]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/sfc/tx_common.c
Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[linux.git] / drivers / net / ethernet / sfc / tx_common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include "net_driver.h"
12 #include "efx.h"
13 #include "nic.h"
14 #include "tx_common.h"
15
16 static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
17 {
18         return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
19                             PAGE_SIZE >> EFX_TX_CB_ORDER);
20 }
21
22 int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
23 {
24         struct efx_nic *efx = tx_queue->efx;
25         unsigned int entries;
26         int rc;
27
28         /* Create the smallest power-of-two aligned ring */
29         entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
30         EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
31         tx_queue->ptr_mask = entries - 1;
32
33         netif_dbg(efx, probe, efx->net_dev,
34                   "creating TX queue %d size %#x mask %#x\n",
35                   tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
36
37         /* Allocate software ring */
38         tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
39                                    GFP_KERNEL);
40         if (!tx_queue->buffer)
41                 return -ENOMEM;
42
43         tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
44                                     sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
45         if (!tx_queue->cb_page) {
46                 rc = -ENOMEM;
47                 goto fail1;
48         }
49
50         /* Allocate hardware ring */
51         rc = efx_nic_probe_tx(tx_queue);
52         if (rc)
53                 goto fail2;
54
55         return 0;
56
57 fail2:
58         kfree(tx_queue->cb_page);
59         tx_queue->cb_page = NULL;
60 fail1:
61         kfree(tx_queue->buffer);
62         tx_queue->buffer = NULL;
63         return rc;
64 }
65
66 void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
67 {
68         struct efx_nic *efx = tx_queue->efx;
69
70         netif_dbg(efx, drv, efx->net_dev,
71                   "initialising TX queue %d\n", tx_queue->queue);
72
73         tx_queue->insert_count = 0;
74         tx_queue->write_count = 0;
75         tx_queue->packet_write_count = 0;
76         tx_queue->old_write_count = 0;
77         tx_queue->read_count = 0;
78         tx_queue->old_read_count = 0;
79         tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
80         tx_queue->xmit_more_available = false;
81         tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
82                                   tx_queue->channel == efx_ptp_channel(efx));
83         tx_queue->completed_timestamp_major = 0;
84         tx_queue->completed_timestamp_minor = 0;
85
86         tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
87
88         /* Set up default function pointers. These may get replaced by
89          * efx_nic_init_tx() based off NIC/queue capabilities.
90          */
91         tx_queue->handle_tso = efx_enqueue_skb_tso;
92
93         /* Set up TX descriptor ring */
94         efx_nic_init_tx(tx_queue);
95
96         tx_queue->initialised = true;
97 }
98
99 void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
100 {
101         struct efx_tx_buffer *buffer;
102
103         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
104                   "shutting down TX queue %d\n", tx_queue->queue);
105
106         if (!tx_queue->buffer)
107                 return;
108
109         /* Free any buffers left in the ring */
110         while (tx_queue->read_count != tx_queue->write_count) {
111                 unsigned int pkts_compl = 0, bytes_compl = 0;
112
113                 buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
114                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
115
116                 ++tx_queue->read_count;
117         }
118         tx_queue->xmit_more_available = false;
119         netdev_tx_reset_queue(tx_queue->core_txq);
120 }
121
122 void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
123 {
124         int i;
125
126         if (!tx_queue->buffer)
127                 return;
128
129         netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
130                   "destroying TX queue %d\n", tx_queue->queue);
131         efx_nic_remove_tx(tx_queue);
132
133         if (tx_queue->cb_page) {
134                 for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
135                         efx_nic_free_buffer(tx_queue->efx,
136                                             &tx_queue->cb_page[i]);
137                 kfree(tx_queue->cb_page);
138                 tx_queue->cb_page = NULL;
139         }
140
141         kfree(tx_queue->buffer);
142         tx_queue->buffer = NULL;
143 }
144
145 void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
146                         struct efx_tx_buffer *buffer,
147                         unsigned int *pkts_compl,
148                         unsigned int *bytes_compl)
149 {
150         if (buffer->unmap_len) {
151                 struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
152                 dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
153
154                 if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
155                         dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
156                                          DMA_TO_DEVICE);
157                 else
158                         dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
159                                        DMA_TO_DEVICE);
160                 buffer->unmap_len = 0;
161         }
162
163         if (buffer->flags & EFX_TX_BUF_SKB) {
164                 struct sk_buff *skb = (struct sk_buff *)buffer->skb;
165
166                 EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
167                 (*pkts_compl)++;
168                 (*bytes_compl) += skb->len;
169                 if (tx_queue->timestamping &&
170                     (tx_queue->completed_timestamp_major ||
171                      tx_queue->completed_timestamp_minor)) {
172                         struct skb_shared_hwtstamps hwtstamp;
173
174                         hwtstamp.hwtstamp =
175                                 efx_ptp_nic_to_kernel_time(tx_queue);
176                         skb_tstamp_tx(skb, &hwtstamp);
177
178                         tx_queue->completed_timestamp_major = 0;
179                         tx_queue->completed_timestamp_minor = 0;
180                 }
181                 dev_consume_skb_any((struct sk_buff *)buffer->skb);
182                 netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
183                            "TX queue %d transmission id %x complete\n",
184                            tx_queue->queue, tx_queue->read_count);
185         } else if (buffer->flags & EFX_TX_BUF_XDP) {
186                 xdp_return_frame_rx_napi(buffer->xdpf);
187         }
188
189         buffer->len = 0;
190         buffer->flags = 0;
191 }
192
193 /* Remove packets from the TX queue
194  *
195  * This removes packets from the TX queue, up to and including the
196  * specified index.
197  */
198 static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
199                                 unsigned int index,
200                                 unsigned int *pkts_compl,
201                                 unsigned int *bytes_compl)
202 {
203         struct efx_nic *efx = tx_queue->efx;
204         unsigned int stop_index, read_ptr;
205
206         stop_index = (index + 1) & tx_queue->ptr_mask;
207         read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
208
209         while (read_ptr != stop_index) {
210                 struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
211
212                 if (!efx_tx_buffer_in_use(buffer)) {
213                         netif_err(efx, tx_err, efx->net_dev,
214                                   "TX queue %d spurious TX completion id %d\n",
215                                   tx_queue->queue, read_ptr);
216                         efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
217                         return;
218                 }
219
220                 efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
221
222                 ++tx_queue->read_count;
223                 read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
224         }
225 }
226
227 void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
228 {
229         if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
230                 tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
231                 if (tx_queue->read_count == tx_queue->old_write_count) {
232                         /* Ensure that read_count is flushed. */
233                         smp_mb();
234                         tx_queue->empty_read_count =
235                                 tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
236                 }
237         }
238 }
239
240 void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
241 {
242         unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
243         struct efx_nic *efx = tx_queue->efx;
244         struct efx_tx_queue *txq2;
245
246         EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
247
248         efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
249         tx_queue->pkts_compl += pkts_compl;
250         tx_queue->bytes_compl += bytes_compl;
251
252         if (pkts_compl > 1)
253                 ++tx_queue->merge_events;
254
255         /* See if we need to restart the netif queue.  This memory
256          * barrier ensures that we write read_count (inside
257          * efx_dequeue_buffers()) before reading the queue status.
258          */
259         smp_mb();
260         if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
261             likely(efx->port_enabled) &&
262             likely(netif_device_present(efx->net_dev))) {
263                 txq2 = efx_tx_queue_partner(tx_queue);
264                 fill_level = max(tx_queue->insert_count - tx_queue->read_count,
265                                  txq2->insert_count - txq2->read_count);
266                 if (fill_level <= efx->txq_wake_thresh)
267                         netif_tx_wake_queue(tx_queue->core_txq);
268         }
269
270         efx_xmit_done_check_empty(tx_queue);
271 }
272
273 /* Remove buffers put into a tx_queue for the current packet.
274  * None of the buffers must have an skb attached.
275  */
276 void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
277                         unsigned int insert_count)
278 {
279         struct efx_tx_buffer *buffer;
280         unsigned int bytes_compl = 0;
281         unsigned int pkts_compl = 0;
282
283         /* Work backwards until we hit the original insert pointer value */
284         while (tx_queue->insert_count != insert_count) {
285                 --tx_queue->insert_count;
286                 buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
287                 efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
288         }
289 }
290
291 struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
292                                        dma_addr_t dma_addr, size_t len)
293 {
294         const struct efx_nic_type *nic_type = tx_queue->efx->type;
295         struct efx_tx_buffer *buffer;
296         unsigned int dma_len;
297
298         /* Map the fragment taking account of NIC-dependent DMA limits. */
299         do {
300                 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
301                 dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
302
303                 buffer->len = dma_len;
304                 buffer->dma_addr = dma_addr;
305                 buffer->flags = EFX_TX_BUF_CONT;
306                 len -= dma_len;
307                 dma_addr += dma_len;
308                 ++tx_queue->insert_count;
309         } while (len);
310
311         return buffer;
312 }
313
314 /* Map all data from an SKB for DMA and create descriptors on the queue. */
315 int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
316                     unsigned int segment_count)
317 {
318         struct efx_nic *efx = tx_queue->efx;
319         struct device *dma_dev = &efx->pci_dev->dev;
320         unsigned int frag_index, nr_frags;
321         dma_addr_t dma_addr, unmap_addr;
322         unsigned short dma_flags;
323         size_t len, unmap_len;
324
325         nr_frags = skb_shinfo(skb)->nr_frags;
326         frag_index = 0;
327
328         /* Map header data. */
329         len = skb_headlen(skb);
330         dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
331         dma_flags = EFX_TX_BUF_MAP_SINGLE;
332         unmap_len = len;
333         unmap_addr = dma_addr;
334
335         if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
336                 return -EIO;
337
338         if (segment_count) {
339                 /* For TSO we need to put the header in to a separate
340                  * descriptor. Map this separately if necessary.
341                  */
342                 size_t header_len = skb_transport_header(skb) - skb->data +
343                                 (tcp_hdr(skb)->doff << 2u);
344
345                 if (header_len != len) {
346                         tx_queue->tso_long_headers++;
347                         efx_tx_map_chunk(tx_queue, dma_addr, header_len);
348                         len -= header_len;
349                         dma_addr += header_len;
350                 }
351         }
352
353         /* Add descriptors for each fragment. */
354         do {
355                 struct efx_tx_buffer *buffer;
356                 skb_frag_t *fragment;
357
358                 buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
359
360                 /* The final descriptor for a fragment is responsible for
361                  * unmapping the whole fragment.
362                  */
363                 buffer->flags = EFX_TX_BUF_CONT | dma_flags;
364                 buffer->unmap_len = unmap_len;
365                 buffer->dma_offset = buffer->dma_addr - unmap_addr;
366
367                 if (frag_index >= nr_frags) {
368                         /* Store SKB details with the final buffer for
369                          * the completion.
370                          */
371                         buffer->skb = skb;
372                         buffer->flags = EFX_TX_BUF_SKB | dma_flags;
373                         return 0;
374                 }
375
376                 /* Move on to the next fragment. */
377                 fragment = &skb_shinfo(skb)->frags[frag_index++];
378                 len = skb_frag_size(fragment);
379                 dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
380                                             DMA_TO_DEVICE);
381                 dma_flags = 0;
382                 unmap_len = len;
383                 unmap_addr = dma_addr;
384
385                 if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
386                         return -EIO;
387         } while (1);
388 }
389
390 unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
391 {
392         /* Header and payload descriptor for each output segment, plus
393          * one for every input fragment boundary within a segment
394          */
395         unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
396
397         /* Possibly one more per segment for option descriptors */
398         if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
399                 max_descs += EFX_TSO_MAX_SEGS;
400
401         /* Possibly more for PCIe page boundaries within input fragments */
402         if (PAGE_SIZE > EFX_PAGE_SIZE)
403                 max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
404                                    DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
405
406         return max_descs;
407 }