]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/neterion/vxge/vxge-config.c
7cde387e5ec62a0c36f070a163a6e5b9c38a6a4b
[linux.git] / drivers / net / ethernet / neterion / vxge / vxge-config.c
1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11  *                Virtualized Server Adapter.
12  * Copyright(c) 2002-2010 Exar Corp.
13  ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/io-64-nonatomic-lo-hi.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
23
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) {                          \
25         status = __vxge_hw_vpath_stats_access(vpath,                    \
26                                               VXGE_HW_STATS_OP_READ,    \
27                                               offset,                   \
28                                               &val64);                  \
29         if (status != VXGE_HW_OK)                                       \
30                 return status;                                          \
31 }
32
33 static void
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
35 {
36         u64 val64;
37
38         val64 = readq(&vp_reg->rxmac_vcfg0);
39         val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40         writeq(val64, &vp_reg->rxmac_vcfg0);
41         val64 = readq(&vp_reg->rxmac_vcfg0);
42 }
43
44 /*
45  * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
46  */
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
48 {
49         struct vxge_hw_vpath_reg __iomem *vp_reg;
50         struct __vxge_hw_virtualpath *vpath;
51         u64 val64, rxd_count, rxd_spat;
52         int count = 0, total_count = 0;
53
54         vpath = &hldev->virtual_paths[vp_id];
55         vp_reg = vpath->vp_reg;
56
57         vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
58
59         /* Check that the ring controller for this vpath has enough free RxDs
60          * to send frames to the host.  This is done by reading the
61          * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62          * RXD_SPAT value for the vpath.
63          */
64         val64 = readq(&vp_reg->prc_cfg6);
65         rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66         /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67          * leg room.
68          */
69         rxd_spat *= 2;
70
71         do {
72                 mdelay(1);
73
74                 rxd_count = readq(&vp_reg->prc_rxd_doorbell);
75
76                 /* Check that the ring controller for this vpath does
77                  * not have any frame in its pipeline.
78                  */
79                 val64 = readq(&vp_reg->frm_in_progress_cnt);
80                 if ((rxd_count <= rxd_spat) || (val64 > 0))
81                         count = 0;
82                 else
83                         count++;
84                 total_count++;
85         } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86                         (total_count < VXGE_HW_MAX_POLLING_COUNT));
87
88         if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89                 printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90                         __func__);
91
92         return total_count;
93 }
94
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96  * stored in the frame buffer for each vpath assigned to the given
97  * function (hldev) have been sent to the host.
98  */
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
100 {
101         int i, total_count = 0;
102
103         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105                         continue;
106
107                 total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108                 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109                         break;
110         }
111 }
112
113 /*
114  * __vxge_hw_device_register_poll
115  * Will poll certain register for specified amount of time.
116  * Will poll until masked bit is not cleared.
117  */
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
120 {
121         u64 val64;
122         u32 i = 0;
123
124         udelay(10);
125
126         do {
127                 val64 = readq(reg);
128                 if (!(val64 & mask))
129                         return VXGE_HW_OK;
130                 udelay(100);
131         } while (++i <= 9);
132
133         i = 0;
134         do {
135                 val64 = readq(reg);
136                 if (!(val64 & mask))
137                         return VXGE_HW_OK;
138                 mdelay(1);
139         } while (++i <= max_millis);
140
141         return VXGE_HW_FAIL;
142 }
143
144 static inline enum vxge_hw_status
145 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
146                           u64 mask, u32 max_millis)
147 {
148         __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
149         wmb();
150         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
151         wmb();
152
153         return __vxge_hw_device_register_poll(addr, mask, max_millis);
154 }
155
156 static enum vxge_hw_status
157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
158                      u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
159                      u64 *steer_ctrl)
160 {
161         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
162         enum vxge_hw_status status;
163         u64 val64;
164         u32 retry = 0, max_retry = 3;
165
166         spin_lock(&vpath->lock);
167         if (!vpath->vp_open) {
168                 spin_unlock(&vpath->lock);
169                 max_retry = 100;
170         }
171
172         writeq(*data0, &vp_reg->rts_access_steer_data0);
173         writeq(*data1, &vp_reg->rts_access_steer_data1);
174         wmb();
175
176         val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
177                 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
178                 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
179                 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
180                 *steer_ctrl;
181
182         status = __vxge_hw_pio_mem_write64(val64,
183                                            &vp_reg->rts_access_steer_ctrl,
184                                            VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
185                                            VXGE_HW_DEF_DEVICE_POLL_MILLIS);
186
187         /* The __vxge_hw_device_register_poll can udelay for a significant
188          * amount of time, blocking other process from the CPU.  If it delays
189          * for ~5secs, a NMI error can occur.  A way around this is to give up
190          * the processor via msleep, but this is not allowed is under lock.
191          * So, only allow it to sleep for ~4secs if open.  Otherwise, delay for
192          * 1sec and sleep for 10ms until the firmware operation has completed
193          * or timed-out.
194          */
195         while ((status != VXGE_HW_OK) && retry++ < max_retry) {
196                 if (!vpath->vp_open)
197                         msleep(20);
198                 status = __vxge_hw_device_register_poll(
199                                         &vp_reg->rts_access_steer_ctrl,
200                                         VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
201                                         VXGE_HW_DEF_DEVICE_POLL_MILLIS);
202         }
203
204         if (status != VXGE_HW_OK)
205                 goto out;
206
207         val64 = readq(&vp_reg->rts_access_steer_ctrl);
208         if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
209                 *data0 = readq(&vp_reg->rts_access_steer_data0);
210                 *data1 = readq(&vp_reg->rts_access_steer_data1);
211                 *steer_ctrl = val64;
212         } else
213                 status = VXGE_HW_FAIL;
214
215 out:
216         if (vpath->vp_open)
217                 spin_unlock(&vpath->lock);
218         return status;
219 }
220
221 enum vxge_hw_status
222 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
223                              u32 *minor, u32 *build)
224 {
225         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
226         struct __vxge_hw_virtualpath *vpath;
227         enum vxge_hw_status status;
228
229         vpath = &hldev->virtual_paths[hldev->first_vp_id];
230
231         status = vxge_hw_vpath_fw_api(vpath,
232                                       VXGE_HW_FW_UPGRADE_ACTION,
233                                       VXGE_HW_FW_UPGRADE_MEMO,
234                                       VXGE_HW_FW_UPGRADE_OFFSET_READ,
235                                       &data0, &data1, &steer_ctrl);
236         if (status != VXGE_HW_OK)
237                 return status;
238
239         *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
240         *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
241         *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
242
243         return status;
244 }
245
246 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
247 {
248         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
249         struct __vxge_hw_virtualpath *vpath;
250         enum vxge_hw_status status;
251         u32 ret;
252
253         vpath = &hldev->virtual_paths[hldev->first_vp_id];
254
255         status = vxge_hw_vpath_fw_api(vpath,
256                                       VXGE_HW_FW_UPGRADE_ACTION,
257                                       VXGE_HW_FW_UPGRADE_MEMO,
258                                       VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
259                                       &data0, &data1, &steer_ctrl);
260         if (status != VXGE_HW_OK) {
261                 vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
262                 goto exit;
263         }
264
265         ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
266         if (ret != 1) {
267                 vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
268                                 __func__, ret);
269                 status = VXGE_HW_FAIL;
270         }
271
272 exit:
273         return status;
274 }
275
276 enum vxge_hw_status
277 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
278 {
279         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
280         struct __vxge_hw_virtualpath *vpath;
281         enum vxge_hw_status status;
282         int ret_code, sec_code;
283
284         vpath = &hldev->virtual_paths[hldev->first_vp_id];
285
286         /* send upgrade start command */
287         status = vxge_hw_vpath_fw_api(vpath,
288                                       VXGE_HW_FW_UPGRADE_ACTION,
289                                       VXGE_HW_FW_UPGRADE_MEMO,
290                                       VXGE_HW_FW_UPGRADE_OFFSET_START,
291                                       &data0, &data1, &steer_ctrl);
292         if (status != VXGE_HW_OK) {
293                 vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
294                                 __func__);
295                 return status;
296         }
297
298         /* Transfer fw image to adapter 16 bytes at a time */
299         for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
300                 steer_ctrl = 0;
301
302                 /* The next 128bits of fwdata to be loaded onto the adapter */
303                 data0 = *((u64 *)fwdata);
304                 data1 = *((u64 *)fwdata + 1);
305
306                 status = vxge_hw_vpath_fw_api(vpath,
307                                               VXGE_HW_FW_UPGRADE_ACTION,
308                                               VXGE_HW_FW_UPGRADE_MEMO,
309                                               VXGE_HW_FW_UPGRADE_OFFSET_SEND,
310                                               &data0, &data1, &steer_ctrl);
311                 if (status != VXGE_HW_OK) {
312                         vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
313                                         __func__);
314                         goto out;
315                 }
316
317                 ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
318                 switch (ret_code) {
319                 case VXGE_HW_FW_UPGRADE_OK:
320                         /* All OK, send next 16 bytes. */
321                         break;
322                 case VXGE_FW_UPGRADE_BYTES2SKIP:
323                         /* skip bytes in the stream */
324                         fwdata += (data0 >> 8) & 0xFFFFFFFF;
325                         break;
326                 case VXGE_HW_FW_UPGRADE_DONE:
327                         goto out;
328                 case VXGE_HW_FW_UPGRADE_ERR:
329                         sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
330                         switch (sec_code) {
331                         case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
332                         case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
333                                 printk(KERN_ERR
334                                        "corrupted data from .ncf file\n");
335                                 break;
336                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
337                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
338                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
339                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
340                         case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
341                                 printk(KERN_ERR "invalid .ncf file\n");
342                                 break;
343                         case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
344                                 printk(KERN_ERR "buffer overflow\n");
345                                 break;
346                         case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
347                                 printk(KERN_ERR "failed to flash the image\n");
348                                 break;
349                         case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
350                                 printk(KERN_ERR
351                                        "generic error. Unknown error type\n");
352                                 break;
353                         default:
354                                 printk(KERN_ERR "Unknown error of type %d\n",
355                                        sec_code);
356                                 break;
357                         }
358                         status = VXGE_HW_FAIL;
359                         goto out;
360                 default:
361                         printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
362                         status = VXGE_HW_FAIL;
363                         goto out;
364                 }
365                 /* point to next 16 bytes */
366                 fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
367         }
368 out:
369         return status;
370 }
371
372 enum vxge_hw_status
373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
374                                 struct eprom_image *img)
375 {
376         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
377         struct __vxge_hw_virtualpath *vpath;
378         enum vxge_hw_status status;
379         int i;
380
381         vpath = &hldev->virtual_paths[hldev->first_vp_id];
382
383         for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
384                 data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
385                 data1 = steer_ctrl = 0;
386
387                 status = vxge_hw_vpath_fw_api(vpath,
388                         VXGE_HW_FW_API_GET_EPROM_REV,
389                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
390                         0, &data0, &data1, &steer_ctrl);
391                 if (status != VXGE_HW_OK)
392                         break;
393
394                 img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
395                 img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
396                 img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
397                 img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
398         }
399
400         return status;
401 }
402
403 /*
404  * __vxge_hw_channel_free - Free memory allocated for channel
405  * This function deallocates memory from the channel and various arrays
406  * in the channel
407  */
408 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
409 {
410         kfree(channel->work_arr);
411         kfree(channel->free_arr);
412         kfree(channel->reserve_arr);
413         kfree(channel->orig_arr);
414         kfree(channel);
415 }
416
417 /*
418  * __vxge_hw_channel_initialize - Initialize a channel
419  * This function initializes a channel by properly setting the
420  * various references
421  */
422 static enum vxge_hw_status
423 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
424 {
425         u32 i;
426         struct __vxge_hw_virtualpath *vpath;
427
428         vpath = channel->vph->vpath;
429
430         if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
431                 for (i = 0; i < channel->length; i++)
432                         channel->orig_arr[i] = channel->reserve_arr[i];
433         }
434
435         switch (channel->type) {
436         case VXGE_HW_CHANNEL_TYPE_FIFO:
437                 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
438                 channel->stats = &((struct __vxge_hw_fifo *)
439                                 channel)->stats->common_stats;
440                 break;
441         case VXGE_HW_CHANNEL_TYPE_RING:
442                 vpath->ringh = (struct __vxge_hw_ring *)channel;
443                 channel->stats = &((struct __vxge_hw_ring *)
444                                 channel)->stats->common_stats;
445                 break;
446         default:
447                 break;
448         }
449
450         return VXGE_HW_OK;
451 }
452
453 /*
454  * __vxge_hw_channel_reset - Resets a channel
455  * This function resets a channel by properly setting the various references
456  */
457 static enum vxge_hw_status
458 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
459 {
460         u32 i;
461
462         for (i = 0; i < channel->length; i++) {
463                 if (channel->reserve_arr != NULL)
464                         channel->reserve_arr[i] = channel->orig_arr[i];
465                 if (channel->free_arr != NULL)
466                         channel->free_arr[i] = NULL;
467                 if (channel->work_arr != NULL)
468                         channel->work_arr[i] = NULL;
469         }
470         channel->free_ptr = channel->length;
471         channel->reserve_ptr = channel->length;
472         channel->reserve_top = 0;
473         channel->post_index = 0;
474         channel->compl_index = 0;
475
476         return VXGE_HW_OK;
477 }
478
479 /*
480  * __vxge_hw_device_pci_e_init
481  * Initialize certain PCI/PCI-X configuration registers
482  * with recommended values. Save config space for future hw resets.
483  */
484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
485 {
486         u16 cmd = 0;
487
488         /* Set the PErr Repconse bit and SERR in PCI command register. */
489         pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
490         cmd |= 0x140;
491         pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
492
493         pci_save_state(hldev->pdev);
494 }
495
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
497  * in progress
498  * This routine checks the vpath reset in progress register is turned zero
499  */
500 static enum vxge_hw_status
501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
502 {
503         enum vxge_hw_status status;
504         status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
505                         VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506                         VXGE_HW_DEF_DEVICE_POLL_MILLIS);
507         return status;
508 }
509
510 /*
511  * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512  * Set the swapper bits appropriately for the lagacy section.
513  */
514 static enum vxge_hw_status
515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
516 {
517         u64 val64;
518         enum vxge_hw_status status = VXGE_HW_OK;
519
520         val64 = readq(&legacy_reg->toc_swapper_fb);
521
522         wmb();
523
524         switch (val64) {
525         case VXGE_HW_SWAPPER_INITIAL_VALUE:
526                 return status;
527
528         case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
529                 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
530                         &legacy_reg->pifm_rd_swap_en);
531                 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
532                         &legacy_reg->pifm_rd_flip_en);
533                 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
534                         &legacy_reg->pifm_wr_swap_en);
535                 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
536                         &legacy_reg->pifm_wr_flip_en);
537                 break;
538
539         case VXGE_HW_SWAPPER_BYTE_SWAPPED:
540                 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
541                         &legacy_reg->pifm_rd_swap_en);
542                 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
543                         &legacy_reg->pifm_wr_swap_en);
544                 break;
545
546         case VXGE_HW_SWAPPER_BIT_FLIPPED:
547                 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
548                         &legacy_reg->pifm_rd_flip_en);
549                 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
550                         &legacy_reg->pifm_wr_flip_en);
551                 break;
552         }
553
554         wmb();
555
556         val64 = readq(&legacy_reg->toc_swapper_fb);
557
558         if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
559                 status = VXGE_HW_ERR_SWAPPER_CTRL;
560
561         return status;
562 }
563
564 /*
565  * __vxge_hw_device_toc_get
566  * This routine sets the swapper and reads the toc pointer and returns the
567  * memory mapped address of the toc
568  */
569 static struct vxge_hw_toc_reg __iomem *
570 __vxge_hw_device_toc_get(void __iomem *bar0)
571 {
572         u64 val64;
573         struct vxge_hw_toc_reg __iomem *toc = NULL;
574         enum vxge_hw_status status;
575
576         struct vxge_hw_legacy_reg __iomem *legacy_reg =
577                 (struct vxge_hw_legacy_reg __iomem *)bar0;
578
579         status = __vxge_hw_legacy_swapper_set(legacy_reg);
580         if (status != VXGE_HW_OK)
581                 goto exit;
582
583         val64 = readq(&legacy_reg->toc_first_pointer);
584         toc = bar0 + val64;
585 exit:
586         return toc;
587 }
588
589 /*
590  * __vxge_hw_device_reg_addr_get
591  * This routine sets the swapper and reads the toc pointer and initializes the
592  * register location pointers in the device object. It waits until the ric is
593  * completed initializing registers.
594  */
595 static enum vxge_hw_status
596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
597 {
598         u64 val64;
599         u32 i;
600         enum vxge_hw_status status = VXGE_HW_OK;
601
602         hldev->legacy_reg = hldev->bar0;
603
604         hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
605         if (hldev->toc_reg  == NULL) {
606                 status = VXGE_HW_FAIL;
607                 goto exit;
608         }
609
610         val64 = readq(&hldev->toc_reg->toc_common_pointer);
611         hldev->common_reg = hldev->bar0 + val64;
612
613         val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
614         hldev->mrpcim_reg = hldev->bar0 + val64;
615
616         for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
617                 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
618                 hldev->srpcim_reg[i] = hldev->bar0 + val64;
619         }
620
621         for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
622                 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
623                 hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
624         }
625
626         for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
627                 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
628                 hldev->vpath_reg[i] = hldev->bar0 + val64;
629         }
630
631         val64 = readq(&hldev->toc_reg->toc_kdfc);
632
633         switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
634         case 0:
635                 hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
636                 break;
637         default:
638                 break;
639         }
640
641         status = __vxge_hw_device_vpath_reset_in_prog_check(
642                         (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
643 exit:
644         return status;
645 }
646
647 /*
648  * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649  * This routine returns the Access Rights of the driver
650  */
651 static u32
652 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
653 {
654         u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
655
656         switch (host_type) {
657         case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
658                 if (func_id == 0) {
659                         access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
660                                         VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
661                 }
662                 break;
663         case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
664                 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
665                                 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
666                 break;
667         case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
668                 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
669                                 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
670                 break;
671         case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
672         case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
673         case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
674                 break;
675         case VXGE_HW_SR_VH_FUNCTION0:
676         case VXGE_HW_VH_NORMAL_FUNCTION:
677                 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
678                 break;
679         }
680
681         return access_rights;
682 }
683 /*
684  * __vxge_hw_device_is_privilaged
685  * This routine checks if the device function is privilaged or not
686  */
687
688 enum vxge_hw_status
689 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
690 {
691         if (__vxge_hw_device_access_rights_get(host_type,
692                 func_id) &
693                 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
694                 return VXGE_HW_OK;
695         else
696                 return VXGE_HW_ERR_PRIVILEGED_OPERATION;
697 }
698
699 /*
700  * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701  * Returns the function number of the vpath.
702  */
703 static u32
704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
705 {
706         u64 val64;
707
708         val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
709
710         return
711          (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
712 }
713
714 /*
715  * __vxge_hw_device_host_info_get
716  * This routine returns the host type assignments
717  */
718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
719 {
720         u64 val64;
721         u32 i;
722
723         val64 = readq(&hldev->common_reg->host_type_assignments);
724
725         hldev->host_type =
726            (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
727
728         hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
729
730         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
731                 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
732                         continue;
733
734                 hldev->func_id =
735                         __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
736
737                 hldev->access_rights = __vxge_hw_device_access_rights_get(
738                         hldev->host_type, hldev->func_id);
739
740                 hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
741                 hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
742
743                 hldev->first_vp_id = i;
744                 break;
745         }
746 }
747
748 /*
749  * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750  * link width and signalling rate.
751  */
752 static enum vxge_hw_status
753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
754 {
755         struct pci_dev *dev = hldev->pdev;
756         u16 lnk;
757
758         /* Get the negotiated link width and speed from PCI config space */
759         pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
760
761         if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
762                 return VXGE_HW_ERR_INVALID_PCI_INFO;
763
764         switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
765         case PCIE_LNK_WIDTH_RESRV:
766         case PCIE_LNK_X1:
767         case PCIE_LNK_X2:
768         case PCIE_LNK_X4:
769         case PCIE_LNK_X8:
770                 break;
771         default:
772                 return VXGE_HW_ERR_INVALID_PCI_INFO;
773         }
774
775         return VXGE_HW_OK;
776 }
777
778 /*
779  * __vxge_hw_device_initialize
780  * Initialize Titan-V hardware.
781  */
782 static enum vxge_hw_status
783 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
784 {
785         enum vxge_hw_status status = VXGE_HW_OK;
786
787         if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
788                                 hldev->func_id)) {
789                 /* Validate the pci-e link width and speed */
790                 status = __vxge_hw_verify_pci_e_info(hldev);
791                 if (status != VXGE_HW_OK)
792                         goto exit;
793         }
794
795 exit:
796         return status;
797 }
798
799 /*
800  * __vxge_hw_vpath_fw_ver_get - Get the fw version
801  * Returns FW Version
802  */
803 static enum vxge_hw_status
804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
805                            struct vxge_hw_device_hw_info *hw_info)
806 {
807         struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
808         struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
809         struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
810         struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
811         u64 data0 = 0, data1 = 0, steer_ctrl = 0;
812         enum vxge_hw_status status;
813
814         status = vxge_hw_vpath_fw_api(vpath,
815                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
816                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
817                         0, &data0, &data1, &steer_ctrl);
818         if (status != VXGE_HW_OK)
819                 goto exit;
820
821         fw_date->day =
822             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
823         fw_date->month =
824             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
825         fw_date->year =
826             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
827
828         snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
829                  fw_date->month, fw_date->day, fw_date->year);
830
831         fw_version->major =
832             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
833         fw_version->minor =
834             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
835         fw_version->build =
836             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
837
838         snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
839                  fw_version->major, fw_version->minor, fw_version->build);
840
841         flash_date->day =
842             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
843         flash_date->month =
844             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
845         flash_date->year =
846             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
847
848         snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
849                  flash_date->month, flash_date->day, flash_date->year);
850
851         flash_version->major =
852             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
853         flash_version->minor =
854             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
855         flash_version->build =
856             (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
857
858         snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
859                  flash_version->major, flash_version->minor,
860                  flash_version->build);
861
862 exit:
863         return status;
864 }
865
866 /*
867  * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868  * part number and product description.
869  */
870 static enum vxge_hw_status
871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
872                               struct vxge_hw_device_hw_info *hw_info)
873 {
874         enum vxge_hw_status status;
875         u64 data0, data1 = 0, steer_ctrl = 0;
876         u8 *serial_number = hw_info->serial_number;
877         u8 *part_number = hw_info->part_number;
878         u8 *product_desc = hw_info->product_desc;
879         u32 i, j = 0;
880
881         data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
882
883         status = vxge_hw_vpath_fw_api(vpath,
884                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
885                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
886                         0, &data0, &data1, &steer_ctrl);
887         if (status != VXGE_HW_OK)
888                 return status;
889
890         ((u64 *)serial_number)[0] = be64_to_cpu(data0);
891         ((u64 *)serial_number)[1] = be64_to_cpu(data1);
892
893         data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
894         data1 = steer_ctrl = 0;
895
896         status = vxge_hw_vpath_fw_api(vpath,
897                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
898                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
899                         0, &data0, &data1, &steer_ctrl);
900         if (status != VXGE_HW_OK)
901                 return status;
902
903         ((u64 *)part_number)[0] = be64_to_cpu(data0);
904         ((u64 *)part_number)[1] = be64_to_cpu(data1);
905
906         for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
907              i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
908                 data0 = i;
909                 data1 = steer_ctrl = 0;
910
911                 status = vxge_hw_vpath_fw_api(vpath,
912                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
913                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
914                         0, &data0, &data1, &steer_ctrl);
915                 if (status != VXGE_HW_OK)
916                         return status;
917
918                 ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
919                 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
920         }
921
922         return status;
923 }
924
925 /*
926  * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927  * Returns pci function mode
928  */
929 static enum vxge_hw_status
930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
931                                   struct vxge_hw_device_hw_info *hw_info)
932 {
933         u64 data0, data1 = 0, steer_ctrl = 0;
934         enum vxge_hw_status status;
935
936         data0 = 0;
937
938         status = vxge_hw_vpath_fw_api(vpath,
939                         VXGE_HW_FW_API_GET_FUNC_MODE,
940                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
941                         0, &data0, &data1, &steer_ctrl);
942         if (status != VXGE_HW_OK)
943                 return status;
944
945         hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
946         return status;
947 }
948
949 /*
950  * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951  *               from MAC address table.
952  */
953 static enum vxge_hw_status
954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
955                          u8 *macaddr, u8 *macaddr_mask)
956 {
957         u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
958             data0 = 0, data1 = 0, steer_ctrl = 0;
959         enum vxge_hw_status status;
960         int i;
961
962         do {
963                 status = vxge_hw_vpath_fw_api(vpath, action,
964                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
965                         0, &data0, &data1, &steer_ctrl);
966                 if (status != VXGE_HW_OK)
967                         goto exit;
968
969                 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
970                 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
971                                                                         data1);
972
973                 for (i = ETH_ALEN; i > 0; i--) {
974                         macaddr[i - 1] = (u8) (data0 & 0xFF);
975                         data0 >>= 8;
976
977                         macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
978                         data1 >>= 8;
979                 }
980
981                 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
982                 data0 = 0, data1 = 0, steer_ctrl = 0;
983
984         } while (!is_valid_ether_addr(macaddr));
985 exit:
986         return status;
987 }
988
989 /**
990  * vxge_hw_device_hw_info_get - Get the hw information
991  * Returns the vpath mask that has the bits set for each vpath allocated
992  * for the driver, FW version information, and the first mac address for
993  * each vpath
994  */
995 enum vxge_hw_status
996 vxge_hw_device_hw_info_get(void __iomem *bar0,
997                            struct vxge_hw_device_hw_info *hw_info)
998 {
999         u32 i;
1000         u64 val64;
1001         struct vxge_hw_toc_reg __iomem *toc;
1002         struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1003         struct vxge_hw_common_reg __iomem *common_reg;
1004         struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1005         enum vxge_hw_status status;
1006         struct __vxge_hw_virtualpath vpath;
1007
1008         memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1009
1010         toc = __vxge_hw_device_toc_get(bar0);
1011         if (toc == NULL) {
1012                 status = VXGE_HW_ERR_CRITICAL;
1013                 goto exit;
1014         }
1015
1016         val64 = readq(&toc->toc_common_pointer);
1017         common_reg = bar0 + val64;
1018
1019         status = __vxge_hw_device_vpath_reset_in_prog_check(
1020                 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
1021         if (status != VXGE_HW_OK)
1022                 goto exit;
1023
1024         hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1025
1026         val64 = readq(&common_reg->host_type_assignments);
1027
1028         hw_info->host_type =
1029            (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1030
1031         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1032                 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1033                         continue;
1034
1035                 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1036
1037                 vpmgmt_reg = bar0 + val64;
1038
1039                 hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1040                 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1041                         hw_info->func_id) &
1042                         VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1043
1044                         val64 = readq(&toc->toc_mrpcim_pointer);
1045
1046                         mrpcim_reg = bar0 + val64;
1047
1048                         writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1049                         wmb();
1050                 }
1051
1052                 val64 = readq(&toc->toc_vpath_pointer[i]);
1053
1054                 spin_lock_init(&vpath.lock);
1055                 vpath.vp_reg = bar0 + val64;
1056                 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1057
1058                 status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1059                 if (status != VXGE_HW_OK)
1060                         goto exit;
1061
1062                 status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1063                 if (status != VXGE_HW_OK)
1064                         goto exit;
1065
1066                 status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1067                 if (status != VXGE_HW_OK)
1068                         goto exit;
1069
1070                 break;
1071         }
1072
1073         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1074                 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1075                         continue;
1076
1077                 val64 = readq(&toc->toc_vpath_pointer[i]);
1078                 vpath.vp_reg = bar0 + val64;
1079                 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1080
1081                 status =  __vxge_hw_vpath_addr_get(&vpath,
1082                                 hw_info->mac_addrs[i],
1083                                 hw_info->mac_addr_masks[i]);
1084                 if (status != VXGE_HW_OK)
1085                         goto exit;
1086         }
1087 exit:
1088         return status;
1089 }
1090
1091 /*
1092  * __vxge_hw_blockpool_destroy - Deallocates the block pool
1093  */
1094 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1095 {
1096         struct __vxge_hw_device *hldev;
1097         struct list_head *p, *n;
1098
1099         if (!blockpool)
1100                 return;
1101
1102         hldev = blockpool->hldev;
1103
1104         list_for_each_safe(p, n, &blockpool->free_block_list) {
1105                 pci_unmap_single(hldev->pdev,
1106                         ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1107                         ((struct __vxge_hw_blockpool_entry *)p)->length,
1108                         PCI_DMA_BIDIRECTIONAL);
1109
1110                 vxge_os_dma_free(hldev->pdev,
1111                         ((struct __vxge_hw_blockpool_entry *)p)->memblock,
1112                         &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1113
1114                 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1115                 kfree(p);
1116                 blockpool->pool_size--;
1117         }
1118
1119         list_for_each_safe(p, n, &blockpool->free_entry_list) {
1120                 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1121                 kfree((void *)p);
1122         }
1123
1124         return;
1125 }
1126
1127 /*
1128  * __vxge_hw_blockpool_create - Create block pool
1129  */
1130 static enum vxge_hw_status
1131 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1132                            struct __vxge_hw_blockpool *blockpool,
1133                            u32 pool_size,
1134                            u32 pool_max)
1135 {
1136         u32 i;
1137         struct __vxge_hw_blockpool_entry *entry = NULL;
1138         void *memblock;
1139         dma_addr_t dma_addr;
1140         struct pci_dev *dma_handle;
1141         struct pci_dev *acc_handle;
1142         enum vxge_hw_status status = VXGE_HW_OK;
1143
1144         if (blockpool == NULL) {
1145                 status = VXGE_HW_FAIL;
1146                 goto blockpool_create_exit;
1147         }
1148
1149         blockpool->hldev = hldev;
1150         blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1151         blockpool->pool_size = 0;
1152         blockpool->pool_max = pool_max;
1153         blockpool->req_out = 0;
1154
1155         INIT_LIST_HEAD(&blockpool->free_block_list);
1156         INIT_LIST_HEAD(&blockpool->free_entry_list);
1157
1158         for (i = 0; i < pool_size + pool_max; i++) {
1159                 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1160                                 GFP_KERNEL);
1161                 if (entry == NULL) {
1162                         __vxge_hw_blockpool_destroy(blockpool);
1163                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
1164                         goto blockpool_create_exit;
1165                 }
1166                 list_add(&entry->item, &blockpool->free_entry_list);
1167         }
1168
1169         for (i = 0; i < pool_size; i++) {
1170                 memblock = vxge_os_dma_malloc(
1171                                 hldev->pdev,
1172                                 VXGE_HW_BLOCK_SIZE,
1173                                 &dma_handle,
1174                                 &acc_handle);
1175                 if (memblock == NULL) {
1176                         __vxge_hw_blockpool_destroy(blockpool);
1177                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
1178                         goto blockpool_create_exit;
1179                 }
1180
1181                 dma_addr = pci_map_single(hldev->pdev, memblock,
1182                                 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1183                 if (unlikely(pci_dma_mapping_error(hldev->pdev,
1184                                 dma_addr))) {
1185                         vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1186                         __vxge_hw_blockpool_destroy(blockpool);
1187                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
1188                         goto blockpool_create_exit;
1189                 }
1190
1191                 if (!list_empty(&blockpool->free_entry_list))
1192                         entry = (struct __vxge_hw_blockpool_entry *)
1193                                 list_first_entry(&blockpool->free_entry_list,
1194                                         struct __vxge_hw_blockpool_entry,
1195                                         item);
1196
1197                 if (entry == NULL)
1198                         entry =
1199                             kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1200                                         GFP_KERNEL);
1201                 if (entry != NULL) {
1202                         list_del(&entry->item);
1203                         entry->length = VXGE_HW_BLOCK_SIZE;
1204                         entry->memblock = memblock;
1205                         entry->dma_addr = dma_addr;
1206                         entry->acc_handle = acc_handle;
1207                         entry->dma_handle = dma_handle;
1208                         list_add(&entry->item,
1209                                           &blockpool->free_block_list);
1210                         blockpool->pool_size++;
1211                 } else {
1212                         __vxge_hw_blockpool_destroy(blockpool);
1213                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
1214                         goto blockpool_create_exit;
1215                 }
1216         }
1217
1218 blockpool_create_exit:
1219         return status;
1220 }
1221
1222 /*
1223  * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1224  * Check the fifo configuration
1225  */
1226 static enum vxge_hw_status
1227 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1228 {
1229         if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1230             (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1231                 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1232
1233         return VXGE_HW_OK;
1234 }
1235
1236 /*
1237  * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1238  * Check the vpath configuration
1239  */
1240 static enum vxge_hw_status
1241 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1242 {
1243         enum vxge_hw_status status;
1244
1245         if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1246             (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
1247                 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1248
1249         status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1250         if (status != VXGE_HW_OK)
1251                 return status;
1252
1253         if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1254                 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1255                 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1256                 return VXGE_HW_BADCFG_VPATH_MTU;
1257
1258         if ((vp_config->rpa_strip_vlan_tag !=
1259                 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1260                 (vp_config->rpa_strip_vlan_tag !=
1261                 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1262                 (vp_config->rpa_strip_vlan_tag !=
1263                 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1264                 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1265
1266         return VXGE_HW_OK;
1267 }
1268
1269 /*
1270  * __vxge_hw_device_config_check - Check device configuration.
1271  * Check the device configuration
1272  */
1273 static enum vxge_hw_status
1274 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1275 {
1276         u32 i;
1277         enum vxge_hw_status status;
1278
1279         if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1280             (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1281             (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1282             (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1283                 return VXGE_HW_BADCFG_INTR_MODE;
1284
1285         if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1286             (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1287                 return VXGE_HW_BADCFG_RTS_MAC_EN;
1288
1289         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1290                 status = __vxge_hw_device_vpath_config_check(
1291                                 &new_config->vp_config[i]);
1292                 if (status != VXGE_HW_OK)
1293                         return status;
1294         }
1295
1296         return VXGE_HW_OK;
1297 }
1298
1299 /*
1300  * vxge_hw_device_initialize - Initialize Titan device.
1301  * Initialize Titan device. Note that all the arguments of this public API
1302  * are 'IN', including @hldev. Driver cooperates with
1303  * OS to find new Titan device, locate its PCI and memory spaces.
1304  *
1305  * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1306  * to enable the latter to perform Titan hardware initialization.
1307  */
1308 enum vxge_hw_status
1309 vxge_hw_device_initialize(
1310         struct __vxge_hw_device **devh,
1311         struct vxge_hw_device_attr *attr,
1312         struct vxge_hw_device_config *device_config)
1313 {
1314         u32 i;
1315         u32 nblocks = 0;
1316         struct __vxge_hw_device *hldev = NULL;
1317         enum vxge_hw_status status = VXGE_HW_OK;
1318
1319         status = __vxge_hw_device_config_check(device_config);
1320         if (status != VXGE_HW_OK)
1321                 goto exit;
1322
1323         hldev = vzalloc(sizeof(struct __vxge_hw_device));
1324         if (hldev == NULL) {
1325                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1326                 goto exit;
1327         }
1328
1329         hldev->magic = VXGE_HW_DEVICE_MAGIC;
1330
1331         vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1332
1333         /* apply config */
1334         memcpy(&hldev->config, device_config,
1335                 sizeof(struct vxge_hw_device_config));
1336
1337         hldev->bar0 = attr->bar0;
1338         hldev->pdev = attr->pdev;
1339
1340         hldev->uld_callbacks = attr->uld_callbacks;
1341
1342         __vxge_hw_device_pci_e_init(hldev);
1343
1344         status = __vxge_hw_device_reg_addr_get(hldev);
1345         if (status != VXGE_HW_OK) {
1346                 vfree(hldev);
1347                 goto exit;
1348         }
1349
1350         __vxge_hw_device_host_info_get(hldev);
1351
1352         /* Incrementing for stats blocks */
1353         nblocks++;
1354
1355         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1356                 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1357                         continue;
1358
1359                 if (device_config->vp_config[i].ring.enable ==
1360                         VXGE_HW_RING_ENABLE)
1361                         nblocks += device_config->vp_config[i].ring.ring_blocks;
1362
1363                 if (device_config->vp_config[i].fifo.enable ==
1364                         VXGE_HW_FIFO_ENABLE)
1365                         nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1366                 nblocks++;
1367         }
1368
1369         if (__vxge_hw_blockpool_create(hldev,
1370                 &hldev->block_pool,
1371                 device_config->dma_blockpool_initial + nblocks,
1372                 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1373
1374                 vxge_hw_device_terminate(hldev);
1375                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1376                 goto exit;
1377         }
1378
1379         status = __vxge_hw_device_initialize(hldev);
1380         if (status != VXGE_HW_OK) {
1381                 vxge_hw_device_terminate(hldev);
1382                 goto exit;
1383         }
1384
1385         *devh = hldev;
1386 exit:
1387         return status;
1388 }
1389
1390 /*
1391  * vxge_hw_device_terminate - Terminate Titan device.
1392  * Terminate HW device.
1393  */
1394 void
1395 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1396 {
1397         vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1398
1399         hldev->magic = VXGE_HW_DEVICE_DEAD;
1400         __vxge_hw_blockpool_destroy(&hldev->block_pool);
1401         vfree(hldev);
1402 }
1403
1404 /*
1405  * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1406  *                           and offset and perform an operation
1407  */
1408 static enum vxge_hw_status
1409 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1410                              u32 operation, u32 offset, u64 *stat)
1411 {
1412         u64 val64;
1413         enum vxge_hw_status status = VXGE_HW_OK;
1414         struct vxge_hw_vpath_reg __iomem *vp_reg;
1415
1416         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1417                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1418                 goto vpath_stats_access_exit;
1419         }
1420
1421         vp_reg = vpath->vp_reg;
1422
1423         val64 =  VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1424                  VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1425                  VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1426
1427         status = __vxge_hw_pio_mem_write64(val64,
1428                                 &vp_reg->xmac_stats_access_cmd,
1429                                 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1430                                 vpath->hldev->config.device_poll_millis);
1431         if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1432                 *stat = readq(&vp_reg->xmac_stats_access_data);
1433         else
1434                 *stat = 0;
1435
1436 vpath_stats_access_exit:
1437         return status;
1438 }
1439
1440 /*
1441  * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1442  */
1443 static enum vxge_hw_status
1444 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1445                         struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1446 {
1447         u64 *val64;
1448         int i;
1449         u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1450         enum vxge_hw_status status = VXGE_HW_OK;
1451
1452         val64 = (u64 *)vpath_tx_stats;
1453
1454         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1455                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1456                 goto exit;
1457         }
1458
1459         for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1460                 status = __vxge_hw_vpath_stats_access(vpath,
1461                                         VXGE_HW_STATS_OP_READ,
1462                                         offset, val64);
1463                 if (status != VXGE_HW_OK)
1464                         goto exit;
1465                 offset++;
1466                 val64++;
1467         }
1468 exit:
1469         return status;
1470 }
1471
1472 /*
1473  * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1474  */
1475 static enum vxge_hw_status
1476 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1477                         struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1478 {
1479         u64 *val64;
1480         enum vxge_hw_status status = VXGE_HW_OK;
1481         int i;
1482         u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1483         val64 = (u64 *) vpath_rx_stats;
1484
1485         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1486                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1487                 goto exit;
1488         }
1489         for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1490                 status = __vxge_hw_vpath_stats_access(vpath,
1491                                         VXGE_HW_STATS_OP_READ,
1492                                         offset >> 3, val64);
1493                 if (status != VXGE_HW_OK)
1494                         goto exit;
1495
1496                 offset += 8;
1497                 val64++;
1498         }
1499 exit:
1500         return status;
1501 }
1502
1503 /*
1504  * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1505  */
1506 static enum vxge_hw_status
1507 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1508                           struct vxge_hw_vpath_stats_hw_info *hw_stats)
1509 {
1510         u64 val64;
1511         enum vxge_hw_status status = VXGE_HW_OK;
1512         struct vxge_hw_vpath_reg __iomem *vp_reg;
1513
1514         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1515                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1516                 goto exit;
1517         }
1518         vp_reg = vpath->vp_reg;
1519
1520         val64 = readq(&vp_reg->vpath_debug_stats0);
1521         hw_stats->ini_num_mwr_sent =
1522                 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1523
1524         val64 = readq(&vp_reg->vpath_debug_stats1);
1525         hw_stats->ini_num_mrd_sent =
1526                 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1527
1528         val64 = readq(&vp_reg->vpath_debug_stats2);
1529         hw_stats->ini_num_cpl_rcvd =
1530                 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1531
1532         val64 = readq(&vp_reg->vpath_debug_stats3);
1533         hw_stats->ini_num_mwr_byte_sent =
1534                 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1535
1536         val64 = readq(&vp_reg->vpath_debug_stats4);
1537         hw_stats->ini_num_cpl_byte_rcvd =
1538                 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1539
1540         val64 = readq(&vp_reg->vpath_debug_stats5);
1541         hw_stats->wrcrdtarb_xoff =
1542                 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1543
1544         val64 = readq(&vp_reg->vpath_debug_stats6);
1545         hw_stats->rdcrdtarb_xoff =
1546                 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1547
1548         val64 = readq(&vp_reg->vpath_genstats_count01);
1549         hw_stats->vpath_genstats_count0 =
1550         (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1551                 val64);
1552
1553         val64 = readq(&vp_reg->vpath_genstats_count01);
1554         hw_stats->vpath_genstats_count1 =
1555         (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1556                 val64);
1557
1558         val64 = readq(&vp_reg->vpath_genstats_count23);
1559         hw_stats->vpath_genstats_count2 =
1560         (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1561                 val64);
1562
1563         val64 = readq(&vp_reg->vpath_genstats_count01);
1564         hw_stats->vpath_genstats_count3 =
1565         (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1566                 val64);
1567
1568         val64 = readq(&vp_reg->vpath_genstats_count4);
1569         hw_stats->vpath_genstats_count4 =
1570         (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1571                 val64);
1572
1573         val64 = readq(&vp_reg->vpath_genstats_count5);
1574         hw_stats->vpath_genstats_count5 =
1575         (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1576                 val64);
1577
1578         status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1579         if (status != VXGE_HW_OK)
1580                 goto exit;
1581
1582         status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1583         if (status != VXGE_HW_OK)
1584                 goto exit;
1585
1586         VXGE_HW_VPATH_STATS_PIO_READ(
1587                 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1588
1589         hw_stats->prog_event_vnum0 =
1590                         (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1591
1592         hw_stats->prog_event_vnum1 =
1593                         (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1594
1595         VXGE_HW_VPATH_STATS_PIO_READ(
1596                 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1597
1598         hw_stats->prog_event_vnum2 =
1599                         (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1600
1601         hw_stats->prog_event_vnum3 =
1602                         (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1603
1604         val64 = readq(&vp_reg->rx_multi_cast_stats);
1605         hw_stats->rx_multi_cast_frame_discard =
1606                 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1607
1608         val64 = readq(&vp_reg->rx_frm_transferred);
1609         hw_stats->rx_frm_transferred =
1610                 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1611
1612         val64 = readq(&vp_reg->rxd_returned);
1613         hw_stats->rxd_returned =
1614                 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1615
1616         val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1617         hw_stats->rx_mpa_len_fail_frms =
1618                 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1619         hw_stats->rx_mpa_mrk_fail_frms =
1620                 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1621         hw_stats->rx_mpa_crc_fail_frms =
1622                 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1623
1624         val64 = readq(&vp_reg->dbg_stats_rx_fau);
1625         hw_stats->rx_permitted_frms =
1626                 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1627         hw_stats->rx_vp_reset_discarded_frms =
1628         (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1629         hw_stats->rx_wol_frms =
1630                 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1631
1632         val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1633         hw_stats->tx_vp_reset_discarded_frms =
1634         (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1635                 val64);
1636 exit:
1637         return status;
1638 }
1639
1640 /*
1641  * vxge_hw_device_stats_get - Get the device hw statistics.
1642  * Returns the vpath h/w stats for the device.
1643  */
1644 enum vxge_hw_status
1645 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1646                         struct vxge_hw_device_stats_hw_info *hw_stats)
1647 {
1648         u32 i;
1649         enum vxge_hw_status status = VXGE_HW_OK;
1650
1651         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1652                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1653                         (hldev->virtual_paths[i].vp_open ==
1654                                 VXGE_HW_VP_NOT_OPEN))
1655                         continue;
1656
1657                 memcpy(hldev->virtual_paths[i].hw_stats_sav,
1658                                 hldev->virtual_paths[i].hw_stats,
1659                                 sizeof(struct vxge_hw_vpath_stats_hw_info));
1660
1661                 status = __vxge_hw_vpath_stats_get(
1662                         &hldev->virtual_paths[i],
1663                         hldev->virtual_paths[i].hw_stats);
1664         }
1665
1666         memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1667                         sizeof(struct vxge_hw_device_stats_hw_info));
1668
1669         return status;
1670 }
1671
1672 /*
1673  * vxge_hw_driver_stats_get - Get the device sw statistics.
1674  * Returns the vpath s/w stats for the device.
1675  */
1676 enum vxge_hw_status vxge_hw_driver_stats_get(
1677                         struct __vxge_hw_device *hldev,
1678                         struct vxge_hw_device_stats_sw_info *sw_stats)
1679 {
1680         memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1681                 sizeof(struct vxge_hw_device_stats_sw_info));
1682
1683         return VXGE_HW_OK;
1684 }
1685
1686 /*
1687  * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1688  *                           and offset and perform an operation
1689  * Get the statistics from the given location and offset.
1690  */
1691 enum vxge_hw_status
1692 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1693                             u32 operation, u32 location, u32 offset, u64 *stat)
1694 {
1695         u64 val64;
1696         enum vxge_hw_status status = VXGE_HW_OK;
1697
1698         status = __vxge_hw_device_is_privilaged(hldev->host_type,
1699                         hldev->func_id);
1700         if (status != VXGE_HW_OK)
1701                 goto exit;
1702
1703         val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1704                 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1705                 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1706                 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1707
1708         status = __vxge_hw_pio_mem_write64(val64,
1709                                 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
1710                                 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1711                                 hldev->config.device_poll_millis);
1712
1713         if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1714                 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1715         else
1716                 *stat = 0;
1717 exit:
1718         return status;
1719 }
1720
1721 /*
1722  * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1723  * Get the Statistics on aggregate port
1724  */
1725 static enum vxge_hw_status
1726 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1727                                    struct vxge_hw_xmac_aggr_stats *aggr_stats)
1728 {
1729         u64 *val64;
1730         int i;
1731         u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1732         enum vxge_hw_status status = VXGE_HW_OK;
1733
1734         val64 = (u64 *)aggr_stats;
1735
1736         status = __vxge_hw_device_is_privilaged(hldev->host_type,
1737                         hldev->func_id);
1738         if (status != VXGE_HW_OK)
1739                 goto exit;
1740
1741         for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1742                 status = vxge_hw_mrpcim_stats_access(hldev,
1743                                         VXGE_HW_STATS_OP_READ,
1744                                         VXGE_HW_STATS_LOC_AGGR,
1745                                         ((offset + (104 * port)) >> 3), val64);
1746                 if (status != VXGE_HW_OK)
1747                         goto exit;
1748
1749                 offset += 8;
1750                 val64++;
1751         }
1752 exit:
1753         return status;
1754 }
1755
1756 /*
1757  * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1758  * Get the Statistics on port
1759  */
1760 static enum vxge_hw_status
1761 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1762                                    struct vxge_hw_xmac_port_stats *port_stats)
1763 {
1764         u64 *val64;
1765         enum vxge_hw_status status = VXGE_HW_OK;
1766         int i;
1767         u32 offset = 0x0;
1768         val64 = (u64 *) port_stats;
1769
1770         status = __vxge_hw_device_is_privilaged(hldev->host_type,
1771                         hldev->func_id);
1772         if (status != VXGE_HW_OK)
1773                 goto exit;
1774
1775         for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1776                 status = vxge_hw_mrpcim_stats_access(hldev,
1777                                         VXGE_HW_STATS_OP_READ,
1778                                         VXGE_HW_STATS_LOC_AGGR,
1779                                         ((offset + (608 * port)) >> 3), val64);
1780                 if (status != VXGE_HW_OK)
1781                         goto exit;
1782
1783                 offset += 8;
1784                 val64++;
1785         }
1786
1787 exit:
1788         return status;
1789 }
1790
1791 /*
1792  * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1793  * Get the XMAC Statistics
1794  */
1795 enum vxge_hw_status
1796 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1797                               struct vxge_hw_xmac_stats *xmac_stats)
1798 {
1799         enum vxge_hw_status status = VXGE_HW_OK;
1800         u32 i;
1801
1802         status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1803                                         0, &xmac_stats->aggr_stats[0]);
1804         if (status != VXGE_HW_OK)
1805                 goto exit;
1806
1807         status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1808                                 1, &xmac_stats->aggr_stats[1]);
1809         if (status != VXGE_HW_OK)
1810                 goto exit;
1811
1812         for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1813
1814                 status = vxge_hw_device_xmac_port_stats_get(hldev,
1815                                         i, &xmac_stats->port_stats[i]);
1816                 if (status != VXGE_HW_OK)
1817                         goto exit;
1818         }
1819
1820         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1821
1822                 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1823                         continue;
1824
1825                 status = __vxge_hw_vpath_xmac_tx_stats_get(
1826                                         &hldev->virtual_paths[i],
1827                                         &xmac_stats->vpath_tx_stats[i]);
1828                 if (status != VXGE_HW_OK)
1829                         goto exit;
1830
1831                 status = __vxge_hw_vpath_xmac_rx_stats_get(
1832                                         &hldev->virtual_paths[i],
1833                                         &xmac_stats->vpath_rx_stats[i]);
1834                 if (status != VXGE_HW_OK)
1835                         goto exit;
1836         }
1837 exit:
1838         return status;
1839 }
1840
1841 /*
1842  * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1843  * This routine is used to dynamically change the debug output
1844  */
1845 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1846                               enum vxge_debug_level level, u32 mask)
1847 {
1848         if (hldev == NULL)
1849                 return;
1850
1851 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1852         defined(VXGE_DEBUG_ERR_MASK)
1853         hldev->debug_module_mask = mask;
1854         hldev->debug_level = level;
1855 #endif
1856
1857 #if defined(VXGE_DEBUG_ERR_MASK)
1858         hldev->level_err = level & VXGE_ERR;
1859 #endif
1860
1861 #if defined(VXGE_DEBUG_TRACE_MASK)
1862         hldev->level_trace = level & VXGE_TRACE;
1863 #endif
1864 }
1865
1866 /*
1867  * vxge_hw_device_error_level_get - Get the error level
1868  * This routine returns the current error level set
1869  */
1870 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1871 {
1872 #if defined(VXGE_DEBUG_ERR_MASK)
1873         if (hldev == NULL)
1874                 return VXGE_ERR;
1875         else
1876                 return hldev->level_err;
1877 #else
1878         return 0;
1879 #endif
1880 }
1881
1882 /*
1883  * vxge_hw_device_trace_level_get - Get the trace level
1884  * This routine returns the current trace level set
1885  */
1886 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1887 {
1888 #if defined(VXGE_DEBUG_TRACE_MASK)
1889         if (hldev == NULL)
1890                 return VXGE_TRACE;
1891         else
1892                 return hldev->level_trace;
1893 #else
1894         return 0;
1895 #endif
1896 }
1897
1898 /*
1899  * vxge_hw_getpause_data -Pause frame frame generation and reception.
1900  * Returns the Pause frame generation and reception capability of the NIC.
1901  */
1902 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1903                                                  u32 port, u32 *tx, u32 *rx)
1904 {
1905         u64 val64;
1906         enum vxge_hw_status status = VXGE_HW_OK;
1907
1908         if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1909                 status = VXGE_HW_ERR_INVALID_DEVICE;
1910                 goto exit;
1911         }
1912
1913         if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1914                 status = VXGE_HW_ERR_INVALID_PORT;
1915                 goto exit;
1916         }
1917
1918         if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1919                 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
1920                 goto exit;
1921         }
1922
1923         val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1924         if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1925                 *tx = 1;
1926         if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1927                 *rx = 1;
1928 exit:
1929         return status;
1930 }
1931
1932 /*
1933  * vxge_hw_device_setpause_data -  set/reset pause frame generation.
1934  * It can be used to set or reset Pause frame generation or reception
1935  * support of the NIC.
1936  */
1937 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1938                                                  u32 port, u32 tx, u32 rx)
1939 {
1940         u64 val64;
1941         enum vxge_hw_status status = VXGE_HW_OK;
1942
1943         if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1944                 status = VXGE_HW_ERR_INVALID_DEVICE;
1945                 goto exit;
1946         }
1947
1948         if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1949                 status = VXGE_HW_ERR_INVALID_PORT;
1950                 goto exit;
1951         }
1952
1953         status = __vxge_hw_device_is_privilaged(hldev->host_type,
1954                         hldev->func_id);
1955         if (status != VXGE_HW_OK)
1956                 goto exit;
1957
1958         val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1959         if (tx)
1960                 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1961         else
1962                 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1963         if (rx)
1964                 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1965         else
1966                 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1967
1968         writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1969 exit:
1970         return status;
1971 }
1972
1973 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1974 {
1975         struct pci_dev *dev = hldev->pdev;
1976         u16 lnk;
1977
1978         pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
1979         return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1980 }
1981
1982 /*
1983  * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1984  * This function returns the index of memory block
1985  */
1986 static inline u32
1987 __vxge_hw_ring_block_memblock_idx(u8 *block)
1988 {
1989         return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1990 }
1991
1992 /*
1993  * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1994  * This function sets index to a memory block
1995  */
1996 static inline void
1997 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1998 {
1999         *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2000 }
2001
2002 /*
2003  * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2004  * in RxD block
2005  * Sets the next block pointer in RxD block
2006  */
2007 static inline void
2008 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2009 {
2010         *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2011 }
2012
2013 /*
2014  * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2015  *             first block
2016  * Returns the dma address of the first RxD block
2017  */
2018 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2019 {
2020         struct vxge_hw_mempool_dma *dma_object;
2021
2022         dma_object = ring->mempool->memblocks_dma_arr;
2023         vxge_assert(dma_object != NULL);
2024
2025         return dma_object->addr;
2026 }
2027
2028 /*
2029  * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2030  * This function returns the dma address of a given item
2031  */
2032 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2033                                                void *item)
2034 {
2035         u32 memblock_idx;
2036         void *memblock;
2037         struct vxge_hw_mempool_dma *memblock_dma_object;
2038         ptrdiff_t dma_item_offset;
2039
2040         /* get owner memblock index */
2041         memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2042
2043         /* get owner memblock by memblock index */
2044         memblock = mempoolh->memblocks_arr[memblock_idx];
2045
2046         /* get memblock DMA object by memblock index */
2047         memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2048
2049         /* calculate offset in the memblock of this item */
2050         dma_item_offset = (u8 *)item - (u8 *)memblock;
2051
2052         return memblock_dma_object->addr + dma_item_offset;
2053 }
2054
2055 /*
2056  * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2057  * This function returns the dma address of a given item
2058  */
2059 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2060                                          struct __vxge_hw_ring *ring, u32 from,
2061                                          u32 to)
2062 {
2063         u8 *to_item , *from_item;
2064         dma_addr_t to_dma;
2065
2066         /* get "from" RxD block */
2067         from_item = mempoolh->items_arr[from];
2068         vxge_assert(from_item);
2069
2070         /* get "to" RxD block */
2071         to_item = mempoolh->items_arr[to];
2072         vxge_assert(to_item);
2073
2074         /* return address of the beginning of previous RxD block */
2075         to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2076
2077         /* set next pointer for this RxD block to point on
2078          * previous item's DMA start address */
2079         __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2080 }
2081
2082 /*
2083  * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2084  * block callback
2085  * This function is callback passed to __vxge_hw_mempool_create to create memory
2086  * pool for RxD block
2087  */
2088 static void
2089 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2090                                   u32 memblock_index,
2091                                   struct vxge_hw_mempool_dma *dma_object,
2092                                   u32 index, u32 is_last)
2093 {
2094         u32 i;
2095         void *item = mempoolh->items_arr[index];
2096         struct __vxge_hw_ring *ring =
2097                 (struct __vxge_hw_ring *)mempoolh->userdata;
2098
2099         /* format rxds array */
2100         for (i = 0; i < ring->rxds_per_block; i++) {
2101                 void *rxdblock_priv;
2102                 void *uld_priv;
2103                 struct vxge_hw_ring_rxd_1 *rxdp;
2104
2105                 u32 reserve_index = ring->channel.reserve_ptr -
2106                                 (index * ring->rxds_per_block + i + 1);
2107                 u32 memblock_item_idx;
2108
2109                 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2110                                                 i * ring->rxd_size;
2111
2112                 /* Note: memblock_item_idx is index of the item within
2113                  *       the memblock. For instance, in case of three RxD-blocks
2114                  *       per memblock this value can be 0, 1 or 2. */
2115                 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2116                                         memblock_index, item,
2117                                         &memblock_item_idx);
2118
2119                 rxdp = ring->channel.reserve_arr[reserve_index];
2120
2121                 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2122
2123                 /* pre-format Host_Control */
2124                 rxdp->host_control = (u64)(size_t)uld_priv;
2125         }
2126
2127         __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2128
2129         if (is_last) {
2130                 /* link last one with first one */
2131                 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2132         }
2133
2134         if (index > 0) {
2135                 /* link this RxD block with previous one */
2136                 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2137         }
2138 }
2139
2140 /*
2141  * __vxge_hw_ring_replenish - Initial replenish of RxDs
2142  * This function replenishes the RxDs from reserve array to work array
2143  */
2144 static enum vxge_hw_status
2145 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2146 {
2147         void *rxd;
2148         struct __vxge_hw_channel *channel;
2149         enum vxge_hw_status status = VXGE_HW_OK;
2150
2151         channel = &ring->channel;
2152
2153         while (vxge_hw_channel_dtr_count(channel) > 0) {
2154
2155                 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2156
2157                 vxge_assert(status == VXGE_HW_OK);
2158
2159                 if (ring->rxd_init) {
2160                         status = ring->rxd_init(rxd, channel->userdata);
2161                         if (status != VXGE_HW_OK) {
2162                                 vxge_hw_ring_rxd_free(ring, rxd);
2163                                 goto exit;
2164                         }
2165                 }
2166
2167                 vxge_hw_ring_rxd_post(ring, rxd);
2168         }
2169         status = VXGE_HW_OK;
2170 exit:
2171         return status;
2172 }
2173
2174 /*
2175  * __vxge_hw_channel_allocate - Allocate memory for channel
2176  * This function allocates required memory for the channel and various arrays
2177  * in the channel
2178  */
2179 static struct __vxge_hw_channel *
2180 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2181                            enum __vxge_hw_channel_type type,
2182                            u32 length, u32 per_dtr_space,
2183                            void *userdata)
2184 {
2185         struct __vxge_hw_channel *channel;
2186         struct __vxge_hw_device *hldev;
2187         int size = 0;
2188         u32 vp_id;
2189
2190         hldev = vph->vpath->hldev;
2191         vp_id = vph->vpath->vp_id;
2192
2193         switch (type) {
2194         case VXGE_HW_CHANNEL_TYPE_FIFO:
2195                 size = sizeof(struct __vxge_hw_fifo);
2196                 break;
2197         case VXGE_HW_CHANNEL_TYPE_RING:
2198                 size = sizeof(struct __vxge_hw_ring);
2199                 break;
2200         default:
2201                 break;
2202         }
2203
2204         channel = kzalloc(size, GFP_KERNEL);
2205         if (channel == NULL)
2206                 goto exit0;
2207         INIT_LIST_HEAD(&channel->item);
2208
2209         channel->common_reg = hldev->common_reg;
2210         channel->first_vp_id = hldev->first_vp_id;
2211         channel->type = type;
2212         channel->devh = hldev;
2213         channel->vph = vph;
2214         channel->userdata = userdata;
2215         channel->per_dtr_space = per_dtr_space;
2216         channel->length = length;
2217         channel->vp_id = vp_id;
2218
2219         channel->work_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2220         if (channel->work_arr == NULL)
2221                 goto exit1;
2222
2223         channel->free_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2224         if (channel->free_arr == NULL)
2225                 goto exit1;
2226         channel->free_ptr = length;
2227
2228         channel->reserve_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2229         if (channel->reserve_arr == NULL)
2230                 goto exit1;
2231         channel->reserve_ptr = length;
2232         channel->reserve_top = 0;
2233
2234         channel->orig_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2235         if (channel->orig_arr == NULL)
2236                 goto exit1;
2237
2238         return channel;
2239 exit1:
2240         __vxge_hw_channel_free(channel);
2241
2242 exit0:
2243         return NULL;
2244 }
2245
2246 /*
2247  * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2248  * Adds a block to block pool
2249  */
2250 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2251                                         void *block_addr,
2252                                         u32 length,
2253                                         struct pci_dev *dma_h,
2254                                         struct pci_dev *acc_handle)
2255 {
2256         struct __vxge_hw_blockpool *blockpool;
2257         struct __vxge_hw_blockpool_entry *entry = NULL;
2258         dma_addr_t dma_addr;
2259
2260         blockpool = &devh->block_pool;
2261
2262         if (block_addr == NULL) {
2263                 blockpool->req_out--;
2264                 goto exit;
2265         }
2266
2267         dma_addr = pci_map_single(devh->pdev, block_addr, length,
2268                                 PCI_DMA_BIDIRECTIONAL);
2269
2270         if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2271                 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2272                 blockpool->req_out--;
2273                 goto exit;
2274         }
2275
2276         if (!list_empty(&blockpool->free_entry_list))
2277                 entry = (struct __vxge_hw_blockpool_entry *)
2278                         list_first_entry(&blockpool->free_entry_list,
2279                                 struct __vxge_hw_blockpool_entry,
2280                                 item);
2281
2282         if (entry == NULL)
2283                 entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2284         else
2285                 list_del(&entry->item);
2286
2287         if (entry) {
2288                 entry->length = length;
2289                 entry->memblock = block_addr;
2290                 entry->dma_addr = dma_addr;
2291                 entry->acc_handle = acc_handle;
2292                 entry->dma_handle = dma_h;
2293                 list_add(&entry->item, &blockpool->free_block_list);
2294                 blockpool->pool_size++;
2295         }
2296
2297         blockpool->req_out--;
2298
2299 exit:
2300         return;
2301 }
2302
2303 static inline void
2304 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2305 {
2306         gfp_t flags;
2307         void *vaddr;
2308
2309         if (in_interrupt())
2310                 flags = GFP_ATOMIC | GFP_DMA;
2311         else
2312                 flags = GFP_KERNEL | GFP_DMA;
2313
2314         vaddr = kmalloc((size), flags);
2315
2316         vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2317 }
2318
2319 /*
2320  * __vxge_hw_blockpool_blocks_add - Request additional blocks
2321  */
2322 static
2323 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2324 {
2325         u32 nreq = 0, i;
2326
2327         if ((blockpool->pool_size  +  blockpool->req_out) <
2328                 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2329                 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2330                 blockpool->req_out += nreq;
2331         }
2332
2333         for (i = 0; i < nreq; i++)
2334                 vxge_os_dma_malloc_async(
2335                         (blockpool->hldev)->pdev,
2336                         blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2337 }
2338
2339 /*
2340  * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2341  * Allocates a block of memory of given size, either from block pool
2342  * or by calling vxge_os_dma_malloc()
2343  */
2344 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2345                                         struct vxge_hw_mempool_dma *dma_object)
2346 {
2347         struct __vxge_hw_blockpool_entry *entry = NULL;
2348         struct __vxge_hw_blockpool  *blockpool;
2349         void *memblock = NULL;
2350
2351         blockpool = &devh->block_pool;
2352
2353         if (size != blockpool->block_size) {
2354
2355                 memblock = vxge_os_dma_malloc(devh->pdev, size,
2356                                                 &dma_object->handle,
2357                                                 &dma_object->acc_handle);
2358
2359                 if (!memblock)
2360                         goto exit;
2361
2362                 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2363                                         PCI_DMA_BIDIRECTIONAL);
2364
2365                 if (unlikely(pci_dma_mapping_error(devh->pdev,
2366                                 dma_object->addr))) {
2367                         vxge_os_dma_free(devh->pdev, memblock,
2368                                 &dma_object->acc_handle);
2369                         goto exit;
2370                 }
2371
2372         } else {
2373
2374                 if (!list_empty(&blockpool->free_block_list))
2375                         entry = (struct __vxge_hw_blockpool_entry *)
2376                                 list_first_entry(&blockpool->free_block_list,
2377                                         struct __vxge_hw_blockpool_entry,
2378                                         item);
2379
2380                 if (entry != NULL) {
2381                         list_del(&entry->item);
2382                         dma_object->addr = entry->dma_addr;
2383                         dma_object->handle = entry->dma_handle;
2384                         dma_object->acc_handle = entry->acc_handle;
2385                         memblock = entry->memblock;
2386
2387                         list_add(&entry->item,
2388                                 &blockpool->free_entry_list);
2389                         blockpool->pool_size--;
2390                 }
2391
2392                 if (memblock != NULL)
2393                         __vxge_hw_blockpool_blocks_add(blockpool);
2394         }
2395 exit:
2396         return memblock;
2397 }
2398
2399 /*
2400  * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2401  */
2402 static void
2403 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2404 {
2405         struct list_head *p, *n;
2406
2407         list_for_each_safe(p, n, &blockpool->free_block_list) {
2408
2409                 if (blockpool->pool_size < blockpool->pool_max)
2410                         break;
2411
2412                 pci_unmap_single(
2413                         (blockpool->hldev)->pdev,
2414                         ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2415                         ((struct __vxge_hw_blockpool_entry *)p)->length,
2416                         PCI_DMA_BIDIRECTIONAL);
2417
2418                 vxge_os_dma_free(
2419                         (blockpool->hldev)->pdev,
2420                         ((struct __vxge_hw_blockpool_entry *)p)->memblock,
2421                         &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2422
2423                 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2424
2425                 list_add(p, &blockpool->free_entry_list);
2426
2427                 blockpool->pool_size--;
2428
2429         }
2430 }
2431
2432 /*
2433  * __vxge_hw_blockpool_free - Frees the memory allcoated with
2434  *                              __vxge_hw_blockpool_malloc
2435  */
2436 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2437                                      void *memblock, u32 size,
2438                                      struct vxge_hw_mempool_dma *dma_object)
2439 {
2440         struct __vxge_hw_blockpool_entry *entry = NULL;
2441         struct __vxge_hw_blockpool  *blockpool;
2442         enum vxge_hw_status status = VXGE_HW_OK;
2443
2444         blockpool = &devh->block_pool;
2445
2446         if (size != blockpool->block_size) {
2447                 pci_unmap_single(devh->pdev, dma_object->addr, size,
2448                         PCI_DMA_BIDIRECTIONAL);
2449                 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2450         } else {
2451
2452                 if (!list_empty(&blockpool->free_entry_list))
2453                         entry = (struct __vxge_hw_blockpool_entry *)
2454                                 list_first_entry(&blockpool->free_entry_list,
2455                                         struct __vxge_hw_blockpool_entry,
2456                                         item);
2457
2458                 if (entry == NULL)
2459                         entry = vmalloc(sizeof(
2460                                         struct __vxge_hw_blockpool_entry));
2461                 else
2462                         list_del(&entry->item);
2463
2464                 if (entry != NULL) {
2465                         entry->length = size;
2466                         entry->memblock = memblock;
2467                         entry->dma_addr = dma_object->addr;
2468                         entry->acc_handle = dma_object->acc_handle;
2469                         entry->dma_handle = dma_object->handle;
2470                         list_add(&entry->item,
2471                                         &blockpool->free_block_list);
2472                         blockpool->pool_size++;
2473                         status = VXGE_HW_OK;
2474                 } else
2475                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
2476
2477                 if (status == VXGE_HW_OK)
2478                         __vxge_hw_blockpool_blocks_remove(blockpool);
2479         }
2480 }
2481
2482 /*
2483  * vxge_hw_mempool_destroy
2484  */
2485 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2486 {
2487         u32 i, j;
2488         struct __vxge_hw_device *devh = mempool->devh;
2489
2490         for (i = 0; i < mempool->memblocks_allocated; i++) {
2491                 struct vxge_hw_mempool_dma *dma_object;
2492
2493                 vxge_assert(mempool->memblocks_arr[i]);
2494                 vxge_assert(mempool->memblocks_dma_arr + i);
2495
2496                 dma_object = mempool->memblocks_dma_arr + i;
2497
2498                 for (j = 0; j < mempool->items_per_memblock; j++) {
2499                         u32 index = i * mempool->items_per_memblock + j;
2500
2501                         /* to skip last partially filled(if any) memblock */
2502                         if (index >= mempool->items_current)
2503                                 break;
2504                 }
2505
2506                 vfree(mempool->memblocks_priv_arr[i]);
2507
2508                 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2509                                 mempool->memblock_size, dma_object);
2510         }
2511
2512         vfree(mempool->items_arr);
2513         vfree(mempool->memblocks_dma_arr);
2514         vfree(mempool->memblocks_priv_arr);
2515         vfree(mempool->memblocks_arr);
2516         vfree(mempool);
2517 }
2518
2519 /*
2520  * __vxge_hw_mempool_grow
2521  * Will resize mempool up to %num_allocate value.
2522  */
2523 static enum vxge_hw_status
2524 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2525                        u32 *num_allocated)
2526 {
2527         u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2528         u32 n_items = mempool->items_per_memblock;
2529         u32 start_block_idx = mempool->memblocks_allocated;
2530         u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2531         enum vxge_hw_status status = VXGE_HW_OK;
2532
2533         *num_allocated = 0;
2534
2535         if (end_block_idx > mempool->memblocks_max) {
2536                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2537                 goto exit;
2538         }
2539
2540         for (i = start_block_idx; i < end_block_idx; i++) {
2541                 u32 j;
2542                 u32 is_last = ((end_block_idx - 1) == i);
2543                 struct vxge_hw_mempool_dma *dma_object =
2544                         mempool->memblocks_dma_arr + i;
2545                 void *the_memblock;
2546
2547                 /* allocate memblock's private part. Each DMA memblock
2548                  * has a space allocated for item's private usage upon
2549                  * mempool's user request. Each time mempool grows, it will
2550                  * allocate new memblock and its private part at once.
2551                  * This helps to minimize memory usage a lot. */
2552                 mempool->memblocks_priv_arr[i] =
2553                         vzalloc(array_size(mempool->items_priv_size, n_items));
2554                 if (mempool->memblocks_priv_arr[i] == NULL) {
2555                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
2556                         goto exit;
2557                 }
2558
2559                 /* allocate DMA-capable memblock */
2560                 mempool->memblocks_arr[i] =
2561                         __vxge_hw_blockpool_malloc(mempool->devh,
2562                                 mempool->memblock_size, dma_object);
2563                 if (mempool->memblocks_arr[i] == NULL) {
2564                         vfree(mempool->memblocks_priv_arr[i]);
2565                         status = VXGE_HW_ERR_OUT_OF_MEMORY;
2566                         goto exit;
2567                 }
2568
2569                 (*num_allocated)++;
2570                 mempool->memblocks_allocated++;
2571
2572                 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2573
2574                 the_memblock = mempool->memblocks_arr[i];
2575
2576                 /* fill the items hash array */
2577                 for (j = 0; j < n_items; j++) {
2578                         u32 index = i * n_items + j;
2579
2580                         if (first_time && index >= mempool->items_initial)
2581                                 break;
2582
2583                         mempool->items_arr[index] =
2584                                 ((char *)the_memblock + j*mempool->item_size);
2585
2586                         /* let caller to do more job on each item */
2587                         if (mempool->item_func_alloc != NULL)
2588                                 mempool->item_func_alloc(mempool, i,
2589                                         dma_object, index, is_last);
2590
2591                         mempool->items_current = index + 1;
2592                 }
2593
2594                 if (first_time && mempool->items_current ==
2595                                         mempool->items_initial)
2596                         break;
2597         }
2598 exit:
2599         return status;
2600 }
2601
2602 /*
2603  * vxge_hw_mempool_create
2604  * This function will create memory pool object. Pool may grow but will
2605  * never shrink. Pool consists of number of dynamically allocated blocks
2606  * with size enough to hold %items_initial number of items. Memory is
2607  * DMA-able but client must map/unmap before interoperating with the device.
2608  */
2609 static struct vxge_hw_mempool *
2610 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2611                          u32 memblock_size,
2612                          u32 item_size,
2613                          u32 items_priv_size,
2614                          u32 items_initial,
2615                          u32 items_max,
2616                          const struct vxge_hw_mempool_cbs *mp_callback,
2617                          void *userdata)
2618 {
2619         enum vxge_hw_status status = VXGE_HW_OK;
2620         u32 memblocks_to_allocate;
2621         struct vxge_hw_mempool *mempool = NULL;
2622         u32 allocated;
2623
2624         if (memblock_size < item_size) {
2625                 status = VXGE_HW_FAIL;
2626                 goto exit;
2627         }
2628
2629         mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2630         if (mempool == NULL) {
2631                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2632                 goto exit;
2633         }
2634
2635         mempool->devh                   = devh;
2636         mempool->memblock_size          = memblock_size;
2637         mempool->items_max              = items_max;
2638         mempool->items_initial          = items_initial;
2639         mempool->item_size              = item_size;
2640         mempool->items_priv_size        = items_priv_size;
2641         mempool->item_func_alloc        = mp_callback->item_func_alloc;
2642         mempool->userdata               = userdata;
2643
2644         mempool->memblocks_allocated = 0;
2645
2646         mempool->items_per_memblock = memblock_size / item_size;
2647
2648         mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2649                                         mempool->items_per_memblock;
2650
2651         /* allocate array of memblocks */
2652         mempool->memblocks_arr =
2653                 vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2654         if (mempool->memblocks_arr == NULL) {
2655                 __vxge_hw_mempool_destroy(mempool);
2656                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2657                 mempool = NULL;
2658                 goto exit;
2659         }
2660
2661         /* allocate array of private parts of items per memblocks */
2662         mempool->memblocks_priv_arr =
2663                 vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2664         if (mempool->memblocks_priv_arr == NULL) {
2665                 __vxge_hw_mempool_destroy(mempool);
2666                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2667                 mempool = NULL;
2668                 goto exit;
2669         }
2670
2671         /* allocate array of memblocks DMA objects */
2672         mempool->memblocks_dma_arr =
2673                 vzalloc(array_size(sizeof(struct vxge_hw_mempool_dma),
2674                                    mempool->memblocks_max));
2675         if (mempool->memblocks_dma_arr == NULL) {
2676                 __vxge_hw_mempool_destroy(mempool);
2677                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2678                 mempool = NULL;
2679                 goto exit;
2680         }
2681
2682         /* allocate hash array of items */
2683         mempool->items_arr = vzalloc(array_size(sizeof(void *),
2684                                                 mempool->items_max));
2685         if (mempool->items_arr == NULL) {
2686                 __vxge_hw_mempool_destroy(mempool);
2687                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2688                 mempool = NULL;
2689                 goto exit;
2690         }
2691
2692         /* calculate initial number of memblocks */
2693         memblocks_to_allocate = (mempool->items_initial +
2694                                  mempool->items_per_memblock - 1) /
2695                                                 mempool->items_per_memblock;
2696
2697         /* pre-allocate the mempool */
2698         status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2699                                         &allocated);
2700         if (status != VXGE_HW_OK) {
2701                 __vxge_hw_mempool_destroy(mempool);
2702                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2703                 mempool = NULL;
2704                 goto exit;
2705         }
2706
2707 exit:
2708         return mempool;
2709 }
2710
2711 /*
2712  * __vxge_hw_ring_abort - Returns the RxD
2713  * This function terminates the RxDs of ring
2714  */
2715 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2716 {
2717         void *rxdh;
2718         struct __vxge_hw_channel *channel;
2719
2720         channel = &ring->channel;
2721
2722         for (;;) {
2723                 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2724
2725                 if (rxdh == NULL)
2726                         break;
2727
2728                 vxge_hw_channel_dtr_complete(channel);
2729
2730                 if (ring->rxd_term)
2731                         ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2732                                 channel->userdata);
2733
2734                 vxge_hw_channel_dtr_free(channel, rxdh);
2735         }
2736
2737         return VXGE_HW_OK;
2738 }
2739
2740 /*
2741  * __vxge_hw_ring_reset - Resets the ring
2742  * This function resets the ring during vpath reset operation
2743  */
2744 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2745 {
2746         enum vxge_hw_status status = VXGE_HW_OK;
2747         struct __vxge_hw_channel *channel;
2748
2749         channel = &ring->channel;
2750
2751         __vxge_hw_ring_abort(ring);
2752
2753         status = __vxge_hw_channel_reset(channel);
2754
2755         if (status != VXGE_HW_OK)
2756                 goto exit;
2757
2758         if (ring->rxd_init) {
2759                 status = vxge_hw_ring_replenish(ring);
2760                 if (status != VXGE_HW_OK)
2761                         goto exit;
2762         }
2763 exit:
2764         return status;
2765 }
2766
2767 /*
2768  * __vxge_hw_ring_delete - Removes the ring
2769  * This function freeup the memory pool and removes the ring
2770  */
2771 static enum vxge_hw_status
2772 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2773 {
2774         struct __vxge_hw_ring *ring = vp->vpath->ringh;
2775
2776         __vxge_hw_ring_abort(ring);
2777
2778         if (ring->mempool)
2779                 __vxge_hw_mempool_destroy(ring->mempool);
2780
2781         vp->vpath->ringh = NULL;
2782         __vxge_hw_channel_free(&ring->channel);
2783
2784         return VXGE_HW_OK;
2785 }
2786
2787 /*
2788  * __vxge_hw_ring_create - Create a Ring
2789  * This function creates Ring and initializes it.
2790  */
2791 static enum vxge_hw_status
2792 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2793                       struct vxge_hw_ring_attr *attr)
2794 {
2795         enum vxge_hw_status status = VXGE_HW_OK;
2796         struct __vxge_hw_ring *ring;
2797         u32 ring_length;
2798         struct vxge_hw_ring_config *config;
2799         struct __vxge_hw_device *hldev;
2800         u32 vp_id;
2801         static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2802                 .item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2803         };
2804
2805         if ((vp == NULL) || (attr == NULL)) {
2806                 status = VXGE_HW_FAIL;
2807                 goto exit;
2808         }
2809
2810         hldev = vp->vpath->hldev;
2811         vp_id = vp->vpath->vp_id;
2812
2813         config = &hldev->config.vp_config[vp_id].ring;
2814
2815         ring_length = config->ring_blocks *
2816                         vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2817
2818         ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2819                                                 VXGE_HW_CHANNEL_TYPE_RING,
2820                                                 ring_length,
2821                                                 attr->per_rxd_space,
2822                                                 attr->userdata);
2823         if (ring == NULL) {
2824                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2825                 goto exit;
2826         }
2827
2828         vp->vpath->ringh = ring;
2829         ring->vp_id = vp_id;
2830         ring->vp_reg = vp->vpath->vp_reg;
2831         ring->common_reg = hldev->common_reg;
2832         ring->stats = &vp->vpath->sw_stats->ring_stats;
2833         ring->config = config;
2834         ring->callback = attr->callback;
2835         ring->rxd_init = attr->rxd_init;
2836         ring->rxd_term = attr->rxd_term;
2837         ring->buffer_mode = config->buffer_mode;
2838         ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2839         ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2840         ring->rxds_limit = config->rxds_limit;
2841
2842         ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2843         ring->rxd_priv_size =
2844                 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2845         ring->per_rxd_space = attr->per_rxd_space;
2846
2847         ring->rxd_priv_size =
2848                 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2849                 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2850
2851         /* how many RxDs can fit into one block. Depends on configured
2852          * buffer_mode. */
2853         ring->rxds_per_block =
2854                 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2855
2856         /* calculate actual RxD block private size */
2857         ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2858         ring->mempool = __vxge_hw_mempool_create(hldev,
2859                                 VXGE_HW_BLOCK_SIZE,
2860                                 VXGE_HW_BLOCK_SIZE,
2861                                 ring->rxdblock_priv_size,
2862                                 ring->config->ring_blocks,
2863                                 ring->config->ring_blocks,
2864                                 &ring_mp_callback,
2865                                 ring);
2866         if (ring->mempool == NULL) {
2867                 __vxge_hw_ring_delete(vp);
2868                 return VXGE_HW_ERR_OUT_OF_MEMORY;
2869         }
2870
2871         status = __vxge_hw_channel_initialize(&ring->channel);
2872         if (status != VXGE_HW_OK) {
2873                 __vxge_hw_ring_delete(vp);
2874                 goto exit;
2875         }
2876
2877         /* Note:
2878          * Specifying rxd_init callback means two things:
2879          * 1) rxds need to be initialized by driver at channel-open time;
2880          * 2) rxds need to be posted at channel-open time
2881          *    (that's what the initial_replenish() below does)
2882          * Currently we don't have a case when the 1) is done without the 2).
2883          */
2884         if (ring->rxd_init) {
2885                 status = vxge_hw_ring_replenish(ring);
2886                 if (status != VXGE_HW_OK) {
2887                         __vxge_hw_ring_delete(vp);
2888                         goto exit;
2889                 }
2890         }
2891
2892         /* initial replenish will increment the counter in its post() routine,
2893          * we have to reset it */
2894         ring->stats->common_stats.usage_cnt = 0;
2895 exit:
2896         return status;
2897 }
2898
2899 /*
2900  * vxge_hw_device_config_default_get - Initialize device config with defaults.
2901  * Initialize Titan device config with default values.
2902  */
2903 enum vxge_hw_status
2904 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2905 {
2906         u32 i;
2907
2908         device_config->dma_blockpool_initial =
2909                                         VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2910         device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2911         device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2912         device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2913         device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2914         device_config->device_poll_millis =  VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2915         device_config->rts_mac_en =  VXGE_HW_RTS_MAC_DEFAULT;
2916
2917         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2918                 device_config->vp_config[i].vp_id = i;
2919
2920                 device_config->vp_config[i].min_bandwidth =
2921                                 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2922
2923                 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2924
2925                 device_config->vp_config[i].ring.ring_blocks =
2926                                 VXGE_HW_DEF_RING_BLOCKS;
2927
2928                 device_config->vp_config[i].ring.buffer_mode =
2929                                 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2930
2931                 device_config->vp_config[i].ring.scatter_mode =
2932                                 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2933
2934                 device_config->vp_config[i].ring.rxds_limit =
2935                                 VXGE_HW_DEF_RING_RXDS_LIMIT;
2936
2937                 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2938
2939                 device_config->vp_config[i].fifo.fifo_blocks =
2940                                 VXGE_HW_MIN_FIFO_BLOCKS;
2941
2942                 device_config->vp_config[i].fifo.max_frags =
2943                                 VXGE_HW_MAX_FIFO_FRAGS;
2944
2945                 device_config->vp_config[i].fifo.memblock_size =
2946                                 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2947
2948                 device_config->vp_config[i].fifo.alignment_size =
2949                                 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2950
2951                 device_config->vp_config[i].fifo.intr =
2952                                 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2953
2954                 device_config->vp_config[i].fifo.no_snoop_bits =
2955                                 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2956                 device_config->vp_config[i].tti.intr_enable =
2957                                 VXGE_HW_TIM_INTR_DEFAULT;
2958
2959                 device_config->vp_config[i].tti.btimer_val =
2960                                 VXGE_HW_USE_FLASH_DEFAULT;
2961
2962                 device_config->vp_config[i].tti.timer_ac_en =
2963                                 VXGE_HW_USE_FLASH_DEFAULT;
2964
2965                 device_config->vp_config[i].tti.timer_ci_en =
2966                                 VXGE_HW_USE_FLASH_DEFAULT;
2967
2968                 device_config->vp_config[i].tti.timer_ri_en =
2969                                 VXGE_HW_USE_FLASH_DEFAULT;
2970
2971                 device_config->vp_config[i].tti.rtimer_val =
2972                                 VXGE_HW_USE_FLASH_DEFAULT;
2973
2974                 device_config->vp_config[i].tti.util_sel =
2975                                 VXGE_HW_USE_FLASH_DEFAULT;
2976
2977                 device_config->vp_config[i].tti.ltimer_val =
2978                                 VXGE_HW_USE_FLASH_DEFAULT;
2979
2980                 device_config->vp_config[i].tti.urange_a =
2981                                 VXGE_HW_USE_FLASH_DEFAULT;
2982
2983                 device_config->vp_config[i].tti.uec_a =
2984                                 VXGE_HW_USE_FLASH_DEFAULT;
2985
2986                 device_config->vp_config[i].tti.urange_b =
2987                                 VXGE_HW_USE_FLASH_DEFAULT;
2988
2989                 device_config->vp_config[i].tti.uec_b =
2990                                 VXGE_HW_USE_FLASH_DEFAULT;
2991
2992                 device_config->vp_config[i].tti.urange_c =
2993                                 VXGE_HW_USE_FLASH_DEFAULT;
2994
2995                 device_config->vp_config[i].tti.uec_c =
2996                                 VXGE_HW_USE_FLASH_DEFAULT;
2997
2998                 device_config->vp_config[i].tti.uec_d =
2999                                 VXGE_HW_USE_FLASH_DEFAULT;
3000
3001                 device_config->vp_config[i].rti.intr_enable =
3002                                 VXGE_HW_TIM_INTR_DEFAULT;
3003
3004                 device_config->vp_config[i].rti.btimer_val =
3005                                 VXGE_HW_USE_FLASH_DEFAULT;
3006
3007                 device_config->vp_config[i].rti.timer_ac_en =
3008                                 VXGE_HW_USE_FLASH_DEFAULT;
3009
3010                 device_config->vp_config[i].rti.timer_ci_en =
3011                                 VXGE_HW_USE_FLASH_DEFAULT;
3012
3013                 device_config->vp_config[i].rti.timer_ri_en =
3014                                 VXGE_HW_USE_FLASH_DEFAULT;
3015
3016                 device_config->vp_config[i].rti.rtimer_val =
3017                                 VXGE_HW_USE_FLASH_DEFAULT;
3018
3019                 device_config->vp_config[i].rti.util_sel =
3020                                 VXGE_HW_USE_FLASH_DEFAULT;
3021
3022                 device_config->vp_config[i].rti.ltimer_val =
3023                                 VXGE_HW_USE_FLASH_DEFAULT;
3024
3025                 device_config->vp_config[i].rti.urange_a =
3026                                 VXGE_HW_USE_FLASH_DEFAULT;
3027
3028                 device_config->vp_config[i].rti.uec_a =
3029                                 VXGE_HW_USE_FLASH_DEFAULT;
3030
3031                 device_config->vp_config[i].rti.urange_b =
3032                                 VXGE_HW_USE_FLASH_DEFAULT;
3033
3034                 device_config->vp_config[i].rti.uec_b =
3035                                 VXGE_HW_USE_FLASH_DEFAULT;
3036
3037                 device_config->vp_config[i].rti.urange_c =
3038                                 VXGE_HW_USE_FLASH_DEFAULT;
3039
3040                 device_config->vp_config[i].rti.uec_c =
3041                                 VXGE_HW_USE_FLASH_DEFAULT;
3042
3043                 device_config->vp_config[i].rti.uec_d =
3044                                 VXGE_HW_USE_FLASH_DEFAULT;
3045
3046                 device_config->vp_config[i].mtu =
3047                                 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3048
3049                 device_config->vp_config[i].rpa_strip_vlan_tag =
3050                         VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3051         }
3052
3053         return VXGE_HW_OK;
3054 }
3055
3056 /*
3057  * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3058  * Set the swapper bits appropriately for the vpath.
3059  */
3060 static enum vxge_hw_status
3061 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3062 {
3063 #ifndef __BIG_ENDIAN
3064         u64 val64;
3065
3066         val64 = readq(&vpath_reg->vpath_general_cfg1);
3067         wmb();
3068         val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3069         writeq(val64, &vpath_reg->vpath_general_cfg1);
3070         wmb();
3071 #endif
3072         return VXGE_HW_OK;
3073 }
3074
3075 /*
3076  * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3077  * Set the swapper bits appropriately for the vpath.
3078  */
3079 static enum vxge_hw_status
3080 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3081                            struct vxge_hw_vpath_reg __iomem *vpath_reg)
3082 {
3083         u64 val64;
3084
3085         val64 = readq(&legacy_reg->pifm_wr_swap_en);
3086
3087         if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3088                 val64 = readq(&vpath_reg->kdfcctl_cfg0);
3089                 wmb();
3090
3091                 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
3092                         VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1  |
3093                         VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3094
3095                 writeq(val64, &vpath_reg->kdfcctl_cfg0);
3096                 wmb();
3097         }
3098
3099         return VXGE_HW_OK;
3100 }
3101
3102 /*
3103  * vxge_hw_mgmt_reg_read - Read Titan register.
3104  */
3105 enum vxge_hw_status
3106 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3107                       enum vxge_hw_mgmt_reg_type type,
3108                       u32 index, u32 offset, u64 *value)
3109 {
3110         enum vxge_hw_status status = VXGE_HW_OK;
3111
3112         if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3113                 status = VXGE_HW_ERR_INVALID_DEVICE;
3114                 goto exit;
3115         }
3116
3117         switch (type) {
3118         case vxge_hw_mgmt_reg_type_legacy:
3119                 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3120                         status = VXGE_HW_ERR_INVALID_OFFSET;
3121                         break;
3122                 }
3123                 *value = readq((void __iomem *)hldev->legacy_reg + offset);
3124                 break;
3125         case vxge_hw_mgmt_reg_type_toc:
3126                 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3127                         status = VXGE_HW_ERR_INVALID_OFFSET;
3128                         break;
3129                 }
3130                 *value = readq((void __iomem *)hldev->toc_reg + offset);
3131                 break;
3132         case vxge_hw_mgmt_reg_type_common:
3133                 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3134                         status = VXGE_HW_ERR_INVALID_OFFSET;
3135                         break;
3136                 }
3137                 *value = readq((void __iomem *)hldev->common_reg + offset);
3138                 break;
3139         case vxge_hw_mgmt_reg_type_mrpcim:
3140                 if (!(hldev->access_rights &
3141                         VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3142                         status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3143                         break;
3144                 }
3145                 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3146                         status = VXGE_HW_ERR_INVALID_OFFSET;
3147                         break;
3148                 }
3149                 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3150                 break;
3151         case vxge_hw_mgmt_reg_type_srpcim:
3152                 if (!(hldev->access_rights &
3153                         VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3154                         status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3155                         break;
3156                 }
3157                 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3158                         status = VXGE_HW_ERR_INVALID_INDEX;
3159                         break;
3160                 }
3161                 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3162                         status = VXGE_HW_ERR_INVALID_OFFSET;
3163                         break;
3164                 }
3165                 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
3166                                 offset);
3167                 break;
3168         case vxge_hw_mgmt_reg_type_vpmgmt:
3169                 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3170                         (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3171                         status = VXGE_HW_ERR_INVALID_INDEX;
3172                         break;
3173                 }
3174                 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3175                         status = VXGE_HW_ERR_INVALID_OFFSET;
3176                         break;
3177                 }
3178                 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3179                                 offset);
3180                 break;
3181         case vxge_hw_mgmt_reg_type_vpath:
3182                 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3183                         (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3184                         status = VXGE_HW_ERR_INVALID_INDEX;
3185                         break;
3186                 }
3187                 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3188                         status = VXGE_HW_ERR_INVALID_INDEX;
3189                         break;
3190                 }
3191                 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3192                         status = VXGE_HW_ERR_INVALID_OFFSET;
3193                         break;
3194                 }
3195                 *value = readq((void __iomem *)hldev->vpath_reg[index] +
3196                                 offset);
3197                 break;
3198         default:
3199                 status = VXGE_HW_ERR_INVALID_TYPE;
3200                 break;
3201         }
3202
3203 exit:
3204         return status;
3205 }
3206
3207 /*
3208  * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3209  */
3210 enum vxge_hw_status
3211 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3212 {
3213         struct vxge_hw_vpmgmt_reg       __iomem *vpmgmt_reg;
3214         int i = 0, j = 0;
3215
3216         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3217                 if (!((vpath_mask) & vxge_mBIT(i)))
3218                         continue;
3219                 vpmgmt_reg = hldev->vpmgmt_reg[i];
3220                 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3221                         if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3222                         & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3223                                 return VXGE_HW_FAIL;
3224                 }
3225         }
3226         return VXGE_HW_OK;
3227 }
3228 /*
3229  * vxge_hw_mgmt_reg_Write - Write Titan register.
3230  */
3231 enum vxge_hw_status
3232 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3233                       enum vxge_hw_mgmt_reg_type type,
3234                       u32 index, u32 offset, u64 value)
3235 {
3236         enum vxge_hw_status status = VXGE_HW_OK;
3237
3238         if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3239                 status = VXGE_HW_ERR_INVALID_DEVICE;
3240                 goto exit;
3241         }
3242
3243         switch (type) {
3244         case vxge_hw_mgmt_reg_type_legacy:
3245                 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3246                         status = VXGE_HW_ERR_INVALID_OFFSET;
3247                         break;
3248                 }
3249                 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3250                 break;
3251         case vxge_hw_mgmt_reg_type_toc:
3252                 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3253                         status = VXGE_HW_ERR_INVALID_OFFSET;
3254                         break;
3255                 }
3256                 writeq(value, (void __iomem *)hldev->toc_reg + offset);
3257                 break;
3258         case vxge_hw_mgmt_reg_type_common:
3259                 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3260                         status = VXGE_HW_ERR_INVALID_OFFSET;
3261                         break;
3262                 }
3263                 writeq(value, (void __iomem *)hldev->common_reg + offset);
3264                 break;
3265         case vxge_hw_mgmt_reg_type_mrpcim:
3266                 if (!(hldev->access_rights &
3267                         VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3268                         status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3269                         break;
3270                 }
3271                 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3272                         status = VXGE_HW_ERR_INVALID_OFFSET;
3273                         break;
3274                 }
3275                 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3276                 break;
3277         case vxge_hw_mgmt_reg_type_srpcim:
3278                 if (!(hldev->access_rights &
3279                         VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3280                         status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3281                         break;
3282                 }
3283                 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3284                         status = VXGE_HW_ERR_INVALID_INDEX;
3285                         break;
3286                 }
3287                 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3288                         status = VXGE_HW_ERR_INVALID_OFFSET;
3289                         break;
3290                 }
3291                 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3292                         offset);
3293
3294                 break;
3295         case vxge_hw_mgmt_reg_type_vpmgmt:
3296                 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3297                         (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3298                         status = VXGE_HW_ERR_INVALID_INDEX;
3299                         break;
3300                 }
3301                 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3302                         status = VXGE_HW_ERR_INVALID_OFFSET;
3303                         break;
3304                 }
3305                 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3306                         offset);
3307                 break;
3308         case vxge_hw_mgmt_reg_type_vpath:
3309                 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3310                         (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3311                         status = VXGE_HW_ERR_INVALID_INDEX;
3312                         break;
3313                 }
3314                 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3315                         status = VXGE_HW_ERR_INVALID_OFFSET;
3316                         break;
3317                 }
3318                 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3319                         offset);
3320                 break;
3321         default:
3322                 status = VXGE_HW_ERR_INVALID_TYPE;
3323                 break;
3324         }
3325 exit:
3326         return status;
3327 }
3328
3329 /*
3330  * __vxge_hw_fifo_abort - Returns the TxD
3331  * This function terminates the TxDs of fifo
3332  */
3333 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3334 {
3335         void *txdlh;
3336
3337         for (;;) {
3338                 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3339
3340                 if (txdlh == NULL)
3341                         break;
3342
3343                 vxge_hw_channel_dtr_complete(&fifo->channel);
3344
3345                 if (fifo->txdl_term) {
3346                         fifo->txdl_term(txdlh,
3347                         VXGE_HW_TXDL_STATE_POSTED,
3348                         fifo->channel.userdata);
3349                 }
3350
3351                 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3352         }
3353
3354         return VXGE_HW_OK;
3355 }
3356
3357 /*
3358  * __vxge_hw_fifo_reset - Resets the fifo
3359  * This function resets the fifo during vpath reset operation
3360  */
3361 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3362 {
3363         enum vxge_hw_status status = VXGE_HW_OK;
3364
3365         __vxge_hw_fifo_abort(fifo);
3366         status = __vxge_hw_channel_reset(&fifo->channel);
3367
3368         return status;
3369 }
3370
3371 /*
3372  * __vxge_hw_fifo_delete - Removes the FIFO
3373  * This function freeup the memory pool and removes the FIFO
3374  */
3375 static enum vxge_hw_status
3376 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3377 {
3378         struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3379
3380         __vxge_hw_fifo_abort(fifo);
3381
3382         if (fifo->mempool)
3383                 __vxge_hw_mempool_destroy(fifo->mempool);
3384
3385         vp->vpath->fifoh = NULL;
3386
3387         __vxge_hw_channel_free(&fifo->channel);
3388
3389         return VXGE_HW_OK;
3390 }
3391
3392 /*
3393  * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3394  * list callback
3395  * This function is callback passed to __vxge_hw_mempool_create to create memory
3396  * pool for TxD list
3397  */
3398 static void
3399 __vxge_hw_fifo_mempool_item_alloc(
3400         struct vxge_hw_mempool *mempoolh,
3401         u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3402         u32 index, u32 is_last)
3403 {
3404         u32 memblock_item_idx;
3405         struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3406         struct vxge_hw_fifo_txd *txdp =
3407                 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3408         struct __vxge_hw_fifo *fifo =
3409                         (struct __vxge_hw_fifo *)mempoolh->userdata;
3410         void *memblock = mempoolh->memblocks_arr[memblock_index];
3411
3412         vxge_assert(txdp);
3413
3414         txdp->host_control = (u64) (size_t)
3415         __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3416                                         &memblock_item_idx);
3417
3418         txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3419
3420         vxge_assert(txdl_priv);
3421
3422         fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3423
3424         /* pre-format HW's TxDL's private */
3425         txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3426         txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3427         txdl_priv->dma_handle = dma_object->handle;
3428         txdl_priv->memblock   = memblock;
3429         txdl_priv->first_txdp = txdp;
3430         txdl_priv->next_txdl_priv = NULL;
3431         txdl_priv->alloc_frags = 0;
3432 }
3433
3434 /*
3435  * __vxge_hw_fifo_create - Create a FIFO
3436  * This function creates FIFO and initializes it.
3437  */
3438 static enum vxge_hw_status
3439 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3440                       struct vxge_hw_fifo_attr *attr)
3441 {
3442         enum vxge_hw_status status = VXGE_HW_OK;
3443         struct __vxge_hw_fifo *fifo;
3444         struct vxge_hw_fifo_config *config;
3445         u32 txdl_size, txdl_per_memblock;
3446         struct vxge_hw_mempool_cbs fifo_mp_callback;
3447         struct __vxge_hw_virtualpath *vpath;
3448
3449         if ((vp == NULL) || (attr == NULL)) {
3450                 status = VXGE_HW_ERR_INVALID_HANDLE;
3451                 goto exit;
3452         }
3453         vpath = vp->vpath;
3454         config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3455
3456         txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3457
3458         txdl_per_memblock = config->memblock_size / txdl_size;
3459
3460         fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3461                                         VXGE_HW_CHANNEL_TYPE_FIFO,
3462                                         config->fifo_blocks * txdl_per_memblock,
3463                                         attr->per_txdl_space, attr->userdata);
3464
3465         if (fifo == NULL) {
3466                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3467                 goto exit;
3468         }
3469
3470         vpath->fifoh = fifo;
3471         fifo->nofl_db = vpath->nofl_db;
3472
3473         fifo->vp_id = vpath->vp_id;
3474         fifo->vp_reg = vpath->vp_reg;
3475         fifo->stats = &vpath->sw_stats->fifo_stats;
3476
3477         fifo->config = config;
3478
3479         /* apply "interrupts per txdl" attribute */
3480         fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3481         fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3482         fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3483
3484         if (fifo->config->intr)
3485                 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3486
3487         fifo->no_snoop_bits = config->no_snoop_bits;
3488
3489         /*
3490          * FIFO memory management strategy:
3491          *
3492          * TxDL split into three independent parts:
3493          *      - set of TxD's
3494          *      - TxD HW private part
3495          *      - driver private part
3496          *
3497          * Adaptative memory allocation used. i.e. Memory allocated on
3498          * demand with the size which will fit into one memory block.
3499          * One memory block may contain more than one TxDL.
3500          *
3501          * During "reserve" operations more memory can be allocated on demand
3502          * for example due to FIFO full condition.
3503          *
3504          * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3505          * routine which will essentially stop the channel and free resources.
3506          */
3507
3508         /* TxDL common private size == TxDL private  +  driver private */
3509         fifo->priv_size =
3510                 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3511         fifo->priv_size = ((fifo->priv_size  +  VXGE_CACHE_LINE_SIZE - 1) /
3512                         VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3513
3514         fifo->per_txdl_space = attr->per_txdl_space;
3515
3516         /* recompute txdl size to be cacheline aligned */
3517         fifo->txdl_size = txdl_size;
3518         fifo->txdl_per_memblock = txdl_per_memblock;
3519
3520         fifo->txdl_term = attr->txdl_term;
3521         fifo->callback = attr->callback;
3522
3523         if (fifo->txdl_per_memblock == 0) {
3524                 __vxge_hw_fifo_delete(vp);
3525                 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3526                 goto exit;
3527         }
3528
3529         fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3530
3531         fifo->mempool =
3532                 __vxge_hw_mempool_create(vpath->hldev,
3533                         fifo->config->memblock_size,
3534                         fifo->txdl_size,
3535                         fifo->priv_size,
3536                         (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3537                         (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3538                         &fifo_mp_callback,
3539                         fifo);
3540
3541         if (fifo->mempool == NULL) {
3542                 __vxge_hw_fifo_delete(vp);
3543                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3544                 goto exit;
3545         }
3546
3547         status = __vxge_hw_channel_initialize(&fifo->channel);
3548         if (status != VXGE_HW_OK) {
3549                 __vxge_hw_fifo_delete(vp);
3550                 goto exit;
3551         }
3552
3553         vxge_assert(fifo->channel.reserve_ptr);
3554 exit:
3555         return status;
3556 }
3557
3558 /*
3559  * __vxge_hw_vpath_pci_read - Read the content of given address
3560  *                          in pci config space.
3561  * Read from the vpath pci config space.
3562  */
3563 static enum vxge_hw_status
3564 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3565                          u32 phy_func_0, u32 offset, u32 *val)
3566 {
3567         u64 val64;
3568         enum vxge_hw_status status = VXGE_HW_OK;
3569         struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3570
3571         val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3572
3573         if (phy_func_0)
3574                 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3575
3576         writeq(val64, &vp_reg->pci_config_access_cfg1);
3577         wmb();
3578         writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3579                         &vp_reg->pci_config_access_cfg2);
3580         wmb();
3581
3582         status = __vxge_hw_device_register_poll(
3583                         &vp_reg->pci_config_access_cfg2,
3584                         VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3585
3586         if (status != VXGE_HW_OK)
3587                 goto exit;
3588
3589         val64 = readq(&vp_reg->pci_config_access_status);
3590
3591         if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3592                 status = VXGE_HW_FAIL;
3593                 *val = 0;
3594         } else
3595                 *val = (u32)vxge_bVALn(val64, 32, 32);
3596 exit:
3597         return status;
3598 }
3599
3600 /**
3601  * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3602  * @hldev: HW device.
3603  * @on_off: TRUE if flickering to be on, FALSE to be off
3604  *
3605  * Flicker the link LED.
3606  */
3607 enum vxge_hw_status
3608 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3609 {
3610         struct __vxge_hw_virtualpath *vpath;
3611         u64 data0, data1 = 0, steer_ctrl = 0;
3612         enum vxge_hw_status status;
3613
3614         if (hldev == NULL) {
3615                 status = VXGE_HW_ERR_INVALID_DEVICE;
3616                 goto exit;
3617         }
3618
3619         vpath = &hldev->virtual_paths[hldev->first_vp_id];
3620
3621         data0 = on_off;
3622         status = vxge_hw_vpath_fw_api(vpath,
3623                         VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3624                         VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3625                         0, &data0, &data1, &steer_ctrl);
3626 exit:
3627         return status;
3628 }
3629
3630 /*
3631  * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3632  */
3633 enum vxge_hw_status
3634 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3635                               u32 action, u32 rts_table, u32 offset,
3636                               u64 *data0, u64 *data1)
3637 {
3638         enum vxge_hw_status status;
3639         u64 steer_ctrl = 0;
3640
3641         if (vp == NULL) {
3642                 status = VXGE_HW_ERR_INVALID_HANDLE;
3643                 goto exit;
3644         }
3645
3646         if ((rts_table ==
3647              VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3648             (rts_table ==
3649              VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3650             (rts_table ==
3651              VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3652             (rts_table ==
3653              VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3654                 steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3655         }
3656
3657         status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3658                                       data0, data1, &steer_ctrl);
3659         if (status != VXGE_HW_OK)
3660                 goto exit;
3661
3662         if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3663             (rts_table !=
3664              VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3665                 *data1 = 0;
3666 exit:
3667         return status;
3668 }
3669
3670 /*
3671  * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3672  */
3673 enum vxge_hw_status
3674 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3675                               u32 rts_table, u32 offset, u64 steer_data0,
3676                               u64 steer_data1)
3677 {
3678         u64 data0, data1 = 0, steer_ctrl = 0;
3679         enum vxge_hw_status status;
3680
3681         if (vp == NULL) {
3682                 status = VXGE_HW_ERR_INVALID_HANDLE;
3683                 goto exit;
3684         }
3685
3686         data0 = steer_data0;
3687
3688         if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3689             (rts_table ==
3690              VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3691                 data1 = steer_data1;
3692
3693         status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3694                                       &data0, &data1, &steer_ctrl);
3695 exit:
3696         return status;
3697 }
3698
3699 /*
3700  * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3701  */
3702 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3703                         struct __vxge_hw_vpath_handle *vp,
3704                         enum vxge_hw_rth_algoritms algorithm,
3705                         struct vxge_hw_rth_hash_types *hash_type,
3706                         u16 bucket_size)
3707 {
3708         u64 data0, data1;
3709         enum vxge_hw_status status = VXGE_HW_OK;
3710
3711         if (vp == NULL) {
3712                 status = VXGE_HW_ERR_INVALID_HANDLE;
3713                 goto exit;
3714         }
3715
3716         status = __vxge_hw_vpath_rts_table_get(vp,
3717                      VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3718                      VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3719                         0, &data0, &data1);
3720         if (status != VXGE_HW_OK)
3721                 goto exit;
3722
3723         data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3724                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3725
3726         data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3727         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3728         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3729
3730         if (hash_type->hash_type_tcpipv4_en)
3731                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3732
3733         if (hash_type->hash_type_ipv4_en)
3734                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3735
3736         if (hash_type->hash_type_tcpipv6_en)
3737                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3738
3739         if (hash_type->hash_type_ipv6_en)
3740                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3741
3742         if (hash_type->hash_type_tcpipv6ex_en)
3743                 data0 |=
3744                 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3745
3746         if (hash_type->hash_type_ipv6ex_en)
3747                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3748
3749         if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3750                 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3751         else
3752                 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3753
3754         status = __vxge_hw_vpath_rts_table_set(vp,
3755                 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3756                 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3757                 0, data0, 0);
3758 exit:
3759         return status;
3760 }
3761
3762 static void
3763 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3764                                 u16 flag, u8 *itable)
3765 {
3766         switch (flag) {
3767         case 1:
3768                 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3769                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3770                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3771                         itable[j]);
3772                 /* fall through */
3773         case 2:
3774                 *data0 |=
3775                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3776                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3777                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3778                         itable[j]);
3779                 /* fall through */
3780         case 3:
3781                 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3782                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3783                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3784                         itable[j]);
3785                 /* fall through */
3786         case 4:
3787                 *data1 |=
3788                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3789                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3790                         VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3791                         itable[j]);
3792         default:
3793                 return;
3794         }
3795 }
3796 /*
3797  * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3798  */
3799 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3800                         struct __vxge_hw_vpath_handle **vpath_handles,
3801                         u32 vpath_count,
3802                         u8 *mtable,
3803                         u8 *itable,
3804                         u32 itable_size)
3805 {
3806         u32 i, j, action, rts_table;
3807         u64 data0;
3808         u64 data1;
3809         u32 max_entries;
3810         enum vxge_hw_status status = VXGE_HW_OK;
3811         struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3812
3813         if (vp == NULL) {
3814                 status = VXGE_HW_ERR_INVALID_HANDLE;
3815                 goto exit;
3816         }
3817
3818         max_entries = (((u32)1) << itable_size);
3819
3820         if (vp->vpath->hldev->config.rth_it_type
3821                                 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3822                 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3823                 rts_table =
3824                         VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3825
3826                 for (j = 0; j < max_entries; j++) {
3827
3828                         data1 = 0;
3829
3830                         data0 =
3831                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3832                                 itable[j]);
3833
3834                         status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3835                                 action, rts_table, j, data0, data1);
3836
3837                         if (status != VXGE_HW_OK)
3838                                 goto exit;
3839                 }
3840
3841                 for (j = 0; j < max_entries; j++) {
3842
3843                         data1 = 0;
3844
3845                         data0 =
3846                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3847                         VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3848                                 itable[j]);
3849
3850                         status = __vxge_hw_vpath_rts_table_set(
3851                                 vpath_handles[mtable[itable[j]]], action,
3852                                 rts_table, j, data0, data1);
3853
3854                         if (status != VXGE_HW_OK)
3855                                 goto exit;
3856                 }
3857         } else {
3858                 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3859                 rts_table =
3860                         VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3861                 for (i = 0; i < vpath_count; i++) {
3862
3863                         for (j = 0; j < max_entries;) {
3864
3865                                 data0 = 0;
3866                                 data1 = 0;
3867
3868                                 while (j < max_entries) {
3869                                         if (mtable[itable[j]] != i) {
3870                                                 j++;
3871                                                 continue;
3872                                         }
3873                                         vxge_hw_rts_rth_data0_data1_get(j,
3874                                                 &data0, &data1, 1, itable);
3875                                         j++;
3876                                         break;
3877                                 }
3878
3879                                 while (j < max_entries) {
3880                                         if (mtable[itable[j]] != i) {
3881                                                 j++;
3882                                                 continue;
3883                                         }
3884                                         vxge_hw_rts_rth_data0_data1_get(j,
3885                                                 &data0, &data1, 2, itable);
3886                                         j++;
3887                                         break;
3888                                 }
3889
3890                                 while (j < max_entries) {
3891                                         if (mtable[itable[j]] != i) {
3892                                                 j++;
3893                                                 continue;
3894                                         }
3895                                         vxge_hw_rts_rth_data0_data1_get(j,
3896                                                 &data0, &data1, 3, itable);
3897                                         j++;
3898                                         break;
3899                                 }
3900
3901                                 while (j < max_entries) {
3902                                         if (mtable[itable[j]] != i) {
3903                                                 j++;
3904                                                 continue;
3905                                         }
3906                                         vxge_hw_rts_rth_data0_data1_get(j,
3907                                                 &data0, &data1, 4, itable);
3908                                         j++;
3909                                         break;
3910                                 }
3911
3912                                 if (data0 != 0) {
3913                                         status = __vxge_hw_vpath_rts_table_set(
3914                                                         vpath_handles[i],
3915                                                         action, rts_table,
3916                                                         0, data0, data1);
3917
3918                                         if (status != VXGE_HW_OK)
3919                                                 goto exit;
3920                                 }
3921                         }
3922                 }
3923         }
3924 exit:
3925         return status;
3926 }
3927
3928 /**
3929  * vxge_hw_vpath_check_leak - Check for memory leak
3930  * @ringh: Handle to the ring object used for receive
3931  *
3932  * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3933  * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3934  * Returns: VXGE_HW_FAIL, if leak has occurred.
3935  *
3936  */
3937 enum vxge_hw_status
3938 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3939 {
3940         enum vxge_hw_status status = VXGE_HW_OK;
3941         u64 rxd_new_count, rxd_spat;
3942
3943         if (ring == NULL)
3944                 return status;
3945
3946         rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3947         rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3948         rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3949
3950         if (rxd_new_count >= rxd_spat)
3951                 status = VXGE_HW_FAIL;
3952
3953         return status;
3954 }
3955
3956 /*
3957  * __vxge_hw_vpath_mgmt_read
3958  * This routine reads the vpath_mgmt registers
3959  */
3960 static enum vxge_hw_status
3961 __vxge_hw_vpath_mgmt_read(
3962         struct __vxge_hw_device *hldev,
3963         struct __vxge_hw_virtualpath *vpath)
3964 {
3965         u32 i, mtu = 0, max_pyld = 0;
3966         u64 val64;
3967
3968         for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3969
3970                 val64 = readq(&vpath->vpmgmt_reg->
3971                                 rxmac_cfg0_port_vpmgmt_clone[i]);
3972                 max_pyld =
3973                         (u32)
3974                         VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3975                         (val64);
3976                 if (mtu < max_pyld)
3977                         mtu = max_pyld;
3978         }
3979
3980         vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3981
3982         val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3983
3984         for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3985                 if (val64 & vxge_mBIT(i))
3986                         vpath->vsport_number = i;
3987         }
3988
3989         val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3990
3991         if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3992                 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3993         else
3994                 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3995
3996         return VXGE_HW_OK;
3997 }
3998
3999 /*
4000  * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4001  * This routine checks the vpath_rst_in_prog register to see if
4002  * adapter completed the reset process for the vpath
4003  */
4004 static enum vxge_hw_status
4005 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4006 {
4007         enum vxge_hw_status status;
4008
4009         status = __vxge_hw_device_register_poll(
4010                         &vpath->hldev->common_reg->vpath_rst_in_prog,
4011                         VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4012                                 1 << (16 - vpath->vp_id)),
4013                         vpath->hldev->config.device_poll_millis);
4014
4015         return status;
4016 }
4017
4018 /*
4019  * __vxge_hw_vpath_reset
4020  * This routine resets the vpath on the device
4021  */
4022 static enum vxge_hw_status
4023 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4024 {
4025         u64 val64;
4026
4027         val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4028
4029         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4030                                 &hldev->common_reg->cmn_rsthdlr_cfg0);
4031
4032         return VXGE_HW_OK;
4033 }
4034
4035 /*
4036  * __vxge_hw_vpath_sw_reset
4037  * This routine resets the vpath structures
4038  */
4039 static enum vxge_hw_status
4040 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4041 {
4042         enum vxge_hw_status status = VXGE_HW_OK;
4043         struct __vxge_hw_virtualpath *vpath;
4044
4045         vpath = &hldev->virtual_paths[vp_id];
4046
4047         if (vpath->ringh) {
4048                 status = __vxge_hw_ring_reset(vpath->ringh);
4049                 if (status != VXGE_HW_OK)
4050                         goto exit;
4051         }
4052
4053         if (vpath->fifoh)
4054                 status = __vxge_hw_fifo_reset(vpath->fifoh);
4055 exit:
4056         return status;
4057 }
4058
4059 /*
4060  * __vxge_hw_vpath_prc_configure
4061  * This routine configures the prc registers of virtual path using the config
4062  * passed
4063  */
4064 static void
4065 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4066 {
4067         u64 val64;
4068         struct __vxge_hw_virtualpath *vpath;
4069         struct vxge_hw_vp_config *vp_config;
4070         struct vxge_hw_vpath_reg __iomem *vp_reg;
4071
4072         vpath = &hldev->virtual_paths[vp_id];
4073         vp_reg = vpath->vp_reg;
4074         vp_config = vpath->vp_config;
4075
4076         if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4077                 return;
4078
4079         val64 = readq(&vp_reg->prc_cfg1);
4080         val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4081         writeq(val64, &vp_reg->prc_cfg1);
4082
4083         val64 = readq(&vpath->vp_reg->prc_cfg6);
4084         val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4085         writeq(val64, &vpath->vp_reg->prc_cfg6);
4086
4087         val64 = readq(&vp_reg->prc_cfg7);
4088
4089         if (vpath->vp_config->ring.scatter_mode !=
4090                 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4091
4092                 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4093
4094                 switch (vpath->vp_config->ring.scatter_mode) {
4095                 case VXGE_HW_RING_SCATTER_MODE_A:
4096                         val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4097                                         VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4098                         break;
4099                 case VXGE_HW_RING_SCATTER_MODE_B:
4100                         val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4101                                         VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4102                         break;
4103                 case VXGE_HW_RING_SCATTER_MODE_C:
4104                         val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4105                                         VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4106                         break;
4107                 }
4108         }
4109
4110         writeq(val64, &vp_reg->prc_cfg7);
4111
4112         writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4113                                 __vxge_hw_ring_first_block_address_get(
4114                                         vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4115
4116         val64 = readq(&vp_reg->prc_cfg4);
4117         val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4118         val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4119
4120         val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4121                         VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4122
4123         if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4124                 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4125         else
4126                 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4127
4128         writeq(val64, &vp_reg->prc_cfg4);
4129 }
4130
4131 /*
4132  * __vxge_hw_vpath_kdfc_configure
4133  * This routine configures the kdfc registers of virtual path using the
4134  * config passed
4135  */
4136 static enum vxge_hw_status
4137 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4138 {
4139         u64 val64;
4140         u64 vpath_stride;
4141         enum vxge_hw_status status = VXGE_HW_OK;
4142         struct __vxge_hw_virtualpath *vpath;
4143         struct vxge_hw_vpath_reg __iomem *vp_reg;
4144
4145         vpath = &hldev->virtual_paths[vp_id];
4146         vp_reg = vpath->vp_reg;
4147         status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4148
4149         if (status != VXGE_HW_OK)
4150                 goto exit;
4151
4152         val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4153
4154         vpath->max_kdfc_db =
4155                 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4156                         val64+1)/2;
4157
4158         if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4159
4160                 vpath->max_nofl_db = vpath->max_kdfc_db;
4161
4162                 if (vpath->max_nofl_db <
4163                         ((vpath->vp_config->fifo.memblock_size /
4164                         (vpath->vp_config->fifo.max_frags *
4165                         sizeof(struct vxge_hw_fifo_txd))) *
4166                         vpath->vp_config->fifo.fifo_blocks)) {
4167
4168                         return VXGE_HW_BADCFG_FIFO_BLOCKS;
4169                 }
4170                 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4171                                 (vpath->max_nofl_db*2)-1);
4172         }
4173
4174         writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4175
4176         writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4177                 &vp_reg->kdfc_fifo_trpl_ctrl);
4178
4179         val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4180
4181         val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4182                    VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4183
4184         val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4185                  VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4186 #ifndef __BIG_ENDIAN
4187                  VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4188 #endif
4189                  VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4190
4191         writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4192         writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4193         wmb();
4194         vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4195
4196         vpath->nofl_db =
4197                 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
4198                 (hldev->kdfc + (vp_id *
4199                 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4200                                         vpath_stride)));
4201 exit:
4202         return status;
4203 }
4204
4205 /*
4206  * __vxge_hw_vpath_mac_configure
4207  * This routine configures the mac of virtual path using the config passed
4208  */
4209 static enum vxge_hw_status
4210 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4211 {
4212         u64 val64;
4213         struct __vxge_hw_virtualpath *vpath;
4214         struct vxge_hw_vp_config *vp_config;
4215         struct vxge_hw_vpath_reg __iomem *vp_reg;
4216
4217         vpath = &hldev->virtual_paths[vp_id];
4218         vp_reg = vpath->vp_reg;
4219         vp_config = vpath->vp_config;
4220
4221         writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4222                         vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4223
4224         if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4225
4226                 val64 = readq(&vp_reg->xmac_rpa_vcfg);
4227
4228                 if (vp_config->rpa_strip_vlan_tag !=
4229                         VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4230                         if (vp_config->rpa_strip_vlan_tag)
4231                                 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4232                         else
4233                                 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4234                 }
4235
4236                 writeq(val64, &vp_reg->xmac_rpa_vcfg);
4237                 val64 = readq(&vp_reg->rxmac_vcfg0);
4238
4239                 if (vp_config->mtu !=
4240                                 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4241                         val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4242                         if ((vp_config->mtu  +
4243                                 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4244                                 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4245                                         vp_config->mtu  +
4246                                         VXGE_HW_MAC_HEADER_MAX_SIZE);
4247                         else
4248                                 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4249                                         vpath->max_mtu);
4250                 }
4251
4252                 writeq(val64, &vp_reg->rxmac_vcfg0);
4253
4254                 val64 = readq(&vp_reg->rxmac_vcfg1);
4255
4256                 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4257                         VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4258
4259                 if (hldev->config.rth_it_type ==
4260                                 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4261                         val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4262                                 0x2) |
4263                                 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4264                 }
4265
4266                 writeq(val64, &vp_reg->rxmac_vcfg1);
4267         }
4268         return VXGE_HW_OK;
4269 }
4270
4271 /*
4272  * __vxge_hw_vpath_tim_configure
4273  * This routine configures the tim registers of virtual path using the config
4274  * passed
4275  */
4276 static enum vxge_hw_status
4277 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4278 {
4279         u64 val64;
4280         struct __vxge_hw_virtualpath *vpath;
4281         struct vxge_hw_vpath_reg __iomem *vp_reg;
4282         struct vxge_hw_vp_config *config;
4283
4284         vpath = &hldev->virtual_paths[vp_id];
4285         vp_reg = vpath->vp_reg;
4286         config = vpath->vp_config;
4287
4288         writeq(0, &vp_reg->tim_dest_addr);
4289         writeq(0, &vp_reg->tim_vpath_map);
4290         writeq(0, &vp_reg->tim_bitmap);
4291         writeq(0, &vp_reg->tim_remap);
4292
4293         if (config->ring.enable == VXGE_HW_RING_ENABLE)
4294                 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4295                         (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4296                         VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4297
4298         val64 = readq(&vp_reg->tim_pci_cfg);
4299         val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4300         writeq(val64, &vp_reg->tim_pci_cfg);
4301
4302         if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4303
4304                 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4305
4306                 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4307                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4308                                 0x3ffffff);
4309                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4310                                         config->tti.btimer_val);
4311                 }
4312
4313                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4314
4315                 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4316                         if (config->tti.timer_ac_en)
4317                                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4318                         else
4319                                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4320                 }
4321
4322                 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4323                         if (config->tti.timer_ci_en)
4324                                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4325                         else
4326                                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4327                 }
4328
4329                 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4330                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4331                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4332                                         config->tti.urange_a);
4333                 }
4334
4335                 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4336                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4337                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4338                                         config->tti.urange_b);
4339                 }
4340
4341                 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4342                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4343                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4344                                         config->tti.urange_c);
4345                 }
4346
4347                 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4348                 vpath->tim_tti_cfg1_saved = val64;
4349
4350                 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4351
4352                 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4353                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4354                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4355                                                 config->tti.uec_a);
4356                 }
4357
4358                 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4359                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4360                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4361                                                 config->tti.uec_b);
4362                 }
4363
4364                 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4365                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4366                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4367                                                 config->tti.uec_c);
4368                 }
4369
4370                 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4371                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4372                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4373                                                 config->tti.uec_d);
4374                 }
4375
4376                 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4377                 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4378
4379                 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4380                         if (config->tti.timer_ri_en)
4381                                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4382                         else
4383                                 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4384                 }
4385
4386                 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4387                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4388                                         0x3ffffff);
4389                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4390                                         config->tti.rtimer_val);
4391                 }
4392
4393                 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4394                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4395                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4396                 }
4397
4398                 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4399                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4400                                         0x3ffffff);
4401                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4402                                         config->tti.ltimer_val);
4403                 }
4404
4405                 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4406                 vpath->tim_tti_cfg3_saved = val64;
4407         }
4408
4409         if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4410
4411                 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4412
4413                 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4414                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4415                                         0x3ffffff);
4416                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4417                                         config->rti.btimer_val);
4418                 }
4419
4420                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4421
4422                 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4423                         if (config->rti.timer_ac_en)
4424                                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4425                         else
4426                                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4427                 }
4428
4429                 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4430                         if (config->rti.timer_ci_en)
4431                                 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4432                         else
4433                                 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4434                 }
4435
4436                 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4437                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4438                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4439                                         config->rti.urange_a);
4440                 }
4441
4442                 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4443                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4444                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4445                                         config->rti.urange_b);
4446                 }
4447
4448                 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4449                         val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4450                         val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4451                                         config->rti.urange_c);
4452                 }
4453
4454                 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4455                 vpath->tim_rti_cfg1_saved = val64;
4456
4457                 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4458
4459                 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4460                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4461                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4462                                                 config->rti.uec_a);
4463                 }
4464
4465                 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4466                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4467                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4468                                                 config->rti.uec_b);
4469                 }
4470
4471                 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4472                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4473                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4474                                                 config->rti.uec_c);
4475                 }
4476
4477                 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4478                         val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4479                         val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4480                                                 config->rti.uec_d);
4481                 }
4482
4483                 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4484                 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4485
4486                 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4487                         if (config->rti.timer_ri_en)
4488                                 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4489                         else
4490                                 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4491                 }
4492
4493                 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4494                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4495                                         0x3ffffff);
4496                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4497                                         config->rti.rtimer_val);
4498                 }
4499
4500                 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4501                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4502                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4503                 }
4504
4505                 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4506                         val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4507                                         0x3ffffff);
4508                         val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4509                                         config->rti.ltimer_val);
4510                 }
4511
4512                 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4513                 vpath->tim_rti_cfg3_saved = val64;
4514         }
4515
4516         val64 = 0;
4517         writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4518         writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4519         writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4520         writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4521         writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4522         writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4523
4524         val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4525         val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4526         val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4527         writeq(val64, &vp_reg->tim_wrkld_clc);
4528
4529         return VXGE_HW_OK;
4530 }
4531
4532 /*
4533  * __vxge_hw_vpath_initialize
4534  * This routine is the final phase of init which initializes the
4535  * registers of the vpath using the configuration passed.
4536  */
4537 static enum vxge_hw_status
4538 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4539 {
4540         u64 val64;
4541         u32 val32;
4542         enum vxge_hw_status status = VXGE_HW_OK;
4543         struct __vxge_hw_virtualpath *vpath;
4544         struct vxge_hw_vpath_reg __iomem *vp_reg;
4545
4546         vpath = &hldev->virtual_paths[vp_id];
4547
4548         if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4549                 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4550                 goto exit;
4551         }
4552         vp_reg = vpath->vp_reg;
4553
4554         status =  __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4555         if (status != VXGE_HW_OK)
4556                 goto exit;
4557
4558         status =  __vxge_hw_vpath_mac_configure(hldev, vp_id);
4559         if (status != VXGE_HW_OK)
4560                 goto exit;
4561
4562         status =  __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4563         if (status != VXGE_HW_OK)
4564                 goto exit;
4565
4566         status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4567         if (status != VXGE_HW_OK)
4568                 goto exit;
4569
4570         val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4571
4572         /* Get MRRS value from device control */
4573         status  = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4574         if (status == VXGE_HW_OK) {
4575                 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4576                 val64 &=
4577                     ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4578                 val64 |=
4579                     VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4580
4581                 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4582         }
4583
4584         val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4585         val64 |=
4586             VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4587                     VXGE_HW_MAX_PAYLOAD_SIZE_512);
4588
4589         val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4590         writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4591
4592 exit:
4593         return status;
4594 }
4595
4596 /*
4597  * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4598  * This routine closes all channels it opened and freeup memory
4599  */
4600 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4601 {
4602         struct __vxge_hw_virtualpath *vpath;
4603
4604         vpath = &hldev->virtual_paths[vp_id];
4605
4606         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4607                 goto exit;
4608
4609         VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4610                 vpath->hldev->tim_int_mask1, vpath->vp_id);
4611         hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4612
4613         /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4614          * work after the interface is brought down.
4615          */
4616         spin_lock(&vpath->lock);
4617         vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4618         spin_unlock(&vpath->lock);
4619
4620         vpath->vpmgmt_reg = NULL;
4621         vpath->nofl_db = NULL;
4622         vpath->max_mtu = 0;
4623         vpath->vsport_number = 0;
4624         vpath->max_kdfc_db = 0;
4625         vpath->max_nofl_db = 0;
4626         vpath->ringh = NULL;
4627         vpath->fifoh = NULL;
4628         memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4629         vpath->stats_block = NULL;
4630         vpath->hw_stats = NULL;
4631         vpath->hw_stats_sav = NULL;
4632         vpath->sw_stats = NULL;
4633
4634 exit:
4635         return;
4636 }
4637
4638 /*
4639  * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4640  * This routine is the initial phase of init which resets the vpath and
4641  * initializes the software support structures.
4642  */
4643 static enum vxge_hw_status
4644 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4645                         struct vxge_hw_vp_config *config)
4646 {
4647         struct __vxge_hw_virtualpath *vpath;
4648         enum vxge_hw_status status = VXGE_HW_OK;
4649
4650         if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4651                 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4652                 goto exit;
4653         }
4654
4655         vpath = &hldev->virtual_paths[vp_id];
4656
4657         spin_lock_init(&vpath->lock);
4658         vpath->vp_id = vp_id;
4659         vpath->vp_open = VXGE_HW_VP_OPEN;
4660         vpath->hldev = hldev;
4661         vpath->vp_config = config;
4662         vpath->vp_reg = hldev->vpath_reg[vp_id];
4663         vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4664
4665         __vxge_hw_vpath_reset(hldev, vp_id);
4666
4667         status = __vxge_hw_vpath_reset_check(vpath);
4668         if (status != VXGE_HW_OK) {
4669                 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4670                 goto exit;
4671         }
4672
4673         status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4674         if (status != VXGE_HW_OK) {
4675                 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4676                 goto exit;
4677         }
4678
4679         INIT_LIST_HEAD(&vpath->vpath_handles);
4680
4681         vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4682
4683         VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4684                 hldev->tim_int_mask1, vp_id);
4685
4686         status = __vxge_hw_vpath_initialize(hldev, vp_id);
4687         if (status != VXGE_HW_OK)
4688                 __vxge_hw_vp_terminate(hldev, vp_id);
4689 exit:
4690         return status;
4691 }
4692
4693 /*
4694  * vxge_hw_vpath_mtu_set - Set MTU.
4695  * Set new MTU value. Example, to use jumbo frames:
4696  * vxge_hw_vpath_mtu_set(my_device, 9600);
4697  */
4698 enum vxge_hw_status
4699 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4700 {
4701         u64 val64;
4702         enum vxge_hw_status status = VXGE_HW_OK;
4703         struct __vxge_hw_virtualpath *vpath;
4704
4705         if (vp == NULL) {
4706                 status = VXGE_HW_ERR_INVALID_HANDLE;
4707                 goto exit;
4708         }
4709         vpath = vp->vpath;
4710
4711         new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4712
4713         if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4714                 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4715
4716         val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4717
4718         val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4719         val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4720
4721         writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4722
4723         vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4724
4725 exit:
4726         return status;
4727 }
4728
4729 /*
4730  * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4731  * Enable the DMA vpath statistics. The function is to be called to re-enable
4732  * the adapter to update stats into the host memory
4733  */
4734 static enum vxge_hw_status
4735 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4736 {
4737         enum vxge_hw_status status = VXGE_HW_OK;
4738         struct __vxge_hw_virtualpath *vpath;
4739
4740         vpath = vp->vpath;
4741
4742         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4743                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4744                 goto exit;
4745         }
4746
4747         memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4748                         sizeof(struct vxge_hw_vpath_stats_hw_info));
4749
4750         status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4751 exit:
4752         return status;
4753 }
4754
4755 /*
4756  * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4757  * This function allocates a block from block pool or from the system
4758  */
4759 static struct __vxge_hw_blockpool_entry *
4760 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4761 {
4762         struct __vxge_hw_blockpool_entry *entry = NULL;
4763         struct __vxge_hw_blockpool  *blockpool;
4764
4765         blockpool = &devh->block_pool;
4766
4767         if (size == blockpool->block_size) {
4768
4769                 if (!list_empty(&blockpool->free_block_list))
4770                         entry = (struct __vxge_hw_blockpool_entry *)
4771                                 list_first_entry(&blockpool->free_block_list,
4772                                         struct __vxge_hw_blockpool_entry,
4773                                         item);
4774
4775                 if (entry != NULL) {
4776                         list_del(&entry->item);
4777                         blockpool->pool_size--;
4778                 }
4779         }
4780
4781         if (entry != NULL)
4782                 __vxge_hw_blockpool_blocks_add(blockpool);
4783
4784         return entry;
4785 }
4786
4787 /*
4788  * vxge_hw_vpath_open - Open a virtual path on a given adapter
4789  * This function is used to open access to virtual path of an
4790  * adapter for offload, GRO operations. This function returns
4791  * synchronously.
4792  */
4793 enum vxge_hw_status
4794 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4795                    struct vxge_hw_vpath_attr *attr,
4796                    struct __vxge_hw_vpath_handle **vpath_handle)
4797 {
4798         struct __vxge_hw_virtualpath *vpath;
4799         struct __vxge_hw_vpath_handle *vp;
4800         enum vxge_hw_status status;
4801
4802         vpath = &hldev->virtual_paths[attr->vp_id];
4803
4804         if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4805                 status = VXGE_HW_ERR_INVALID_STATE;
4806                 goto vpath_open_exit1;
4807         }
4808
4809         status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4810                         &hldev->config.vp_config[attr->vp_id]);
4811         if (status != VXGE_HW_OK)
4812                 goto vpath_open_exit1;
4813
4814         vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4815         if (vp == NULL) {
4816                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4817                 goto vpath_open_exit2;
4818         }
4819
4820         vp->vpath = vpath;
4821
4822         if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4823                 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4824                 if (status != VXGE_HW_OK)
4825                         goto vpath_open_exit6;
4826         }
4827
4828         if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4829                 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4830                 if (status != VXGE_HW_OK)
4831                         goto vpath_open_exit7;
4832
4833                 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4834         }
4835
4836         vpath->fifoh->tx_intr_num =
4837                 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP)  +
4838                         VXGE_HW_VPATH_INTR_TX;
4839
4840         vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4841                                 VXGE_HW_BLOCK_SIZE);
4842         if (vpath->stats_block == NULL) {
4843                 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4844                 goto vpath_open_exit8;
4845         }
4846
4847         vpath->hw_stats = vpath->stats_block->memblock;
4848         memset(vpath->hw_stats, 0,
4849                 sizeof(struct vxge_hw_vpath_stats_hw_info));
4850
4851         hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4852                                                 vpath->hw_stats;
4853
4854         vpath->hw_stats_sav =
4855                 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4856         memset(vpath->hw_stats_sav, 0,
4857                         sizeof(struct vxge_hw_vpath_stats_hw_info));
4858
4859         writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4860
4861         status = vxge_hw_vpath_stats_enable(vp);
4862         if (status != VXGE_HW_OK)
4863                 goto vpath_open_exit8;
4864
4865         list_add(&vp->item, &vpath->vpath_handles);
4866
4867         hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4868
4869         *vpath_handle = vp;
4870
4871         attr->fifo_attr.userdata = vpath->fifoh;
4872         attr->ring_attr.userdata = vpath->ringh;
4873
4874         return VXGE_HW_OK;
4875
4876 vpath_open_exit8:
4877         if (vpath->ringh != NULL)
4878                 __vxge_hw_ring_delete(vp);
4879 vpath_open_exit7:
4880         if (vpath->fifoh != NULL)
4881                 __vxge_hw_fifo_delete(vp);
4882 vpath_open_exit6:
4883         vfree(vp);
4884 vpath_open_exit2:
4885         __vxge_hw_vp_terminate(hldev, attr->vp_id);
4886 vpath_open_exit1:
4887
4888         return status;
4889 }
4890
4891 /**
4892  * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4893  * (vpath) open
4894  * @vp: Handle got from previous vpath open
4895  *
4896  * This function is used to close access to virtual path opened
4897  * earlier.
4898  */
4899 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4900 {
4901         struct __vxge_hw_virtualpath *vpath = vp->vpath;
4902         struct __vxge_hw_ring *ring = vpath->ringh;
4903         struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4904         u64 new_count, val64, val164;
4905
4906         if (vdev->titan1) {
4907                 new_count = readq(&vpath->vp_reg->rxdmem_size);
4908                 new_count &= 0x1fff;
4909         } else
4910                 new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4911
4912         val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4913
4914         writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4915                 &vpath->vp_reg->prc_rxd_doorbell);
4916         readl(&vpath->vp_reg->prc_rxd_doorbell);
4917
4918         val164 /= 2;
4919         val64 = readq(&vpath->vp_reg->prc_cfg6);
4920         val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4921         val64 &= 0x1ff;
4922
4923         /*
4924          * Each RxD is of 4 qwords
4925          */
4926         new_count -= (val64 + 1);
4927         val64 = min(val164, new_count) / 4;
4928
4929         ring->rxds_limit = min(ring->rxds_limit, val64);
4930         if (ring->rxds_limit < 4)
4931                 ring->rxds_limit = 4;
4932 }
4933
4934 /*
4935  * __vxge_hw_blockpool_block_free - Frees a block from block pool
4936  * @devh: Hal device
4937  * @entry: Entry of block to be freed
4938  *
4939  * This function frees a block from block pool
4940  */
4941 static void
4942 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4943                                struct __vxge_hw_blockpool_entry *entry)
4944 {
4945         struct __vxge_hw_blockpool  *blockpool;
4946
4947         blockpool = &devh->block_pool;
4948
4949         if (entry->length == blockpool->block_size) {
4950                 list_add(&entry->item, &blockpool->free_block_list);
4951                 blockpool->pool_size++;
4952         }
4953
4954         __vxge_hw_blockpool_blocks_remove(blockpool);
4955 }
4956
4957 /*
4958  * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4959  * This function is used to close access to virtual path opened
4960  * earlier.
4961  */
4962 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4963 {
4964         struct __vxge_hw_virtualpath *vpath = NULL;
4965         struct __vxge_hw_device *devh = NULL;
4966         u32 vp_id = vp->vpath->vp_id;
4967         u32 is_empty = TRUE;
4968         enum vxge_hw_status status = VXGE_HW_OK;
4969
4970         vpath = vp->vpath;
4971         devh = vpath->hldev;
4972
4973         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4974                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4975                 goto vpath_close_exit;
4976         }
4977
4978         list_del(&vp->item);
4979
4980         if (!list_empty(&vpath->vpath_handles)) {
4981                 list_add(&vp->item, &vpath->vpath_handles);
4982                 is_empty = FALSE;
4983         }
4984
4985         if (!is_empty) {
4986                 status = VXGE_HW_FAIL;
4987                 goto vpath_close_exit;
4988         }
4989
4990         devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4991
4992         if (vpath->ringh != NULL)
4993                 __vxge_hw_ring_delete(vp);
4994
4995         if (vpath->fifoh != NULL)
4996                 __vxge_hw_fifo_delete(vp);
4997
4998         if (vpath->stats_block != NULL)
4999                 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
5000
5001         vfree(vp);
5002
5003         __vxge_hw_vp_terminate(devh, vp_id);
5004
5005 vpath_close_exit:
5006         return status;
5007 }
5008
5009 /*
5010  * vxge_hw_vpath_reset - Resets vpath
5011  * This function is used to request a reset of vpath
5012  */
5013 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5014 {
5015         enum vxge_hw_status status;
5016         u32 vp_id;
5017         struct __vxge_hw_virtualpath *vpath = vp->vpath;
5018
5019         vp_id = vpath->vp_id;
5020
5021         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5022                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5023                 goto exit;
5024         }
5025
5026         status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5027         if (status == VXGE_HW_OK)
5028                 vpath->sw_stats->soft_reset_cnt++;
5029 exit:
5030         return status;
5031 }
5032
5033 /*
5034  * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5035  * This function poll's for the vpath reset completion and re initializes
5036  * the vpath.
5037  */
5038 enum vxge_hw_status
5039 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5040 {
5041         struct __vxge_hw_virtualpath *vpath = NULL;
5042         enum vxge_hw_status status;
5043         struct __vxge_hw_device *hldev;
5044         u32 vp_id;
5045
5046         vp_id = vp->vpath->vp_id;
5047         vpath = vp->vpath;
5048         hldev = vpath->hldev;
5049
5050         if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5051                 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5052                 goto exit;
5053         }
5054
5055         status = __vxge_hw_vpath_reset_check(vpath);
5056         if (status != VXGE_HW_OK)
5057                 goto exit;
5058
5059         status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5060         if (status != VXGE_HW_OK)
5061                 goto exit;
5062
5063         status = __vxge_hw_vpath_initialize(hldev, vp_id);
5064         if (status != VXGE_HW_OK)
5065                 goto exit;
5066
5067         if (vpath->ringh != NULL)
5068                 __vxge_hw_vpath_prc_configure(hldev, vp_id);
5069
5070         memset(vpath->hw_stats, 0,
5071                 sizeof(struct vxge_hw_vpath_stats_hw_info));
5072
5073         memset(vpath->hw_stats_sav, 0,
5074                 sizeof(struct vxge_hw_vpath_stats_hw_info));
5075
5076         writeq(vpath->stats_block->dma_addr,
5077                 &vpath->vp_reg->stats_cfg);
5078
5079         status = vxge_hw_vpath_stats_enable(vp);
5080
5081 exit:
5082         return status;
5083 }
5084
5085 /*
5086  * vxge_hw_vpath_enable - Enable vpath.
5087  * This routine clears the vpath reset thereby enabling a vpath
5088  * to start forwarding frames and generating interrupts.
5089  */
5090 void
5091 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5092 {
5093         struct __vxge_hw_device *hldev;
5094         u64 val64;
5095
5096         hldev = vp->vpath->hldev;
5097
5098         val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5099                 1 << (16 - vp->vpath->vp_id));
5100
5101         __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5102                 &hldev->common_reg->cmn_rsthdlr_cfg1);
5103 }