]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/qlogic/qlge/qlge_main.c
07e1c623048e5ba3e8eaa3b82f3fe360502af16e
[linux.git] / drivers / net / ethernet / qlogic / qlge / qlge_main.c
1 /*
2  * QLogic qlge NIC HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  * See LICENSE.qlge for copyright and licensing details.
5  * Author:     Linux qlge network device driver by
6  *                      Ron Mercer <ron.mercer@qlogic.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/in.h>
26 #include <linux/ip.h>
27 #include <linux/ipv6.h>
28 #include <net/ipv6.h>
29 #include <linux/tcp.h>
30 #include <linux/udp.h>
31 #include <linux/if_arp.h>
32 #include <linux/if_ether.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/if_vlan.h>
37 #include <linux/skbuff.h>
38 #include <linux/delay.h>
39 #include <linux/mm.h>
40 #include <linux/vmalloc.h>
41 #include <linux/prefetch.h>
42 #include <net/ip6_checksum.h>
43
44 #include "qlge.h"
45
46 char qlge_driver_name[] = DRV_NAME;
47 const char qlge_driver_version[] = DRV_VERSION;
48
49 MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
50 MODULE_DESCRIPTION(DRV_STRING " ");
51 MODULE_LICENSE("GPL");
52 MODULE_VERSION(DRV_VERSION);
53
54 static const u32 default_msg =
55     NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
56 /* NETIF_MSG_TIMER |    */
57     NETIF_MSG_IFDOWN |
58     NETIF_MSG_IFUP |
59     NETIF_MSG_RX_ERR |
60     NETIF_MSG_TX_ERR |
61 /*  NETIF_MSG_TX_QUEUED | */
62 /*  NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
63 /* NETIF_MSG_PKTDATA | */
64     NETIF_MSG_HW | NETIF_MSG_WOL | 0;
65
66 static int debug = -1;  /* defaults above */
67 module_param(debug, int, 0664);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 #define MSIX_IRQ 0
71 #define MSI_IRQ 1
72 #define LEG_IRQ 2
73 static int qlge_irq_type = MSIX_IRQ;
74 module_param(qlge_irq_type, int, 0664);
75 MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
76
77 static int qlge_mpi_coredump;
78 module_param(qlge_mpi_coredump, int, 0);
79 MODULE_PARM_DESC(qlge_mpi_coredump,
80                 "Option to enable MPI firmware dump. "
81                 "Default is OFF - Do Not allocate memory. ");
82
83 static int qlge_force_coredump;
84 module_param(qlge_force_coredump, int, 0);
85 MODULE_PARM_DESC(qlge_force_coredump,
86                 "Option to allow force of firmware core dump. "
87                 "Default is OFF - Do not allow.");
88
89 static const struct pci_device_id qlge_pci_tbl[] = {
90         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
91         {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
92         /* required last entry */
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
97
98 static int ql_wol(struct ql_adapter *);
99 static void qlge_set_multicast_list(struct net_device *);
100 static int ql_adapter_down(struct ql_adapter *);
101 static int ql_adapter_up(struct ql_adapter *);
102
103 /* This hardware semaphore causes exclusive access to
104  * resources shared between the NIC driver, MPI firmware,
105  * FCOE firmware and the FC driver.
106  */
107 static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
108 {
109         u32 sem_bits = 0;
110
111         switch (sem_mask) {
112         case SEM_XGMAC0_MASK:
113                 sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
114                 break;
115         case SEM_XGMAC1_MASK:
116                 sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
117                 break;
118         case SEM_ICB_MASK:
119                 sem_bits = SEM_SET << SEM_ICB_SHIFT;
120                 break;
121         case SEM_MAC_ADDR_MASK:
122                 sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
123                 break;
124         case SEM_FLASH_MASK:
125                 sem_bits = SEM_SET << SEM_FLASH_SHIFT;
126                 break;
127         case SEM_PROBE_MASK:
128                 sem_bits = SEM_SET << SEM_PROBE_SHIFT;
129                 break;
130         case SEM_RT_IDX_MASK:
131                 sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
132                 break;
133         case SEM_PROC_REG_MASK:
134                 sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
135                 break;
136         default:
137                 netif_alert(qdev, probe, qdev->ndev, "bad Semaphore mask!.\n");
138                 return -EINVAL;
139         }
140
141         ql_write32(qdev, SEM, sem_bits | sem_mask);
142         return !(ql_read32(qdev, SEM) & sem_bits);
143 }
144
145 int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
146 {
147         unsigned int wait_count = 30;
148         do {
149                 if (!ql_sem_trylock(qdev, sem_mask))
150                         return 0;
151                 udelay(100);
152         } while (--wait_count);
153         return -ETIMEDOUT;
154 }
155
156 void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
157 {
158         ql_write32(qdev, SEM, sem_mask);
159         ql_read32(qdev, SEM);   /* flush */
160 }
161
162 /* This function waits for a specific bit to come ready
163  * in a given register.  It is used mostly by the initialize
164  * process, but is also used in kernel thread API such as
165  * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
166  */
167 int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
168 {
169         u32 temp;
170         int count = UDELAY_COUNT;
171
172         while (count) {
173                 temp = ql_read32(qdev, reg);
174
175                 /* check for errors */
176                 if (temp & err_bit) {
177                         netif_alert(qdev, probe, qdev->ndev,
178                                     "register 0x%.08x access error, value = 0x%.08x!.\n",
179                                     reg, temp);
180                         return -EIO;
181                 } else if (temp & bit)
182                         return 0;
183                 udelay(UDELAY_DELAY);
184                 count--;
185         }
186         netif_alert(qdev, probe, qdev->ndev,
187                     "Timed out waiting for reg %x to come ready.\n", reg);
188         return -ETIMEDOUT;
189 }
190
191 /* The CFG register is used to download TX and RX control blocks
192  * to the chip. This function waits for an operation to complete.
193  */
194 static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
195 {
196         int count = UDELAY_COUNT;
197         u32 temp;
198
199         while (count) {
200                 temp = ql_read32(qdev, CFG);
201                 if (temp & CFG_LE)
202                         return -EIO;
203                 if (!(temp & bit))
204                         return 0;
205                 udelay(UDELAY_DELAY);
206                 count--;
207         }
208         return -ETIMEDOUT;
209 }
210
211
212 /* Used to issue init control blocks to hw. Maps control block,
213  * sets address, triggers download, waits for completion.
214  */
215 int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
216                  u16 q_id)
217 {
218         u64 map;
219         int status = 0;
220         int direction;
221         u32 mask;
222         u32 value;
223
224         direction =
225             (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
226             PCI_DMA_FROMDEVICE;
227
228         map = pci_map_single(qdev->pdev, ptr, size, direction);
229         if (pci_dma_mapping_error(qdev->pdev, map)) {
230                 netif_err(qdev, ifup, qdev->ndev, "Couldn't map DMA area.\n");
231                 return -ENOMEM;
232         }
233
234         status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
235         if (status)
236                 return status;
237
238         status = ql_wait_cfg(qdev, bit);
239         if (status) {
240                 netif_err(qdev, ifup, qdev->ndev,
241                           "Timed out waiting for CFG to come ready.\n");
242                 goto exit;
243         }
244
245         ql_write32(qdev, ICB_L, (u32) map);
246         ql_write32(qdev, ICB_H, (u32) (map >> 32));
247
248         mask = CFG_Q_MASK | (bit << 16);
249         value = bit | (q_id << CFG_Q_SHIFT);
250         ql_write32(qdev, CFG, (mask | value));
251
252         /*
253          * Wait for the bit to clear after signaling hw.
254          */
255         status = ql_wait_cfg(qdev, bit);
256 exit:
257         ql_sem_unlock(qdev, SEM_ICB_MASK);      /* does flush too */
258         pci_unmap_single(qdev->pdev, map, size, direction);
259         return status;
260 }
261
262 /* Get a specific MAC address from the CAM.  Used for debug and reg dump. */
263 int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
264                         u32 *value)
265 {
266         u32 offset = 0;
267         int status;
268
269         switch (type) {
270         case MAC_ADDR_TYPE_MULTI_MAC:
271         case MAC_ADDR_TYPE_CAM_MAC:
272                 {
273                         status =
274                             ql_wait_reg_rdy(qdev,
275                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
276                         if (status)
277                                 goto exit;
278                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
279                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
280                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
281                         status =
282                             ql_wait_reg_rdy(qdev,
283                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
284                         if (status)
285                                 goto exit;
286                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
287                         status =
288                             ql_wait_reg_rdy(qdev,
289                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
290                         if (status)
291                                 goto exit;
292                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
293                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
294                                    MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
295                         status =
296                             ql_wait_reg_rdy(qdev,
297                                 MAC_ADDR_IDX, MAC_ADDR_MR, 0);
298                         if (status)
299                                 goto exit;
300                         *value++ = ql_read32(qdev, MAC_ADDR_DATA);
301                         if (type == MAC_ADDR_TYPE_CAM_MAC) {
302                                 status =
303                                     ql_wait_reg_rdy(qdev,
304                                         MAC_ADDR_IDX, MAC_ADDR_MW, 0);
305                                 if (status)
306                                         goto exit;
307                                 ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
308                                            (index << MAC_ADDR_IDX_SHIFT) | /* index */
309                                            MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
310                                 status =
311                                     ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
312                                                     MAC_ADDR_MR, 0);
313                                 if (status)
314                                         goto exit;
315                                 *value++ = ql_read32(qdev, MAC_ADDR_DATA);
316                         }
317                         break;
318                 }
319         case MAC_ADDR_TYPE_VLAN:
320         case MAC_ADDR_TYPE_MULTI_FLTR:
321         default:
322                 netif_crit(qdev, ifup, qdev->ndev,
323                            "Address type %d not yet supported.\n", type);
324                 status = -EPERM;
325         }
326 exit:
327         return status;
328 }
329
330 /* Set up a MAC, multicast or VLAN address for the
331  * inbound frame matching.
332  */
333 static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
334                                u16 index)
335 {
336         u32 offset = 0;
337         int status = 0;
338
339         switch (type) {
340         case MAC_ADDR_TYPE_MULTI_MAC:
341                 {
342                         u32 upper = (addr[0] << 8) | addr[1];
343                         u32 lower = (addr[2] << 24) | (addr[3] << 16) |
344                                         (addr[4] << 8) | (addr[5]);
345
346                         status =
347                                 ql_wait_reg_rdy(qdev,
348                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
349                         if (status)
350                                 goto exit;
351                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
352                                 (index << MAC_ADDR_IDX_SHIFT) |
353                                 type | MAC_ADDR_E);
354                         ql_write32(qdev, MAC_ADDR_DATA, lower);
355                         status =
356                                 ql_wait_reg_rdy(qdev,
357                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
358                         if (status)
359                                 goto exit;
360                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
361                                 (index << MAC_ADDR_IDX_SHIFT) |
362                                 type | MAC_ADDR_E);
363
364                         ql_write32(qdev, MAC_ADDR_DATA, upper);
365                         status =
366                                 ql_wait_reg_rdy(qdev,
367                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
368                         if (status)
369                                 goto exit;
370                         break;
371                 }
372         case MAC_ADDR_TYPE_CAM_MAC:
373                 {
374                         u32 cam_output;
375                         u32 upper = (addr[0] << 8) | addr[1];
376                         u32 lower =
377                             (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
378                             (addr[5]);
379                         status =
380                             ql_wait_reg_rdy(qdev,
381                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
382                         if (status)
383                                 goto exit;
384                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
385                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
386                                    type);       /* type */
387                         ql_write32(qdev, MAC_ADDR_DATA, lower);
388                         status =
389                             ql_wait_reg_rdy(qdev,
390                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
391                         if (status)
392                                 goto exit;
393                         ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
394                                    (index << MAC_ADDR_IDX_SHIFT) | /* index */
395                                    type);       /* type */
396                         ql_write32(qdev, MAC_ADDR_DATA, upper);
397                         status =
398                             ql_wait_reg_rdy(qdev,
399                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
400                         if (status)
401                                 goto exit;
402                         ql_write32(qdev, MAC_ADDR_IDX, (offset) |       /* offset */
403                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
404                                    type);       /* type */
405                         /* This field should also include the queue id
406                            and possibly the function id.  Right now we hardcode
407                            the route field to NIC core.
408                          */
409                         cam_output = (CAM_OUT_ROUTE_NIC |
410                                       (qdev->
411                                        func << CAM_OUT_FUNC_SHIFT) |
412                                         (0 << CAM_OUT_CQ_ID_SHIFT));
413                         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414                                 cam_output |= CAM_OUT_RV;
415                         /* route to NIC core */
416                         ql_write32(qdev, MAC_ADDR_DATA, cam_output);
417                         break;
418                 }
419         case MAC_ADDR_TYPE_VLAN:
420                 {
421                         u32 enable_bit = *((u32 *) &addr[0]);
422                         /* For VLAN, the addr actually holds a bit that
423                          * either enables or disables the vlan id we are
424                          * addressing. It's either MAC_ADDR_E on or off.
425                          * That's bit-27 we're talking about.
426                          */
427                         status =
428                             ql_wait_reg_rdy(qdev,
429                                 MAC_ADDR_IDX, MAC_ADDR_MW, 0);
430                         if (status)
431                                 goto exit;
432                         ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
433                                    (index << MAC_ADDR_IDX_SHIFT) |      /* index */
434                                    type |       /* type */
435                                    enable_bit); /* enable/disable */
436                         break;
437                 }
438         case MAC_ADDR_TYPE_MULTI_FLTR:
439         default:
440                 netif_crit(qdev, ifup, qdev->ndev,
441                            "Address type %d not yet supported.\n", type);
442                 status = -EPERM;
443         }
444 exit:
445         return status;
446 }
447
448 /* Set or clear MAC address in hardware. We sometimes
449  * have to clear it to prevent wrong frame routing
450  * especially in a bonding environment.
451  */
452 static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
453 {
454         int status;
455         char zero_mac_addr[ETH_ALEN];
456         char *addr;
457
458         if (set) {
459                 addr = &qdev->current_mac_addr[0];
460                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
461                              "Set Mac addr %pM\n", addr);
462         } else {
463                 eth_zero_addr(zero_mac_addr);
464                 addr = &zero_mac_addr[0];
465                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
466                              "Clearing MAC address\n");
467         }
468         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
469         if (status)
470                 return status;
471         status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
472                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
473         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
474         if (status)
475                 netif_err(qdev, ifup, qdev->ndev,
476                           "Failed to init mac address.\n");
477         return status;
478 }
479
480 void ql_link_on(struct ql_adapter *qdev)
481 {
482         netif_err(qdev, link, qdev->ndev, "Link is up.\n");
483         netif_carrier_on(qdev->ndev);
484         ql_set_mac_addr(qdev, 1);
485 }
486
487 void ql_link_off(struct ql_adapter *qdev)
488 {
489         netif_err(qdev, link, qdev->ndev, "Link is down.\n");
490         netif_carrier_off(qdev->ndev);
491         ql_set_mac_addr(qdev, 0);
492 }
493
494 /* Get a specific frame routing value from the CAM.
495  * Used for debug and reg dump.
496  */
497 int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
498 {
499         int status = 0;
500
501         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
502         if (status)
503                 goto exit;
504
505         ql_write32(qdev, RT_IDX,
506                    RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
507         status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
508         if (status)
509                 goto exit;
510         *value = ql_read32(qdev, RT_DATA);
511 exit:
512         return status;
513 }
514
515 /* The NIC function for this chip has 16 routing indexes.  Each one can be used
516  * to route different frame types to various inbound queues.  We send broadcast/
517  * multicast/error frames to the default queue for slow handling,
518  * and CAM hit/RSS frames to the fast handling queues.
519  */
520 static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
521                               int enable)
522 {
523         int status = -EINVAL; /* Return error if no mask match. */
524         u32 value = 0;
525
526         switch (mask) {
527         case RT_IDX_CAM_HIT:
528                 {
529                         value = RT_IDX_DST_CAM_Q |      /* dest */
530                             RT_IDX_TYPE_NICQ |  /* type */
531                             (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
532                         break;
533                 }
534         case RT_IDX_VALID:      /* Promiscuous Mode frames. */
535                 {
536                         value = RT_IDX_DST_DFLT_Q |     /* dest */
537                             RT_IDX_TYPE_NICQ |  /* type */
538                             (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
539                         break;
540                 }
541         case RT_IDX_ERR:        /* Pass up MAC,IP,TCP/UDP error frames. */
542                 {
543                         value = RT_IDX_DST_DFLT_Q |     /* dest */
544                             RT_IDX_TYPE_NICQ |  /* type */
545                             (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
546                         break;
547                 }
548         case RT_IDX_IP_CSUM_ERR: /* Pass up IP CSUM error frames. */
549                 {
550                         value = RT_IDX_DST_DFLT_Q | /* dest */
551                                 RT_IDX_TYPE_NICQ | /* type */
552                                 (RT_IDX_IP_CSUM_ERR_SLOT <<
553                                 RT_IDX_IDX_SHIFT); /* index */
554                         break;
555                 }
556         case RT_IDX_TU_CSUM_ERR: /* Pass up TCP/UDP CSUM error frames. */
557                 {
558                         value = RT_IDX_DST_DFLT_Q | /* dest */
559                                 RT_IDX_TYPE_NICQ | /* type */
560                                 (RT_IDX_TCP_UDP_CSUM_ERR_SLOT <<
561                                 RT_IDX_IDX_SHIFT); /* index */
562                         break;
563                 }
564         case RT_IDX_BCAST:      /* Pass up Broadcast frames to default Q. */
565                 {
566                         value = RT_IDX_DST_DFLT_Q |     /* dest */
567                             RT_IDX_TYPE_NICQ |  /* type */
568                             (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
569                         break;
570                 }
571         case RT_IDX_MCAST:      /* Pass up All Multicast frames. */
572                 {
573                         value = RT_IDX_DST_DFLT_Q |     /* dest */
574                             RT_IDX_TYPE_NICQ |  /* type */
575                             (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
576                         break;
577                 }
578         case RT_IDX_MCAST_MATCH:        /* Pass up matched Multicast frames. */
579                 {
580                         value = RT_IDX_DST_DFLT_Q |     /* dest */
581                             RT_IDX_TYPE_NICQ |  /* type */
582                             (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
583                         break;
584                 }
585         case RT_IDX_RSS_MATCH:  /* Pass up matched RSS frames. */
586                 {
587                         value = RT_IDX_DST_RSS |        /* dest */
588                             RT_IDX_TYPE_NICQ |  /* type */
589                             (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
590                         break;
591                 }
592         case 0:         /* Clear the E-bit on an entry. */
593                 {
594                         value = RT_IDX_DST_DFLT_Q |     /* dest */
595                             RT_IDX_TYPE_NICQ |  /* type */
596                             (index << RT_IDX_IDX_SHIFT);/* index */
597                         break;
598                 }
599         default:
600                 netif_err(qdev, ifup, qdev->ndev,
601                           "Mask type %d not yet supported.\n", mask);
602                 status = -EPERM;
603                 goto exit;
604         }
605
606         if (value) {
607                 status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
608                 if (status)
609                         goto exit;
610                 value |= (enable ? RT_IDX_E : 0);
611                 ql_write32(qdev, RT_IDX, value);
612                 ql_write32(qdev, RT_DATA, enable ? mask : 0);
613         }
614 exit:
615         return status;
616 }
617
618 static void ql_enable_interrupts(struct ql_adapter *qdev)
619 {
620         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
621 }
622
623 static void ql_disable_interrupts(struct ql_adapter *qdev)
624 {
625         ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
626 }
627
628 /* If we're running with multiple MSI-X vectors then we enable on the fly.
629  * Otherwise, we may have multiple outstanding workers and don't want to
630  * enable until the last one finishes. In this case, the irq_cnt gets
631  * incremented every time we queue a worker and decremented every time
632  * a worker finishes.  Once it hits zero we enable the interrupt.
633  */
634 u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
635 {
636         u32 var = 0;
637         unsigned long hw_flags = 0;
638         struct intr_context *ctx = qdev->intr_context + intr;
639
640         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
641                 /* Always enable if we're MSIX multi interrupts and
642                  * it's not the default (zeroeth) interrupt.
643                  */
644                 ql_write32(qdev, INTR_EN,
645                            ctx->intr_en_mask);
646                 var = ql_read32(qdev, STS);
647                 return var;
648         }
649
650         spin_lock_irqsave(&qdev->hw_lock, hw_flags);
651         if (atomic_dec_and_test(&ctx->irq_cnt)) {
652                 ql_write32(qdev, INTR_EN,
653                            ctx->intr_en_mask);
654                 var = ql_read32(qdev, STS);
655         }
656         spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
657         return var;
658 }
659
660 static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
661 {
662         u32 var = 0;
663         struct intr_context *ctx;
664
665         /* HW disables for us if we're MSIX multi interrupts and
666          * it's not the default (zeroeth) interrupt.
667          */
668         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
669                 return 0;
670
671         ctx = qdev->intr_context + intr;
672         spin_lock(&qdev->hw_lock);
673         if (!atomic_read(&ctx->irq_cnt)) {
674                 ql_write32(qdev, INTR_EN,
675                 ctx->intr_dis_mask);
676                 var = ql_read32(qdev, STS);
677         }
678         atomic_inc(&ctx->irq_cnt);
679         spin_unlock(&qdev->hw_lock);
680         return var;
681 }
682
683 static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
684 {
685         int i;
686         for (i = 0; i < qdev->intr_count; i++) {
687                 /* The enable call does a atomic_dec_and_test
688                  * and enables only if the result is zero.
689                  * So we precharge it here.
690                  */
691                 if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
692                         i == 0))
693                         atomic_set(&qdev->intr_context[i].irq_cnt, 1);
694                 ql_enable_completion_interrupt(qdev, i);
695         }
696
697 }
698
699 static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
700 {
701         int status, i;
702         u16 csum = 0;
703         __le16 *flash = (__le16 *)&qdev->flash;
704
705         status = strncmp((char *)&qdev->flash, str, 4);
706         if (status) {
707                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash signature.\n");
708                 return  status;
709         }
710
711         for (i = 0; i < size; i++)
712                 csum += le16_to_cpu(*flash++);
713
714         if (csum)
715                 netif_err(qdev, ifup, qdev->ndev,
716                           "Invalid flash checksum, csum = 0x%.04x.\n", csum);
717
718         return csum;
719 }
720
721 static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
722 {
723         int status = 0;
724         /* wait for reg to come ready */
725         status = ql_wait_reg_rdy(qdev,
726                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
727         if (status)
728                 goto exit;
729         /* set up for reg read */
730         ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
731         /* wait for reg to come ready */
732         status = ql_wait_reg_rdy(qdev,
733                         FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
734         if (status)
735                 goto exit;
736          /* This data is stored on flash as an array of
737          * __le32.  Since ql_read32() returns cpu endian
738          * we need to swap it back.
739          */
740         *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
741 exit:
742         return status;
743 }
744
745 static int ql_get_8000_flash_params(struct ql_adapter *qdev)
746 {
747         u32 i, size;
748         int status;
749         __le32 *p = (__le32 *)&qdev->flash;
750         u32 offset;
751         u8 mac_addr[6];
752
753         /* Get flash offset for function and adjust
754          * for dword access.
755          */
756         if (!qdev->port)
757                 offset = FUNC0_FLASH_OFFSET / sizeof(u32);
758         else
759                 offset = FUNC1_FLASH_OFFSET / sizeof(u32);
760
761         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
762                 return -ETIMEDOUT;
763
764         size = sizeof(struct flash_params_8000) / sizeof(u32);
765         for (i = 0; i < size; i++, p++) {
766                 status = ql_read_flash_word(qdev, i+offset, p);
767                 if (status) {
768                         netif_err(qdev, ifup, qdev->ndev,
769                                   "Error reading flash.\n");
770                         goto exit;
771                 }
772         }
773
774         status = ql_validate_flash(qdev,
775                         sizeof(struct flash_params_8000) / sizeof(u16),
776                         "8000");
777         if (status) {
778                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
779                 status = -EINVAL;
780                 goto exit;
781         }
782
783         /* Extract either manufacturer or BOFM modified
784          * MAC address.
785          */
786         if (qdev->flash.flash_params_8000.data_type1 == 2)
787                 memcpy(mac_addr,
788                         qdev->flash.flash_params_8000.mac_addr1,
789                         qdev->ndev->addr_len);
790         else
791                 memcpy(mac_addr,
792                         qdev->flash.flash_params_8000.mac_addr,
793                         qdev->ndev->addr_len);
794
795         if (!is_valid_ether_addr(mac_addr)) {
796                 netif_err(qdev, ifup, qdev->ndev, "Invalid MAC address.\n");
797                 status = -EINVAL;
798                 goto exit;
799         }
800
801         memcpy(qdev->ndev->dev_addr,
802                 mac_addr,
803                 qdev->ndev->addr_len);
804
805 exit:
806         ql_sem_unlock(qdev, SEM_FLASH_MASK);
807         return status;
808 }
809
810 static int ql_get_8012_flash_params(struct ql_adapter *qdev)
811 {
812         int i;
813         int status;
814         __le32 *p = (__le32 *)&qdev->flash;
815         u32 offset = 0;
816         u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
817
818         /* Second function's parameters follow the first
819          * function's.
820          */
821         if (qdev->port)
822                 offset = size;
823
824         if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
825                 return -ETIMEDOUT;
826
827         for (i = 0; i < size; i++, p++) {
828                 status = ql_read_flash_word(qdev, i+offset, p);
829                 if (status) {
830                         netif_err(qdev, ifup, qdev->ndev,
831                                   "Error reading flash.\n");
832                         goto exit;
833                 }
834
835         }
836
837         status = ql_validate_flash(qdev,
838                         sizeof(struct flash_params_8012) / sizeof(u16),
839                         "8012");
840         if (status) {
841                 netif_err(qdev, ifup, qdev->ndev, "Invalid flash.\n");
842                 status = -EINVAL;
843                 goto exit;
844         }
845
846         if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
847                 status = -EINVAL;
848                 goto exit;
849         }
850
851         memcpy(qdev->ndev->dev_addr,
852                 qdev->flash.flash_params_8012.mac_addr,
853                 qdev->ndev->addr_len);
854
855 exit:
856         ql_sem_unlock(qdev, SEM_FLASH_MASK);
857         return status;
858 }
859
860 /* xgmac register are located behind the xgmac_addr and xgmac_data
861  * register pair.  Each read/write requires us to wait for the ready
862  * bit before reading/writing the data.
863  */
864 static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
865 {
866         int status;
867         /* wait for reg to come ready */
868         status = ql_wait_reg_rdy(qdev,
869                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
870         if (status)
871                 return status;
872         /* write the data to the data reg */
873         ql_write32(qdev, XGMAC_DATA, data);
874         /* trigger the write */
875         ql_write32(qdev, XGMAC_ADDR, reg);
876         return status;
877 }
878
879 /* xgmac register are located behind the xgmac_addr and xgmac_data
880  * register pair.  Each read/write requires us to wait for the ready
881  * bit before reading/writing the data.
882  */
883 int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
884 {
885         int status = 0;
886         /* wait for reg to come ready */
887         status = ql_wait_reg_rdy(qdev,
888                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
889         if (status)
890                 goto exit;
891         /* set up for reg read */
892         ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
893         /* wait for reg to come ready */
894         status = ql_wait_reg_rdy(qdev,
895                         XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
896         if (status)
897                 goto exit;
898         /* get the data */
899         *data = ql_read32(qdev, XGMAC_DATA);
900 exit:
901         return status;
902 }
903
904 /* This is used for reading the 64-bit statistics regs. */
905 int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
906 {
907         int status = 0;
908         u32 hi = 0;
909         u32 lo = 0;
910
911         status = ql_read_xgmac_reg(qdev, reg, &lo);
912         if (status)
913                 goto exit;
914
915         status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
916         if (status)
917                 goto exit;
918
919         *data = (u64) lo | ((u64) hi << 32);
920
921 exit:
922         return status;
923 }
924
925 static int ql_8000_port_initialize(struct ql_adapter *qdev)
926 {
927         int status;
928         /*
929          * Get MPI firmware version for driver banner
930          * and ethool info.
931          */
932         status = ql_mb_about_fw(qdev);
933         if (status)
934                 goto exit;
935         status = ql_mb_get_fw_state(qdev);
936         if (status)
937                 goto exit;
938         /* Wake up a worker to get/set the TX/RX frame sizes. */
939         queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
940 exit:
941         return status;
942 }
943
944 /* Take the MAC Core out of reset.
945  * Enable statistics counting.
946  * Take the transmitter/receiver out of reset.
947  * This functionality may be done in the MPI firmware at a
948  * later date.
949  */
950 static int ql_8012_port_initialize(struct ql_adapter *qdev)
951 {
952         int status = 0;
953         u32 data;
954
955         if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
956                 /* Another function has the semaphore, so
957                  * wait for the port init bit to come ready.
958                  */
959                 netif_info(qdev, link, qdev->ndev,
960                            "Another function has the semaphore, so wait for the port init bit to come ready.\n");
961                 status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
962                 if (status) {
963                         netif_crit(qdev, link, qdev->ndev,
964                                    "Port initialize timed out.\n");
965                 }
966                 return status;
967         }
968
969         netif_info(qdev, link, qdev->ndev, "Got xgmac semaphore!.\n");
970         /* Set the core reset. */
971         status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
972         if (status)
973                 goto end;
974         data |= GLOBAL_CFG_RESET;
975         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
976         if (status)
977                 goto end;
978
979         /* Clear the core reset and turn on jumbo for receiver. */
980         data &= ~GLOBAL_CFG_RESET;      /* Clear core reset. */
981         data |= GLOBAL_CFG_JUMBO;       /* Turn on jumbo. */
982         data |= GLOBAL_CFG_TX_STAT_EN;
983         data |= GLOBAL_CFG_RX_STAT_EN;
984         status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
985         if (status)
986                 goto end;
987
988         /* Enable transmitter, and clear it's reset. */
989         status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
990         if (status)
991                 goto end;
992         data &= ~TX_CFG_RESET;  /* Clear the TX MAC reset. */
993         data |= TX_CFG_EN;      /* Enable the transmitter. */
994         status = ql_write_xgmac_reg(qdev, TX_CFG, data);
995         if (status)
996                 goto end;
997
998         /* Enable receiver and clear it's reset. */
999         status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
1000         if (status)
1001                 goto end;
1002         data &= ~RX_CFG_RESET;  /* Clear the RX MAC reset. */
1003         data |= RX_CFG_EN;      /* Enable the receiver. */
1004         status = ql_write_xgmac_reg(qdev, RX_CFG, data);
1005         if (status)
1006                 goto end;
1007
1008         /* Turn on jumbo. */
1009         status =
1010             ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
1011         if (status)
1012                 goto end;
1013         status =
1014             ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
1015         if (status)
1016                 goto end;
1017
1018         /* Signal to the world that the port is enabled.        */
1019         ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
1020 end:
1021         ql_sem_unlock(qdev, qdev->xg_sem_mask);
1022         return status;
1023 }
1024
1025 static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
1026 {
1027         return PAGE_SIZE << qdev->lbq_buf_order;
1028 }
1029
1030 /* Get the next large buffer. */
1031 static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
1032 {
1033         struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
1034         rx_ring->lbq_curr_idx++;
1035         if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
1036                 rx_ring->lbq_curr_idx = 0;
1037         rx_ring->lbq_free_cnt++;
1038         return lbq_desc;
1039 }
1040
1041 static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
1042                 struct rx_ring *rx_ring)
1043 {
1044         struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
1045
1046         pci_dma_sync_single_for_cpu(qdev->pdev,
1047                                         dma_unmap_addr(lbq_desc, mapaddr),
1048                                     rx_ring->lbq_buf_size,
1049                                         PCI_DMA_FROMDEVICE);
1050
1051         /* If it's the last chunk of our master page then
1052          * we unmap it.
1053          */
1054         if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
1055                                         == ql_lbq_block_size(qdev))
1056                 pci_unmap_page(qdev->pdev,
1057                                 lbq_desc->p.pg_chunk.map,
1058                                 ql_lbq_block_size(qdev),
1059                                 PCI_DMA_FROMDEVICE);
1060         return lbq_desc;
1061 }
1062
1063 /* Get the next small buffer. */
1064 static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
1065 {
1066         struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
1067         rx_ring->sbq_curr_idx++;
1068         if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
1069                 rx_ring->sbq_curr_idx = 0;
1070         rx_ring->sbq_free_cnt++;
1071         return sbq_desc;
1072 }
1073
1074 /* Update an rx ring index. */
1075 static void ql_update_cq(struct rx_ring *rx_ring)
1076 {
1077         rx_ring->cnsmr_idx++;
1078         rx_ring->curr_entry++;
1079         if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
1080                 rx_ring->cnsmr_idx = 0;
1081                 rx_ring->curr_entry = rx_ring->cq_base;
1082         }
1083 }
1084
1085 static void ql_write_cq_idx(struct rx_ring *rx_ring)
1086 {
1087         ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
1088 }
1089
1090 static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
1091                                                 struct bq_desc *lbq_desc)
1092 {
1093         if (!rx_ring->pg_chunk.page) {
1094                 u64 map;
1095                 rx_ring->pg_chunk.page = alloc_pages(__GFP_COMP | GFP_ATOMIC,
1096                                                 qdev->lbq_buf_order);
1097                 if (unlikely(!rx_ring->pg_chunk.page)) {
1098                         netif_err(qdev, drv, qdev->ndev,
1099                                   "page allocation failed.\n");
1100                         return -ENOMEM;
1101                 }
1102                 rx_ring->pg_chunk.offset = 0;
1103                 map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
1104                                         0, ql_lbq_block_size(qdev),
1105                                         PCI_DMA_FROMDEVICE);
1106                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1107                         __free_pages(rx_ring->pg_chunk.page,
1108                                         qdev->lbq_buf_order);
1109                         rx_ring->pg_chunk.page = NULL;
1110                         netif_err(qdev, drv, qdev->ndev,
1111                                   "PCI mapping failed.\n");
1112                         return -ENOMEM;
1113                 }
1114                 rx_ring->pg_chunk.map = map;
1115                 rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
1116         }
1117
1118         /* Copy the current master pg_chunk info
1119          * to the current descriptor.
1120          */
1121         lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
1122
1123         /* Adjust the master page chunk for next
1124          * buffer get.
1125          */
1126         rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
1127         if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
1128                 rx_ring->pg_chunk.page = NULL;
1129                 lbq_desc->p.pg_chunk.last_flag = 1;
1130         } else {
1131                 rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
1132                 get_page(rx_ring->pg_chunk.page);
1133                 lbq_desc->p.pg_chunk.last_flag = 0;
1134         }
1135         return 0;
1136 }
1137 /* Process (refill) a large buffer queue. */
1138 static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1139 {
1140         u32 clean_idx = rx_ring->lbq_clean_idx;
1141         u32 start_idx = clean_idx;
1142         struct bq_desc *lbq_desc;
1143         u64 map;
1144         int i;
1145
1146         while (rx_ring->lbq_free_cnt > 32) {
1147                 for (i = (rx_ring->lbq_clean_idx % 16); i < 16; i++) {
1148                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1149                                      "lbq: try cleaning clean_idx = %d.\n",
1150                                      clean_idx);
1151                         lbq_desc = &rx_ring->lbq[clean_idx];
1152                         if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
1153                                 rx_ring->lbq_clean_idx = clean_idx;
1154                                 netif_err(qdev, ifup, qdev->ndev,
1155                                                 "Could not get a page chunk, i=%d, clean_idx =%d .\n",
1156                                                 i, clean_idx);
1157                                 return;
1158                         }
1159
1160                         map = lbq_desc->p.pg_chunk.map +
1161                                 lbq_desc->p.pg_chunk.offset;
1162                         dma_unmap_addr_set(lbq_desc, mapaddr, map);
1163                         dma_unmap_len_set(lbq_desc, maplen,
1164                                         rx_ring->lbq_buf_size);
1165                         *lbq_desc->addr = cpu_to_le64(map);
1166
1167                         pci_dma_sync_single_for_device(qdev->pdev, map,
1168                                                 rx_ring->lbq_buf_size,
1169                                                 PCI_DMA_FROMDEVICE);
1170                         clean_idx++;
1171                         if (clean_idx == rx_ring->lbq_len)
1172                                 clean_idx = 0;
1173                 }
1174
1175                 rx_ring->lbq_clean_idx = clean_idx;
1176                 rx_ring->lbq_prod_idx += 16;
1177                 if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
1178                         rx_ring->lbq_prod_idx = 0;
1179                 rx_ring->lbq_free_cnt -= 16;
1180         }
1181
1182         if (start_idx != clean_idx) {
1183                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1184                              "lbq: updating prod idx = %d.\n",
1185                              rx_ring->lbq_prod_idx);
1186                 ql_write_db_reg(rx_ring->lbq_prod_idx,
1187                                 rx_ring->lbq_prod_idx_db_reg);
1188         }
1189 }
1190
1191 /* Process (refill) a small buffer queue. */
1192 static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
1193 {
1194         u32 clean_idx = rx_ring->sbq_clean_idx;
1195         u32 start_idx = clean_idx;
1196         struct bq_desc *sbq_desc;
1197         u64 map;
1198         int i;
1199
1200         while (rx_ring->sbq_free_cnt > 16) {
1201                 for (i = (rx_ring->sbq_clean_idx % 16); i < 16; i++) {
1202                         sbq_desc = &rx_ring->sbq[clean_idx];
1203                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1204                                      "sbq: try cleaning clean_idx = %d.\n",
1205                                      clean_idx);
1206                         if (sbq_desc->p.skb == NULL) {
1207                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1208                                              qdev->ndev,
1209                                              "sbq: getting new skb for index %d.\n",
1210                                              sbq_desc->index);
1211                                 sbq_desc->p.skb =
1212                                     netdev_alloc_skb(qdev->ndev,
1213                                                      SMALL_BUFFER_SIZE);
1214                                 if (sbq_desc->p.skb == NULL) {
1215                                         rx_ring->sbq_clean_idx = clean_idx;
1216                                         return;
1217                                 }
1218                                 skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
1219                                 map = pci_map_single(qdev->pdev,
1220                                                      sbq_desc->p.skb->data,
1221                                                      rx_ring->sbq_buf_size,
1222                                                      PCI_DMA_FROMDEVICE);
1223                                 if (pci_dma_mapping_error(qdev->pdev, map)) {
1224                                         netif_err(qdev, ifup, qdev->ndev,
1225                                                   "PCI mapping failed.\n");
1226                                         rx_ring->sbq_clean_idx = clean_idx;
1227                                         dev_kfree_skb_any(sbq_desc->p.skb);
1228                                         sbq_desc->p.skb = NULL;
1229                                         return;
1230                                 }
1231                                 dma_unmap_addr_set(sbq_desc, mapaddr, map);
1232                                 dma_unmap_len_set(sbq_desc, maplen,
1233                                                   rx_ring->sbq_buf_size);
1234                                 *sbq_desc->addr = cpu_to_le64(map);
1235                         }
1236
1237                         clean_idx++;
1238                         if (clean_idx == rx_ring->sbq_len)
1239                                 clean_idx = 0;
1240                 }
1241                 rx_ring->sbq_clean_idx = clean_idx;
1242                 rx_ring->sbq_prod_idx += 16;
1243                 if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
1244                         rx_ring->sbq_prod_idx = 0;
1245                 rx_ring->sbq_free_cnt -= 16;
1246         }
1247
1248         if (start_idx != clean_idx) {
1249                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1250                              "sbq: updating prod idx = %d.\n",
1251                              rx_ring->sbq_prod_idx);
1252                 ql_write_db_reg(rx_ring->sbq_prod_idx,
1253                                 rx_ring->sbq_prod_idx_db_reg);
1254         }
1255 }
1256
1257 static void ql_update_buffer_queues(struct ql_adapter *qdev,
1258                                     struct rx_ring *rx_ring)
1259 {
1260         ql_update_sbq(qdev, rx_ring);
1261         ql_update_lbq(qdev, rx_ring);
1262 }
1263
1264 /* Unmaps tx buffers.  Can be called from send() if a pci mapping
1265  * fails at some stage, or from the interrupt when a tx completes.
1266  */
1267 static void ql_unmap_send(struct ql_adapter *qdev,
1268                           struct tx_ring_desc *tx_ring_desc, int mapped)
1269 {
1270         int i;
1271         for (i = 0; i < mapped; i++) {
1272                 if (i == 0 || (i == 7 && mapped > 7)) {
1273                         /*
1274                          * Unmap the skb->data area, or the
1275                          * external sglist (AKA the Outbound
1276                          * Address List (OAL)).
1277                          * If its the zeroeth element, then it's
1278                          * the skb->data area.  If it's the 7th
1279                          * element and there is more than 6 frags,
1280                          * then its an OAL.
1281                          */
1282                         if (i == 7) {
1283                                 netif_printk(qdev, tx_done, KERN_DEBUG,
1284                                              qdev->ndev,
1285                                              "unmapping OAL area.\n");
1286                         }
1287                         pci_unmap_single(qdev->pdev,
1288                                          dma_unmap_addr(&tx_ring_desc->map[i],
1289                                                         mapaddr),
1290                                          dma_unmap_len(&tx_ring_desc->map[i],
1291                                                        maplen),
1292                                          PCI_DMA_TODEVICE);
1293                 } else {
1294                         netif_printk(qdev, tx_done, KERN_DEBUG, qdev->ndev,
1295                                      "unmapping frag %d.\n", i);
1296                         pci_unmap_page(qdev->pdev,
1297                                        dma_unmap_addr(&tx_ring_desc->map[i],
1298                                                       mapaddr),
1299                                        dma_unmap_len(&tx_ring_desc->map[i],
1300                                                      maplen), PCI_DMA_TODEVICE);
1301                 }
1302         }
1303
1304 }
1305
1306 /* Map the buffers for this transmit.  This will return
1307  * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
1308  */
1309 static int ql_map_send(struct ql_adapter *qdev,
1310                        struct ob_mac_iocb_req *mac_iocb_ptr,
1311                        struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
1312 {
1313         int len = skb_headlen(skb);
1314         dma_addr_t map;
1315         int frag_idx, err, map_idx = 0;
1316         struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
1317         int frag_cnt = skb_shinfo(skb)->nr_frags;
1318
1319         if (frag_cnt) {
1320                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
1321                              "frag_cnt = %d.\n", frag_cnt);
1322         }
1323         /*
1324          * Map the skb buffer first.
1325          */
1326         map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
1327
1328         err = pci_dma_mapping_error(qdev->pdev, map);
1329         if (err) {
1330                 netif_err(qdev, tx_queued, qdev->ndev,
1331                           "PCI mapping failed with error: %d\n", err);
1332
1333                 return NETDEV_TX_BUSY;
1334         }
1335
1336         tbd->len = cpu_to_le32(len);
1337         tbd->addr = cpu_to_le64(map);
1338         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1339         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
1340         map_idx++;
1341
1342         /*
1343          * This loop fills the remainder of the 8 address descriptors
1344          * in the IOCB.  If there are more than 7 fragments, then the
1345          * eighth address desc will point to an external list (OAL).
1346          * When this happens, the remainder of the frags will be stored
1347          * in this list.
1348          */
1349         for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
1350                 skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
1351                 tbd++;
1352                 if (frag_idx == 6 && frag_cnt > 7) {
1353                         /* Let's tack on an sglist.
1354                          * Our control block will now
1355                          * look like this:
1356                          * iocb->seg[0] = skb->data
1357                          * iocb->seg[1] = frag[0]
1358                          * iocb->seg[2] = frag[1]
1359                          * iocb->seg[3] = frag[2]
1360                          * iocb->seg[4] = frag[3]
1361                          * iocb->seg[5] = frag[4]
1362                          * iocb->seg[6] = frag[5]
1363                          * iocb->seg[7] = ptr to OAL (external sglist)
1364                          * oal->seg[0] = frag[6]
1365                          * oal->seg[1] = frag[7]
1366                          * oal->seg[2] = frag[8]
1367                          * oal->seg[3] = frag[9]
1368                          * oal->seg[4] = frag[10]
1369                          *      etc...
1370                          */
1371                         /* Tack on the OAL in the eighth segment of IOCB. */
1372                         map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
1373                                              sizeof(struct oal),
1374                                              PCI_DMA_TODEVICE);
1375                         err = pci_dma_mapping_error(qdev->pdev, map);
1376                         if (err) {
1377                                 netif_err(qdev, tx_queued, qdev->ndev,
1378                                           "PCI mapping outbound address list with error: %d\n",
1379                                           err);
1380                                 goto map_error;
1381                         }
1382
1383                         tbd->addr = cpu_to_le64(map);
1384                         /*
1385                          * The length is the number of fragments
1386                          * that remain to be mapped times the length
1387                          * of our sglist (OAL).
1388                          */
1389                         tbd->len =
1390                             cpu_to_le32((sizeof(struct tx_buf_desc) *
1391                                          (frag_cnt - frag_idx)) | TX_DESC_C);
1392                         dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
1393                                            map);
1394                         dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1395                                           sizeof(struct oal));
1396                         tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
1397                         map_idx++;
1398                 }
1399
1400                 map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
1401                                        DMA_TO_DEVICE);
1402
1403                 err = dma_mapping_error(&qdev->pdev->dev, map);
1404                 if (err) {
1405                         netif_err(qdev, tx_queued, qdev->ndev,
1406                                   "PCI mapping frags failed with error: %d.\n",
1407                                   err);
1408                         goto map_error;
1409                 }
1410
1411                 tbd->addr = cpu_to_le64(map);
1412                 tbd->len = cpu_to_le32(skb_frag_size(frag));
1413                 dma_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
1414                 dma_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
1415                                   skb_frag_size(frag));
1416
1417         }
1418         /* Save the number of segments we've mapped. */
1419         tx_ring_desc->map_cnt = map_idx;
1420         /* Terminate the last segment. */
1421         tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
1422         return NETDEV_TX_OK;
1423
1424 map_error:
1425         /*
1426          * If the first frag mapping failed, then i will be zero.
1427          * This causes the unmap of the skb->data area.  Otherwise
1428          * we pass in the number of frags that mapped successfully
1429          * so they can be umapped.
1430          */
1431         ql_unmap_send(qdev, tx_ring_desc, map_idx);
1432         return NETDEV_TX_BUSY;
1433 }
1434
1435 /* Categorizing receive firmware frame errors */
1436 static void ql_categorize_rx_err(struct ql_adapter *qdev, u8 rx_err,
1437                                  struct rx_ring *rx_ring)
1438 {
1439         struct nic_stats *stats = &qdev->nic_stats;
1440
1441         stats->rx_err_count++;
1442         rx_ring->rx_errors++;
1443
1444         switch (rx_err & IB_MAC_IOCB_RSP_ERR_MASK) {
1445         case IB_MAC_IOCB_RSP_ERR_CODE_ERR:
1446                 stats->rx_code_err++;
1447                 break;
1448         case IB_MAC_IOCB_RSP_ERR_OVERSIZE:
1449                 stats->rx_oversize_err++;
1450                 break;
1451         case IB_MAC_IOCB_RSP_ERR_UNDERSIZE:
1452                 stats->rx_undersize_err++;
1453                 break;
1454         case IB_MAC_IOCB_RSP_ERR_PREAMBLE:
1455                 stats->rx_preamble_err++;
1456                 break;
1457         case IB_MAC_IOCB_RSP_ERR_FRAME_LEN:
1458                 stats->rx_frame_len_err++;
1459                 break;
1460         case IB_MAC_IOCB_RSP_ERR_CRC:
1461                 stats->rx_crc_err++;
1462         default:
1463                 break;
1464         }
1465 }
1466
1467 /**
1468  * ql_update_mac_hdr_len - helper routine to update the mac header length
1469  * based on vlan tags if present
1470  */
1471 static void ql_update_mac_hdr_len(struct ql_adapter *qdev,
1472                                   struct ib_mac_iocb_rsp *ib_mac_rsp,
1473                                   void *page, size_t *len)
1474 {
1475         u16 *tags;
1476
1477         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1478                 return;
1479         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) {
1480                 tags = (u16 *)page;
1481                 /* Look for stacked vlan tags in ethertype field */
1482                 if (tags[6] == ETH_P_8021Q &&
1483                     tags[8] == ETH_P_8021Q)
1484                         *len += 2 * VLAN_HLEN;
1485                 else
1486                         *len += VLAN_HLEN;
1487         }
1488 }
1489
1490 /* Process an inbound completion from an rx ring. */
1491 static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
1492                                         struct rx_ring *rx_ring,
1493                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1494                                         u32 length,
1495                                         u16 vlan_id)
1496 {
1497         struct sk_buff *skb;
1498         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1499         struct napi_struct *napi = &rx_ring->napi;
1500
1501         /* Frame error, so drop the packet. */
1502         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1503                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1504                 put_page(lbq_desc->p.pg_chunk.page);
1505                 return;
1506         }
1507         napi->dev = qdev->ndev;
1508
1509         skb = napi_get_frags(napi);
1510         if (!skb) {
1511                 netif_err(qdev, drv, qdev->ndev,
1512                           "Couldn't get an skb, exiting.\n");
1513                 rx_ring->rx_dropped++;
1514                 put_page(lbq_desc->p.pg_chunk.page);
1515                 return;
1516         }
1517         prefetch(lbq_desc->p.pg_chunk.va);
1518         __skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1519                              lbq_desc->p.pg_chunk.page,
1520                              lbq_desc->p.pg_chunk.offset,
1521                              length);
1522
1523         skb->len += length;
1524         skb->data_len += length;
1525         skb->truesize += length;
1526         skb_shinfo(skb)->nr_frags++;
1527
1528         rx_ring->rx_packets++;
1529         rx_ring->rx_bytes += length;
1530         skb->ip_summed = CHECKSUM_UNNECESSARY;
1531         skb_record_rx_queue(skb, rx_ring->cq_id);
1532         if (vlan_id != 0xffff)
1533                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1534         napi_gro_frags(napi);
1535 }
1536
1537 /* Process an inbound completion from an rx ring. */
1538 static void ql_process_mac_rx_page(struct ql_adapter *qdev,
1539                                         struct rx_ring *rx_ring,
1540                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1541                                         u32 length,
1542                                         u16 vlan_id)
1543 {
1544         struct net_device *ndev = qdev->ndev;
1545         struct sk_buff *skb = NULL;
1546         void *addr;
1547         struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1548         struct napi_struct *napi = &rx_ring->napi;
1549         size_t hlen = ETH_HLEN;
1550
1551         skb = netdev_alloc_skb(ndev, length);
1552         if (!skb) {
1553                 rx_ring->rx_dropped++;
1554                 put_page(lbq_desc->p.pg_chunk.page);
1555                 return;
1556         }
1557
1558         addr = lbq_desc->p.pg_chunk.va;
1559         prefetch(addr);
1560
1561         /* Frame error, so drop the packet. */
1562         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1563                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1564                 goto err_out;
1565         }
1566
1567         /* Update the MAC header length*/
1568         ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, &hlen);
1569
1570         /* The max framesize filter on this chip is set higher than
1571          * MTU since FCoE uses 2k frames.
1572          */
1573         if (skb->len > ndev->mtu + hlen) {
1574                 netif_err(qdev, drv, qdev->ndev,
1575                           "Segment too small, dropping.\n");
1576                 rx_ring->rx_dropped++;
1577                 goto err_out;
1578         }
1579         skb_put_data(skb, addr, hlen);
1580         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1581                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1582                      length);
1583         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1584                                 lbq_desc->p.pg_chunk.offset + hlen,
1585                                 length - hlen);
1586         skb->len += length - hlen;
1587         skb->data_len += length - hlen;
1588         skb->truesize += length - hlen;
1589
1590         rx_ring->rx_packets++;
1591         rx_ring->rx_bytes += skb->len;
1592         skb->protocol = eth_type_trans(skb, ndev);
1593         skb_checksum_none_assert(skb);
1594
1595         if ((ndev->features & NETIF_F_RXCSUM) &&
1596                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1597                 /* TCP frame. */
1598                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1599                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1600                                      "TCP checksum done!\n");
1601                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1602                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1603                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1604                         /* Unfragmented ipv4 UDP frame. */
1605                         struct iphdr *iph =
1606                                 (struct iphdr *)((u8 *)addr + hlen);
1607                         if (!(iph->frag_off &
1608                                 htons(IP_MF|IP_OFFSET))) {
1609                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1610                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1611                                              qdev->ndev,
1612                                              "UDP checksum done!\n");
1613                         }
1614                 }
1615         }
1616
1617         skb_record_rx_queue(skb, rx_ring->cq_id);
1618         if (vlan_id != 0xffff)
1619                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1620         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1621                 napi_gro_receive(napi, skb);
1622         else
1623                 netif_receive_skb(skb);
1624         return;
1625 err_out:
1626         dev_kfree_skb_any(skb);
1627         put_page(lbq_desc->p.pg_chunk.page);
1628 }
1629
1630 /* Process an inbound completion from an rx ring. */
1631 static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
1632                                         struct rx_ring *rx_ring,
1633                                         struct ib_mac_iocb_rsp *ib_mac_rsp,
1634                                         u32 length,
1635                                         u16 vlan_id)
1636 {
1637         struct net_device *ndev = qdev->ndev;
1638         struct sk_buff *skb = NULL;
1639         struct sk_buff *new_skb = NULL;
1640         struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
1641
1642         skb = sbq_desc->p.skb;
1643         /* Allocate new_skb and copy */
1644         new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
1645         if (new_skb == NULL) {
1646                 rx_ring->rx_dropped++;
1647                 return;
1648         }
1649         skb_reserve(new_skb, NET_IP_ALIGN);
1650
1651         pci_dma_sync_single_for_cpu(qdev->pdev,
1652                                     dma_unmap_addr(sbq_desc, mapaddr),
1653                                     dma_unmap_len(sbq_desc, maplen),
1654                                     PCI_DMA_FROMDEVICE);
1655
1656         skb_put_data(new_skb, skb->data, length);
1657
1658         pci_dma_sync_single_for_device(qdev->pdev,
1659                                        dma_unmap_addr(sbq_desc, mapaddr),
1660                                        dma_unmap_len(sbq_desc, maplen),
1661                                        PCI_DMA_FROMDEVICE);
1662         skb = new_skb;
1663
1664         /* Frame error, so drop the packet. */
1665         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1666                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1667                 dev_kfree_skb_any(skb);
1668                 return;
1669         }
1670
1671         /* loopback self test for ethtool */
1672         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1673                 ql_check_lb_frame(qdev, skb);
1674                 dev_kfree_skb_any(skb);
1675                 return;
1676         }
1677
1678         /* The max framesize filter on this chip is set higher than
1679          * MTU since FCoE uses 2k frames.
1680          */
1681         if (skb->len > ndev->mtu + ETH_HLEN) {
1682                 dev_kfree_skb_any(skb);
1683                 rx_ring->rx_dropped++;
1684                 return;
1685         }
1686
1687         prefetch(skb->data);
1688         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
1689                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1690                              "%s Multicast.\n",
1691                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1692                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
1693                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1694                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
1695                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
1696                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
1697         }
1698         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
1699                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1700                              "Promiscuous Packet.\n");
1701
1702         rx_ring->rx_packets++;
1703         rx_ring->rx_bytes += skb->len;
1704         skb->protocol = eth_type_trans(skb, ndev);
1705         skb_checksum_none_assert(skb);
1706
1707         /* If rx checksum is on, and there are no
1708          * csum or frame errors.
1709          */
1710         if ((ndev->features & NETIF_F_RXCSUM) &&
1711                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
1712                 /* TCP frame. */
1713                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
1714                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1715                                      "TCP checksum done!\n");
1716                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1717                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
1718                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
1719                         /* Unfragmented ipv4 UDP frame. */
1720                         struct iphdr *iph = (struct iphdr *) skb->data;
1721                         if (!(iph->frag_off &
1722                                 htons(IP_MF|IP_OFFSET))) {
1723                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1724                                 netif_printk(qdev, rx_status, KERN_DEBUG,
1725                                              qdev->ndev,
1726                                              "UDP checksum done!\n");
1727                         }
1728                 }
1729         }
1730
1731         skb_record_rx_queue(skb, rx_ring->cq_id);
1732         if (vlan_id != 0xffff)
1733                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
1734         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
1735                 napi_gro_receive(&rx_ring->napi, skb);
1736         else
1737                 netif_receive_skb(skb);
1738 }
1739
1740 static void ql_realign_skb(struct sk_buff *skb, int len)
1741 {
1742         void *temp_addr = skb->data;
1743
1744         /* Undo the skb_reserve(skb,32) we did before
1745          * giving to hardware, and realign data on
1746          * a 2-byte boundary.
1747          */
1748         skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
1749         skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
1750         memmove(skb->data, temp_addr, len);
1751 }
1752
1753 /*
1754  * This function builds an skb for the given inbound
1755  * completion.  It will be rewritten for readability in the near
1756  * future, but for not it works well.
1757  */
1758 static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
1759                                        struct rx_ring *rx_ring,
1760                                        struct ib_mac_iocb_rsp *ib_mac_rsp)
1761 {
1762         struct bq_desc *lbq_desc;
1763         struct bq_desc *sbq_desc;
1764         struct sk_buff *skb = NULL;
1765         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
1766         u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
1767         size_t hlen = ETH_HLEN;
1768
1769         /*
1770          * Handle the header buffer if present.
1771          */
1772         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
1773             ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1774                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1775                              "Header of %d bytes in small buffer.\n", hdr_len);
1776                 /*
1777                  * Headers fit nicely into a small buffer.
1778                  */
1779                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1780                 pci_unmap_single(qdev->pdev,
1781                                 dma_unmap_addr(sbq_desc, mapaddr),
1782                                 dma_unmap_len(sbq_desc, maplen),
1783                                 PCI_DMA_FROMDEVICE);
1784                 skb = sbq_desc->p.skb;
1785                 ql_realign_skb(skb, hdr_len);
1786                 skb_put(skb, hdr_len);
1787                 sbq_desc->p.skb = NULL;
1788         }
1789
1790         /*
1791          * Handle the data buffer(s).
1792          */
1793         if (unlikely(!length)) {        /* Is there data too? */
1794                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1795                              "No Data buffer in this packet.\n");
1796                 return skb;
1797         }
1798
1799         if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
1800                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1801                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1802                                      "Headers in small, data of %d bytes in small, combine them.\n",
1803                                      length);
1804                         /*
1805                          * Data is less than small buffer size so it's
1806                          * stuffed in a small buffer.
1807                          * For this case we append the data
1808                          * from the "data" small buffer to the "header" small
1809                          * buffer.
1810                          */
1811                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1812                         pci_dma_sync_single_for_cpu(qdev->pdev,
1813                                                     dma_unmap_addr
1814                                                     (sbq_desc, mapaddr),
1815                                                     dma_unmap_len
1816                                                     (sbq_desc, maplen),
1817                                                     PCI_DMA_FROMDEVICE);
1818                         skb_put_data(skb, sbq_desc->p.skb->data, length);
1819                         pci_dma_sync_single_for_device(qdev->pdev,
1820                                                        dma_unmap_addr
1821                                                        (sbq_desc,
1822                                                         mapaddr),
1823                                                        dma_unmap_len
1824                                                        (sbq_desc,
1825                                                         maplen),
1826                                                        PCI_DMA_FROMDEVICE);
1827                 } else {
1828                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1829                                      "%d bytes in a single small buffer.\n",
1830                                      length);
1831                         sbq_desc = ql_get_curr_sbuf(rx_ring);
1832                         skb = sbq_desc->p.skb;
1833                         ql_realign_skb(skb, length);
1834                         skb_put(skb, length);
1835                         pci_unmap_single(qdev->pdev,
1836                                          dma_unmap_addr(sbq_desc,
1837                                                         mapaddr),
1838                                          dma_unmap_len(sbq_desc,
1839                                                        maplen),
1840                                          PCI_DMA_FROMDEVICE);
1841                         sbq_desc->p.skb = NULL;
1842                 }
1843         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
1844                 if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
1845                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1846                                      "Header in small, %d bytes in large. Chain large to small!\n",
1847                                      length);
1848                         /*
1849                          * The data is in a single large buffer.  We
1850                          * chain it to the header buffer's skb and let
1851                          * it rip.
1852                          */
1853                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1854                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1855                                      "Chaining page at offset = %d, for %d bytes  to skb.\n",
1856                                      lbq_desc->p.pg_chunk.offset, length);
1857                         skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
1858                                                 lbq_desc->p.pg_chunk.offset,
1859                                                 length);
1860                         skb->len += length;
1861                         skb->data_len += length;
1862                         skb->truesize += length;
1863                 } else {
1864                         /*
1865                          * The headers and data are in a single large buffer. We
1866                          * copy it to a new skb and let it go. This can happen with
1867                          * jumbo mtu on a non-TCP/UDP frame.
1868                          */
1869                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1870                         skb = netdev_alloc_skb(qdev->ndev, length);
1871                         if (skb == NULL) {
1872                                 netif_printk(qdev, probe, KERN_DEBUG, qdev->ndev,
1873                                              "No skb available, drop the packet.\n");
1874                                 return NULL;
1875                         }
1876                         pci_unmap_page(qdev->pdev,
1877                                        dma_unmap_addr(lbq_desc,
1878                                                       mapaddr),
1879                                        dma_unmap_len(lbq_desc, maplen),
1880                                        PCI_DMA_FROMDEVICE);
1881                         skb_reserve(skb, NET_IP_ALIGN);
1882                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1883                                      "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n",
1884                                      length);
1885                         skb_fill_page_desc(skb, 0,
1886                                                 lbq_desc->p.pg_chunk.page,
1887                                                 lbq_desc->p.pg_chunk.offset,
1888                                                 length);
1889                         skb->len += length;
1890                         skb->data_len += length;
1891                         skb->truesize += length;
1892                         ql_update_mac_hdr_len(qdev, ib_mac_rsp,
1893                                               lbq_desc->p.pg_chunk.va,
1894                                               &hlen);
1895                         __pskb_pull_tail(skb, hlen);
1896                 }
1897         } else {
1898                 /*
1899                  * The data is in a chain of large buffers
1900                  * pointed to by a small buffer.  We loop
1901                  * thru and chain them to the our small header
1902                  * buffer's skb.
1903                  * frags:  There are 18 max frags and our small
1904                  *         buffer will hold 32 of them. The thing is,
1905                  *         we'll use 3 max for our 9000 byte jumbo
1906                  *         frames.  If the MTU goes up we could
1907                  *          eventually be in trouble.
1908                  */
1909                 int size, i = 0;
1910                 sbq_desc = ql_get_curr_sbuf(rx_ring);
1911                 pci_unmap_single(qdev->pdev,
1912                                  dma_unmap_addr(sbq_desc, mapaddr),
1913                                  dma_unmap_len(sbq_desc, maplen),
1914                                  PCI_DMA_FROMDEVICE);
1915                 if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
1916                         /*
1917                          * This is an non TCP/UDP IP frame, so
1918                          * the headers aren't split into a small
1919                          * buffer.  We have to use the small buffer
1920                          * that contains our sg list as our skb to
1921                          * send upstairs. Copy the sg list here to
1922                          * a local buffer and use it to find the
1923                          * pages to chain.
1924                          */
1925                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1926                                      "%d bytes of headers & data in chain of large.\n",
1927                                      length);
1928                         skb = sbq_desc->p.skb;
1929                         sbq_desc->p.skb = NULL;
1930                         skb_reserve(skb, NET_IP_ALIGN);
1931                 }
1932                 do {
1933                         lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
1934                         size = (length < rx_ring->lbq_buf_size) ? length :
1935                                 rx_ring->lbq_buf_size;
1936
1937                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1938                                      "Adding page %d to skb for %d bytes.\n",
1939                                      i, size);
1940                         skb_fill_page_desc(skb, i,
1941                                                 lbq_desc->p.pg_chunk.page,
1942                                                 lbq_desc->p.pg_chunk.offset,
1943                                                 size);
1944                         skb->len += size;
1945                         skb->data_len += size;
1946                         skb->truesize += size;
1947                         length -= size;
1948                         i++;
1949                 } while (length > 0);
1950                 ql_update_mac_hdr_len(qdev, ib_mac_rsp, lbq_desc->p.pg_chunk.va,
1951                                       &hlen);
1952                 __pskb_pull_tail(skb, hlen);
1953         }
1954         return skb;
1955 }
1956
1957 /* Process an inbound completion from an rx ring. */
1958 static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
1959                                    struct rx_ring *rx_ring,
1960                                    struct ib_mac_iocb_rsp *ib_mac_rsp,
1961                                    u16 vlan_id)
1962 {
1963         struct net_device *ndev = qdev->ndev;
1964         struct sk_buff *skb = NULL;
1965
1966         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
1967
1968         skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
1969         if (unlikely(!skb)) {
1970                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
1971                              "No skb available, drop packet.\n");
1972                 rx_ring->rx_dropped++;
1973                 return;
1974         }
1975
1976         /* Frame error, so drop the packet. */
1977         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
1978                 ql_categorize_rx_err(qdev, ib_mac_rsp->flags2, rx_ring);
1979                 dev_kfree_skb_any(skb);
1980                 return;
1981         }
1982
1983         /* The max framesize filter on this chip is set higher than
1984          * MTU since FCoE uses 2k frames.
1985          */
1986         if (skb->len > ndev->mtu + ETH_HLEN) {
1987                 dev_kfree_skb_any(skb);
1988                 rx_ring->rx_dropped++;
1989                 return;
1990         }
1991
1992         /* loopback self test for ethtool */
1993         if (test_bit(QL_SELFTEST, &qdev->flags)) {
1994                 ql_check_lb_frame(qdev, skb);
1995                 dev_kfree_skb_any(skb);
1996                 return;
1997         }
1998
1999         prefetch(skb->data);
2000         if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
2001                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev, "%s Multicast.\n",
2002                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2003                              IB_MAC_IOCB_RSP_M_HASH ? "Hash" :
2004                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2005                              IB_MAC_IOCB_RSP_M_REG ? "Registered" :
2006                              (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
2007                              IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
2008                 rx_ring->rx_multicast++;
2009         }
2010         if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
2011                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2012                              "Promiscuous Packet.\n");
2013         }
2014
2015         skb->protocol = eth_type_trans(skb, ndev);
2016         skb_checksum_none_assert(skb);
2017
2018         /* If rx checksum is on, and there are no
2019          * csum or frame errors.
2020          */
2021         if ((ndev->features & NETIF_F_RXCSUM) &&
2022                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
2023                 /* TCP frame. */
2024                 if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
2025                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2026                                      "TCP checksum done!\n");
2027                         skb->ip_summed = CHECKSUM_UNNECESSARY;
2028                 } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
2029                                 (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
2030                 /* Unfragmented ipv4 UDP frame. */
2031                         struct iphdr *iph = (struct iphdr *) skb->data;
2032                         if (!(iph->frag_off &
2033                                 htons(IP_MF|IP_OFFSET))) {
2034                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2035                                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2036                                              "TCP checksum done!\n");
2037                         }
2038                 }
2039         }
2040
2041         rx_ring->rx_packets++;
2042         rx_ring->rx_bytes += skb->len;
2043         skb_record_rx_queue(skb, rx_ring->cq_id);
2044         if (vlan_id != 0xffff)
2045                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_id);
2046         if (skb->ip_summed == CHECKSUM_UNNECESSARY)
2047                 napi_gro_receive(&rx_ring->napi, skb);
2048         else
2049                 netif_receive_skb(skb);
2050 }
2051
2052 /* Process an inbound completion from an rx ring. */
2053 static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
2054                                         struct rx_ring *rx_ring,
2055                                         struct ib_mac_iocb_rsp *ib_mac_rsp)
2056 {
2057         u32 length = le32_to_cpu(ib_mac_rsp->data_len);
2058         u16 vlan_id = ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
2059                         (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)) ?
2060                         ((le16_to_cpu(ib_mac_rsp->vlan_id) &
2061                         IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
2062
2063         QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
2064
2065         if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
2066                 /* The data and headers are split into
2067                  * separate buffers.
2068                  */
2069                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2070                                                 vlan_id);
2071         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
2072                 /* The data fit in a single small buffer.
2073                  * Allocate a new skb, copy the data and
2074                  * return the buffer to the free pool.
2075                  */
2076                 ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
2077                                                 length, vlan_id);
2078         } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
2079                 !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
2080                 (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
2081                 /* TCP packet in a page chunk that's been checksummed.
2082                  * Tack it on to our GRO skb and let it go.
2083                  */
2084                 ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
2085                                                 length, vlan_id);
2086         } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
2087                 /* Non-TCP packet in a page chunk. Allocate an
2088                  * skb, tack it on frags, and send it up.
2089                  */
2090                 ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
2091                                                 length, vlan_id);
2092         } else {
2093                 /* Non-TCP/UDP large frames that span multiple buffers
2094                  * can be processed corrrectly by the split frame logic.
2095                  */
2096                 ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
2097                                                 vlan_id);
2098         }
2099
2100         return (unsigned long)length;
2101 }
2102
2103 /* Process an outbound completion from an rx ring. */
2104 static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
2105                                    struct ob_mac_iocb_rsp *mac_rsp)
2106 {
2107         struct tx_ring *tx_ring;
2108         struct tx_ring_desc *tx_ring_desc;
2109
2110         QL_DUMP_OB_MAC_RSP(mac_rsp);
2111         tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
2112         tx_ring_desc = &tx_ring->q[mac_rsp->tid];
2113         ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
2114         tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
2115         tx_ring->tx_packets++;
2116         dev_kfree_skb(tx_ring_desc->skb);
2117         tx_ring_desc->skb = NULL;
2118
2119         if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
2120                                         OB_MAC_IOCB_RSP_S |
2121                                         OB_MAC_IOCB_RSP_L |
2122                                         OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
2123                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
2124                         netif_warn(qdev, tx_done, qdev->ndev,
2125                                    "Total descriptor length did not match transfer length.\n");
2126                 }
2127                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
2128                         netif_warn(qdev, tx_done, qdev->ndev,
2129                                    "Frame too short to be valid, not sent.\n");
2130                 }
2131                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
2132                         netif_warn(qdev, tx_done, qdev->ndev,
2133                                    "Frame too long, but sent anyway.\n");
2134                 }
2135                 if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
2136                         netif_warn(qdev, tx_done, qdev->ndev,
2137                                    "PCI backplane error. Frame not sent.\n");
2138                 }
2139         }
2140         atomic_inc(&tx_ring->tx_count);
2141 }
2142
2143 /* Fire up a handler to reset the MPI processor. */
2144 void ql_queue_fw_error(struct ql_adapter *qdev)
2145 {
2146         ql_link_off(qdev);
2147         queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
2148 }
2149
2150 void ql_queue_asic_error(struct ql_adapter *qdev)
2151 {
2152         ql_link_off(qdev);
2153         ql_disable_interrupts(qdev);
2154         /* Clear adapter up bit to signal the recovery
2155          * process that it shouldn't kill the reset worker
2156          * thread
2157          */
2158         clear_bit(QL_ADAPTER_UP, &qdev->flags);
2159         /* Set asic recovery bit to indicate reset process that we are
2160          * in fatal error recovery process rather than normal close
2161          */
2162         set_bit(QL_ASIC_RECOVERY, &qdev->flags);
2163         queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
2164 }
2165
2166 static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
2167                                     struct ib_ae_iocb_rsp *ib_ae_rsp)
2168 {
2169         switch (ib_ae_rsp->event) {
2170         case MGMT_ERR_EVENT:
2171                 netif_err(qdev, rx_err, qdev->ndev,
2172                           "Management Processor Fatal Error.\n");
2173                 ql_queue_fw_error(qdev);
2174                 return;
2175
2176         case CAM_LOOKUP_ERR_EVENT:
2177                 netdev_err(qdev->ndev, "Multiple CAM hits lookup occurred.\n");
2178                 netdev_err(qdev->ndev, "This event shouldn't occur.\n");
2179                 ql_queue_asic_error(qdev);
2180                 return;
2181
2182         case SOFT_ECC_ERROR_EVENT:
2183                 netdev_err(qdev->ndev, "Soft ECC error detected.\n");
2184                 ql_queue_asic_error(qdev);
2185                 break;
2186
2187         case PCI_ERR_ANON_BUF_RD:
2188                 netdev_err(qdev->ndev, "PCI error occurred when reading "
2189                                         "anonymous buffers from rx_ring %d.\n",
2190                                         ib_ae_rsp->q_id);
2191                 ql_queue_asic_error(qdev);
2192                 break;
2193
2194         default:
2195                 netif_err(qdev, drv, qdev->ndev, "Unexpected event %d.\n",
2196                           ib_ae_rsp->event);
2197                 ql_queue_asic_error(qdev);
2198                 break;
2199         }
2200 }
2201
2202 static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
2203 {
2204         struct ql_adapter *qdev = rx_ring->qdev;
2205         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2206         struct ob_mac_iocb_rsp *net_rsp = NULL;
2207         int count = 0;
2208
2209         struct tx_ring *tx_ring;
2210         /* While there are entries in the completion queue. */
2211         while (prod != rx_ring->cnsmr_idx) {
2212
2213                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2214                              "cq_id = %d, prod = %d, cnsmr = %d\n",
2215                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2216
2217                 net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
2218                 rmb();
2219                 switch (net_rsp->opcode) {
2220
2221                 case OPCODE_OB_MAC_TSO_IOCB:
2222                 case OPCODE_OB_MAC_IOCB:
2223                         ql_process_mac_tx_intr(qdev, net_rsp);
2224                         break;
2225                 default:
2226                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2227                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2228                                      net_rsp->opcode);
2229                 }
2230                 count++;
2231                 ql_update_cq(rx_ring);
2232                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2233         }
2234         if (!net_rsp)
2235                 return 0;
2236         ql_write_cq_idx(rx_ring);
2237         tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
2238         if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id)) {
2239                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2240                         /*
2241                          * The queue got stopped because the tx_ring was full.
2242                          * Wake it up, because it's now at least 25% empty.
2243                          */
2244                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2245         }
2246
2247         return count;
2248 }
2249
2250 static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
2251 {
2252         struct ql_adapter *qdev = rx_ring->qdev;
2253         u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2254         struct ql_net_rsp_iocb *net_rsp;
2255         int count = 0;
2256
2257         /* While there are entries in the completion queue. */
2258         while (prod != rx_ring->cnsmr_idx) {
2259
2260                 netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2261                              "cq_id = %d, prod = %d, cnsmr = %d\n",
2262                              rx_ring->cq_id, prod, rx_ring->cnsmr_idx);
2263
2264                 net_rsp = rx_ring->curr_entry;
2265                 rmb();
2266                 switch (net_rsp->opcode) {
2267                 case OPCODE_IB_MAC_IOCB:
2268                         ql_process_mac_rx_intr(qdev, rx_ring,
2269                                                (struct ib_mac_iocb_rsp *)
2270                                                net_rsp);
2271                         break;
2272
2273                 case OPCODE_IB_AE_IOCB:
2274                         ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
2275                                                 net_rsp);
2276                         break;
2277                 default:
2278                         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2279                                      "Hit default case, not handled! dropping the packet, opcode = %x.\n",
2280                                      net_rsp->opcode);
2281                         break;
2282                 }
2283                 count++;
2284                 ql_update_cq(rx_ring);
2285                 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
2286                 if (count == budget)
2287                         break;
2288         }
2289         ql_update_buffer_queues(qdev, rx_ring);
2290         ql_write_cq_idx(rx_ring);
2291         return count;
2292 }
2293
2294 static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
2295 {
2296         struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
2297         struct ql_adapter *qdev = rx_ring->qdev;
2298         struct rx_ring *trx_ring;
2299         int i, work_done = 0;
2300         struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
2301
2302         netif_printk(qdev, rx_status, KERN_DEBUG, qdev->ndev,
2303                      "Enter, NAPI POLL cq_id = %d.\n", rx_ring->cq_id);
2304
2305         /* Service the TX rings first.  They start
2306          * right after the RSS rings. */
2307         for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
2308                 trx_ring = &qdev->rx_ring[i];
2309                 /* If this TX completion ring belongs to this vector and
2310                  * it's not empty then service it.
2311                  */
2312                 if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
2313                         (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
2314                                         trx_ring->cnsmr_idx)) {
2315                         netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2316                                      "%s: Servicing TX completion ring %d.\n",
2317                                      __func__, trx_ring->cq_id);
2318                         ql_clean_outbound_rx_ring(trx_ring);
2319                 }
2320         }
2321
2322         /*
2323          * Now service the RSS ring if it's active.
2324          */
2325         if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
2326                                         rx_ring->cnsmr_idx) {
2327                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2328                              "%s: Servicing RX completion ring %d.\n",
2329                              __func__, rx_ring->cq_id);
2330                 work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
2331         }
2332
2333         if (work_done < budget) {
2334                 napi_complete_done(napi, work_done);
2335                 ql_enable_completion_interrupt(qdev, rx_ring->irq);
2336         }
2337         return work_done;
2338 }
2339
2340 static void qlge_vlan_mode(struct net_device *ndev, netdev_features_t features)
2341 {
2342         struct ql_adapter *qdev = netdev_priv(ndev);
2343
2344         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2345                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
2346                                  NIC_RCV_CFG_VLAN_MATCH_AND_NON);
2347         } else {
2348                 ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
2349         }
2350 }
2351
2352 /**
2353  * qlge_update_hw_vlan_features - helper routine to reinitialize the adapter
2354  * based on the features to enable/disable hardware vlan accel
2355  */
2356 static int qlge_update_hw_vlan_features(struct net_device *ndev,
2357                                         netdev_features_t features)
2358 {
2359         struct ql_adapter *qdev = netdev_priv(ndev);
2360         int status = 0;
2361         bool need_restart = netif_running(ndev);
2362
2363         if (need_restart) {
2364                 status = ql_adapter_down(qdev);
2365                 if (status) {
2366                         netif_err(qdev, link, qdev->ndev,
2367                                   "Failed to bring down the adapter\n");
2368                         return status;
2369                 }
2370         }
2371
2372         /* update the features with resent change */
2373         ndev->features = features;
2374
2375         if (need_restart) {
2376                 status = ql_adapter_up(qdev);
2377                 if (status) {
2378                         netif_err(qdev, link, qdev->ndev,
2379                                   "Failed to bring up the adapter\n");
2380                         return status;
2381                 }
2382         }
2383
2384         return status;
2385 }
2386
2387 static int qlge_set_features(struct net_device *ndev,
2388         netdev_features_t features)
2389 {
2390         netdev_features_t changed = ndev->features ^ features;
2391         int err;
2392
2393         if (changed & NETIF_F_HW_VLAN_CTAG_RX) {
2394                 /* Update the behavior of vlan accel in the adapter */
2395                 err = qlge_update_hw_vlan_features(ndev, features);
2396                 if (err)
2397                         return err;
2398
2399                 qlge_vlan_mode(ndev, features);
2400         }
2401
2402         return 0;
2403 }
2404
2405 static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev, u16 vid)
2406 {
2407         u32 enable_bit = MAC_ADDR_E;
2408         int err;
2409
2410         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2411                                   MAC_ADDR_TYPE_VLAN, vid);
2412         if (err)
2413                 netif_err(qdev, ifup, qdev->ndev,
2414                           "Failed to init vlan address.\n");
2415         return err;
2416 }
2417
2418 static int qlge_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
2419 {
2420         struct ql_adapter *qdev = netdev_priv(ndev);
2421         int status;
2422         int err;
2423
2424         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2425         if (status)
2426                 return status;
2427
2428         err = __qlge_vlan_rx_add_vid(qdev, vid);
2429         set_bit(vid, qdev->active_vlans);
2430
2431         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2432
2433         return err;
2434 }
2435
2436 static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev, u16 vid)
2437 {
2438         u32 enable_bit = 0;
2439         int err;
2440
2441         err = ql_set_mac_addr_reg(qdev, (u8 *) &enable_bit,
2442                                   MAC_ADDR_TYPE_VLAN, vid);
2443         if (err)
2444                 netif_err(qdev, ifup, qdev->ndev,
2445                           "Failed to clear vlan address.\n");
2446         return err;
2447 }
2448
2449 static int qlge_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
2450 {
2451         struct ql_adapter *qdev = netdev_priv(ndev);
2452         int status;
2453         int err;
2454
2455         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2456         if (status)
2457                 return status;
2458
2459         err = __qlge_vlan_rx_kill_vid(qdev, vid);
2460         clear_bit(vid, qdev->active_vlans);
2461
2462         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2463
2464         return err;
2465 }
2466
2467 static void qlge_restore_vlan(struct ql_adapter *qdev)
2468 {
2469         int status;
2470         u16 vid;
2471
2472         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
2473         if (status)
2474                 return;
2475
2476         for_each_set_bit(vid, qdev->active_vlans, VLAN_N_VID)
2477                 __qlge_vlan_rx_add_vid(qdev, vid);
2478
2479         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
2480 }
2481
2482 /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
2483 static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
2484 {
2485         struct rx_ring *rx_ring = dev_id;
2486         napi_schedule(&rx_ring->napi);
2487         return IRQ_HANDLED;
2488 }
2489
2490 /* This handles a fatal error, MPI activity, and the default
2491  * rx_ring in an MSI-X multiple vector environment.
2492  * In MSI/Legacy environment it also process the rest of
2493  * the rx_rings.
2494  */
2495 static irqreturn_t qlge_isr(int irq, void *dev_id)
2496 {
2497         struct rx_ring *rx_ring = dev_id;
2498         struct ql_adapter *qdev = rx_ring->qdev;
2499         struct intr_context *intr_context = &qdev->intr_context[0];
2500         u32 var;
2501         int work_done = 0;
2502
2503         spin_lock(&qdev->hw_lock);
2504         if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
2505                 netif_printk(qdev, intr, KERN_DEBUG, qdev->ndev,
2506                              "Shared Interrupt, Not ours!\n");
2507                 spin_unlock(&qdev->hw_lock);
2508                 return IRQ_NONE;
2509         }
2510         spin_unlock(&qdev->hw_lock);
2511
2512         var = ql_disable_completion_interrupt(qdev, intr_context->intr);
2513
2514         /*
2515          * Check for fatal error.
2516          */
2517         if (var & STS_FE) {
2518                 ql_queue_asic_error(qdev);
2519                 netdev_err(qdev->ndev, "Got fatal error, STS = %x.\n", var);
2520                 var = ql_read32(qdev, ERR_STS);
2521                 netdev_err(qdev->ndev, "Resetting chip. "
2522                                         "Error Status Register = 0x%x\n", var);
2523                 return IRQ_HANDLED;
2524         }
2525
2526         /*
2527          * Check MPI processor activity.
2528          */
2529         if ((var & STS_PI) &&
2530                 (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
2531                 /*
2532                  * We've got an async event or mailbox completion.
2533                  * Handle it and clear the source of the interrupt.
2534                  */
2535                 netif_err(qdev, intr, qdev->ndev,
2536                           "Got MPI processor interrupt.\n");
2537                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2538                 ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
2539                 queue_delayed_work_on(smp_processor_id(),
2540                                 qdev->workqueue, &qdev->mpi_work, 0);
2541                 work_done++;
2542         }
2543
2544         /*
2545          * Get the bit-mask that shows the active queues for this
2546          * pass.  Compare it to the queues that this irq services
2547          * and call napi if there's a match.
2548          */
2549         var = ql_read32(qdev, ISR1);
2550         if (var & intr_context->irq_mask) {
2551                 netif_info(qdev, intr, qdev->ndev,
2552                            "Waking handler for rx_ring[0].\n");
2553                 ql_disable_completion_interrupt(qdev, intr_context->intr);
2554                 napi_schedule(&rx_ring->napi);
2555                 work_done++;
2556         }
2557         ql_enable_completion_interrupt(qdev, intr_context->intr);
2558         return work_done ? IRQ_HANDLED : IRQ_NONE;
2559 }
2560
2561 static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2562 {
2563
2564         if (skb_is_gso(skb)) {
2565                 int err;
2566                 __be16 l3_proto = vlan_get_protocol(skb);
2567
2568                 err = skb_cow_head(skb, 0);
2569                 if (err < 0)
2570                         return err;
2571
2572                 mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2573                 mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
2574                 mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2575                 mac_iocb_ptr->total_hdrs_len =
2576                     cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
2577                 mac_iocb_ptr->net_trans_offset =
2578                     cpu_to_le16(skb_network_offset(skb) |
2579                                 skb_transport_offset(skb)
2580                                 << OB_MAC_TRANSPORT_HDR_SHIFT);
2581                 mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2582                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
2583                 if (likely(l3_proto == htons(ETH_P_IP))) {
2584                         struct iphdr *iph = ip_hdr(skb);
2585                         iph->check = 0;
2586                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2587                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2588                                                                  iph->daddr, 0,
2589                                                                  IPPROTO_TCP,
2590                                                                  0);
2591                 } else if (l3_proto == htons(ETH_P_IPV6)) {
2592                         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
2593                         tcp_hdr(skb)->check =
2594                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2595                                              &ipv6_hdr(skb)->daddr,
2596                                              0, IPPROTO_TCP, 0);
2597                 }
2598                 return 1;
2599         }
2600         return 0;
2601 }
2602
2603 static void ql_hw_csum_setup(struct sk_buff *skb,
2604                              struct ob_mac_tso_iocb_req *mac_iocb_ptr)
2605 {
2606         int len;
2607         struct iphdr *iph = ip_hdr(skb);
2608         __sum16 *check;
2609         mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
2610         mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
2611         mac_iocb_ptr->net_trans_offset =
2612                 cpu_to_le16(skb_network_offset(skb) |
2613                 skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
2614
2615         mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
2616         len = (ntohs(iph->tot_len) - (iph->ihl << 2));
2617         if (likely(iph->protocol == IPPROTO_TCP)) {
2618                 check = &(tcp_hdr(skb)->check);
2619                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
2620                 mac_iocb_ptr->total_hdrs_len =
2621                     cpu_to_le16(skb_transport_offset(skb) +
2622                                 (tcp_hdr(skb)->doff << 2));
2623         } else {
2624                 check = &(udp_hdr(skb)->check);
2625                 mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
2626                 mac_iocb_ptr->total_hdrs_len =
2627                     cpu_to_le16(skb_transport_offset(skb) +
2628                                 sizeof(struct udphdr));
2629         }
2630         *check = ~csum_tcpudp_magic(iph->saddr,
2631                                     iph->daddr, len, iph->protocol, 0);
2632 }
2633
2634 static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
2635 {
2636         struct tx_ring_desc *tx_ring_desc;
2637         struct ob_mac_iocb_req *mac_iocb_ptr;
2638         struct ql_adapter *qdev = netdev_priv(ndev);
2639         int tso;
2640         struct tx_ring *tx_ring;
2641         u32 tx_ring_idx = (u32) skb->queue_mapping;
2642
2643         tx_ring = &qdev->tx_ring[tx_ring_idx];
2644
2645         if (skb_padto(skb, ETH_ZLEN))
2646                 return NETDEV_TX_OK;
2647
2648         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2649                 netif_info(qdev, tx_queued, qdev->ndev,
2650                            "%s: BUG! shutting down tx queue %d due to lack of resources.\n",
2651                            __func__, tx_ring_idx);
2652                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2653                 tx_ring->tx_errors++;
2654                 return NETDEV_TX_BUSY;
2655         }
2656         tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
2657         mac_iocb_ptr = tx_ring_desc->queue_entry;
2658         memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
2659
2660         mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
2661         mac_iocb_ptr->tid = tx_ring_desc->index;
2662         /* We use the upper 32-bits to store the tx queue for this IO.
2663          * When we get the completion we can use it to establish the context.
2664          */
2665         mac_iocb_ptr->txq_idx = tx_ring_idx;
2666         tx_ring_desc->skb = skb;
2667
2668         mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
2669
2670         if (skb_vlan_tag_present(skb)) {
2671                 netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2672                              "Adding a vlan tag %d.\n", skb_vlan_tag_get(skb));
2673                 mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
2674                 mac_iocb_ptr->vlan_tci = cpu_to_le16(skb_vlan_tag_get(skb));
2675         }
2676         tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2677         if (tso < 0) {
2678                 dev_kfree_skb_any(skb);
2679                 return NETDEV_TX_OK;
2680         } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2681                 ql_hw_csum_setup(skb,
2682                                  (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
2683         }
2684         if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
2685                         NETDEV_TX_OK) {
2686                 netif_err(qdev, tx_queued, qdev->ndev,
2687                           "Could not map the segments.\n");
2688                 tx_ring->tx_errors++;
2689                 return NETDEV_TX_BUSY;
2690         }
2691         QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
2692         tx_ring->prod_idx++;
2693         if (tx_ring->prod_idx == tx_ring->wq_len)
2694                 tx_ring->prod_idx = 0;
2695         wmb();
2696
2697         ql_write_db_reg_relaxed(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
2698         mmiowb();
2699         netif_printk(qdev, tx_queued, KERN_DEBUG, qdev->ndev,
2700                      "tx queued, slot %d, len %d\n",
2701                      tx_ring->prod_idx, skb->len);
2702
2703         atomic_dec(&tx_ring->tx_count);
2704
2705         if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
2706                 netif_stop_subqueue(ndev, tx_ring->wq_id);
2707                 if ((atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
2708                         /*
2709                          * The queue got stopped because the tx_ring was full.
2710                          * Wake it up, because it's now at least 25% empty.
2711                          */
2712                         netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
2713         }
2714         return NETDEV_TX_OK;
2715 }
2716
2717
2718 static void ql_free_shadow_space(struct ql_adapter *qdev)
2719 {
2720         if (qdev->rx_ring_shadow_reg_area) {
2721                 pci_free_consistent(qdev->pdev,
2722                                     PAGE_SIZE,
2723                                     qdev->rx_ring_shadow_reg_area,
2724                                     qdev->rx_ring_shadow_reg_dma);
2725                 qdev->rx_ring_shadow_reg_area = NULL;
2726         }
2727         if (qdev->tx_ring_shadow_reg_area) {
2728                 pci_free_consistent(qdev->pdev,
2729                                     PAGE_SIZE,
2730                                     qdev->tx_ring_shadow_reg_area,
2731                                     qdev->tx_ring_shadow_reg_dma);
2732                 qdev->tx_ring_shadow_reg_area = NULL;
2733         }
2734 }
2735
2736 static int ql_alloc_shadow_space(struct ql_adapter *qdev)
2737 {
2738         qdev->rx_ring_shadow_reg_area =
2739                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2740                                       &qdev->rx_ring_shadow_reg_dma);
2741         if (qdev->rx_ring_shadow_reg_area == NULL) {
2742                 netif_err(qdev, ifup, qdev->ndev,
2743                           "Allocation of RX shadow space failed.\n");
2744                 return -ENOMEM;
2745         }
2746
2747         qdev->tx_ring_shadow_reg_area =
2748                 pci_zalloc_consistent(qdev->pdev, PAGE_SIZE,
2749                                       &qdev->tx_ring_shadow_reg_dma);
2750         if (qdev->tx_ring_shadow_reg_area == NULL) {
2751                 netif_err(qdev, ifup, qdev->ndev,
2752                           "Allocation of TX shadow space failed.\n");
2753                 goto err_wqp_sh_area;
2754         }
2755         return 0;
2756
2757 err_wqp_sh_area:
2758         pci_free_consistent(qdev->pdev,
2759                             PAGE_SIZE,
2760                             qdev->rx_ring_shadow_reg_area,
2761                             qdev->rx_ring_shadow_reg_dma);
2762         return -ENOMEM;
2763 }
2764
2765 static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
2766 {
2767         struct tx_ring_desc *tx_ring_desc;
2768         int i;
2769         struct ob_mac_iocb_req *mac_iocb_ptr;
2770
2771         mac_iocb_ptr = tx_ring->wq_base;
2772         tx_ring_desc = tx_ring->q;
2773         for (i = 0; i < tx_ring->wq_len; i++) {
2774                 tx_ring_desc->index = i;
2775                 tx_ring_desc->skb = NULL;
2776                 tx_ring_desc->queue_entry = mac_iocb_ptr;
2777                 mac_iocb_ptr++;
2778                 tx_ring_desc++;
2779         }
2780         atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
2781 }
2782
2783 static void ql_free_tx_resources(struct ql_adapter *qdev,
2784                                  struct tx_ring *tx_ring)
2785 {
2786         if (tx_ring->wq_base) {
2787                 pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2788                                     tx_ring->wq_base, tx_ring->wq_base_dma);
2789                 tx_ring->wq_base = NULL;
2790         }
2791         kfree(tx_ring->q);
2792         tx_ring->q = NULL;
2793 }
2794
2795 static int ql_alloc_tx_resources(struct ql_adapter *qdev,
2796                                  struct tx_ring *tx_ring)
2797 {
2798         tx_ring->wq_base =
2799             pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
2800                                  &tx_ring->wq_base_dma);
2801
2802         if ((tx_ring->wq_base == NULL) ||
2803             tx_ring->wq_base_dma & WQ_ADDR_ALIGN)
2804                 goto pci_alloc_err;
2805
2806         tx_ring->q =
2807             kmalloc_array(tx_ring->wq_len, sizeof(struct tx_ring_desc),
2808                           GFP_KERNEL);
2809         if (tx_ring->q == NULL)
2810                 goto err;
2811
2812         return 0;
2813 err:
2814         pci_free_consistent(qdev->pdev, tx_ring->wq_size,
2815                             tx_ring->wq_base, tx_ring->wq_base_dma);
2816         tx_ring->wq_base = NULL;
2817 pci_alloc_err:
2818         netif_err(qdev, ifup, qdev->ndev, "tx_ring alloc failed.\n");
2819         return -ENOMEM;
2820 }
2821
2822 static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2823 {
2824         struct bq_desc *lbq_desc;
2825
2826         uint32_t  curr_idx, clean_idx;
2827
2828         curr_idx = rx_ring->lbq_curr_idx;
2829         clean_idx = rx_ring->lbq_clean_idx;
2830         while (curr_idx != clean_idx) {
2831                 lbq_desc = &rx_ring->lbq[curr_idx];
2832
2833                 if (lbq_desc->p.pg_chunk.last_flag) {
2834                         pci_unmap_page(qdev->pdev,
2835                                 lbq_desc->p.pg_chunk.map,
2836                                 ql_lbq_block_size(qdev),
2837                                        PCI_DMA_FROMDEVICE);
2838                         lbq_desc->p.pg_chunk.last_flag = 0;
2839                 }
2840
2841                 put_page(lbq_desc->p.pg_chunk.page);
2842                 lbq_desc->p.pg_chunk.page = NULL;
2843
2844                 if (++curr_idx == rx_ring->lbq_len)
2845                         curr_idx = 0;
2846
2847         }
2848         if (rx_ring->pg_chunk.page) {
2849                 pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map,
2850                         ql_lbq_block_size(qdev), PCI_DMA_FROMDEVICE);
2851                 put_page(rx_ring->pg_chunk.page);
2852                 rx_ring->pg_chunk.page = NULL;
2853         }
2854 }
2855
2856 static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
2857 {
2858         int i;
2859         struct bq_desc *sbq_desc;
2860
2861         for (i = 0; i < rx_ring->sbq_len; i++) {
2862                 sbq_desc = &rx_ring->sbq[i];
2863                 if (sbq_desc == NULL) {
2864                         netif_err(qdev, ifup, qdev->ndev,
2865                                   "sbq_desc %d is NULL.\n", i);
2866                         return;
2867                 }
2868                 if (sbq_desc->p.skb) {
2869                         pci_unmap_single(qdev->pdev,
2870                                          dma_unmap_addr(sbq_desc, mapaddr),
2871                                          dma_unmap_len(sbq_desc, maplen),
2872                                          PCI_DMA_FROMDEVICE);
2873                         dev_kfree_skb(sbq_desc->p.skb);
2874                         sbq_desc->p.skb = NULL;
2875                 }
2876         }
2877 }
2878
2879 /* Free all large and small rx buffers associated
2880  * with the completion queues for this device.
2881  */
2882 static void ql_free_rx_buffers(struct ql_adapter *qdev)
2883 {
2884         int i;
2885         struct rx_ring *rx_ring;
2886
2887         for (i = 0; i < qdev->rx_ring_count; i++) {
2888                 rx_ring = &qdev->rx_ring[i];
2889                 if (rx_ring->lbq)
2890                         ql_free_lbq_buffers(qdev, rx_ring);
2891                 if (rx_ring->sbq)
2892                         ql_free_sbq_buffers(qdev, rx_ring);
2893         }
2894 }
2895
2896 static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
2897 {
2898         struct rx_ring *rx_ring;
2899         int i;
2900
2901         for (i = 0; i < qdev->rx_ring_count; i++) {
2902                 rx_ring = &qdev->rx_ring[i];
2903                 if (rx_ring->type != TX_Q)
2904                         ql_update_buffer_queues(qdev, rx_ring);
2905         }
2906 }
2907
2908 static void ql_init_lbq_ring(struct ql_adapter *qdev,
2909                                 struct rx_ring *rx_ring)
2910 {
2911         int i;
2912         struct bq_desc *lbq_desc;
2913         __le64 *bq = rx_ring->lbq_base;
2914
2915         memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
2916         for (i = 0; i < rx_ring->lbq_len; i++) {
2917                 lbq_desc = &rx_ring->lbq[i];
2918                 memset(lbq_desc, 0, sizeof(*lbq_desc));
2919                 lbq_desc->index = i;
2920                 lbq_desc->addr = bq;
2921                 bq++;
2922         }
2923 }
2924
2925 static void ql_init_sbq_ring(struct ql_adapter *qdev,
2926                                 struct rx_ring *rx_ring)
2927 {
2928         int i;
2929         struct bq_desc *sbq_desc;
2930         __le64 *bq = rx_ring->sbq_base;
2931
2932         memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
2933         for (i = 0; i < rx_ring->sbq_len; i++) {
2934                 sbq_desc = &rx_ring->sbq[i];
2935                 memset(sbq_desc, 0, sizeof(*sbq_desc));
2936                 sbq_desc->index = i;
2937                 sbq_desc->addr = bq;
2938                 bq++;
2939         }
2940 }
2941
2942 static void ql_free_rx_resources(struct ql_adapter *qdev,
2943                                  struct rx_ring *rx_ring)
2944 {
2945         /* Free the small buffer queue. */
2946         if (rx_ring->sbq_base) {
2947                 pci_free_consistent(qdev->pdev,
2948                                     rx_ring->sbq_size,
2949                                     rx_ring->sbq_base, rx_ring->sbq_base_dma);
2950                 rx_ring->sbq_base = NULL;
2951         }
2952
2953         /* Free the small buffer queue control blocks. */
2954         kfree(rx_ring->sbq);
2955         rx_ring->sbq = NULL;
2956
2957         /* Free the large buffer queue. */
2958         if (rx_ring->lbq_base) {
2959                 pci_free_consistent(qdev->pdev,
2960                                     rx_ring->lbq_size,
2961                                     rx_ring->lbq_base, rx_ring->lbq_base_dma);
2962                 rx_ring->lbq_base = NULL;
2963         }
2964
2965         /* Free the large buffer queue control blocks. */
2966         kfree(rx_ring->lbq);
2967         rx_ring->lbq = NULL;
2968
2969         /* Free the rx queue. */
2970         if (rx_ring->cq_base) {
2971                 pci_free_consistent(qdev->pdev,
2972                                     rx_ring->cq_size,
2973                                     rx_ring->cq_base, rx_ring->cq_base_dma);
2974                 rx_ring->cq_base = NULL;
2975         }
2976 }
2977
2978 /* Allocate queues and buffers for this completions queue based
2979  * on the values in the parameter structure. */
2980 static int ql_alloc_rx_resources(struct ql_adapter *qdev,
2981                                  struct rx_ring *rx_ring)
2982 {
2983
2984         /*
2985          * Allocate the completion queue for this rx_ring.
2986          */
2987         rx_ring->cq_base =
2988             pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
2989                                  &rx_ring->cq_base_dma);
2990
2991         if (rx_ring->cq_base == NULL) {
2992                 netif_err(qdev, ifup, qdev->ndev, "rx_ring alloc failed.\n");
2993                 return -ENOMEM;
2994         }
2995
2996         if (rx_ring->sbq_len) {
2997                 /*
2998                  * Allocate small buffer queue.
2999                  */
3000                 rx_ring->sbq_base =
3001                     pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
3002                                          &rx_ring->sbq_base_dma);
3003
3004                 if (rx_ring->sbq_base == NULL) {
3005                         netif_err(qdev, ifup, qdev->ndev,
3006                                   "Small buffer queue allocation failed.\n");
3007                         goto err_mem;
3008                 }
3009
3010                 /*
3011                  * Allocate small buffer queue control blocks.
3012                  */
3013                 rx_ring->sbq = kmalloc_array(rx_ring->sbq_len,
3014                                              sizeof(struct bq_desc),
3015                                              GFP_KERNEL);
3016                 if (rx_ring->sbq == NULL)
3017                         goto err_mem;
3018
3019                 ql_init_sbq_ring(qdev, rx_ring);
3020         }
3021
3022         if (rx_ring->lbq_len) {
3023                 /*
3024                  * Allocate large buffer queue.
3025                  */
3026                 rx_ring->lbq_base =
3027                     pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
3028                                          &rx_ring->lbq_base_dma);
3029
3030                 if (rx_ring->lbq_base == NULL) {
3031                         netif_err(qdev, ifup, qdev->ndev,
3032                                   "Large buffer queue allocation failed.\n");
3033                         goto err_mem;
3034                 }
3035                 /*
3036                  * Allocate large buffer queue control blocks.
3037                  */
3038                 rx_ring->lbq = kmalloc_array(rx_ring->lbq_len,
3039                                              sizeof(struct bq_desc),
3040                                              GFP_KERNEL);
3041                 if (rx_ring->lbq == NULL)
3042                         goto err_mem;
3043
3044                 ql_init_lbq_ring(qdev, rx_ring);
3045         }
3046
3047         return 0;
3048
3049 err_mem:
3050         ql_free_rx_resources(qdev, rx_ring);
3051         return -ENOMEM;
3052 }
3053
3054 static void ql_tx_ring_clean(struct ql_adapter *qdev)
3055 {
3056         struct tx_ring *tx_ring;
3057         struct tx_ring_desc *tx_ring_desc;
3058         int i, j;
3059
3060         /*
3061          * Loop through all queues and free
3062          * any resources.
3063          */
3064         for (j = 0; j < qdev->tx_ring_count; j++) {
3065                 tx_ring = &qdev->tx_ring[j];
3066                 for (i = 0; i < tx_ring->wq_len; i++) {
3067                         tx_ring_desc = &tx_ring->q[i];
3068                         if (tx_ring_desc && tx_ring_desc->skb) {
3069                                 netif_err(qdev, ifdown, qdev->ndev,
3070                                           "Freeing lost SKB %p, from queue %d, index %d.\n",
3071                                           tx_ring_desc->skb, j,
3072                                           tx_ring_desc->index);
3073                                 ql_unmap_send(qdev, tx_ring_desc,
3074                                               tx_ring_desc->map_cnt);
3075                                 dev_kfree_skb(tx_ring_desc->skb);
3076                                 tx_ring_desc->skb = NULL;
3077                         }
3078                 }
3079         }
3080 }
3081
3082 static void ql_free_mem_resources(struct ql_adapter *qdev)
3083 {
3084         int i;
3085
3086         for (i = 0; i < qdev->tx_ring_count; i++)
3087                 ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
3088         for (i = 0; i < qdev->rx_ring_count; i++)
3089                 ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
3090         ql_free_shadow_space(qdev);
3091 }
3092
3093 static int ql_alloc_mem_resources(struct ql_adapter *qdev)
3094 {
3095         int i;
3096
3097         /* Allocate space for our shadow registers and such. */
3098         if (ql_alloc_shadow_space(qdev))
3099                 return -ENOMEM;
3100
3101         for (i = 0; i < qdev->rx_ring_count; i++) {
3102                 if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
3103                         netif_err(qdev, ifup, qdev->ndev,
3104                                   "RX resource allocation failed.\n");
3105                         goto err_mem;
3106                 }
3107         }
3108         /* Allocate tx queue resources */
3109         for (i = 0; i < qdev->tx_ring_count; i++) {
3110                 if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
3111                         netif_err(qdev, ifup, qdev->ndev,
3112                                   "TX resource allocation failed.\n");
3113                         goto err_mem;
3114                 }
3115         }
3116         return 0;
3117
3118 err_mem:
3119         ql_free_mem_resources(qdev);
3120         return -ENOMEM;
3121 }
3122
3123 /* Set up the rx ring control block and pass it to the chip.
3124  * The control block is defined as
3125  * "Completion Queue Initialization Control Block", or cqicb.
3126  */
3127 static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
3128 {
3129         struct cqicb *cqicb = &rx_ring->cqicb;
3130         void *shadow_reg = qdev->rx_ring_shadow_reg_area +
3131                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3132         u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
3133                 (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
3134         void __iomem *doorbell_area =
3135             qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
3136         int err = 0;
3137         u16 bq_len;
3138         u64 tmp;
3139         __le64 *base_indirect_ptr;
3140         int page_entries;
3141
3142         /* Set up the shadow registers for this ring. */
3143         rx_ring->prod_idx_sh_reg = shadow_reg;
3144         rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
3145         *rx_ring->prod_idx_sh_reg = 0;
3146         shadow_reg += sizeof(u64);
3147         shadow_reg_dma += sizeof(u64);
3148         rx_ring->lbq_base_indirect = shadow_reg;
3149         rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
3150         shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3151         shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3152         rx_ring->sbq_base_indirect = shadow_reg;
3153         rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
3154
3155         /* PCI doorbell mem area + 0x00 for consumer index register */
3156         rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
3157         rx_ring->cnsmr_idx = 0;
3158         rx_ring->curr_entry = rx_ring->cq_base;
3159
3160         /* PCI doorbell mem area + 0x04 for valid register */
3161         rx_ring->valid_db_reg = doorbell_area + 0x04;
3162
3163         /* PCI doorbell mem area + 0x18 for large buffer consumer */
3164         rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
3165
3166         /* PCI doorbell mem area + 0x1c */
3167         rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
3168
3169         memset((void *)cqicb, 0, sizeof(struct cqicb));
3170         cqicb->msix_vect = rx_ring->irq;
3171
3172         bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
3173         cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
3174
3175         cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
3176
3177         cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
3178
3179         /*
3180          * Set up the control block load flags.
3181          */
3182         cqicb->flags = FLAGS_LC |       /* Load queue base address */
3183             FLAGS_LV |          /* Load MSI-X vector */
3184             FLAGS_LI;           /* Load irq delay values */
3185         if (rx_ring->lbq_len) {
3186                 cqicb->flags |= FLAGS_LL;       /* Load lbq values */
3187                 tmp = (u64)rx_ring->lbq_base_dma;
3188                 base_indirect_ptr = rx_ring->lbq_base_indirect;
3189                 page_entries = 0;
3190                 do {
3191                         *base_indirect_ptr = cpu_to_le64(tmp);
3192                         tmp += DB_PAGE_SIZE;
3193                         base_indirect_ptr++;
3194                         page_entries++;
3195                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
3196                 cqicb->lbq_addr =
3197                     cpu_to_le64(rx_ring->lbq_base_indirect_dma);
3198                 bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
3199                         (u16) rx_ring->lbq_buf_size;
3200                 cqicb->lbq_buf_size = cpu_to_le16(bq_len);
3201                 bq_len = (rx_ring->lbq_len == 65536) ? 0 :
3202                         (u16) rx_ring->lbq_len;
3203                 cqicb->lbq_len = cpu_to_le16(bq_len);
3204                 rx_ring->lbq_prod_idx = 0;
3205                 rx_ring->lbq_curr_idx = 0;
3206                 rx_ring->lbq_clean_idx = 0;
3207                 rx_ring->lbq_free_cnt = rx_ring->lbq_len;
3208         }
3209         if (rx_ring->sbq_len) {
3210                 cqicb->flags |= FLAGS_LS;       /* Load sbq values */
3211                 tmp = (u64)rx_ring->sbq_base_dma;
3212                 base_indirect_ptr = rx_ring->sbq_base_indirect;
3213                 page_entries = 0;
3214                 do {
3215                         *base_indirect_ptr = cpu_to_le64(tmp);
3216                         tmp += DB_PAGE_SIZE;
3217                         base_indirect_ptr++;
3218                         page_entries++;
3219                 } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
3220                 cqicb->sbq_addr =
3221                     cpu_to_le64(rx_ring->sbq_base_indirect_dma);
3222                 cqicb->sbq_buf_size =
3223                     cpu_to_le16((u16)(rx_ring->sbq_buf_size));
3224                 bq_len = (rx_ring->sbq_len == 65536) ? 0 :
3225                         (u16) rx_ring->sbq_len;
3226                 cqicb->sbq_len = cpu_to_le16(bq_len);
3227                 rx_ring->sbq_prod_idx = 0;
3228                 rx_ring->sbq_curr_idx = 0;
3229                 rx_ring->sbq_clean_idx = 0;
3230                 rx_ring->sbq_free_cnt = rx_ring->sbq_len;
3231         }
3232         switch (rx_ring->type) {
3233         case TX_Q:
3234                 cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
3235                 cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
3236                 break;
3237         case RX_Q:
3238                 /* Inbound completion handling rx_rings run in
3239                  * separate NAPI contexts.
3240                  */
3241                 netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
3242                                64);
3243                 cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
3244                 cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
3245                 break;
3246         default:
3247                 netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3248                              "Invalid rx_ring->type = %d.\n", rx_ring->type);
3249         }
3250         err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
3251                            CFG_LCQ, rx_ring->cq_id);
3252         if (err) {
3253                 netif_err(qdev, ifup, qdev->ndev, "Failed to load CQICB.\n");
3254                 return err;
3255         }
3256         return err;
3257 }
3258
3259 static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
3260 {
3261         struct wqicb *wqicb = (struct wqicb *)tx_ring;
3262         void __iomem *doorbell_area =
3263             qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
3264         void *shadow_reg = qdev->tx_ring_shadow_reg_area +
3265             (tx_ring->wq_id * sizeof(u64));
3266         u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
3267             (tx_ring->wq_id * sizeof(u64));
3268         int err = 0;
3269
3270         /*
3271          * Assign doorbell registers for this tx_ring.
3272          */
3273         /* TX PCI doorbell mem area for tx producer index */
3274         tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
3275         tx_ring->prod_idx = 0;
3276         /* TX PCI doorbell mem area + 0x04 */
3277         tx_ring->valid_db_reg = doorbell_area + 0x04;
3278
3279         /*
3280          * Assign shadow registers for this tx_ring.
3281          */
3282         tx_ring->cnsmr_idx_sh_reg = shadow_reg;
3283         tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
3284
3285         wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
3286         wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
3287                                    Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
3288         wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
3289         wqicb->rid = 0;
3290         wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
3291
3292         wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
3293
3294         ql_init_tx_ring(qdev, tx_ring);
3295
3296         err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
3297                            (u16) tx_ring->wq_id);
3298         if (err) {
3299                 netif_err(qdev, ifup, qdev->ndev, "Failed to load tx_ring.\n");
3300                 return err;
3301         }
3302         return err;
3303 }
3304
3305 static void ql_disable_msix(struct ql_adapter *qdev)
3306 {
3307         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3308                 pci_disable_msix(qdev->pdev);
3309                 clear_bit(QL_MSIX_ENABLED, &qdev->flags);
3310                 kfree(qdev->msi_x_entry);
3311                 qdev->msi_x_entry = NULL;
3312         } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3313                 pci_disable_msi(qdev->pdev);
3314                 clear_bit(QL_MSI_ENABLED, &qdev->flags);
3315         }
3316 }
3317
3318 /* We start by trying to get the number of vectors
3319  * stored in qdev->intr_count. If we don't get that
3320  * many then we reduce the count and try again.
3321  */
3322 static void ql_enable_msix(struct ql_adapter *qdev)
3323 {
3324         int i, err;
3325
3326         /* Get the MSIX vectors. */
3327         if (qlge_irq_type == MSIX_IRQ) {
3328                 /* Try to alloc space for the msix struct,
3329                  * if it fails then go to MSI/legacy.
3330                  */
3331                 qdev->msi_x_entry = kcalloc(qdev->intr_count,
3332                                             sizeof(struct msix_entry),
3333                                             GFP_KERNEL);
3334                 if (!qdev->msi_x_entry) {
3335                         qlge_irq_type = MSI_IRQ;
3336                         goto msi;
3337                 }
3338
3339                 for (i = 0; i < qdev->intr_count; i++)
3340                         qdev->msi_x_entry[i].entry = i;
3341
3342                 err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry,
3343                                             1, qdev->intr_count);
3344                 if (err < 0) {
3345                         kfree(qdev->msi_x_entry);
3346                         qdev->msi_x_entry = NULL;
3347                         netif_warn(qdev, ifup, qdev->ndev,
3348                                    "MSI-X Enable failed, trying MSI.\n");
3349                         qlge_irq_type = MSI_IRQ;
3350                 } else {
3351                         qdev->intr_count = err;
3352                         set_bit(QL_MSIX_ENABLED, &qdev->flags);
3353                         netif_info(qdev, ifup, qdev->ndev,
3354                                    "MSI-X Enabled, got %d vectors.\n",
3355                                    qdev->intr_count);
3356                         return;
3357                 }
3358         }
3359 msi:
3360         qdev->intr_count = 1;
3361         if (qlge_irq_type == MSI_IRQ) {
3362                 if (!pci_enable_msi(qdev->pdev)) {
3363                         set_bit(QL_MSI_ENABLED, &qdev->flags);
3364                         netif_info(qdev, ifup, qdev->ndev,
3365                                    "Running with MSI interrupts.\n");
3366                         return;
3367                 }
3368         }
3369         qlge_irq_type = LEG_IRQ;
3370         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3371                      "Running with legacy interrupts.\n");
3372 }
3373
3374 /* Each vector services 1 RSS ring and and 1 or more
3375  * TX completion rings.  This function loops through
3376  * the TX completion rings and assigns the vector that
3377  * will service it.  An example would be if there are
3378  * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
3379  * This would mean that vector 0 would service RSS ring 0
3380  * and TX completion rings 0,1,2 and 3.  Vector 1 would
3381  * service RSS ring 1 and TX completion rings 4,5,6 and 7.
3382  */
3383 static void ql_set_tx_vect(struct ql_adapter *qdev)
3384 {
3385         int i, j, vect;
3386         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3387
3388         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3389                 /* Assign irq vectors to TX rx_rings.*/
3390                 for (vect = 0, j = 0, i = qdev->rss_ring_count;
3391                                          i < qdev->rx_ring_count; i++) {
3392                         if (j == tx_rings_per_vector) {
3393                                 vect++;
3394                                 j = 0;
3395                         }
3396                         qdev->rx_ring[i].irq = vect;
3397                         j++;
3398                 }
3399         } else {
3400                 /* For single vector all rings have an irq
3401                  * of zero.
3402                  */
3403                 for (i = 0; i < qdev->rx_ring_count; i++)
3404                         qdev->rx_ring[i].irq = 0;
3405         }
3406 }
3407
3408 /* Set the interrupt mask for this vector.  Each vector
3409  * will service 1 RSS ring and 1 or more TX completion
3410  * rings.  This function sets up a bit mask per vector
3411  * that indicates which rings it services.
3412  */
3413 static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
3414 {
3415         int j, vect = ctx->intr;
3416         u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
3417
3418         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3419                 /* Add the RSS ring serviced by this vector
3420                  * to the mask.
3421                  */
3422                 ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
3423                 /* Add the TX ring(s) serviced by this vector
3424                  * to the mask. */
3425                 for (j = 0; j < tx_rings_per_vector; j++) {
3426                         ctx->irq_mask |=
3427                         (1 << qdev->rx_ring[qdev->rss_ring_count +
3428                         (vect * tx_rings_per_vector) + j].cq_id);
3429                 }
3430         } else {
3431                 /* For single vector we just shift each queue's
3432                  * ID into the mask.
3433                  */
3434                 for (j = 0; j < qdev->rx_ring_count; j++)
3435                         ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
3436         }
3437 }
3438
3439 /*
3440  * Here we build the intr_context structures based on
3441  * our rx_ring count and intr vector count.
3442  * The intr_context structure is used to hook each vector
3443  * to possibly different handlers.
3444  */
3445 static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
3446 {
3447         int i = 0;
3448         struct intr_context *intr_context = &qdev->intr_context[0];
3449
3450         if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
3451                 /* Each rx_ring has it's
3452                  * own intr_context since we have separate
3453                  * vectors for each queue.
3454                  */
3455                 for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3456                         qdev->rx_ring[i].irq = i;
3457                         intr_context->intr = i;
3458                         intr_context->qdev = qdev;
3459                         /* Set up this vector's bit-mask that indicates
3460                          * which queues it services.
3461                          */
3462                         ql_set_irq_mask(qdev, intr_context);
3463                         /*
3464                          * We set up each vectors enable/disable/read bits so
3465                          * there's no bit/mask calculations in the critical path.
3466                          */
3467                         intr_context->intr_en_mask =
3468                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3469                             INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
3470                             | i;
3471                         intr_context->intr_dis_mask =
3472                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3473                             INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
3474                             INTR_EN_IHD | i;
3475                         intr_context->intr_read_mask =
3476                             INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3477                             INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
3478                             i;
3479                         if (i == 0) {
3480                                 /* The first vector/queue handles
3481                                  * broadcast/multicast, fatal errors,
3482                                  * and firmware events.  This in addition
3483                                  * to normal inbound NAPI processing.
3484                                  */
3485                                 intr_context->handler = qlge_isr;
3486                                 sprintf(intr_context->name, "%s-rx-%d",
3487                                         qdev->ndev->name, i);
3488                         } else {
3489                                 /*
3490                                  * Inbound queues handle unicast frames only.
3491                                  */
3492                                 intr_context->handler = qlge_msix_rx_isr;
3493                                 sprintf(intr_context->name, "%s-rx-%d",
3494                                         qdev->ndev->name, i);
3495                         }
3496                 }
3497         } else {
3498                 /*
3499                  * All rx_rings use the same intr_context since
3500                  * there is only one vector.
3501                  */
3502                 intr_context->intr = 0;
3503                 intr_context->qdev = qdev;
3504                 /*
3505                  * We set up each vectors enable/disable/read bits so
3506                  * there's no bit/mask calculations in the critical path.
3507                  */
3508                 intr_context->intr_en_mask =
3509                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
3510                 intr_context->intr_dis_mask =
3511                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
3512                     INTR_EN_TYPE_DISABLE;
3513                 intr_context->intr_read_mask =
3514                     INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
3515                 /*
3516                  * Single interrupt means one handler for all rings.
3517                  */
3518                 intr_context->handler = qlge_isr;
3519                 sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
3520                 /* Set up this vector's bit-mask that indicates
3521                  * which queues it services. In this case there is
3522                  * a single vector so it will service all RSS and
3523                  * TX completion rings.
3524                  */
3525                 ql_set_irq_mask(qdev, intr_context);
3526         }
3527         /* Tell the TX completion rings which MSIx vector
3528          * they will be using.
3529          */
3530         ql_set_tx_vect(qdev);
3531 }
3532
3533 static void ql_free_irq(struct ql_adapter *qdev)
3534 {
3535         int i;
3536         struct intr_context *intr_context = &qdev->intr_context[0];
3537
3538         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3539                 if (intr_context->hooked) {
3540                         if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3541                                 free_irq(qdev->msi_x_entry[i].vector,
3542                                          &qdev->rx_ring[i]);
3543                         } else {
3544                                 free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
3545                         }
3546                 }
3547         }
3548         ql_disable_msix(qdev);
3549 }
3550
3551 static int ql_request_irq(struct ql_adapter *qdev)
3552 {
3553         int i;
3554         int status = 0;
3555         struct pci_dev *pdev = qdev->pdev;
3556         struct intr_context *intr_context = &qdev->intr_context[0];
3557
3558         ql_resolve_queues_to_irqs(qdev);
3559
3560         for (i = 0; i < qdev->intr_count; i++, intr_context++) {
3561                 atomic_set(&intr_context->irq_cnt, 0);
3562                 if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
3563                         status = request_irq(qdev->msi_x_entry[i].vector,
3564                                              intr_context->handler,
3565                                              0,
3566                                              intr_context->name,
3567                                              &qdev->rx_ring[i]);
3568                         if (status) {
3569                                 netif_err(qdev, ifup, qdev->ndev,
3570                                           "Failed request for MSIX interrupt %d.\n",
3571                                           i);
3572                                 goto err_irq;
3573                         }
3574                 } else {
3575                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3576                                      "trying msi or legacy interrupts.\n");
3577                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3578                                      "%s: irq = %d.\n", __func__, pdev->irq);
3579                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3580                                      "%s: context->name = %s.\n", __func__,
3581                                      intr_context->name);
3582                         netif_printk(qdev, ifup, KERN_DEBUG, qdev->ndev,
3583                                      "%s: dev_id = 0x%p.\n", __func__,
3584                                      &qdev->rx_ring[0]);
3585                         status =
3586                             request_irq(pdev->irq, qlge_isr,
3587                                         test_bit(QL_MSI_ENABLED,
3588                                                  &qdev->
3589                                                  flags) ? 0 : IRQF_SHARED,
3590                                         intr_context->name, &qdev->rx_ring[0]);
3591                         if (status)
3592                                 goto err_irq;
3593
3594                         netif_err(qdev, ifup, qdev->ndev,
3595                                   "Hooked intr %d, queue type %s, with name %s.\n",
3596                                   i,
3597                                   qdev->rx_ring[0].type == DEFAULT_Q ?
3598                                   "DEFAULT_Q" :
3599                                   qdev->rx_ring[0].type == TX_Q ? "TX_Q" :
3600                                   qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
3601                                   intr_context->name);
3602                 }
3603                 intr_context->hooked = 1;
3604         }
3605         return status;
3606 err_irq:
3607         netif_err(qdev, ifup, qdev->ndev, "Failed to get the interrupts!!!\n");
3608         ql_free_irq(qdev);
3609         return status;
3610 }
3611
3612 static int ql_start_rss(struct ql_adapter *qdev)
3613 {
3614         static const u8 init_hash_seed[] = {
3615                 0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
3616                 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
3617                 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
3618                 0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
3619                 0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa
3620         };
3621         struct ricb *ricb = &qdev->ricb;
3622         int status = 0;
3623         int i;
3624         u8 *hash_id = (u8 *) ricb->hash_cq_id;
3625
3626         memset((void *)ricb, 0, sizeof(*ricb));
3627
3628         ricb->base_cq = RSS_L4K;
3629         ricb->flags =
3630                 (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
3631         ricb->mask = cpu_to_le16((u16)(0x3ff));
3632
3633         /*
3634          * Fill out the Indirection Table.
3635          */
3636         for (i = 0; i < 1024; i++)
3637                 hash_id[i] = (i & (qdev->rss_ring_count - 1));
3638
3639         memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
3640         memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
3641
3642         status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
3643         if (status) {
3644                 netif_err(qdev, ifup, qdev->ndev, "Failed to load RICB.\n");
3645                 return status;
3646         }
3647         return status;
3648 }
3649
3650 static int ql_clear_routing_entries(struct ql_adapter *qdev)
3651 {
3652         int i, status = 0;
3653
3654         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3655         if (status)
3656                 return status;
3657         /* Clear all the entries in the routing table. */
3658         for (i = 0; i < 16; i++) {
3659                 status = ql_set_routing_reg(qdev, i, 0, 0);
3660                 if (status) {
3661                         netif_err(qdev, ifup, qdev->ndev,
3662                                   "Failed to init routing register for CAM packets.\n");
3663                         break;
3664                 }
3665         }
3666         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3667         return status;
3668 }
3669
3670 /* Initialize the frame-to-queue routing. */
3671 static int ql_route_initialize(struct ql_adapter *qdev)
3672 {
3673         int status = 0;
3674
3675         /* Clear all the entries in the routing table. */
3676         status = ql_clear_routing_entries(qdev);
3677         if (status)
3678                 return status;
3679
3680         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
3681         if (status)
3682                 return status;
3683
3684         status = ql_set_routing_reg(qdev, RT_IDX_IP_CSUM_ERR_SLOT,
3685                                                 RT_IDX_IP_CSUM_ERR, 1);
3686         if (status) {
3687                 netif_err(qdev, ifup, qdev->ndev,
3688                         "Failed to init routing register "
3689                         "for IP CSUM error packets.\n");
3690                 goto exit;
3691         }
3692         status = ql_set_routing_reg(qdev, RT_IDX_TCP_UDP_CSUM_ERR_SLOT,
3693                                                 RT_IDX_TU_CSUM_ERR, 1);
3694         if (status) {
3695                 netif_err(qdev, ifup, qdev->ndev,
3696                         "Failed to init routing register "
3697                         "for TCP/UDP CSUM error packets.\n");
3698                 goto exit;
3699         }
3700         status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
3701         if (status) {
3702                 netif_err(qdev, ifup, qdev->ndev,
3703                           "Failed to init routing register for broadcast packets.\n");
3704                 goto exit;
3705         }
3706         /* If we have more than one inbound queue, then turn on RSS in the
3707          * routing block.
3708          */
3709         if (qdev->rss_ring_count > 1) {
3710                 status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
3711                                         RT_IDX_RSS_MATCH, 1);
3712                 if (status) {
3713                         netif_err(qdev, ifup, qdev->ndev,
3714                                   "Failed to init routing register for MATCH RSS packets.\n");
3715                         goto exit;
3716                 }
3717         }
3718
3719         status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
3720                                     RT_IDX_CAM_HIT, 1);
3721         if (status)
3722                 netif_err(qdev, ifup, qdev->ndev,
3723                           "Failed to init routing register for CAM packets.\n");
3724 exit:
3725         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
3726         return status;
3727 }
3728
3729 int ql_cam_route_initialize(struct ql_adapter *qdev)
3730 {
3731         int status, set;
3732
3733         /* If check if the link is up and use to
3734          * determine if we are setting or clearing
3735          * the MAC address in the CAM.
3736          */
3737         set = ql_read32(qdev, STS);
3738         set &= qdev->port_link_up;
3739         status = ql_set_mac_addr(qdev, set);
3740         if (status) {
3741                 netif_err(qdev, ifup, qdev->ndev, "Failed to init mac address.\n");
3742                 return status;
3743         }
3744
3745         status = ql_route_initialize(qdev);
3746         if (status)
3747                 netif_err(qdev, ifup, qdev->ndev, "Failed to init routing table.\n");
3748
3749         return status;
3750 }
3751
3752 static int ql_adapter_initialize(struct ql_adapter *qdev)
3753 {
3754         u32 value, mask;
3755         int i;
3756         int status = 0;
3757
3758         /*
3759          * Set up the System register to halt on errors.
3760          */
3761         value = SYS_EFE | SYS_FAE;
3762         mask = value << 16;
3763         ql_write32(qdev, SYS, mask | value);
3764
3765         /* Set the default queue, and VLAN behavior. */
3766         value = NIC_RCV_CFG_DFQ;
3767         mask = NIC_RCV_CFG_DFQ_MASK;
3768         if (qdev->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3769                 value |= NIC_RCV_CFG_RV;
3770                 mask |= (NIC_RCV_CFG_RV << 16);
3771         }
3772         ql_write32(qdev, NIC_RCV_CFG, (mask | value));
3773
3774         /* Set the MPI interrupt to enabled. */
3775         ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
3776
3777         /* Enable the function, set pagesize, enable error checking. */
3778         value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
3779             FSC_EC | FSC_VM_PAGE_4K;
3780         value |= SPLT_SETTING;
3781
3782         /* Set/clear header splitting. */
3783         mask = FSC_VM_PAGESIZE_MASK |
3784             FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
3785         ql_write32(qdev, FSC, mask | value);
3786
3787         ql_write32(qdev, SPLT_HDR, SPLT_LEN);
3788
3789         /* Set RX packet routing to use port/pci function on which the
3790          * packet arrived on in addition to usual frame routing.
3791          * This is helpful on bonding where both interfaces can have
3792          * the same MAC address.
3793          */
3794         ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
3795         /* Reroute all packets to our Interface.
3796          * They may have been routed to MPI firmware
3797          * due to WOL.
3798          */
3799         value = ql_read32(qdev, MGMT_RCV_CFG);
3800         value &= ~MGMT_RCV_CFG_RM;
3801         mask = 0xffff0000;
3802
3803         /* Sticky reg needs clearing due to WOL. */
3804         ql_write32(qdev, MGMT_RCV_CFG, mask);
3805         ql_write32(qdev, MGMT_RCV_CFG, mask | value);
3806
3807         /* Default WOL is enable on Mezz cards */
3808         if (qdev->pdev->subsystem_device == 0x0068 ||
3809                         qdev->pdev->subsystem_device == 0x0180)
3810                 qdev->wol = WAKE_MAGIC;
3811
3812         /* Start up the rx queues. */
3813         for (i = 0; i < qdev->rx_ring_count; i++) {
3814                 status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
3815                 if (status) {
3816                         netif_err(qdev, ifup, qdev->ndev,
3817                                   "Failed to start rx ring[%d].\n", i);
3818                         return status;
3819                 }
3820         }
3821
3822         /* If there is more than one inbound completion queue
3823          * then download a RICB to configure RSS.
3824          */
3825         if (qdev->rss_ring_count > 1) {
3826                 status = ql_start_rss(qdev);
3827                 if (status) {
3828                         netif_err(qdev, ifup, qdev->ndev, "Failed to start RSS.\n");
3829                         return status;
3830                 }
3831         }
3832
3833         /* Start up the tx queues. */
3834         for (i = 0; i < qdev->tx_ring_count; i++) {
3835                 status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
3836                 if (status) {
3837                         netif_err(qdev, ifup, qdev->ndev,
3838                                   "Failed to start tx ring[%d].\n", i);
3839                         return status;
3840                 }
3841         }
3842
3843         /* Initialize the port and set the max framesize. */
3844         status = qdev->nic_ops->port_initialize(qdev);
3845         if (status)
3846                 netif_err(qdev, ifup, qdev->ndev, "Failed to start port.\n");
3847
3848         /* Set up the MAC address and frame routing filter. */
3849         status = ql_cam_route_initialize(qdev);
3850         if (status) {
3851                 netif_err(qdev, ifup, qdev->ndev,
3852                           "Failed to init CAM/Routing tables.\n");
3853                 return status;
3854         }
3855
3856         /* Start NAPI for the RSS queues. */
3857         for (i = 0; i < qdev->rss_ring_count; i++)
3858                 napi_enable(&qdev->rx_ring[i].napi);
3859
3860         return status;
3861 }
3862
3863 /* Issue soft reset to chip. */
3864 static int ql_adapter_reset(struct ql_adapter *qdev)
3865 {
3866         u32 value;
3867         int status = 0;
3868         unsigned long end_jiffies;
3869
3870         /* Clear all the entries in the routing table. */
3871         status = ql_clear_routing_entries(qdev);
3872         if (status) {
3873                 netif_err(qdev, ifup, qdev->ndev, "Failed to clear routing bits.\n");
3874                 return status;
3875         }
3876
3877         /* Check if bit is set then skip the mailbox command and
3878          * clear the bit, else we are in normal reset process.
3879          */
3880         if (!test_bit(QL_ASIC_RECOVERY, &qdev->flags)) {
3881                 /* Stop management traffic. */
3882                 ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
3883
3884                 /* Wait for the NIC and MGMNT FIFOs to empty. */
3885                 ql_wait_fifo_empty(qdev);
3886         } else
3887                 clear_bit(QL_ASIC_RECOVERY, &qdev->flags);
3888
3889         ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
3890
3891         end_jiffies = jiffies + usecs_to_jiffies(30);
3892         do {
3893                 value = ql_read32(qdev, RST_FO);
3894                 if ((value & RST_FO_FR) == 0)
3895                         break;
3896                 cpu_relax();
3897         } while (time_before(jiffies, end_jiffies));
3898
3899         if (value & RST_FO_FR) {
3900                 netif_err(qdev, ifdown, qdev->ndev,
3901                           "ETIMEDOUT!!! errored out of resetting the chip!\n");
3902                 status = -ETIMEDOUT;
3903         }
3904
3905         /* Resume management traffic. */
3906         ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
3907         return status;
3908 }
3909
3910 static void ql_display_dev_info(struct net_device *ndev)
3911 {
3912         struct ql_adapter *qdev = netdev_priv(ndev);
3913
3914         netif_info(qdev, probe, qdev->ndev,
3915                    "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
3916                    "XG Roll = %d, XG Rev = %d.\n",
3917                    qdev->func,
3918                    qdev->port,
3919                    qdev->chip_rev_id & 0x0000000f,
3920                    qdev->chip_rev_id >> 4 & 0x0000000f,
3921                    qdev->chip_rev_id >> 8 & 0x0000000f,
3922                    qdev->chip_rev_id >> 12 & 0x0000000f);
3923         netif_info(qdev, probe, qdev->ndev,
3924                    "MAC address %pM\n", ndev->dev_addr);
3925 }
3926
3927 static int ql_wol(struct ql_adapter *qdev)
3928 {
3929         int status = 0;
3930         u32 wol = MB_WOL_DISABLE;
3931
3932         /* The CAM is still intact after a reset, but if we
3933          * are doing WOL, then we may need to program the
3934          * routing regs. We would also need to issue the mailbox
3935          * commands to instruct the MPI what to do per the ethtool
3936          * settings.
3937          */
3938
3939         if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
3940                         WAKE_MCAST | WAKE_BCAST)) {
3941                 netif_err(qdev, ifdown, qdev->ndev,
3942                           "Unsupported WOL parameter. qdev->wol = 0x%x.\n",
3943                           qdev->wol);
3944                 return -EINVAL;
3945         }
3946
3947         if (qdev->wol & WAKE_MAGIC) {
3948                 status = ql_mb_wol_set_magic(qdev, 1);
3949                 if (status) {
3950                         netif_err(qdev, ifdown, qdev->ndev,
3951                                   "Failed to set magic packet on %s.\n",
3952                                   qdev->ndev->name);
3953                         return status;
3954                 } else
3955                         netif_info(qdev, drv, qdev->ndev,
3956                                    "Enabled magic packet successfully on %s.\n",
3957                                    qdev->ndev->name);
3958
3959                 wol |= MB_WOL_MAGIC_PKT;
3960         }
3961
3962         if (qdev->wol) {
3963                 wol |= MB_WOL_MODE_ON;
3964                 status = ql_mb_wol_mode(qdev, wol);
3965                 netif_err(qdev, drv, qdev->ndev,
3966                           "WOL %s (wol code 0x%x) on %s\n",
3967                           (status == 0) ? "Successfully set" : "Failed",
3968                           wol, qdev->ndev->name);
3969         }
3970
3971         return status;
3972 }
3973
3974 static void ql_cancel_all_work_sync(struct ql_adapter *qdev)
3975 {
3976
3977         /* Don't kill the reset worker thread if we
3978          * are in the process of recovery.
3979          */
3980         if (test_bit(QL_ADAPTER_UP, &qdev->flags))
3981                 cancel_delayed_work_sync(&qdev->asic_reset_work);
3982         cancel_delayed_work_sync(&qdev->mpi_reset_work);
3983         cancel_delayed_work_sync(&qdev->mpi_work);
3984         cancel_delayed_work_sync(&qdev->mpi_idc_work);
3985         cancel_delayed_work_sync(&qdev->mpi_core_to_log);
3986         cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
3987 }
3988
3989 static int ql_adapter_down(struct ql_adapter *qdev)
3990 {
3991         int i, status = 0;
3992
3993         ql_link_off(qdev);
3994
3995         ql_cancel_all_work_sync(qdev);
3996
3997         for (i = 0; i < qdev->rss_ring_count; i++)
3998                 napi_disable(&qdev->rx_ring[i].napi);
3999
4000         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4001
4002         ql_disable_interrupts(qdev);
4003
4004         ql_tx_ring_clean(qdev);
4005
4006         /* Call netif_napi_del() from common point.
4007          */
4008         for (i = 0; i < qdev->rss_ring_count; i++)
4009                 netif_napi_del(&qdev->rx_ring[i].napi);
4010
4011         status = ql_adapter_reset(qdev);
4012         if (status)
4013                 netif_err(qdev, ifdown, qdev->ndev, "reset(func #%d) FAILED!\n",
4014                           qdev->func);
4015         ql_free_rx_buffers(qdev);
4016
4017         return status;
4018 }
4019
4020 static int ql_adapter_up(struct ql_adapter *qdev)
4021 {
4022         int err = 0;
4023
4024         err = ql_adapter_initialize(qdev);
4025         if (err) {
4026                 netif_info(qdev, ifup, qdev->ndev, "Unable to initialize adapter.\n");
4027                 goto err_init;
4028         }
4029         set_bit(QL_ADAPTER_UP, &qdev->flags);
4030         ql_alloc_rx_buffers(qdev);
4031         /* If the port is initialized and the
4032          * link is up the turn on the carrier.
4033          */
4034         if ((ql_read32(qdev, STS) & qdev->port_init) &&
4035                         (ql_read32(qdev, STS) & qdev->port_link_up))
4036                 ql_link_on(qdev);
4037         /* Restore rx mode. */
4038         clear_bit(QL_ALLMULTI, &qdev->flags);
4039         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4040         qlge_set_multicast_list(qdev->ndev);
4041
4042         /* Restore vlan setting. */
4043         qlge_restore_vlan(qdev);
4044
4045         ql_enable_interrupts(qdev);
4046         ql_enable_all_completion_interrupts(qdev);
4047         netif_tx_start_all_queues(qdev->ndev);
4048
4049         return 0;
4050 err_init:
4051         ql_adapter_reset(qdev);
4052         return err;
4053 }
4054
4055 static void ql_release_adapter_resources(struct ql_adapter *qdev)
4056 {
4057         ql_free_mem_resources(qdev);
4058         ql_free_irq(qdev);
4059 }
4060
4061 static int ql_get_adapter_resources(struct ql_adapter *qdev)
4062 {
4063         int status = 0;
4064
4065         if (ql_alloc_mem_resources(qdev)) {
4066                 netif_err(qdev, ifup, qdev->ndev, "Unable to  allocate memory.\n");
4067                 return -ENOMEM;
4068         }
4069         status = ql_request_irq(qdev);
4070         return status;
4071 }
4072
4073 static int qlge_close(struct net_device *ndev)
4074 {
4075         struct ql_adapter *qdev = netdev_priv(ndev);
4076
4077         /* If we hit pci_channel_io_perm_failure
4078          * failure condition, then we already
4079          * brought the adapter down.
4080          */
4081         if (test_bit(QL_EEH_FATAL, &qdev->flags)) {
4082                 netif_err(qdev, drv, qdev->ndev, "EEH fatal did unload.\n");
4083                 clear_bit(QL_EEH_FATAL, &qdev->flags);
4084                 return 0;
4085         }
4086
4087         /*
4088          * Wait for device to recover from a reset.
4089          * (Rarely happens, but possible.)
4090          */
4091         while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
4092                 msleep(1);
4093         ql_adapter_down(qdev);
4094         ql_release_adapter_resources(qdev);
4095         return 0;
4096 }
4097
4098 static int ql_configure_rings(struct ql_adapter *qdev)
4099 {
4100         int i;
4101         struct rx_ring *rx_ring;
4102         struct tx_ring *tx_ring;
4103         int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
4104         unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4105                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4106
4107         qdev->lbq_buf_order = get_order(lbq_buf_len);
4108
4109         /* In a perfect world we have one RSS ring for each CPU
4110          * and each has it's own vector.  To do that we ask for
4111          * cpu_cnt vectors.  ql_enable_msix() will adjust the
4112          * vector count to what we actually get.  We then
4113          * allocate an RSS ring for each.
4114          * Essentially, we are doing min(cpu_count, msix_vector_count).
4115          */
4116         qdev->intr_count = cpu_cnt;
4117         ql_enable_msix(qdev);
4118         /* Adjust the RSS ring count to the actual vector count. */
4119         qdev->rss_ring_count = qdev->intr_count;
4120         qdev->tx_ring_count = cpu_cnt;
4121         qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
4122
4123         for (i = 0; i < qdev->tx_ring_count; i++) {
4124                 tx_ring = &qdev->tx_ring[i];
4125                 memset((void *)tx_ring, 0, sizeof(*tx_ring));
4126                 tx_ring->qdev = qdev;
4127                 tx_ring->wq_id = i;
4128                 tx_ring->wq_len = qdev->tx_ring_size;
4129                 tx_ring->wq_size =
4130                     tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
4131
4132                 /*
4133                  * The completion queue ID for the tx rings start
4134                  * immediately after the rss rings.
4135                  */
4136                 tx_ring->cq_id = qdev->rss_ring_count + i;
4137         }
4138
4139         for (i = 0; i < qdev->rx_ring_count; i++) {
4140                 rx_ring = &qdev->rx_ring[i];
4141                 memset((void *)rx_ring, 0, sizeof(*rx_ring));
4142                 rx_ring->qdev = qdev;
4143                 rx_ring->cq_id = i;
4144                 rx_ring->cpu = i % cpu_cnt;     /* CPU to run handler on. */
4145                 if (i < qdev->rss_ring_count) {
4146                         /*
4147                          * Inbound (RSS) queues.
4148                          */
4149                         rx_ring->cq_len = qdev->rx_ring_size;
4150                         rx_ring->cq_size =
4151                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4152                         rx_ring->lbq_len = NUM_LARGE_BUFFERS;
4153                         rx_ring->lbq_size =
4154                             rx_ring->lbq_len * sizeof(__le64);
4155                         rx_ring->lbq_buf_size = (u16)lbq_buf_len;
4156                         rx_ring->sbq_len = NUM_SMALL_BUFFERS;
4157                         rx_ring->sbq_size =
4158                             rx_ring->sbq_len * sizeof(__le64);
4159                         rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
4160                         rx_ring->type = RX_Q;
4161                 } else {
4162                         /*
4163                          * Outbound queue handles outbound completions only.
4164                          */
4165                         /* outbound cq is same size as tx_ring it services. */
4166                         rx_ring->cq_len = qdev->tx_ring_size;
4167                         rx_ring->cq_size =
4168                             rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
4169                         rx_ring->lbq_len = 0;
4170                         rx_ring->lbq_size = 0;
4171                         rx_ring->lbq_buf_size = 0;
4172                         rx_ring->sbq_len = 0;
4173                         rx_ring->sbq_size = 0;
4174                         rx_ring->sbq_buf_size = 0;
4175                         rx_ring->type = TX_Q;
4176                 }
4177         }
4178         return 0;
4179 }
4180
4181 static int qlge_open(struct net_device *ndev)
4182 {
4183         int err = 0;
4184         struct ql_adapter *qdev = netdev_priv(ndev);
4185
4186         err = ql_adapter_reset(qdev);
4187         if (err)
4188                 return err;
4189
4190         err = ql_configure_rings(qdev);
4191         if (err)
4192                 return err;
4193
4194         err = ql_get_adapter_resources(qdev);
4195         if (err)
4196                 goto error_up;
4197
4198         err = ql_adapter_up(qdev);
4199         if (err)
4200                 goto error_up;
4201
4202         return err;
4203
4204 error_up:
4205         ql_release_adapter_resources(qdev);
4206         return err;
4207 }
4208
4209 static int ql_change_rx_buffers(struct ql_adapter *qdev)
4210 {
4211         struct rx_ring *rx_ring;
4212         int i, status;
4213         u32 lbq_buf_len;
4214
4215         /* Wait for an outstanding reset to complete. */
4216         if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4217                 int i = 4;
4218
4219                 while (--i && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
4220                         netif_err(qdev, ifup, qdev->ndev,
4221                                   "Waiting for adapter UP...\n");
4222                         ssleep(1);
4223                 }
4224
4225                 if (!i) {
4226                         netif_err(qdev, ifup, qdev->ndev,
4227                                   "Timed out waiting for adapter UP\n");
4228                         return -ETIMEDOUT;
4229                 }
4230         }
4231
4232         status = ql_adapter_down(qdev);
4233         if (status)
4234                 goto error;
4235
4236         /* Get the new rx buffer size. */
4237         lbq_buf_len = (qdev->ndev->mtu > 1500) ?
4238                 LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
4239         qdev->lbq_buf_order = get_order(lbq_buf_len);
4240
4241         for (i = 0; i < qdev->rss_ring_count; i++) {
4242                 rx_ring = &qdev->rx_ring[i];
4243                 /* Set the new size. */
4244                 rx_ring->lbq_buf_size = lbq_buf_len;
4245         }
4246
4247         status = ql_adapter_up(qdev);
4248         if (status)
4249                 goto error;
4250
4251         return status;
4252 error:
4253         netif_alert(qdev, ifup, qdev->ndev,
4254                     "Driver up/down cycle failed, closing device.\n");
4255         set_bit(QL_ADAPTER_UP, &qdev->flags);
4256         dev_close(qdev->ndev);
4257         return status;
4258 }
4259
4260 static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
4261 {
4262         struct ql_adapter *qdev = netdev_priv(ndev);
4263         int status;
4264
4265         if (ndev->mtu == 1500 && new_mtu == 9000) {
4266                 netif_err(qdev, ifup, qdev->ndev, "Changing to jumbo MTU.\n");
4267         } else if (ndev->mtu == 9000 && new_mtu == 1500) {
4268                 netif_err(qdev, ifup, qdev->ndev, "Changing to normal MTU.\n");
4269         } else
4270                 return -EINVAL;
4271
4272         queue_delayed_work(qdev->workqueue,
4273                         &qdev->mpi_port_cfg_work, 3*HZ);
4274
4275         ndev->mtu = new_mtu;
4276
4277         if (!netif_running(qdev->ndev)) {
4278                 return 0;
4279         }
4280
4281         status = ql_change_rx_buffers(qdev);
4282         if (status) {
4283                 netif_err(qdev, ifup, qdev->ndev,
4284                           "Changing MTU failed.\n");
4285         }
4286
4287         return status;
4288 }
4289
4290 static struct net_device_stats *qlge_get_stats(struct net_device
4291                                                *ndev)
4292 {
4293         struct ql_adapter *qdev = netdev_priv(ndev);
4294         struct rx_ring *rx_ring = &qdev->rx_ring[0];
4295         struct tx_ring *tx_ring = &qdev->tx_ring[0];
4296         unsigned long pkts, mcast, dropped, errors, bytes;
4297         int i;
4298
4299         /* Get RX stats. */
4300         pkts = mcast = dropped = errors = bytes = 0;
4301         for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
4302                         pkts += rx_ring->rx_packets;
4303                         bytes += rx_ring->rx_bytes;
4304                         dropped += rx_ring->rx_dropped;
4305                         errors += rx_ring->rx_errors;
4306                         mcast += rx_ring->rx_multicast;
4307         }
4308         ndev->stats.rx_packets = pkts;
4309         ndev->stats.rx_bytes = bytes;
4310         ndev->stats.rx_dropped = dropped;
4311         ndev->stats.rx_errors = errors;
4312         ndev->stats.multicast = mcast;
4313
4314         /* Get TX stats. */
4315         pkts = errors = bytes = 0;
4316         for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
4317                         pkts += tx_ring->tx_packets;
4318                         bytes += tx_ring->tx_bytes;
4319                         errors += tx_ring->tx_errors;
4320         }
4321         ndev->stats.tx_packets = pkts;
4322         ndev->stats.tx_bytes = bytes;
4323         ndev->stats.tx_errors = errors;
4324         return &ndev->stats;
4325 }
4326
4327 static void qlge_set_multicast_list(struct net_device *ndev)
4328 {
4329         struct ql_adapter *qdev = netdev_priv(ndev);
4330         struct netdev_hw_addr *ha;
4331         int i, status;
4332
4333         status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
4334         if (status)
4335                 return;
4336         /*
4337          * Set or clear promiscuous mode if a
4338          * transition is taking place.
4339          */
4340         if (ndev->flags & IFF_PROMISC) {
4341                 if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4342                         if (ql_set_routing_reg
4343                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
4344                                 netif_err(qdev, hw, qdev->ndev,
4345                                           "Failed to set promiscuous mode.\n");
4346                         } else {
4347                                 set_bit(QL_PROMISCUOUS, &qdev->flags);
4348                         }
4349                 }
4350         } else {
4351                 if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
4352                         if (ql_set_routing_reg
4353                             (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
4354                                 netif_err(qdev, hw, qdev->ndev,
4355                                           "Failed to clear promiscuous mode.\n");
4356                         } else {
4357                                 clear_bit(QL_PROMISCUOUS, &qdev->flags);
4358                         }
4359                 }
4360         }
4361
4362         /*
4363          * Set or clear all multicast mode if a
4364          * transition is taking place.
4365          */
4366         if ((ndev->flags & IFF_ALLMULTI) ||
4367             (netdev_mc_count(ndev) > MAX_MULTICAST_ENTRIES)) {
4368                 if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
4369                         if (ql_set_routing_reg
4370                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
4371                                 netif_err(qdev, hw, qdev->ndev,
4372                                           "Failed to set all-multi mode.\n");
4373                         } else {
4374                                 set_bit(QL_ALLMULTI, &qdev->flags);
4375                         }
4376                 }
4377         } else {
4378                 if (test_bit(QL_ALLMULTI, &qdev->flags)) {
4379                         if (ql_set_routing_reg
4380                             (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
4381                                 netif_err(qdev, hw, qdev->ndev,
4382                                           "Failed to clear all-multi mode.\n");
4383                         } else {
4384                                 clear_bit(QL_ALLMULTI, &qdev->flags);
4385                         }
4386                 }
4387         }
4388
4389         if (!netdev_mc_empty(ndev)) {
4390                 status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4391                 if (status)
4392                         goto exit;
4393                 i = 0;
4394                 netdev_for_each_mc_addr(ha, ndev) {
4395                         if (ql_set_mac_addr_reg(qdev, (u8 *) ha->addr,
4396                                                 MAC_ADDR_TYPE_MULTI_MAC, i)) {
4397                                 netif_err(qdev, hw, qdev->ndev,
4398                                           "Failed to loadmulticast address.\n");
4399                                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4400                                 goto exit;
4401                         }
4402                         i++;
4403                 }
4404                 ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4405                 if (ql_set_routing_reg
4406                     (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
4407                         netif_err(qdev, hw, qdev->ndev,
4408                                   "Failed to set multicast match mode.\n");
4409                 } else {
4410                         set_bit(QL_ALLMULTI, &qdev->flags);
4411                 }
4412         }
4413 exit:
4414         ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
4415 }
4416
4417 static int qlge_set_mac_address(struct net_device *ndev, void *p)
4418 {
4419         struct ql_adapter *qdev = netdev_priv(ndev);
4420         struct sockaddr *addr = p;
4421         int status;
4422
4423         if (!is_valid_ether_addr(addr->sa_data))
4424                 return -EADDRNOTAVAIL;
4425         memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
4426         /* Update local copy of current mac address. */
4427         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4428
4429         status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
4430         if (status)
4431                 return status;
4432         status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
4433                         MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
4434         if (status)
4435                 netif_err(qdev, hw, qdev->ndev, "Failed to load MAC address.\n");
4436         ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
4437         return status;
4438 }
4439
4440 static void qlge_tx_timeout(struct net_device *ndev)
4441 {
4442         struct ql_adapter *qdev = netdev_priv(ndev);
4443         ql_queue_asic_error(qdev);
4444 }
4445
4446 static void ql_asic_reset_work(struct work_struct *work)
4447 {
4448         struct ql_adapter *qdev =
4449             container_of(work, struct ql_adapter, asic_reset_work.work);
4450         int status;
4451         rtnl_lock();
4452         status = ql_adapter_down(qdev);
4453         if (status)
4454                 goto error;
4455
4456         status = ql_adapter_up(qdev);
4457         if (status)
4458                 goto error;
4459
4460         /* Restore rx mode. */
4461         clear_bit(QL_ALLMULTI, &qdev->flags);
4462         clear_bit(QL_PROMISCUOUS, &qdev->flags);
4463         qlge_set_multicast_list(qdev->ndev);
4464
4465         rtnl_unlock();
4466         return;
4467 error:
4468         netif_alert(qdev, ifup, qdev->ndev,
4469                     "Driver up/down cycle failed, closing device\n");
4470
4471         set_bit(QL_ADAPTER_UP, &qdev->flags);
4472         dev_close(qdev->ndev);
4473         rtnl_unlock();
4474 }
4475
4476 static const struct nic_operations qla8012_nic_ops = {
4477         .get_flash              = ql_get_8012_flash_params,
4478         .port_initialize        = ql_8012_port_initialize,
4479 };
4480
4481 static const struct nic_operations qla8000_nic_ops = {
4482         .get_flash              = ql_get_8000_flash_params,
4483         .port_initialize        = ql_8000_port_initialize,
4484 };
4485
4486 /* Find the pcie function number for the other NIC
4487  * on this chip.  Since both NIC functions share a
4488  * common firmware we have the lowest enabled function
4489  * do any common work.  Examples would be resetting
4490  * after a fatal firmware error, or doing a firmware
4491  * coredump.
4492  */
4493 static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
4494 {
4495         int status = 0;
4496         u32 temp;
4497         u32 nic_func1, nic_func2;
4498
4499         status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
4500                         &temp);
4501         if (status)
4502                 return status;
4503
4504         nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
4505                         MPI_TEST_NIC_FUNC_MASK);
4506         nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
4507                         MPI_TEST_NIC_FUNC_MASK);
4508
4509         if (qdev->func == nic_func1)
4510                 qdev->alt_func = nic_func2;
4511         else if (qdev->func == nic_func2)
4512                 qdev->alt_func = nic_func1;
4513         else
4514                 status = -EIO;
4515
4516         return status;
4517 }
4518
4519 static int ql_get_board_info(struct ql_adapter *qdev)
4520 {
4521         int status;
4522         qdev->func =
4523             (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
4524         if (qdev->func > 3)
4525                 return -EIO;
4526
4527         status = ql_get_alt_pcie_func(qdev);
4528         if (status)
4529                 return status;
4530
4531         qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
4532         if (qdev->port) {
4533                 qdev->xg_sem_mask = SEM_XGMAC1_MASK;
4534                 qdev->port_link_up = STS_PL1;
4535                 qdev->port_init = STS_PI1;
4536                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
4537                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
4538         } else {
4539                 qdev->xg_sem_mask = SEM_XGMAC0_MASK;
4540                 qdev->port_link_up = STS_PL0;
4541                 qdev->port_init = STS_PI0;
4542                 qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
4543                 qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
4544         }
4545         qdev->chip_rev_id = ql_read32(qdev, REV_ID);
4546         qdev->device_id = qdev->pdev->device;
4547         if (qdev->device_id == QLGE_DEVICE_ID_8012)
4548                 qdev->nic_ops = &qla8012_nic_ops;
4549         else if (qdev->device_id == QLGE_DEVICE_ID_8000)
4550                 qdev->nic_ops = &qla8000_nic_ops;
4551         return status;
4552 }
4553
4554 static void ql_release_all(struct pci_dev *pdev)
4555 {
4556         struct net_device *ndev = pci_get_drvdata(pdev);
4557         struct ql_adapter *qdev = netdev_priv(ndev);
4558
4559         if (qdev->workqueue) {
4560                 destroy_workqueue(qdev->workqueue);
4561                 qdev->workqueue = NULL;
4562         }
4563
4564         if (qdev->reg_base)
4565                 iounmap(qdev->reg_base);
4566         if (qdev->doorbell_area)
4567                 iounmap(qdev->doorbell_area);
4568         vfree(qdev->mpi_coredump);
4569         pci_release_regions(pdev);
4570 }
4571
4572 static int ql_init_device(struct pci_dev *pdev, struct net_device *ndev,
4573                           int cards_found)
4574 {
4575         struct ql_adapter *qdev = netdev_priv(ndev);
4576         int err = 0;
4577
4578         memset((void *)qdev, 0, sizeof(*qdev));
4579         err = pci_enable_device(pdev);
4580         if (err) {
4581                 dev_err(&pdev->dev, "PCI device enable failed.\n");
4582                 return err;
4583         }
4584
4585         qdev->ndev = ndev;
4586         qdev->pdev = pdev;
4587         pci_set_drvdata(pdev, ndev);
4588
4589         /* Set PCIe read request size */
4590         err = pcie_set_readrq(pdev, 4096);
4591         if (err) {
4592                 dev_err(&pdev->dev, "Set readrq failed.\n");
4593                 goto err_out1;
4594         }
4595
4596         err = pci_request_regions(pdev, DRV_NAME);
4597         if (err) {
4598                 dev_err(&pdev->dev, "PCI region request failed.\n");
4599                 return err;
4600         }
4601
4602         pci_set_master(pdev);
4603         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4604                 set_bit(QL_DMA64, &qdev->flags);
4605                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4606         } else {
4607                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4608                 if (!err)
4609                        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4610         }
4611
4612         if (err) {
4613                 dev_err(&pdev->dev, "No usable DMA configuration.\n");
4614                 goto err_out2;
4615         }
4616
4617         /* Set PCIe reset type for EEH to fundamental. */
4618         pdev->needs_freset = 1;
4619         pci_save_state(pdev);
4620         qdev->reg_base =
4621             ioremap_nocache(pci_resource_start(pdev, 1),
4622                             pci_resource_len(pdev, 1));
4623         if (!qdev->reg_base) {
4624                 dev_err(&pdev->dev, "Register mapping failed.\n");
4625                 err = -ENOMEM;
4626                 goto err_out2;
4627         }
4628
4629         qdev->doorbell_area_size = pci_resource_len(pdev, 3);
4630         qdev->doorbell_area =
4631             ioremap_nocache(pci_resource_start(pdev, 3),
4632                             pci_resource_len(pdev, 3));
4633         if (!qdev->doorbell_area) {
4634                 dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
4635                 err = -ENOMEM;
4636                 goto err_out2;
4637         }
4638
4639         err = ql_get_board_info(qdev);
4640         if (err) {
4641                 dev_err(&pdev->dev, "Register access failed.\n");
4642                 err = -EIO;
4643                 goto err_out2;
4644         }
4645         qdev->msg_enable = netif_msg_init(debug, default_msg);
4646         spin_lock_init(&qdev->hw_lock);
4647         spin_lock_init(&qdev->stats_lock);
4648
4649         if (qlge_mpi_coredump) {
4650                 qdev->mpi_coredump =
4651                         vmalloc(sizeof(struct ql_mpi_coredump));
4652                 if (qdev->mpi_coredump == NULL) {
4653                         err = -ENOMEM;
4654                         goto err_out2;
4655                 }
4656                 if (qlge_force_coredump)
4657                         set_bit(QL_FRC_COREDUMP, &qdev->flags);
4658         }
4659         /* make sure the EEPROM is good */
4660         err = qdev->nic_ops->get_flash(qdev);
4661         if (err) {
4662                 dev_err(&pdev->dev, "Invalid FLASH.\n");
4663                 goto err_out2;
4664         }
4665
4666         /* Keep local copy of current mac address. */
4667         memcpy(qdev->current_mac_addr, ndev->dev_addr, ndev->addr_len);
4668
4669         /* Set up the default ring sizes. */
4670         qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
4671         qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
4672
4673         /* Set up the coalescing parameters. */
4674         qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
4675         qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
4676         qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4677         qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
4678
4679         /*
4680          * Set up the operating parameters.
4681          */
4682         qdev->workqueue = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4683                                                   ndev->name);
4684         if (!qdev->workqueue) {
4685                 err = -ENOMEM;
4686                 goto err_out2;
4687         }
4688
4689         INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
4690         INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
4691         INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
4692         INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
4693         INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
4694         INIT_DELAYED_WORK(&qdev->mpi_core_to_log, ql_mpi_core_to_log);
4695         init_completion(&qdev->ide_completion);
4696         mutex_init(&qdev->mpi_mutex);
4697
4698         if (!cards_found) {
4699                 dev_info(&pdev->dev, "%s\n", DRV_STRING);
4700                 dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
4701                          DRV_NAME, DRV_VERSION);
4702         }
4703         return 0;
4704 err_out2:
4705         ql_release_all(pdev);
4706 err_out1:
4707         pci_disable_device(pdev);
4708         return err;
4709 }
4710
4711 static const struct net_device_ops qlge_netdev_ops = {
4712         .ndo_open               = qlge_open,
4713         .ndo_stop               = qlge_close,
4714         .ndo_start_xmit         = qlge_send,
4715         .ndo_change_mtu         = qlge_change_mtu,
4716         .ndo_get_stats          = qlge_get_stats,
4717         .ndo_set_rx_mode        = qlge_set_multicast_list,
4718         .ndo_set_mac_address    = qlge_set_mac_address,
4719         .ndo_validate_addr      = eth_validate_addr,
4720         .ndo_tx_timeout         = qlge_tx_timeout,
4721         .ndo_set_features       = qlge_set_features,
4722         .ndo_vlan_rx_add_vid    = qlge_vlan_rx_add_vid,
4723         .ndo_vlan_rx_kill_vid   = qlge_vlan_rx_kill_vid,
4724 };
4725
4726 static void ql_timer(struct timer_list *t)
4727 {
4728         struct ql_adapter *qdev = from_timer(qdev, t, timer);
4729         u32 var = 0;
4730
4731         var = ql_read32(qdev, STS);
4732         if (pci_channel_offline(qdev->pdev)) {
4733                 netif_err(qdev, ifup, qdev->ndev, "EEH STS = 0x%.08x.\n", var);
4734                 return;
4735         }
4736
4737         mod_timer(&qdev->timer, jiffies + (5*HZ));
4738 }
4739
4740 static int qlge_probe(struct pci_dev *pdev,
4741                       const struct pci_device_id *pci_entry)
4742 {
4743         struct net_device *ndev = NULL;
4744         struct ql_adapter *qdev = NULL;
4745         static int cards_found = 0;
4746         int err = 0;
4747
4748         ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
4749                         min(MAX_CPUS, netif_get_num_default_rss_queues()));
4750         if (!ndev)
4751                 return -ENOMEM;
4752
4753         err = ql_init_device(pdev, ndev, cards_found);
4754         if (err < 0) {
4755                 free_netdev(ndev);
4756                 return err;
4757         }
4758
4759         qdev = netdev_priv(ndev);
4760         SET_NETDEV_DEV(ndev, &pdev->dev);
4761         ndev->hw_features = NETIF_F_SG |
4762                             NETIF_F_IP_CSUM |
4763                             NETIF_F_TSO |
4764                             NETIF_F_TSO_ECN |
4765                             NETIF_F_HW_VLAN_CTAG_TX |
4766                             NETIF_F_HW_VLAN_CTAG_RX |
4767                             NETIF_F_HW_VLAN_CTAG_FILTER |
4768                             NETIF_F_RXCSUM;
4769         ndev->features = ndev->hw_features;
4770         ndev->vlan_features = ndev->hw_features;
4771         /* vlan gets same features (except vlan filter) */
4772         ndev->vlan_features &= ~(NETIF_F_HW_VLAN_CTAG_FILTER |
4773                                  NETIF_F_HW_VLAN_CTAG_TX |
4774                                  NETIF_F_HW_VLAN_CTAG_RX);
4775
4776         if (test_bit(QL_DMA64, &qdev->flags))
4777                 ndev->features |= NETIF_F_HIGHDMA;
4778
4779         /*
4780          * Set up net_device structure.
4781          */
4782         ndev->tx_queue_len = qdev->tx_ring_size;
4783         ndev->irq = pdev->irq;
4784
4785         ndev->netdev_ops = &qlge_netdev_ops;
4786         ndev->ethtool_ops = &qlge_ethtool_ops;
4787         ndev->watchdog_timeo = 10 * HZ;
4788
4789         /* MTU range: this driver only supports 1500 or 9000, so this only
4790          * filters out values above or below, and we'll rely on
4791          * qlge_change_mtu to make sure only 1500 or 9000 are allowed
4792          */
4793         ndev->min_mtu = ETH_DATA_LEN;
4794         ndev->max_mtu = 9000;
4795
4796         err = register_netdev(ndev);
4797         if (err) {
4798                 dev_err(&pdev->dev, "net device registration failed.\n");
4799                 ql_release_all(pdev);
4800                 pci_disable_device(pdev);
4801                 free_netdev(ndev);
4802                 return err;
4803         }
4804         /* Start up the timer to trigger EEH if
4805          * the bus goes dead
4806          */
4807         timer_setup(&qdev->timer, ql_timer, TIMER_DEFERRABLE);
4808         mod_timer(&qdev->timer, jiffies + (5*HZ));
4809         ql_link_off(qdev);
4810         ql_display_dev_info(ndev);
4811         atomic_set(&qdev->lb_count, 0);
4812         cards_found++;
4813         return 0;
4814 }
4815
4816 netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
4817 {
4818         return qlge_send(skb, ndev);
4819 }
4820
4821 int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
4822 {
4823         return ql_clean_inbound_rx_ring(rx_ring, budget);
4824 }
4825
4826 static void qlge_remove(struct pci_dev *pdev)
4827 {
4828         struct net_device *ndev = pci_get_drvdata(pdev);
4829         struct ql_adapter *qdev = netdev_priv(ndev);
4830         del_timer_sync(&qdev->timer);
4831         ql_cancel_all_work_sync(qdev);
4832         unregister_netdev(ndev);
4833         ql_release_all(pdev);
4834         pci_disable_device(pdev);
4835         free_netdev(ndev);
4836 }
4837
4838 /* Clean up resources without touching hardware. */
4839 static void ql_eeh_close(struct net_device *ndev)
4840 {
4841         int i;
4842         struct ql_adapter *qdev = netdev_priv(ndev);
4843
4844         if (netif_carrier_ok(ndev)) {
4845                 netif_carrier_off(ndev);
4846                 netif_stop_queue(ndev);
4847         }
4848
4849         /* Disabling the timer */
4850         ql_cancel_all_work_sync(qdev);
4851
4852         for (i = 0; i < qdev->rss_ring_count; i++)
4853                 netif_napi_del(&qdev->rx_ring[i].napi);
4854
4855         clear_bit(QL_ADAPTER_UP, &qdev->flags);
4856         ql_tx_ring_clean(qdev);
4857         ql_free_rx_buffers(qdev);
4858         ql_release_adapter_resources(qdev);
4859 }
4860
4861 /*
4862  * This callback is called by the PCI subsystem whenever
4863  * a PCI bus error is detected.
4864  */
4865 static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
4866                                                enum pci_channel_state state)
4867 {
4868         struct net_device *ndev = pci_get_drvdata(pdev);
4869         struct ql_adapter *qdev = netdev_priv(ndev);
4870
4871         switch (state) {
4872         case pci_channel_io_normal:
4873                 return PCI_ERS_RESULT_CAN_RECOVER;
4874         case pci_channel_io_frozen:
4875                 netif_device_detach(ndev);
4876                 del_timer_sync(&qdev->timer);
4877                 if (netif_running(ndev))
4878                         ql_eeh_close(ndev);
4879                 pci_disable_device(pdev);
4880                 return PCI_ERS_RESULT_NEED_RESET;
4881         case pci_channel_io_perm_failure:
4882                 dev_err(&pdev->dev,
4883                         "%s: pci_channel_io_perm_failure.\n", __func__);
4884                 del_timer_sync(&qdev->timer);
4885                 ql_eeh_close(ndev);
4886                 set_bit(QL_EEH_FATAL, &qdev->flags);
4887                 return PCI_ERS_RESULT_DISCONNECT;
4888         }
4889
4890         /* Request a slot reset. */
4891         return PCI_ERS_RESULT_NEED_RESET;
4892 }
4893
4894 /*
4895  * This callback is called after the PCI buss has been reset.
4896  * Basically, this tries to restart the card from scratch.
4897  * This is a shortened version of the device probe/discovery code,
4898  * it resembles the first-half of the () routine.
4899  */
4900 static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
4901 {
4902         struct net_device *ndev = pci_get_drvdata(pdev);
4903         struct ql_adapter *qdev = netdev_priv(ndev);
4904
4905         pdev->error_state = pci_channel_io_normal;
4906
4907         pci_restore_state(pdev);
4908         if (pci_enable_device(pdev)) {
4909                 netif_err(qdev, ifup, qdev->ndev,
4910                           "Cannot re-enable PCI device after reset.\n");
4911                 return PCI_ERS_RESULT_DISCONNECT;
4912         }
4913         pci_set_master(pdev);
4914
4915         if (ql_adapter_reset(qdev)) {
4916                 netif_err(qdev, drv, qdev->ndev, "reset FAILED!\n");
4917                 set_bit(QL_EEH_FATAL, &qdev->flags);
4918                 return PCI_ERS_RESULT_DISCONNECT;
4919         }
4920
4921         return PCI_ERS_RESULT_RECOVERED;
4922 }
4923
4924 static void qlge_io_resume(struct pci_dev *pdev)
4925 {
4926         struct net_device *ndev = pci_get_drvdata(pdev);
4927         struct ql_adapter *qdev = netdev_priv(ndev);
4928         int err = 0;
4929
4930         if (netif_running(ndev)) {
4931                 err = qlge_open(ndev);
4932                 if (err) {
4933                         netif_err(qdev, ifup, qdev->ndev,
4934                                   "Device initialization failed after reset.\n");
4935                         return;
4936                 }
4937         } else {
4938                 netif_err(qdev, ifup, qdev->ndev,
4939                           "Device was not running prior to EEH.\n");
4940         }
4941         mod_timer(&qdev->timer, jiffies + (5*HZ));
4942         netif_device_attach(ndev);
4943 }
4944
4945 static const struct pci_error_handlers qlge_err_handler = {
4946         .error_detected = qlge_io_error_detected,
4947         .slot_reset = qlge_io_slot_reset,
4948         .resume = qlge_io_resume,
4949 };
4950
4951 static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
4952 {
4953         struct net_device *ndev = pci_get_drvdata(pdev);
4954         struct ql_adapter *qdev = netdev_priv(ndev);
4955         int err;
4956
4957         netif_device_detach(ndev);
4958         del_timer_sync(&qdev->timer);
4959
4960         if (netif_running(ndev)) {
4961                 err = ql_adapter_down(qdev);
4962                 if (!err)
4963                         return err;
4964         }
4965
4966         ql_wol(qdev);
4967         err = pci_save_state(pdev);
4968         if (err)
4969                 return err;
4970
4971         pci_disable_device(pdev);
4972
4973         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4974
4975         return 0;
4976 }
4977
4978 #ifdef CONFIG_PM
4979 static int qlge_resume(struct pci_dev *pdev)
4980 {
4981         struct net_device *ndev = pci_get_drvdata(pdev);
4982         struct ql_adapter *qdev = netdev_priv(ndev);
4983         int err;
4984
4985         pci_set_power_state(pdev, PCI_D0);
4986         pci_restore_state(pdev);
4987         err = pci_enable_device(pdev);
4988         if (err) {
4989                 netif_err(qdev, ifup, qdev->ndev, "Cannot enable PCI device from suspend\n");
4990                 return err;
4991         }
4992         pci_set_master(pdev);
4993
4994         pci_enable_wake(pdev, PCI_D3hot, 0);
4995         pci_enable_wake(pdev, PCI_D3cold, 0);
4996
4997         if (netif_running(ndev)) {
4998                 err = ql_adapter_up(qdev);
4999                 if (err)
5000                         return err;
5001         }
5002
5003         mod_timer(&qdev->timer, jiffies + (5*HZ));
5004         netif_device_attach(ndev);
5005
5006         return 0;
5007 }
5008 #endif /* CONFIG_PM */
5009
5010 static void qlge_shutdown(struct pci_dev *pdev)
5011 {
5012         qlge_suspend(pdev, PMSG_SUSPEND);
5013 }
5014
5015 static struct pci_driver qlge_driver = {
5016         .name = DRV_NAME,
5017         .id_table = qlge_pci_tbl,
5018         .probe = qlge_probe,
5019         .remove = qlge_remove,
5020 #ifdef CONFIG_PM
5021         .suspend = qlge_suspend,
5022         .resume = qlge_resume,
5023 #endif
5024         .shutdown = qlge_shutdown,
5025         .err_handler = &qlge_err_handler
5026 };
5027
5028 module_pci_driver(qlge_driver);