]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/qlogic/qed/qed_dev.c
Linux 5.6-rc7
[linux.git] / drivers / net / ethernet / qlogic / qed / qed_dev.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/errno.h>
39 #include <linux/kernel.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/string.h>
44 #include <linux/vmalloc.h>
45 #include <linux/etherdevice.h>
46 #include <linux/qed/qed_chain.h>
47 #include <linux/qed/qed_if.h>
48 #include "qed.h"
49 #include "qed_cxt.h"
50 #include "qed_dcbx.h"
51 #include "qed_dev_api.h"
52 #include "qed_fcoe.h"
53 #include "qed_hsi.h"
54 #include "qed_hw.h"
55 #include "qed_init_ops.h"
56 #include "qed_int.h"
57 #include "qed_iscsi.h"
58 #include "qed_ll2.h"
59 #include "qed_mcp.h"
60 #include "qed_ooo.h"
61 #include "qed_reg_addr.h"
62 #include "qed_sp.h"
63 #include "qed_sriov.h"
64 #include "qed_vf.h"
65 #include "qed_rdma.h"
66
67 static DEFINE_SPINLOCK(qm_lock);
68
69 /******************** Doorbell Recovery *******************/
70 /* The doorbell recovery mechanism consists of a list of entries which represent
71  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
72  * entity needs to register with the mechanism and provide the parameters
73  * describing it's doorbell, including a location where last used doorbell data
74  * can be found. The doorbell execute function will traverse the list and
75  * doorbell all of the registered entries.
76  */
77 struct qed_db_recovery_entry {
78         struct list_head list_entry;
79         void __iomem *db_addr;
80         void *db_data;
81         enum qed_db_rec_width db_width;
82         enum qed_db_rec_space db_space;
83         u8 hwfn_idx;
84 };
85
86 /* Display a single doorbell recovery entry */
87 static void qed_db_recovery_dp_entry(struct qed_hwfn *p_hwfn,
88                                      struct qed_db_recovery_entry *db_entry,
89                                      char *action)
90 {
91         DP_VERBOSE(p_hwfn,
92                    QED_MSG_SPQ,
93                    "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
94                    action,
95                    db_entry,
96                    db_entry->db_addr,
97                    db_entry->db_data,
98                    db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
99                    db_entry->db_space == DB_REC_USER ? "user" : "kernel",
100                    db_entry->hwfn_idx);
101 }
102
103 /* Doorbell address sanity (address within doorbell bar range) */
104 static bool qed_db_rec_sanity(struct qed_dev *cdev,
105                               void __iomem *db_addr,
106                               enum qed_db_rec_width db_width,
107                               void *db_data)
108 {
109         u32 width = (db_width == DB_REC_WIDTH_32B) ? 32 : 64;
110
111         /* Make sure doorbell address is within the doorbell bar */
112         if (db_addr < cdev->doorbells ||
113             (u8 __iomem *)db_addr + width >
114             (u8 __iomem *)cdev->doorbells + cdev->db_size) {
115                 WARN(true,
116                      "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
117                      db_addr,
118                      cdev->doorbells,
119                      (u8 __iomem *)cdev->doorbells + cdev->db_size);
120                 return false;
121         }
122
123         /* ake sure doorbell data pointer is not null */
124         if (!db_data) {
125                 WARN(true, "Illegal doorbell data pointer: %p", db_data);
126                 return false;
127         }
128
129         return true;
130 }
131
132 /* Find hwfn according to the doorbell address */
133 static struct qed_hwfn *qed_db_rec_find_hwfn(struct qed_dev *cdev,
134                                              void __iomem *db_addr)
135 {
136         struct qed_hwfn *p_hwfn;
137
138         /* In CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
139         if (cdev->num_hwfns > 1)
140                 p_hwfn = db_addr < cdev->hwfns[1].doorbells ?
141                     &cdev->hwfns[0] : &cdev->hwfns[1];
142         else
143                 p_hwfn = QED_LEADING_HWFN(cdev);
144
145         return p_hwfn;
146 }
147
148 /* Add a new entry to the doorbell recovery mechanism */
149 int qed_db_recovery_add(struct qed_dev *cdev,
150                         void __iomem *db_addr,
151                         void *db_data,
152                         enum qed_db_rec_width db_width,
153                         enum qed_db_rec_space db_space)
154 {
155         struct qed_db_recovery_entry *db_entry;
156         struct qed_hwfn *p_hwfn;
157
158         /* Shortcircuit VFs, for now */
159         if (IS_VF(cdev)) {
160                 DP_VERBOSE(cdev,
161                            QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
162                 return 0;
163         }
164
165         /* Sanitize doorbell address */
166         if (!qed_db_rec_sanity(cdev, db_addr, db_width, db_data))
167                 return -EINVAL;
168
169         /* Obtain hwfn from doorbell address */
170         p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
171
172         /* Create entry */
173         db_entry = kzalloc(sizeof(*db_entry), GFP_KERNEL);
174         if (!db_entry) {
175                 DP_NOTICE(cdev, "Failed to allocate a db recovery entry\n");
176                 return -ENOMEM;
177         }
178
179         /* Populate entry */
180         db_entry->db_addr = db_addr;
181         db_entry->db_data = db_data;
182         db_entry->db_width = db_width;
183         db_entry->db_space = db_space;
184         db_entry->hwfn_idx = p_hwfn->my_id;
185
186         /* Display */
187         qed_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
188
189         /* Protect the list */
190         spin_lock_bh(&p_hwfn->db_recovery_info.lock);
191         list_add_tail(&db_entry->list_entry, &p_hwfn->db_recovery_info.list);
192         spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
193
194         return 0;
195 }
196
197 /* Remove an entry from the doorbell recovery mechanism */
198 int qed_db_recovery_del(struct qed_dev *cdev,
199                         void __iomem *db_addr, void *db_data)
200 {
201         struct qed_db_recovery_entry *db_entry = NULL;
202         struct qed_hwfn *p_hwfn;
203         int rc = -EINVAL;
204
205         /* Shortcircuit VFs, for now */
206         if (IS_VF(cdev)) {
207                 DP_VERBOSE(cdev,
208                            QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
209                 return 0;
210         }
211
212         /* Obtain hwfn from doorbell address */
213         p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
214
215         /* Protect the list */
216         spin_lock_bh(&p_hwfn->db_recovery_info.lock);
217         list_for_each_entry(db_entry,
218                             &p_hwfn->db_recovery_info.list, list_entry) {
219                 /* search according to db_data addr since db_addr is not unique (roce) */
220                 if (db_entry->db_data == db_data) {
221                         qed_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
222                         list_del(&db_entry->list_entry);
223                         rc = 0;
224                         break;
225                 }
226         }
227
228         spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
229
230         if (rc == -EINVAL)
231
232                 DP_NOTICE(p_hwfn,
233                           "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
234                           db_data, db_addr);
235         else
236                 kfree(db_entry);
237
238         return rc;
239 }
240
241 /* Initialize the doorbell recovery mechanism */
242 static int qed_db_recovery_setup(struct qed_hwfn *p_hwfn)
243 {
244         DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Setting up db recovery\n");
245
246         /* Make sure db_size was set in cdev */
247         if (!p_hwfn->cdev->db_size) {
248                 DP_ERR(p_hwfn->cdev, "db_size not set\n");
249                 return -EINVAL;
250         }
251
252         INIT_LIST_HEAD(&p_hwfn->db_recovery_info.list);
253         spin_lock_init(&p_hwfn->db_recovery_info.lock);
254         p_hwfn->db_recovery_info.db_recovery_counter = 0;
255
256         return 0;
257 }
258
259 /* Destroy the doorbell recovery mechanism */
260 static void qed_db_recovery_teardown(struct qed_hwfn *p_hwfn)
261 {
262         struct qed_db_recovery_entry *db_entry = NULL;
263
264         DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Tearing down db recovery\n");
265         if (!list_empty(&p_hwfn->db_recovery_info.list)) {
266                 DP_VERBOSE(p_hwfn,
267                            QED_MSG_SPQ,
268                            "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
269                 while (!list_empty(&p_hwfn->db_recovery_info.list)) {
270                         db_entry =
271                             list_first_entry(&p_hwfn->db_recovery_info.list,
272                                              struct qed_db_recovery_entry,
273                                              list_entry);
274                         qed_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
275                         list_del(&db_entry->list_entry);
276                         kfree(db_entry);
277                 }
278         }
279         p_hwfn->db_recovery_info.db_recovery_counter = 0;
280 }
281
282 /* Print the content of the doorbell recovery mechanism */
283 void qed_db_recovery_dp(struct qed_hwfn *p_hwfn)
284 {
285         struct qed_db_recovery_entry *db_entry = NULL;
286
287         DP_NOTICE(p_hwfn,
288                   "Displaying doorbell recovery database. Counter was %d\n",
289                   p_hwfn->db_recovery_info.db_recovery_counter);
290
291         /* Protect the list */
292         spin_lock_bh(&p_hwfn->db_recovery_info.lock);
293         list_for_each_entry(db_entry,
294                             &p_hwfn->db_recovery_info.list, list_entry) {
295                 qed_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
296         }
297
298         spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
299 }
300
301 /* Ring the doorbell of a single doorbell recovery entry */
302 static void qed_db_recovery_ring(struct qed_hwfn *p_hwfn,
303                                  struct qed_db_recovery_entry *db_entry)
304 {
305         /* Print according to width */
306         if (db_entry->db_width == DB_REC_WIDTH_32B) {
307                 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
308                            "ringing doorbell address %p data %x\n",
309                            db_entry->db_addr,
310                            *(u32 *)db_entry->db_data);
311         } else {
312                 DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
313                            "ringing doorbell address %p data %llx\n",
314                            db_entry->db_addr,
315                            *(u64 *)(db_entry->db_data));
316         }
317
318         /* Sanity */
319         if (!qed_db_rec_sanity(p_hwfn->cdev, db_entry->db_addr,
320                                db_entry->db_width, db_entry->db_data))
321                 return;
322
323         /* Flush the write combined buffer. Since there are multiple doorbelling
324          * entities using the same address, if we don't flush, a transaction
325          * could be lost.
326          */
327         wmb();
328
329         /* Ring the doorbell */
330         if (db_entry->db_width == DB_REC_WIDTH_32B)
331                 DIRECT_REG_WR(db_entry->db_addr,
332                               *(u32 *)(db_entry->db_data));
333         else
334                 DIRECT_REG_WR64(db_entry->db_addr,
335                                 *(u64 *)(db_entry->db_data));
336
337         /* Flush the write combined buffer. Next doorbell may come from a
338          * different entity to the same address...
339          */
340         wmb();
341 }
342
343 /* Traverse the doorbell recovery entry list and ring all the doorbells */
344 void qed_db_recovery_execute(struct qed_hwfn *p_hwfn)
345 {
346         struct qed_db_recovery_entry *db_entry = NULL;
347
348         DP_NOTICE(p_hwfn, "Executing doorbell recovery. Counter was %d\n",
349                   p_hwfn->db_recovery_info.db_recovery_counter);
350
351         /* Track amount of times recovery was executed */
352         p_hwfn->db_recovery_info.db_recovery_counter++;
353
354         /* Protect the list */
355         spin_lock_bh(&p_hwfn->db_recovery_info.lock);
356         list_for_each_entry(db_entry,
357                             &p_hwfn->db_recovery_info.list, list_entry)
358                 qed_db_recovery_ring(p_hwfn, db_entry);
359         spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
360 }
361
362 /******************** Doorbell Recovery end ****************/
363
364 /********************************** NIG LLH ***********************************/
365
366 enum qed_llh_filter_type {
367         QED_LLH_FILTER_TYPE_MAC,
368         QED_LLH_FILTER_TYPE_PROTOCOL,
369 };
370
371 struct qed_llh_mac_filter {
372         u8 addr[ETH_ALEN];
373 };
374
375 struct qed_llh_protocol_filter {
376         enum qed_llh_prot_filter_type_t type;
377         u16 source_port_or_eth_type;
378         u16 dest_port;
379 };
380
381 union qed_llh_filter {
382         struct qed_llh_mac_filter mac;
383         struct qed_llh_protocol_filter protocol;
384 };
385
386 struct qed_llh_filter_info {
387         bool b_enabled;
388         u32 ref_cnt;
389         enum qed_llh_filter_type type;
390         union qed_llh_filter filter;
391 };
392
393 struct qed_llh_info {
394         /* Number of LLH filters banks */
395         u8 num_ppfid;
396
397 #define MAX_NUM_PPFID   8
398         u8 ppfid_array[MAX_NUM_PPFID];
399
400         /* Array of filters arrays:
401          * "num_ppfid" elements of filters banks, where each is an array of
402          * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
403          */
404         struct qed_llh_filter_info **pp_filters;
405 };
406
407 static void qed_llh_free(struct qed_dev *cdev)
408 {
409         struct qed_llh_info *p_llh_info = cdev->p_llh_info;
410         u32 i;
411
412         if (p_llh_info) {
413                 if (p_llh_info->pp_filters)
414                         for (i = 0; i < p_llh_info->num_ppfid; i++)
415                                 kfree(p_llh_info->pp_filters[i]);
416
417                 kfree(p_llh_info->pp_filters);
418         }
419
420         kfree(p_llh_info);
421         cdev->p_llh_info = NULL;
422 }
423
424 static int qed_llh_alloc(struct qed_dev *cdev)
425 {
426         struct qed_llh_info *p_llh_info;
427         u32 size, i;
428
429         p_llh_info = kzalloc(sizeof(*p_llh_info), GFP_KERNEL);
430         if (!p_llh_info)
431                 return -ENOMEM;
432         cdev->p_llh_info = p_llh_info;
433
434         for (i = 0; i < MAX_NUM_PPFID; i++) {
435                 if (!(cdev->ppfid_bitmap & (0x1 << i)))
436                         continue;
437
438                 p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
439                 DP_VERBOSE(cdev, QED_MSG_SP, "ppfid_array[%d] = %hhd\n",
440                            p_llh_info->num_ppfid, i);
441                 p_llh_info->num_ppfid++;
442         }
443
444         size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
445         p_llh_info->pp_filters = kzalloc(size, GFP_KERNEL);
446         if (!p_llh_info->pp_filters)
447                 return -ENOMEM;
448
449         size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
450             sizeof(**p_llh_info->pp_filters);
451         for (i = 0; i < p_llh_info->num_ppfid; i++) {
452                 p_llh_info->pp_filters[i] = kzalloc(size, GFP_KERNEL);
453                 if (!p_llh_info->pp_filters[i])
454                         return -ENOMEM;
455         }
456
457         return 0;
458 }
459
460 static int qed_llh_shadow_sanity(struct qed_dev *cdev,
461                                  u8 ppfid, u8 filter_idx, const char *action)
462 {
463         struct qed_llh_info *p_llh_info = cdev->p_llh_info;
464
465         if (ppfid >= p_llh_info->num_ppfid) {
466                 DP_NOTICE(cdev,
467                           "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
468                           action, ppfid, p_llh_info->num_ppfid);
469                 return -EINVAL;
470         }
471
472         if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
473                 DP_NOTICE(cdev,
474                           "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
475                           action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
476                 return -EINVAL;
477         }
478
479         return 0;
480 }
481
482 #define QED_LLH_INVALID_FILTER_IDX      0xff
483
484 static int
485 qed_llh_shadow_search_filter(struct qed_dev *cdev,
486                              u8 ppfid,
487                              union qed_llh_filter *p_filter, u8 *p_filter_idx)
488 {
489         struct qed_llh_info *p_llh_info = cdev->p_llh_info;
490         struct qed_llh_filter_info *p_filters;
491         int rc;
492         u8 i;
493
494         rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "search");
495         if (rc)
496                 return rc;
497
498         *p_filter_idx = QED_LLH_INVALID_FILTER_IDX;
499
500         p_filters = p_llh_info->pp_filters[ppfid];
501         for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
502                 if (!memcmp(p_filter, &p_filters[i].filter,
503                             sizeof(*p_filter))) {
504                         *p_filter_idx = i;
505                         break;
506                 }
507         }
508
509         return 0;
510 }
511
512 static int
513 qed_llh_shadow_get_free_idx(struct qed_dev *cdev, u8 ppfid, u8 *p_filter_idx)
514 {
515         struct qed_llh_info *p_llh_info = cdev->p_llh_info;
516         struct qed_llh_filter_info *p_filters;
517         int rc;
518         u8 i;
519
520         rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "get_free_idx");
521         if (rc)
522                 return rc;
523
524         *p_filter_idx = QED_LLH_INVALID_FILTER_IDX;
525
526         p_filters = p_llh_info->pp_filters[ppfid];
527         for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
528                 if (!p_filters[i].b_enabled) {
529                         *p_filter_idx = i;
530                         break;
531                 }
532         }
533
534         return 0;
535 }
536
537 static int
538 __qed_llh_shadow_add_filter(struct qed_dev *cdev,
539                             u8 ppfid,
540                             u8 filter_idx,
541                             enum qed_llh_filter_type type,
542                             union qed_llh_filter *p_filter, u32 *p_ref_cnt)
543 {
544         struct qed_llh_info *p_llh_info = cdev->p_llh_info;
545         struct qed_llh_filter_info *p_filters;
546         int rc;
547
548         rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "add");
549         if (rc)
550                 return rc;
551
552         p_filters = p_llh_info->pp_filters[ppfid];
553         if (!p_filters[filter_idx].ref_cnt) {
554                 p_filters[filter_idx].b_enabled = true;
555                 p_filters[filter_idx].type = type;
556                 memcpy(&p_filters[filter_idx].filter, p_filter,
557                        sizeof(p_filters[filter_idx].filter));
558         }
559
560         *p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
561
562         return 0;
563 }
564
565 static int
566 qed_llh_shadow_add_filter(struct qed_dev *cdev,
567                           u8 ppfid,
568                           enum qed_llh_filter_type type,
569                           union qed_llh_filter *p_filter,
570                           u8 *p_filter_idx, u32 *p_ref_cnt)
571 {
572         int rc;
573
574         /* Check if the same filter already exist */
575         rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx);
576         if (rc)
577                 return rc;
578
579         /* Find a new entry in case of a new filter */
580         if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
581                 rc = qed_llh_shadow_get_free_idx(cdev, ppfid, p_filter_idx);
582                 if (rc)
583                         return rc;
584         }
585
586         /* No free entry was found */
587         if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
588                 DP_NOTICE(cdev,
589                           "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
590                           ppfid);
591                 return -EINVAL;
592         }
593
594         return __qed_llh_shadow_add_filter(cdev, ppfid, *p_filter_idx, type,
595                                            p_filter, p_ref_cnt);
596 }
597
598 static int
599 __qed_llh_shadow_remove_filter(struct qed_dev *cdev,
600                                u8 ppfid, u8 filter_idx, u32 *p_ref_cnt)
601 {
602         struct qed_llh_info *p_llh_info = cdev->p_llh_info;
603         struct qed_llh_filter_info *p_filters;
604         int rc;
605
606         rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "remove");
607         if (rc)
608                 return rc;
609
610         p_filters = p_llh_info->pp_filters[ppfid];
611         if (!p_filters[filter_idx].ref_cnt) {
612                 DP_NOTICE(cdev,
613                           "LLH shadow: trying to remove a filter with ref_cnt=0\n");
614                 return -EINVAL;
615         }
616
617         *p_ref_cnt = --p_filters[filter_idx].ref_cnt;
618         if (!p_filters[filter_idx].ref_cnt)
619                 memset(&p_filters[filter_idx],
620                        0, sizeof(p_filters[filter_idx]));
621
622         return 0;
623 }
624
625 static int
626 qed_llh_shadow_remove_filter(struct qed_dev *cdev,
627                              u8 ppfid,
628                              union qed_llh_filter *p_filter,
629                              u8 *p_filter_idx, u32 *p_ref_cnt)
630 {
631         int rc;
632
633         rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx);
634         if (rc)
635                 return rc;
636
637         /* No matching filter was found */
638         if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
639                 DP_NOTICE(cdev, "Failed to find a filter in the LLH shadow\n");
640                 return -EINVAL;
641         }
642
643         return __qed_llh_shadow_remove_filter(cdev, ppfid, *p_filter_idx,
644                                               p_ref_cnt);
645 }
646
647 static int qed_llh_abs_ppfid(struct qed_dev *cdev, u8 ppfid, u8 *p_abs_ppfid)
648 {
649         struct qed_llh_info *p_llh_info = cdev->p_llh_info;
650
651         if (ppfid >= p_llh_info->num_ppfid) {
652                 DP_NOTICE(cdev,
653                           "ppfid %d is not valid, available indices are 0..%hhd\n",
654                           ppfid, p_llh_info->num_ppfid - 1);
655                 *p_abs_ppfid = 0;
656                 return -EINVAL;
657         }
658
659         *p_abs_ppfid = p_llh_info->ppfid_array[ppfid];
660
661         return 0;
662 }
663
664 static int
665 qed_llh_set_engine_affin(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
666 {
667         struct qed_dev *cdev = p_hwfn->cdev;
668         enum qed_eng eng;
669         u8 ppfid;
670         int rc;
671
672         rc = qed_mcp_get_engine_config(p_hwfn, p_ptt);
673         if (rc != 0 && rc != -EOPNOTSUPP) {
674                 DP_NOTICE(p_hwfn,
675                           "Failed to get the engine affinity configuration\n");
676                 return rc;
677         }
678
679         /* RoCE PF is bound to a single engine */
680         if (QED_IS_ROCE_PERSONALITY(p_hwfn)) {
681                 eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0;
682                 rc = qed_llh_set_roce_affinity(cdev, eng);
683                 if (rc) {
684                         DP_NOTICE(cdev,
685                                   "Failed to set the RoCE engine affinity\n");
686                         return rc;
687                 }
688
689                 DP_VERBOSE(cdev,
690                            QED_MSG_SP,
691                            "LLH: Set the engine affinity of RoCE packets as %d\n",
692                            eng);
693         }
694
695         /* Storage PF is bound to a single engine while L2 PF uses both */
696         if (QED_IS_FCOE_PERSONALITY(p_hwfn) || QED_IS_ISCSI_PERSONALITY(p_hwfn))
697                 eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0;
698         else                    /* L2_PERSONALITY */
699                 eng = QED_BOTH_ENG;
700
701         for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
702                 rc = qed_llh_set_ppfid_affinity(cdev, ppfid, eng);
703                 if (rc) {
704                         DP_NOTICE(cdev,
705                                   "Failed to set the engine affinity of ppfid %d\n",
706                                   ppfid);
707                         return rc;
708                 }
709         }
710
711         DP_VERBOSE(cdev, QED_MSG_SP,
712                    "LLH: Set the engine affinity of non-RoCE packets as %d\n",
713                    eng);
714
715         return 0;
716 }
717
718 static int qed_llh_hw_init_pf(struct qed_hwfn *p_hwfn,
719                               struct qed_ptt *p_ptt)
720 {
721         struct qed_dev *cdev = p_hwfn->cdev;
722         u8 ppfid, abs_ppfid;
723         int rc;
724
725         for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
726                 u32 addr;
727
728                 rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
729                 if (rc)
730                         return rc;
731
732                 addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
733                 qed_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
734         }
735
736         if (test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) &&
737             !QED_IS_FCOE_PERSONALITY(p_hwfn)) {
738                 rc = qed_llh_add_mac_filter(cdev, 0,
739                                             p_hwfn->hw_info.hw_mac_addr);
740                 if (rc)
741                         DP_NOTICE(cdev,
742                                   "Failed to add an LLH filter with the primary MAC\n");
743         }
744
745         if (QED_IS_CMT(cdev)) {
746                 rc = qed_llh_set_engine_affin(p_hwfn, p_ptt);
747                 if (rc)
748                         return rc;
749         }
750
751         return 0;
752 }
753
754 u8 qed_llh_get_num_ppfid(struct qed_dev *cdev)
755 {
756         return cdev->p_llh_info->num_ppfid;
757 }
758
759 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK             0x3
760 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT            0
761 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK         0x3
762 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT        2
763
764 int qed_llh_set_ppfid_affinity(struct qed_dev *cdev, u8 ppfid, enum qed_eng eng)
765 {
766         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
767         struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
768         u32 addr, val, eng_sel;
769         u8 abs_ppfid;
770         int rc = 0;
771
772         if (!p_ptt)
773                 return -EAGAIN;
774
775         if (!QED_IS_CMT(cdev))
776                 goto out;
777
778         rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
779         if (rc)
780                 goto out;
781
782         switch (eng) {
783         case QED_ENG0:
784                 eng_sel = 0;
785                 break;
786         case QED_ENG1:
787                 eng_sel = 1;
788                 break;
789         case QED_BOTH_ENG:
790                 eng_sel = 2;
791                 break;
792         default:
793                 DP_NOTICE(cdev, "Invalid affinity value for ppfid [%d]\n", eng);
794                 rc = -EINVAL;
795                 goto out;
796         }
797
798         addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
799         val = qed_rd(p_hwfn, p_ptt, addr);
800         SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
801         qed_wr(p_hwfn, p_ptt, addr, val);
802
803         /* The iWARP affinity is set as the affinity of ppfid 0 */
804         if (!ppfid && QED_IS_IWARP_PERSONALITY(p_hwfn))
805                 cdev->iwarp_affin = (eng == QED_ENG1) ? 1 : 0;
806 out:
807         qed_ptt_release(p_hwfn, p_ptt);
808
809         return rc;
810 }
811
812 int qed_llh_set_roce_affinity(struct qed_dev *cdev, enum qed_eng eng)
813 {
814         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
815         struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
816         u32 addr, val, eng_sel;
817         u8 ppfid, abs_ppfid;
818         int rc = 0;
819
820         if (!p_ptt)
821                 return -EAGAIN;
822
823         if (!QED_IS_CMT(cdev))
824                 goto out;
825
826         switch (eng) {
827         case QED_ENG0:
828                 eng_sel = 0;
829                 break;
830         case QED_ENG1:
831                 eng_sel = 1;
832                 break;
833         case QED_BOTH_ENG:
834                 eng_sel = 2;
835                 qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
836                        0xf);  /* QP bit 15 */
837                 break;
838         default:
839                 DP_NOTICE(cdev, "Invalid affinity value for RoCE [%d]\n", eng);
840                 rc = -EINVAL;
841                 goto out;
842         }
843
844         for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
845                 rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
846                 if (rc)
847                         goto out;
848
849                 addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
850                 val = qed_rd(p_hwfn, p_ptt, addr);
851                 SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
852                 qed_wr(p_hwfn, p_ptt, addr, val);
853         }
854 out:
855         qed_ptt_release(p_hwfn, p_ptt);
856
857         return rc;
858 }
859
860 struct qed_llh_filter_details {
861         u64 value;
862         u32 mode;
863         u32 protocol_type;
864         u32 hdr_sel;
865         u32 enable;
866 };
867
868 static int
869 qed_llh_access_filter(struct qed_hwfn *p_hwfn,
870                       struct qed_ptt *p_ptt,
871                       u8 abs_ppfid,
872                       u8 filter_idx,
873                       struct qed_llh_filter_details *p_details)
874 {
875         struct qed_dmae_params params = {0};
876         u32 addr;
877         u8 pfid;
878         int rc;
879
880         /* The NIG/LLH registers that are accessed in this function have only 16
881          * rows which are exposed to a PF. I.e. only the 16 filters of its
882          * default ppfid. Accessing filters of other ppfids requires pretending
883          * to another PFs.
884          * The calculation of PPFID->PFID in AH is based on the relative index
885          * of a PF on its port.
886          * For BB the pfid is actually the abs_ppfid.
887          */
888         if (QED_IS_BB(p_hwfn->cdev))
889                 pfid = abs_ppfid;
890         else
891                 pfid = abs_ppfid * p_hwfn->cdev->num_ports_in_engine +
892                     MFW_PORT(p_hwfn);
893
894         /* Filter enable - should be done first when removing a filter */
895         if (!p_details->enable) {
896                 qed_fid_pretend(p_hwfn, p_ptt,
897                                 pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
898
899                 addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
900                 qed_wr(p_hwfn, p_ptt, addr, p_details->enable);
901
902                 qed_fid_pretend(p_hwfn, p_ptt,
903                                 p_hwfn->rel_pf_id <<
904                                 PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
905         }
906
907         /* Filter value */
908         addr = NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * filter_idx * 0x4;
909
910         SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_PF_VALID, 0x1);
911         params.dst_pfid = pfid;
912         rc = qed_dmae_host2grc(p_hwfn,
913                                p_ptt,
914                                (u64)(uintptr_t)&p_details->value,
915                                addr, 2 /* size_in_dwords */,
916                                &params);
917         if (rc)
918                 return rc;
919
920         qed_fid_pretend(p_hwfn, p_ptt,
921                         pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
922
923         /* Filter mode */
924         addr = NIG_REG_LLH_FUNC_FILTER_MODE + filter_idx * 0x4;
925         qed_wr(p_hwfn, p_ptt, addr, p_details->mode);
926
927         /* Filter protocol type */
928         addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + filter_idx * 0x4;
929         qed_wr(p_hwfn, p_ptt, addr, p_details->protocol_type);
930
931         /* Filter header select */
932         addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL + filter_idx * 0x4;
933         qed_wr(p_hwfn, p_ptt, addr, p_details->hdr_sel);
934
935         /* Filter enable - should be done last when adding a filter */
936         if (p_details->enable) {
937                 addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
938                 qed_wr(p_hwfn, p_ptt, addr, p_details->enable);
939         }
940
941         qed_fid_pretend(p_hwfn, p_ptt,
942                         p_hwfn->rel_pf_id <<
943                         PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
944
945         return 0;
946 }
947
948 static int
949 qed_llh_add_filter(struct qed_hwfn *p_hwfn,
950                    struct qed_ptt *p_ptt,
951                    u8 abs_ppfid,
952                    u8 filter_idx, u8 filter_prot_type, u32 high, u32 low)
953 {
954         struct qed_llh_filter_details filter_details;
955
956         filter_details.enable = 1;
957         filter_details.value = ((u64)high << 32) | low;
958         filter_details.hdr_sel = 0;
959         filter_details.protocol_type = filter_prot_type;
960         /* Mode: 0: MAC-address classification 1: protocol classification */
961         filter_details.mode = filter_prot_type ? 1 : 0;
962
963         return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
964                                      &filter_details);
965 }
966
967 static int
968 qed_llh_remove_filter(struct qed_hwfn *p_hwfn,
969                       struct qed_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
970 {
971         struct qed_llh_filter_details filter_details = {0};
972
973         return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
974                                      &filter_details);
975 }
976
977 int qed_llh_add_mac_filter(struct qed_dev *cdev,
978                            u8 ppfid, u8 mac_addr[ETH_ALEN])
979 {
980         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
981         struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
982         union qed_llh_filter filter = {};
983         u8 filter_idx, abs_ppfid;
984         u32 high, low, ref_cnt;
985         int rc = 0;
986
987         if (!p_ptt)
988                 return -EAGAIN;
989
990         if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits))
991                 goto out;
992
993         memcpy(filter.mac.addr, mac_addr, ETH_ALEN);
994         rc = qed_llh_shadow_add_filter(cdev, ppfid,
995                                        QED_LLH_FILTER_TYPE_MAC,
996                                        &filter, &filter_idx, &ref_cnt);
997         if (rc)
998                 goto err;
999
1000         /* Configure the LLH only in case of a new the filter */
1001         if (ref_cnt == 1) {
1002                 rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1003                 if (rc)
1004                         goto err;
1005
1006                 high = mac_addr[1] | (mac_addr[0] << 8);
1007                 low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1008                       (mac_addr[2] << 24);
1009                 rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1010                                         0, high, low);
1011                 if (rc)
1012                         goto err;
1013         }
1014
1015         DP_VERBOSE(cdev,
1016                    QED_MSG_SP,
1017                    "LLH: Added MAC filter [%pM] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1018                    mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt);
1019
1020         goto out;
1021
1022 err:    DP_NOTICE(cdev,
1023                   "LLH: Failed to add MAC filter [%pM] to ppfid %hhd\n",
1024                   mac_addr, ppfid);
1025 out:
1026         qed_ptt_release(p_hwfn, p_ptt);
1027
1028         return rc;
1029 }
1030
1031 static int
1032 qed_llh_protocol_filter_stringify(struct qed_dev *cdev,
1033                                   enum qed_llh_prot_filter_type_t type,
1034                                   u16 source_port_or_eth_type,
1035                                   u16 dest_port, u8 *str, size_t str_len)
1036 {
1037         switch (type) {
1038         case QED_LLH_FILTER_ETHERTYPE:
1039                 snprintf(str, str_len, "Ethertype 0x%04x",
1040                          source_port_or_eth_type);
1041                 break;
1042         case QED_LLH_FILTER_TCP_SRC_PORT:
1043                 snprintf(str, str_len, "TCP src port 0x%04x",
1044                          source_port_or_eth_type);
1045                 break;
1046         case QED_LLH_FILTER_UDP_SRC_PORT:
1047                 snprintf(str, str_len, "UDP src port 0x%04x",
1048                          source_port_or_eth_type);
1049                 break;
1050         case QED_LLH_FILTER_TCP_DEST_PORT:
1051                 snprintf(str, str_len, "TCP dst port 0x%04x", dest_port);
1052                 break;
1053         case QED_LLH_FILTER_UDP_DEST_PORT:
1054                 snprintf(str, str_len, "UDP dst port 0x%04x", dest_port);
1055                 break;
1056         case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1057                 snprintf(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1058                          source_port_or_eth_type, dest_port);
1059                 break;
1060         case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1061                 snprintf(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1062                          source_port_or_eth_type, dest_port);
1063                 break;
1064         default:
1065                 DP_NOTICE(cdev,
1066                           "Non valid LLH protocol filter type %d\n", type);
1067                 return -EINVAL;
1068         }
1069
1070         return 0;
1071 }
1072
1073 static int
1074 qed_llh_protocol_filter_to_hilo(struct qed_dev *cdev,
1075                                 enum qed_llh_prot_filter_type_t type,
1076                                 u16 source_port_or_eth_type,
1077                                 u16 dest_port, u32 *p_high, u32 *p_low)
1078 {
1079         *p_high = 0;
1080         *p_low = 0;
1081
1082         switch (type) {
1083         case QED_LLH_FILTER_ETHERTYPE:
1084                 *p_high = source_port_or_eth_type;
1085                 break;
1086         case QED_LLH_FILTER_TCP_SRC_PORT:
1087         case QED_LLH_FILTER_UDP_SRC_PORT:
1088                 *p_low = source_port_or_eth_type << 16;
1089                 break;
1090         case QED_LLH_FILTER_TCP_DEST_PORT:
1091         case QED_LLH_FILTER_UDP_DEST_PORT:
1092                 *p_low = dest_port;
1093                 break;
1094         case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1095         case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1096                 *p_low = (source_port_or_eth_type << 16) | dest_port;
1097                 break;
1098         default:
1099                 DP_NOTICE(cdev,
1100                           "Non valid LLH protocol filter type %d\n", type);
1101                 return -EINVAL;
1102         }
1103
1104         return 0;
1105 }
1106
1107 int
1108 qed_llh_add_protocol_filter(struct qed_dev *cdev,
1109                             u8 ppfid,
1110                             enum qed_llh_prot_filter_type_t type,
1111                             u16 source_port_or_eth_type, u16 dest_port)
1112 {
1113         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1114         struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
1115         u8 filter_idx, abs_ppfid, str[32], type_bitmap;
1116         union qed_llh_filter filter = {};
1117         u32 high, low, ref_cnt;
1118         int rc = 0;
1119
1120         if (!p_ptt)
1121                 return -EAGAIN;
1122
1123         if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits))
1124                 goto out;
1125
1126         rc = qed_llh_protocol_filter_stringify(cdev, type,
1127                                                source_port_or_eth_type,
1128                                                dest_port, str, sizeof(str));
1129         if (rc)
1130                 goto err;
1131
1132         filter.protocol.type = type;
1133         filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1134         filter.protocol.dest_port = dest_port;
1135         rc = qed_llh_shadow_add_filter(cdev,
1136                                        ppfid,
1137                                        QED_LLH_FILTER_TYPE_PROTOCOL,
1138                                        &filter, &filter_idx, &ref_cnt);
1139         if (rc)
1140                 goto err;
1141
1142         rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1143         if (rc)
1144                 goto err;
1145
1146         /* Configure the LLH only in case of a new the filter */
1147         if (ref_cnt == 1) {
1148                 rc = qed_llh_protocol_filter_to_hilo(cdev, type,
1149                                                      source_port_or_eth_type,
1150                                                      dest_port, &high, &low);
1151                 if (rc)
1152                         goto err;
1153
1154                 type_bitmap = 0x1 << type;
1155                 rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid,
1156                                         filter_idx, type_bitmap, high, low);
1157                 if (rc)
1158                         goto err;
1159         }
1160
1161         DP_VERBOSE(cdev,
1162                    QED_MSG_SP,
1163                    "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1164                    str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1165
1166         goto out;
1167
1168 err:    DP_NOTICE(p_hwfn,
1169                   "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1170                   str, ppfid);
1171 out:
1172         qed_ptt_release(p_hwfn, p_ptt);
1173
1174         return rc;
1175 }
1176
1177 void qed_llh_remove_mac_filter(struct qed_dev *cdev,
1178                                u8 ppfid, u8 mac_addr[ETH_ALEN])
1179 {
1180         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1181         struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
1182         union qed_llh_filter filter = {};
1183         u8 filter_idx, abs_ppfid;
1184         int rc = 0;
1185         u32 ref_cnt;
1186
1187         if (!p_ptt)
1188                 return;
1189
1190         if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits))
1191                 goto out;
1192
1193         ether_addr_copy(filter.mac.addr, mac_addr);
1194         rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx,
1195                                           &ref_cnt);
1196         if (rc)
1197                 goto err;
1198
1199         rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1200         if (rc)
1201                 goto err;
1202
1203         /* Remove from the LLH in case the filter is not in use */
1204         if (!ref_cnt) {
1205                 rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1206                                            filter_idx);
1207                 if (rc)
1208                         goto err;
1209         }
1210
1211         DP_VERBOSE(cdev,
1212                    QED_MSG_SP,
1213                    "LLH: Removed MAC filter [%pM] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1214                    mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt);
1215
1216         goto out;
1217
1218 err:    DP_NOTICE(cdev,
1219                   "LLH: Failed to remove MAC filter [%pM] from ppfid %hhd\n",
1220                   mac_addr, ppfid);
1221 out:
1222         qed_ptt_release(p_hwfn, p_ptt);
1223 }
1224
1225 void qed_llh_remove_protocol_filter(struct qed_dev *cdev,
1226                                     u8 ppfid,
1227                                     enum qed_llh_prot_filter_type_t type,
1228                                     u16 source_port_or_eth_type, u16 dest_port)
1229 {
1230         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1231         struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
1232         u8 filter_idx, abs_ppfid, str[32];
1233         union qed_llh_filter filter = {};
1234         int rc = 0;
1235         u32 ref_cnt;
1236
1237         if (!p_ptt)
1238                 return;
1239
1240         if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits))
1241                 goto out;
1242
1243         rc = qed_llh_protocol_filter_stringify(cdev, type,
1244                                                source_port_or_eth_type,
1245                                                dest_port, str, sizeof(str));
1246         if (rc)
1247                 goto err;
1248
1249         filter.protocol.type = type;
1250         filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1251         filter.protocol.dest_port = dest_port;
1252         rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx,
1253                                           &ref_cnt);
1254         if (rc)
1255                 goto err;
1256
1257         rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1258         if (rc)
1259                 goto err;
1260
1261         /* Remove from the LLH in case the filter is not in use */
1262         if (!ref_cnt) {
1263                 rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1264                                            filter_idx);
1265                 if (rc)
1266                         goto err;
1267         }
1268
1269         DP_VERBOSE(cdev,
1270                    QED_MSG_SP,
1271                    "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1272                    str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1273
1274         goto out;
1275
1276 err:    DP_NOTICE(cdev,
1277                   "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1278                   str, ppfid);
1279 out:
1280         qed_ptt_release(p_hwfn, p_ptt);
1281 }
1282
1283 /******************************* NIG LLH - End ********************************/
1284
1285 #define QED_MIN_DPIS            (4)
1286 #define QED_MIN_PWM_REGION      (QED_WID_SIZE * QED_MIN_DPIS)
1287
1288 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
1289                            struct qed_ptt *p_ptt, enum BAR_ID bar_id)
1290 {
1291         u32 bar_reg = (bar_id == BAR_ID_0 ?
1292                        PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1293         u32 val;
1294
1295         if (IS_VF(p_hwfn->cdev))
1296                 return qed_vf_hw_bar_size(p_hwfn, bar_id);
1297
1298         val = qed_rd(p_hwfn, p_ptt, bar_reg);
1299         if (val)
1300                 return 1 << (val + 15);
1301
1302         /* Old MFW initialized above registered only conditionally */
1303         if (p_hwfn->cdev->num_hwfns > 1) {
1304                 DP_INFO(p_hwfn,
1305                         "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1306                         return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1307         } else {
1308                 DP_INFO(p_hwfn,
1309                         "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1310                         return 512 * 1024;
1311         }
1312 }
1313
1314 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
1315 {
1316         u32 i;
1317
1318         cdev->dp_level = dp_level;
1319         cdev->dp_module = dp_module;
1320         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1321                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1322
1323                 p_hwfn->dp_level = dp_level;
1324                 p_hwfn->dp_module = dp_module;
1325         }
1326 }
1327
1328 void qed_init_struct(struct qed_dev *cdev)
1329 {
1330         u8 i;
1331
1332         for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1333                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1334
1335                 p_hwfn->cdev = cdev;
1336                 p_hwfn->my_id = i;
1337                 p_hwfn->b_active = false;
1338
1339                 mutex_init(&p_hwfn->dmae_info.mutex);
1340         }
1341
1342         /* hwfn 0 is always active */
1343         cdev->hwfns[0].b_active = true;
1344
1345         /* set the default cache alignment to 128 */
1346         cdev->cache_shift = 7;
1347 }
1348
1349 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
1350 {
1351         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1352
1353         kfree(qm_info->qm_pq_params);
1354         qm_info->qm_pq_params = NULL;
1355         kfree(qm_info->qm_vport_params);
1356         qm_info->qm_vport_params = NULL;
1357         kfree(qm_info->qm_port_params);
1358         qm_info->qm_port_params = NULL;
1359         kfree(qm_info->wfq_data);
1360         qm_info->wfq_data = NULL;
1361 }
1362
1363 static void qed_dbg_user_data_free(struct qed_hwfn *p_hwfn)
1364 {
1365         kfree(p_hwfn->dbg_user_info);
1366         p_hwfn->dbg_user_info = NULL;
1367 }
1368
1369 void qed_resc_free(struct qed_dev *cdev)
1370 {
1371         int i;
1372
1373         if (IS_VF(cdev)) {
1374                 for_each_hwfn(cdev, i)
1375                         qed_l2_free(&cdev->hwfns[i]);
1376                 return;
1377         }
1378
1379         kfree(cdev->fw_data);
1380         cdev->fw_data = NULL;
1381
1382         kfree(cdev->reset_stats);
1383         cdev->reset_stats = NULL;
1384
1385         qed_llh_free(cdev);
1386
1387         for_each_hwfn(cdev, i) {
1388                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1389
1390                 qed_cxt_mngr_free(p_hwfn);
1391                 qed_qm_info_free(p_hwfn);
1392                 qed_spq_free(p_hwfn);
1393                 qed_eq_free(p_hwfn);
1394                 qed_consq_free(p_hwfn);
1395                 qed_int_free(p_hwfn);
1396 #ifdef CONFIG_QED_LL2
1397                 qed_ll2_free(p_hwfn);
1398 #endif
1399                 if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
1400                         qed_fcoe_free(p_hwfn);
1401
1402                 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
1403                         qed_iscsi_free(p_hwfn);
1404                         qed_ooo_free(p_hwfn);
1405                 }
1406
1407                 if (QED_IS_RDMA_PERSONALITY(p_hwfn))
1408                         qed_rdma_info_free(p_hwfn);
1409
1410                 qed_iov_free(p_hwfn);
1411                 qed_l2_free(p_hwfn);
1412                 qed_dmae_info_free(p_hwfn);
1413                 qed_dcbx_info_free(p_hwfn);
1414                 qed_dbg_user_data_free(p_hwfn);
1415                 qed_fw_overlay_mem_free(p_hwfn, p_hwfn->fw_overlay_mem);
1416
1417                 /* Destroy doorbell recovery mechanism */
1418                 qed_db_recovery_teardown(p_hwfn);
1419         }
1420 }
1421
1422 /******************** QM initialization *******************/
1423 #define ACTIVE_TCS_BMAP 0x9f
1424 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
1425
1426 /* determines the physical queue flags for a given PF. */
1427 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn)
1428 {
1429         u32 flags;
1430
1431         /* common flags */
1432         flags = PQ_FLAGS_LB;
1433
1434         /* feature flags */
1435         if (IS_QED_SRIOV(p_hwfn->cdev))
1436                 flags |= PQ_FLAGS_VFS;
1437
1438         /* protocol flags */
1439         switch (p_hwfn->hw_info.personality) {
1440         case QED_PCI_ETH:
1441                 flags |= PQ_FLAGS_MCOS;
1442                 break;
1443         case QED_PCI_FCOE:
1444                 flags |= PQ_FLAGS_OFLD;
1445                 break;
1446         case QED_PCI_ISCSI:
1447                 flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1448                 break;
1449         case QED_PCI_ETH_ROCE:
1450                 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1451                 if (IS_QED_MULTI_TC_ROCE(p_hwfn))
1452                         flags |= PQ_FLAGS_MTC;
1453                 break;
1454         case QED_PCI_ETH_IWARP:
1455                 flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
1456                     PQ_FLAGS_OFLD;
1457                 break;
1458         default:
1459                 DP_ERR(p_hwfn,
1460                        "unknown personality %d\n", p_hwfn->hw_info.personality);
1461                 return 0;
1462         }
1463
1464         return flags;
1465 }
1466
1467 /* Getters for resource amounts necessary for qm initialization */
1468 static u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn)
1469 {
1470         return p_hwfn->hw_info.num_hw_tc;
1471 }
1472
1473 static u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn)
1474 {
1475         return IS_QED_SRIOV(p_hwfn->cdev) ?
1476                p_hwfn->cdev->p_iov_info->total_vfs : 0;
1477 }
1478
1479 static u8 qed_init_qm_get_num_mtc_tcs(struct qed_hwfn *p_hwfn)
1480 {
1481         u32 pq_flags = qed_get_pq_flags(p_hwfn);
1482
1483         if (!(PQ_FLAGS_MTC & pq_flags))
1484                 return 1;
1485
1486         return qed_init_qm_get_num_tcs(p_hwfn);
1487 }
1488
1489 #define NUM_DEFAULT_RLS 1
1490
1491 static u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn)
1492 {
1493         u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
1494
1495         /* num RLs can't exceed resource amount of rls or vports */
1496         num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL),
1497                                  RESC_NUM(p_hwfn, QED_VPORT));
1498
1499         /* Make sure after we reserve there's something left */
1500         if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS)
1501                 return 0;
1502
1503         /* subtract rls necessary for VFs and one default one for the PF */
1504         num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1505
1506         return num_pf_rls;
1507 }
1508
1509 static u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn)
1510 {
1511         u32 pq_flags = qed_get_pq_flags(p_hwfn);
1512
1513         /* all pqs share the same vport, except for vfs and pf_rl pqs */
1514         return (!!(PQ_FLAGS_RLS & pq_flags)) *
1515                qed_init_qm_get_num_pf_rls(p_hwfn) +
1516                (!!(PQ_FLAGS_VFS & pq_flags)) *
1517                qed_init_qm_get_num_vfs(p_hwfn) + 1;
1518 }
1519
1520 /* calc amount of PQs according to the requested flags */
1521 static u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn)
1522 {
1523         u32 pq_flags = qed_get_pq_flags(p_hwfn);
1524
1525         return (!!(PQ_FLAGS_RLS & pq_flags)) *
1526                qed_init_qm_get_num_pf_rls(p_hwfn) +
1527                (!!(PQ_FLAGS_MCOS & pq_flags)) *
1528                qed_init_qm_get_num_tcs(p_hwfn) +
1529                (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) +
1530                (!!(PQ_FLAGS_ACK & pq_flags)) +
1531                (!!(PQ_FLAGS_OFLD & pq_flags)) *
1532                qed_init_qm_get_num_mtc_tcs(p_hwfn) +
1533                (!!(PQ_FLAGS_LLT & pq_flags)) *
1534                qed_init_qm_get_num_mtc_tcs(p_hwfn) +
1535                (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn);
1536 }
1537
1538 /* initialize the top level QM params */
1539 static void qed_init_qm_params(struct qed_hwfn *p_hwfn)
1540 {
1541         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1542         bool four_port;
1543
1544         /* pq and vport bases for this PF */
1545         qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ);
1546         qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
1547
1548         /* rate limiting and weighted fair queueing are always enabled */
1549         qm_info->vport_rl_en = true;
1550         qm_info->vport_wfq_en = true;
1551
1552         /* TC config is different for AH 4 port */
1553         four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1554
1555         /* in AH 4 port we have fewer TCs per port */
1556         qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
1557                                                      NUM_OF_PHYS_TCS;
1558
1559         /* unless MFW indicated otherwise, ooo_tc == 3 for
1560          * AH 4-port and 4 otherwise.
1561          */
1562         if (!qm_info->ooo_tc)
1563                 qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
1564                                               DCBX_TCP_OOO_TC;
1565 }
1566
1567 /* initialize qm vport params */
1568 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn)
1569 {
1570         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1571         u8 i;
1572
1573         /* all vports participate in weighted fair queueing */
1574         for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++)
1575                 qm_info->qm_vport_params[i].wfq = 1;
1576 }
1577
1578 /* initialize qm port params */
1579 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn)
1580 {
1581         /* Initialize qm port parameters */
1582         u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine;
1583         struct qed_dev *cdev = p_hwfn->cdev;
1584
1585         /* indicate how ooo and high pri traffic is dealt with */
1586         active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1587                           ACTIVE_TCS_BMAP_4PORT_K2 :
1588                           ACTIVE_TCS_BMAP;
1589
1590         for (i = 0; i < num_ports; i++) {
1591                 struct init_qm_port_params *p_qm_port =
1592                     &p_hwfn->qm_info.qm_port_params[i];
1593                 u16 pbf_max_cmd_lines;
1594
1595                 p_qm_port->active = 1;
1596                 p_qm_port->active_phys_tcs = active_phys_tcs;
1597                 pbf_max_cmd_lines = (u16)NUM_OF_PBF_CMD_LINES(cdev);
1598                 p_qm_port->num_pbf_cmd_lines = pbf_max_cmd_lines / num_ports;
1599                 p_qm_port->num_btb_blocks = NUM_OF_BTB_BLOCKS(cdev) / num_ports;
1600         }
1601 }
1602
1603 /* Reset the params which must be reset for qm init. QM init may be called as
1604  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1605  * params may be affected by the init but would simply recalculate to the same
1606  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1607  * affected as these amounts stay the same.
1608  */
1609 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn)
1610 {
1611         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1612
1613         qm_info->num_pqs = 0;
1614         qm_info->num_vports = 0;
1615         qm_info->num_pf_rls = 0;
1616         qm_info->num_vf_pqs = 0;
1617         qm_info->first_vf_pq = 0;
1618         qm_info->first_mcos_pq = 0;
1619         qm_info->first_rl_pq = 0;
1620 }
1621
1622 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn)
1623 {
1624         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1625
1626         qm_info->num_vports++;
1627
1628         if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
1629                 DP_ERR(p_hwfn,
1630                        "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
1631                        qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
1632 }
1633
1634 /* initialize a single pq and manage qm_info resources accounting.
1635  * The pq_init_flags param determines whether the PQ is rate limited
1636  * (for VF or PF) and whether a new vport is allocated to the pq or not
1637  * (i.e. vport will be shared).
1638  */
1639
1640 /* flags for pq init */
1641 #define PQ_INIT_SHARE_VPORT     (1 << 0)
1642 #define PQ_INIT_PF_RL           (1 << 1)
1643 #define PQ_INIT_VF_RL           (1 << 2)
1644
1645 /* defines for pq init */
1646 #define PQ_INIT_DEFAULT_WRR_GROUP       1
1647 #define PQ_INIT_DEFAULT_TC              0
1648
1649 void qed_hw_info_set_offload_tc(struct qed_hw_info *p_info, u8 tc)
1650 {
1651         p_info->offload_tc = tc;
1652         p_info->offload_tc_set = true;
1653 }
1654
1655 static bool qed_is_offload_tc_set(struct qed_hwfn *p_hwfn)
1656 {
1657         return p_hwfn->hw_info.offload_tc_set;
1658 }
1659
1660 static u32 qed_get_offload_tc(struct qed_hwfn *p_hwfn)
1661 {
1662         if (qed_is_offload_tc_set(p_hwfn))
1663                 return p_hwfn->hw_info.offload_tc;
1664
1665         return PQ_INIT_DEFAULT_TC;
1666 }
1667
1668 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn,
1669                            struct qed_qm_info *qm_info,
1670                            u8 tc, u32 pq_init_flags)
1671 {
1672         u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn);
1673
1674         if (pq_idx > max_pq)
1675                 DP_ERR(p_hwfn,
1676                        "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
1677
1678         /* init pq params */
1679         qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id;
1680         qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
1681             qm_info->num_vports;
1682         qm_info->qm_pq_params[pq_idx].tc_id = tc;
1683         qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
1684         qm_info->qm_pq_params[pq_idx].rl_valid =
1685             (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
1686
1687         /* qm params accounting */
1688         qm_info->num_pqs++;
1689         if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
1690                 qm_info->num_vports++;
1691
1692         if (pq_init_flags & PQ_INIT_PF_RL)
1693                 qm_info->num_pf_rls++;
1694
1695         if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
1696                 DP_ERR(p_hwfn,
1697                        "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
1698                        qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
1699
1700         if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn))
1701                 DP_ERR(p_hwfn,
1702                        "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n",
1703                        qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn));
1704 }
1705
1706 /* get pq index according to PQ_FLAGS */
1707 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn,
1708                                            unsigned long pq_flags)
1709 {
1710         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1711
1712         /* Can't have multiple flags set here */
1713         if (bitmap_weight(&pq_flags,
1714                           sizeof(pq_flags) * BITS_PER_BYTE) > 1) {
1715                 DP_ERR(p_hwfn, "requested multiple pq flags 0x%lx\n", pq_flags);
1716                 goto err;
1717         }
1718
1719         if (!(qed_get_pq_flags(p_hwfn) & pq_flags)) {
1720                 DP_ERR(p_hwfn, "pq flag 0x%lx is not set\n", pq_flags);
1721                 goto err;
1722         }
1723
1724         switch (pq_flags) {
1725         case PQ_FLAGS_RLS:
1726                 return &qm_info->first_rl_pq;
1727         case PQ_FLAGS_MCOS:
1728                 return &qm_info->first_mcos_pq;
1729         case PQ_FLAGS_LB:
1730                 return &qm_info->pure_lb_pq;
1731         case PQ_FLAGS_OOO:
1732                 return &qm_info->ooo_pq;
1733         case PQ_FLAGS_ACK:
1734                 return &qm_info->pure_ack_pq;
1735         case PQ_FLAGS_OFLD:
1736                 return &qm_info->first_ofld_pq;
1737         case PQ_FLAGS_LLT:
1738                 return &qm_info->first_llt_pq;
1739         case PQ_FLAGS_VFS:
1740                 return &qm_info->first_vf_pq;
1741         default:
1742                 goto err;
1743         }
1744
1745 err:
1746         return &qm_info->start_pq;
1747 }
1748
1749 /* save pq index in qm info */
1750 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn,
1751                                 u32 pq_flags, u16 pq_val)
1752 {
1753         u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
1754
1755         *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
1756 }
1757
1758 /* get tx pq index, with the PQ TX base already set (ready for context init) */
1759 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags)
1760 {
1761         u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
1762
1763         return *base_pq_idx + CM_TX_PQ_BASE;
1764 }
1765
1766 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc)
1767 {
1768         u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn);
1769
1770         if (max_tc == 0) {
1771                 DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
1772                        PQ_FLAGS_MCOS);
1773                 return p_hwfn->qm_info.start_pq;
1774         }
1775
1776         if (tc > max_tc)
1777                 DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
1778
1779         return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc);
1780 }
1781
1782 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf)
1783 {
1784         u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn);
1785
1786         if (max_vf == 0) {
1787                 DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
1788                        PQ_FLAGS_VFS);
1789                 return p_hwfn->qm_info.start_pq;
1790         }
1791
1792         if (vf > max_vf)
1793                 DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
1794
1795         return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf);
1796 }
1797
1798 u16 qed_get_cm_pq_idx_ofld_mtc(struct qed_hwfn *p_hwfn, u8 tc)
1799 {
1800         u16 first_ofld_pq, pq_offset;
1801
1802         first_ofld_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_OFLD);
1803         pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
1804                     tc : PQ_INIT_DEFAULT_TC;
1805
1806         return first_ofld_pq + pq_offset;
1807 }
1808
1809 u16 qed_get_cm_pq_idx_llt_mtc(struct qed_hwfn *p_hwfn, u8 tc)
1810 {
1811         u16 first_llt_pq, pq_offset;
1812
1813         first_llt_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LLT);
1814         pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
1815                     tc : PQ_INIT_DEFAULT_TC;
1816
1817         return first_llt_pq + pq_offset;
1818 }
1819
1820 /* Functions for creating specific types of pqs */
1821 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn)
1822 {
1823         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1824
1825         if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
1826                 return;
1827
1828         qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
1829         qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
1830 }
1831
1832 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn)
1833 {
1834         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1835
1836         if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
1837                 return;
1838
1839         qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
1840         qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
1841 }
1842
1843 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn)
1844 {
1845         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1846
1847         if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
1848                 return;
1849
1850         qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
1851         qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
1852                        PQ_INIT_SHARE_VPORT);
1853 }
1854
1855 static void qed_init_qm_mtc_pqs(struct qed_hwfn *p_hwfn)
1856 {
1857         u8 num_tcs = qed_init_qm_get_num_mtc_tcs(p_hwfn);
1858         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1859         u8 tc;
1860
1861         /* override pq's TC if offload TC is set */
1862         for (tc = 0; tc < num_tcs; tc++)
1863                 qed_init_qm_pq(p_hwfn, qm_info,
1864                                qed_is_offload_tc_set(p_hwfn) ?
1865                                p_hwfn->hw_info.offload_tc : tc,
1866                                PQ_INIT_SHARE_VPORT);
1867 }
1868
1869 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn)
1870 {
1871         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1872
1873         if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
1874                 return;
1875
1876         qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
1877         qed_init_qm_mtc_pqs(p_hwfn);
1878 }
1879
1880 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn)
1881 {
1882         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1883
1884         if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
1885                 return;
1886
1887         qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
1888         qed_init_qm_mtc_pqs(p_hwfn);
1889 }
1890
1891 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn)
1892 {
1893         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1894         u8 tc_idx;
1895
1896         if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
1897                 return;
1898
1899         qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
1900         for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++)
1901                 qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
1902 }
1903
1904 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn)
1905 {
1906         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1907         u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
1908
1909         if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
1910                 return;
1911
1912         qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
1913         qm_info->num_vf_pqs = num_vfs;
1914         for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
1915                 qed_init_qm_pq(p_hwfn,
1916                                qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
1917 }
1918
1919 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn)
1920 {
1921         u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn);
1922         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1923
1924         if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
1925                 return;
1926
1927         qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
1928         for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
1929                 qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
1930                                PQ_INIT_PF_RL);
1931 }
1932
1933 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn)
1934 {
1935         /* rate limited pqs, must come first (FW assumption) */
1936         qed_init_qm_rl_pqs(p_hwfn);
1937
1938         /* pqs for multi cos */
1939         qed_init_qm_mcos_pqs(p_hwfn);
1940
1941         /* pure loopback pq */
1942         qed_init_qm_lb_pq(p_hwfn);
1943
1944         /* out of order pq */
1945         qed_init_qm_ooo_pq(p_hwfn);
1946
1947         /* pure ack pq */
1948         qed_init_qm_pure_ack_pq(p_hwfn);
1949
1950         /* pq for offloaded protocol */
1951         qed_init_qm_offload_pq(p_hwfn);
1952
1953         /* low latency pq */
1954         qed_init_qm_low_latency_pq(p_hwfn);
1955
1956         /* done sharing vports */
1957         qed_init_qm_advance_vport(p_hwfn);
1958
1959         /* pqs for vfs */
1960         qed_init_qm_vf_pqs(p_hwfn);
1961 }
1962
1963 /* compare values of getters against resources amounts */
1964 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn)
1965 {
1966         if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) {
1967                 DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
1968                 return -EINVAL;
1969         }
1970
1971         if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
1972                 return 0;
1973
1974         if (QED_IS_ROCE_PERSONALITY(p_hwfn)) {
1975                 p_hwfn->hw_info.multi_tc_roce_en = 0;
1976                 DP_NOTICE(p_hwfn,
1977                           "multi-tc roce was disabled to reduce requested amount of pqs\n");
1978                 if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
1979                         return 0;
1980         }
1981
1982         DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
1983         return -EINVAL;
1984 }
1985
1986 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn)
1987 {
1988         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1989         struct init_qm_vport_params *vport;
1990         struct init_qm_port_params *port;
1991         struct init_qm_pq_params *pq;
1992         int i, tc;
1993
1994         /* top level params */
1995         DP_VERBOSE(p_hwfn,
1996                    NETIF_MSG_HW,
1997                    "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, llt_pq %d, pure_ack_pq %d\n",
1998                    qm_info->start_pq,
1999                    qm_info->start_vport,
2000                    qm_info->pure_lb_pq,
2001                    qm_info->first_ofld_pq,
2002                    qm_info->first_llt_pq,
2003                    qm_info->pure_ack_pq);
2004         DP_VERBOSE(p_hwfn,
2005                    NETIF_MSG_HW,
2006                    "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
2007                    qm_info->ooo_pq,
2008                    qm_info->first_vf_pq,
2009                    qm_info->num_pqs,
2010                    qm_info->num_vf_pqs,
2011                    qm_info->num_vports, qm_info->max_phys_tcs_per_port);
2012         DP_VERBOSE(p_hwfn,
2013                    NETIF_MSG_HW,
2014                    "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2015                    qm_info->pf_rl_en,
2016                    qm_info->pf_wfq_en,
2017                    qm_info->vport_rl_en,
2018                    qm_info->vport_wfq_en,
2019                    qm_info->pf_wfq,
2020                    qm_info->pf_rl,
2021                    qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn));
2022
2023         /* port table */
2024         for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) {
2025                 port = &(qm_info->qm_port_params[i]);
2026                 DP_VERBOSE(p_hwfn,
2027                            NETIF_MSG_HW,
2028                            "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
2029                            i,
2030                            port->active,
2031                            port->active_phys_tcs,
2032                            port->num_pbf_cmd_lines,
2033                            port->num_btb_blocks, port->reserved);
2034         }
2035
2036         /* vport table */
2037         for (i = 0; i < qm_info->num_vports; i++) {
2038                 vport = &(qm_info->qm_vport_params[i]);
2039                 DP_VERBOSE(p_hwfn,
2040                            NETIF_MSG_HW,
2041                            "vport idx %d, wfq %d, first_tx_pq_id [ ",
2042                            qm_info->start_vport + i, vport->wfq);
2043                 for (tc = 0; tc < NUM_OF_TCS; tc++)
2044                         DP_VERBOSE(p_hwfn,
2045                                    NETIF_MSG_HW,
2046                                    "%d ", vport->first_tx_pq_id[tc]);
2047                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n");
2048         }
2049
2050         /* pq table */
2051         for (i = 0; i < qm_info->num_pqs; i++) {
2052                 pq = &(qm_info->qm_pq_params[i]);
2053                 DP_VERBOSE(p_hwfn,
2054                            NETIF_MSG_HW,
2055                            "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d rl_id %d\n",
2056                            qm_info->start_pq + i,
2057                            pq->port_id,
2058                            pq->vport_id,
2059                            pq->tc_id, pq->wrr_group, pq->rl_valid, pq->rl_id);
2060         }
2061 }
2062
2063 static void qed_init_qm_info(struct qed_hwfn *p_hwfn)
2064 {
2065         /* reset params required for init run */
2066         qed_init_qm_reset_params(p_hwfn);
2067
2068         /* init QM top level params */
2069         qed_init_qm_params(p_hwfn);
2070
2071         /* init QM port params */
2072         qed_init_qm_port_params(p_hwfn);
2073
2074         /* init QM vport params */
2075         qed_init_qm_vport_params(p_hwfn);
2076
2077         /* init QM physical queue params */
2078         qed_init_qm_pq_params(p_hwfn);
2079
2080         /* display all that init */
2081         qed_dp_init_qm_params(p_hwfn);
2082 }
2083
2084 /* This function reconfigures the QM pf on the fly.
2085  * For this purpose we:
2086  * 1. reconfigure the QM database
2087  * 2. set new values to runtime array
2088  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2089  * 4. activate init tool in QM_PF stage
2090  * 5. send an sdm_qm_cmd through rbc interface to release the QM
2091  */
2092 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2093 {
2094         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
2095         bool b_rc;
2096         int rc;
2097
2098         /* initialize qed's qm data structure */
2099         qed_init_qm_info(p_hwfn);
2100
2101         /* stop PF's qm queues */
2102         spin_lock_bh(&qm_lock);
2103         b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2104                                     qm_info->start_pq, qm_info->num_pqs);
2105         spin_unlock_bh(&qm_lock);
2106         if (!b_rc)
2107                 return -EINVAL;
2108
2109         /* prepare QM portion of runtime array */
2110         qed_qm_init_pf(p_hwfn, p_ptt, false);
2111
2112         /* activate init tool on runtime array */
2113         rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2114                           p_hwfn->hw_info.hw_mode);
2115         if (rc)
2116                 return rc;
2117
2118         /* start PF's qm queues */
2119         spin_lock_bh(&qm_lock);
2120         b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2121                                     qm_info->start_pq, qm_info->num_pqs);
2122         spin_unlock_bh(&qm_lock);
2123         if (!b_rc)
2124                 return -EINVAL;
2125
2126         return 0;
2127 }
2128
2129 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn)
2130 {
2131         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
2132         int rc;
2133
2134         rc = qed_init_qm_sanity(p_hwfn);
2135         if (rc)
2136                 goto alloc_err;
2137
2138         qm_info->qm_pq_params = kcalloc(qed_init_qm_get_num_pqs(p_hwfn),
2139                                         sizeof(*qm_info->qm_pq_params),
2140                                         GFP_KERNEL);
2141         if (!qm_info->qm_pq_params)
2142                 goto alloc_err;
2143
2144         qm_info->qm_vport_params = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
2145                                            sizeof(*qm_info->qm_vport_params),
2146                                            GFP_KERNEL);
2147         if (!qm_info->qm_vport_params)
2148                 goto alloc_err;
2149
2150         qm_info->qm_port_params = kcalloc(p_hwfn->cdev->num_ports_in_engine,
2151                                           sizeof(*qm_info->qm_port_params),
2152                                           GFP_KERNEL);
2153         if (!qm_info->qm_port_params)
2154                 goto alloc_err;
2155
2156         qm_info->wfq_data = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
2157                                     sizeof(*qm_info->wfq_data),
2158                                     GFP_KERNEL);
2159         if (!qm_info->wfq_data)
2160                 goto alloc_err;
2161
2162         return 0;
2163
2164 alloc_err:
2165         DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
2166         qed_qm_info_free(p_hwfn);
2167         return -ENOMEM;
2168 }
2169
2170 int qed_resc_alloc(struct qed_dev *cdev)
2171 {
2172         u32 rdma_tasks, excess_tasks;
2173         u32 line_count;
2174         int i, rc = 0;
2175
2176         if (IS_VF(cdev)) {
2177                 for_each_hwfn(cdev, i) {
2178                         rc = qed_l2_alloc(&cdev->hwfns[i]);
2179                         if (rc)
2180                                 return rc;
2181                 }
2182                 return rc;
2183         }
2184
2185         cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
2186         if (!cdev->fw_data)
2187                 return -ENOMEM;
2188
2189         for_each_hwfn(cdev, i) {
2190                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2191                 u32 n_eqes, num_cons;
2192
2193                 /* Initialize the doorbell recovery mechanism */
2194                 rc = qed_db_recovery_setup(p_hwfn);
2195                 if (rc)
2196                         goto alloc_err;
2197
2198                 /* First allocate the context manager structure */
2199                 rc = qed_cxt_mngr_alloc(p_hwfn);
2200                 if (rc)
2201                         goto alloc_err;
2202
2203                 /* Set the HW cid/tid numbers (in the contest manager)
2204                  * Must be done prior to any further computations.
2205                  */
2206                 rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
2207                 if (rc)
2208                         goto alloc_err;
2209
2210                 rc = qed_alloc_qm_data(p_hwfn);
2211                 if (rc)
2212                         goto alloc_err;
2213
2214                 /* init qm info */
2215                 qed_init_qm_info(p_hwfn);
2216
2217                 /* Compute the ILT client partition */
2218                 rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2219                 if (rc) {
2220                         DP_NOTICE(p_hwfn,
2221                                   "too many ILT lines; re-computing with less lines\n");
2222                         /* In case there are not enough ILT lines we reduce the
2223                          * number of RDMA tasks and re-compute.
2224                          */
2225                         excess_tasks =
2226                             qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count);
2227                         if (!excess_tasks)
2228                                 goto alloc_err;
2229
2230                         rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
2231                         rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks);
2232                         if (rc)
2233                                 goto alloc_err;
2234
2235                         rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2236                         if (rc) {
2237                                 DP_ERR(p_hwfn,
2238                                        "failed ILT compute. Requested too many lines: %u\n",
2239                                        line_count);
2240
2241                                 goto alloc_err;
2242                         }
2243                 }
2244
2245                 /* CID map / ILT shadow table / T2
2246                  * The talbes sizes are determined by the computations above
2247                  */
2248                 rc = qed_cxt_tables_alloc(p_hwfn);
2249                 if (rc)
2250                         goto alloc_err;
2251
2252                 /* SPQ, must follow ILT because initializes SPQ context */
2253                 rc = qed_spq_alloc(p_hwfn);
2254                 if (rc)
2255                         goto alloc_err;
2256
2257                 /* SP status block allocation */
2258                 p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
2259                                                          RESERVED_PTT_DPC);
2260
2261                 rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2262                 if (rc)
2263                         goto alloc_err;
2264
2265                 rc = qed_iov_alloc(p_hwfn);
2266                 if (rc)
2267                         goto alloc_err;
2268
2269                 /* EQ */
2270                 n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
2271                 if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
2272                         enum protocol_type rdma_proto;
2273
2274                         if (QED_IS_ROCE_PERSONALITY(p_hwfn))
2275                                 rdma_proto = PROTOCOLID_ROCE;
2276                         else
2277                                 rdma_proto = PROTOCOLID_IWARP;
2278
2279                         num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
2280                                                                rdma_proto,
2281                                                                NULL) * 2;
2282                         n_eqes += num_cons + 2 * MAX_NUM_VFS_BB;
2283                 } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
2284                         num_cons =
2285                             qed_cxt_get_proto_cid_count(p_hwfn,
2286                                                         PROTOCOLID_ISCSI,
2287                                                         NULL);
2288                         n_eqes += 2 * num_cons;
2289                 }
2290
2291                 if (n_eqes > 0xFFFF) {
2292                         DP_ERR(p_hwfn,
2293                                "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
2294                                n_eqes, 0xFFFF);
2295                         goto alloc_no_mem;
2296                 }
2297
2298                 rc = qed_eq_alloc(p_hwfn, (u16) n_eqes);
2299                 if (rc)
2300                         goto alloc_err;
2301
2302                 rc = qed_consq_alloc(p_hwfn);
2303                 if (rc)
2304                         goto alloc_err;
2305
2306                 rc = qed_l2_alloc(p_hwfn);
2307                 if (rc)
2308                         goto alloc_err;
2309
2310 #ifdef CONFIG_QED_LL2
2311                 if (p_hwfn->using_ll2) {
2312                         rc = qed_ll2_alloc(p_hwfn);
2313                         if (rc)
2314                                 goto alloc_err;
2315                 }
2316 #endif
2317
2318                 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
2319                         rc = qed_fcoe_alloc(p_hwfn);
2320                         if (rc)
2321                                 goto alloc_err;
2322                 }
2323
2324                 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
2325                         rc = qed_iscsi_alloc(p_hwfn);
2326                         if (rc)
2327                                 goto alloc_err;
2328                         rc = qed_ooo_alloc(p_hwfn);
2329                         if (rc)
2330                                 goto alloc_err;
2331                 }
2332
2333                 if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
2334                         rc = qed_rdma_info_alloc(p_hwfn);
2335                         if (rc)
2336                                 goto alloc_err;
2337                 }
2338
2339                 /* DMA info initialization */
2340                 rc = qed_dmae_info_alloc(p_hwfn);
2341                 if (rc)
2342                         goto alloc_err;
2343
2344                 /* DCBX initialization */
2345                 rc = qed_dcbx_info_alloc(p_hwfn);
2346                 if (rc)
2347                         goto alloc_err;
2348
2349                 rc = qed_dbg_alloc_user_data(p_hwfn, &p_hwfn->dbg_user_info);
2350                 if (rc)
2351                         goto alloc_err;
2352         }
2353
2354         rc = qed_llh_alloc(cdev);
2355         if (rc) {
2356                 DP_NOTICE(cdev,
2357                           "Failed to allocate memory for the llh_info structure\n");
2358                 goto alloc_err;
2359         }
2360
2361         cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
2362         if (!cdev->reset_stats)
2363                 goto alloc_no_mem;
2364
2365         return 0;
2366
2367 alloc_no_mem:
2368         rc = -ENOMEM;
2369 alloc_err:
2370         qed_resc_free(cdev);
2371         return rc;
2372 }
2373
2374 void qed_resc_setup(struct qed_dev *cdev)
2375 {
2376         int i;
2377
2378         if (IS_VF(cdev)) {
2379                 for_each_hwfn(cdev, i)
2380                         qed_l2_setup(&cdev->hwfns[i]);
2381                 return;
2382         }
2383
2384         for_each_hwfn(cdev, i) {
2385                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2386
2387                 qed_cxt_mngr_setup(p_hwfn);
2388                 qed_spq_setup(p_hwfn);
2389                 qed_eq_setup(p_hwfn);
2390                 qed_consq_setup(p_hwfn);
2391
2392                 /* Read shadow of current MFW mailbox */
2393                 qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2394                 memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
2395                        p_hwfn->mcp_info->mfw_mb_cur,
2396                        p_hwfn->mcp_info->mfw_mb_length);
2397
2398                 qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2399
2400                 qed_l2_setup(p_hwfn);
2401                 qed_iov_setup(p_hwfn);
2402 #ifdef CONFIG_QED_LL2
2403                 if (p_hwfn->using_ll2)
2404                         qed_ll2_setup(p_hwfn);
2405 #endif
2406                 if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
2407                         qed_fcoe_setup(p_hwfn);
2408
2409                 if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
2410                         qed_iscsi_setup(p_hwfn);
2411                         qed_ooo_setup(p_hwfn);
2412                 }
2413         }
2414 }
2415
2416 #define FINAL_CLEANUP_POLL_CNT          (100)
2417 #define FINAL_CLEANUP_POLL_TIME         (10)
2418 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
2419                       struct qed_ptt *p_ptt, u16 id, bool is_vf)
2420 {
2421         u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2422         int rc = -EBUSY;
2423
2424         addr = GTT_BAR0_MAP_REG_USDM_RAM +
2425                 USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2426
2427         if (is_vf)
2428                 id += 0x10;
2429
2430         command |= X_FINAL_CLEANUP_AGG_INT <<
2431                 SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2432         command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2433         command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2434         command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2435
2436         /* Make sure notification is not set before initiating final cleanup */
2437         if (REG_RD(p_hwfn, addr)) {
2438                 DP_NOTICE(p_hwfn,
2439                           "Unexpected; Found final cleanup notification before initiating final cleanup\n");
2440                 REG_WR(p_hwfn, addr, 0);
2441         }
2442
2443         DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2444                    "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2445                    id, command);
2446
2447         qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2448
2449         /* Poll until completion */
2450         while (!REG_RD(p_hwfn, addr) && count--)
2451                 msleep(FINAL_CLEANUP_POLL_TIME);
2452
2453         if (REG_RD(p_hwfn, addr))
2454                 rc = 0;
2455         else
2456                 DP_NOTICE(p_hwfn,
2457                           "Failed to receive FW final cleanup notification\n");
2458
2459         /* Cleanup afterwards */
2460         REG_WR(p_hwfn, addr, 0);
2461
2462         return rc;
2463 }
2464
2465 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
2466 {
2467         int hw_mode = 0;
2468
2469         if (QED_IS_BB_B0(p_hwfn->cdev)) {
2470                 hw_mode |= 1 << MODE_BB;
2471         } else if (QED_IS_AH(p_hwfn->cdev)) {
2472                 hw_mode |= 1 << MODE_K2;
2473         } else {
2474                 DP_NOTICE(p_hwfn, "Unknown chip type %#x\n",
2475                           p_hwfn->cdev->type);
2476                 return -EINVAL;
2477         }
2478
2479         switch (p_hwfn->cdev->num_ports_in_engine) {
2480         case 1:
2481                 hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2482                 break;
2483         case 2:
2484                 hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2485                 break;
2486         case 4:
2487                 hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2488                 break;
2489         default:
2490                 DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
2491                           p_hwfn->cdev->num_ports_in_engine);
2492                 return -EINVAL;
2493         }
2494
2495         if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits))
2496                 hw_mode |= 1 << MODE_MF_SD;
2497         else
2498                 hw_mode |= 1 << MODE_MF_SI;
2499
2500         hw_mode |= 1 << MODE_ASIC;
2501
2502         if (p_hwfn->cdev->num_hwfns > 1)
2503                 hw_mode |= 1 << MODE_100G;
2504
2505         p_hwfn->hw_info.hw_mode = hw_mode;
2506
2507         DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
2508                    "Configuring function for hw_mode: 0x%08x\n",
2509                    p_hwfn->hw_info.hw_mode);
2510
2511         return 0;
2512 }
2513
2514 /* Init run time data for all PFs on an engine. */
2515 static void qed_init_cau_rt_data(struct qed_dev *cdev)
2516 {
2517         u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2518         int i, igu_sb_id;
2519
2520         for_each_hwfn(cdev, i) {
2521                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2522                 struct qed_igu_info *p_igu_info;
2523                 struct qed_igu_block *p_block;
2524                 struct cau_sb_entry sb_entry;
2525
2526                 p_igu_info = p_hwfn->hw_info.p_igu_info;
2527
2528                 for (igu_sb_id = 0;
2529                      igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) {
2530                         p_block = &p_igu_info->entry[igu_sb_id];
2531
2532                         if (!p_block->is_pf)
2533                                 continue;
2534
2535                         qed_init_cau_sb_entry(p_hwfn, &sb_entry,
2536                                               p_block->function_id, 0, 0);
2537                         STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2538                                          sb_entry);
2539                 }
2540         }
2541 }
2542
2543 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn,
2544                                      struct qed_ptt *p_ptt)
2545 {
2546         u32 val, wr_mbs, cache_line_size;
2547
2548         val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2549         switch (val) {
2550         case 0:
2551                 wr_mbs = 128;
2552                 break;
2553         case 1:
2554                 wr_mbs = 256;
2555                 break;
2556         case 2:
2557                 wr_mbs = 512;
2558                 break;
2559         default:
2560                 DP_INFO(p_hwfn,
2561                         "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2562                         val);
2563                 return;
2564         }
2565
2566         cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs);
2567         switch (cache_line_size) {
2568         case 32:
2569                 val = 0;
2570                 break;
2571         case 64:
2572                 val = 1;
2573                 break;
2574         case 128:
2575                 val = 2;
2576                 break;
2577         case 256:
2578                 val = 3;
2579                 break;
2580         default:
2581                 DP_INFO(p_hwfn,
2582                         "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2583                         cache_line_size);
2584         }
2585
2586         if (L1_CACHE_BYTES > wr_mbs)
2587                 DP_INFO(p_hwfn,
2588                         "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2589                         L1_CACHE_BYTES, wr_mbs);
2590
2591         STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2592         if (val > 0) {
2593                 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2594                 STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2595         }
2596 }
2597
2598 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
2599                               struct qed_ptt *p_ptt, int hw_mode)
2600 {
2601         struct qed_qm_info *qm_info = &p_hwfn->qm_info;
2602         struct qed_qm_common_rt_init_params params;
2603         struct qed_dev *cdev = p_hwfn->cdev;
2604         u8 vf_id, max_num_vfs;
2605         u16 num_pfs, pf_id;
2606         u32 concrete_fid;
2607         int rc = 0;
2608
2609         qed_init_cau_rt_data(cdev);
2610
2611         /* Program GTT windows */
2612         qed_gtt_init(p_hwfn);
2613
2614         if (p_hwfn->mcp_info) {
2615                 if (p_hwfn->mcp_info->func_info.bandwidth_max)
2616                         qm_info->pf_rl_en = true;
2617                 if (p_hwfn->mcp_info->func_info.bandwidth_min)
2618                         qm_info->pf_wfq_en = true;
2619         }
2620
2621         memset(&params, 0, sizeof(params));
2622         params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
2623         params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
2624         params.pf_rl_en = qm_info->pf_rl_en;
2625         params.pf_wfq_en = qm_info->pf_wfq_en;
2626         params.global_rl_en = qm_info->vport_rl_en;
2627         params.vport_wfq_en = qm_info->vport_wfq_en;
2628         params.port_params = qm_info->qm_port_params;
2629
2630         qed_qm_common_rt_init(p_hwfn, &params);
2631
2632         qed_cxt_hw_init_common(p_hwfn);
2633
2634         qed_init_cache_line_size(p_hwfn, p_ptt);
2635
2636         rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
2637         if (rc)
2638                 return rc;
2639
2640         qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
2641         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
2642
2643         if (QED_IS_BB(p_hwfn->cdev)) {
2644                 num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
2645                 for (pf_id = 0; pf_id < num_pfs; pf_id++) {
2646                         qed_fid_pretend(p_hwfn, p_ptt, pf_id);
2647                         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2648                         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2649                 }
2650                 /* pretend to original PF */
2651                 qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2652         }
2653
2654         max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
2655         for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
2656                 concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
2657                 qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
2658                 qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
2659                 qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
2660                 qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
2661                 qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
2662         }
2663         /* pretend to original PF */
2664         qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2665
2666         return rc;
2667 }
2668
2669 static int
2670 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
2671                      struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
2672 {
2673         u32 dpi_bit_shift, dpi_count, dpi_page_size;
2674         u32 min_dpis;
2675         u32 n_wids;
2676
2677         /* Calculate DPI size */
2678         n_wids = max_t(u32, QED_MIN_WIDS, n_cpus);
2679         dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids);
2680         dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
2681         dpi_bit_shift = ilog2(dpi_page_size / 4096);
2682         dpi_count = pwm_region_size / dpi_page_size;
2683
2684         min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
2685         min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
2686
2687         p_hwfn->dpi_size = dpi_page_size;
2688         p_hwfn->dpi_count = dpi_count;
2689
2690         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
2691
2692         if (dpi_count < min_dpis)
2693                 return -EINVAL;
2694
2695         return 0;
2696 }
2697
2698 enum QED_ROCE_EDPM_MODE {
2699         QED_ROCE_EDPM_MODE_ENABLE = 0,
2700         QED_ROCE_EDPM_MODE_FORCE_ON = 1,
2701         QED_ROCE_EDPM_MODE_DISABLE = 2,
2702 };
2703
2704 bool qed_edpm_enabled(struct qed_hwfn *p_hwfn)
2705 {
2706         if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm)
2707                 return false;
2708
2709         return true;
2710 }
2711
2712 static int
2713 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2714 {
2715         u32 pwm_regsize, norm_regsize;
2716         u32 non_pwm_conn, min_addr_reg1;
2717         u32 db_bar_size, n_cpus = 1;
2718         u32 roce_edpm_mode;
2719         u32 pf_dems_shift;
2720         int rc = 0;
2721         u8 cond;
2722
2723         db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
2724         if (p_hwfn->cdev->num_hwfns > 1)
2725                 db_bar_size /= 2;
2726
2727         /* Calculate doorbell regions */
2728         non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
2729                        qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
2730                                                    NULL) +
2731                        qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2732                                                    NULL);
2733         norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE);
2734         min_addr_reg1 = norm_regsize / 4096;
2735         pwm_regsize = db_bar_size - norm_regsize;
2736
2737         /* Check that the normal and PWM sizes are valid */
2738         if (db_bar_size < norm_regsize) {
2739                 DP_ERR(p_hwfn->cdev,
2740                        "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
2741                        db_bar_size, norm_regsize);
2742                 return -EINVAL;
2743         }
2744
2745         if (pwm_regsize < QED_MIN_PWM_REGION) {
2746                 DP_ERR(p_hwfn->cdev,
2747                        "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
2748                        pwm_regsize,
2749                        QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
2750                 return -EINVAL;
2751         }
2752
2753         /* Calculate number of DPIs */
2754         roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
2755         if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
2756             ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
2757                 /* Either EDPM is mandatory, or we are attempting to allocate a
2758                  * WID per CPU.
2759                  */
2760                 n_cpus = num_present_cpus();
2761                 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
2762         }
2763
2764         cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
2765                (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
2766         if (cond || p_hwfn->dcbx_no_edpm) {
2767                 /* Either EDPM is disabled from user configuration, or it is
2768                  * disabled via DCBx, or it is not mandatory and we failed to
2769                  * allocated a WID per CPU.
2770                  */
2771                 n_cpus = 1;
2772                 rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
2773
2774                 if (cond)
2775                         qed_rdma_dpm_bar(p_hwfn, p_ptt);
2776         }
2777
2778         p_hwfn->wid_count = (u16) n_cpus;
2779
2780         DP_INFO(p_hwfn,
2781                 "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
2782                 norm_regsize,
2783                 pwm_regsize,
2784                 p_hwfn->dpi_size,
2785                 p_hwfn->dpi_count,
2786                 (!qed_edpm_enabled(p_hwfn)) ?
2787                 "disabled" : "enabled", PAGE_SIZE);
2788
2789         if (rc) {
2790                 DP_ERR(p_hwfn,
2791                        "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
2792                        p_hwfn->dpi_count,
2793                        p_hwfn->pf_params.rdma_pf_params.min_dpis);
2794                 return -EINVAL;
2795         }
2796
2797         p_hwfn->dpi_start_offset = norm_regsize;
2798
2799         /* DEMS size is configured log2 of DWORDs, hence the division by 4 */
2800         pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
2801         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
2802         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
2803
2804         return 0;
2805 }
2806
2807 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
2808                             struct qed_ptt *p_ptt, int hw_mode)
2809 {
2810         int rc = 0;
2811
2812         /* In CMT the gate should be cleared by the 2nd hwfn */
2813         if (!QED_IS_CMT(p_hwfn->cdev) || !IS_LEAD_HWFN(p_hwfn))
2814                 STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
2815
2816         rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
2817         if (rc)
2818                 return rc;
2819
2820         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
2821
2822         return 0;
2823 }
2824
2825 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
2826                           struct qed_ptt *p_ptt,
2827                           struct qed_tunnel_info *p_tunn,
2828                           int hw_mode,
2829                           bool b_hw_start,
2830                           enum qed_int_mode int_mode,
2831                           bool allow_npar_tx_switch)
2832 {
2833         u8 rel_pf_id = p_hwfn->rel_pf_id;
2834         int rc = 0;
2835
2836         if (p_hwfn->mcp_info) {
2837                 struct qed_mcp_function_info *p_info;
2838
2839                 p_info = &p_hwfn->mcp_info->func_info;
2840                 if (p_info->bandwidth_min)
2841                         p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
2842
2843                 /* Update rate limit once we'll actually have a link */
2844                 p_hwfn->qm_info.pf_rl = 100000;
2845         }
2846
2847         qed_cxt_hw_init_pf(p_hwfn, p_ptt);
2848
2849         qed_int_igu_init_rt(p_hwfn);
2850
2851         /* Set VLAN in NIG if needed */
2852         if (hw_mode & BIT(MODE_MF_SD)) {
2853                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
2854                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
2855                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
2856                              p_hwfn->hw_info.ovlan);
2857
2858                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2859                            "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
2860                 STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
2861                              1);
2862         }
2863
2864         /* Enable classification by MAC if needed */
2865         if (hw_mode & BIT(MODE_MF_SI)) {
2866                 DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2867                            "Configuring TAGMAC_CLS_TYPE\n");
2868                 STORE_RT_REG(p_hwfn,
2869                              NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
2870         }
2871
2872         /* Protocol Configuration */
2873         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
2874                      (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
2875         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
2876                      (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0);
2877         STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
2878
2879         /* Sanity check before the PF init sequence that uses DMAE */
2880         rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
2881         if (rc)
2882                 return rc;
2883
2884         /* PF Init sequence */
2885         rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
2886         if (rc)
2887                 return rc;
2888
2889         /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
2890         rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
2891         if (rc)
2892                 return rc;
2893
2894         qed_fw_overlay_init_ram(p_hwfn, p_ptt, p_hwfn->fw_overlay_mem);
2895
2896         /* Pure runtime initializations - directly to the HW  */
2897         qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
2898
2899         rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
2900         if (rc)
2901                 return rc;
2902
2903         /* Use the leading hwfn since in CMT only NIG #0 is operational */
2904         if (IS_LEAD_HWFN(p_hwfn)) {
2905                 rc = qed_llh_hw_init_pf(p_hwfn, p_ptt);
2906                 if (rc)
2907                         return rc;
2908         }
2909
2910         if (b_hw_start) {
2911                 /* enable interrupts */
2912                 qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
2913
2914                 /* send function start command */
2915                 rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn,
2916                                      allow_npar_tx_switch);
2917                 if (rc) {
2918                         DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
2919                         return rc;
2920                 }
2921                 if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
2922                         qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2));
2923                         qed_wr(p_hwfn, p_ptt,
2924                                PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
2925                                0x100);
2926                 }
2927         }
2928         return rc;
2929 }
2930
2931 int qed_pglueb_set_pfid_enable(struct qed_hwfn *p_hwfn,
2932                                struct qed_ptt *p_ptt, bool b_enable)
2933 {
2934         u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
2935
2936         /* Configure the PF's internal FID_enable for master transactions */
2937         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
2938
2939         /* Wait until value is set - try for 1 second every 50us */
2940         for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
2941                 val = qed_rd(p_hwfn, p_ptt,
2942                              PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
2943                 if (val == set_val)
2944                         break;
2945
2946                 usleep_range(50, 60);
2947         }
2948
2949         if (val != set_val) {
2950                 DP_NOTICE(p_hwfn,
2951                           "PFID_ENABLE_MASTER wasn't changed after a second\n");
2952                 return -EAGAIN;
2953         }
2954
2955         return 0;
2956 }
2957
2958 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
2959                                 struct qed_ptt *p_main_ptt)
2960 {
2961         /* Read shadow of current MFW mailbox */
2962         qed_mcp_read_mb(p_hwfn, p_main_ptt);
2963         memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
2964                p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
2965 }
2966
2967 static void
2968 qed_fill_load_req_params(struct qed_load_req_params *p_load_req,
2969                          struct qed_drv_load_params *p_drv_load)
2970 {
2971         memset(p_load_req, 0, sizeof(*p_load_req));
2972
2973         p_load_req->drv_role = p_drv_load->is_crash_kernel ?
2974                                QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS;
2975         p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
2976         p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
2977         p_load_req->override_force_load = p_drv_load->override_force_load;
2978 }
2979
2980 static int qed_vf_start(struct qed_hwfn *p_hwfn,
2981                         struct qed_hw_init_params *p_params)
2982 {
2983         if (p_params->p_tunn) {
2984                 qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
2985                 qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
2986         }
2987
2988         p_hwfn->b_int_enabled = true;
2989
2990         return 0;
2991 }
2992
2993 static void qed_pglueb_clear_err(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2994 {
2995         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
2996                BIT(p_hwfn->abs_pf_id));
2997 }
2998
2999 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params)
3000 {
3001         struct qed_load_req_params load_req_params;
3002         u32 load_code, resp, param, drv_mb_param;
3003         bool b_default_mtu = true;
3004         struct qed_hwfn *p_hwfn;
3005         const u32 *fw_overlays;
3006         u32 fw_overlays_len;
3007         u16 ether_type;
3008         int rc = 0, i;
3009
3010         if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
3011                 DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
3012                 return -EINVAL;
3013         }
3014
3015         if (IS_PF(cdev)) {
3016                 rc = qed_init_fw_data(cdev, p_params->bin_fw_data);
3017                 if (rc)
3018                         return rc;
3019         }
3020
3021         for_each_hwfn(cdev, i) {
3022                 p_hwfn = &cdev->hwfns[i];
3023
3024                 /* If management didn't provide a default, set one of our own */
3025                 if (!p_hwfn->hw_info.mtu) {
3026                         p_hwfn->hw_info.mtu = 1500;
3027                         b_default_mtu = false;
3028                 }
3029
3030                 if (IS_VF(cdev)) {
3031                         qed_vf_start(p_hwfn, p_params);
3032                         continue;
3033                 }
3034
3035                 rc = qed_calc_hw_mode(p_hwfn);
3036                 if (rc)
3037                         return rc;
3038
3039                 if (IS_PF(cdev) && (test_bit(QED_MF_8021Q_TAGGING,
3040                                              &cdev->mf_bits) ||
3041                                     test_bit(QED_MF_8021AD_TAGGING,
3042                                              &cdev->mf_bits))) {
3043                         if (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits))
3044                                 ether_type = ETH_P_8021Q;
3045                         else
3046                                 ether_type = ETH_P_8021AD;
3047                         STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3048                                      ether_type);
3049                         STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3050                                      ether_type);
3051                         STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3052                                      ether_type);
3053                         STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3054                                      ether_type);
3055                 }
3056
3057                 qed_fill_load_req_params(&load_req_params,
3058                                          p_params->p_drv_load_params);
3059                 rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3060                                       &load_req_params);
3061                 if (rc) {
3062                         DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n");
3063                         return rc;
3064                 }
3065
3066                 load_code = load_req_params.load_code;
3067                 DP_VERBOSE(p_hwfn, QED_MSG_SP,
3068                            "Load request was sent. Load code: 0x%x\n",
3069                            load_code);
3070
3071                 /* Only relevant for recovery:
3072                  * Clear the indication after LOAD_REQ is responded by the MFW.
3073                  */
3074                 cdev->recov_in_prog = false;
3075
3076                 qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3077
3078                 qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3079
3080                 /* Clean up chip from previous driver if such remains exist.
3081                  * This is not needed when the PF is the first one on the
3082                  * engine, since afterwards we are going to init the FW.
3083                  */
3084                 if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3085                         rc = qed_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3086                                                p_hwfn->rel_pf_id, false);
3087                         if (rc) {
3088                                 DP_NOTICE(p_hwfn, "Final cleanup failed\n");
3089                                 goto load_err;
3090                         }
3091                 }
3092
3093                 /* Log and clear previous pglue_b errors if such exist */
3094                 qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
3095
3096                 /* Enable the PF's internal FID_enable in the PXP */
3097                 rc = qed_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3098                                                 true);
3099                 if (rc)
3100                         goto load_err;
3101
3102                 /* Clear the pglue_b was_error indication.
3103                  * In E4 it must be done after the BME and the internal
3104                  * FID_enable for the PF are set, since VDMs may cause the
3105                  * indication to be set again.
3106                  */
3107                 qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3108
3109                 fw_overlays = cdev->fw_data->fw_overlays;
3110                 fw_overlays_len = cdev->fw_data->fw_overlays_len;
3111                 p_hwfn->fw_overlay_mem =
3112                     qed_fw_overlay_mem_alloc(p_hwfn, fw_overlays,
3113                                              fw_overlays_len);
3114                 if (!p_hwfn->fw_overlay_mem) {
3115                         DP_NOTICE(p_hwfn,
3116                                   "Failed to allocate fw overlay memory\n");
3117                         rc = -ENOMEM;
3118                         goto load_err;
3119                 }
3120
3121                 switch (load_code) {
3122                 case FW_MSG_CODE_DRV_LOAD_ENGINE:
3123                         rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3124                                                 p_hwfn->hw_info.hw_mode);
3125                         if (rc)
3126                                 break;
3127                 /* Fall through */
3128                 case FW_MSG_CODE_DRV_LOAD_PORT:
3129                         rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3130                                               p_hwfn->hw_info.hw_mode);
3131                         if (rc)
3132                                 break;
3133
3134                 /* Fall through */
3135                 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3136                         rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3137                                             p_params->p_tunn,
3138                                             p_hwfn->hw_info.hw_mode,
3139                                             p_params->b_hw_start,
3140                                             p_params->int_mode,
3141                                             p_params->allow_npar_tx_switch);
3142                         break;
3143                 default:
3144                         DP_NOTICE(p_hwfn,
3145                                   "Unexpected load code [0x%08x]", load_code);
3146                         rc = -EINVAL;
3147                         break;
3148                 }
3149
3150                 if (rc) {
3151                         DP_NOTICE(p_hwfn,
3152                                   "init phase failed for loadcode 0x%x (rc %d)\n",
3153                                   load_code, rc);
3154                         goto load_err;
3155                 }
3156
3157                 rc = qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3158                 if (rc)
3159                         return rc;
3160
3161                 /* send DCBX attention request command */
3162                 DP_VERBOSE(p_hwfn,
3163                            QED_MSG_DCB,
3164                            "sending phony dcbx set command to trigger DCBx attention handling\n");
3165                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3166                                  DRV_MSG_CODE_SET_DCBX,
3167                                  1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
3168                                  &resp, &param);
3169                 if (rc) {
3170                         DP_NOTICE(p_hwfn,
3171                                   "Failed to send DCBX attention request\n");
3172                         return rc;
3173                 }
3174
3175                 p_hwfn->hw_init_done = true;
3176         }
3177
3178         if (IS_PF(cdev)) {
3179                 p_hwfn = QED_LEADING_HWFN(cdev);
3180
3181                 /* Get pre-negotiated values for stag, bandwidth etc. */
3182                 DP_VERBOSE(p_hwfn,
3183                            QED_MSG_SPQ,
3184                            "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3185                 drv_mb_param = 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET;
3186                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3187                                  DRV_MSG_CODE_GET_OEM_UPDATES,
3188                                  drv_mb_param, &resp, &param);
3189                 if (rc)
3190                         DP_NOTICE(p_hwfn,
3191                                   "Failed to send GET_OEM_UPDATES attention request\n");
3192
3193                 drv_mb_param = STORM_FW_VERSION;
3194                 rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3195                                  DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3196                                  drv_mb_param, &load_code, &param);
3197                 if (rc)
3198                         DP_INFO(p_hwfn, "Failed to update firmware version\n");
3199
3200                 if (!b_default_mtu) {
3201                         rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3202                                                    p_hwfn->hw_info.mtu);
3203                         if (rc)
3204                                 DP_INFO(p_hwfn,
3205                                         "Failed to update default mtu\n");
3206                 }
3207
3208                 rc = qed_mcp_ov_update_driver_state(p_hwfn,
3209                                                     p_hwfn->p_main_ptt,
3210                                                   QED_OV_DRIVER_STATE_DISABLED);
3211                 if (rc)
3212                         DP_INFO(p_hwfn, "Failed to update driver state\n");
3213
3214                 rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
3215                                                QED_OV_ESWITCH_NONE);
3216                 if (rc)
3217                         DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
3218         }
3219
3220         return 0;
3221
3222 load_err:
3223         /* The MFW load lock should be released also when initialization fails.
3224          */
3225         qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3226         return rc;
3227 }
3228
3229 #define QED_HW_STOP_RETRY_LIMIT (10)
3230 static void qed_hw_timers_stop(struct qed_dev *cdev,
3231                                struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3232 {
3233         int i;
3234
3235         /* close timers */
3236         qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
3237         qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
3238
3239         if (cdev->recov_in_prog)
3240                 return;
3241
3242         for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
3243                 if ((!qed_rd(p_hwfn, p_ptt,
3244                              TM_REG_PF_SCAN_ACTIVE_CONN)) &&
3245                     (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
3246                         break;
3247
3248                 /* Dependent on number of connection/tasks, possibly
3249                  * 1ms sleep is required between polls
3250                  */
3251                 usleep_range(1000, 2000);
3252         }
3253
3254         if (i < QED_HW_STOP_RETRY_LIMIT)
3255                 return;
3256
3257         DP_NOTICE(p_hwfn,
3258                   "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
3259                   (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
3260                   (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
3261 }
3262
3263 void qed_hw_timers_stop_all(struct qed_dev *cdev)
3264 {
3265         int j;
3266
3267         for_each_hwfn(cdev, j) {
3268                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
3269                 struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
3270
3271                 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
3272         }
3273 }
3274
3275 int qed_hw_stop(struct qed_dev *cdev)
3276 {
3277         struct qed_hwfn *p_hwfn;
3278         struct qed_ptt *p_ptt;
3279         int rc, rc2 = 0;
3280         int j;
3281
3282         for_each_hwfn(cdev, j) {
3283                 p_hwfn = &cdev->hwfns[j];
3284                 p_ptt = p_hwfn->p_main_ptt;
3285
3286                 DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
3287
3288                 if (IS_VF(cdev)) {
3289                         qed_vf_pf_int_cleanup(p_hwfn);
3290                         rc = qed_vf_pf_reset(p_hwfn);
3291                         if (rc) {
3292                                 DP_NOTICE(p_hwfn,
3293                                           "qed_vf_pf_reset failed. rc = %d.\n",
3294                                           rc);
3295                                 rc2 = -EINVAL;
3296                         }
3297                         continue;
3298                 }
3299
3300                 /* mark the hw as uninitialized... */
3301                 p_hwfn->hw_init_done = false;
3302
3303                 /* Send unload command to MCP */
3304                 if (!cdev->recov_in_prog) {
3305                         rc = qed_mcp_unload_req(p_hwfn, p_ptt);
3306                         if (rc) {
3307                                 DP_NOTICE(p_hwfn,
3308                                           "Failed sending a UNLOAD_REQ command. rc = %d.\n",
3309                                           rc);
3310                                 rc2 = -EINVAL;
3311                         }
3312                 }
3313
3314                 qed_slowpath_irq_sync(p_hwfn);
3315
3316                 /* After this point no MFW attentions are expected, e.g. prevent
3317                  * race between pf stop and dcbx pf update.
3318                  */
3319                 rc = qed_sp_pf_stop(p_hwfn);
3320                 if (rc) {
3321                         DP_NOTICE(p_hwfn,
3322                                   "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
3323                                   rc);
3324                         rc2 = -EINVAL;
3325                 }
3326
3327                 qed_wr(p_hwfn, p_ptt,
3328                        NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
3329
3330                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3331                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
3332                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
3333                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3334                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
3335
3336                 qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
3337
3338                 /* Disable Attention Generation */
3339                 qed_int_igu_disable_int(p_hwfn, p_ptt);
3340
3341                 qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
3342                 qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
3343
3344                 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
3345
3346                 /* Need to wait 1ms to guarantee SBs are cleared */
3347                 usleep_range(1000, 2000);
3348
3349                 /* Disable PF in HW blocks */
3350                 qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
3351                 qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
3352
3353                 if (IS_LEAD_HWFN(p_hwfn) &&
3354                     test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) &&
3355                     !QED_IS_FCOE_PERSONALITY(p_hwfn))
3356                         qed_llh_remove_mac_filter(cdev, 0,
3357                                                   p_hwfn->hw_info.hw_mac_addr);
3358
3359                 if (!cdev->recov_in_prog) {
3360                         rc = qed_mcp_unload_done(p_hwfn, p_ptt);
3361                         if (rc) {
3362                                 DP_NOTICE(p_hwfn,
3363                                           "Failed sending a UNLOAD_DONE command. rc = %d.\n",
3364                                           rc);
3365                                 rc2 = -EINVAL;
3366                         }
3367                 }
3368         }
3369
3370         if (IS_PF(cdev) && !cdev->recov_in_prog) {
3371                 p_hwfn = QED_LEADING_HWFN(cdev);
3372                 p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt;
3373
3374                 /* Clear the PF's internal FID_enable in the PXP.
3375                  * In CMT this should only be done for first hw-function, and
3376                  * only after all transactions have stopped for all active
3377                  * hw-functions.
3378                  */
3379                 rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false);
3380                 if (rc) {
3381                         DP_NOTICE(p_hwfn,
3382                                   "qed_pglueb_set_pfid_enable() failed. rc = %d.\n",
3383                                   rc);
3384                         rc2 = -EINVAL;
3385                 }
3386         }
3387
3388         return rc2;
3389 }
3390
3391 int qed_hw_stop_fastpath(struct qed_dev *cdev)
3392 {
3393         int j;
3394
3395         for_each_hwfn(cdev, j) {
3396                 struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
3397                 struct qed_ptt *p_ptt;
3398
3399                 if (IS_VF(cdev)) {
3400                         qed_vf_pf_int_cleanup(p_hwfn);
3401                         continue;
3402                 }
3403                 p_ptt = qed_ptt_acquire(p_hwfn);
3404                 if (!p_ptt)
3405                         return -EAGAIN;
3406
3407                 DP_VERBOSE(p_hwfn,
3408                            NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
3409
3410                 qed_wr(p_hwfn, p_ptt,
3411                        NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
3412
3413                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3414                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
3415                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
3416                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3417                 qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
3418
3419                 qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
3420
3421                 /* Need to wait 1ms to guarantee SBs are cleared */
3422                 usleep_range(1000, 2000);
3423                 qed_ptt_release(p_hwfn, p_ptt);
3424         }
3425
3426         return 0;
3427 }
3428
3429 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
3430 {
3431         struct qed_ptt *p_ptt;
3432
3433         if (IS_VF(p_hwfn->cdev))
3434                 return 0;
3435
3436         p_ptt = qed_ptt_acquire(p_hwfn);
3437         if (!p_ptt)
3438                 return -EAGAIN;
3439
3440         if (p_hwfn->p_rdma_info &&
3441             p_hwfn->p_rdma_info->active && p_hwfn->b_rdma_enabled_in_prs)
3442                 qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
3443
3444         /* Re-open incoming traffic */
3445         qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
3446         qed_ptt_release(p_hwfn, p_ptt);
3447
3448         return 0;
3449 }
3450
3451 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
3452 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
3453 {
3454         qed_ptt_pool_free(p_hwfn);
3455         kfree(p_hwfn->hw_info.p_igu_info);
3456         p_hwfn->hw_info.p_igu_info = NULL;
3457 }
3458
3459 /* Setup bar access */
3460 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
3461 {
3462         /* clear indirect access */
3463         if (QED_IS_AH(p_hwfn->cdev)) {
3464                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3465                        PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
3466                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3467                        PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
3468                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3469                        PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
3470                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3471                        PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
3472         } else {
3473                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3474                        PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
3475                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3476                        PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
3477                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3478                        PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
3479                 qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3480                        PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
3481         }
3482
3483         /* Clean previous pglue_b errors if such exist */
3484         qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3485
3486         /* enable internal target-read */
3487         qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3488                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
3489 }
3490
3491 static void get_function_id(struct qed_hwfn *p_hwfn)
3492 {
3493         /* ME Register */
3494         p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
3495                                                   PXP_PF_ME_OPAQUE_ADDR);
3496
3497         p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
3498
3499         p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
3500         p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
3501                                       PXP_CONCRETE_FID_PFID);
3502         p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
3503                                     PXP_CONCRETE_FID_PORT);
3504
3505         DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
3506                    "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
3507                    p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
3508 }
3509
3510 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
3511 {
3512         u32 *feat_num = p_hwfn->hw_info.feat_num;
3513         struct qed_sb_cnt_info sb_cnt;
3514         u32 non_l2_sbs = 0;
3515
3516         memset(&sb_cnt, 0, sizeof(sb_cnt));
3517         qed_int_get_num_sbs(p_hwfn, &sb_cnt);
3518
3519         if (IS_ENABLED(CONFIG_QED_RDMA) &&
3520             QED_IS_RDMA_PERSONALITY(p_hwfn)) {
3521                 /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
3522                  * the status blocks equally between L2 / RoCE but with
3523                  * consideration as to how many l2 queues / cnqs we have.
3524                  */
3525                 feat_num[QED_RDMA_CNQ] =
3526                         min_t(u32, sb_cnt.cnt / 2,
3527                               RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
3528
3529                 non_l2_sbs = feat_num[QED_RDMA_CNQ];
3530         }
3531         if (QED_IS_L2_PERSONALITY(p_hwfn)) {
3532                 /* Start by allocating VF queues, then PF's */
3533                 feat_num[QED_VF_L2_QUE] = min_t(u32,
3534                                                 RESC_NUM(p_hwfn, QED_L2_QUEUE),
3535                                                 sb_cnt.iov_cnt);
3536                 feat_num[QED_PF_L2_QUE] = min_t(u32,
3537                                                 sb_cnt.cnt - non_l2_sbs,
3538                                                 RESC_NUM(p_hwfn,
3539                                                          QED_L2_QUEUE) -
3540                                                 FEAT_NUM(p_hwfn,
3541                                                          QED_VF_L2_QUE));
3542         }
3543
3544         if (QED_IS_FCOE_PERSONALITY(p_hwfn))
3545                 feat_num[QED_FCOE_CQ] =  min_t(u32, sb_cnt.cnt,
3546                                                RESC_NUM(p_hwfn,
3547                                                         QED_CMDQS_CQS));
3548
3549         if (QED_IS_ISCSI_PERSONALITY(p_hwfn))
3550                 feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt,
3551                                                RESC_NUM(p_hwfn,
3552                                                         QED_CMDQS_CQS));
3553         DP_VERBOSE(p_hwfn,
3554                    NETIF_MSG_PROBE,
3555                    "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n",
3556                    (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
3557                    (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
3558                    (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
3559                    (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ),
3560                    (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ),
3561                    (int)sb_cnt.cnt);
3562 }
3563
3564 const char *qed_hw_get_resc_name(enum qed_resources res_id)
3565 {
3566         switch (res_id) {
3567         case QED_L2_QUEUE:
3568                 return "L2_QUEUE";
3569         case QED_VPORT:
3570                 return "VPORT";
3571         case QED_RSS_ENG:
3572                 return "RSS_ENG";
3573         case QED_PQ:
3574                 return "PQ";
3575         case QED_RL:
3576                 return "RL";
3577         case QED_MAC:
3578                 return "MAC";
3579         case QED_VLAN:
3580                 return "VLAN";
3581         case QED_RDMA_CNQ_RAM:
3582                 return "RDMA_CNQ_RAM";
3583         case QED_ILT:
3584                 return "ILT";
3585         case QED_LL2_RAM_QUEUE:
3586                 return "LL2_RAM_QUEUE";
3587         case QED_LL2_CTX_QUEUE:
3588                 return "LL2_CTX_QUEUE";
3589         case QED_CMDQS_CQS:
3590                 return "CMDQS_CQS";
3591         case QED_RDMA_STATS_QUEUE:
3592                 return "RDMA_STATS_QUEUE";
3593         case QED_BDQ:
3594                 return "BDQ";
3595         case QED_SB:
3596                 return "SB";
3597         default:
3598                 return "UNKNOWN_RESOURCE";
3599         }
3600 }
3601
3602 static int
3603 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn,
3604                             struct qed_ptt *p_ptt,
3605                             enum qed_resources res_id,
3606                             u32 resc_max_val, u32 *p_mcp_resp)
3607 {
3608         int rc;
3609
3610         rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
3611                                       resc_max_val, p_mcp_resp);
3612         if (rc) {
3613                 DP_NOTICE(p_hwfn,
3614                           "MFW response failure for a max value setting of resource %d [%s]\n",
3615                           res_id, qed_hw_get_resc_name(res_id));
3616                 return rc;
3617         }
3618
3619         if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
3620                 DP_INFO(p_hwfn,
3621                         "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
3622                         res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp);
3623
3624         return 0;
3625 }
3626
3627 static u32 qed_hsi_def_val[][MAX_CHIP_IDS] = {
3628         {MAX_NUM_VFS_BB, MAX_NUM_VFS_K2},
3629         {MAX_NUM_L2_QUEUES_BB, MAX_NUM_L2_QUEUES_K2},
3630         {MAX_NUM_PORTS_BB, MAX_NUM_PORTS_K2},
3631         {MAX_SB_PER_PATH_BB, MAX_SB_PER_PATH_K2,},
3632         {MAX_NUM_PFS_BB, MAX_NUM_PFS_K2},
3633         {MAX_NUM_VPORTS_BB, MAX_NUM_VPORTS_K2},
3634         {ETH_RSS_ENGINE_NUM_BB, ETH_RSS_ENGINE_NUM_K2},
3635         {MAX_QM_TX_QUEUES_BB, MAX_QM_TX_QUEUES_K2},
3636         {PXP_NUM_ILT_RECORDS_BB, PXP_NUM_ILT_RECORDS_K2},
3637         {RDMA_NUM_STATISTIC_COUNTERS_BB, RDMA_NUM_STATISTIC_COUNTERS_K2},
3638         {MAX_QM_GLOBAL_RLS, MAX_QM_GLOBAL_RLS},
3639         {PBF_MAX_CMD_LINES, PBF_MAX_CMD_LINES},
3640         {BTB_MAX_BLOCKS_BB, BTB_MAX_BLOCKS_K2},
3641 };
3642
3643 u32 qed_get_hsi_def_val(struct qed_dev *cdev, enum qed_hsi_def_type type)
3644 {
3645         enum chip_ids chip_id = QED_IS_BB(cdev) ? CHIP_BB : CHIP_K2;
3646
3647         if (type >= QED_NUM_HSI_DEFS) {
3648                 DP_ERR(cdev, "Unexpected HSI definition type [%d]\n", type);
3649                 return 0;
3650         }
3651
3652         return qed_hsi_def_val[type][chip_id];
3653 }
3654 static int
3655 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3656 {
3657         u32 resc_max_val, mcp_resp;
3658         u8 res_id;
3659         int rc;
3660         for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
3661                 switch (res_id) {
3662                 case QED_LL2_RAM_QUEUE:
3663                         resc_max_val = MAX_NUM_LL2_RX_RAM_QUEUES;
3664                         break;
3665                 case QED_LL2_CTX_QUEUE:
3666                         resc_max_val = MAX_NUM_LL2_RX_CTX_QUEUES;
3667                         break;
3668                 case QED_RDMA_CNQ_RAM:
3669                         /* No need for a case for QED_CMDQS_CQS since
3670                          * CNQ/CMDQS are the same resource.
3671                          */
3672                         resc_max_val = NUM_OF_GLOBAL_QUEUES;
3673                         break;
3674                 case QED_RDMA_STATS_QUEUE:
3675                         resc_max_val =
3676                             NUM_OF_RDMA_STATISTIC_COUNTERS(p_hwfn->cdev);
3677                         break;
3678                 case QED_BDQ:
3679                         resc_max_val = BDQ_NUM_RESOURCES;
3680                         break;
3681                 default:
3682                         continue;
3683                 }
3684
3685                 rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
3686                                                  resc_max_val, &mcp_resp);
3687                 if (rc)
3688                         return rc;
3689
3690                 /* There's no point to continue to the next resource if the
3691                  * command is not supported by the MFW.
3692                  * We do continue if the command is supported but the resource
3693                  * is unknown to the MFW. Such a resource will be later
3694                  * configured with the default allocation values.
3695                  */
3696                 if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
3697                         return -EINVAL;
3698         }
3699
3700         return 0;
3701 }
3702
3703 static
3704 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn,
3705                          enum qed_resources res_id,
3706                          u32 *p_resc_num, u32 *p_resc_start)
3707 {
3708         u8 num_funcs = p_hwfn->num_funcs_on_engine;
3709         struct qed_dev *cdev = p_hwfn->cdev;
3710
3711         switch (res_id) {
3712         case QED_L2_QUEUE:
3713                 *p_resc_num = NUM_OF_L2_QUEUES(cdev) / num_funcs;
3714                 break;
3715         case QED_VPORT:
3716                 *p_resc_num = NUM_OF_VPORTS(cdev) / num_funcs;
3717                 break;
3718         case QED_RSS_ENG:
3719                 *p_resc_num = NUM_OF_RSS_ENGINES(cdev) / num_funcs;
3720                 break;
3721         case QED_PQ:
3722                 *p_resc_num = NUM_OF_QM_TX_QUEUES(cdev) / num_funcs;
3723                 *p_resc_num &= ~0x7;    /* The granularity of the PQs is 8 */
3724                 break;
3725         case QED_RL:
3726                 *p_resc_num = NUM_OF_QM_GLOBAL_RLS(cdev) / num_funcs;
3727                 break;
3728         case QED_MAC:
3729         case QED_VLAN:
3730                 /* Each VFC resource can accommodate both a MAC and a VLAN */
3731                 *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
3732                 break;
3733         case QED_ILT:
3734                 *p_resc_num = NUM_OF_PXP_ILT_RECORDS(cdev) / num_funcs;
3735                 break;
3736         case QED_LL2_RAM_QUEUE:
3737                 *p_resc_num = MAX_NUM_LL2_RX_RAM_QUEUES / num_funcs;
3738                 break;
3739         case QED_LL2_CTX_QUEUE:
3740                 *p_resc_num = MAX_NUM_LL2_RX_CTX_QUEUES / num_funcs;
3741                 break;
3742         case QED_RDMA_CNQ_RAM:
3743         case QED_CMDQS_CQS:
3744                 /* CNQ/CMDQS are the same resource */
3745                 *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
3746                 break;
3747         case QED_RDMA_STATS_QUEUE:
3748                 *p_resc_num = NUM_OF_RDMA_STATISTIC_COUNTERS(cdev) / num_funcs;
3749                 break;
3750         case QED_BDQ:
3751                 if (p_hwfn->hw_info.personality != QED_PCI_ISCSI &&
3752                     p_hwfn->hw_info.personality != QED_PCI_FCOE)
3753                         *p_resc_num = 0;
3754                 else
3755                         *p_resc_num = 1;
3756                 break;
3757         case QED_SB:
3758                 /* Since we want its value to reflect whether MFW supports
3759                  * the new scheme, have a default of 0.
3760                  */
3761                 *p_resc_num = 0;
3762                 break;
3763         default:
3764                 return -EINVAL;
3765         }
3766
3767         switch (res_id) {
3768         case QED_BDQ:
3769                 if (!*p_resc_num)
3770                         *p_resc_start = 0;
3771                 else if (p_hwfn->cdev->num_ports_in_engine == 4)
3772                         *p_resc_start = p_hwfn->port_id;
3773                 else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI)
3774                         *p_resc_start = p_hwfn->port_id;
3775                 else if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
3776                         *p_resc_start = p_hwfn->port_id + 2;
3777                 break;
3778         default:
3779                 *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
3780                 break;
3781         }
3782
3783         return 0;
3784 }
3785
3786 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn,
3787                                   enum qed_resources res_id)
3788 {
3789         u32 dflt_resc_num = 0, dflt_resc_start = 0;
3790         u32 mcp_resp, *p_resc_num, *p_resc_start;
3791         int rc;
3792
3793         p_resc_num = &RESC_NUM(p_hwfn, res_id);
3794         p_resc_start = &RESC_START(p_hwfn, res_id);
3795
3796         rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
3797                                   &dflt_resc_start);
3798         if (rc) {
3799                 DP_ERR(p_hwfn,
3800                        "Failed to get default amount for resource %d [%s]\n",
3801                        res_id, qed_hw_get_resc_name(res_id));
3802                 return rc;
3803         }
3804
3805         rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
3806                                    &mcp_resp, p_resc_num, p_resc_start);
3807         if (rc) {
3808                 DP_NOTICE(p_hwfn,
3809                           "MFW response failure for an allocation request for resource %d [%s]\n",
3810                           res_id, qed_hw_get_resc_name(res_id));
3811                 return rc;
3812         }
3813
3814         /* Default driver values are applied in the following cases:
3815          * - The resource allocation MB command is not supported by the MFW
3816          * - There is an internal error in the MFW while processing the request
3817          * - The resource ID is unknown to the MFW
3818          */
3819         if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3820                 DP_INFO(p_hwfn,
3821                         "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
3822                         res_id,
3823                         qed_hw_get_resc_name(res_id),
3824                         mcp_resp, dflt_resc_num, dflt_resc_start);
3825                 *p_resc_num = dflt_resc_num;
3826                 *p_resc_start = dflt_resc_start;
3827                 goto out;
3828         }
3829
3830 out:
3831         /* PQs have to divide by 8 [that's the HW granularity].
3832          * Reduce number so it would fit.
3833          */
3834         if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) {
3835                 DP_INFO(p_hwfn,
3836                         "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
3837                         *p_resc_num,
3838                         (*p_resc_num) & ~0x7,
3839                         *p_resc_start, (*p_resc_start) & ~0x7);
3840                 *p_resc_num &= ~0x7;
3841                 *p_resc_start &= ~0x7;
3842         }
3843
3844         return 0;
3845 }
3846
3847 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn)
3848 {
3849         int rc;
3850         u8 res_id;
3851
3852         for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
3853                 rc = __qed_hw_set_resc_info(p_hwfn, res_id);
3854                 if (rc)
3855                         return rc;
3856         }
3857
3858         return 0;
3859 }
3860
3861 static int qed_hw_get_ppfid_bitmap(struct qed_hwfn *p_hwfn,
3862                                    struct qed_ptt *p_ptt)
3863 {
3864         struct qed_dev *cdev = p_hwfn->cdev;
3865         u8 native_ppfid_idx;
3866         int rc;
3867
3868         /* Calculation of BB/AH is different for native_ppfid_idx */
3869         if (QED_IS_BB(cdev))
3870                 native_ppfid_idx = p_hwfn->rel_pf_id;
3871         else
3872                 native_ppfid_idx = p_hwfn->rel_pf_id /
3873                     cdev->num_ports_in_engine;
3874
3875         rc = qed_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
3876         if (rc != 0 && rc != -EOPNOTSUPP)
3877                 return rc;
3878         else if (rc == -EOPNOTSUPP)
3879                 cdev->ppfid_bitmap = 0x1 << native_ppfid_idx;
3880
3881         if (!(cdev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
3882                 DP_INFO(p_hwfn,
3883                         "Fix the PPFID bitmap to include the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
3884                         native_ppfid_idx, cdev->ppfid_bitmap);
3885                 cdev->ppfid_bitmap = 0x1 << native_ppfid_idx;
3886         }
3887
3888         return 0;
3889 }
3890
3891 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3892 {
3893         struct qed_resc_unlock_params resc_unlock_params;
3894         struct qed_resc_lock_params resc_lock_params;
3895         bool b_ah = QED_IS_AH(p_hwfn->cdev);
3896         u8 res_id;
3897         int rc;
3898
3899         /* Setting the max values of the soft resources and the following
3900          * resources allocation queries should be atomic. Since several PFs can
3901          * run in parallel - a resource lock is needed.
3902          * If either the resource lock or resource set value commands are not
3903          * supported - skip the the max values setting, release the lock if
3904          * needed, and proceed to the queries. Other failures, including a
3905          * failure to acquire the lock, will cause this function to fail.
3906          */
3907         qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
3908                                        QED_RESC_LOCK_RESC_ALLOC, false);
3909
3910         rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
3911         if (rc && rc != -EINVAL) {
3912                 return rc;
3913         } else if (rc == -EINVAL) {
3914                 DP_INFO(p_hwfn,
3915                         "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
3916         } else if (!rc && !resc_lock_params.b_granted) {
3917                 DP_NOTICE(p_hwfn,
3918                           "Failed to acquire the resource lock for the resource allocation commands\n");
3919                 return -EBUSY;
3920         } else {
3921                 rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt);
3922                 if (rc && rc != -EINVAL) {
3923                         DP_NOTICE(p_hwfn,
3924                                   "Failed to set the max values of the soft resources\n");
3925                         goto unlock_and_exit;
3926                 } else if (rc == -EINVAL) {
3927                         DP_INFO(p_hwfn,
3928                                 "Skip the max values setting of the soft resources since it is not supported by the MFW\n");
3929                         rc = qed_mcp_resc_unlock(p_hwfn, p_ptt,
3930                                                  &resc_unlock_params);
3931                         if (rc)
3932                                 DP_INFO(p_hwfn,
3933                                         "Failed to release the resource lock for the resource allocation commands\n");
3934                 }
3935         }
3936
3937         rc = qed_hw_set_resc_info(p_hwfn);
3938         if (rc)
3939                 goto unlock_and_exit;
3940
3941         if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
3942                 rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
3943                 if (rc)
3944                         DP_INFO(p_hwfn,
3945                                 "Failed to release the resource lock for the resource allocation commands\n");
3946         }
3947
3948         /* PPFID bitmap */
3949         if (IS_LEAD_HWFN(p_hwfn)) {
3950                 rc = qed_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
3951                 if (rc)
3952                         return rc;
3953         }
3954
3955         /* Sanity for ILT */
3956         if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
3957             (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
3958                 DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
3959                           RESC_START(p_hwfn, QED_ILT),
3960                           RESC_END(p_hwfn, QED_ILT) - 1);
3961                 return -EINVAL;
3962         }
3963
3964         /* This will also learn the number of SBs from MFW */
3965         if (qed_int_igu_reset_cam(p_hwfn, p_ptt))
3966                 return -EINVAL;
3967
3968         qed_hw_set_feat(p_hwfn);
3969
3970         for (res_id = 0; res_id < QED_MAX_RESC; res_id++)
3971                 DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n",
3972                            qed_hw_get_resc_name(res_id),
3973                            RESC_NUM(p_hwfn, res_id),
3974                            RESC_START(p_hwfn, res_id));
3975
3976         return 0;
3977
3978 unlock_and_exit:
3979         if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
3980                 qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
3981         return rc;
3982 }
3983
3984 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3985 {
3986         u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
3987         u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
3988         struct qed_mcp_link_capabilities *p_caps;
3989         struct qed_mcp_link_params *link;
3990
3991         /* Read global nvm_cfg address */
3992         nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
3993
3994         /* Verify MCP has initialized it */
3995         if (!nvm_cfg_addr) {
3996                 DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
3997                 return -EINVAL;
3998         }
3999
4000         /* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
4001         nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
4002
4003         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4004                offsetof(struct nvm_cfg1, glob) +
4005                offsetof(struct nvm_cfg1_glob, core_cfg);
4006
4007         core_cfg = qed_rd(p_hwfn, p_ptt, addr);
4008
4009         switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
4010                 NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
4011         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
4012                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
4013                 break;
4014         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
4015                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
4016                 break;
4017         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
4018                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
4019                 break;
4020         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
4021                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
4022                 break;
4023         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
4024                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
4025                 break;
4026         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
4027                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
4028                 break;
4029         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
4030                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
4031                 break;
4032         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
4033                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
4034                 break;
4035         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
4036                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G;
4037                 break;
4038         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
4039                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
4040                 break;
4041         case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
4042                 p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G;
4043                 break;
4044         default:
4045                 DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
4046                 break;
4047         }
4048
4049         /* Read default link configuration */
4050         link = &p_hwfn->mcp_info->link_input;
4051         p_caps = &p_hwfn->mcp_info->link_capabilities;
4052         port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4053                         offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
4054         link_temp = qed_rd(p_hwfn, p_ptt,
4055                            port_cfg_addr +
4056                            offsetof(struct nvm_cfg1_port, speed_cap_mask));
4057         link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
4058         link->speed.advertised_speeds = link_temp;
4059
4060         link_temp = link->speed.advertised_speeds;
4061         p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
4062
4063         link_temp = qed_rd(p_hwfn, p_ptt,
4064                            port_cfg_addr +
4065                            offsetof(struct nvm_cfg1_port, link_settings));
4066         switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
4067                 NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
4068         case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
4069                 link->speed.autoneg = true;
4070                 break;
4071         case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
4072                 link->speed.forced_speed = 1000;
4073                 break;
4074         case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
4075                 link->speed.forced_speed = 10000;
4076                 break;
4077         case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
4078                 link->speed.forced_speed = 20000;
4079                 break;
4080         case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
4081                 link->speed.forced_speed = 25000;
4082                 break;
4083         case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
4084                 link->speed.forced_speed = 40000;
4085                 break;
4086         case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
4087                 link->speed.forced_speed = 50000;
4088                 break;
4089         case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
4090                 link->speed.forced_speed = 100000;
4091                 break;
4092         default:
4093                 DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
4094         }
4095
4096         p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
4097                 link->speed.autoneg;
4098
4099         link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
4100         link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
4101         link->pause.autoneg = !!(link_temp &
4102                                  NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
4103         link->pause.forced_rx = !!(link_temp &
4104                                    NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
4105         link->pause.forced_tx = !!(link_temp &
4106                                    NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
4107         link->loopback_mode = 0;
4108
4109         if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
4110                 link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr +
4111                                    offsetof(struct nvm_cfg1_port, ext_phy));
4112                 link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
4113                 link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
4114                 p_caps->default_eee = QED_MCP_EEE_ENABLED;
4115                 link->eee.enable = true;
4116                 switch (link_temp) {
4117                 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
4118                         p_caps->default_eee = QED_MCP_EEE_DISABLED;
4119                         link->eee.enable = false;
4120                         break;
4121                 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
4122                         p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
4123                         break;
4124                 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
4125                         p_caps->eee_lpi_timer =
4126                             EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
4127                         break;
4128                 case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
4129                         p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
4130                         break;
4131                 }
4132
4133                 link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
4134                 link->eee.tx_lpi_enable = link->eee.enable;
4135                 link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV;
4136         } else {
4137                 p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED;
4138         }
4139
4140         DP_VERBOSE(p_hwfn,
4141                    NETIF_MSG_LINK,
4142                    "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
4143                    link->speed.forced_speed,
4144                    link->speed.advertised_speeds,
4145                    link->speed.autoneg,
4146                    link->pause.autoneg,
4147                    p_caps->default_eee, p_caps->eee_lpi_timer);
4148
4149         if (IS_LEAD_HWFN(p_hwfn)) {
4150                 struct qed_dev *cdev = p_hwfn->cdev;
4151
4152                 /* Read Multi-function information from shmem */
4153                 addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4154                        offsetof(struct nvm_cfg1, glob) +
4155                        offsetof(struct nvm_cfg1_glob, generic_cont0);
4156
4157                 generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
4158
4159                 mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
4160                           NVM_CFG1_GLOB_MF_MODE_OFFSET;
4161
4162                 switch (mf_mode) {
4163                 case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
4164                         cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS);
4165                         break;
4166                 case NVM_CFG1_GLOB_MF_MODE_UFP:
4167                         cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
4168                                         BIT(QED_MF_LLH_PROTO_CLSS) |
4169                                         BIT(QED_MF_UFP_SPECIFIC) |
4170                                         BIT(QED_MF_8021Q_TAGGING) |
4171                                         BIT(QED_MF_DONT_ADD_VLAN0_TAG);
4172                         break;
4173                 case NVM_CFG1_GLOB_MF_MODE_BD:
4174                         cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
4175                                         BIT(QED_MF_LLH_PROTO_CLSS) |
4176                                         BIT(QED_MF_8021AD_TAGGING) |
4177                                         BIT(QED_MF_DONT_ADD_VLAN0_TAG);
4178                         break;
4179                 case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
4180                         cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
4181                                         BIT(QED_MF_LLH_PROTO_CLSS) |
4182                                         BIT(QED_MF_LL2_NON_UNICAST) |
4183                                         BIT(QED_MF_INTER_PF_SWITCH);
4184                         break;
4185                 case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
4186                         cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
4187                                         BIT(QED_MF_LLH_PROTO_CLSS) |
4188                                         BIT(QED_MF_LL2_NON_UNICAST);
4189                         if (QED_IS_BB(p_hwfn->cdev))
4190                                 cdev->mf_bits |= BIT(QED_MF_NEED_DEF_PF);
4191                         break;
4192                 }
4193
4194                 DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
4195                         cdev->mf_bits);
4196         }
4197
4198         DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
4199                 p_hwfn->cdev->mf_bits);
4200
4201         /* Read device capabilities information from shmem */
4202         addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4203                 offsetof(struct nvm_cfg1, glob) +
4204                 offsetof(struct nvm_cfg1_glob, device_capabilities);
4205
4206         device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
4207         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
4208                 __set_bit(QED_DEV_CAP_ETH,
4209                           &p_hwfn->hw_info.device_capabilities);
4210         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
4211                 __set_bit(QED_DEV_CAP_FCOE,
4212                           &p_hwfn->hw_info.device_capabilities);
4213         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
4214                 __set_bit(QED_DEV_CAP_ISCSI,
4215                           &p_hwfn->hw_info.device_capabilities);
4216         if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
4217                 __set_bit(QED_DEV_CAP_ROCE,
4218                           &p_hwfn->hw_info.device_capabilities);
4219
4220         return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
4221 }
4222
4223 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4224 {
4225         u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
4226         u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
4227         struct qed_dev *cdev = p_hwfn->cdev;
4228
4229         num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
4230
4231         /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
4232          * in the other bits are selected.
4233          * Bits 1-15 are for functions 1-15, respectively, and their value is
4234          * '0' only for enabled functions (function 0 always exists and
4235          * enabled).
4236          * In case of CMT, only the "even" functions are enabled, and thus the
4237          * number of functions for both hwfns is learnt from the same bits.
4238          */
4239         reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
4240
4241         if (reg_function_hide & 0x1) {
4242                 if (QED_IS_BB(cdev)) {
4243                         if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) {
4244                                 num_funcs = 0;
4245                                 eng_mask = 0xaaaa;
4246                         } else {
4247                                 num_funcs = 1;
4248                                 eng_mask = 0x5554;
4249                         }
4250                 } else {
4251                         num_funcs = 1;
4252                         eng_mask = 0xfffe;
4253                 }
4254
4255                 /* Get the number of the enabled functions on the engine */
4256                 tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
4257                 while (tmp) {
4258                         if (tmp & 0x1)
4259                                 num_funcs++;
4260                         tmp >>= 0x1;
4261                 }
4262
4263                 /* Get the PF index within the enabled functions */
4264                 low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
4265                 tmp = reg_function_hide & eng_mask & low_pfs_mask;
4266                 while (tmp) {
4267                         if (tmp & 0x1)
4268                                 enabled_func_idx--;
4269                         tmp >>= 0x1;
4270                 }
4271         }
4272
4273         p_hwfn->num_funcs_on_engine = num_funcs;
4274         p_hwfn->enabled_func_idx = enabled_func_idx;
4275
4276         DP_VERBOSE(p_hwfn,
4277                    NETIF_MSG_PROBE,
4278                    "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
4279                    p_hwfn->rel_pf_id,
4280                    p_hwfn->abs_pf_id,
4281                    p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
4282 }
4283
4284 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4285 {
4286         u32 addr, global_offsize, global_addr, port_mode;
4287         struct qed_dev *cdev = p_hwfn->cdev;
4288
4289         /* In CMT there is always only one port */
4290         if (cdev->num_hwfns > 1) {
4291                 cdev->num_ports_in_engine = 1;
4292                 cdev->num_ports = 1;
4293                 return;
4294         }
4295
4296         /* Determine the number of ports per engine */
4297         port_mode = qed_rd(p_hwfn, p_ptt, MISC_REG_PORT_MODE);
4298         switch (port_mode) {
4299         case 0x0:
4300                 cdev->num_ports_in_engine = 1;
4301                 break;
4302         case 0x1:
4303                 cdev->num_ports_in_engine = 2;
4304                 break;
4305         case 0x2:
4306                 cdev->num_ports_in_engine = 4;
4307                 break;
4308         default:
4309                 DP_NOTICE(p_hwfn, "Unknown port mode 0x%08x\n", port_mode);
4310                 cdev->num_ports_in_engine = 1;  /* Default to something */
4311                 break;
4312         }
4313
4314         /* Get the total number of ports of the device */
4315         addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
4316                                     PUBLIC_GLOBAL);
4317         global_offsize = qed_rd(p_hwfn, p_ptt, addr);
4318         global_addr = SECTION_ADDR(global_offsize, 0);
4319         addr = global_addr + offsetof(struct public_global, max_ports);
4320         cdev->num_ports = (u8)qed_rd(p_hwfn, p_ptt, addr);
4321 }
4322
4323 static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4324 {
4325         struct qed_mcp_link_capabilities *p_caps;
4326         u32 eee_status;
4327
4328         p_caps = &p_hwfn->mcp_info->link_capabilities;
4329         if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED)
4330                 return;
4331
4332         p_caps->eee_speed_caps = 0;
4333         eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
4334                             offsetof(struct public_port, eee_status));
4335         eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
4336                         EEE_SUPPORTED_SPEED_OFFSET;
4337
4338         if (eee_status & EEE_1G_SUPPORTED)
4339                 p_caps->eee_speed_caps |= QED_EEE_1G_ADV;
4340         if (eee_status & EEE_10G_ADV)
4341                 p_caps->eee_speed_caps |= QED_EEE_10G_ADV;
4342 }
4343
4344 static int
4345 qed_get_hw_info(struct qed_hwfn *p_hwfn,
4346                 struct qed_ptt *p_ptt,
4347                 enum qed_pci_personality personality)
4348 {
4349         int rc;
4350
4351         /* Since all information is common, only first hwfns should do this */
4352         if (IS_LEAD_HWFN(p_hwfn)) {
4353                 rc = qed_iov_hw_info(p_hwfn);
4354                 if (rc)
4355                         return rc;
4356         }
4357
4358         if (IS_LEAD_HWFN(p_hwfn))
4359                 qed_hw_info_port_num(p_hwfn, p_ptt);
4360
4361         qed_mcp_get_capabilities(p_hwfn, p_ptt);
4362
4363         qed_hw_get_nvm_info(p_hwfn, p_ptt);
4364
4365         rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
4366         if (rc)
4367                 return rc;
4368
4369         if (qed_mcp_is_init(p_hwfn))
4370                 ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
4371                                 p_hwfn->mcp_info->func_info.mac);
4372         else
4373                 eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
4374
4375         if (qed_mcp_is_init(p_hwfn)) {
4376                 if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
4377                         p_hwfn->hw_info.ovlan =
4378                                 p_hwfn->mcp_info->func_info.ovlan;
4379
4380                 qed_mcp_cmd_port_init(p_hwfn, p_ptt);
4381
4382                 qed_get_eee_caps(p_hwfn, p_ptt);
4383
4384                 qed_mcp_read_ufp_config(p_hwfn, p_ptt);
4385         }
4386
4387         if (qed_mcp_is_init(p_hwfn)) {
4388                 enum qed_pci_personality protocol;
4389
4390                 protocol = p_hwfn->mcp_info->func_info.protocol;
4391                 p_hwfn->hw_info.personality = protocol;
4392         }
4393
4394         if (QED_IS_ROCE_PERSONALITY(p_hwfn))
4395                 p_hwfn->hw_info.multi_tc_roce_en = 1;
4396
4397         p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
4398         p_hwfn->hw_info.num_active_tc = 1;
4399
4400         qed_get_num_funcs(p_hwfn, p_ptt);
4401
4402         if (qed_mcp_is_init(p_hwfn))
4403                 p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
4404
4405         return qed_hw_get_resc(p_hwfn, p_ptt);
4406 }
4407
4408 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4409 {
4410         struct qed_dev *cdev = p_hwfn->cdev;
4411         u16 device_id_mask;
4412         u32 tmp;
4413
4414         /* Read Vendor Id / Device Id */
4415         pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
4416         pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
4417
4418         /* Determine type */
4419         device_id_mask = cdev->device_id & QED_DEV_ID_MASK;
4420         switch (device_id_mask) {
4421         case QED_DEV_ID_MASK_BB:
4422                 cdev->type = QED_DEV_TYPE_BB;
4423                 break;
4424         case QED_DEV_ID_MASK_AH:
4425                 cdev->type = QED_DEV_TYPE_AH;
4426                 break;
4427         default:
4428                 DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id);
4429                 return -EBUSY;
4430         }
4431
4432         cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
4433         cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
4434
4435         MASK_FIELD(CHIP_REV, cdev->chip_rev);
4436
4437         /* Learn number of HW-functions */
4438         tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
4439
4440         if (tmp & (1 << p_hwfn->rel_pf_id)) {
4441                 DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
4442                 cdev->num_hwfns = 2;
4443         } else {
4444                 cdev->num_hwfns = 1;
4445         }
4446
4447         cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt,
4448                                     MISCS_REG_CHIP_TEST_REG) >> 4;
4449         MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
4450         cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
4451         MASK_FIELD(CHIP_METAL, cdev->chip_metal);
4452
4453         DP_INFO(cdev->hwfns,
4454                 "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
4455                 QED_IS_BB(cdev) ? "BB" : "AH",
4456                 'A' + cdev->chip_rev,
4457                 (int)cdev->chip_metal,
4458                 cdev->chip_num, cdev->chip_rev,
4459                 cdev->chip_bond_id, cdev->chip_metal);
4460
4461         return 0;
4462 }
4463
4464 static void qed_nvm_info_free(struct qed_hwfn *p_hwfn)
4465 {
4466         kfree(p_hwfn->nvm_info.image_att);
4467         p_hwfn->nvm_info.image_att = NULL;
4468 }
4469
4470 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
4471                                  void __iomem *p_regview,
4472                                  void __iomem *p_doorbells,
4473                                  u64 db_phys_addr,
4474                                  enum qed_pci_personality personality)
4475 {
4476         struct qed_dev *cdev = p_hwfn->cdev;
4477         int rc = 0;
4478
4479         /* Split PCI bars evenly between hwfns */
4480         p_hwfn->regview = p_regview;
4481         p_hwfn->doorbells = p_doorbells;
4482         p_hwfn->db_phys_addr = db_phys_addr;
4483
4484         if (IS_VF(p_hwfn->cdev))
4485                 return qed_vf_hw_prepare(p_hwfn);
4486
4487         /* Validate that chip access is feasible */
4488         if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
4489                 DP_ERR(p_hwfn,
4490                        "Reading the ME register returns all Fs; Preventing further chip access\n");
4491                 return -EINVAL;
4492         }
4493
4494         get_function_id(p_hwfn);
4495
4496         /* Allocate PTT pool */
4497         rc = qed_ptt_pool_alloc(p_hwfn);
4498         if (rc)
4499                 goto err0;
4500
4501         /* Allocate the main PTT */
4502         p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
4503
4504         /* First hwfn learns basic information, e.g., number of hwfns */
4505         if (!p_hwfn->my_id) {
4506                 rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
4507                 if (rc)
4508                         goto err1;
4509         }
4510
4511         qed_hw_hwfn_prepare(p_hwfn);
4512
4513         /* Initialize MCP structure */
4514         rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
4515         if (rc) {
4516                 DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
4517                 goto err1;
4518         }
4519
4520         /* Read the device configuration information from the HW and SHMEM */
4521         rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
4522         if (rc) {
4523                 DP_NOTICE(p_hwfn, "Failed to get HW information\n");
4524                 goto err2;
4525         }
4526
4527         /* Sending a mailbox to the MFW should be done after qed_get_hw_info()
4528          * is called as it sets the ports number in an engine.
4529          */
4530         if (IS_LEAD_HWFN(p_hwfn) && !cdev->recov_in_prog) {
4531                 rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
4532                 if (rc)
4533                         DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n");
4534         }
4535
4536         /* NVRAM info initialization and population */
4537         if (IS_LEAD_HWFN(p_hwfn)) {
4538                 rc = qed_mcp_nvm_info_populate(p_hwfn);
4539                 if (rc) {
4540                         DP_NOTICE(p_hwfn,
4541                                   "Failed to populate nvm info shadow\n");
4542                         goto err2;
4543                 }
4544         }
4545
4546         /* Allocate the init RT array and initialize the init-ops engine */
4547         rc = qed_init_alloc(p_hwfn);
4548         if (rc)
4549                 goto err3;
4550
4551         return rc;
4552 err3:
4553         if (IS_LEAD_HWFN(p_hwfn))
4554                 qed_nvm_info_free(p_hwfn);
4555 err2:
4556         if (IS_LEAD_HWFN(p_hwfn))
4557                 qed_iov_free_hw_info(p_hwfn->cdev);
4558         qed_mcp_free(p_hwfn);
4559 err1:
4560         qed_hw_hwfn_free(p_hwfn);
4561 err0:
4562         return rc;
4563 }
4564
4565 int qed_hw_prepare(struct qed_dev *cdev,
4566                    int personality)
4567 {
4568         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
4569         int rc;
4570
4571         /* Store the precompiled init data ptrs */
4572         if (IS_PF(cdev))
4573                 qed_init_iro_array(cdev);
4574
4575         /* Initialize the first hwfn - will learn number of hwfns */
4576         rc = qed_hw_prepare_single(p_hwfn,
4577                                    cdev->regview,
4578                                    cdev->doorbells,
4579                                    cdev->db_phys_addr,
4580                                    personality);
4581         if (rc)
4582                 return rc;
4583
4584         personality = p_hwfn->hw_info.personality;
4585
4586         /* Initialize the rest of the hwfns */
4587         if (cdev->num_hwfns > 1) {
4588                 void __iomem *p_regview, *p_doorbell;
4589                 u64 db_phys_addr;
4590                 u32 offset;
4591
4592                 /* adjust bar offset for second engine */
4593                 offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
4594                                          BAR_ID_0) / 2;
4595                 p_regview = cdev->regview + offset;
4596
4597                 offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
4598                                          BAR_ID_1) / 2;
4599
4600                 p_doorbell = cdev->doorbells + offset;
4601
4602                 db_phys_addr = cdev->db_phys_addr + offset;
4603
4604                 /* prepare second hw function */
4605                 rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
4606                                            p_doorbell, db_phys_addr,
4607                                            personality);
4608
4609                 /* in case of error, need to free the previously
4610                  * initiliazed hwfn 0.
4611                  */
4612                 if (rc) {
4613                         if (IS_PF(cdev)) {
4614                                 qed_init_free(p_hwfn);
4615                                 qed_nvm_info_free(p_hwfn);
4616                                 qed_mcp_free(p_hwfn);
4617                                 qed_hw_hwfn_free(p_hwfn);
4618                         }
4619                 }
4620         }
4621
4622         return rc;
4623 }
4624
4625 void qed_hw_remove(struct qed_dev *cdev)
4626 {
4627         struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
4628         int i;
4629
4630         if (IS_PF(cdev))
4631                 qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
4632                                                QED_OV_DRIVER_STATE_NOT_LOADED);
4633
4634         for_each_hwfn(cdev, i) {
4635                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4636
4637                 if (IS_VF(cdev)) {
4638                         qed_vf_pf_release(p_hwfn);
4639                         continue;
4640                 }
4641
4642                 qed_init_free(p_hwfn);
4643                 qed_hw_hwfn_free(p_hwfn);
4644                 qed_mcp_free(p_hwfn);
4645         }
4646
4647         qed_iov_free_hw_info(cdev);
4648
4649         qed_nvm_info_free(p_hwfn);
4650 }
4651
4652 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
4653                                     struct qed_chain *p_chain)
4654 {
4655         void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
4656         dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
4657         struct qed_chain_next *p_next;
4658         u32 size, i;
4659
4660         if (!p_virt)
4661                 return;
4662
4663         size = p_chain->elem_size * p_chain->usable_per_page;
4664
4665         for (i = 0; i < p_chain->page_cnt; i++) {
4666                 if (!p_virt)
4667                         break;
4668
4669                 p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
4670                 p_virt_next = p_next->next_virt;
4671                 p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
4672
4673                 dma_free_coherent(&cdev->pdev->dev,
4674                                   QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
4675
4676                 p_virt = p_virt_next;
4677                 p_phys = p_phys_next;
4678         }
4679 }
4680
4681 static void qed_chain_free_single(struct qed_dev *cdev,
4682                                   struct qed_chain *p_chain)
4683 {
4684         if (!p_chain->p_virt_addr)
4685                 return;
4686
4687         dma_free_coherent(&cdev->pdev->dev,
4688                           QED_CHAIN_PAGE_SIZE,
4689                           p_chain->p_virt_addr, p_chain->p_phys_addr);
4690 }
4691
4692 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
4693 {
4694         void **pp_virt_addr_tbl = p_chain->pbl.pp_virt_addr_tbl;
4695         u32 page_cnt = p_chain->page_cnt, i, pbl_size;
4696         u8 *p_pbl_virt = p_chain->pbl_sp.p_virt_table;
4697
4698         if (!pp_virt_addr_tbl)
4699                 return;
4700
4701         if (!p_pbl_virt)
4702                 goto out;
4703
4704         for (i = 0; i < page_cnt; i++) {
4705                 if (!pp_virt_addr_tbl[i])
4706                         break;
4707
4708                 dma_free_coherent(&cdev->pdev->dev,
4709                                   QED_CHAIN_PAGE_SIZE,
4710                                   pp_virt_addr_tbl[i],
4711                                   *(dma_addr_t *)p_pbl_virt);
4712
4713                 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
4714         }
4715
4716         pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
4717
4718         if (!p_chain->b_external_pbl)
4719                 dma_free_coherent(&cdev->pdev->dev,
4720                                   pbl_size,
4721                                   p_chain->pbl_sp.p_virt_table,
4722                                   p_chain->pbl_sp.p_phys_table);
4723 out:
4724         vfree(p_chain->pbl.pp_virt_addr_tbl);
4725         p_chain->pbl.pp_virt_addr_tbl = NULL;
4726 }
4727
4728 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
4729 {
4730         switch (p_chain->mode) {
4731         case QED_CHAIN_MODE_NEXT_PTR:
4732                 qed_chain_free_next_ptr(cdev, p_chain);
4733                 break;
4734         case QED_CHAIN_MODE_SINGLE:
4735                 qed_chain_free_single(cdev, p_chain);
4736                 break;
4737         case QED_CHAIN_MODE_PBL:
4738                 qed_chain_free_pbl(cdev, p_chain);
4739                 break;
4740         }
4741 }
4742
4743 static int
4744 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
4745                              enum qed_chain_cnt_type cnt_type,
4746                              size_t elem_size, u32 page_cnt)
4747 {
4748         u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
4749
4750         /* The actual chain size can be larger than the maximal possible value
4751          * after rounding up the requested elements number to pages, and after
4752          * taking into acount the unusuable elements (next-ptr elements).
4753          * The size of a "u16" chain can be (U16_MAX + 1) since the chain
4754          * size/capacity fields are of a u32 type.
4755          */
4756         if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
4757              chain_size > ((u32)U16_MAX + 1)) ||
4758             (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) {
4759                 DP_NOTICE(cdev,
4760                           "The actual chain size (0x%llx) is larger than the maximal possible value\n",
4761                           chain_size);
4762                 return -EINVAL;
4763         }
4764
4765         return 0;
4766 }
4767
4768 static int
4769 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
4770 {
4771         void *p_virt = NULL, *p_virt_prev = NULL;
4772         dma_addr_t p_phys = 0;
4773         u32 i;
4774
4775         for (i = 0; i < p_chain->page_cnt; i++) {
4776                 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
4777                                             QED_CHAIN_PAGE_SIZE,
4778                                             &p_phys, GFP_KERNEL);
4779                 if (!p_virt)
4780                         return -ENOMEM;
4781
4782                 if (i == 0) {
4783                         qed_chain_init_mem(p_chain, p_virt, p_phys);
4784                         qed_chain_reset(p_chain);
4785                 } else {
4786                         qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4787                                                      p_virt, p_phys);
4788                 }
4789
4790                 p_virt_prev = p_virt;
4791         }
4792         /* Last page's next element should point to the beginning of the
4793          * chain.
4794          */
4795         qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4796                                      p_chain->p_virt_addr,
4797                                      p_chain->p_phys_addr);
4798
4799         return 0;
4800 }
4801
4802 static int
4803 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
4804 {
4805         dma_addr_t p_phys = 0;
4806         void *p_virt = NULL;
4807
4808         p_virt = dma_alloc_coherent(&cdev->pdev->dev,
4809                                     QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
4810         if (!p_virt)
4811                 return -ENOMEM;
4812
4813         qed_chain_init_mem(p_chain, p_virt, p_phys);
4814         qed_chain_reset(p_chain);
4815
4816         return 0;
4817 }
4818
4819 static int
4820 qed_chain_alloc_pbl(struct qed_dev *cdev,
4821                     struct qed_chain *p_chain,
4822                     struct qed_chain_ext_pbl *ext_pbl)
4823 {
4824         u32 page_cnt = p_chain->page_cnt, size, i;
4825         dma_addr_t p_phys = 0, p_pbl_phys = 0;
4826         void **pp_virt_addr_tbl = NULL;
4827         u8 *p_pbl_virt = NULL;
4828         void *p_virt = NULL;
4829
4830         size = page_cnt * sizeof(*pp_virt_addr_tbl);
4831         pp_virt_addr_tbl = vzalloc(size);
4832         if (!pp_virt_addr_tbl)
4833                 return -ENOMEM;
4834
4835         /* The allocation of the PBL table is done with its full size, since it
4836          * is expected to be successive.
4837          * qed_chain_init_pbl_mem() is called even in a case of an allocation
4838          * failure, since pp_virt_addr_tbl was previously allocated, and it
4839          * should be saved to allow its freeing during the error flow.
4840          */
4841         size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
4842
4843         if (!ext_pbl) {
4844                 p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
4845                                                 size, &p_pbl_phys, GFP_KERNEL);
4846         } else {
4847                 p_pbl_virt = ext_pbl->p_pbl_virt;
4848                 p_pbl_phys = ext_pbl->p_pbl_phys;
4849                 p_chain->b_external_pbl = true;
4850         }
4851
4852         qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys,
4853                                pp_virt_addr_tbl);
4854         if (!p_pbl_virt)
4855                 return -ENOMEM;
4856
4857         for (i = 0; i < page_cnt; i++) {
4858                 p_virt = dma_alloc_coherent(&cdev->pdev->dev,
4859                                             QED_CHAIN_PAGE_SIZE,
4860                                             &p_phys, GFP_KERNEL);
4861                 if (!p_virt)
4862                         return -ENOMEM;
4863
4864                 if (i == 0) {
4865                         qed_chain_init_mem(p_chain, p_virt, p_phys);
4866                         qed_chain_reset(p_chain);
4867                 }
4868
4869                 /* Fill the PBL table with the physical address of the page */
4870                 *(dma_addr_t *)p_pbl_virt = p_phys;
4871                 /* Keep the virtual address of the page */
4872                 p_chain->pbl.pp_virt_addr_tbl[i] = p_virt;
4873
4874                 p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
4875         }
4876
4877         return 0;
4878 }
4879
4880 int qed_chain_alloc(struct qed_dev *cdev,
4881                     enum qed_chain_use_mode intended_use,
4882                     enum qed_chain_mode mode,
4883                     enum qed_chain_cnt_type cnt_type,
4884                     u32 num_elems,
4885                     size_t elem_size,
4886                     struct qed_chain *p_chain,
4887                     struct qed_chain_ext_pbl *ext_pbl)
4888 {
4889         u32 page_cnt;
4890         int rc = 0;
4891
4892         if (mode == QED_CHAIN_MODE_SINGLE)
4893                 page_cnt = 1;
4894         else
4895                 page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
4896
4897         rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
4898         if (rc) {
4899                 DP_NOTICE(cdev,
4900                           "Cannot allocate a chain with the given arguments:\n");
4901                 DP_NOTICE(cdev,
4902                           "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
4903                           intended_use, mode, cnt_type, num_elems, elem_size);
4904                 return rc;
4905         }
4906
4907         qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
4908                               mode, cnt_type);
4909
4910         switch (mode) {
4911         case QED_CHAIN_MODE_NEXT_PTR:
4912                 rc = qed_chain_alloc_next_ptr(cdev, p_chain);
4913                 break;
4914         case QED_CHAIN_MODE_SINGLE:
4915                 rc = qed_chain_alloc_single(cdev, p_chain);
4916                 break;
4917         case QED_CHAIN_MODE_PBL:
4918                 rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl);
4919                 break;
4920         }
4921         if (rc)
4922                 goto nomem;
4923
4924         return 0;
4925
4926 nomem:
4927         qed_chain_free(cdev, p_chain);
4928         return rc;
4929 }
4930
4931 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
4932 {
4933         if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
4934                 u16 min, max;
4935
4936                 min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
4937                 max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
4938                 DP_NOTICE(p_hwfn,
4939                           "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
4940                           src_id, min, max);
4941
4942                 return -EINVAL;
4943         }
4944
4945         *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
4946
4947         return 0;
4948 }
4949
4950 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
4951 {
4952         if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
4953                 u8 min, max;
4954
4955                 min = (u8)RESC_START(p_hwfn, QED_VPORT);
4956                 max = min + RESC_NUM(p_hwfn, QED_VPORT);
4957                 DP_NOTICE(p_hwfn,
4958                           "vport id [%d] is not valid, available indices [%d - %d]\n",
4959                           src_id, min, max);
4960
4961                 return -EINVAL;
4962         }
4963
4964         *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
4965
4966         return 0;
4967 }
4968
4969 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
4970 {
4971         if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
4972                 u8 min, max;
4973
4974                 min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
4975                 max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
4976                 DP_NOTICE(p_hwfn,
4977                           "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
4978                           src_id, min, max);
4979
4980                 return -EINVAL;
4981         }
4982
4983         *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
4984
4985         return 0;
4986 }
4987
4988 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
4989                             u32 hw_addr, void *p_eth_qzone,
4990                             size_t eth_qzone_size, u8 timeset)
4991 {
4992         struct coalescing_timeset *p_coal_timeset;
4993
4994         if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
4995                 DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
4996                 return -EINVAL;
4997         }
4998
4999         p_coal_timeset = p_eth_qzone;
5000         memset(p_eth_qzone, 0, eth_qzone_size);
5001         SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
5002         SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
5003         qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
5004
5005         return 0;
5006 }
5007
5008 int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle)
5009 {
5010         struct qed_queue_cid *p_cid = p_handle;
5011         struct qed_hwfn *p_hwfn;
5012         struct qed_ptt *p_ptt;
5013         int rc = 0;
5014
5015         p_hwfn = p_cid->p_owner;
5016
5017         if (IS_VF(p_hwfn->cdev))
5018                 return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid);
5019
5020         p_ptt = qed_ptt_acquire(p_hwfn);
5021         if (!p_ptt)
5022                 return -EAGAIN;
5023
5024         if (rx_coal) {
5025                 rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
5026                 if (rc)
5027                         goto out;
5028                 p_hwfn->cdev->rx_coalesce_usecs = rx_coal;
5029         }
5030
5031         if (tx_coal) {
5032                 rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
5033                 if (rc)
5034                         goto out;
5035                 p_hwfn->cdev->tx_coalesce_usecs = tx_coal;
5036         }
5037 out:
5038         qed_ptt_release(p_hwfn, p_ptt);
5039         return rc;
5040 }
5041
5042 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn,
5043                          struct qed_ptt *p_ptt,
5044                          u16 coalesce, struct qed_queue_cid *p_cid)
5045 {
5046         struct ustorm_eth_queue_zone eth_qzone;
5047         u8 timeset, timer_res;
5048         u32 address;
5049         int rc;
5050
5051         /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5052         if (coalesce <= 0x7F) {
5053                 timer_res = 0;
5054         } else if (coalesce <= 0xFF) {
5055                 timer_res = 1;
5056         } else if (coalesce <= 0x1FF) {
5057                 timer_res = 2;
5058         } else {
5059                 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5060                 return -EINVAL;
5061         }
5062         timeset = (u8)(coalesce >> timer_res);
5063
5064         rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5065                                    p_cid->sb_igu_id, false);
5066         if (rc)
5067                 goto out;
5068
5069         address = BAR0_MAP_REG_USDM_RAM +
5070                   USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5071
5072         rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5073                               sizeof(struct ustorm_eth_queue_zone), timeset);
5074         if (rc)
5075                 goto out;
5076
5077 out:
5078         return rc;
5079 }
5080
5081 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn,
5082                          struct qed_ptt *p_ptt,
5083                          u16 coalesce, struct qed_queue_cid *p_cid)
5084 {
5085         struct xstorm_eth_queue_zone eth_qzone;
5086         u8 timeset, timer_res;
5087         u32 address;
5088         int rc;
5089
5090         /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5091         if (coalesce <= 0x7F) {
5092                 timer_res = 0;
5093         } else if (coalesce <= 0xFF) {
5094                 timer_res = 1;
5095         } else if (coalesce <= 0x1FF) {
5096                 timer_res = 2;
5097         } else {
5098                 DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5099                 return -EINVAL;
5100         }
5101         timeset = (u8)(coalesce >> timer_res);
5102
5103         rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5104                                    p_cid->sb_igu_id, true);
5105         if (rc)
5106                 goto out;
5107
5108         address = BAR0_MAP_REG_XSDM_RAM +
5109                   XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5110
5111         rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5112                               sizeof(struct xstorm_eth_queue_zone), timeset);
5113 out:
5114         return rc;
5115 }
5116
5117 /* Calculate final WFQ values for all vports and configure them.
5118  * After this configuration each vport will have
5119  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
5120  */
5121 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
5122                                              struct qed_ptt *p_ptt,
5123                                              u32 min_pf_rate)
5124 {
5125         struct init_qm_vport_params *vport_params;
5126         int i;
5127
5128         vport_params = p_hwfn->qm_info.qm_vport_params;
5129
5130         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5131                 u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5132
5133                 vport_params[i].wfq = (wfq_speed * QED_WFQ_UNIT) /
5134                                                 min_pf_rate;
5135                 qed_init_vport_wfq(p_hwfn, p_ptt,
5136                                    vport_params[i].first_tx_pq_id,
5137                                    vport_params[i].wfq);
5138         }
5139 }
5140
5141 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
5142                                        u32 min_pf_rate)
5143
5144 {
5145         int i;
5146
5147         for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
5148                 p_hwfn->qm_info.qm_vport_params[i].wfq = 1;
5149 }
5150
5151 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
5152                                            struct qed_ptt *p_ptt,
5153                                            u32 min_pf_rate)
5154 {
5155         struct init_qm_vport_params *vport_params;
5156         int i;
5157
5158         vport_params = p_hwfn->qm_info.qm_vport_params;
5159
5160         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5161                 qed_init_wfq_default_param(p_hwfn, min_pf_rate);
5162                 qed_init_vport_wfq(p_hwfn, p_ptt,
5163                                    vport_params[i].first_tx_pq_id,
5164                                    vport_params[i].wfq);
5165         }
5166 }
5167
5168 /* This function performs several validations for WFQ
5169  * configuration and required min rate for a given vport
5170  * 1. req_rate must be greater than one percent of min_pf_rate.
5171  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
5172  *    rates to get less than one percent of min_pf_rate.
5173  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
5174  */
5175 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
5176                               u16 vport_id, u32 req_rate, u32 min_pf_rate)
5177 {
5178         u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
5179         int non_requested_count = 0, req_count = 0, i, num_vports;
5180
5181         num_vports = p_hwfn->qm_info.num_vports;
5182
5183         /* Accounting for the vports which are configured for WFQ explicitly */
5184         for (i = 0; i < num_vports; i++) {
5185                 u32 tmp_speed;
5186
5187                 if ((i != vport_id) &&
5188                     p_hwfn->qm_info.wfq_data[i].configured) {
5189                         req_count++;
5190                         tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5191                         total_req_min_rate += tmp_speed;
5192                 }
5193         }
5194
5195         /* Include current vport data as well */
5196         req_count++;
5197         total_req_min_rate += req_rate;
5198         non_requested_count = num_vports - req_count;
5199
5200         if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
5201                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5202                            "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5203                            vport_id, req_rate, min_pf_rate);
5204                 return -EINVAL;
5205         }
5206
5207         if (num_vports > QED_WFQ_UNIT) {
5208                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5209                            "Number of vports is greater than %d\n",
5210                            QED_WFQ_UNIT);
5211                 return -EINVAL;
5212         }
5213
5214         if (total_req_min_rate > min_pf_rate) {
5215                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5216                            "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
5217                            total_req_min_rate, min_pf_rate);
5218                 return -EINVAL;
5219         }
5220
5221         total_left_rate = min_pf_rate - total_req_min_rate;
5222
5223         left_rate_per_vp = total_left_rate / non_requested_count;
5224         if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
5225                 DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5226                            "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5227                            left_rate_per_vp, min_pf_rate);
5228                 return -EINVAL;
5229         }
5230
5231         p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
5232         p_hwfn->qm_info.wfq_data[vport_id].configured = true;
5233
5234         for (i = 0; i < num_vports; i++) {
5235                 if (p_hwfn->qm_info.wfq_data[i].configured)
5236                         continue;
5237
5238                 p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
5239         }
5240
5241         return 0;
5242 }
5243
5244 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
5245                                      struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
5246 {
5247         struct qed_mcp_link_state *p_link;
5248         int rc = 0;
5249
5250         p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
5251
5252         if (!p_link->min_pf_rate) {
5253                 p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
5254                 p_hwfn->qm_info.wfq_data[vp_id].configured = true;
5255                 return rc;
5256         }
5257
5258         rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
5259
5260         if (!rc)
5261                 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
5262                                                  p_link->min_pf_rate);
5263         else
5264                 DP_NOTICE(p_hwfn,
5265                           "Validation failed while configuring min rate\n");
5266
5267         return rc;
5268 }
5269
5270 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
5271                                                  struct qed_ptt *p_ptt,
5272                                                  u32 min_pf_rate)
5273 {
5274         bool use_wfq = false;
5275         int rc = 0;
5276         u16 i;
5277
5278         /* Validate all pre configured vports for wfq */
5279         for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5280                 u32 rate;
5281
5282                 if (!p_hwfn->qm_info.wfq_data[i].configured)
5283                         continue;
5284
5285                 rate = p_hwfn->qm_info.wfq_data[i].min_speed;
5286                 use_wfq = true;
5287
5288                 rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
5289                 if (rc) {
5290                         DP_NOTICE(p_hwfn,
5291                                   "WFQ validation failed while configuring min rate\n");
5292                         break;
5293                 }
5294         }
5295
5296         if (!rc && use_wfq)
5297                 qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5298         else
5299                 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5300
5301         return rc;
5302 }
5303
5304 /* Main API for qed clients to configure vport min rate.
5305  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
5306  * rate - Speed in Mbps needs to be assigned to a given vport.
5307  */
5308 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
5309 {
5310         int i, rc = -EINVAL;
5311
5312         /* Currently not supported; Might change in future */
5313         if (cdev->num_hwfns > 1) {
5314                 DP_NOTICE(cdev,
5315                           "WFQ configuration is not supported for this device\n");
5316                 return rc;
5317         }
5318
5319         for_each_hwfn(cdev, i) {
5320                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5321                 struct qed_ptt *p_ptt;
5322
5323                 p_ptt = qed_ptt_acquire(p_hwfn);
5324                 if (!p_ptt)
5325                         return -EBUSY;
5326
5327                 rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
5328
5329                 if (rc) {
5330                         qed_ptt_release(p_hwfn, p_ptt);
5331                         return rc;
5332                 }
5333
5334                 qed_ptt_release(p_hwfn, p_ptt);
5335         }
5336
5337         return rc;
5338 }
5339
5340 /* API to configure WFQ from mcp link change */
5341 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev,
5342                                          struct qed_ptt *p_ptt, u32 min_pf_rate)
5343 {
5344         int i;
5345
5346         if (cdev->num_hwfns > 1) {
5347                 DP_VERBOSE(cdev,
5348                            NETIF_MSG_LINK,
5349                            "WFQ configuration is not supported for this device\n");
5350                 return;
5351         }
5352
5353         for_each_hwfn(cdev, i) {
5354                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5355
5356                 __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
5357                                                       min_pf_rate);
5358         }
5359 }
5360
5361 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
5362                                      struct qed_ptt *p_ptt,
5363                                      struct qed_mcp_link_state *p_link,
5364                                      u8 max_bw)
5365 {
5366         int rc = 0;
5367
5368         p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
5369
5370         if (!p_link->line_speed && (max_bw != 100))
5371                 return rc;
5372
5373         p_link->speed = (p_link->line_speed * max_bw) / 100;
5374         p_hwfn->qm_info.pf_rl = p_link->speed;
5375
5376         /* Since the limiter also affects Tx-switched traffic, we don't want it
5377          * to limit such traffic in case there's no actual limit.
5378          * In that case, set limit to imaginary high boundary.
5379          */
5380         if (max_bw == 100)
5381                 p_hwfn->qm_info.pf_rl = 100000;
5382
5383         rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
5384                             p_hwfn->qm_info.pf_rl);
5385
5386         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5387                    "Configured MAX bandwidth to be %08x Mb/sec\n",
5388                    p_link->speed);
5389
5390         return rc;
5391 }
5392
5393 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
5394 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
5395 {
5396         int i, rc = -EINVAL;
5397
5398         if (max_bw < 1 || max_bw > 100) {
5399                 DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
5400                 return rc;
5401         }
5402
5403         for_each_hwfn(cdev, i) {
5404                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5405                 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
5406                 struct qed_mcp_link_state *p_link;
5407                 struct qed_ptt *p_ptt;
5408
5409                 p_link = &p_lead->mcp_info->link_output;
5410
5411                 p_ptt = qed_ptt_acquire(p_hwfn);
5412                 if (!p_ptt)
5413                         return -EBUSY;
5414
5415                 rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
5416                                                       p_link, max_bw);
5417
5418                 qed_ptt_release(p_hwfn, p_ptt);
5419
5420                 if (rc)
5421                         break;
5422         }
5423
5424         return rc;
5425 }
5426
5427 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
5428                                      struct qed_ptt *p_ptt,
5429                                      struct qed_mcp_link_state *p_link,
5430                                      u8 min_bw)
5431 {
5432         int rc = 0;
5433
5434         p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
5435         p_hwfn->qm_info.pf_wfq = min_bw;
5436
5437         if (!p_link->line_speed)
5438                 return rc;
5439
5440         p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
5441
5442         rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
5443
5444         DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5445                    "Configured MIN bandwidth to be %d Mb/sec\n",
5446                    p_link->min_pf_rate);
5447
5448         return rc;
5449 }
5450
5451 /* Main API to configure PF min bandwidth where bw range is [1-100] */
5452 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
5453 {
5454         int i, rc = -EINVAL;
5455
5456         if (min_bw < 1 || min_bw > 100) {
5457                 DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
5458                 return rc;
5459         }
5460
5461         for_each_hwfn(cdev, i) {
5462                 struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5463                 struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
5464                 struct qed_mcp_link_state *p_link;
5465                 struct qed_ptt *p_ptt;
5466
5467                 p_link = &p_lead->mcp_info->link_output;
5468
5469                 p_ptt = qed_ptt_acquire(p_hwfn);
5470                 if (!p_ptt)
5471                         return -EBUSY;
5472
5473                 rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
5474                                                       p_link, min_bw);
5475                 if (rc) {
5476                         qed_ptt_release(p_hwfn, p_ptt);
5477                         return rc;
5478                 }
5479
5480                 if (p_link->min_pf_rate) {
5481                         u32 min_rate = p_link->min_pf_rate;
5482
5483                         rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
5484                                                                    p_ptt,
5485                                                                    min_rate);
5486                 }
5487
5488                 qed_ptt_release(p_hwfn, p_ptt);
5489         }
5490
5491         return rc;
5492 }
5493
5494 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
5495 {
5496         struct qed_mcp_link_state *p_link;
5497
5498         p_link = &p_hwfn->mcp_info->link_output;
5499
5500         if (p_link->min_pf_rate)
5501                 qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
5502                                                p_link->min_pf_rate);
5503
5504         memset(p_hwfn->qm_info.wfq_data, 0,
5505                sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
5506 }
5507
5508 int qed_device_num_ports(struct qed_dev *cdev)
5509 {
5510         return cdev->num_ports;
5511 }
5512
5513 void qed_set_fw_mac_addr(__le16 *fw_msb,
5514                          __le16 *fw_mid, __le16 *fw_lsb, u8 *mac)
5515 {
5516         ((u8 *)fw_msb)[0] = mac[1];
5517         ((u8 *)fw_msb)[1] = mac[0];
5518         ((u8 *)fw_mid)[0] = mac[3];
5519         ((u8 *)fw_mid)[1] = mac[2];
5520         ((u8 *)fw_lsb)[0] = mac[5];
5521         ((u8 *)fw_lsb)[1] = mac[4];
5522 }