each_mc_addr(ha, netdev)
4839                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4840
4841         igb_update_mc_addr_list(hw, mta_list, i);
4842         kfree(mta_list);
4843
4844         return netdev_mc_count(netdev);
4845 }
4846
4847 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4848 {
4849         struct e1000_hw *hw = &adapter->hw;
4850         u32 i, pf_id;
4851
4852         switch (hw->mac.type) {
4853         case e1000_i210:
4854         case e1000_i211:
4855         case e1000_i350:
4856                 /* VLAN filtering needed for VLAN prio filter */
4857                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4858                         break;
4859                 /* fall through */
4860         case e1000_82576:
4861         case e1000_82580:
4862         case e1000_i354:
4863                 /* VLAN filtering needed for pool filtering */
4864                 if (adapter->vfs_allocated_count)
4865                         break;
4866                 /* fall through */
4867         default:
4868                 return 1;
4869         }
4870
4871         /* We are already in VLAN promisc, nothing to do */
4872         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4873                 return 0;
4874
4875         if (!adapter->vfs_allocated_count)
4876                 goto set_vfta;
4877
4878         /* Add PF to all active pools */
4879         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4880
4881         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4882                 u32 vlvf = rd32(E1000_VLVF(i));
4883
4884                 vlvf |= BIT(pf_id);
4885                 wr32(E1000_VLVF(i), vlvf);
4886         }
4887
4888 set_vfta:
4889         /* Set all bits in the VLAN filter table array */
4890         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4891                 hw->mac.ops.write_vfta(hw, i, ~0U);
4892
4893         /* Set flag so we don't redo unnecessary work */
4894         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4895
4896         return 0;
4897 }
4898
4899 #define VFTA_BLOCK_SIZE 8
4900 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4901 {
4902         struct e1000_hw *hw = &adapter->hw;
4903         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4904         u32 vid_start = vfta_offset * 32;
4905         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4906         u32 i, vid, word, bits, pf_id;
4907
4908         /* guarantee that we don't scrub out management VLAN */
4909         vid = adapter->mng_vlan_id;
4910         if (vid >= vid_start && vid < vid_end)
4911                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4912
4913         if (!adapter->vfs_allocated_count)
4914                 goto set_vfta;
4915
4916         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4917
4918         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4919                 u32 vlvf = rd32(E1000_VLVF(i));
4920
4921                 /* pull VLAN ID from VLVF */
4922                 vid = vlvf & VLAN_VID_MASK;
4923
4924                 /* only concern ourselves with a certain range */
4925                 if (vid < vid_start || vid >= vid_end)
4926                         continue;
4927
4928                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4929                         /* record VLAN ID in VFTA */
4930                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4931
4932                         /* if PF is part of this then continue */
4933                         if (test_bit(vid, adapter->active_vlans))
4934                                 continue;
4935                 }
4936
4937                 /* remove PF from the pool */
4938                 bits = ~BIT(pf_id);
4939                 bits &= rd32(E1000_VLVF(i));
4940                 wr32(E1000_VLVF(i), bits);
4941         }
4942
4943 set_vfta:
4944         /* extract values from active_vlans and write back to VFTA */
4945         for (i = VFTA_BLOCK_SIZE; i--;) {
4946                 vid = (vfta_offset + i) * 32;
4947                 word = vid / BITS_PER_LONG;
4948                 bits = vid % BITS_PER_LONG;
4949
4950                 vfta[i] |= adapter->active_vlans[word] >> bits;
4951
4952                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4953         }
4954 }
4955
4956 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4957 {
4958         u32 i;
4959
4960         /* We are not in VLAN promisc, nothing to do */
4961         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4962                 return;
4963
4964         /* Set flag so we don't redo unnecessary work */
4965         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4966
4967         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4968                 igb_scrub_vfta(adapter, i);
4969 }
4970
4971 /**
4972  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4973  *  @netdev: network interface device structure
4974  *
4975  *  The set_rx_mode entry point is called whenever the unicast or multicast
4976  *  address lists or the network interface flags are updated.  This routine is
4977  *  responsible for configuring the hardware for proper unicast, multicast,
4978  *  promiscuous mode, and all-multi behavior.
4979  **/
4980 static void igb_set_rx_mode(struct net_device *netdev)
4981 {
4982         struct igb_adapter *adapter = netdev_priv(netdev);
4983         struct e1000_hw *hw = &adapter->hw;
4984         unsigned int vfn = adapter->vfs_allocated_count;
4985         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4986         int count;
4987
4988         /* Check for Promiscuous and All Multicast modes */
4989         if (netdev->flags & IFF_PROMISC) {
4990                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4991                 vmolr |= E1000_VMOLR_MPME;
4992
4993                 /* enable use of UTA filter to force packets to default pool */
4994                 if (hw->mac.type == e1000_82576)
4995                         vmolr |= E1000_VMOLR_ROPE;
4996         } else {
4997                 if (netdev->flags & IFF_ALLMULTI) {
4998                         rctl |= E1000_RCTL_MPE;
4999                         vmolr |= E1000_VMOLR_MPME;
5000                 } else {
5001                         /* Write addresses to the MTA, if the attempt fails
5002                          * then we should just turn on promiscuous mode so
5003                          * that we can at least receive multicast traffic
5004                          */
5005                         count = igb_write_mc_addr_list(netdev);
5006                         if (count < 0) {
5007                                 rctl |= E1000_RCTL_MPE;
5008                                 vmolr |= E1000_VMOLR_MPME;
5009                         } else if (count) {
5010                                 vmolr |= E1000_VMOLR_ROMPE;
5011                         }
5012                 }
5013         }
5014
5015         /* Write addresses to available RAR registers, if there is not
5016          * sufficient space to store all the addresses then enable
5017          * unicast promiscuous mode
5018          */
5019         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5020                 rctl |= E1000_RCTL_UPE;
5021                 vmolr |= E1000_VMOLR_ROPE;
5022         }
5023
5024         /* enable VLAN filtering by default */
5025         rctl |= E1000_RCTL_VFE;
5026
5027         /* disable VLAN filtering for modes that require it */
5028         if ((netdev->flags & IFF_PROMISC) ||
5029             (netdev->features & NETIF_F_RXALL)) {
5030                 /* if we fail to set all rules then just clear VFE */
5031                 if (igb_vlan_promisc_enable(adapter))
5032                         rctl &= ~E1000_RCTL_VFE;
5033         } else {
5034                 igb_vlan_promisc_disable(adapter);
5035         }
5036
5037         /* update state of unicast, multicast, and VLAN filtering modes */
5038         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5039                                      E1000_RCTL_VFE);
5040         wr32(E1000_RCTL, rctl);
5041
5042 #if (PAGE_SIZE < 8192)
5043         if (!adapter->vfs_allocated_count) {
5044                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5045                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5046         }
5047 #endif
5048         wr32(E1000_RLPML, rlpml);
5049
5050         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5051          * the VMOLR to enable the appropriate modes.  Without this workaround
5052          * we will have issues with VLAN tag stripping not being done for frames
5053          * that are only arriving because we are the default pool
5054          */
5055         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5056                 return;
5057
5058         /* set UTA to appropriate mode */
5059         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5060
5061         vmolr |= rd32(E1000_VMOLR(vfn)) &
5062                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5063
5064         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5065         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5066 #if (PAGE_SIZE < 8192)
5067         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5068                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5069         else
5070 #endif
5071                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5072         vmolr |= E1000_VMOLR_LPE;
5073
5074         wr32(E1000_VMOLR(vfn), vmolr);
5075
5076         igb_restore_vf_multicasts(adapter);
5077 }
5078
5079 static void igb_check_wvbr(struct igb_adapter *adapter)
5080 {
5081         struct e1000_hw *hw = &adapter->hw;
5082         u32 wvbr = 0;
5083
5084         switch (hw->mac.type) {
5085         case e1000_82576:
5086         case e1000_i350:
5087                 wvbr = rd32(E1000_WVBR);
5088                 if (!wvbr)
5089                         return;
5090                 break;
5091         default:
5092                 break;
5093         }
5094
5095         adapter->wvbr |= wvbr;
5096 }
5097
5098 #define IGB_STAGGERED_QUEUE_OFFSET 8
5099
5100 static void igb_spoof_check(struct igb_adapter *adapter)
5101 {
5102         int j;
5103
5104         if (!adapter->wvbr)
5105                 return;
5106
5107         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5108                 if (adapter->wvbr & BIT(j) ||
5109                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5110                         dev_warn(&adapter->pdev->dev,
5111                                 "Spoof event(s) detected on VF %d\n", j);
5112                         adapter->wvbr &=
5113                                 ~(BIT(j) |
5114                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5115                 }
5116         }
5117 }
5118
5119 /* Need to wait a few seconds after link up to get diagnostic information from
5120  * the phy
5121  */
5122 static void igb_update_phy_info(struct timer_list *t)
5123 {
5124         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5125         igb_get_phy_info(&adapter->hw);
5126 }
5127
5128 /**
5129  *  igb_has_link - check shared code for link and determine up/down
5130  *  @adapter: pointer to driver private info
5131  **/
5132 bool igb_has_link(struct igb_adapter *adapter)
5133 {
5134         struct e1000_hw *hw = &adapter->hw;
5135         bool link_active = false;
5136
5137         /* get_link_status is set on LSC (link status) interrupt or
5138          * rx sequence error interrupt.  get_link_status will stay
5139          * false until the e1000_check_for_link establishes link
5140          * for copper adapters ONLY
5141          */
5142         switch (hw->phy.media_type) {
5143         case e1000_media_type_copper:
5144                 if (!hw->mac.get_link_status)
5145                         return true;
5146                 /* fall through */
5147         case e1000_media_type_internal_serdes:
5148                 hw->mac.ops.check_for_link(hw);
5149                 link_active = !hw->mac.get_link_status;
5150                 break;
5151         default:
5152         case e1000_media_type_unknown:
5153                 break;
5154         }
5155
5156         if (((hw->mac.type == e1000_i210) ||
5157              (hw->mac.type == e1000_i211)) &&
5158              (hw->phy.id == I210_I_PHY_ID)) {
5159                 if (!netif_carrier_ok(adapter->netdev)) {
5160                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5161                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5162                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5163                         adapter->link_check_timeout = jiffies;
5164                 }
5165         }
5166
5167         return link_active;
5168 }
5169
5170 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5171 {
5172         bool ret = false;
5173         u32 ctrl_ext, thstat;
5174
5175         /* check for thermal sensor event on i350 copper only */
5176         if (hw->mac.type == e1000_i350) {
5177                 thstat = rd32(E1000_THSTAT);
5178                 ctrl_ext = rd32(E1000_CTRL_EXT);
5179
5180                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5181                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5182                         ret = !!(thstat & event);
5183         }
5184
5185         return ret;
5186 }
5187
5188 /**
5189  *  igb_check_lvmmc - check for malformed packets received
5190  *  and indicated in LVMMC register
5191  *  @adapter: pointer to adapter
5192  **/
5193 static void igb_check_lvmmc(struct igb_adapter *adapter)
5194 {
5195         struct e1000_hw *hw = &adapter->hw;
5196         u32 lvmmc;
5197
5198         lvmmc = rd32(E1000_LVMMC);
5199         if (lvmmc) {
5200                 if (unlikely(net_ratelimit())) {
5201                         netdev_warn(adapter->netdev,
5202                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5203                                     lvmmc);
5204                 }
5205         }
5206 }
5207
5208 /**
5209  *  igb_watchdog - Timer Call-back
5210  *  @data: pointer to adapter cast into an unsigned long
5211  **/
5212 static void igb_watchdog(struct timer_list *t)
5213 {
5214         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5215         /* Do the rest outside of interrupt context */
5216         schedule_work(&adapter->watchdog_task);
5217 }
5218
5219 static void igb_watchdog_task(struct work_struct *work)
5220 {
5221         struct igb_adapter *adapter = container_of(work,
5222                                                    struct igb_adapter,
5223                                                    watchdog_task);
5224         struct e1000_hw *hw = &adapter->hw;
5225         struct e1000_phy_info *phy = &hw->phy;
5226         struct net_device *netdev = adapter->netdev;
5227         u32 link;
5228         int i;
5229         u32 connsw;
5230         u16 phy_data, retry_count = 20;
5231
5232         link = igb_has_link(adapter);
5233
5234         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5235                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5236                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5237                 else
5238                         link = false;
5239         }
5240
5241         /* Force link down if we have fiber to swap to */
5242         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5243                 if (hw->phy.media_type == e1000_media_type_copper) {
5244                         connsw = rd32(E1000_CONNSW);
5245                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5246                                 link = 0;
5247                 }
5248         }
5249         if (link) {
5250                 /* Perform a reset if the media type changed. */
5251                 if (hw->dev_spec._82575.media_changed) {
5252                         hw->dev_spec._82575.media_changed = false;
5253                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5254                         igb_reset(adapter);
5255                 }
5256                 /* Cancel scheduled suspend requests. */
5257                 pm_runtime_resume(netdev->dev.parent);
5258
5259                 if (!netif_carrier_ok(netdev)) {
5260                         u32 ctrl;
5261
5262                         hw->mac.ops.get_speed_and_duplex(hw,
5263                                                          &adapter->link_speed,
5264                                                          &adapter->link_duplex);
5265
5266                         ctrl = rd32(E1000_CTRL);
5267                         /* Links status message must follow this format */
5268                         netdev_info(netdev,
5269                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5270                                netdev->name,
5271                                adapter->link_speed,
5272                                adapter->link_duplex == FULL_DUPLEX ?
5273                                "Full" : "Half",
5274                                (ctrl & E1000_CTRL_TFCE) &&
5275                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5276                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5277                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5278
5279                         /* disable EEE if enabled */
5280                         if ((adapter->flags & IGB_FLAG_EEE) &&
5281                                 (adapter->link_duplex == HALF_DUPLEX)) {
5282                                 dev_info(&adapter->pdev->dev,
5283                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5284                                 adapter->hw.dev_spec._82575.eee_disable = true;
5285                                 adapter->flags &= ~IGB_FLAG_EEE;
5286                         }
5287
5288                         /* check if SmartSpeed worked */
5289                         igb_check_downshift(hw);
5290                         if (phy->speed_downgraded)
5291                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5292
5293                         /* check for thermal sensor event */
5294                         if (igb_thermal_sensor_event(hw,
5295                             E1000_THSTAT_LINK_THROTTLE))
5296                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5297
5298                         /* adjust timeout factor according to speed/duplex */
5299                         adapter->tx_timeout_factor = 1;
5300                         switch (adapter->link_speed) {
5301                         case SPEED_10:
5302                                 adapter->tx_timeout_factor = 14;
5303                                 break;
5304                         case SPEED_100:
5305                                 /* maybe add some timeout factor ? */
5306                                 break;
5307                         }
5308
5309                         if (adapter->link_speed != SPEED_1000)
5310                                 goto no_wait;
5311
5312                         /* wait for Remote receiver status OK */
5313 retry_read_status:
5314                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5315                                               &phy_data)) {
5316                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5317                                     retry_count) {
5318                                         msleep(100);
5319                                         retry_count--;
5320                                         goto retry_read_status;
5321                                 } else if (!retry_count) {
5322                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5323                                 }
5324                         } else {
5325                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5326                         }
5327 no_wait:
5328                         netif_carrier_on(netdev);
5329
5330                         igb_ping_all_vfs(adapter);
5331                         igb_check_vf_rate_limit(adapter);
5332
5333                         /* link state has changed, schedule phy info update */
5334                         if (!test_bit(__IGB_DOWN, &adapter->state))
5335                                 mod_timer(&adapter->phy_info_timer,
5336                                           round_jiffies(jiffies + 2 * HZ));
5337                 }
5338         } else {
5339                 if (netif_carrier_ok(netdev)) {
5340                         adapter->link_speed = 0;
5341                         adapter->link_duplex = 0;
5342
5343                         /* check for thermal sensor event */
5344                         if (igb_thermal_sensor_event(hw,
5345                             E1000_THSTAT_PWR_DOWN)) {
5346                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5347                         }
5348
5349                         /* Links status message must follow this format */
5350                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5351                                netdev->name);
5352                         netif_carrier_off(netdev);
5353
5354                         igb_ping_all_vfs(adapter);
5355
5356                         /* link state has changed, schedule phy info update */
5357                         if (!test_bit(__IGB_DOWN, &adapter->state))
5358                                 mod_timer(&adapter->phy_info_timer,
5359                                           round_jiffies(jiffies + 2 * HZ));
5360
5361                         /* link is down, time to check for alternate media */
5362                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5363                                 igb_check_swap_media(adapter);
5364                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5365                                         schedule_work(&adapter->reset_task);
5366                                         /* return immediately */
5367                                         return;
5368                                 }
5369                         }
5370                         pm_schedule_suspend(netdev->dev.parent,
5371                                             MSEC_PER_SEC * 5);
5372
5373                 /* also check for alternate media here */
5374                 } else if (!netif_carrier_ok(netdev) &&
5375                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5376                         igb_check_swap_media(adapter);
5377                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5378                                 schedule_work(&adapter->reset_task);
5379                                 /* return immediately */
5380                                 return;
5381                         }
5382                 }
5383         }
5384
5385         spin_lock(&adapter->stats64_lock);
5386         igb_update_stats(adapter);
5387         spin_unlock(&adapter->stats64_lock);
5388
5389         for (i = 0; i < adapter->num_tx_queues; i++) {
5390                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5391                 if (!netif_carrier_ok(netdev)) {
5392                         /* We've lost link, so the controller stops DMA,
5393                          * but we've got queued Tx work that's never going
5394                          * to get done, so reset controller to flush Tx.
5395                          * (Do the reset outside of interrupt context).
5396                          */
5397                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5398                                 adapter->tx_timeout_count++;
5399                                 schedule_work(&adapter->reset_task);
5400                                 /* return immediately since reset is imminent */
5401                                 return;
5402                         }
5403                 }
5404
5405                 /* Force detection of hung controller every watchdog period */
5406                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5407         }
5408
5409         /* Cause software interrupt to ensure Rx ring is cleaned */
5410         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5411                 u32 eics = 0;
5412
5413                 for (i = 0; i < adapter->num_q_vectors; i++)
5414                         eics |= adapter->q_vector[i]->eims_value;
5415                 wr32(E1000_EICS, eics);
5416         } else {
5417                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5418         }
5419
5420         igb_spoof_check(adapter);
5421         igb_ptp_rx_hang(adapter);
5422         igb_ptp_tx_hang(adapter);
5423
5424         /* Check LVMMC register on i350/i354 only */
5425         if ((adapter->hw.mac.type == e1000_i350) ||
5426             (adapter->hw.mac.type == e1000_i354))
5427                 igb_check_lvmmc(adapter);
5428
5429         /* Reset the timer */
5430         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5431                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5432                         mod_timer(&adapter->watchdog_timer,
5433                                   round_jiffies(jiffies +  HZ));
5434                 else
5435                         mod_timer(&adapter->watchdog_timer,
5436                                   round_jiffies(jiffies + 2 * HZ));
5437         }
5438 }
5439
5440 enum latency_range {
5441         lowest_latency = 0,
5442         low_latency = 1,
5443         bulk_latency = 2,
5444         latency_invalid = 255
5445 };
5446
5447 /**
5448  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5449  *  @q_vector: pointer to q_vector
5450  *
5451  *  Stores a new ITR value based on strictly on packet size.  This
5452  *  algorithm is less sophisticated than that used in igb_update_itr,
5453  *  due to the difficulty of synchronizing statistics across multiple
5454  *  receive rings.  The divisors and thresholds used by this function
5455  *  were determined based on theoretical maximum wire speed and testing
5456  *  data, in order to minimize response time while increasing bulk
5457  *  throughput.
5458  *  This functionality is controlled by ethtool's coalescing settings.
5459  *  NOTE:  This function is called only when operating in a multiqueue
5460  *         receive environment.
5461  **/
5462 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5463 {
5464         int new_val = q_vector->itr_val;
5465         int avg_wire_size = 0;
5466         struct igb_adapter *adapter = q_vector->adapter;
5467         unsigned int packets;
5468
5469         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5470          * ints/sec - ITR timer value of 120 ticks.
5471          */
5472         if (adapter->link_speed != SPEED_1000) {
5473                 new_val = IGB_4K_ITR;
5474                 goto set_itr_val;
5475         }
5476
5477         packets = q_vector->rx.total_packets;
5478         if (packets)
5479                 avg_wire_size = q_vector->rx.total_bytes / packets;
5480
5481         packets = q_vector->tx.total_packets;
5482         if (packets)
5483                 avg_wire_size = max_t(u32, avg_wire_size,
5484                                       q_vector->tx.total_bytes / packets);
5485
5486         /* if avg_wire_size isn't set no work was done */
5487         if (!avg_wire_size)
5488                 goto clear_counts;
5489
5490         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5491         avg_wire_size += 24;
5492
5493         /* Don't starve jumbo frames */
5494         avg_wire_size = min(avg_wire_size, 3000);
5495
5496         /* Give a little boost to mid-size frames */
5497         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5498                 new_val = avg_wire_size / 3;
5499         else
5500                 new_val = avg_wire_size / 2;
5501
5502         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5503         if (new_val < IGB_20K_ITR &&
5504             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5505              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5506                 new_val = IGB_20K_ITR;
5507
5508 set_itr_val:
5509         if (new_val != q_vector->itr_val) {
5510                 q_vector->itr_val = new_val;
5511                 q_vector->set_itr = 1;
5512         }
5513 clear_counts:
5514         q_vector->rx.total_bytes = 0;
5515         q_vector->rx.total_packets = 0;
5516         q_vector->tx.total_bytes = 0;
5517         q_vector->tx.total_packets = 0;
5518 }
5519
5520 /**
5521  *  igb_update_itr - update the dynamic ITR value based on statistics
5522  *  @q_vector: pointer to q_vector
5523  *  @ring_container: ring info to update the itr for
5524  *
5525  *  Stores a new ITR value based on packets and byte
5526  *  counts during the last interrupt.  The advantage of per interrupt
5527  *  computation is faster updates and more accurate ITR for the current
5528  *  traffic pattern.  Constants in this function were computed
5529  *  based on theoretical maximum wire speed and thresholds were set based
5530  *  on testing data as well as attempting to minimize response time
5531  *  while increasing bulk throughput.
5532  *  This functionality is controlled by ethtool's coalescing settings.
5533  *  NOTE:  These calculations are only valid when operating in a single-
5534  *         queue environment.
5535  **/
5536 static void igb_update_itr(struct igb_q_vector *q_vector,
5537                            struct igb_ring_container *ring_container)
5538 {
5539         unsigned int packets = ring_container->total_packets;
5540         unsigned int bytes = ring_container->total_bytes;
5541         u8 itrval = ring_container->itr;
5542
5543         /* no packets, exit with status unchanged */
5544         if (packets == 0)
5545                 return;
5546
5547         switch (itrval) {
5548         case lowest_latency:
5549                 /* handle TSO and jumbo frames */
5550                 if (bytes/packets > 8000)
5551                         itrval = bulk_latency;
5552                 else if ((packets < 5) && (bytes > 512))
5553                         itrval = low_latency;
5554                 break;
5555         case low_latency:  /* 50 usec aka 20000 ints/s */
5556                 if (bytes > 10000) {
5557                         /* this if handles the TSO accounting */
5558                         if (bytes/packets > 8000)
5559                                 itrval = bulk_latency;
5560                         else if ((packets < 10) || ((bytes/packets) > 1200))
5561                                 itrval = bulk_latency;
5562                         else if ((packets > 35))
5563                                 itrval = lowest_latency;
5564                 } else if (bytes/packets > 2000) {
5565                         itrval = bulk_latency;
5566                 } else if (packets <= 2 && bytes < 512) {
5567                         itrval = lowest_latency;
5568                 }
5569                 break;
5570         case bulk_latency: /* 250 usec aka 4000 ints/s */
5571                 if (bytes > 25000) {
5572                         if (packets > 35)
5573                                 itrval = low_latency;
5574                 } else if (bytes < 1500) {
5575                         itrval = low_latency;
5576                 }
5577                 break;
5578         }
5579
5580         /* clear work counters since we have the values we need */
5581         ring_container->total_bytes = 0;
5582         ring_container->total_packets = 0;
5583
5584         /* write updated itr to ring container */
5585         ring_container->itr = itrval;
5586 }
5587
5588 static void igb_set_itr(struct igb_q_vector *q_vector)
5589 {
5590         struct igb_adapter *adapter = q_vector->adapter;
5591         u32 new_itr = q_vector->itr_val;
5592         u8 current_itr = 0;
5593
5594         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5595         if (adapter->link_speed != SPEED_1000) {
5596                 current_itr = 0;
5597                 new_itr = IGB_4K_ITR;
5598                 goto set_itr_now;
5599         }
5600
5601         igb_update_itr(q_vector, &q_vector->tx);
5602         igb_update_itr(q_vector, &q_vector->rx);
5603
5604         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5605
5606         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5607         if (current_itr == lowest_latency &&
5608             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5609              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5610                 current_itr = low_latency;
5611
5612         switch (current_itr) {
5613         /* counts and packets in update_itr are dependent on these numbers */
5614         case lowest_latency:
5615                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5616                 break;
5617         case low_latency:
5618                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5619                 break;
5620         case bulk_latency:
5621                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5622                 break;
5623         default:
5624                 break;
5625         }
5626
5627 set_itr_now:
5628         if (new_itr != q_vector->itr_val) {
5629                 /* this attempts to bias the interrupt rate towards Bulk
5630                  * by adding intermediate steps when interrupt rate is
5631                  * increasing
5632                  */
5633                 new_itr = new_itr > q_vector->itr_val ?
5634                           max((new_itr * q_vector->itr_val) /
5635                           (new_itr + (q_vector->itr_val >> 2)),
5636                           new_itr) : new_itr;
5637                 /* Don't write the value here; it resets the adapter's
5638                  * internal timer, and causes us to delay far longer than
5639                  * we should between interrupts.  Instead, we write the ITR
5640                  * value at the beginning of the next interrupt so the timing
5641                  * ends up being correct.
5642                  */
5643                 q_vector->itr_val = new_itr;
5644                 q_vector->set_itr = 1;
5645         }
5646 }
5647
5648 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5649                             struct igb_tx_buffer *first,
5650                             u32 vlan_macip_lens, u32 type_tucmd,
5651                             u32 mss_l4len_idx)
5652 {
5653         struct e1000_adv_tx_context_desc *context_desc;
5654         u16 i = tx_ring->next_to_use;
5655         struct timespec64 ts;
5656
5657         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5658
5659         i++;
5660         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5661
5662         /* set bits to identify this as an advanced context descriptor */
5663         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5664
5665         /* For 82575, context index must be unique per ring. */
5666         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5667                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5668
5669         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5670         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5671         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5672
5673         /* We assume there is always a valid tx time available. Invalid times
5674          * should have been handled by the upper layers.
5675          */
5676         if (tx_ring->launchtime_enable) {
5677                 ts = ns_to_timespec64(first->skb->tstamp);
5678                 first->skb->tstamp = 0;
5679                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5680         } else {
5681                 context_desc->seqnum_seed = 0;
5682         }
5683 }
5684
5685 static int igb_tso(struct igb_ring *tx_ring,
5686                    struct igb_tx_buffer *first,
5687                    u8 *hdr_len)
5688 {
5689         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5690         struct sk_buff *skb = first->skb;
5691         union {
5692                 struct iphdr *v4;
5693                 struct ipv6hdr *v6;
5694                 unsigned char *hdr;
5695         } ip;
5696         union {
5697                 struct tcphdr *tcp;
5698                 unsigned char *hdr;
5699         } l4;
5700         u32 paylen, l4_offset;
5701         int err;
5702
5703         if (skb->ip_summed != CHECKSUM_PARTIAL)
5704                 return 0;
5705
5706         if (!skb_is_gso(skb))
5707                 return 0;
5708
5709         err = skb_cow_head(skb, 0);
5710         if (err < 0)
5711                 return err;
5712
5713         ip.hdr = skb_network_header(skb);
5714         l4.hdr = skb_checksum_start(skb);
5715
5716         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5717         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5718
5719         /* initialize outer IP header fields */
5720         if (ip.v4->version == 4) {
5721                 unsigned char *csum_start = skb_checksum_start(skb);
5722                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5723
5724                 /* IP header will have to cancel out any data that
5725                  * is not a part of the outer IP header
5726                  */
5727                 ip.v4->check = csum_fold(csum_partial(trans_start,
5728                                                       csum_start - trans_start,
5729                                                       0));
5730                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5731
5732                 ip.v4->tot_len = 0;
5733                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5734                                    IGB_TX_FLAGS_CSUM |
5735                                    IGB_TX_FLAGS_IPV4;
5736         } else {
5737                 ip.v6->payload_len = 0;
5738                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5739                                    IGB_TX_FLAGS_CSUM;
5740         }
5741
5742         /* determine offset of inner transport header */
5743         l4_offset = l4.hdr - skb->data;
5744
5745         /* compute length of segmentation header */
5746         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5747
5748         /* remove payload length from inner checksum */
5749         paylen = skb->len - l4_offset;
5750         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5751
5752         /* update gso size and bytecount with header size */
5753         first->gso_segs = skb_shinfo(skb)->gso_segs;
5754         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5755
5756         /* MSS L4LEN IDX */
5757         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5758         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5759
5760         /* VLAN MACLEN IPLEN */
5761         vlan_macip_lens = l4.hdr - ip.hdr;
5762         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5763         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5764
5765         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5766                         type_tucmd, mss_l4len_idx);
5767
5768         return 1;
5769 }
5770
5771 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5772 {
5773         unsigned int offset = 0;
5774
5775         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5776
5777         return offset == skb_checksum_start_offset(skb);
5778 }
5779
5780 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5781 {
5782         struct sk_buff *skb = first->skb;
5783         u32 vlan_macip_lens = 0;
5784         u32 type_tucmd = 0;
5785
5786         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5787 csum_failed:
5788                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5789                     !tx_ring->launchtime_enable)
5790                         return;
5791                 goto no_csum;
5792         }
5793
5794         switch (skb->csum_offset) {
5795         case offsetof(struct tcphdr, check):
5796                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5797                 /* fall through */
5798         case offsetof(struct udphdr, check):
5799                 break;
5800         case offsetof(struct sctphdr, checksum):
5801                 /* validate that this is actually an SCTP request */
5802                 if (((first->protocol == htons(ETH_P_IP)) &&
5803                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5804                     ((first->protocol == htons(ETH_P_IPV6)) &&
5805                      igb_ipv6_csum_is_sctp(skb))) {
5806                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5807                         break;
5808                 }
5809                 /* fall through */
5810         default:
5811                 skb_checksum_help(skb);
5812                 goto csum_failed;
5813         }
5814
5815         /* update TX checksum flag */
5816         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5817         vlan_macip_lens = skb_checksum_start_offset(skb) -
5818                           skb_network_offset(skb);
5819 no_csum:
5820         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5821         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5822
5823         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5824 }
5825
5826 #define IGB_SET_FLAG(_input, _flag, _result) \
5827         ((_flag <= _result) ? \
5828          ((u32)(_input & _flag) * (_result / _flag)) : \
5829          ((u32)(_input & _flag) / (_flag / _result)))
5830
5831 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5832 {
5833         /* set type for advanced descriptor with frame checksum insertion */
5834         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5835                        E1000_ADVTXD_DCMD_DEXT |
5836                        E1000_ADVTXD_DCMD_IFCS;
5837
5838         /* set HW vlan bit if vlan is present */
5839         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5840                                  (E1000_ADVTXD_DCMD_VLE));
5841
5842         /* set segmentation bits for TSO */
5843         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5844                                  (E1000_ADVTXD_DCMD_TSE));
5845
5846         /* set timestamp bit if present */
5847         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5848                                  (E1000_ADVTXD_MAC_TSTAMP));
5849
5850         /* insert frame checksum */
5851         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5852
5853         return cmd_type;
5854 }
5855
5856 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5857                                  union e1000_adv_tx_desc *tx_desc,
5858                                  u32 tx_flags, unsigned int paylen)
5859 {
5860         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5861
5862         /* 82575 requires a unique index per ring */
5863         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5864                 olinfo_status |= tx_ring->reg_idx << 4;
5865
5866         /* insert L4 checksum */
5867         olinfo_status |= IGB_SET_FLAG(tx_flags,
5868                                       IGB_TX_FLAGS_CSUM,
5869                                       (E1000_TXD_POPTS_TXSM << 8));
5870
5871         /* insert IPv4 checksum */
5872         olinfo_status |= IGB_SET_FLAG(tx_flags,
5873                                       IGB_TX_FLAGS_IPV4,
5874                                       (E1000_TXD_POPTS_IXSM << 8));
5875
5876         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5877 }
5878
5879 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5880 {
5881         struct net_device *netdev = tx_ring->netdev;
5882
5883         netif_stop_subqueue(netdev, tx_ring->queue_index);
5884
5885         /* Herbert's original patch had:
5886          *  smp_mb__after_netif_stop_queue();
5887          * but since that doesn't exist yet, just open code it.
5888          */
5889         smp_mb();
5890
5891         /* We need to check again in a case another CPU has just
5892          * made room available.
5893          */
5894         if (igb_desc_unused(tx_ring) < size)
5895                 return -EBUSY;
5896
5897         /* A reprieve! */
5898         netif_wake_subqueue(netdev, tx_ring->queue_index);
5899
5900         u64_stats_update_begin(&tx_ring->tx_syncp2);
5901         tx_ring->tx_stats.restart_queue2++;
5902         u64_stats_update_end(&tx_ring->tx_syncp2);
5903
5904         return 0;
5905 }
5906
5907 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5908 {
5909         if (igb_desc_unused(tx_ring) >= size)
5910                 return 0;
5911         return __igb_maybe_stop_tx(tx_ring, size);
5912 }
5913
5914 static int igb_tx_map(struct igb_ring *tx_ring,
5915                       struct igb_tx_buffer *first,
5916                       const u8 hdr_len)
5917 {
5918         struct sk_buff *skb = first->skb;
5919         struct igb_tx_buffer *tx_buffer;
5920         union e1000_adv_tx_desc *tx_desc;
5921         skb_frag_t *frag;
5922         dma_addr_t dma;
5923         unsigned int data_len, size;
5924         u32 tx_flags = first->tx_flags;
5925         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5926         u16 i = tx_ring->next_to_use;
5927
5928         tx_desc = IGB_TX_DESC(tx_ring, i);
5929
5930         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5931
5932         size = skb_headlen(skb);
5933         data_len = skb->data_len;
5934
5935         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5936
5937         tx_buffer = first;
5938
5939         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5940                 if (dma_mapping_error(tx_ring->dev, dma))
5941                         goto dma_error;
5942
5943                 /* record length, and DMA address */
5944                 dma_unmap_len_set(tx_buffer, len, size);
5945                 dma_unmap_addr_set(tx_buffer, dma, dma);
5946
5947                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5948
5949                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5950                         tx_desc->read.cmd_type_len =
5951                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5952
5953                         i++;
5954                         tx_desc++;
5955                         if (i == tx_ring->count) {
5956                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5957                                 i = 0;
5958                         }
5959                         tx_desc->read.olinfo_status = 0;
5960
5961                         dma += IGB_MAX_DATA_PER_TXD;
5962                         size -= IGB_MAX_DATA_PER_TXD;
5963
5964                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5965                 }
5966
5967                 if (likely(!data_len))
5968                         break;
5969
5970                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5971
5972                 i++;
5973                 tx_desc++;
5974                 if (i == tx_ring->count) {
5975                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5976                         i = 0;
5977                 }
5978                 tx_desc->read.olinfo_status = 0;
5979
5980                 size = skb_frag_size(frag);
5981                 data_len -= size;
5982
5983                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5984                                        size, DMA_TO_DEVICE);
5985
5986                 tx_buffer = &tx_ring->tx_buffer_info[i];
5987         }
5988
5989         /* write last descriptor with RS and EOP bits */
5990         cmd_type |= size | IGB_TXD_DCMD;
5991         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5992
5993         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5994
5995         /* set the timestamp */
5996         first->time_stamp = jiffies;
5997
5998         skb_tx_timestamp(skb);
5999
6000         /* Force memory writes to complete before letting h/w know there
6001          * are new descriptors to fetch.  (Only applicable for weak-ordered
6002          * memory model archs, such as IA-64).
6003          *
6004          * We also need this memory barrier to make certain all of the
6005          * status bits have been updated before next_to_watch is written.
6006          */
6007         dma_wmb();
6008
6009         /* set next_to_watch value indicating a packet is present */
6010         first->next_to_watch = tx_desc;
6011
6012         i++;
6013         if (i == tx_ring->count)
6014                 i = 0;
6015
6016         tx_ring->next_to_use = i;
6017
6018         /* Make sure there is space in the ring for the next send. */
6019         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6020
6021         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6022                 writel(i, tx_ring->tail);
6023         }
6024         return 0;
6025
6026 dma_error:
6027         dev_err(tx_ring->dev, "TX DMA map failed\n");
6028         tx_buffer = &tx_ring->tx_buffer_info[i];
6029
6030         /* clear dma mappings for failed tx_buffer_info map */
6031         while (tx_buffer != first) {
6032                 if (dma_unmap_len(tx_buffer, len))
6033                         dma_unmap_page(tx_ring->dev,
6034                                        dma_unmap_addr(tx_buffer, dma),
6035                                        dma_unmap_len(tx_buffer, len),
6036                                        DMA_TO_DEVICE);
6037                 dma_unmap_len_set(tx_buffer, len, 0);
6038
6039                 if (i-- == 0)
6040                         i += tx_ring->count;
6041                 tx_buffer = &tx_ring->tx_buffer_info[i];
6042         }
6043
6044         if (dma_unmap_len(tx_buffer, len))
6045                 dma_unmap_single(tx_ring->dev,
6046                                  dma_unmap_addr(tx_buffer, dma),
6047                                  dma_unmap_len(tx_buffer, len),
6048                                  DMA_TO_DEVICE);
6049         dma_unmap_len_set(tx_buffer, len, 0);
6050
6051         dev_kfree_skb_any(tx_buffer->skb);
6052         tx_buffer->skb = NULL;
6053
6054         tx_ring->next_to_use = i;
6055
6056         return -1;
6057 }
6058
6059 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6060                                 struct igb_ring *tx_ring)
6061 {
6062         struct igb_tx_buffer *first;
6063         int tso;
6064         u32 tx_flags = 0;
6065         unsigned short f;
6066         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6067         __be16 protocol = vlan_get_protocol(skb);
6068         u8 hdr_len = 0;
6069
6070         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6071          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6072          *       + 2 desc gap to keep tail from touching head,
6073          *       + 1 desc for context descriptor,
6074          * otherwise try next time
6075          */
6076         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6077                 count += TXD_USE_COUNT(skb_frag_size(
6078                                                 &skb_shinfo(skb)->frags[f]));
6079
6080         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6081                 /* this is a hard error */
6082                 return NETDEV_TX_BUSY;
6083         }
6084
6085         /* record the location of the first descriptor for this packet */
6086         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6087         first->skb = skb;
6088         first->bytecount = skb->len;
6089         first->gso_segs = 1;
6090
6091         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6092                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6093
6094                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6095                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6096                                            &adapter->state)) {
6097                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6098                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6099
6100                         adapter->ptp_tx_skb = skb_get(skb);
6101                         adapter->ptp_tx_start = jiffies;
6102                         if (adapter->hw.mac.type == e1000_82576)
6103                                 schedule_work(&adapter->ptp_tx_work);
6104                 } else {
6105                         adapter->tx_hwtstamp_skipped++;
6106                 }
6107         }
6108
6109         if (skb_vlan_tag_present(skb)) {
6110                 tx_flags |= IGB_TX_FLAGS_VLAN;
6111                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6112         }
6113
6114         /* record initial flags and protocol */
6115         first->tx_flags = tx_flags;
6116         first->protocol = protocol;
6117
6118         tso = igb_tso(tx_ring, first, &hdr_len);
6119         if (tso < 0)
6120                 goto out_drop;
6121         else if (!tso)
6122                 igb_tx_csum(tx_ring, first);
6123
6124         if (igb_tx_map(tx_ring, first, hdr_len))
6125                 goto cleanup_tx_tstamp;
6126
6127         return NETDEV_TX_OK;
6128
6129 out_drop:
6130         dev_kfree_skb_any(first->skb);
6131         first->skb = NULL;
6132 cleanup_tx_tstamp:
6133         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6134                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6135
6136                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6137                 adapter->ptp_tx_skb = NULL;
6138                 if (adapter->hw.mac.type == e1000_82576)
6139                         cancel_work_sync(&adapter->ptp_tx_work);
6140                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6141         }
6142
6143         return NETDEV_TX_OK;
6144 }
6145
6146 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6147                                                     struct sk_buff *skb)
6148 {
6149         unsigned int r_idx = skb->queue_mapping;
6150
6151         if (r_idx >= adapter->num_tx_queues)
6152                 r_idx = r_idx % adapter->num_tx_queues;
6153
6154         return adapter->tx_ring[r_idx];
6155 }
6156
6157 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6158                                   struct net_device *netdev)
6159 {
6160         struct igb_adapter *adapter = netdev_priv(netdev);
6161
6162         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6163          * in order to meet this minimum size requirement.
6164          */
6165         if (skb_put_padto(skb, 17))
6166                 return NETDEV_TX_OK;
6167
6168         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6169 }
6170
6171 /**
6172  *  igb_tx_timeout - Respond to a Tx Hang
6173  *  @netdev: network interface device structure
6174  **/
6175 static void igb_tx_timeout(struct net_device *netdev)
6176 {
6177         struct igb_adapter *adapter = netdev_priv(netdev);
6178         struct e1000_hw *hw = &adapter->hw;
6179
6180         /* Do the reset outside of interrupt context */
6181         adapter->tx_timeout_count++;
6182
6183         if (hw->mac.type >= e1000_82580)
6184                 hw->dev_spec._82575.global_device_reset = true;
6185
6186         schedule_work(&adapter->reset_task);
6187         wr32(E1000_EICS,
6188              (adapter->eims_enable_mask & ~adapter->eims_other));
6189 }
6190
6191 static void igb_reset_task(struct work_struct *work)
6192 {
6193         struct igb_adapter *adapter;
6194         adapter = container_of(work, struct igb_adapter, reset_task);
6195
6196         igb_dump(adapter);
6197         netdev_err(adapter->netdev, "Reset adapter\n");
6198         igb_reinit_locked(adapter);
6199 }
6200
6201 /**
6202  *  igb_get_stats64 - Get System Network Statistics
6203  *  @netdev: network interface device structure
6204  *  @stats: rtnl_link_stats64 pointer
6205  **/
6206 static void igb_get_stats64(struct net_device *netdev,
6207                             struct rtnl_link_stats64 *stats)
6208 {
6209         struct igb_adapter *adapter = netdev_priv(netdev);
6210
6211         spin_lock(&adapter->stats64_lock);
6212         igb_update_stats(adapter);
6213         memcpy(stats, &adapter->stats64, sizeof(*stats));
6214         spin_unlock(&adapter->stats64_lock);
6215 }
6216
6217 /**
6218  *  igb_change_mtu - Change the Maximum Transfer Unit
6219  *  @netdev: network interface device structure
6220  *  @new_mtu: new value for maximum frame size
6221  *
6222  *  Returns 0 on success, negative on failure
6223  **/
6224 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6225 {
6226         struct igb_adapter *adapter = netdev_priv(netdev);
6227         struct pci_dev *pdev = adapter->pdev;
6228         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6229
6230         /* adjust max frame to be at least the size of a standard frame */
6231         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6232                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6233
6234         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6235                 usleep_range(1000, 2000);
6236
6237         /* igb_down has a dependency on max_frame_size */
6238         adapter->max_frame_size = max_frame;
6239
6240         if (netif_running(netdev))
6241                 igb_down(adapter);
6242
6243         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6244                  netdev->mtu, new_mtu);
6245         netdev->mtu = new_mtu;
6246
6247         if (netif_running(netdev))
6248                 igb_up(adapter);
6249         else
6250                 igb_reset(adapter);
6251
6252         clear_bit(__IGB_RESETTING, &adapter->state);
6253
6254         return 0;
6255 }
6256
6257 /**
6258  *  igb_update_stats - Update the board statistics counters
6259  *  @adapter: board private structure
6260  **/
6261 void igb_update_stats(struct igb_adapter *adapter)
6262 {
6263         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6264         struct e1000_hw *hw = &adapter->hw;
6265         struct pci_dev *pdev = adapter->pdev;
6266         u32 reg, mpc;
6267         int i;
6268         u64 bytes, packets;
6269         unsigned int start;
6270         u64 _bytes, _packets;
6271
6272         /* Prevent stats update while adapter is being reset, or if the pci
6273          * connection is down.
6274          */
6275         if (adapter->link_speed == 0)
6276                 return;
6277         if (pci_channel_offline(pdev))
6278                 return;
6279
6280         bytes = 0;
6281         packets = 0;
6282
6283         rcu_read_lock();
6284         for (i = 0; i < adapter->num_rx_queues; i++) {
6285                 struct igb_ring *ring = adapter->rx_ring[i];
6286                 u32 rqdpc = rd32(E1000_RQDPC(i));
6287                 if (hw->mac.type >= e1000_i210)
6288                         wr32(E1000_RQDPC(i), 0);
6289
6290                 if (rqdpc) {
6291                         ring->rx_stats.drops += rqdpc;
6292                         net_stats->rx_fifo_errors += rqdpc;
6293                 }
6294
6295                 do {
6296                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6297                         _bytes = ring->rx_stats.bytes;
6298                         _packets = ring->rx_stats.packets;
6299                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6300                 bytes += _bytes;
6301                 packets += _packets;
6302         }
6303
6304         net_stats->rx_bytes = bytes;
6305         net_stats->rx_packets = packets;
6306
6307         bytes = 0;
6308         packets = 0;
6309         for (i = 0; i < adapter->num_tx_queues; i++) {
6310                 struct igb_ring *ring = adapter->tx_ring[i];
6311                 do {
6312                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6313                         _bytes = ring->tx_stats.bytes;
6314                         _packets = ring->tx_stats.packets;
6315                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6316                 bytes += _bytes;
6317                 packets += _packets;
6318         }
6319         net_stats->tx_bytes = bytes;
6320         net_stats->tx_packets = packets;
6321         rcu_read_unlock();
6322
6323         /* read stats registers */
6324         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6325         adapter->stats.gprc += rd32(E1000_GPRC);
6326         adapter->stats.gorc += rd32(E1000_GORCL);
6327         rd32(E1000_GORCH); /* clear GORCL */
6328         adapter->stats.bprc += rd32(E1000_BPRC);
6329         adapter->stats.mprc += rd32(E1000_MPRC);
6330         adapter->stats.roc += rd32(E1000_ROC);
6331
6332         adapter->stats.prc64 += rd32(E1000_PRC64);
6333         adapter->stats.prc127 += rd32(E1000_PRC127);
6334         adapter->stats.prc255 += rd32(E1000_PRC255);
6335         adapter->stats.prc511 += rd32(E1000_PRC511);
6336         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6337         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6338         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6339         adapter->stats.sec += rd32(E1000_SEC);
6340
6341         mpc = rd32(E1000_MPC);
6342         adapter->stats.mpc += mpc;
6343         net_stats->rx_fifo_errors += mpc;
6344         adapter->stats.scc += rd32(E1000_SCC);
6345         adapter->stats.ecol += rd32(E1000_ECOL);
6346         adapter->stats.mcc += rd32(E1000_MCC);
6347         adapter->stats.latecol += rd32(E1000_LATECOL);
6348         adapter->stats.dc += rd32(E1000_DC);
6349         adapter->stats.rlec += rd32(E1000_RLEC);
6350         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6351         adapter->stats.xontxc += rd32(E1000_XONTXC);
6352         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6353         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6354         adapter->stats.fcruc += rd32(E1000_FCRUC);
6355         adapter->stats.gptc += rd32(E1000_GPTC);
6356         adapter->stats.gotc += rd32(E1000_GOTCL);
6357         rd32(E1000_GOTCH); /* clear GOTCL */
6358         adapter->stats.rnbc += rd32(E1000_RNBC);
6359         adapter->stats.ruc += rd32(E1000_RUC);
6360         adapter->stats.rfc += rd32(E1000_RFC);
6361         adapter->stats.rjc += rd32(E1000_RJC);
6362         adapter->stats.tor += rd32(E1000_TORH);
6363         adapter->stats.tot += rd32(E1000_TOTH);
6364         adapter->stats.tpr += rd32(E1000_TPR);
6365
6366         adapter->stats.ptc64 += rd32(E1000_PTC64);
6367         adapter->stats.ptc127 += rd32(E1000_PTC127);
6368         adapter->stats.ptc255 += rd32(E1000_PTC255);
6369         adapter->stats.ptc511 += rd32(E1000_PTC511);
6370         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6371         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6372
6373         adapter->stats.mptc += rd32(E1000_MPTC);
6374         adapter->stats.bptc += rd32(E1000_BPTC);
6375
6376         adapter->stats.tpt += rd32(E1000_TPT);
6377         adapter->stats.colc += rd32(E1000_COLC);
6378
6379         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6380         /* read internal phy specific stats */
6381         reg = rd32(E1000_CTRL_EXT);
6382         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6383                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6384
6385                 /* this stat has invalid values on i210/i211 */
6386                 if ((hw->mac.type != e1000_i210) &&
6387                     (hw->mac.type != e1000_i211))
6388                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6389         }
6390
6391         adapter->stats.tsctc += rd32(E1000_TSCTC);
6392         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6393
6394         adapter->stats.iac += rd32(E1000_IAC);
6395         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6396         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6397         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6398         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6399         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6400         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6401         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6402         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6403
6404         /* Fill out the OS statistics structure */
6405         net_stats->multicast = adapter->stats.mprc;
6406         net_stats->collisions = adapter->stats.colc;
6407
6408         /* Rx Errors */
6409
6410         /* RLEC on some newer hardware can be incorrect so build
6411          * our own version based on RUC and ROC
6412          */
6413         net_stats->rx_errors = adapter->stats.rxerrc +
6414                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6415                 adapter->stats.ruc + adapter->stats.roc +
6416                 adapter->stats.cexterr;
6417         net_stats->rx_length_errors = adapter->stats.ruc +
6418                                       adapter->stats.roc;
6419         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6420         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6421         net_stats->rx_missed_errors = adapter->stats.mpc;
6422
6423         /* Tx Errors */
6424         net_stats->tx_errors = adapter->stats.ecol +
6425                                adapter->stats.latecol;
6426         net_stats->tx_aborted_errors = adapter->stats.ecol;
6427         net_stats->tx_window_errors = adapter->stats.latecol;
6428         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6429
6430         /* Tx Dropped needs to be maintained elsewhere */
6431
6432         /* Management Stats */
6433         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6434         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6435         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6436
6437         /* OS2BMC Stats */
6438         reg = rd32(E1000_MANC);
6439         if (reg & E1000_MANC_EN_BMC2OS) {
6440                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6441                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6442                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6443                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6444         }
6445 }
6446
6447 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6448 {
6449         struct e1000_hw *hw = &adapter->hw;
6450         struct ptp_clock_event event;
6451         struct timespec64 ts;
6452         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6453
6454         if (tsicr & TSINTR_SYS_WRAP) {
6455                 event.type = PTP_CLOCK_PPS;
6456                 if (adapter->ptp_caps.pps)
6457                         ptp_clock_event(adapter->ptp_clock, &event);
6458                 ack |= TSINTR_SYS_WRAP;
6459         }
6460
6461         if (tsicr & E1000_TSICR_TXTS) {
6462                 /* retrieve hardware timestamp */
6463                 schedule_work(&adapter->ptp_tx_work);
6464                 ack |= E1000_TSICR_TXTS;
6465         }
6466
6467         if (tsicr & TSINTR_TT0) {
6468                 spin_lock(&adapter->tmreg_lock);
6469                 ts = timespec64_add(adapter->perout[0].start,
6470                                     adapter->perout[0].period);
6471                 /* u32 conversion of tv_sec is safe until y2106 */
6472                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6473                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6474                 tsauxc = rd32(E1000_TSAUXC);
6475                 tsauxc |= TSAUXC_EN_TT0;
6476                 wr32(E1000_TSAUXC, tsauxc);
6477                 adapter->perout[0].start = ts;
6478                 spin_unlock(&adapter->tmreg_lock);
6479                 ack |= TSINTR_TT0;
6480         }
6481
6482         if (tsicr & TSINTR_TT1) {
6483                 spin_lock(&adapter->tmreg_lock);
6484                 ts = timespec64_add(adapter->perout[1].start,
6485                                     adapter->perout[1].period);
6486                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6487                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6488                 tsauxc = rd32(E1000_TSAUXC);
6489                 tsauxc |= TSAUXC_EN_TT1;
6490                 wr32(E1000_TSAUXC, tsauxc);
6491                 adapter->perout[1].start = ts;
6492                 spin_unlock(&adapter->tmreg_lock);
6493                 ack |= TSINTR_TT1;
6494         }
6495
6496         if (tsicr & TSINTR_AUTT0) {
6497                 nsec = rd32(E1000_AUXSTMPL0);
6498                 sec  = rd32(E1000_AUXSTMPH0);
6499                 event.type = PTP_CLOCK_EXTTS;
6500                 event.index = 0;
6501                 event.timestamp = sec * 1000000000ULL + nsec;
6502                 ptp_clock_event(adapter->ptp_clock, &event);
6503                 ack |= TSINTR_AUTT0;
6504         }
6505
6506         if (tsicr & TSINTR_AUTT1) {
6507                 nsec = rd32(E1000_AUXSTMPL1);
6508                 sec  = rd32(E1000_AUXSTMPH1);
6509                 event.type = PTP_CLOCK_EXTTS;
6510                 event.index = 1;
6511                 event.timestamp = sec * 1000000000ULL + nsec;
6512                 ptp_clock_event(adapter->ptp_clock, &event);
6513                 ack |= TSINTR_AUTT1;
6514         }
6515
6516         /* acknowledge the interrupts */
6517         wr32(E1000_TSICR, ack);
6518 }
6519
6520 static irqreturn_t igb_msix_other(int irq, void *data)
6521 {
6522         struct igb_adapter *adapter = data;
6523         struct e1000_hw *hw = &adapter->hw;
6524         u32 icr = rd32(E1000_ICR);
6525         /* reading ICR causes bit 31 of EICR to be cleared */
6526
6527         if (icr & E1000_ICR_DRSTA)
6528                 schedule_work(&adapter->reset_task);
6529
6530         if (icr & E1000_ICR_DOUTSYNC) {
6531                 /* HW is reporting DMA is out of sync */
6532                 adapter->stats.doosync++;
6533                 /* The DMA Out of Sync is also indication of a spoof event
6534                  * in IOV mode. Check the Wrong VM Behavior register to
6535                  * see if it is really a spoof event.
6536                  */
6537                 igb_check_wvbr(adapter);
6538         }
6539
6540         /* Check for a mailbox event */
6541         if (icr & E1000_ICR_VMMB)
6542                 igb_msg_task(adapter);
6543
6544         if (icr & E1000_ICR_LSC) {
6545                 hw->mac.get_link_status = 1;
6546                 /* guard against interrupt when we're going down */
6547                 if (!test_bit(__IGB_DOWN, &adapter->state))
6548                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6549         }
6550
6551         if (icr & E1000_ICR_TS)
6552                 igb_tsync_interrupt(adapter);
6553
6554         wr32(E1000_EIMS, adapter->eims_other);
6555
6556         return IRQ_HANDLED;
6557 }
6558
6559 static void igb_write_itr(struct igb_q_vector *q_vector)
6560 {
6561         struct igb_adapter *adapter = q_vector->adapter;
6562         u32 itr_val = q_vector->itr_val & 0x7FFC;
6563
6564         if (!q_vector->set_itr)
6565                 return;
6566
6567         if (!itr_val)
6568                 itr_val = 0x4;
6569
6570         if (adapter->hw.mac.type == e1000_82575)
6571                 itr_val |= itr_val << 16;
6572         else
6573                 itr_val |= E1000_EITR_CNT_IGNR;
6574
6575         writel(itr_val, q_vector->itr_register);
6576         q_vector->set_itr = 0;
6577 }
6578
6579 static irqreturn_t igb_msix_ring(int irq, void *data)
6580 {
6581         struct igb_q_vector *q_vector = data;
6582
6583         /* Write the ITR value calculated from the previous interrupt. */
6584         igb_write_itr(q_vector);
6585
6586         napi_schedule(&q_vector->napi);
6587
6588         return IRQ_HANDLED;
6589 }
6590
6591 #ifdef CONFIG_IGB_DCA
6592 static void igb_update_tx_dca(struct igb_adapter *adapter,
6593                               struct igb_ring *tx_ring,
6594                               int cpu)
6595 {
6596         struct e1000_hw *hw = &adapter->hw;
6597         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6598
6599         if (hw->mac.type != e1000_82575)
6600                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6601
6602         /* We can enable relaxed ordering for reads, but not writes when
6603          * DCA is enabled.  This is due to a known issue in some chipsets
6604          * which will cause the DCA tag to be cleared.
6605          */
6606         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6607                   E1000_DCA_TXCTRL_DATA_RRO_EN |
6608                   E1000_DCA_TXCTRL_DESC_DCA_EN;
6609
6610         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6611 }
6612
6613 static void igb_update_rx_dca(struct igb_adapter *adapter,
6614                               struct igb_ring *rx_ring,
6615                               int cpu)
6616 {
6617         struct e1000_hw *hw = &adapter->hw;
6618         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6619
6620         if (hw->mac.type != e1000_82575)
6621                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6622
6623         /* We can enable relaxed ordering for reads, but not writes when
6624          * DCA is enabled.  This is due to a known issue in some chipsets
6625          * which will cause the DCA tag to be cleared.
6626          */
6627         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6628                   E1000_DCA_RXCTRL_DESC_DCA_EN;
6629
6630         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6631 }
6632
6633 static void igb_update_dca(struct igb_q_vector *q_vector)
6634 {
6635         struct igb_adapter *adapter = q_vector->adapter;
6636         int cpu = get_cpu();
6637
6638         if (q_vector->cpu == cpu)
6639                 goto out_no_update;
6640
6641         if (q_vector->tx.ring)
6642                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6643
6644         if (q_vector->rx.ring)
6645                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6646
6647         q_vector->cpu = cpu;
6648 out_no_update:
6649         put_cpu();
6650 }
6651
6652 static void igb_setup_dca(struct igb_adapter *adapter)
6653 {
6654         struct e1000_hw *hw = &adapter->hw;
6655         int i;
6656
6657         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6658                 return;
6659
6660         /* Always use CB2 mode, difference is masked in the CB driver. */
6661         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6662
6663         for (i = 0; i < adapter->num_q_vectors; i++) {
6664                 adapter->q_vector[i]->cpu = -1;
6665                 igb_update_dca(adapter->q_vector[i]);
6666         }
6667 }
6668
6669 static int __igb_notify_dca(struct device *dev, void *data)
6670 {
6671         struct net_device *netdev = dev_get_drvdata(dev);
6672         struct igb_adapter *adapter = netdev_priv(netdev);
6673         struct pci_dev *pdev = adapter->pdev;
6674         struct e1000_hw *hw = &adapter->hw;
6675         unsigned long event = *(unsigned long *)data;
6676
6677         switch (event) {
6678         case DCA_PROVIDER_ADD:
6679                 /* if already enabled, don't do it again */
6680                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6681                         break;
6682                 if (dca_add_requester(dev) == 0) {
6683                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
6684                         dev_info(&pdev->dev, "DCA enabled\n");
6685                         igb_setup_dca(adapter);
6686                         break;
6687                 }
6688                 /* Fall Through - since DCA is disabled. */
6689         case DCA_PROVIDER_REMOVE:
6690                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6691                         /* without this a class_device is left
6692                          * hanging around in the sysfs model
6693                          */
6694                         dca_remove_requester(dev);
6695                         dev_info(&pdev->dev, "DCA disabled\n");
6696                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6697                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6698                 }
6699                 break;
6700         }
6701
6702         return 0;
6703 }
6704
6705 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6706                           void *p)
6707 {
6708         int ret_val;
6709
6710         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6711                                          __igb_notify_dca);
6712
6713         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6714 }
6715 #endif /* CONFIG_IGB_DCA */
6716
6717 #ifdef CONFIG_PCI_IOV
6718 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6719 {
6720         unsigned char mac_addr[ETH_ALEN];
6721
6722         eth_zero_addr(mac_addr);
6723         igb_set_vf_mac(adapter, vf, mac_addr);
6724
6725         /* By default spoof check is enabled for all VFs */
6726         adapter->vf_data[vf].spoofchk_enabled = true;
6727
6728         /* By default VFs are not trusted */
6729         adapter->vf_data[vf].trusted = false;
6730
6731         return 0;
6732 }
6733
6734 #endif
6735 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6736 {
6737         struct e1000_hw *hw = &adapter->hw;
6738         u32 ping;
6739         int i;
6740
6741         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6742                 ping = E1000_PF_CONTROL_MSG;
6743                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6744                         ping |= E1000_VT_MSGTYPE_CTS;
6745                 igb_write_mbx(hw, &ping, 1, i);
6746         }
6747 }
6748
6749 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6750 {
6751         struct e1000_hw *hw = &adapter->hw;
6752         u32 vmolr = rd32(E1000_VMOLR(vf));
6753         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6754
6755         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6756                             IGB_VF_FLAG_MULTI_PROMISC);
6757         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6758
6759         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6760                 vmolr |= E1000_VMOLR_MPME;
6761                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6762                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6763         } else {
6764                 /* if we have hashes and we are clearing a multicast promisc
6765                  * flag we need to write the hashes to the MTA as this step
6766                  * was previously skipped
6767                  */
6768                 if (vf_data->num_vf_mc_hashes > 30) {
6769                         vmolr |= E1000_VMOLR_MPME;
6770                 } else if (vf_data->num_vf_mc_hashes) {
6771                         int j;
6772
6773                         vmolr |= E1000_VMOLR_ROMPE;
6774                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6775                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6776                 }
6777         }
6778
6779         wr32(E1000_VMOLR(vf), vmolr);
6780
6781         /* there are flags left unprocessed, likely not supported */
6782         if (*msgbuf & E1000_VT_MSGINFO_MASK)
6783                 return -EINVAL;
6784
6785         return 0;
6786 }
6787
6788 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6789                                   u32 *msgbuf, u32 vf)
6790 {
6791         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6792         u16 *hash_list = (u16 *)&msgbuf[1];
6793         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6794         int i;
6795
6796         /* salt away the number of multicast addresses assigned
6797          * to this VF for later use to restore when the PF multi cast
6798          * list changes
6799          */
6800         vf_data->num_vf_mc_hashes = n;
6801
6802         /* only up to 30 hash values supported */
6803         if (n > 30)
6804                 n = 30;
6805
6806         /* store the hashes for later use */
6807         for (i = 0; i < n; i++)
6808                 vf_data->vf_mc_hashes[i] = hash_list[i];
6809
6810         /* Flush and reset the mta with the new values */
6811         igb_set_rx_mode(adapter->netdev);
6812
6813         return 0;
6814 }
6815
6816 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6817 {
6818         struct e1000_hw *hw = &adapter->hw;
6819         struct vf_data_storage *vf_data;
6820         int i, j;
6821
6822         for (i = 0; i < adapter->vfs_allocated_count; i++) {
6823                 u32 vmolr = rd32(E1000_VMOLR(i));
6824
6825                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6826
6827                 vf_data = &adapter->vf_data[i];
6828
6829                 if ((vf_data->num_vf_mc_hashes > 30) ||
6830                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6831                         vmolr |= E1000_VMOLR_MPME;
6832                 } else if (vf_data->num_vf_mc_hashes) {
6833                         vmolr |= E1000_VMOLR_ROMPE;
6834                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6835                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6836                 }
6837                 wr32(E1000_VMOLR(i), vmolr);
6838         }
6839 }
6840
6841 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6842 {
6843         struct e1000_hw *hw = &adapter->hw;
6844         u32 pool_mask, vlvf_mask, i;
6845
6846         /* create mask for VF and other pools */
6847         pool_mask = E1000_VLVF_POOLSEL_MASK;
6848         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6849
6850         /* drop PF from pool bits */
6851         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6852                              adapter->vfs_allocated_count);
6853
6854         /* Find the vlan filter for this id */
6855         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6856                 u32 vlvf = rd32(E1000_VLVF(i));
6857                 u32 vfta_mask, vid, vfta;
6858
6859                 /* remove the vf from the pool */
6860                 if (!(vlvf & vlvf_mask))
6861                         continue;
6862
6863                 /* clear out bit from VLVF */
6864                 vlvf ^= vlvf_mask;
6865
6866                 /* if other pools are present, just remove ourselves */
6867                 if (vlvf & pool_mask)
6868                         goto update_vlvfb;
6869
6870                 /* if PF is present, leave VFTA */
6871                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6872                         goto update_vlvf;
6873
6874                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6875                 vfta_mask = BIT(vid % 32);
6876
6877                 /* clear bit from VFTA */
6878                 vfta = adapter->shadow_vfta[vid / 32];
6879                 if (vfta & vfta_mask)
6880                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6881 update_vlvf:
6882                 /* clear pool selection enable */
6883                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6884                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6885                 else
6886                         vlvf = 0;
6887 update_vlvfb:
6888                 /* clear pool bits */
6889                 wr32(E1000_VLVF(i), vlvf);
6890         }
6891 }
6892
6893 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6894 {
6895         u32 vlvf;
6896         int idx;
6897
6898         /* short cut the special case */
6899         if (vlan == 0)
6900                 return 0;
6901
6902         /* Search for the VLAN id in the VLVF entries */
6903         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6904                 vlvf = rd32(E1000_VLVF(idx));
6905                 if ((vlvf & VLAN_VID_MASK) == vlan)
6906                         break;
6907         }
6908
6909         return idx;
6910 }
6911
6912 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6913 {
6914         struct e1000_hw *hw = &adapter->hw;
6915         u32 bits, pf_id;
6916         int idx;
6917
6918         idx = igb_find_vlvf_entry(hw, vid);
6919         if (!idx)
6920                 return;
6921
6922         /* See if any other pools are set for this VLAN filter
6923          * entry other than the PF.
6924          */
6925         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6926         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6927         bits &= rd32(E1000_VLVF(idx));
6928
6929         /* Disable the filter so this falls into the default pool. */
6930         if (!bits) {
6931                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6932                         wr32(E1000_VLVF(idx), BIT(pf_id));
6933                 else
6934                         wr32(E1000_VLVF(idx), 0);
6935         }
6936 }
6937
6938 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6939                            bool add, u32 vf)
6940 {
6941         int pf_id = adapter->vfs_allocated_count;
6942         struct e1000_hw *hw = &adapter->hw;
6943         int err;
6944
6945         /* If VLAN overlaps with one the PF is currently monitoring make
6946          * sure that we are able to allocate a VLVF entry.  This may be
6947          * redundant but it guarantees PF will maintain visibility to
6948          * the VLAN.
6949          */
6950         if (add && test_bit(vid, adapter->active_vlans)) {
6951                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6952                 if (err)
6953                         return err;
6954         }
6955
6956         err = igb_vfta_set(hw, vid, vf, add, false);
6957
6958         if (add && !err)
6959                 return err;
6960
6961         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6962          * we may need to drop the PF pool bit in order to allow us to free
6963          * up the VLVF resources.
6964          */
6965         if (test_bit(vid, adapter->active_vlans) ||
6966             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6967                 igb_update_pf_vlvf(adapter, vid);
6968
6969         return err;
6970 }
6971
6972 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6973 {
6974         struct e1000_hw *hw = &adapter->hw;
6975
6976         if (vid)
6977                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6978         else
6979                 wr32(E1000_VMVIR(vf), 0);
6980 }
6981
6982 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6983                                 u16 vlan, u8 qos)
6984 {
6985         int err;
6986
6987         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6988         if (err)
6989                 return err;
6990
6991         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6992         igb_set_vmolr(adapter, vf, !vlan);
6993
6994         /* revoke access to previous VLAN */
6995         if (vlan != adapter->vf_data[vf].pf_vlan)
6996                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6997                                 false, vf);
6998
6999         adapter->vf_data[vf].pf_vlan = vlan;
7000         adapter->vf_data[vf].pf_qos = qos;
7001         igb_set_vf_vlan_strip(adapter, vf, true);
7002         dev_info(&adapter->pdev->dev,
7003                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7004         if (test_bit(__IGB_DOWN, &adapter->state)) {
7005                 dev_warn(&adapter->pdev->dev,
7006                          "The VF VLAN has been set, but the PF device is not up.\n");
7007                 dev_warn(&adapter->pdev->dev,
7008                          "Bring the PF device up before attempting to use the VF device.\n");
7009         }
7010
7011         return err;
7012 }
7013
7014 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7015 {
7016         /* Restore tagless access via VLAN 0 */
7017         igb_set_vf_vlan(adapter, 0, true, vf);
7018
7019         igb_set_vmvir(adapter, 0, vf);
7020         igb_set_vmolr(adapter, vf, true);
7021
7022         /* Remove any PF assigned VLAN */
7023         if (adapter->vf_data[vf].pf_vlan)
7024                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7025                                 false, vf);
7026
7027         adapter->vf_data[vf].pf_vlan = 0;
7028         adapter->vf_data[vf].pf_qos = 0;
7029         igb_set_vf_vlan_strip(adapter, vf, false);
7030
7031         return 0;
7032 }
7033
7034 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7035                                u16 vlan, u8 qos, __be16 vlan_proto)
7036 {
7037         struct igb_adapter *adapter = netdev_priv(netdev);
7038
7039         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7040                 return -EINVAL;
7041
7042         if (vlan_proto != htons(ETH_P_8021Q))
7043                 return -EPROTONOSUPPORT;
7044
7045         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7046                                igb_disable_port_vlan(adapter, vf);
7047 }
7048
7049 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7050 {
7051         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7052         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7053         int ret;
7054
7055         if (adapter->vf_data[vf].pf_vlan)
7056                 return -1;
7057
7058         /* VLAN 0 is a special case, don't allow it to be removed */
7059         if (!vid && !add)
7060                 return 0;
7061
7062         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7063         if (!ret)
7064                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7065         return ret;
7066 }
7067
7068 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7069 {
7070         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7071
7072         /* clear flags - except flag that indicates PF has set the MAC */
7073         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7074         vf_data->last_nack = jiffies;
7075
7076         /* reset vlans for device */
7077         igb_clear_vf_vfta(adapter, vf);
7078         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7079         igb_set_vmvir(adapter, vf_data->pf_vlan |
7080                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7081         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7082         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7083
7084         /* reset multicast table array for vf */
7085         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7086
7087         /* Flush and reset the mta with the new values */
7088         igb_set_rx_mode(adapter->netdev);
7089 }
7090
7091 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7092 {
7093         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7094
7095         /* clear mac address as we were hotplug removed/added */
7096         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7097                 eth_zero_addr(vf_mac);
7098
7099         /* process remaining reset events */
7100         igb_vf_reset(adapter, vf);
7101 }
7102
7103 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7104 {
7105         struct e1000_hw *hw = &adapter->hw;
7106         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7107         u32 reg, msgbuf[3];
7108         u8 *addr = (u8 *)(&msgbuf[1]);
7109
7110         /* process all the same items cleared in a function level reset */
7111         igb_vf_reset(adapter, vf);
7112
7113         /* set vf mac address */
7114         igb_set_vf_mac(adapter, vf, vf_mac);
7115
7116         /* enable transmit and receive for vf */
7117         reg = rd32(E1000_VFTE);
7118         wr32(E1000_VFTE, reg | BIT(vf));
7119         reg = rd32(E1000_VFRE);
7120         wr32(E1000_VFRE, reg | BIT(vf));
7121
7122         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7123
7124         /* reply to reset with ack and vf mac address */
7125         if (!is_zero_ether_addr(vf_mac)) {
7126                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7127                 memcpy(addr, vf_mac, ETH_ALEN);
7128         } else {
7129                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7130         }
7131         igb_write_mbx(hw, msgbuf, 3, vf);
7132 }
7133
7134 static void igb_flush_mac_table(struct igb_adapter *adapter)
7135 {
7136         struct e1000_hw *hw = &adapter->hw;
7137         int i;
7138
7139         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7140                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7141                 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7142                 adapter->mac_table[i].queue = 0;
7143                 igb_rar_set_index(adapter, i);
7144         }
7145 }
7146
7147 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7148 {
7149         struct e1000_hw *hw = &adapter->hw;
7150         /* do not count rar entries reserved for VFs MAC addresses */
7151         int rar_entries = hw->mac.rar_entry_count -
7152                           adapter->vfs_allocated_count;
7153         int i, count = 0;
7154
7155         for (i = 0; i < rar_entries; i++) {
7156                 /* do not count default entries */
7157                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7158                         continue;
7159
7160                 /* do not count "in use" entries for different queues */
7161                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7162                     (adapter->mac_table[i].queue != queue))
7163                         continue;
7164
7165                 count++;
7166         }
7167
7168         return count;
7169 }
7170
7171 /* Set default MAC address for the PF in the first RAR entry */
7172 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7173 {
7174         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7175
7176         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7177         mac_table->queue = adapter->vfs_allocated_count;
7178         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7179
7180         igb_rar_set_index(adapter, 0);
7181 }
7182
7183 /* If the filter to be added and an already existing filter express
7184  * the same address and address type, it should be possible to only
7185  * override the other configurations, for example the queue to steer
7186  * traffic.
7187  */
7188 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7189                                       const u8 *addr, const u8 flags)
7190 {
7191         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7192                 return true;
7193
7194         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7195             (flags & IGB_MAC_STATE_SRC_ADDR))
7196                 return false;
7197
7198         if (!ether_addr_equal(addr, entry->addr))
7199                 return false;
7200
7201         return true;
7202 }
7203
7204 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7205  * 'flags' is used to indicate what kind of match is made, match is by
7206  * default for the destination address, if matching by source address
7207  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7208  */
7209 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7210                                     const u8 *addr, const u8 queue,
7211                                     const u8 flags)
7212 {
7213         struct e1000_hw *hw = &adapter->hw;
7214         int rar_entries = hw->mac.rar_entry_count -
7215                           adapter->vfs_allocated_count;
7216         int i;
7217
7218         if (is_zero_ether_addr(addr))
7219                 return -EINVAL;
7220
7221         /* Search for the first empty entry in the MAC table.
7222          * Do not touch entries at the end of the table reserved for the VF MAC
7223          * addresses.
7224          */
7225         for (i = 0; i < rar_entries; i++) {
7226                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7227                                                addr, flags))
7228                         continue;
7229
7230                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7231                 adapter->mac_table[i].queue = queue;
7232                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7233
7234                 igb_rar_set_index(adapter, i);
7235                 return i;
7236         }
7237
7238         return -ENOSPC;
7239 }
7240
7241 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7242                               const u8 queue)
7243 {
7244         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7245 }
7246
7247 /* Remove a MAC filter for 'addr' directing matching traffic to
7248  * 'queue', 'flags' is used to indicate what kind of match need to be
7249  * removed, match is by default for the destination address, if
7250  * matching by source address is to be removed the flag
7251  * IGB_MAC_STATE_SRC_ADDR can be used.
7252  */
7253 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7254                                     const u8 *addr, const u8 queue,
7255                                     const u8 flags)
7256 {
7257         struct e1000_hw *hw = &adapter->hw;
7258         int rar_entries = hw->mac.rar_entry_count -
7259                           adapter->vfs_allocated_count;
7260         int i;
7261
7262         if (is_zero_ether_addr(addr))
7263                 return -EINVAL;
7264
7265         /* Search for matching entry in the MAC table based on given address
7266          * and queue. Do not touch entries at the end of the table reserved
7267          * for the VF MAC addresses.
7268          */
7269         for (i = 0; i < rar_entries; i++) {
7270                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7271                         continue;
7272                 if ((adapter->mac_table[i].state & flags) != flags)
7273                         continue;
7274                 if (adapter->mac_table[i].queue != queue)
7275                         continue;
7276                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7277                         continue;
7278
7279                 /* When a filter for the default address is "deleted",
7280                  * we return it to its initial configuration
7281                  */
7282                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7283                         adapter->mac_table[i].state =
7284                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7285                         adapter->mac_table[i].queue =
7286                                 adapter->vfs_allocated_count;
7287                 } else {
7288                         adapter->mac_table[i].state = 0;
7289                         adapter->mac_table[i].queue = 0;
7290                         memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7291                 }
7292
7293                 igb_rar_set_index(adapter, i);
7294                 return 0;
7295         }
7296
7297         return -ENOENT;
7298 }
7299
7300 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7301                               const u8 queue)
7302 {
7303         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7304 }
7305
7306 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7307                                 const u8 *addr, u8 queue, u8 flags)
7308 {
7309         struct e1000_hw *hw = &adapter->hw;
7310
7311         /* In theory, this should be supported on 82575 as well, but
7312          * that part wasn't easily accessible during development.
7313          */
7314         if (hw->mac.type != e1000_i210)
7315                 return -EOPNOTSUPP;
7316
7317         return igb_add_mac_filter_flags(adapter, addr, queue,
7318                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7319 }
7320
7321 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7322                                 const u8 *addr, u8 queue, u8 flags)
7323 {
7324         return igb_del_mac_filter_flags(adapter, addr, queue,
7325                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7326 }
7327
7328 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7329 {
7330         struct igb_adapter *adapter = netdev_priv(netdev);
7331         int ret;
7332
7333         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7334
7335         return min_t(int, ret, 0);
7336 }
7337
7338 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7339 {
7340         struct igb_adapter *adapter = netdev_priv(netdev);
7341
7342         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7343
7344         return 0;
7345 }
7346
7347 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7348                                  const u32 info, const u8 *addr)
7349 {
7350         struct pci_dev *pdev = adapter->pdev;
7351         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7352         struct list_head *pos;
7353         struct vf_mac_filter *entry = NULL;
7354         int ret = 0;
7355
7356         switch (info) {
7357         case E1000_VF_MAC_FILTER_CLR:
7358                 /* remove all unicast MAC filters related to the current VF */
7359                 list_for_each(pos, &adapter->vf_macs.l) {
7360                         entry = list_entry(pos, struct vf_mac_filter, l);
7361                         if (entry->vf == vf) {
7362                                 entry->vf = -1;
7363                                 entry->free = true;
7364                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7365                         }
7366                 }
7367                 break;
7368         case E1000_VF_MAC_FILTER_ADD:
7369                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7370                     !vf_data->trusted) {
7371                         dev_warn(&pdev->dev,
7372                                  "VF %d requested MAC filter but is administratively denied\n",
7373                                  vf);
7374                         return -EINVAL;
7375                 }
7376                 if (!is_valid_ether_addr(addr)) {
7377                         dev_warn(&pdev->dev,
7378                                  "VF %d attempted to set invalid MAC filter\n",
7379                                  vf);
7380                         return -EINVAL;
7381                 }
7382
7383                 /* try to find empty slot in the list */
7384                 list_for_each(pos, &adapter->vf_macs.l) {
7385                         entry = list_entry(pos, struct vf_mac_filter, l);
7386                         if (entry->free)
7387                                 break;
7388                 }
7389
7390                 if (entry && entry->free) {
7391                         entry->free = false;
7392                         entry->vf = vf;
7393                         ether_addr_copy(entry->vf_mac, addr);
7394
7395                         ret = igb_add_mac_filter(adapter, addr, vf);
7396                         ret = min_t(int, ret, 0);
7397                 } else {
7398                         ret = -ENOSPC;
7399                 }
7400
7401                 if (ret == -ENOSPC)
7402                         dev_warn(&pdev->dev,
7403                                  "VF %d has requested MAC filter but there is no space for it\n",
7404                                  vf);
7405                 break;
7406         default:
7407                 ret = -EINVAL;
7408                 break;
7409         }
7410
7411         return ret;
7412 }
7413
7414 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7415 {
7416         struct pci_dev *pdev = adapter->pdev;
7417         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7418         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7419
7420         /* The VF MAC Address is stored in a packed array of bytes
7421          * starting at the second 32 bit word of the msg array
7422          */
7423         unsigned char *addr = (unsigned char *)&msg[1];
7424         int ret = 0;
7425
7426         if (!info) {
7427                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7428                     !vf_data->trusted) {
7429                         dev_warn(&pdev->dev,
7430                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7431                                  vf);
7432                         return -EINVAL;
7433                 }
7434
7435                 if (!is_valid_ether_addr(addr)) {
7436                         dev_warn(&pdev->dev,
7437                                  "VF %d attempted to set invalid MAC\n",
7438                                  vf);
7439                         return -EINVAL;
7440                 }
7441
7442                 ret = igb_set_vf_mac(adapter, vf, addr);
7443         } else {
7444                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7445         }
7446
7447         return ret;
7448 }
7449
7450 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7451 {
7452         struct e1000_hw *hw = &adapter->hw;
7453         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7454         u32 msg = E1000_VT_MSGTYPE_NACK;
7455
7456         /* if device isn't clear to send it shouldn't be reading either */
7457         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7458             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7459                 igb_write_mbx(hw, &msg, 1, vf);
7460                 vf_data->last_nack = jiffies;
7461         }
7462 }
7463
7464 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7465 {
7466         struct pci_dev *pdev = adapter->pdev;
7467         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7468         struct e1000_hw *hw = &adapter->hw;
7469         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7470         s32 retval;
7471
7472         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7473
7474         if (retval) {
7475                 /* if receive failed revoke VF CTS stats and restart init */
7476                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7477                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7478                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7479                         goto unlock;
7480                 goto out;
7481         }
7482
7483         /* this is a message we already processed, do nothing */
7484         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7485                 goto unlock;
7486
7487         /* until the vf completes a reset it should not be
7488          * allowed to start any configuration.
7489          */
7490         if (msgbuf[0] == E1000_VF_RESET) {
7491                 /* unlocks mailbox */
7492                 igb_vf_reset_msg(adapter, vf);
7493                 return;
7494         }
7495
7496         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7497                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7498                         goto unlock;
7499                 retval = -1;
7500                 goto out;
7501         }
7502
7503         switch ((msgbuf[0] & 0xFFFF)) {
7504         case E1000_VF_SET_MAC_ADDR:
7505                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7506                 break;
7507         case E1000_VF_SET_PROMISC:
7508                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7509                 break;
7510         case E1000_VF_SET_MULTICAST:
7511                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7512                 break;
7513         case E1000_VF_SET_LPE:
7514                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7515                 break;
7516         case E1000_VF_SET_VLAN:
7517                 retval = -1;
7518                 if (vf_data->pf_vlan)
7519                         dev_warn(&pdev->dev,
7520                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7521                                  vf);
7522                 else
7523                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7524                 break;
7525         default:
7526                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7527                 retval = -1;
7528                 break;
7529         }
7530
7531         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7532 out:
7533         /* notify the VF of the results of what it sent us */
7534         if (retval)
7535                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7536         else
7537                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7538
7539         /* unlocks mailbox */
7540         igb_write_mbx(hw, msgbuf, 1, vf);
7541         return;
7542
7543 unlock:
7544         igb_unlock_mbx(hw, vf);
7545 }
7546
7547 static void igb_msg_task(struct igb_adapter *adapter)
7548 {
7549         struct e1000_hw *hw = &adapter->hw;
7550         u32 vf;
7551
7552         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7553                 /* process any reset requests */
7554                 if (!igb_check_for_rst(hw, vf))
7555                         igb_vf_reset_event(adapter, vf);
7556
7557                 /* process any messages pending */
7558                 if (!igb_check_for_msg(hw, vf))
7559                         igb_rcv_msg_from_vf(adapter, vf);
7560
7561                 /* process any acks */
7562                 if (!igb_check_for_ack(hw, vf))
7563                         igb_rcv_ack_from_vf(adapter, vf);
7564         }
7565 }
7566
7567 /**
7568  *  igb_set_uta - Set unicast filter table address
7569  *  @adapter: board private structure
7570  *  @set: boolean indicating if we are setting or clearing bits
7571  *
7572  *  The unicast table address is a register array of 32-bit registers.
7573  *  The table is meant to be used in a way similar to how the MTA is used
7574  *  however due to certain limitations in the hardware it is necessary to
7575  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7576  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7577  **/
7578 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7579 {
7580         struct e1000_hw *hw = &adapter->hw;
7581         u32 uta = set ? ~0 : 0;
7582         int i;
7583
7584         /* we only need to do this if VMDq is enabled */
7585         if (!adapter->vfs_allocated_count)
7586                 return;
7587
7588         for (i = hw->mac.uta_reg_count; i--;)
7589                 array_wr32(E1000_UTA, i, uta);
7590 }
7591
7592 /**
7593  *  igb_intr_msi - Interrupt Handler
7594  *  @irq: interrupt number
7595  *  @data: pointer to a network interface device structure
7596  **/
7597 static irqreturn_t igb_intr_msi(int irq, void *data)
7598 {
7599         struct igb_adapter *adapter = data;
7600         struct igb_q_vector *q_vector = adapter->q_vector[0];
7601         struct e1000_hw *hw = &adapter->hw;
7602         /* read ICR disables interrupts using IAM */
7603         u32 icr = rd32(E1000_ICR);
7604
7605         igb_write_itr(q_vector);
7606
7607         if (icr & E1000_ICR_DRSTA)
7608                 schedule_work(&adapter->reset_task);
7609
7610         if (icr & E1000_ICR_DOUTSYNC) {
7611                 /* HW is reporting DMA is out of sync */
7612                 adapter->stats.doosync++;
7613         }
7614
7615         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7616                 hw->mac.get_link_status = 1;
7617                 if (!test_bit(__IGB_DOWN, &adapter->state))
7618                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7619         }
7620
7621         if (icr & E1000_ICR_TS)
7622                 igb_tsync_interrupt(adapter);
7623
7624         napi_schedule(&q_vector->napi);
7625
7626         return IRQ_HANDLED;
7627 }
7628
7629 /**
7630  *  igb_intr - Legacy Interrupt Handler
7631  *  @irq: interrupt number
7632  *  @data: pointer to a network interface device structure
7633  **/
7634 static irqreturn_t igb_intr(int irq, void *data)
7635 {
7636         struct igb_adapter *adapter = data;
7637         struct igb_q_vector *q_vector = adapter->q_vector[0];
7638         struct e1000_hw *hw = &adapter->hw;
7639         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7640          * need for the IMC write
7641          */
7642         u32 icr = rd32(E1000_ICR);
7643
7644         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7645          * not set, then the adapter didn't send an interrupt
7646          */
7647         if (!(icr & E1000_ICR_INT_ASSERTED))
7648                 return IRQ_NONE;
7649
7650         igb_write_itr(q_vector);
7651
7652         if (icr & E1000_ICR_DRSTA)
7653                 schedule_work(&adapter->reset_task);
7654
7655         if (icr & E1000_ICR_DOUTSYNC) {
7656                 /* HW is reporting DMA is out of sync */
7657                 adapter->stats.doosync++;
7658         }
7659
7660         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7661                 hw->mac.get_link_status = 1;
7662                 /* guard against interrupt when we're going down */
7663                 if (!test_bit(__IGB_DOWN, &adapter->state))
7664                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7665         }
7666
7667         if (icr & E1000_ICR_TS)
7668                 igb_tsync_interrupt(adapter);
7669
7670         napi_schedule(&q_vector->napi);
7671
7672         return IRQ_HANDLED;
7673 }
7674
7675 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7676 {
7677         struct igb_adapter *adapter = q_vector->adapter;
7678         struct e1000_hw *hw = &adapter->hw;
7679
7680         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7681             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7682                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7683                         igb_set_itr(q_vector);
7684                 else
7685                         igb_update_ring_itr(q_vector);
7686         }
7687
7688         if (!test_bit(__IGB_DOWN, &adapter->state)) {
7689                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7690                         wr32(E1000_EIMS, q_vector->eims_value);
7691                 else
7692                         igb_irq_enable(adapter);
7693         }
7694 }
7695
7696 /**
7697  *  igb_poll - NAPI Rx polling callback
7698  *  @napi: napi polling structure
7699  *  @budget: count of how many packets we should handle
7700  **/
7701 static int igb_poll(struct napi_struct *napi, int budget)
7702 {
7703         struct igb_q_vector *q_vector = container_of(napi,
7704                                                      struct igb_q_vector,
7705                                                      napi);
7706         bool clean_complete = true;
7707         int work_done = 0;
7708
7709 #ifdef CONFIG_IGB_DCA
7710         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7711                 igb_update_dca(q_vector);
7712 #endif
7713         if (q_vector->tx.ring)
7714                 clean_complete = igb_clean_tx_irq(q_vector, budget);
7715
7716         if (q_vector->rx.ring) {
7717                 int cleaned = igb_clean_rx_irq(q_vector, budget);
7718
7719                 work_done += cleaned;
7720                 if (cleaned >= budget)
7721                         clean_complete = false;
7722         }
7723
7724         /* If all work not completed, return budget and keep polling */
7725         if (!clean_complete)
7726                 return budget;
7727
7728         /* Exit the polling mode, but don't re-enable interrupts if stack might
7729          * poll us due to busy-polling
7730          */
7731         if (likely(napi_complete_done(napi, work_done)))
7732                 igb_ring_irq_enable(q_vector);
7733
7734         return min(work_done, budget - 1);
7735 }
7736
7737 /**
7738  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7739  *  @q_vector: pointer to q_vector containing needed info
7740  *  @napi_budget: Used to determine if we are in netpoll
7741  *
7742  *  returns true if ring is completely cleaned
7743  **/
7744 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7745 {
7746         struct igb_adapter *adapter = q_vector->adapter;
7747         struct igb_ring *tx_ring = q_vector->tx.ring;
7748         struct igb_tx_buffer *tx_buffer;
7749         union e1000_adv_tx_desc *tx_desc;
7750         unsigned int total_bytes = 0, total_packets = 0;
7751         unsigned int budget = q_vector->tx.work_limit;
7752         unsigned int i = tx_ring->next_to_clean;
7753
7754         if (test_bit(__IGB_DOWN, &adapter->state))
7755                 return true;
7756
7757         tx_buffer = &tx_ring->tx_buffer_info[i];
7758         tx_desc = IGB_TX_DESC(tx_ring, i);
7759         i -= tx_ring->count;
7760
7761         do {
7762                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7763
7764                 /* if next_to_watch is not set then there is no work pending */
7765                 if (!eop_desc)
7766                         break;
7767
7768                 /* prevent any other reads prior to eop_desc */
7769                 smp_rmb();
7770
7771                 /* if DD is not set pending work has not been completed */
7772                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7773                         break;
7774
7775                 /* clear next_to_watch to prevent false hangs */
7776                 tx_buffer->next_to_watch = NULL;
7777
7778                 /* update the statistics for this packet */
7779                 total_bytes += tx_buffer->bytecount;
7780                 total_packets += tx_buffer->gso_segs;
7781
7782                 /* free the skb */
7783                 napi_consume_skb(tx_buffer->skb, napi_budget);
7784
7785                 /* unmap skb header data */
7786                 dma_unmap_single(tx_ring->dev,
7787                                  dma_unmap_addr(tx_buffer, dma),
7788                                  dma_unmap_len(tx_buffer, len),
7789                                  DMA_TO_DEVICE);
7790
7791                 /* clear tx_buffer data */
7792                 dma_unmap_len_set(tx_buffer, len, 0);
7793
7794                 /* clear last DMA location and unmap remaining buffers */
7795                 while (tx_desc != eop_desc) {
7796                         tx_buffer++;
7797                         tx_desc++;
7798                         i++;
7799                         if (unlikely(!i)) {
7800                                 i -= tx_ring->count;
7801                                 tx_buffer = tx_ring->tx_buffer_info;
7802                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
7803                         }
7804
7805                         /* unmap any remaining paged data */
7806                         if (dma_unmap_len(tx_buffer, len)) {
7807                                 dma_unmap_page(tx_ring->dev,
7808                                                dma_unmap_addr(tx_buffer, dma),
7809                                                dma_unmap_len(tx_buffer, len),
7810                                                DMA_TO_DEVICE);
7811                                 dma_unmap_len_set(tx_buffer, len, 0);
7812                         }
7813                 }
7814
7815                 /* move us one more past the eop_desc for start of next pkt */
7816                 tx_buffer++;
7817                 tx_desc++;
7818                 i++;
7819                 if (unlikely(!i)) {
7820                         i -= tx_ring->count;
7821                         tx_buffer = tx_ring->tx_buffer_info;
7822                         tx_desc = IGB_TX_DESC(tx_ring, 0);
7823                 }
7824
7825                 /* issue prefetch for next Tx descriptor */
7826                 prefetch(tx_desc);
7827
7828                 /* update budget accounting */
7829                 budget--;
7830         } while (likely(budget));
7831
7832         netdev_tx_completed_queue(txring_txq(tx_ring),
7833                                   total_packets, total_bytes);
7834         i += tx_ring->count;
7835         tx_ring->next_to_clean = i;
7836         u64_stats_update_begin(&tx_ring->tx_syncp);
7837         tx_ring->tx_stats.bytes += total_bytes;
7838         tx_ring->tx_stats.packets += total_packets;
7839         u64_stats_update_end(&tx_ring->tx_syncp);
7840         q_vector->tx.total_bytes += total_bytes;
7841         q_vector->tx.total_packets += total_packets;
7842
7843         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7844                 struct e1000_hw *hw = &adapter->hw;
7845
7846                 /* Detect a transmit hang in hardware, this serializes the
7847                  * check with the clearing of time_stamp and movement of i
7848                  */
7849                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7850                 if (tx_buffer->next_to_watch &&
7851                     time_after(jiffies, tx_buffer->time_stamp +
7852                                (adapter->tx_timeout_factor * HZ)) &&
7853                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7854
7855                         /* detected Tx unit hang */
7856                         dev_err(tx_ring->dev,
7857                                 "Detected Tx Unit Hang\n"
7858                                 "  Tx Queue             <%d>\n"
7859                                 "  TDH                  <%x>\n"
7860                                 "  TDT                  <%x>\n"
7861                                 "  next_to_use          <%x>\n"
7862                                 "  next_to_clean        <%x>\n"
7863                                 "buffer_info[next_to_clean]\n"
7864                                 "  time_stamp           <%lx>\n"
7865                                 "  next_to_watch        <%p>\n"
7866                                 "  jiffies              <%lx>\n"
7867                                 "  desc.status          <%x>\n",
7868                                 tx_ring->queue_index,
7869                                 rd32(E1000_TDH(tx_ring->reg_idx)),
7870                                 readl(tx_ring->tail),
7871                                 tx_ring->next_to_use,
7872                                 tx_ring->next_to_clean,
7873                                 tx_buffer->time_stamp,
7874                                 tx_buffer->next_to_watch,
7875                                 jiffies,
7876                                 tx_buffer->next_to_watch->wb.status);
7877                         netif_stop_subqueue(tx_ring->netdev,
7878                                             tx_ring->queue_index);
7879
7880                         /* we are about to reset, no point in enabling stuff */
7881                         return true;
7882                 }
7883         }
7884
7885 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7886         if (unlikely(total_packets &&
7887             netif_carrier_ok(tx_ring->netdev) &&
7888             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7889                 /* Make sure that anybody stopping the queue after this
7890                  * sees the new next_to_clean.
7891                  */
7892                 smp_mb();
7893                 if (__netif_subqueue_stopped(tx_ring->netdev,
7894                                              tx_ring->queue_index) &&
7895                     !(test_bit(__IGB_DOWN, &adapter->state))) {
7896                         netif_wake_subqueue(tx_ring->netdev,
7897                                             tx_ring->queue_index);
7898
7899                         u64_stats_update_begin(&tx_ring->tx_syncp);
7900                         tx_ring->tx_stats.restart_queue++;
7901                         u64_stats_update_end(&tx_ring->tx_syncp);
7902                 }
7903         }
7904
7905         return !!budget;
7906 }
7907
7908 /**
7909  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7910  *  @rx_ring: rx descriptor ring to store buffers on
7911  *  @old_buff: donor buffer to have page reused
7912  *
7913  *  Synchronizes page for reuse by the adapter
7914  **/
7915 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7916                               struct igb_rx_buffer *old_buff)
7917 {
7918         struct igb_rx_buffer *new_buff;
7919         u16 nta = rx_ring->next_to_alloc;
7920
7921         new_buff = &rx_ring->rx_buffer_info[nta];
7922
7923         /* update, and store next to alloc */
7924         nta++;
7925         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7926
7927         /* Transfer page from old buffer to new buffer.
7928          * Move each member individually to avoid possible store
7929          * forwarding stalls.
7930          */
7931         new_buff->dma           = old_buff->dma;
7932         new_buff->page          = old_buff->page;
7933         new_buff->page_offset   = old_buff->page_offset;
7934         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
7935 }
7936
7937 static inline bool igb_page_is_reserved(struct page *page)
7938 {
7939         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7940 }
7941
7942 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7943 {
7944         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7945         struct page *page = rx_buffer->page;
7946
7947         /* avoid re-using remote pages */
7948         if (unlikely(igb_page_is_reserved(page)))
7949                 return false;
7950
7951 #if (PAGE_SIZE < 8192)
7952         /* if we are only owner of page we can reuse it */
7953         if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7954                 return false;
7955 #else
7956 #define IGB_LAST_OFFSET \
7957         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7958
7959         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7960                 return false;
7961 #endif
7962
7963         /* If we have drained the page fragment pool we need to update
7964          * the pagecnt_bias and page count so that we fully restock the
7965          * number of references the driver holds.
7966          */
7967         if (unlikely(!pagecnt_bias)) {
7968                 page_ref_add(page, USHRT_MAX);
7969                 rx_buffer->pagecnt_bias = USHRT_MAX;
7970         }
7971
7972         return true;
7973 }
7974
7975 /**
7976  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7977  *  @rx_ring: rx descriptor ring to transact packets on
7978  *  @rx_buffer: buffer containing page to add
7979  *  @skb: sk_buff to place the data into
7980  *  @size: size of buffer to be added
7981  *
7982  *  This function will add the data contained in rx_buffer->page to the skb.
7983  **/
7984 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7985                             struct igb_rx_buffer *rx_buffer,
7986                             struct sk_buff *skb,
7987                             unsigned int size)
7988 {
7989 #if (PAGE_SIZE < 8192)
7990         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7991 #else
7992         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7993                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7994                                 SKB_DATA_ALIGN(size);
7995 #endif
7996         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7997                         rx_buffer->page_offset, size, truesize);
7998 #if (PAGE_SIZE < 8192)
7999         rx_buffer->page_offset ^= truesize;
8000 #else
8001         rx_buffer->page_offset += truesize;
8002 #endif
8003 }
8004
8005 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8006                                          struct igb_rx_buffer *rx_buffer,
8007                                          union e1000_adv_rx_desc *rx_desc,
8008                                          unsigned int size)
8009 {
8010         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8011 #if (PAGE_SIZE < 8192)
8012         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8013 #else
8014         unsigned int truesize = SKB_DATA_ALIGN(size);
8015 #endif
8016         unsigned int headlen;
8017         struct sk_buff *skb;
8018
8019         /* prefetch first cache line of first page */
8020         prefetch(va);
8021 #if L1_CACHE_BYTES < 128
8022         prefetch(va + L1_CACHE_BYTES);
8023 #endif
8024
8025         /* allocate a skb to store the frags */
8026         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8027         if (unlikely(!skb))
8028                 return NULL;
8029
8030         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8031                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8032                 va += IGB_TS_HDR_LEN;
8033                 size -= IGB_TS_HDR_LEN;
8034         }
8035
8036         /* Determine available headroom for copy */
8037         headlen = size;
8038         if (headlen > IGB_RX_HDR_LEN)
8039                 headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8040
8041         /* align pull length to size of long to optimize memcpy performance */
8042         memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8043
8044         /* update all of the pointers */
8045         size -= headlen;
8046         if (size) {
8047                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8048                                 (va + headlen) - page_address(rx_buffer->page),
8049                                 size, truesize);
8050 #if (PAGE_SIZE < 8192)
8051                 rx_buffer->page_offset ^= truesize;
8052 #else
8053                 rx_buffer->page_offset += truesize;
8054 #endif
8055         } else {
8056                 rx_buffer->pagecnt_bias++;
8057         }
8058
8059         return skb;
8060 }
8061
8062 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8063                                      struct igb_rx_buffer *rx_buffer,
8064                                      union e1000_adv_rx_desc *rx_desc,
8065                                      unsigned int size)
8066 {
8067         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8068 #if (PAGE_SIZE < 8192)
8069         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8070 #else
8071         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8072                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8073 #endif
8074         struct sk_buff *skb;
8075
8076         /* prefetch first cache line of first page */
8077         prefetch(va);
8078 #if L1_CACHE_BYTES < 128
8079         prefetch(va + L1_CACHE_BYTES);
8080 #endif
8081
8082         /* build an skb around the page buffer */
8083         skb = build_skb(va - IGB_SKB_PAD, truesize);
8084         if (unlikely(!skb))
8085                 return NULL;
8086
8087         /* update pointers within the skb to store the data */
8088         skb_reserve(skb, IGB_SKB_PAD);
8089         __skb_put(skb, size);
8090
8091         /* pull timestamp out of packet data */
8092         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8093                 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8094                 __skb_pull(skb, IGB_TS_HDR_LEN);
8095         }
8096
8097         /* update buffer offset */
8098 #if (PAGE_SIZE < 8192)
8099         rx_buffer->page_offset ^= truesize;
8100 #else
8101         rx_buffer->page_offset += truesize;
8102 #endif
8103
8104         return skb;
8105 }
8106
8107 static inline void igb_rx_checksum(struct igb_ring *ring,
8108                                    union e1000_adv_rx_desc *rx_desc,
8109                                    struct sk_buff *skb)
8110 {
8111         skb_checksum_none_assert(skb);
8112
8113         /* Ignore Checksum bit is set */
8114         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8115                 return;
8116
8117         /* Rx checksum disabled via ethtool */
8118         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8119                 return;
8120
8121         /* TCP/UDP checksum error bit is set */
8122         if (igb_test_staterr(rx_desc,
8123                              E1000_RXDEXT_STATERR_TCPE |
8124                              E1000_RXDEXT_STATERR_IPE)) {
8125                 /* work around errata with sctp packets where the TCPE aka
8126                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8127                  * packets, (aka let the stack check the crc32c)
8128                  */
8129                 if (!((skb->len == 60) &&
8130                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8131                         u64_stats_update_begin(&ring->rx_syncp);
8132                         ring->rx_stats.csum_err++;
8133                         u64_stats_update_end(&ring->rx_syncp);
8134                 }
8135                 /* let the stack verify checksum errors */
8136                 return;
8137         }
8138         /* It must be a TCP or UDP packet with a valid checksum */
8139         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8140                                       E1000_RXD_STAT_UDPCS))
8141                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8142
8143         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8144                 le32_to_cpu(rx_desc->wb.upper.status_error));
8145 }
8146
8147 static inline void igb_rx_hash(struct igb_ring *ring,
8148                                union e1000_adv_rx_desc *rx_desc,
8149                                struct sk_buff *skb)
8150 {
8151         if (ring->netdev->features & NETIF_F_RXHASH)
8152                 skb_set_hash(skb,
8153                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8154                              PKT_HASH_TYPE_L3);
8155 }
8156
8157 /**
8158  *  igb_is_non_eop - process handling of non-EOP buffers
8159  *  @rx_ring: Rx ring being processed
8160  *  @rx_desc: Rx descriptor for current buffer
8161  *  @skb: current socket buffer containing buffer in progress
8162  *
8163  *  This function updates next to clean.  If the buffer is an EOP buffer
8164  *  this function exits returning false, otherwise it will place the
8165  *  sk_buff in the next buffer to be chained and return true indicating
8166  *  that this is in fact a non-EOP buffer.
8167  **/
8168 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8169                            union e1000_adv_rx_desc *rx_desc)
8170 {
8171         u32 ntc = rx_ring->next_to_clean + 1;
8172
8173         /* fetch, update, and store next to clean */
8174         ntc = (ntc < rx_ring->count) ? ntc : 0;
8175         rx_ring->next_to_clean = ntc;
8176
8177         prefetch(IGB_RX_DESC(rx_ring, ntc));
8178
8179         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8180                 return false;
8181
8182         return true;
8183 }
8184
8185 /**
8186  *  igb_cleanup_headers - Correct corrupted or empty headers
8187  *  @rx_ring: rx descriptor ring packet is being transacted on
8188  *  @rx_desc: pointer to the EOP Rx descriptor
8189  *  @skb: pointer to current skb being fixed
8190  *
8191  *  Address the case where we are pulling data in on pages only
8192  *  and as such no data is present in the skb header.
8193  *
8194  *  In addition if skb is not at least 60 bytes we need to pad it so that
8195  *  it is large enough to qualify as a valid Ethernet frame.
8196  *
8197  *  Returns true if an error was encountered and skb was freed.
8198  **/
8199 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8200                                 union e1000_adv_rx_desc *rx_desc,
8201                                 struct sk_buff *skb)
8202 {
8203         if (unlikely((igb_test_staterr(rx_desc,
8204                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8205                 struct net_device *netdev = rx_ring->netdev;
8206                 if (!(netdev->features & NETIF_F_RXALL)) {
8207                         dev_kfree_skb_any(skb);
8208                         return true;
8209                 }
8210         }
8211
8212         /* if eth_skb_pad returns an error the skb was freed */
8213         if (eth_skb_pad(skb))
8214                 return true;
8215
8216         return false;
8217 }
8218
8219 /**
8220  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8221  *  @rx_ring: rx descriptor ring packet is being transacted on
8222  *  @rx_desc: pointer to the EOP Rx descriptor
8223  *  @skb: pointer to current skb being populated
8224  *
8225  *  This function checks the ring, descriptor, and packet information in
8226  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8227  *  other fields within the skb.
8228  **/
8229 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8230                                    union e1000_adv_rx_desc *rx_desc,
8231                                    struct sk_buff *skb)
8232 {
8233         struct net_device *dev = rx_ring->netdev;
8234
8235         igb_rx_hash(rx_ring, rx_desc, skb);
8236
8237         igb_rx_checksum(rx_ring, rx_desc, skb);
8238
8239         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8240             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8241                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8242
8243         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8244             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8245                 u16 vid;
8246
8247                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8248                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8249                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8250                 else
8251                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8252
8253                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8254         }
8255
8256         skb_record_rx_queue(skb, rx_ring->queue_index);
8257
8258         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8259 }
8260
8261 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8262                                                const unsigned int size)
8263 {
8264         struct igb_rx_buffer *rx_buffer;
8265
8266         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8267         prefetchw(rx_buffer->page);
8268
8269         /* we are reusing so sync this buffer for CPU use */
8270         dma_sync_single_range_for_cpu(rx_ring->dev,
8271                                       rx_buffer->dma,
8272                                       rx_buffer->page_offset,
8273                                       size,
8274                                       DMA_FROM_DEVICE);
8275
8276         rx_buffer->pagecnt_bias--;
8277
8278         return rx_buffer;
8279 }
8280
8281 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8282                               struct igb_rx_buffer *rx_buffer)
8283 {
8284         if (igb_can_reuse_rx_page(rx_buffer)) {
8285                 /* hand second half of page back to the ring */
8286                 igb_reuse_rx_page(rx_ring, rx_buffer);
8287         } else {
8288                 /* We are not reusing the buffer so unmap it and free
8289                  * any references we are holding to it
8290                  */
8291                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8292                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8293                                      IGB_RX_DMA_ATTR);
8294                 __page_frag_cache_drain(rx_buffer->page,
8295                                         rx_buffer->pagecnt_bias);
8296         }
8297
8298         /* clear contents of rx_buffer */
8299         rx_buffer->page = NULL;
8300 }
8301
8302 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8303 {
8304         struct igb_ring *rx_ring = q_vector->rx.ring;
8305         struct sk_buff *skb = rx_ring->skb;
8306         unsigned int total_bytes = 0, total_packets = 0;
8307         u16 cleaned_count = igb_desc_unused(rx_ring);
8308
8309         while (likely(total_packets < budget)) {
8310                 union e1000_adv_rx_desc *rx_desc;
8311                 struct igb_rx_buffer *rx_buffer;
8312                 unsigned int size;
8313
8314                 /* return some buffers to hardware, one at a time is too slow */
8315                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8316                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8317                         cleaned_count = 0;
8318                 }
8319
8320                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8321                 size = le16_to_cpu(rx_desc->wb.upper.length);
8322                 if (!size)
8323                         break;
8324
8325                 /* This memory barrier is needed to keep us from reading
8326                  * any other fields out of the rx_desc until we know the
8327                  * descriptor has been written back
8328                  */
8329                 dma_rmb();
8330
8331                 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8332
8333                 /* retrieve a buffer from the ring */
8334                 if (skb)
8335                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8336                 else if (ring_uses_build_skb(rx_ring))
8337                         skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8338                 else
8339                         skb = igb_construct_skb(rx_ring, rx_buffer,
8340                                                 rx_desc, size);
8341
8342                 /* exit if we failed to retrieve a buffer */
8343                 if (!skb) {
8344                         rx_ring->rx_stats.alloc_failed++;
8345                         rx_buffer->pagecnt_bias++;
8346                         break;
8347                 }
8348
8349                 igb_put_rx_buffer(rx_ring, rx_buffer);
8350                 cleaned_count++;
8351
8352                 /* fetch next buffer in frame if non-eop */
8353                 if (igb_is_non_eop(rx_ring, rx_desc))
8354                         continue;
8355
8356                 /* verify the packet layout is correct */
8357                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8358                         skb = NULL;
8359                         continue;
8360                 }
8361
8362                 /* probably a little skewed due to removing CRC */
8363                 total_bytes += skb->len;
8364
8365                 /* populate checksum, timestamp, VLAN, and protocol */
8366                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8367
8368                 napi_gro_receive(&q_vector->napi, skb);
8369
8370                 /* reset skb pointer */
8371                 skb = NULL;
8372
8373                 /* update budget accounting */
8374                 total_packets++;
8375         }
8376
8377         /* place incomplete frames back on ring for completion */
8378         rx_ring->skb = skb;
8379
8380         u64_stats_update_begin(&rx_ring->rx_syncp);
8381         rx_ring->rx_stats.packets += total_packets;
8382         rx_ring->rx_stats.bytes += total_bytes;
8383         u64_stats_update_end(&rx_ring->rx_syncp);
8384         q_vector->rx.total_packets += total_packets;
8385         q_vector->rx.total_bytes += total_bytes;
8386
8387         if (cleaned_count)
8388                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8389
8390         return total_packets;
8391 }
8392
8393 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8394 {
8395         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8396 }
8397
8398 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8399                                   struct igb_rx_buffer *bi)
8400 {
8401         struct page *page = bi->page;
8402         dma_addr_t dma;
8403
8404         /* since we are recycling buffers we should seldom need to alloc */
8405         if (likely(page))
8406                 return true;
8407
8408         /* alloc new page for storage */
8409         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8410         if (unlikely(!page)) {
8411                 rx_ring->rx_stats.alloc_failed++;
8412                 return false;
8413         }
8414
8415         /* map page for use */
8416         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8417                                  igb_rx_pg_size(rx_ring),
8418                                  DMA_FROM_DEVICE,
8419                                  IGB_RX_DMA_ATTR);
8420
8421         /* if mapping failed free memory back to system since
8422          * there isn't much point in holding memory we can't use
8423          */
8424         if (dma_mapping_error(rx_ring->dev, dma)) {
8425                 __free_pages(page, igb_rx_pg_order(rx_ring));
8426
8427                 rx_ring->rx_stats.alloc_failed++;
8428                 return false;
8429         }
8430
8431         bi->dma = dma;
8432         bi->page = page;
8433         bi->page_offset = igb_rx_offset(rx_ring);
8434         bi->pagecnt_bias = 1;
8435
8436         return true;
8437 }
8438
8439 /**
8440  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8441  *  @adapter: address of board private structure
8442  **/
8443 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8444 {
8445         union e1000_adv_rx_desc *rx_desc;
8446         struct igb_rx_buffer *bi;
8447         u16 i = rx_ring->next_to_use;
8448         u16 bufsz;
8449
8450         /* nothing to do */
8451         if (!cleaned_count)
8452                 return;
8453
8454         rx_desc = IGB_RX_DESC(rx_ring, i);
8455         bi = &rx_ring->rx_buffer_info[i];
8456         i -= rx_ring->count;
8457
8458         bufsz = igb_rx_bufsz(rx_ring);
8459
8460         do {
8461                 if (!igb_alloc_mapped_page(rx_ring, bi))
8462                         break;
8463
8464                 /* sync the buffer for use by the device */
8465                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8466                                                  bi->page_offset, bufsz,
8467                                                  DMA_FROM_DEVICE);
8468
8469                 /* Refresh the desc even if buffer_addrs didn't change
8470                  * because each write-back erases this info.
8471                  */
8472                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8473
8474                 rx_desc++;
8475                 bi++;
8476                 i++;
8477                 if (unlikely(!i)) {
8478                         rx_desc = IGB_RX_DESC(rx_ring, 0);
8479                         bi = rx_ring->rx_buffer_info;
8480                         i -= rx_ring->count;
8481                 }
8482
8483                 /* clear the length for the next_to_use descriptor */
8484                 rx_desc->wb.upper.length = 0;
8485
8486                 cleaned_count--;
8487         } while (cleaned_count);
8488
8489         i += rx_ring->count;
8490
8491         if (rx_ring->next_to_use != i) {
8492                 /* record the next descriptor to use */
8493                 rx_ring->next_to_use = i;
8494
8495                 /* update next to alloc since we have filled the ring */
8496                 rx_ring->next_to_alloc = i;
8497
8498                 /* Force memory writes to complete before letting h/w
8499                  * know there are new descriptors to fetch.  (Only
8500                  * applicable for weak-ordered memory model archs,
8501                  * such as IA-64).
8502                  */
8503                 dma_wmb();
8504                 writel(i, rx_ring->tail);
8505         }
8506 }
8507
8508 /**
8509  * igb_mii_ioctl -
8510  * @netdev:
8511  * @ifreq:
8512  * @cmd:
8513  **/
8514 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8515 {
8516         struct igb_adapter *adapter = netdev_priv(netdev);
8517         struct mii_ioctl_data *data = if_mii(ifr);
8518
8519         if (adapter->hw.phy.media_type != e1000_media_type_copper)
8520                 return -EOPNOTSUPP;
8521
8522         switch (cmd) {
8523         case SIOCGMIIPHY:
8524                 data->phy_id = adapter->hw.phy.addr;
8525                 break;
8526         case SIOCGMIIREG:
8527                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8528                                      &data->val_out))
8529                         return -EIO;
8530                 break;
8531         case SIOCSMIIREG:
8532         default:
8533                 return -EOPNOTSUPP;
8534         }
8535         return 0;
8536 }
8537
8538 /**
8539  * igb_ioctl -
8540  * @netdev:
8541  * @ifreq:
8542  * @cmd:
8543  **/
8544 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8545 {
8546         switch (cmd) {
8547         case SIOCGMIIPHY:
8548         case SIOCGMIIREG:
8549         case SIOCSMIIREG:
8550                 return igb_mii_ioctl(netdev, ifr, cmd);
8551         case SIOCGHWTSTAMP:
8552                 return igb_ptp_get_ts_config(netdev, ifr);
8553         case SIOCSHWTSTAMP:
8554                 return igb_ptp_set_ts_config(netdev, ifr);
8555         default:
8556                 return -EOPNOTSUPP;
8557         }
8558 }
8559
8560 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8561 {
8562         struct igb_adapter *adapter = hw->back;
8563
8564         pci_read_config_word(adapter->pdev, reg, value);
8565 }
8566
8567 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8568 {
8569         struct igb_adapter *adapter = hw->back;
8570
8571         pci_write_config_word(adapter->pdev, reg, *value);
8572 }
8573
8574 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8575 {
8576         struct igb_adapter *adapter = hw->back;
8577
8578         if (pcie_capability_read_word(adapter->pdev, reg, value))
8579                 return -E1000_ERR_CONFIG;
8580
8581         return 0;
8582 }
8583
8584 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8585 {
8586         struct igb_adapter *adapter = hw->back;
8587
8588         if (pcie_capability_write_word(adapter->pdev, reg, *value))
8589                 return -E1000_ERR_CONFIG;
8590
8591         return 0;
8592 }
8593
8594 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8595 {
8596         struct igb_adapter *adapter = netdev_priv(netdev);
8597         struct e1000_hw *hw = &adapter->hw;
8598         u32 ctrl, rctl;
8599         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8600
8601         if (enable) {
8602                 /* enable VLAN tag insert/strip */
8603                 ctrl = rd32(E1000_CTRL);
8604                 ctrl |= E1000_CTRL_VME;
8605                 wr32(E1000_CTRL, ctrl);
8606
8607                 /* Disable CFI check */
8608                 rctl = rd32(E1000_RCTL);
8609                 rctl &= ~E1000_RCTL_CFIEN;
8610                 wr32(E1000_RCTL, rctl);
8611         } else {
8612                 /* disable VLAN tag insert/strip */
8613                 ctrl = rd32(E1000_CTRL);
8614                 ctrl &= ~E1000_CTRL_VME;
8615                 wr32(E1000_CTRL, ctrl);
8616         }
8617
8618         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8619 }
8620
8621 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8622                                __be16 proto, u16 vid)
8623 {
8624         struct igb_adapter *adapter = netdev_priv(netdev);
8625         struct e1000_hw *hw = &adapter->hw;
8626         int pf_id = adapter->vfs_allocated_count;
8627
8628         /* add the filter since PF can receive vlans w/o entry in vlvf */
8629         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8630                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8631
8632         set_bit(vid, adapter->active_vlans);
8633
8634         return 0;
8635 }
8636
8637 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8638                                 __be16 proto, u16 vid)
8639 {
8640         struct igb_adapter *adapter = netdev_priv(netdev);
8641         int pf_id = adapter->vfs_allocated_count;
8642         struct e1000_hw *hw = &adapter->hw;
8643
8644         /* remove VID from filter table */
8645         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8646                 igb_vfta_set(hw, vid, pf_id, false, true);
8647
8648         clear_bit(vid, adapter->active_vlans);
8649
8650         return 0;
8651 }
8652
8653 static void igb_restore_vlan(struct igb_adapter *adapter)
8654 {
8655         u16 vid = 1;
8656
8657         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8658         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8659
8660         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8661                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8662 }
8663
8664 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8665 {
8666         struct pci_dev *pdev = adapter->pdev;
8667         struct e1000_mac_info *mac = &adapter->hw.mac;
8668
8669         mac->autoneg = 0;
8670
8671         /* Make sure dplx is at most 1 bit and lsb of speed is not set
8672          * for the switch() below to work
8673          */
8674         if ((spd & 1) || (dplx & ~1))
8675                 goto err_inval;
8676
8677         /* Fiber NIC's only allow 1000 gbps Full duplex
8678          * and 100Mbps Full duplex for 100baseFx sfp
8679          */
8680         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8681                 switch (spd + dplx) {
8682                 case SPEED_10 + DUPLEX_HALF:
8683                 case SPEED_10 + DUPLEX_FULL:
8684                 case SPEED_100 + DUPLEX_HALF:
8685                         goto err_inval;
8686                 default:
8687                         break;
8688                 }
8689         }
8690
8691         switch (spd + dplx) {
8692         case SPEED_10 + DUPLEX_HALF:
8693                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8694                 break;
8695         case SPEED_10 + DUPLEX_FULL:
8696                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8697                 break;
8698         case SPEED_100 + DUPLEX_HALF:
8699                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8700                 break;
8701         case SPEED_100 + DUPLEX_FULL:
8702                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8703                 break;
8704         case SPEED_1000 + DUPLEX_FULL:
8705                 mac->autoneg = 1;
8706                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8707                 break;
8708         case SPEED_1000 + DUPLEX_HALF: /* not supported */
8709         default:
8710                 goto err_inval;
8711         }
8712
8713         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8714         adapter->hw.phy.mdix = AUTO_ALL_MODES;
8715
8716         return 0;
8717
8718 err_inval:
8719         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8720         return -EINVAL;
8721 }
8722
8723 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8724                           bool runtime)
8725 {
8726         struct net_device *netdev = pci_get_drvdata(pdev);
8727         struct igb_adapter *adapter = netdev_priv(netdev);
8728         struct e1000_hw *hw = &adapter->hw;
8729         u32 ctrl, rctl, status;
8730         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8731         bool wake;
8732
8733         rtnl_lock();
8734         netif_device_detach(netdev);
8735
8736         if (netif_running(netdev))
8737                 __igb_close(netdev, true);
8738
8739         igb_ptp_suspend(adapter);
8740
8741         igb_clear_interrupt_scheme(adapter);
8742         rtnl_unlock();
8743
8744         status = rd32(E1000_STATUS);
8745         if (status & E1000_STATUS_LU)
8746                 wufc &= ~E1000_WUFC_LNKC;
8747
8748         if (wufc) {
8749                 igb_setup_rctl(adapter);
8750                 igb_set_rx_mode(netdev);
8751
8752                 /* turn on all-multi mode if wake on multicast is enabled */
8753                 if (wufc & E1000_WUFC_MC) {
8754                         rctl = rd32(E1000_RCTL);
8755                         rctl |= E1000_RCTL_MPE;
8756                         wr32(E1000_RCTL, rctl);
8757                 }
8758
8759                 ctrl = rd32(E1000_CTRL);
8760                 ctrl |= E1000_CTRL_ADVD3WUC;
8761                 wr32(E1000_CTRL, ctrl);
8762
8763                 /* Allow time for pending master requests to run */
8764                 igb_disable_pcie_master(hw);
8765
8766                 wr32(E1000_WUC, E1000_WUC_PME_EN);
8767                 wr32(E1000_WUFC, wufc);
8768         } else {
8769                 wr32(E1000_WUC, 0);
8770                 wr32(E1000_WUFC, 0);
8771         }
8772
8773         wake = wufc || adapter->en_mng_pt;
8774         if (!wake)
8775                 igb_power_down_link(adapter);
8776         else
8777                 igb_power_up_link(adapter);
8778
8779         if (enable_wake)
8780                 *enable_wake = wake;
8781
8782         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
8783          * would have already happened in close and is redundant.
8784          */
8785         igb_release_hw_control(adapter);
8786
8787         pci_disable_device(pdev);
8788
8789         return 0;
8790 }
8791
8792 static void igb_deliver_wake_packet(struct net_device *netdev)
8793 {
8794         struct igb_adapter *adapter = netdev_priv(netdev);
8795         struct e1000_hw *hw = &adapter->hw;
8796         struct sk_buff *skb;
8797         u32 wupl;
8798
8799         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8800
8801         /* WUPM stores only the first 128 bytes of the wake packet.
8802          * Read the packet only if we have the whole thing.
8803          */
8804         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8805                 return;
8806
8807         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8808         if (!skb)
8809                 return;
8810
8811         skb_put(skb, wupl);
8812
8813         /* Ensure reads are 32-bit aligned */
8814         wupl = roundup(wupl, 4);
8815
8816         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8817
8818         skb->protocol = eth_type_trans(skb, netdev);
8819         netif_rx(skb);
8820 }
8821
8822 static int __maybe_unused igb_suspend(struct device *dev)
8823 {
8824         return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8825 }
8826
8827 static int __maybe_unused igb_resume(struct device *dev)
8828 {
8829         struct pci_dev *pdev = to_pci_dev(dev);
8830         struct net_device *netdev = pci_get_drvdata(pdev);
8831         struct igb_adapter *adapter = netdev_priv(netdev);
8832         struct e1000_hw *hw = &adapter->hw;
8833         u32 err, val;
8834
8835         pci_set_power_state(pdev, PCI_D0);
8836         pci_restore_state(pdev);
8837         pci_save_state(pdev);
8838
8839         if (!pci_device_is_present(pdev))
8840                 return -ENODEV;
8841         err = pci_enable_device_mem(pdev);
8842         if (err) {
8843                 dev_err(&pdev->dev,
8844                         "igb: Cannot enable PCI device from suspend\n");
8845                 return err;
8846         }
8847         pci_set_master(pdev);
8848
8849         pci_enable_wake(pdev, PCI_D3hot, 0);
8850         pci_enable_wake(pdev, PCI_D3cold, 0);
8851
8852         if (igb_init_interrupt_scheme(adapter, true)) {
8853                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8854                 return -ENOMEM;
8855         }
8856
8857         igb_reset(adapter);
8858
8859         /* let the f/w know that the h/w is now under the control of the
8860          * driver.
8861          */
8862         igb_get_hw_control(adapter);
8863
8864         val = rd32(E1000_WUS);
8865         if (val & WAKE_PKT_WUS)
8866                 igb_deliver_wake_packet(netdev);
8867
8868         wr32(E1000_WUS, ~0);
8869
8870         rtnl_lock();
8871         if (!err && netif_running(netdev))
8872                 err = __igb_open(netdev, true);
8873
8874         if (!err)
8875                 netif_device_attach(netdev);
8876         rtnl_unlock();
8877
8878         return err;
8879 }
8880
8881 static int __maybe_unused igb_runtime_idle(struct device *dev)
8882 {
8883         struct net_device *netdev = dev_get_drvdata(dev);
8884         struct igb_adapter *adapter = netdev_priv(netdev);
8885
8886         if (!igb_has_link(adapter))
8887                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8888
8889         return -EBUSY;
8890 }
8891
8892 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8893 {
8894         return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8895 }
8896
8897 static int __maybe_unused igb_runtime_resume(struct device *dev)
8898 {
8899         return igb_resume(dev);
8900 }
8901
8902 static void igb_shutdown(struct pci_dev *pdev)
8903 {
8904         bool wake;
8905
8906         __igb_shutdown(pdev, &wake, 0);
8907
8908         if (system_state == SYSTEM_POWER_OFF) {
8909                 pci_wake_from_d3(pdev, wake);
8910                 pci_set_power_state(pdev, PCI_D3hot);
8911         }
8912 }
8913
8914 #ifdef CONFIG_PCI_IOV
8915 static int igb_sriov_reinit(struct pci_dev *dev)
8916 {
8917         struct net_device *netdev = pci_get_drvdata(dev);
8918         struct igb_adapter *adapter = netdev_priv(netdev);
8919         struct pci_dev *pdev = adapter->pdev;
8920
8921         rtnl_lock();
8922
8923         if (netif_running(netdev))
8924                 igb_close(netdev);
8925         else
8926                 igb_reset(adapter);
8927
8928         igb_clear_interrupt_scheme(adapter);
8929
8930         igb_init_queue_configuration(adapter);
8931
8932         if (igb_init_interrupt_scheme(adapter, true)) {
8933                 rtnl_unlock();
8934                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8935                 return -ENOMEM;
8936         }
8937
8938         if (netif_running(netdev))
8939                 igb_open(netdev);
8940
8941         rtnl_unlock();
8942
8943         return 0;
8944 }
8945
8946 static int igb_pci_disable_sriov(struct pci_dev *dev)
8947 {
8948         int err = igb_disable_sriov(dev);
8949
8950         if (!err)
8951                 err = igb_sriov_reinit(dev);
8952
8953         return err;
8954 }
8955
8956 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8957 {
8958         int err = igb_enable_sriov(dev, num_vfs);
8959
8960         if (err)
8961                 goto out;
8962
8963         err = igb_sriov_reinit(dev);
8964         if (!err)
8965                 return num_vfs;
8966
8967 out:
8968         return err;
8969 }
8970
8971 #endif
8972 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8973 {
8974 #ifdef CONFIG_PCI_IOV
8975         if (num_vfs == 0)
8976                 return igb_pci_disable_sriov(dev);
8977         else
8978                 return igb_pci_enable_sriov(dev, num_vfs);
8979 #endif
8980         return 0;
8981 }
8982
8983 /**
8984  *  igb_io_error_detected - called when PCI error is detected
8985  *  @pdev: Pointer to PCI device
8986  *  @state: The current pci connection state
8987  *
8988  *  This function is called after a PCI bus error affecting
8989  *  this device has been detected.
8990  **/
8991 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8992                                               pci_channel_state_t state)
8993 {
8994         struct net_device *netdev = pci_get_drvdata(pdev);
8995         struct igb_adapter *adapter = netdev_priv(netdev);
8996
8997         netif_device_detach(netdev);
8998
8999         if (state == pci_channel_io_perm_failure)
9000                 return PCI_ERS_RESULT_DISCONNECT;
9001
9002         if (netif_running(netdev))
9003                 igb_down(adapter);
9004         pci_disable_device(pdev);
9005
9006         /* Request a slot slot reset. */
9007         return PCI_ERS_RESULT_NEED_RESET;
9008 }
9009
9010 /**
9011  *  igb_io_slot_reset - called after the pci bus has been reset.
9012  *  @pdev: Pointer to PCI device
9013  *
9014  *  Restart the card from scratch, as if from a cold-boot. Implementation
9015  *  resembles the first-half of the igb_resume routine.
9016  **/
9017 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9018 {
9019         struct net_device *netdev = pci_get_drvdata(pdev);
9020         struct igb_adapter *adapter = netdev_priv(netdev);
9021         struct e1000_hw *hw = &adapter->hw;
9022         pci_ers_result_t result;
9023
9024         if (pci_enable_device_mem(pdev)) {
9025                 dev_err(&pdev->dev,
9026                         "Cannot re-enable PCI device after reset.\n");
9027                 result = PCI_ERS_RESULT_DISCONNECT;
9028         } else {
9029                 pci_set_master(pdev);
9030                 pci_restore_state(pdev);
9031                 pci_save_state(pdev);
9032
9033                 pci_enable_wake(pdev, PCI_D3hot, 0);
9034                 pci_enable_wake(pdev, PCI_D3cold, 0);
9035
9036                 /* In case of PCI error, adapter lose its HW address
9037                  * so we should re-assign it here.
9038                  */
9039                 hw->hw_addr = adapter->io_addr;
9040
9041                 igb_reset(adapter);
9042                 wr32(E1000_WUS, ~0);
9043                 result = PCI_ERS_RESULT_RECOVERED;
9044         }
9045
9046         return result;
9047 }
9048
9049 /**
9050  *  igb_io_resume - called when traffic can start flowing again.
9051  *  @pdev: Pointer to PCI device
9052  *
9053  *  This callback is called when the error recovery driver tells us that
9054  *  its OK to resume normal operation. Implementation resembles the
9055  *  second-half of the igb_resume routine.
9056  */
9057 static void igb_io_resume(struct pci_dev *pdev)
9058 {
9059         struct net_device *netdev = pci_get_drvdata(pdev);
9060         struct igb_adapter *adapter = netdev_priv(netdev);
9061
9062         if (netif_running(netdev)) {
9063                 if (igb_up(adapter)) {
9064                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9065                         return;
9066                 }
9067         }
9068
9069         netif_device_attach(netdev);
9070
9071         /* let the f/w know that the h/w is now under the control of the
9072          * driver.
9073          */
9074         igb_get_hw_control(adapter);
9075 }
9076
9077 /**
9078  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9079  *  @adapter: Pointer to adapter structure
9080  *  @index: Index of the RAR entry which need to be synced with MAC table
9081  **/
9082 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9083 {
9084         struct e1000_hw *hw = &adapter->hw;
9085         u32 rar_low, rar_high;
9086         u8 *addr = adapter->mac_table[index].addr;
9087
9088         /* HW expects these to be in network order when they are plugged
9089          * into the registers which are little endian.  In order to guarantee
9090          * that ordering we need to do an leXX_to_cpup here in order to be
9091          * ready for the byteswap that occurs with writel
9092          */
9093         rar_low = le32_to_cpup((__le32 *)(addr));
9094         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9095
9096         /* Indicate to hardware the Address is Valid. */
9097         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9098                 if (is_valid_ether_addr(addr))
9099                         rar_high |= E1000_RAH_AV;
9100
9101                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9102                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9103
9104                 switch (hw->mac.type) {
9105                 case e1000_82575:
9106                 case e1000_i210:
9107                         if (adapter->mac_table[index].state &
9108                             IGB_MAC_STATE_QUEUE_STEERING)
9109                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9110
9111                         rar_high |= E1000_RAH_POOL_1 *
9112                                     adapter->mac_table[index].queue;
9113                         break;
9114                 default:
9115                         rar_high |= E1000_RAH_POOL_1 <<
9116                                     adapter->mac_table[index].queue;
9117                         break;
9118                 }
9119         }
9120
9121         wr32(E1000_RAL(index), rar_low);
9122         wrfl();
9123         wr32(E1000_RAH(index), rar_high);
9124         wrfl();
9125 }
9126
9127 static int igb_set_vf_mac(struct igb_adapter *adapter,
9128                           int vf, unsigned char *mac_addr)
9129 {
9130         struct e1000_hw *hw = &adapter->hw;
9131         /* VF MAC addresses start at end of receive addresses and moves
9132          * towards the first, as a result a collision should not be possible
9133          */
9134         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9135         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9136
9137         ether_addr_copy(vf_mac_addr, mac_addr);
9138         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9139         adapter->mac_table[rar_entry].queue = vf;
9140         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9141         igb_rar_set_index(adapter, rar_entry);
9142
9143         return 0;
9144 }
9145
9146 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9147 {
9148         struct igb_adapter *adapter = netdev_priv(netdev);
9149
9150         if (vf >= adapter->vfs_allocated_count)
9151                 return -EINVAL;
9152
9153         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9154          * flag and allows to overwrite the MAC via VF netdev.  This
9155          * is necessary to allow libvirt a way to restore the original
9156          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9157          * down a VM.
9158          */
9159         if (is_zero_ether_addr(mac)) {
9160                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9161                 dev_info(&adapter->pdev->dev,
9162                          "remove administratively set MAC on VF %d\n",
9163                          vf);
9164         } else if (is_valid_ether_addr(mac)) {
9165                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9166                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9167                          mac, vf);
9168                 dev_info(&adapter->pdev->dev,
9169                          "Reload the VF driver to make this change effective.");
9170                 /* Generate additional warning if PF is down */
9171                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9172                         dev_warn(&adapter->pdev->dev,
9173                                  "The VF MAC address has been set, but the PF device is not up.\n");
9174                         dev_warn(&adapter->pdev->dev,
9175                                  "Bring the PF device up before attempting to use the VF device.\n");
9176                 }
9177         } else {
9178                 return -EINVAL;
9179         }
9180         return igb_set_vf_mac(adapter, vf, mac);
9181 }
9182
9183 static int igb_link_mbps(int internal_link_speed)
9184 {
9185         switch (internal_link_speed) {
9186         case SPEED_100:
9187                 return 100;
9188         case SPEED_1000:
9189                 return 1000;
9190         default:
9191                 return 0;
9192         }
9193 }
9194
9195 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9196                                   int link_speed)
9197 {
9198         int rf_dec, rf_int;
9199         u32 bcnrc_val;
9200
9201         if (tx_rate != 0) {
9202                 /* Calculate the rate factor values to set */
9203                 rf_int = link_speed / tx_rate;
9204                 rf_dec = (link_speed - (rf_int * tx_rate));
9205                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9206                          tx_rate;
9207
9208                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9209                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9210                               E1000_RTTBCNRC_RF_INT_MASK);
9211                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9212         } else {
9213                 bcnrc_val = 0;
9214         }
9215
9216         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9217         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9218          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9219          */
9220         wr32(E1000_RTTBCNRM, 0x14);
9221         wr32(E1000_RTTBCNRC, bcnrc_val);
9222 }
9223
9224 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9225 {
9226         int actual_link_speed, i;
9227         bool reset_rate = false;
9228
9229         /* VF TX rate limit was not set or not supported */
9230         if ((adapter->vf_rate_link_speed == 0) ||
9231             (adapter->hw.mac.type != e1000_82576))
9232                 return;
9233
9234         actual_link_speed = igb_link_mbps(adapter->link_speed);
9235         if (actual_link_speed != adapter->vf_rate_link_speed) {
9236                 reset_rate = true;
9237                 adapter->vf_rate_link_speed = 0;
9238                 dev_info(&adapter->pdev->dev,
9239                          "Link speed has been changed. VF Transmit rate is disabled\n");
9240         }
9241
9242         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9243                 if (reset_rate)
9244                         adapter->vf_data[i].tx_rate = 0;
9245
9246                 igb_set_vf_rate_limit(&adapter->hw, i,
9247                                       adapter->vf_data[i].tx_rate,
9248                                       actual_link_speed);
9249         }
9250 }
9251
9252 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9253                              int min_tx_rate, int max_tx_rate)
9254 {
9255         struct igb_adapter *adapter = netdev_priv(netdev);
9256         struct e1000_hw *hw = &adapter->hw;
9257         int actual_link_speed;
9258
9259         if (hw->mac.type != e1000_82576)
9260                 return -EOPNOTSUPP;
9261
9262         if (min_tx_rate)
9263                 return -EINVAL;
9264
9265         actual_link_speed = igb_link_mbps(adapter->link_speed);
9266         if ((vf >= adapter->vfs_allocated_count) ||
9267             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9268             (max_tx_rate < 0) ||
9269             (max_tx_rate > actual_link_speed))
9270                 return -EINVAL;
9271
9272         adapter->vf_rate_link_speed = actual_link_speed;
9273         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9274         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9275
9276         return 0;
9277 }
9278
9279 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9280                                    bool setting)
9281 {
9282         struct igb_adapter *adapter = netdev_priv(netdev);
9283         struct e1000_hw *hw = &adapter->hw;
9284         u32 reg_val, reg_offset;
9285
9286         if (!adapter->vfs_allocated_count)
9287                 return -EOPNOTSUPP;
9288
9289         if (vf >= adapter->vfs_allocated_count)
9290                 return -EINVAL;
9291
9292         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9293         reg_val = rd32(reg_offset);
9294         if (setting)
9295                 reg_val |= (BIT(vf) |
9296                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9297         else
9298                 reg_val &= ~(BIT(vf) |
9299                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9300         wr32(reg_offset, reg_val);
9301
9302         adapter->vf_data[vf].spoofchk_enabled = setting;
9303         return 0;
9304 }
9305
9306 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9307 {
9308         struct igb_adapter *adapter = netdev_priv(netdev);
9309
9310         if (vf >= adapter->vfs_allocated_count)
9311                 return -EINVAL;
9312         if (adapter->vf_data[vf].trusted == setting)
9313                 return 0;
9314
9315         adapter->vf_data[vf].trusted = setting;
9316
9317         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9318                  vf, setting ? "" : "not ");
9319         return 0;
9320 }
9321
9322 static int igb_ndo_get_vf_config(struct net_device *netdev,
9323                                  int vf, struct ifla_vf_info *ivi)
9324 {
9325         struct igb_adapter *adapter = netdev_priv(netdev);
9326         if (vf >= adapter->vfs_allocated_count)
9327                 return -EINVAL;
9328         ivi->vf = vf;
9329         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9330         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9331         ivi->min_tx_rate = 0;
9332         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9333         ivi->qos = adapter->vf_data[vf].pf_qos;
9334         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9335         ivi->trusted = adapter->vf_data[vf].trusted;
9336         return 0;
9337 }
9338
9339 static void igb_vmm_control(struct igb_adapter *adapter)
9340 {
9341         struct e1000_hw *hw = &adapter->hw;
9342         u32 reg;
9343
9344         switch (hw->mac.type) {
9345         case e1000_82575:
9346         case e1000_i210:
9347         case e1000_i211:
9348         case e1000_i354:
9349         default:
9350                 /* replication is not supported for 82575 */
9351                 return;
9352         case e1000_82576:
9353                 /* notify HW that the MAC is adding vlan tags */
9354                 reg = rd32(E1000_DTXCTL);
9355                 reg |= E1000_DTXCTL_VLAN_ADDED;
9356                 wr32(E1000_DTXCTL, reg);
9357                 /* Fall through */
9358         case e1000_82580:
9359                 /* enable replication vlan tag stripping */
9360                 reg = rd32(E1000_RPLOLR);
9361                 reg |= E1000_RPLOLR_STRVLAN;
9362                 wr32(E1000_RPLOLR, reg);
9363                 /* Fall through */
9364         case e1000_i350:
9365                 /* none of the above registers are supported by i350 */
9366                 break;
9367         }
9368
9369         if (adapter->vfs_allocated_count) {
9370                 igb_vmdq_set_loopback_pf(hw, true);
9371                 igb_vmdq_set_replication_pf(hw, true);
9372                 igb_vmdq_set_anti_spoofing_pf(hw, true,
9373                                               adapter->vfs_allocated_count);
9374         } else {
9375                 igb_vmdq_set_loopback_pf(hw, false);
9376                 igb_vmdq_set_replication_pf(hw, false);
9377         }
9378 }
9379
9380 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9381 {
9382         struct e1000_hw *hw = &adapter->hw;
9383         u32 dmac_thr;
9384         u16 hwm;
9385
9386         if (hw->mac.type > e1000_82580) {
9387                 if (adapter->flags & IGB_FLAG_DMAC) {
9388                         u32 reg;
9389
9390                         /* force threshold to 0. */
9391                         wr32(E1000_DMCTXTH, 0);
9392
9393                         /* DMA Coalescing high water mark needs to be greater
9394                          * than the Rx threshold. Set hwm to PBA - max frame
9395                          * size in 16B units, capping it at PBA - 6KB.
9396                          */
9397                         hwm = 64 * (pba - 6);
9398                         reg = rd32(E1000_FCRTC);
9399                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9400                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9401                                 & E1000_FCRTC_RTH_COAL_MASK);
9402                         wr32(E1000_FCRTC, reg);
9403
9404                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9405                          * frame size, capping it at PBA - 10KB.
9406                          */
9407                         dmac_thr = pba - 10;
9408                         reg = rd32(E1000_DMACR);
9409                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9410                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9411                                 & E1000_DMACR_DMACTHR_MASK);
9412
9413                         /* transition to L0x or L1 if available..*/
9414                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9415
9416                         /* watchdog timer= +-1000 usec in 32usec intervals */
9417                         reg |= (1000 >> 5);
9418
9419                         /* Disable BMC-to-OS Watchdog Enable */
9420                         if (hw->mac.type != e1000_i354)
9421                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9422
9423                         wr32(E1000_DMACR, reg);
9424
9425                         /* no lower threshold to disable
9426                          * coalescing(smart fifb)-UTRESH=0
9427                          */
9428                         wr32(E1000_DMCRTRH, 0);
9429
9430                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9431
9432                         wr32(E1000_DMCTLX, reg);
9433
9434                         /* free space in tx packet buffer to wake from
9435                          * DMA coal
9436                          */
9437                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9438                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9439
9440                         /* make low power state decision controlled
9441                          * by DMA coal
9442                          */
9443                         reg = rd32(E1000_PCIEMISC);
9444                         reg &= ~E1000_PCIEMISC_LX_DECISION;
9445                         wr32(E1000_PCIEMISC, reg);
9446                 } /* endif adapter->dmac is not disabled */
9447         } else if (hw->mac.type == e1000_82580) {
9448                 u32 reg = rd32(E1000_PCIEMISC);
9449
9450                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9451                 wr32(E1000_DMACR, 0);
9452         }
9453 }
9454
9455 /**
9456  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9457  *  @hw: pointer to hardware structure
9458  *  @byte_offset: byte offset to read
9459  *  @dev_addr: device address
9460  *  @data: value read
9461  *
9462  *  Performs byte read operation over I2C interface at
9463  *  a specified device address.
9464  **/
9465 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9466                       u8 dev_addr, u8 *data)
9467 {
9468         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9469         struct i2c_client *this_client = adapter->i2c_client;
9470         s32 status;
9471         u16 swfw_mask = 0;
9472
9473         if (!this_client)
9474                 return E1000_ERR_I2C;
9475
9476         swfw_mask = E1000_SWFW_PHY0_SM;
9477
9478         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9479                 return E1000_ERR_SWFW_SYNC;
9480
9481         status = i2c_smbus_read_byte_data(this_client, byte_offset);
9482         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9483
9484         if (status < 0)
9485                 return E1000_ERR_I2C;
9486         else {
9487                 *data = status;
9488                 return 0;
9489         }
9490 }
9491
9492 /**
9493  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9494  *  @hw: pointer to hardware structure
9495  *  @byte_offset: byte offset to write
9496  *  @dev_addr: device address
9497  *  @data: value to write
9498  *
9499  *  Performs byte write operation over I2C interface at
9500  *  a specified device address.
9501  **/
9502 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9503                        u8 dev_addr, u8 data)
9504 {
9505         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9506         struct i2c_client *this_client = adapter->i2c_client;
9507         s32 status;
9508         u16 swfw_mask = E1000_SWFW_PHY0_SM;
9509
9510         if (!this_client)
9511                 return E1000_ERR_I2C;
9512
9513         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9514                 return E1000_ERR_SWFW_SYNC;
9515         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9516         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9517
9518         if (status)
9519                 return E1000_ERR_I2C;
9520         else
9521                 return 0;
9522
9523 }
9524
9525 int igb_reinit_queues(struct igb_adapter *adapter)
9526 {
9527         struct net_device *netdev = adapter->netdev;
9528         struct pci_dev *pdev = adapter->pdev;
9529         int err = 0;
9530
9531         if (netif_running(netdev))
9532                 igb_close(netdev);
9533
9534         igb_reset_interrupt_capability(adapter);
9535
9536         if (igb_init_interrupt_scheme(adapter, true)) {
9537                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9538                 return -ENOMEM;
9539         }
9540
9541         if (netif_running(netdev))
9542                 err = igb_open(netdev);
9543
9544         return err;
9545 }
9546
9547 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9548 {
9549         struct igb_nfc_filter *rule;
9550
9551         spin_lock(&adapter->nfc_lock);
9552
9553         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9554                 igb_erase_filter(adapter, rule);
9555
9556         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9557                 igb_erase_filter(adapter, rule);
9558
9559         spin_unlock(&adapter->nfc_lock);
9560 }
9561
9562 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9563 {
9564         struct igb_nfc_filter *rule;
9565
9566         spin_lock(&adapter->nfc_lock);
9567
9568         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9569                 igb_add_filter(adapter, rule);
9570
9571         spin_unlock(&adapter->nfc_lock);
9572 }
9573 /* igb_main.c */