]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
400fbb727fd5f3f04cb9ac38e42ddaaa91247aad
[linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48
49 #define STMMAC_ALIGN(x)         __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
50 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
51
52 /* Module parameters */
53 #define TX_TIMEO        5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65
66 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
68
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81
82 #define DEFAULT_BUFSIZE 1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86
87 #define STMMAC_RX_COPYBREAK     256
88
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
91                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92
93 #define STMMAC_DEFAULT_LPI_TIMER        1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107
108 #ifdef CONFIG_DEBUG_FS
109 static void stmmac_init_fs(struct net_device *dev);
110 static void stmmac_exit_fs(struct net_device *dev);
111 #endif
112
113 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
114
115 /**
116  * stmmac_verify_args - verify the driver parameters.
117  * Description: it checks the driver parameters and set a default in case of
118  * errors.
119  */
120 static void stmmac_verify_args(void)
121 {
122         if (unlikely(watchdog < 0))
123                 watchdog = TX_TIMEO;
124         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
125                 buf_sz = DEFAULT_BUFSIZE;
126         if (unlikely(flow_ctrl > 1))
127                 flow_ctrl = FLOW_AUTO;
128         else if (likely(flow_ctrl < 0))
129                 flow_ctrl = FLOW_OFF;
130         if (unlikely((pause < 0) || (pause > 0xffff)))
131                 pause = PAUSE_TIME;
132         if (eee_timer < 0)
133                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
134 }
135
136 /**
137  * stmmac_disable_all_queues - Disable all queues
138  * @priv: driver private structure
139  */
140 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
141 {
142         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
143         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
144         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
145         u32 queue;
146
147         for (queue = 0; queue < maxq; queue++) {
148                 struct stmmac_channel *ch = &priv->channel[queue];
149
150                 if (queue < rx_queues_cnt)
151                         napi_disable(&ch->rx_napi);
152                 if (queue < tx_queues_cnt)
153                         napi_disable(&ch->tx_napi);
154         }
155 }
156
157 /**
158  * stmmac_enable_all_queues - Enable all queues
159  * @priv: driver private structure
160  */
161 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
162 {
163         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
164         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
165         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
166         u32 queue;
167
168         for (queue = 0; queue < maxq; queue++) {
169                 struct stmmac_channel *ch = &priv->channel[queue];
170
171                 if (queue < rx_queues_cnt)
172                         napi_enable(&ch->rx_napi);
173                 if (queue < tx_queues_cnt)
174                         napi_enable(&ch->tx_napi);
175         }
176 }
177
178 /**
179  * stmmac_stop_all_queues - Stop all queues
180  * @priv: driver private structure
181  */
182 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
183 {
184         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
185         u32 queue;
186
187         for (queue = 0; queue < tx_queues_cnt; queue++)
188                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
189 }
190
191 /**
192  * stmmac_start_all_queues - Start all queues
193  * @priv: driver private structure
194  */
195 static void stmmac_start_all_queues(struct stmmac_priv *priv)
196 {
197         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
198         u32 queue;
199
200         for (queue = 0; queue < tx_queues_cnt; queue++)
201                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
202 }
203
204 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
205 {
206         if (!test_bit(STMMAC_DOWN, &priv->state) &&
207             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
208                 queue_work(priv->wq, &priv->service_task);
209 }
210
211 static void stmmac_global_err(struct stmmac_priv *priv)
212 {
213         netif_carrier_off(priv->dev);
214         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
215         stmmac_service_event_schedule(priv);
216 }
217
218 /**
219  * stmmac_clk_csr_set - dynamically set the MDC clock
220  * @priv: driver private structure
221  * Description: this is to dynamically set the MDC clock according to the csr
222  * clock input.
223  * Note:
224  *      If a specific clk_csr value is passed from the platform
225  *      this means that the CSR Clock Range selection cannot be
226  *      changed at run-time and it is fixed (as reported in the driver
227  *      documentation). Viceversa the driver will try to set the MDC
228  *      clock dynamically according to the actual clock input.
229  */
230 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
231 {
232         u32 clk_rate;
233
234         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
235
236         /* Platform provided default clk_csr would be assumed valid
237          * for all other cases except for the below mentioned ones.
238          * For values higher than the IEEE 802.3 specified frequency
239          * we can not estimate the proper divider as it is not known
240          * the frequency of clk_csr_i. So we do not change the default
241          * divider.
242          */
243         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
244                 if (clk_rate < CSR_F_35M)
245                         priv->clk_csr = STMMAC_CSR_20_35M;
246                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
247                         priv->clk_csr = STMMAC_CSR_35_60M;
248                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
249                         priv->clk_csr = STMMAC_CSR_60_100M;
250                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
251                         priv->clk_csr = STMMAC_CSR_100_150M;
252                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
253                         priv->clk_csr = STMMAC_CSR_150_250M;
254                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
255                         priv->clk_csr = STMMAC_CSR_250_300M;
256         }
257
258         if (priv->plat->has_sun8i) {
259                 if (clk_rate > 160000000)
260                         priv->clk_csr = 0x03;
261                 else if (clk_rate > 80000000)
262                         priv->clk_csr = 0x02;
263                 else if (clk_rate > 40000000)
264                         priv->clk_csr = 0x01;
265                 else
266                         priv->clk_csr = 0;
267         }
268
269         if (priv->plat->has_xgmac) {
270                 if (clk_rate > 400000000)
271                         priv->clk_csr = 0x5;
272                 else if (clk_rate > 350000000)
273                         priv->clk_csr = 0x4;
274                 else if (clk_rate > 300000000)
275                         priv->clk_csr = 0x3;
276                 else if (clk_rate > 250000000)
277                         priv->clk_csr = 0x2;
278                 else if (clk_rate > 150000000)
279                         priv->clk_csr = 0x1;
280                 else
281                         priv->clk_csr = 0x0;
282         }
283 }
284
285 static void print_pkt(unsigned char *buf, int len)
286 {
287         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
288         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
289 }
290
291 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
292 {
293         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
294         u32 avail;
295
296         if (tx_q->dirty_tx > tx_q->cur_tx)
297                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
298         else
299                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
300
301         return avail;
302 }
303
304 /**
305  * stmmac_rx_dirty - Get RX queue dirty
306  * @priv: driver private structure
307  * @queue: RX queue index
308  */
309 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
310 {
311         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
312         u32 dirty;
313
314         if (rx_q->dirty_rx <= rx_q->cur_rx)
315                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
316         else
317                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
318
319         return dirty;
320 }
321
322 /**
323  * stmmac_enable_eee_mode - check and enter in LPI mode
324  * @priv: driver private structure
325  * Description: this function is to verify and enter in LPI mode in case of
326  * EEE.
327  */
328 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
329 {
330         u32 tx_cnt = priv->plat->tx_queues_to_use;
331         u32 queue;
332
333         /* check if all TX queues have the work finished */
334         for (queue = 0; queue < tx_cnt; queue++) {
335                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
336
337                 if (tx_q->dirty_tx != tx_q->cur_tx)
338                         return; /* still unfinished work */
339         }
340
341         /* Check and enter in LPI mode */
342         if (!priv->tx_path_in_lpi_mode)
343                 stmmac_set_eee_mode(priv, priv->hw,
344                                 priv->plat->en_tx_lpi_clockgating);
345 }
346
347 /**
348  * stmmac_disable_eee_mode - disable and exit from LPI mode
349  * @priv: driver private structure
350  * Description: this function is to exit and disable EEE in case of
351  * LPI state is true. This is called by the xmit.
352  */
353 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
354 {
355         stmmac_reset_eee_mode(priv, priv->hw);
356         del_timer_sync(&priv->eee_ctrl_timer);
357         priv->tx_path_in_lpi_mode = false;
358 }
359
360 /**
361  * stmmac_eee_ctrl_timer - EEE TX SW timer.
362  * @arg : data hook
363  * Description:
364  *  if there is no data transfer and if we are not in LPI state,
365  *  then MAC Transmitter can be moved to LPI state.
366  */
367 static void stmmac_eee_ctrl_timer(struct timer_list *t)
368 {
369         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
370
371         stmmac_enable_eee_mode(priv);
372         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
373 }
374
375 /**
376  * stmmac_eee_init - init EEE
377  * @priv: driver private structure
378  * Description:
379  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
380  *  can also manage EEE, this function enable the LPI state and start related
381  *  timer.
382  */
383 bool stmmac_eee_init(struct stmmac_priv *priv)
384 {
385         int tx_lpi_timer = priv->tx_lpi_timer;
386
387         /* Using PCS we cannot dial with the phy registers at this stage
388          * so we do not support extra feature like EEE.
389          */
390         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
391             (priv->hw->pcs == STMMAC_PCS_TBI) ||
392             (priv->hw->pcs == STMMAC_PCS_RTBI))
393                 return false;
394
395         /* Check if MAC core supports the EEE feature. */
396         if (!priv->dma_cap.eee)
397                 return false;
398
399         mutex_lock(&priv->lock);
400
401         /* Check if it needs to be deactivated */
402         if (!priv->eee_active) {
403                 if (priv->eee_enabled) {
404                         netdev_dbg(priv->dev, "disable EEE\n");
405                         del_timer_sync(&priv->eee_ctrl_timer);
406                         stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407                 }
408                 mutex_unlock(&priv->lock);
409                 return false;
410         }
411
412         if (priv->eee_active && !priv->eee_enabled) {
413                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416                                      tx_lpi_timer);
417         }
418
419         mutex_unlock(&priv->lock);
420         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421         return true;
422 }
423
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433                                    struct dma_desc *p, struct sk_buff *skb)
434 {
435         struct skb_shared_hwtstamps shhwtstamp;
436         bool found = false;
437         u64 ns = 0;
438
439         if (!priv->hwts_tx_en)
440                 return;
441
442         /* exit if skb doesn't support hw tstamp */
443         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444                 return;
445
446         /* check tx tstamp status */
447         if (stmmac_get_tx_timestamp_status(priv, p)) {
448                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449                 found = true;
450         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451                 found = true;
452         }
453
454         if (found) {
455                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
457
458                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459                 /* pass tstamp to stack */
460                 skb_tstamp_tx(skb, &shhwtstamp);
461         }
462 }
463
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474                                    struct dma_desc *np, struct sk_buff *skb)
475 {
476         struct skb_shared_hwtstamps *shhwtstamp = NULL;
477         struct dma_desc *desc = p;
478         u64 ns = 0;
479
480         if (!priv->hwts_rx_en)
481                 return;
482         /* For GMAC4, the valid timestamp is from CTX next desc. */
483         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484                 desc = np;
485
486         /* Check if timestamp is available */
487         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490                 shhwtstamp = skb_hwtstamps(skb);
491                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
493         } else  {
494                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495         }
496 }
497
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511         struct stmmac_priv *priv = netdev_priv(dev);
512         struct hwtstamp_config config;
513         struct timespec64 now;
514         u64 temp = 0;
515         u32 ptp_v2 = 0;
516         u32 tstamp_all = 0;
517         u32 ptp_over_ipv4_udp = 0;
518         u32 ptp_over_ipv6_udp = 0;
519         u32 ptp_over_ethernet = 0;
520         u32 snap_type_sel = 0;
521         u32 ts_master_en = 0;
522         u32 ts_event_en = 0;
523         u32 sec_inc = 0;
524         u32 value = 0;
525         bool xmac;
526
527         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528
529         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530                 netdev_alert(priv->dev, "No support for HW time stamping\n");
531                 priv->hwts_tx_en = 0;
532                 priv->hwts_rx_en = 0;
533
534                 return -EOPNOTSUPP;
535         }
536
537         if (copy_from_user(&config, ifr->ifr_data,
538                            sizeof(config)))
539                 return -EFAULT;
540
541         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542                    __func__, config.flags, config.tx_type, config.rx_filter);
543
544         /* reserved for future extensions */
545         if (config.flags)
546                 return -EINVAL;
547
548         if (config.tx_type != HWTSTAMP_TX_OFF &&
549             config.tx_type != HWTSTAMP_TX_ON)
550                 return -ERANGE;
551
552         if (priv->adv_ts) {
553                 switch (config.rx_filter) {
554                 case HWTSTAMP_FILTER_NONE:
555                         /* time stamp no incoming packet at all */
556                         config.rx_filter = HWTSTAMP_FILTER_NONE;
557                         break;
558
559                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560                         /* PTP v1, UDP, any kind of event packet */
561                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562                         /* 'xmac' hardware can support Sync, Pdelay_Req and
563                          * Pdelay_resp by setting bit14 and bits17/16 to 01
564                          * This leaves Delay_Req timestamps out.
565                          * Enable all events *and* general purpose message
566                          * timestamping
567                          */
568                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571                         break;
572
573                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574                         /* PTP v1, UDP, Sync packet */
575                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576                         /* take time stamp for SYNC messages only */
577                         ts_event_en = PTP_TCR_TSEVNTENA;
578
579                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581                         break;
582
583                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584                         /* PTP v1, UDP, Delay_req packet */
585                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586                         /* take time stamp for Delay_Req messages only */
587                         ts_master_en = PTP_TCR_TSMSTRENA;
588                         ts_event_en = PTP_TCR_TSEVNTENA;
589
590                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592                         break;
593
594                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595                         /* PTP v2, UDP, any kind of event packet */
596                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597                         ptp_v2 = PTP_TCR_TSVER2ENA;
598                         /* take time stamp for all event messages */
599                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600
601                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603                         break;
604
605                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606                         /* PTP v2, UDP, Sync packet */
607                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608                         ptp_v2 = PTP_TCR_TSVER2ENA;
609                         /* take time stamp for SYNC messages only */
610                         ts_event_en = PTP_TCR_TSEVNTENA;
611
612                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614                         break;
615
616                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617                         /* PTP v2, UDP, Delay_req packet */
618                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619                         ptp_v2 = PTP_TCR_TSVER2ENA;
620                         /* take time stamp for Delay_Req messages only */
621                         ts_master_en = PTP_TCR_TSMSTRENA;
622                         ts_event_en = PTP_TCR_TSEVNTENA;
623
624                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626                         break;
627
628                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
629                         /* PTP v2/802.AS1 any layer, any kind of event packet */
630                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631                         ptp_v2 = PTP_TCR_TSVER2ENA;
632                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633                         ts_event_en = PTP_TCR_TSEVNTENA;
634                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636                         ptp_over_ethernet = PTP_TCR_TSIPENA;
637                         break;
638
639                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
640                         /* PTP v2/802.AS1, any layer, Sync packet */
641                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642                         ptp_v2 = PTP_TCR_TSVER2ENA;
643                         /* take time stamp for SYNC messages only */
644                         ts_event_en = PTP_TCR_TSEVNTENA;
645
646                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648                         ptp_over_ethernet = PTP_TCR_TSIPENA;
649                         break;
650
651                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652                         /* PTP v2/802.AS1, any layer, Delay_req packet */
653                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654                         ptp_v2 = PTP_TCR_TSVER2ENA;
655                         /* take time stamp for Delay_Req messages only */
656                         ts_master_en = PTP_TCR_TSMSTRENA;
657                         ts_event_en = PTP_TCR_TSEVNTENA;
658
659                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661                         ptp_over_ethernet = PTP_TCR_TSIPENA;
662                         break;
663
664                 case HWTSTAMP_FILTER_NTP_ALL:
665                 case HWTSTAMP_FILTER_ALL:
666                         /* time stamp any incoming packet */
667                         config.rx_filter = HWTSTAMP_FILTER_ALL;
668                         tstamp_all = PTP_TCR_TSENALL;
669                         break;
670
671                 default:
672                         return -ERANGE;
673                 }
674         } else {
675                 switch (config.rx_filter) {
676                 case HWTSTAMP_FILTER_NONE:
677                         config.rx_filter = HWTSTAMP_FILTER_NONE;
678                         break;
679                 default:
680                         /* PTP v1, UDP, any kind of event packet */
681                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682                         break;
683                 }
684         }
685         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687
688         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690         else {
691                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692                          tstamp_all | ptp_v2 | ptp_over_ethernet |
693                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694                          ts_master_en | snap_type_sel);
695                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696
697                 /* program Sub Second Increment reg */
698                 stmmac_config_sub_second_increment(priv,
699                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
700                                 xmac, &sec_inc);
701                 temp = div_u64(1000000000ULL, sec_inc);
702
703                 /* Store sub second increment and flags for later use */
704                 priv->sub_second_inc = sec_inc;
705                 priv->systime_flags = value;
706
707                 /* calculate default added value:
708                  * formula is :
709                  * addend = (2^32)/freq_div_ratio;
710                  * where, freq_div_ratio = 1e9ns/sec_inc
711                  */
712                 temp = (u64)(temp << 32);
713                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715
716                 /* initialize system time */
717                 ktime_get_real_ts64(&now);
718
719                 /* lower 32 bits of tv_sec are safe until y2106 */
720                 stmmac_init_systime(priv, priv->ptpaddr,
721                                 (u32)now.tv_sec, now.tv_nsec);
722         }
723
724         memcpy(&priv->tstamp_config, &config, sizeof(config));
725
726         return copy_to_user(ifr->ifr_data, &config,
727                             sizeof(config)) ? -EFAULT : 0;
728 }
729
730 /**
731  *  stmmac_hwtstamp_get - read hardware timestamping.
732  *  @dev: device pointer.
733  *  @ifr: An IOCTL specific structure, that can contain a pointer to
734  *  a proprietary structure used to pass information to the driver.
735  *  Description:
736  *  This function obtain the current hardware timestamping settings
737     as requested.
738  */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741         struct stmmac_priv *priv = netdev_priv(dev);
742         struct hwtstamp_config *config = &priv->tstamp_config;
743
744         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745                 return -EOPNOTSUPP;
746
747         return copy_to_user(ifr->ifr_data, config,
748                             sizeof(*config)) ? -EFAULT : 0;
749 }
750
751 /**
752  * stmmac_init_ptp - init PTP
753  * @priv: driver private structure
754  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755  * This is done by looking at the HW cap. register.
756  * This function also registers the ptp driver.
757  */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761
762         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763                 return -EOPNOTSUPP;
764
765         priv->adv_ts = 0;
766         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767         if (xmac && priv->dma_cap.atime_stamp)
768                 priv->adv_ts = 1;
769         /* Dwmac 3.x core with extend_desc can support adv_ts */
770         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771                 priv->adv_ts = 1;
772
773         if (priv->dma_cap.time_stamp)
774                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775
776         if (priv->adv_ts)
777                 netdev_info(priv->dev,
778                             "IEEE 1588-2008 Advanced Timestamp supported\n");
779
780         priv->hwts_tx_en = 0;
781         priv->hwts_rx_en = 0;
782
783         stmmac_ptp_register(priv);
784
785         return 0;
786 }
787
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790         if (priv->plat->clk_ptp_ref)
791                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
792         stmmac_ptp_unregister(priv);
793 }
794
795 /**
796  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
797  *  @priv: driver private structure
798  *  Description: It is used for configuring the flow control in all queues
799  */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802         u32 tx_cnt = priv->plat->tx_queues_to_use;
803
804         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805                         priv->pause, tx_cnt);
806 }
807
808 static void stmmac_validate(struct phylink_config *config,
809                             unsigned long *supported,
810                             struct phylink_link_state *state)
811 {
812         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815         int tx_cnt = priv->plat->tx_queues_to_use;
816         int max_speed = priv->plat->max_speed;
817
818         phylink_set(mac_supported, 10baseT_Half);
819         phylink_set(mac_supported, 10baseT_Full);
820         phylink_set(mac_supported, 100baseT_Half);
821         phylink_set(mac_supported, 100baseT_Full);
822         phylink_set(mac_supported, 1000baseT_Half);
823         phylink_set(mac_supported, 1000baseT_Full);
824         phylink_set(mac_supported, 1000baseKX_Full);
825
826         phylink_set(mac_supported, Autoneg);
827         phylink_set(mac_supported, Pause);
828         phylink_set(mac_supported, Asym_Pause);
829         phylink_set_port_modes(mac_supported);
830
831         /* Cut down 1G if asked to */
832         if ((max_speed > 0) && (max_speed < 1000)) {
833                 phylink_set(mask, 1000baseT_Full);
834                 phylink_set(mask, 1000baseX_Full);
835         } else if (priv->plat->has_xgmac) {
836                 if (!max_speed || (max_speed >= 2500)) {
837                         phylink_set(mac_supported, 2500baseT_Full);
838                         phylink_set(mac_supported, 2500baseX_Full);
839                 }
840                 if (!max_speed || (max_speed >= 5000)) {
841                         phylink_set(mac_supported, 5000baseT_Full);
842                 }
843                 if (!max_speed || (max_speed >= 10000)) {
844                         phylink_set(mac_supported, 10000baseSR_Full);
845                         phylink_set(mac_supported, 10000baseLR_Full);
846                         phylink_set(mac_supported, 10000baseER_Full);
847                         phylink_set(mac_supported, 10000baseLRM_Full);
848                         phylink_set(mac_supported, 10000baseT_Full);
849                         phylink_set(mac_supported, 10000baseKX4_Full);
850                         phylink_set(mac_supported, 10000baseKR_Full);
851                 }
852         }
853
854         /* Half-Duplex can only work with single queue */
855         if (tx_cnt > 1) {
856                 phylink_set(mask, 10baseT_Half);
857                 phylink_set(mask, 100baseT_Half);
858                 phylink_set(mask, 1000baseT_Half);
859         }
860
861         bitmap_and(supported, supported, mac_supported,
862                    __ETHTOOL_LINK_MODE_MASK_NBITS);
863         bitmap_andnot(supported, supported, mask,
864                       __ETHTOOL_LINK_MODE_MASK_NBITS);
865         bitmap_and(state->advertising, state->advertising, mac_supported,
866                    __ETHTOOL_LINK_MODE_MASK_NBITS);
867         bitmap_andnot(state->advertising, state->advertising, mask,
868                       __ETHTOOL_LINK_MODE_MASK_NBITS);
869 }
870
871 static int stmmac_mac_link_state(struct phylink_config *config,
872                                  struct phylink_link_state *state)
873 {
874         return -EOPNOTSUPP;
875 }
876
877 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
878                               const struct phylink_link_state *state)
879 {
880         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
881         u32 ctrl;
882
883         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
884         ctrl &= ~priv->hw->link.speed_mask;
885
886         if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
887                 switch (state->speed) {
888                 case SPEED_10000:
889                         ctrl |= priv->hw->link.xgmii.speed10000;
890                         break;
891                 case SPEED_5000:
892                         ctrl |= priv->hw->link.xgmii.speed5000;
893                         break;
894                 case SPEED_2500:
895                         ctrl |= priv->hw->link.xgmii.speed2500;
896                         break;
897                 default:
898                         return;
899                 }
900         } else {
901                 switch (state->speed) {
902                 case SPEED_2500:
903                         ctrl |= priv->hw->link.speed2500;
904                         break;
905                 case SPEED_1000:
906                         ctrl |= priv->hw->link.speed1000;
907                         break;
908                 case SPEED_100:
909                         ctrl |= priv->hw->link.speed100;
910                         break;
911                 case SPEED_10:
912                         ctrl |= priv->hw->link.speed10;
913                         break;
914                 default:
915                         return;
916                 }
917         }
918
919         priv->speed = state->speed;
920
921         if (priv->plat->fix_mac_speed)
922                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
923
924         if (!state->duplex)
925                 ctrl &= ~priv->hw->link.duplex;
926         else
927                 ctrl |= priv->hw->link.duplex;
928
929         /* Flow Control operation */
930         if (state->pause)
931                 stmmac_mac_flow_ctrl(priv, state->duplex);
932
933         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
934 }
935
936 static void stmmac_mac_an_restart(struct phylink_config *config)
937 {
938         /* Not Supported */
939 }
940
941 static void stmmac_mac_link_down(struct phylink_config *config,
942                                  unsigned int mode, phy_interface_t interface)
943 {
944         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945
946         stmmac_mac_set(priv, priv->ioaddr, false);
947         priv->eee_active = false;
948         stmmac_eee_init(priv);
949         stmmac_set_eee_pls(priv, priv->hw, false);
950 }
951
952 static void stmmac_mac_link_up(struct phylink_config *config,
953                                unsigned int mode, phy_interface_t interface,
954                                struct phy_device *phy)
955 {
956         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
957
958         stmmac_mac_set(priv, priv->ioaddr, true);
959         if (phy && priv->dma_cap.eee) {
960                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
961                 priv->eee_enabled = stmmac_eee_init(priv);
962                 stmmac_set_eee_pls(priv, priv->hw, true);
963         }
964 }
965
966 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
967         .validate = stmmac_validate,
968         .mac_link_state = stmmac_mac_link_state,
969         .mac_config = stmmac_mac_config,
970         .mac_an_restart = stmmac_mac_an_restart,
971         .mac_link_down = stmmac_mac_link_down,
972         .mac_link_up = stmmac_mac_link_up,
973 };
974
975 /**
976  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
977  * @priv: driver private structure
978  * Description: this is to verify if the HW supports the PCS.
979  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
980  * configured for the TBI, RTBI, or SGMII PHY interface.
981  */
982 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
983 {
984         int interface = priv->plat->interface;
985
986         if (priv->dma_cap.pcs) {
987                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
988                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
989                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
990                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
991                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
992                         priv->hw->pcs = STMMAC_PCS_RGMII;
993                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
994                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
995                         priv->hw->pcs = STMMAC_PCS_SGMII;
996                 }
997         }
998 }
999
1000 /**
1001  * stmmac_init_phy - PHY initialization
1002  * @dev: net device structure
1003  * Description: it initializes the driver's PHY state, and attaches the PHY
1004  * to the mac driver.
1005  *  Return value:
1006  *  0 on success
1007  */
1008 static int stmmac_init_phy(struct net_device *dev)
1009 {
1010         struct stmmac_priv *priv = netdev_priv(dev);
1011         struct device_node *node;
1012         int ret;
1013
1014         node = priv->plat->phylink_node;
1015
1016         if (node)
1017                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1018
1019         /* Some DT bindings do not set-up the PHY handle. Let's try to
1020          * manually parse it
1021          */
1022         if (!node || ret) {
1023                 int addr = priv->plat->phy_addr;
1024                 struct phy_device *phydev;
1025
1026                 phydev = mdiobus_get_phy(priv->mii, addr);
1027                 if (!phydev) {
1028                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1029                         return -ENODEV;
1030                 }
1031
1032                 ret = phylink_connect_phy(priv->phylink, phydev);
1033         }
1034
1035         return ret;
1036 }
1037
1038 static int stmmac_phy_setup(struct stmmac_priv *priv)
1039 {
1040         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1041         int mode = priv->plat->phy_interface;
1042         struct phylink *phylink;
1043
1044         priv->phylink_config.dev = &priv->dev->dev;
1045         priv->phylink_config.type = PHYLINK_NETDEV;
1046
1047         phylink = phylink_create(&priv->phylink_config, fwnode,
1048                                  mode, &stmmac_phylink_mac_ops);
1049         if (IS_ERR(phylink))
1050                 return PTR_ERR(phylink);
1051
1052         priv->phylink = phylink;
1053         return 0;
1054 }
1055
1056 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1057 {
1058         u32 rx_cnt = priv->plat->rx_queues_to_use;
1059         void *head_rx;
1060         u32 queue;
1061
1062         /* Display RX rings */
1063         for (queue = 0; queue < rx_cnt; queue++) {
1064                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1065
1066                 pr_info("\tRX Queue %u rings\n", queue);
1067
1068                 if (priv->extend_desc)
1069                         head_rx = (void *)rx_q->dma_erx;
1070                 else
1071                         head_rx = (void *)rx_q->dma_rx;
1072
1073                 /* Display RX ring */
1074                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1075         }
1076 }
1077
1078 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1079 {
1080         u32 tx_cnt = priv->plat->tx_queues_to_use;
1081         void *head_tx;
1082         u32 queue;
1083
1084         /* Display TX rings */
1085         for (queue = 0; queue < tx_cnt; queue++) {
1086                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1087
1088                 pr_info("\tTX Queue %d rings\n", queue);
1089
1090                 if (priv->extend_desc)
1091                         head_tx = (void *)tx_q->dma_etx;
1092                 else
1093                         head_tx = (void *)tx_q->dma_tx;
1094
1095                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1096         }
1097 }
1098
1099 static void stmmac_display_rings(struct stmmac_priv *priv)
1100 {
1101         /* Display RX ring */
1102         stmmac_display_rx_rings(priv);
1103
1104         /* Display TX ring */
1105         stmmac_display_tx_rings(priv);
1106 }
1107
1108 static int stmmac_set_bfsize(int mtu, int bufsize)
1109 {
1110         int ret = bufsize;
1111
1112         if (mtu >= BUF_SIZE_4KiB)
1113                 ret = BUF_SIZE_8KiB;
1114         else if (mtu >= BUF_SIZE_2KiB)
1115                 ret = BUF_SIZE_4KiB;
1116         else if (mtu > DEFAULT_BUFSIZE)
1117                 ret = BUF_SIZE_2KiB;
1118         else
1119                 ret = DEFAULT_BUFSIZE;
1120
1121         return ret;
1122 }
1123
1124 /**
1125  * stmmac_clear_rx_descriptors - clear RX descriptors
1126  * @priv: driver private structure
1127  * @queue: RX queue index
1128  * Description: this function is called to clear the RX descriptors
1129  * in case of both basic and extended descriptors are used.
1130  */
1131 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1132 {
1133         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1134         int i;
1135
1136         /* Clear the RX descriptors */
1137         for (i = 0; i < DMA_RX_SIZE; i++)
1138                 if (priv->extend_desc)
1139                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1140                                         priv->use_riwt, priv->mode,
1141                                         (i == DMA_RX_SIZE - 1),
1142                                         priv->dma_buf_sz);
1143                 else
1144                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1145                                         priv->use_riwt, priv->mode,
1146                                         (i == DMA_RX_SIZE - 1),
1147                                         priv->dma_buf_sz);
1148 }
1149
1150 /**
1151  * stmmac_clear_tx_descriptors - clear tx descriptors
1152  * @priv: driver private structure
1153  * @queue: TX queue index.
1154  * Description: this function is called to clear the TX descriptors
1155  * in case of both basic and extended descriptors are used.
1156  */
1157 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1158 {
1159         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1160         int i;
1161
1162         /* Clear the TX descriptors */
1163         for (i = 0; i < DMA_TX_SIZE; i++)
1164                 if (priv->extend_desc)
1165                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1166                                         priv->mode, (i == DMA_TX_SIZE - 1));
1167                 else
1168                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1169                                         priv->mode, (i == DMA_TX_SIZE - 1));
1170 }
1171
1172 /**
1173  * stmmac_clear_descriptors - clear descriptors
1174  * @priv: driver private structure
1175  * Description: this function is called to clear the TX and RX descriptors
1176  * in case of both basic and extended descriptors are used.
1177  */
1178 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1179 {
1180         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1181         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1182         u32 queue;
1183
1184         /* Clear the RX descriptors */
1185         for (queue = 0; queue < rx_queue_cnt; queue++)
1186                 stmmac_clear_rx_descriptors(priv, queue);
1187
1188         /* Clear the TX descriptors */
1189         for (queue = 0; queue < tx_queue_cnt; queue++)
1190                 stmmac_clear_tx_descriptors(priv, queue);
1191 }
1192
1193 /**
1194  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1195  * @priv: driver private structure
1196  * @p: descriptor pointer
1197  * @i: descriptor index
1198  * @flags: gfp flag
1199  * @queue: RX queue index
1200  * Description: this function is called to allocate a receive buffer, perform
1201  * the DMA mapping and init the descriptor.
1202  */
1203 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1204                                   int i, gfp_t flags, u32 queue)
1205 {
1206         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1207         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1208
1209         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1210         if (!buf->page)
1211                 return -ENOMEM;
1212
1213         if (priv->sph) {
1214                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1215                 if (!buf->sec_page)
1216                         return -ENOMEM;
1217
1218                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1219                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1220         } else {
1221                 buf->sec_page = NULL;
1222         }
1223
1224         buf->addr = page_pool_get_dma_addr(buf->page);
1225         stmmac_set_desc_addr(priv, p, buf->addr);
1226         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1227                 stmmac_init_desc3(priv, p);
1228
1229         return 0;
1230 }
1231
1232 /**
1233  * stmmac_free_rx_buffer - free RX dma buffers
1234  * @priv: private structure
1235  * @queue: RX queue index
1236  * @i: buffer index.
1237  */
1238 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1239 {
1240         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1241         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1242
1243         if (buf->page)
1244                 page_pool_put_page(rx_q->page_pool, buf->page, false);
1245         buf->page = NULL;
1246
1247         if (buf->sec_page)
1248                 page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1249         buf->sec_page = NULL;
1250 }
1251
1252 /**
1253  * stmmac_free_tx_buffer - free RX dma buffers
1254  * @priv: private structure
1255  * @queue: RX queue index
1256  * @i: buffer index.
1257  */
1258 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1259 {
1260         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1261
1262         if (tx_q->tx_skbuff_dma[i].buf) {
1263                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1264                         dma_unmap_page(priv->device,
1265                                        tx_q->tx_skbuff_dma[i].buf,
1266                                        tx_q->tx_skbuff_dma[i].len,
1267                                        DMA_TO_DEVICE);
1268                 else
1269                         dma_unmap_single(priv->device,
1270                                          tx_q->tx_skbuff_dma[i].buf,
1271                                          tx_q->tx_skbuff_dma[i].len,
1272                                          DMA_TO_DEVICE);
1273         }
1274
1275         if (tx_q->tx_skbuff[i]) {
1276                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1277                 tx_q->tx_skbuff[i] = NULL;
1278                 tx_q->tx_skbuff_dma[i].buf = 0;
1279                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1280         }
1281 }
1282
1283 /**
1284  * init_dma_rx_desc_rings - init the RX descriptor rings
1285  * @dev: net device structure
1286  * @flags: gfp flag.
1287  * Description: this function initializes the DMA RX descriptors
1288  * and allocates the socket buffers. It supports the chained and ring
1289  * modes.
1290  */
1291 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1292 {
1293         struct stmmac_priv *priv = netdev_priv(dev);
1294         u32 rx_count = priv->plat->rx_queues_to_use;
1295         int ret = -ENOMEM;
1296         int bfsize = 0;
1297         int queue;
1298         int i;
1299
1300         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1301         if (bfsize < 0)
1302                 bfsize = 0;
1303
1304         if (bfsize < BUF_SIZE_16KiB)
1305                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1306
1307         priv->dma_buf_sz = bfsize;
1308
1309         /* RX INITIALIZATION */
1310         netif_dbg(priv, probe, priv->dev,
1311                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1312
1313         for (queue = 0; queue < rx_count; queue++) {
1314                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1315
1316                 netif_dbg(priv, probe, priv->dev,
1317                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1318                           (u32)rx_q->dma_rx_phy);
1319
1320                 stmmac_clear_rx_descriptors(priv, queue);
1321
1322                 for (i = 0; i < DMA_RX_SIZE; i++) {
1323                         struct dma_desc *p;
1324
1325                         if (priv->extend_desc)
1326                                 p = &((rx_q->dma_erx + i)->basic);
1327                         else
1328                                 p = rx_q->dma_rx + i;
1329
1330                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1331                                                      queue);
1332                         if (ret)
1333                                 goto err_init_rx_buffers;
1334                 }
1335
1336                 rx_q->cur_rx = 0;
1337                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1338
1339                 /* Setup the chained descriptor addresses */
1340                 if (priv->mode == STMMAC_CHAIN_MODE) {
1341                         if (priv->extend_desc)
1342                                 stmmac_mode_init(priv, rx_q->dma_erx,
1343                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1344                         else
1345                                 stmmac_mode_init(priv, rx_q->dma_rx,
1346                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1347                 }
1348         }
1349
1350         buf_sz = bfsize;
1351
1352         return 0;
1353
1354 err_init_rx_buffers:
1355         while (queue >= 0) {
1356                 while (--i >= 0)
1357                         stmmac_free_rx_buffer(priv, queue, i);
1358
1359                 if (queue == 0)
1360                         break;
1361
1362                 i = DMA_RX_SIZE;
1363                 queue--;
1364         }
1365
1366         return ret;
1367 }
1368
1369 /**
1370  * init_dma_tx_desc_rings - init the TX descriptor rings
1371  * @dev: net device structure.
1372  * Description: this function initializes the DMA TX descriptors
1373  * and allocates the socket buffers. It supports the chained and ring
1374  * modes.
1375  */
1376 static int init_dma_tx_desc_rings(struct net_device *dev)
1377 {
1378         struct stmmac_priv *priv = netdev_priv(dev);
1379         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1380         u32 queue;
1381         int i;
1382
1383         for (queue = 0; queue < tx_queue_cnt; queue++) {
1384                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1385
1386                 netif_dbg(priv, probe, priv->dev,
1387                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1388                          (u32)tx_q->dma_tx_phy);
1389
1390                 /* Setup the chained descriptor addresses */
1391                 if (priv->mode == STMMAC_CHAIN_MODE) {
1392                         if (priv->extend_desc)
1393                                 stmmac_mode_init(priv, tx_q->dma_etx,
1394                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1395                         else
1396                                 stmmac_mode_init(priv, tx_q->dma_tx,
1397                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1398                 }
1399
1400                 for (i = 0; i < DMA_TX_SIZE; i++) {
1401                         struct dma_desc *p;
1402                         if (priv->extend_desc)
1403                                 p = &((tx_q->dma_etx + i)->basic);
1404                         else
1405                                 p = tx_q->dma_tx + i;
1406
1407                         stmmac_clear_desc(priv, p);
1408
1409                         tx_q->tx_skbuff_dma[i].buf = 0;
1410                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1411                         tx_q->tx_skbuff_dma[i].len = 0;
1412                         tx_q->tx_skbuff_dma[i].last_segment = false;
1413                         tx_q->tx_skbuff[i] = NULL;
1414                 }
1415
1416                 tx_q->dirty_tx = 0;
1417                 tx_q->cur_tx = 0;
1418                 tx_q->mss = 0;
1419
1420                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1421         }
1422
1423         return 0;
1424 }
1425
1426 /**
1427  * init_dma_desc_rings - init the RX/TX descriptor rings
1428  * @dev: net device structure
1429  * @flags: gfp flag.
1430  * Description: this function initializes the DMA RX/TX descriptors
1431  * and allocates the socket buffers. It supports the chained and ring
1432  * modes.
1433  */
1434 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1435 {
1436         struct stmmac_priv *priv = netdev_priv(dev);
1437         int ret;
1438
1439         ret = init_dma_rx_desc_rings(dev, flags);
1440         if (ret)
1441                 return ret;
1442
1443         ret = init_dma_tx_desc_rings(dev);
1444
1445         stmmac_clear_descriptors(priv);
1446
1447         if (netif_msg_hw(priv))
1448                 stmmac_display_rings(priv);
1449
1450         return ret;
1451 }
1452
1453 /**
1454  * dma_free_rx_skbufs - free RX dma buffers
1455  * @priv: private structure
1456  * @queue: RX queue index
1457  */
1458 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1459 {
1460         int i;
1461
1462         for (i = 0; i < DMA_RX_SIZE; i++)
1463                 stmmac_free_rx_buffer(priv, queue, i);
1464 }
1465
1466 /**
1467  * dma_free_tx_skbufs - free TX dma buffers
1468  * @priv: private structure
1469  * @queue: TX queue index
1470  */
1471 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1472 {
1473         int i;
1474
1475         for (i = 0; i < DMA_TX_SIZE; i++)
1476                 stmmac_free_tx_buffer(priv, queue, i);
1477 }
1478
1479 /**
1480  * free_dma_rx_desc_resources - free RX dma desc resources
1481  * @priv: private structure
1482  */
1483 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1484 {
1485         u32 rx_count = priv->plat->rx_queues_to_use;
1486         u32 queue;
1487
1488         /* Free RX queue resources */
1489         for (queue = 0; queue < rx_count; queue++) {
1490                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1491
1492                 /* Release the DMA RX socket buffers */
1493                 dma_free_rx_skbufs(priv, queue);
1494
1495                 /* Free DMA regions of consistent memory previously allocated */
1496                 if (!priv->extend_desc)
1497                         dma_free_coherent(priv->device,
1498                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1499                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1500                 else
1501                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1502                                           sizeof(struct dma_extended_desc),
1503                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1504
1505                 kfree(rx_q->buf_pool);
1506                 if (rx_q->page_pool) {
1507                         page_pool_request_shutdown(rx_q->page_pool);
1508                         page_pool_destroy(rx_q->page_pool);
1509                 }
1510         }
1511 }
1512
1513 /**
1514  * free_dma_tx_desc_resources - free TX dma desc resources
1515  * @priv: private structure
1516  */
1517 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1518 {
1519         u32 tx_count = priv->plat->tx_queues_to_use;
1520         u32 queue;
1521
1522         /* Free TX queue resources */
1523         for (queue = 0; queue < tx_count; queue++) {
1524                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1525
1526                 /* Release the DMA TX socket buffers */
1527                 dma_free_tx_skbufs(priv, queue);
1528
1529                 /* Free DMA regions of consistent memory previously allocated */
1530                 if (!priv->extend_desc)
1531                         dma_free_coherent(priv->device,
1532                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1533                                           tx_q->dma_tx, tx_q->dma_tx_phy);
1534                 else
1535                         dma_free_coherent(priv->device, DMA_TX_SIZE *
1536                                           sizeof(struct dma_extended_desc),
1537                                           tx_q->dma_etx, tx_q->dma_tx_phy);
1538
1539                 kfree(tx_q->tx_skbuff_dma);
1540                 kfree(tx_q->tx_skbuff);
1541         }
1542 }
1543
1544 /**
1545  * alloc_dma_rx_desc_resources - alloc RX resources.
1546  * @priv: private structure
1547  * Description: according to which descriptor can be used (extend or basic)
1548  * this function allocates the resources for TX and RX paths. In case of
1549  * reception, for example, it pre-allocated the RX socket buffer in order to
1550  * allow zero-copy mechanism.
1551  */
1552 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1553 {
1554         u32 rx_count = priv->plat->rx_queues_to_use;
1555         int ret = -ENOMEM;
1556         u32 queue;
1557
1558         /* RX queues buffers and DMA */
1559         for (queue = 0; queue < rx_count; queue++) {
1560                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1561                 struct page_pool_params pp_params = { 0 };
1562                 unsigned int num_pages;
1563
1564                 rx_q->queue_index = queue;
1565                 rx_q->priv_data = priv;
1566
1567                 pp_params.flags = PP_FLAG_DMA_MAP;
1568                 pp_params.pool_size = DMA_RX_SIZE;
1569                 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1570                 pp_params.order = ilog2(num_pages);
1571                 pp_params.nid = dev_to_node(priv->device);
1572                 pp_params.dev = priv->device;
1573                 pp_params.dma_dir = DMA_FROM_DEVICE;
1574
1575                 rx_q->page_pool = page_pool_create(&pp_params);
1576                 if (IS_ERR(rx_q->page_pool)) {
1577                         ret = PTR_ERR(rx_q->page_pool);
1578                         rx_q->page_pool = NULL;
1579                         goto err_dma;
1580                 }
1581
1582                 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1583                                          GFP_KERNEL);
1584                 if (!rx_q->buf_pool)
1585                         goto err_dma;
1586
1587                 if (priv->extend_desc) {
1588                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1589                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1590                                                            &rx_q->dma_rx_phy,
1591                                                            GFP_KERNEL);
1592                         if (!rx_q->dma_erx)
1593                                 goto err_dma;
1594
1595                 } else {
1596                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1597                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1598                                                           &rx_q->dma_rx_phy,
1599                                                           GFP_KERNEL);
1600                         if (!rx_q->dma_rx)
1601                                 goto err_dma;
1602                 }
1603         }
1604
1605         return 0;
1606
1607 err_dma:
1608         free_dma_rx_desc_resources(priv);
1609
1610         return ret;
1611 }
1612
1613 /**
1614  * alloc_dma_tx_desc_resources - alloc TX resources.
1615  * @priv: private structure
1616  * Description: according to which descriptor can be used (extend or basic)
1617  * this function allocates the resources for TX and RX paths. In case of
1618  * reception, for example, it pre-allocated the RX socket buffer in order to
1619  * allow zero-copy mechanism.
1620  */
1621 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1622 {
1623         u32 tx_count = priv->plat->tx_queues_to_use;
1624         int ret = -ENOMEM;
1625         u32 queue;
1626
1627         /* TX queues buffers and DMA */
1628         for (queue = 0; queue < tx_count; queue++) {
1629                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1630
1631                 tx_q->queue_index = queue;
1632                 tx_q->priv_data = priv;
1633
1634                 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1635                                               sizeof(*tx_q->tx_skbuff_dma),
1636                                               GFP_KERNEL);
1637                 if (!tx_q->tx_skbuff_dma)
1638                         goto err_dma;
1639
1640                 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1641                                           sizeof(struct sk_buff *),
1642                                           GFP_KERNEL);
1643                 if (!tx_q->tx_skbuff)
1644                         goto err_dma;
1645
1646                 if (priv->extend_desc) {
1647                         tx_q->dma_etx = dma_alloc_coherent(priv->device,
1648                                                            DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1649                                                            &tx_q->dma_tx_phy,
1650                                                            GFP_KERNEL);
1651                         if (!tx_q->dma_etx)
1652                                 goto err_dma;
1653                 } else {
1654                         tx_q->dma_tx = dma_alloc_coherent(priv->device,
1655                                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1656                                                           &tx_q->dma_tx_phy,
1657                                                           GFP_KERNEL);
1658                         if (!tx_q->dma_tx)
1659                                 goto err_dma;
1660                 }
1661         }
1662
1663         return 0;
1664
1665 err_dma:
1666         free_dma_tx_desc_resources(priv);
1667
1668         return ret;
1669 }
1670
1671 /**
1672  * alloc_dma_desc_resources - alloc TX/RX resources.
1673  * @priv: private structure
1674  * Description: according to which descriptor can be used (extend or basic)
1675  * this function allocates the resources for TX and RX paths. In case of
1676  * reception, for example, it pre-allocated the RX socket buffer in order to
1677  * allow zero-copy mechanism.
1678  */
1679 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1680 {
1681         /* RX Allocation */
1682         int ret = alloc_dma_rx_desc_resources(priv);
1683
1684         if (ret)
1685                 return ret;
1686
1687         ret = alloc_dma_tx_desc_resources(priv);
1688
1689         return ret;
1690 }
1691
1692 /**
1693  * free_dma_desc_resources - free dma desc resources
1694  * @priv: private structure
1695  */
1696 static void free_dma_desc_resources(struct stmmac_priv *priv)
1697 {
1698         /* Release the DMA RX socket buffers */
1699         free_dma_rx_desc_resources(priv);
1700
1701         /* Release the DMA TX socket buffers */
1702         free_dma_tx_desc_resources(priv);
1703 }
1704
1705 /**
1706  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1707  *  @priv: driver private structure
1708  *  Description: It is used for enabling the rx queues in the MAC
1709  */
1710 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1711 {
1712         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1713         int queue;
1714         u8 mode;
1715
1716         for (queue = 0; queue < rx_queues_count; queue++) {
1717                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1718                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1719         }
1720 }
1721
1722 /**
1723  * stmmac_start_rx_dma - start RX DMA channel
1724  * @priv: driver private structure
1725  * @chan: RX channel index
1726  * Description:
1727  * This starts a RX DMA channel
1728  */
1729 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1730 {
1731         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1732         stmmac_start_rx(priv, priv->ioaddr, chan);
1733 }
1734
1735 /**
1736  * stmmac_start_tx_dma - start TX DMA channel
1737  * @priv: driver private structure
1738  * @chan: TX channel index
1739  * Description:
1740  * This starts a TX DMA channel
1741  */
1742 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1743 {
1744         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1745         stmmac_start_tx(priv, priv->ioaddr, chan);
1746 }
1747
1748 /**
1749  * stmmac_stop_rx_dma - stop RX DMA channel
1750  * @priv: driver private structure
1751  * @chan: RX channel index
1752  * Description:
1753  * This stops a RX DMA channel
1754  */
1755 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1756 {
1757         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1758         stmmac_stop_rx(priv, priv->ioaddr, chan);
1759 }
1760
1761 /**
1762  * stmmac_stop_tx_dma - stop TX DMA channel
1763  * @priv: driver private structure
1764  * @chan: TX channel index
1765  * Description:
1766  * This stops a TX DMA channel
1767  */
1768 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1769 {
1770         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1771         stmmac_stop_tx(priv, priv->ioaddr, chan);
1772 }
1773
1774 /**
1775  * stmmac_start_all_dma - start all RX and TX DMA channels
1776  * @priv: driver private structure
1777  * Description:
1778  * This starts all the RX and TX DMA channels
1779  */
1780 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1781 {
1782         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1783         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1784         u32 chan = 0;
1785
1786         for (chan = 0; chan < rx_channels_count; chan++)
1787                 stmmac_start_rx_dma(priv, chan);
1788
1789         for (chan = 0; chan < tx_channels_count; chan++)
1790                 stmmac_start_tx_dma(priv, chan);
1791 }
1792
1793 /**
1794  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1795  * @priv: driver private structure
1796  * Description:
1797  * This stops the RX and TX DMA channels
1798  */
1799 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1800 {
1801         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1802         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1803         u32 chan = 0;
1804
1805         for (chan = 0; chan < rx_channels_count; chan++)
1806                 stmmac_stop_rx_dma(priv, chan);
1807
1808         for (chan = 0; chan < tx_channels_count; chan++)
1809                 stmmac_stop_tx_dma(priv, chan);
1810 }
1811
1812 /**
1813  *  stmmac_dma_operation_mode - HW DMA operation mode
1814  *  @priv: driver private structure
1815  *  Description: it is used for configuring the DMA operation mode register in
1816  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1817  */
1818 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1819 {
1820         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1821         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1822         int rxfifosz = priv->plat->rx_fifo_size;
1823         int txfifosz = priv->plat->tx_fifo_size;
1824         u32 txmode = 0;
1825         u32 rxmode = 0;
1826         u32 chan = 0;
1827         u8 qmode = 0;
1828
1829         if (rxfifosz == 0)
1830                 rxfifosz = priv->dma_cap.rx_fifo_size;
1831         if (txfifosz == 0)
1832                 txfifosz = priv->dma_cap.tx_fifo_size;
1833
1834         /* Adjust for real per queue fifo size */
1835         rxfifosz /= rx_channels_count;
1836         txfifosz /= tx_channels_count;
1837
1838         if (priv->plat->force_thresh_dma_mode) {
1839                 txmode = tc;
1840                 rxmode = tc;
1841         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1842                 /*
1843                  * In case of GMAC, SF mode can be enabled
1844                  * to perform the TX COE in HW. This depends on:
1845                  * 1) TX COE if actually supported
1846                  * 2) There is no bugged Jumbo frame support
1847                  *    that needs to not insert csum in the TDES.
1848                  */
1849                 txmode = SF_DMA_MODE;
1850                 rxmode = SF_DMA_MODE;
1851                 priv->xstats.threshold = SF_DMA_MODE;
1852         } else {
1853                 txmode = tc;
1854                 rxmode = SF_DMA_MODE;
1855         }
1856
1857         /* configure all channels */
1858         for (chan = 0; chan < rx_channels_count; chan++) {
1859                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1860
1861                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1862                                 rxfifosz, qmode);
1863                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1864                                 chan);
1865         }
1866
1867         for (chan = 0; chan < tx_channels_count; chan++) {
1868                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1869
1870                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1871                                 txfifosz, qmode);
1872         }
1873 }
1874
1875 /**
1876  * stmmac_tx_clean - to manage the transmission completion
1877  * @priv: driver private structure
1878  * @queue: TX queue index
1879  * Description: it reclaims the transmit resources after transmission completes.
1880  */
1881 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1882 {
1883         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1884         unsigned int bytes_compl = 0, pkts_compl = 0;
1885         unsigned int entry, count = 0;
1886
1887         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1888
1889         priv->xstats.tx_clean++;
1890
1891         entry = tx_q->dirty_tx;
1892         while ((entry != tx_q->cur_tx) && (count < budget)) {
1893                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1894                 struct dma_desc *p;
1895                 int status;
1896
1897                 if (priv->extend_desc)
1898                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1899                 else
1900                         p = tx_q->dma_tx + entry;
1901
1902                 status = stmmac_tx_status(priv, &priv->dev->stats,
1903                                 &priv->xstats, p, priv->ioaddr);
1904                 /* Check if the descriptor is owned by the DMA */
1905                 if (unlikely(status & tx_dma_own))
1906                         break;
1907
1908                 count++;
1909
1910                 /* Make sure descriptor fields are read after reading
1911                  * the own bit.
1912                  */
1913                 dma_rmb();
1914
1915                 /* Just consider the last segment and ...*/
1916                 if (likely(!(status & tx_not_ls))) {
1917                         /* ... verify the status error condition */
1918                         if (unlikely(status & tx_err)) {
1919                                 priv->dev->stats.tx_errors++;
1920                         } else {
1921                                 priv->dev->stats.tx_packets++;
1922                                 priv->xstats.tx_pkt_n++;
1923                         }
1924                         stmmac_get_tx_hwtstamp(priv, p, skb);
1925                 }
1926
1927                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1928                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1929                                 dma_unmap_page(priv->device,
1930                                                tx_q->tx_skbuff_dma[entry].buf,
1931                                                tx_q->tx_skbuff_dma[entry].len,
1932                                                DMA_TO_DEVICE);
1933                         else
1934                                 dma_unmap_single(priv->device,
1935                                                  tx_q->tx_skbuff_dma[entry].buf,
1936                                                  tx_q->tx_skbuff_dma[entry].len,
1937                                                  DMA_TO_DEVICE);
1938                         tx_q->tx_skbuff_dma[entry].buf = 0;
1939                         tx_q->tx_skbuff_dma[entry].len = 0;
1940                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1941                 }
1942
1943                 stmmac_clean_desc3(priv, tx_q, p);
1944
1945                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1946                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1947
1948                 if (likely(skb != NULL)) {
1949                         pkts_compl++;
1950                         bytes_compl += skb->len;
1951                         dev_consume_skb_any(skb);
1952                         tx_q->tx_skbuff[entry] = NULL;
1953                 }
1954
1955                 stmmac_release_tx_desc(priv, p, priv->mode);
1956
1957                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1958         }
1959         tx_q->dirty_tx = entry;
1960
1961         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1962                                   pkts_compl, bytes_compl);
1963
1964         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1965                                                                 queue))) &&
1966             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1967
1968                 netif_dbg(priv, tx_done, priv->dev,
1969                           "%s: restart transmit\n", __func__);
1970                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1971         }
1972
1973         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1974                 stmmac_enable_eee_mode(priv);
1975                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1976         }
1977
1978         /* We still have pending packets, let's call for a new scheduling */
1979         if (tx_q->dirty_tx != tx_q->cur_tx)
1980                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1981
1982         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1983
1984         return count;
1985 }
1986
1987 /**
1988  * stmmac_tx_err - to manage the tx error
1989  * @priv: driver private structure
1990  * @chan: channel index
1991  * Description: it cleans the descriptors and restarts the transmission
1992  * in case of transmission errors.
1993  */
1994 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1995 {
1996         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1997         int i;
1998
1999         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2000
2001         stmmac_stop_tx_dma(priv, chan);
2002         dma_free_tx_skbufs(priv, chan);
2003         for (i = 0; i < DMA_TX_SIZE; i++)
2004                 if (priv->extend_desc)
2005                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
2006                                         priv->mode, (i == DMA_TX_SIZE - 1));
2007                 else
2008                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
2009                                         priv->mode, (i == DMA_TX_SIZE - 1));
2010         tx_q->dirty_tx = 0;
2011         tx_q->cur_tx = 0;
2012         tx_q->mss = 0;
2013         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2014         stmmac_start_tx_dma(priv, chan);
2015
2016         priv->dev->stats.tx_errors++;
2017         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2018 }
2019
2020 /**
2021  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2022  *  @priv: driver private structure
2023  *  @txmode: TX operating mode
2024  *  @rxmode: RX operating mode
2025  *  @chan: channel index
2026  *  Description: it is used for configuring of the DMA operation mode in
2027  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2028  *  mode.
2029  */
2030 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2031                                           u32 rxmode, u32 chan)
2032 {
2033         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2034         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2035         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2036         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2037         int rxfifosz = priv->plat->rx_fifo_size;
2038         int txfifosz = priv->plat->tx_fifo_size;
2039
2040         if (rxfifosz == 0)
2041                 rxfifosz = priv->dma_cap.rx_fifo_size;
2042         if (txfifosz == 0)
2043                 txfifosz = priv->dma_cap.tx_fifo_size;
2044
2045         /* Adjust for real per queue fifo size */
2046         rxfifosz /= rx_channels_count;
2047         txfifosz /= tx_channels_count;
2048
2049         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2050         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2051 }
2052
2053 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2054 {
2055         int ret;
2056
2057         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2058                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2059         if (ret && (ret != -EINVAL)) {
2060                 stmmac_global_err(priv);
2061                 return true;
2062         }
2063
2064         return false;
2065 }
2066
2067 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2068 {
2069         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2070                                                  &priv->xstats, chan);
2071         struct stmmac_channel *ch = &priv->channel[chan];
2072
2073         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2074                 if (napi_schedule_prep(&ch->rx_napi)) {
2075                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2076                         __napi_schedule_irqoff(&ch->rx_napi);
2077                         status |= handle_tx;
2078                 }
2079         }
2080
2081         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2082                 napi_schedule_irqoff(&ch->tx_napi);
2083
2084         return status;
2085 }
2086
2087 /**
2088  * stmmac_dma_interrupt - DMA ISR
2089  * @priv: driver private structure
2090  * Description: this is the DMA ISR. It is called by the main ISR.
2091  * It calls the dwmac dma routine and schedule poll method in case of some
2092  * work can be done.
2093  */
2094 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2095 {
2096         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2097         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2098         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2099                                 tx_channel_count : rx_channel_count;
2100         u32 chan;
2101         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2102
2103         /* Make sure we never check beyond our status buffer. */
2104         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2105                 channels_to_check = ARRAY_SIZE(status);
2106
2107         for (chan = 0; chan < channels_to_check; chan++)
2108                 status[chan] = stmmac_napi_check(priv, chan);
2109
2110         for (chan = 0; chan < tx_channel_count; chan++) {
2111                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2112                         /* Try to bump up the dma threshold on this failure */
2113                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2114                             (tc <= 256)) {
2115                                 tc += 64;
2116                                 if (priv->plat->force_thresh_dma_mode)
2117                                         stmmac_set_dma_operation_mode(priv,
2118                                                                       tc,
2119                                                                       tc,
2120                                                                       chan);
2121                                 else
2122                                         stmmac_set_dma_operation_mode(priv,
2123                                                                     tc,
2124                                                                     SF_DMA_MODE,
2125                                                                     chan);
2126                                 priv->xstats.threshold = tc;
2127                         }
2128                 } else if (unlikely(status[chan] == tx_hard_error)) {
2129                         stmmac_tx_err(priv, chan);
2130                 }
2131         }
2132 }
2133
2134 /**
2135  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2136  * @priv: driver private structure
2137  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2138  */
2139 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2140 {
2141         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2142                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2143
2144         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2145
2146         if (priv->dma_cap.rmon) {
2147                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2148                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2149         } else
2150                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2151 }
2152
2153 /**
2154  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2155  * @priv: driver private structure
2156  * Description:
2157  *  new GMAC chip generations have a new register to indicate the
2158  *  presence of the optional feature/functions.
2159  *  This can be also used to override the value passed through the
2160  *  platform and necessary for old MAC10/100 and GMAC chips.
2161  */
2162 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2163 {
2164         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2165 }
2166
2167 /**
2168  * stmmac_check_ether_addr - check if the MAC addr is valid
2169  * @priv: driver private structure
2170  * Description:
2171  * it is to verify if the MAC address is valid, in case of failures it
2172  * generates a random MAC address
2173  */
2174 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2175 {
2176         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2177                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2178                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2179                         eth_hw_addr_random(priv->dev);
2180                 dev_info(priv->device, "device MAC address %pM\n",
2181                          priv->dev->dev_addr);
2182         }
2183 }
2184
2185 /**
2186  * stmmac_init_dma_engine - DMA init.
2187  * @priv: driver private structure
2188  * Description:
2189  * It inits the DMA invoking the specific MAC/GMAC callback.
2190  * Some DMA parameters can be passed from the platform;
2191  * in case of these are not passed a default is kept for the MAC or GMAC.
2192  */
2193 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2194 {
2195         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2196         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2197         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2198         struct stmmac_rx_queue *rx_q;
2199         struct stmmac_tx_queue *tx_q;
2200         u32 chan = 0;
2201         int atds = 0;
2202         int ret = 0;
2203
2204         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2205                 dev_err(priv->device, "Invalid DMA configuration\n");
2206                 return -EINVAL;
2207         }
2208
2209         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2210                 atds = 1;
2211
2212         ret = stmmac_reset(priv, priv->ioaddr);
2213         if (ret) {
2214                 dev_err(priv->device, "Failed to reset the dma\n");
2215                 return ret;
2216         }
2217
2218         /* DMA Configuration */
2219         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2220
2221         if (priv->plat->axi)
2222                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2223
2224         /* DMA CSR Channel configuration */
2225         for (chan = 0; chan < dma_csr_ch; chan++)
2226                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2227
2228         /* DMA RX Channel Configuration */
2229         for (chan = 0; chan < rx_channels_count; chan++) {
2230                 rx_q = &priv->rx_queue[chan];
2231
2232                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2233                                     rx_q->dma_rx_phy, chan);
2234
2235                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2236                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2237                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2238                                        rx_q->rx_tail_addr, chan);
2239         }
2240
2241         /* DMA TX Channel Configuration */
2242         for (chan = 0; chan < tx_channels_count; chan++) {
2243                 tx_q = &priv->tx_queue[chan];
2244
2245                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2246                                     tx_q->dma_tx_phy, chan);
2247
2248                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2249                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2250                                        tx_q->tx_tail_addr, chan);
2251         }
2252
2253         return ret;
2254 }
2255
2256 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2257 {
2258         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2259
2260         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2261 }
2262
2263 /**
2264  * stmmac_tx_timer - mitigation sw timer for tx.
2265  * @data: data pointer
2266  * Description:
2267  * This is the timer handler to directly invoke the stmmac_tx_clean.
2268  */
2269 static void stmmac_tx_timer(struct timer_list *t)
2270 {
2271         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2272         struct stmmac_priv *priv = tx_q->priv_data;
2273         struct stmmac_channel *ch;
2274
2275         ch = &priv->channel[tx_q->queue_index];
2276
2277         /*
2278          * If NAPI is already running we can miss some events. Let's rearm
2279          * the timer and try again.
2280          */
2281         if (likely(napi_schedule_prep(&ch->tx_napi)))
2282                 __napi_schedule(&ch->tx_napi);
2283         else
2284                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2285 }
2286
2287 /**
2288  * stmmac_init_coalesce - init mitigation options.
2289  * @priv: driver private structure
2290  * Description:
2291  * This inits the coalesce parameters: i.e. timer rate,
2292  * timer handler and default threshold used for enabling the
2293  * interrupt on completion bit.
2294  */
2295 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2296 {
2297         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2298         u32 chan;
2299
2300         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2301         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2302         priv->rx_coal_frames = STMMAC_RX_FRAMES;
2303
2304         for (chan = 0; chan < tx_channel_count; chan++) {
2305                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2306
2307                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2308         }
2309 }
2310
2311 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2312 {
2313         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2314         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2315         u32 chan;
2316
2317         /* set TX ring length */
2318         for (chan = 0; chan < tx_channels_count; chan++)
2319                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2320                                 (DMA_TX_SIZE - 1), chan);
2321
2322         /* set RX ring length */
2323         for (chan = 0; chan < rx_channels_count; chan++)
2324                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2325                                 (DMA_RX_SIZE - 1), chan);
2326 }
2327
2328 /**
2329  *  stmmac_set_tx_queue_weight - Set TX queue weight
2330  *  @priv: driver private structure
2331  *  Description: It is used for setting TX queues weight
2332  */
2333 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2334 {
2335         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2336         u32 weight;
2337         u32 queue;
2338
2339         for (queue = 0; queue < tx_queues_count; queue++) {
2340                 weight = priv->plat->tx_queues_cfg[queue].weight;
2341                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2342         }
2343 }
2344
2345 /**
2346  *  stmmac_configure_cbs - Configure CBS in TX queue
2347  *  @priv: driver private structure
2348  *  Description: It is used for configuring CBS in AVB TX queues
2349  */
2350 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2351 {
2352         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2353         u32 mode_to_use;
2354         u32 queue;
2355
2356         /* queue 0 is reserved for legacy traffic */
2357         for (queue = 1; queue < tx_queues_count; queue++) {
2358                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2359                 if (mode_to_use == MTL_QUEUE_DCB)
2360                         continue;
2361
2362                 stmmac_config_cbs(priv, priv->hw,
2363                                 priv->plat->tx_queues_cfg[queue].send_slope,
2364                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2365                                 priv->plat->tx_queues_cfg[queue].high_credit,
2366                                 priv->plat->tx_queues_cfg[queue].low_credit,
2367                                 queue);
2368         }
2369 }
2370
2371 /**
2372  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2373  *  @priv: driver private structure
2374  *  Description: It is used for mapping RX queues to RX dma channels
2375  */
2376 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2377 {
2378         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2379         u32 queue;
2380         u32 chan;
2381
2382         for (queue = 0; queue < rx_queues_count; queue++) {
2383                 chan = priv->plat->rx_queues_cfg[queue].chan;
2384                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2385         }
2386 }
2387
2388 /**
2389  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2390  *  @priv: driver private structure
2391  *  Description: It is used for configuring the RX Queue Priority
2392  */
2393 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2394 {
2395         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2396         u32 queue;
2397         u32 prio;
2398
2399         for (queue = 0; queue < rx_queues_count; queue++) {
2400                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2401                         continue;
2402
2403                 prio = priv->plat->rx_queues_cfg[queue].prio;
2404                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2405         }
2406 }
2407
2408 /**
2409  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2410  *  @priv: driver private structure
2411  *  Description: It is used for configuring the TX Queue Priority
2412  */
2413 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2414 {
2415         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2416         u32 queue;
2417         u32 prio;
2418
2419         for (queue = 0; queue < tx_queues_count; queue++) {
2420                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2421                         continue;
2422
2423                 prio = priv->plat->tx_queues_cfg[queue].prio;
2424                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2425         }
2426 }
2427
2428 /**
2429  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2430  *  @priv: driver private structure
2431  *  Description: It is used for configuring the RX queue routing
2432  */
2433 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2434 {
2435         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2436         u32 queue;
2437         u8 packet;
2438
2439         for (queue = 0; queue < rx_queues_count; queue++) {
2440                 /* no specific packet type routing specified for the queue */
2441                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2442                         continue;
2443
2444                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2445                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2446         }
2447 }
2448
2449 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2450 {
2451         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2452                 priv->rss.enable = false;
2453                 return;
2454         }
2455
2456         if (priv->dev->features & NETIF_F_RXHASH)
2457                 priv->rss.enable = true;
2458         else
2459                 priv->rss.enable = false;
2460
2461         stmmac_rss_configure(priv, priv->hw, &priv->rss,
2462                              priv->plat->rx_queues_to_use);
2463 }
2464
2465 /**
2466  *  stmmac_mtl_configuration - Configure MTL
2467  *  @priv: driver private structure
2468  *  Description: It is used for configurring MTL
2469  */
2470 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2471 {
2472         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2473         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2474
2475         if (tx_queues_count > 1)
2476                 stmmac_set_tx_queue_weight(priv);
2477
2478         /* Configure MTL RX algorithms */
2479         if (rx_queues_count > 1)
2480                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2481                                 priv->plat->rx_sched_algorithm);
2482
2483         /* Configure MTL TX algorithms */
2484         if (tx_queues_count > 1)
2485                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2486                                 priv->plat->tx_sched_algorithm);
2487
2488         /* Configure CBS in AVB TX queues */
2489         if (tx_queues_count > 1)
2490                 stmmac_configure_cbs(priv);
2491
2492         /* Map RX MTL to DMA channels */
2493         stmmac_rx_queue_dma_chan_map(priv);
2494
2495         /* Enable MAC RX Queues */
2496         stmmac_mac_enable_rx_queues(priv);
2497
2498         /* Set RX priorities */
2499         if (rx_queues_count > 1)
2500                 stmmac_mac_config_rx_queues_prio(priv);
2501
2502         /* Set TX priorities */
2503         if (tx_queues_count > 1)
2504                 stmmac_mac_config_tx_queues_prio(priv);
2505
2506         /* Set RX routing */
2507         if (rx_queues_count > 1)
2508                 stmmac_mac_config_rx_queues_routing(priv);
2509
2510         /* Receive Side Scaling */
2511         if (rx_queues_count > 1)
2512                 stmmac_mac_config_rss(priv);
2513 }
2514
2515 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2516 {
2517         if (priv->dma_cap.asp) {
2518                 netdev_info(priv->dev, "Enabling Safety Features\n");
2519                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2520         } else {
2521                 netdev_info(priv->dev, "No Safety Features support found\n");
2522         }
2523 }
2524
2525 /**
2526  * stmmac_hw_setup - setup mac in a usable state.
2527  *  @dev : pointer to the device structure.
2528  *  Description:
2529  *  this is the main function to setup the HW in a usable state because the
2530  *  dma engine is reset, the core registers are configured (e.g. AXI,
2531  *  Checksum features, timers). The DMA is ready to start receiving and
2532  *  transmitting.
2533  *  Return value:
2534  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2535  *  file on failure.
2536  */
2537 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2538 {
2539         struct stmmac_priv *priv = netdev_priv(dev);
2540         u32 rx_cnt = priv->plat->rx_queues_to_use;
2541         u32 tx_cnt = priv->plat->tx_queues_to_use;
2542         u32 chan;
2543         int ret;
2544
2545         /* DMA initialization and SW reset */
2546         ret = stmmac_init_dma_engine(priv);
2547         if (ret < 0) {
2548                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2549                            __func__);
2550                 return ret;
2551         }
2552
2553         /* Copy the MAC addr into the HW  */
2554         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2555
2556         /* PS and related bits will be programmed according to the speed */
2557         if (priv->hw->pcs) {
2558                 int speed = priv->plat->mac_port_sel_speed;
2559
2560                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2561                     (speed == SPEED_1000)) {
2562                         priv->hw->ps = speed;
2563                 } else {
2564                         dev_warn(priv->device, "invalid port speed\n");
2565                         priv->hw->ps = 0;
2566                 }
2567         }
2568
2569         /* Initialize the MAC Core */
2570         stmmac_core_init(priv, priv->hw, dev);
2571
2572         /* Initialize MTL*/
2573         stmmac_mtl_configuration(priv);
2574
2575         /* Initialize Safety Features */
2576         stmmac_safety_feat_configuration(priv);
2577
2578         ret = stmmac_rx_ipc(priv, priv->hw);
2579         if (!ret) {
2580                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2581                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2582                 priv->hw->rx_csum = 0;
2583         }
2584
2585         /* Enable the MAC Rx/Tx */
2586         stmmac_mac_set(priv, priv->ioaddr, true);
2587
2588         /* Set the HW DMA mode and the COE */
2589         stmmac_dma_operation_mode(priv);
2590
2591         stmmac_mmc_setup(priv);
2592
2593         if (init_ptp) {
2594                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2595                 if (ret < 0)
2596                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2597
2598                 ret = stmmac_init_ptp(priv);
2599                 if (ret == -EOPNOTSUPP)
2600                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2601                 else if (ret)
2602                         netdev_warn(priv->dev, "PTP init failed\n");
2603         }
2604
2605         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2606
2607         if (priv->use_riwt) {
2608                 if (!priv->rx_riwt)
2609                         priv->rx_riwt = DEF_DMA_RIWT;
2610
2611                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2612         }
2613
2614         if (priv->hw->pcs)
2615                 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2616
2617         /* set TX and RX rings length */
2618         stmmac_set_rings_length(priv);
2619
2620         /* Enable TSO */
2621         if (priv->tso) {
2622                 for (chan = 0; chan < tx_cnt; chan++)
2623                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2624         }
2625
2626         /* Enable Split Header */
2627         if (priv->sph && priv->hw->rx_csum) {
2628                 for (chan = 0; chan < rx_cnt; chan++)
2629                         stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2630         }
2631
2632         /* VLAN Tag Insertion */
2633         if (priv->dma_cap.vlins)
2634                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2635
2636         /* Start the ball rolling... */
2637         stmmac_start_all_dma(priv);
2638
2639         return 0;
2640 }
2641
2642 static void stmmac_hw_teardown(struct net_device *dev)
2643 {
2644         struct stmmac_priv *priv = netdev_priv(dev);
2645
2646         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2647 }
2648
2649 /**
2650  *  stmmac_open - open entry point of the driver
2651  *  @dev : pointer to the device structure.
2652  *  Description:
2653  *  This function is the open entry point of the driver.
2654  *  Return value:
2655  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2656  *  file on failure.
2657  */
2658 static int stmmac_open(struct net_device *dev)
2659 {
2660         struct stmmac_priv *priv = netdev_priv(dev);
2661         u32 chan;
2662         int ret;
2663
2664         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2665             priv->hw->pcs != STMMAC_PCS_TBI &&
2666             priv->hw->pcs != STMMAC_PCS_RTBI) {
2667                 ret = stmmac_init_phy(dev);
2668                 if (ret) {
2669                         netdev_err(priv->dev,
2670                                    "%s: Cannot attach to PHY (error: %d)\n",
2671                                    __func__, ret);
2672                         return ret;
2673                 }
2674         }
2675
2676         /* Extra statistics */
2677         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2678         priv->xstats.threshold = tc;
2679
2680         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2681         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2682
2683         ret = alloc_dma_desc_resources(priv);
2684         if (ret < 0) {
2685                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2686                            __func__);
2687                 goto dma_desc_error;
2688         }
2689
2690         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2691         if (ret < 0) {
2692                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2693                            __func__);
2694                 goto init_error;
2695         }
2696
2697         ret = stmmac_hw_setup(dev, true);
2698         if (ret < 0) {
2699                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2700                 goto init_error;
2701         }
2702
2703         stmmac_init_coalesce(priv);
2704
2705         phylink_start(priv->phylink);
2706
2707         /* Request the IRQ lines */
2708         ret = request_irq(dev->irq, stmmac_interrupt,
2709                           IRQF_SHARED, dev->name, dev);
2710         if (unlikely(ret < 0)) {
2711                 netdev_err(priv->dev,
2712                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2713                            __func__, dev->irq, ret);
2714                 goto irq_error;
2715         }
2716
2717         /* Request the Wake IRQ in case of another line is used for WoL */
2718         if (priv->wol_irq != dev->irq) {
2719                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2720                                   IRQF_SHARED, dev->name, dev);
2721                 if (unlikely(ret < 0)) {
2722                         netdev_err(priv->dev,
2723                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2724                                    __func__, priv->wol_irq, ret);
2725                         goto wolirq_error;
2726                 }
2727         }
2728
2729         /* Request the IRQ lines */
2730         if (priv->lpi_irq > 0) {
2731                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2732                                   dev->name, dev);
2733                 if (unlikely(ret < 0)) {
2734                         netdev_err(priv->dev,
2735                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2736                                    __func__, priv->lpi_irq, ret);
2737                         goto lpiirq_error;
2738                 }
2739         }
2740
2741         stmmac_enable_all_queues(priv);
2742         stmmac_start_all_queues(priv);
2743
2744         return 0;
2745
2746 lpiirq_error:
2747         if (priv->wol_irq != dev->irq)
2748                 free_irq(priv->wol_irq, dev);
2749 wolirq_error:
2750         free_irq(dev->irq, dev);
2751 irq_error:
2752         phylink_stop(priv->phylink);
2753
2754         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2755                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2756
2757         stmmac_hw_teardown(dev);
2758 init_error:
2759         free_dma_desc_resources(priv);
2760 dma_desc_error:
2761         phylink_disconnect_phy(priv->phylink);
2762         return ret;
2763 }
2764
2765 /**
2766  *  stmmac_release - close entry point of the driver
2767  *  @dev : device pointer.
2768  *  Description:
2769  *  This is the stop entry point of the driver.
2770  */
2771 static int stmmac_release(struct net_device *dev)
2772 {
2773         struct stmmac_priv *priv = netdev_priv(dev);
2774         u32 chan;
2775
2776         if (priv->eee_enabled)
2777                 del_timer_sync(&priv->eee_ctrl_timer);
2778
2779         /* Stop and disconnect the PHY */
2780         phylink_stop(priv->phylink);
2781         phylink_disconnect_phy(priv->phylink);
2782
2783         stmmac_stop_all_queues(priv);
2784
2785         stmmac_disable_all_queues(priv);
2786
2787         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2788                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2789
2790         /* Free the IRQ lines */
2791         free_irq(dev->irq, dev);
2792         if (priv->wol_irq != dev->irq)
2793                 free_irq(priv->wol_irq, dev);
2794         if (priv->lpi_irq > 0)
2795                 free_irq(priv->lpi_irq, dev);
2796
2797         /* Stop TX/RX DMA and clear the descriptors */
2798         stmmac_stop_all_dma(priv);
2799
2800         /* Release and free the Rx/Tx resources */
2801         free_dma_desc_resources(priv);
2802
2803         /* Disable the MAC Rx/Tx */
2804         stmmac_mac_set(priv, priv->ioaddr, false);
2805
2806         netif_carrier_off(dev);
2807
2808         stmmac_release_ptp(priv);
2809
2810         return 0;
2811 }
2812
2813 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2814                                struct stmmac_tx_queue *tx_q)
2815 {
2816         u16 tag = 0x0, inner_tag = 0x0;
2817         u32 inner_type = 0x0;
2818         struct dma_desc *p;
2819
2820         if (!priv->dma_cap.vlins)
2821                 return false;
2822         if (!skb_vlan_tag_present(skb))
2823                 return false;
2824         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2825                 inner_tag = skb_vlan_tag_get(skb);
2826                 inner_type = STMMAC_VLAN_INSERT;
2827         }
2828
2829         tag = skb_vlan_tag_get(skb);
2830
2831         p = tx_q->dma_tx + tx_q->cur_tx;
2832         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2833                 return false;
2834
2835         stmmac_set_tx_owner(priv, p);
2836         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2837         return true;
2838 }
2839
2840 /**
2841  *  stmmac_tso_allocator - close entry point of the driver
2842  *  @priv: driver private structure
2843  *  @des: buffer start address
2844  *  @total_len: total length to fill in descriptors
2845  *  @last_segmant: condition for the last descriptor
2846  *  @queue: TX queue index
2847  *  Description:
2848  *  This function fills descriptor and request new descriptors according to
2849  *  buffer length to fill
2850  */
2851 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2852                                  int total_len, bool last_segment, u32 queue)
2853 {
2854         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2855         struct dma_desc *desc;
2856         u32 buff_size;
2857         int tmp_len;
2858
2859         tmp_len = total_len;
2860
2861         while (tmp_len > 0) {
2862                 dma_addr_t curr_addr;
2863
2864                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2865                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2866                 desc = tx_q->dma_tx + tx_q->cur_tx;
2867
2868                 curr_addr = des + (total_len - tmp_len);
2869                 if (priv->dma_cap.addr64 <= 32)
2870                         desc->des0 = cpu_to_le32(curr_addr);
2871                 else
2872                         stmmac_set_desc_addr(priv, desc, curr_addr);
2873
2874                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2875                             TSO_MAX_BUFF_SIZE : tmp_len;
2876
2877                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2878                                 0, 1,
2879                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2880                                 0, 0);
2881
2882                 tmp_len -= TSO_MAX_BUFF_SIZE;
2883         }
2884 }
2885
2886 /**
2887  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2888  *  @skb : the socket buffer
2889  *  @dev : device pointer
2890  *  Description: this is the transmit function that is called on TSO frames
2891  *  (support available on GMAC4 and newer chips).
2892  *  Diagram below show the ring programming in case of TSO frames:
2893  *
2894  *  First Descriptor
2895  *   --------
2896  *   | DES0 |---> buffer1 = L2/L3/L4 header
2897  *   | DES1 |---> TCP Payload (can continue on next descr...)
2898  *   | DES2 |---> buffer 1 and 2 len
2899  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2900  *   --------
2901  *      |
2902  *     ...
2903  *      |
2904  *   --------
2905  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2906  *   | DES1 | --|
2907  *   | DES2 | --> buffer 1 and 2 len
2908  *   | DES3 |
2909  *   --------
2910  *
2911  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2912  */
2913 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2914 {
2915         struct dma_desc *desc, *first, *mss_desc = NULL;
2916         struct stmmac_priv *priv = netdev_priv(dev);
2917         int nfrags = skb_shinfo(skb)->nr_frags;
2918         u32 queue = skb_get_queue_mapping(skb);
2919         struct stmmac_tx_queue *tx_q;
2920         unsigned int first_entry;
2921         u8 proto_hdr_len, hdr;
2922         int tmp_pay_len = 0;
2923         u32 pay_len, mss;
2924         dma_addr_t des;
2925         bool has_vlan;
2926         int i;
2927
2928         tx_q = &priv->tx_queue[queue];
2929
2930         /* Compute header lengths */
2931         if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2932                 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
2933                 hdr = sizeof(struct udphdr);
2934         } else {
2935                 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2936                 hdr = tcp_hdrlen(skb);
2937         }
2938
2939         /* Desc availability based on threshold should be enough safe */
2940         if (unlikely(stmmac_tx_avail(priv, queue) <
2941                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2942                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2943                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2944                                                                 queue));
2945                         /* This is a hard error, log it. */
2946                         netdev_err(priv->dev,
2947                                    "%s: Tx Ring full when queue awake\n",
2948                                    __func__);
2949                 }
2950                 return NETDEV_TX_BUSY;
2951         }
2952
2953         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2954
2955         mss = skb_shinfo(skb)->gso_size;
2956
2957         /* set new MSS value if needed */
2958         if (mss != tx_q->mss) {
2959                 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2960                 stmmac_set_mss(priv, mss_desc, mss);
2961                 tx_q->mss = mss;
2962                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2963                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2964         }
2965
2966         if (netif_msg_tx_queued(priv)) {
2967                 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2968                         __func__, hdr, proto_hdr_len, pay_len, mss);
2969                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2970                         skb->data_len);
2971         }
2972
2973         /* Check if VLAN can be inserted by HW */
2974         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2975
2976         first_entry = tx_q->cur_tx;
2977         WARN_ON(tx_q->tx_skbuff[first_entry]);
2978
2979         desc = tx_q->dma_tx + first_entry;
2980         first = desc;
2981
2982         if (has_vlan)
2983                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2984
2985         /* first descriptor: fill Headers on Buf1 */
2986         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2987                              DMA_TO_DEVICE);
2988         if (dma_mapping_error(priv->device, des))
2989                 goto dma_map_err;
2990
2991         tx_q->tx_skbuff_dma[first_entry].buf = des;
2992         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2993
2994         if (priv->dma_cap.addr64 <= 32) {
2995                 first->des0 = cpu_to_le32(des);
2996
2997                 /* Fill start of payload in buff2 of first descriptor */
2998                 if (pay_len)
2999                         first->des1 = cpu_to_le32(des + proto_hdr_len);
3000
3001                 /* If needed take extra descriptors to fill the remaining payload */
3002                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3003         } else {
3004                 stmmac_set_desc_addr(priv, first, des);
3005                 tmp_pay_len = pay_len;
3006                 des += proto_hdr_len;
3007                 pay_len = 0;
3008         }
3009
3010         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3011
3012         /* Prepare fragments */
3013         for (i = 0; i < nfrags; i++) {
3014                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3015
3016                 des = skb_frag_dma_map(priv->device, frag, 0,
3017                                        skb_frag_size(frag),
3018                                        DMA_TO_DEVICE);
3019                 if (dma_mapping_error(priv->device, des))
3020                         goto dma_map_err;
3021
3022                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3023                                      (i == nfrags - 1), queue);
3024
3025                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3026                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3027                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3028         }
3029
3030         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3031
3032         /* Only the last descriptor gets to point to the skb. */
3033         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3034
3035         /* Manage tx mitigation */
3036         tx_q->tx_count_frames += nfrags + 1;
3037         if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3038             !((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3039               priv->hwts_tx_en)) {
3040                 stmmac_tx_timer_arm(priv, queue);
3041         } else {
3042                 desc = &tx_q->dma_tx[tx_q->cur_tx];
3043                 tx_q->tx_count_frames = 0;
3044                 stmmac_set_tx_ic(priv, desc);
3045                 priv->xstats.tx_set_ic_bit++;
3046         }
3047
3048         /* We've used all descriptors we need for this skb, however,
3049          * advance cur_tx so that it references a fresh descriptor.
3050          * ndo_start_xmit will fill this descriptor the next time it's
3051          * called and stmmac_tx_clean may clean up to this descriptor.
3052          */
3053         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3054
3055         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3056                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3057                           __func__);
3058                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3059         }
3060
3061         dev->stats.tx_bytes += skb->len;
3062         priv->xstats.tx_tso_frames++;
3063         priv->xstats.tx_tso_nfrags += nfrags;
3064
3065         if (priv->sarc_type)
3066                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3067
3068         skb_tx_timestamp(skb);
3069
3070         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3071                      priv->hwts_tx_en)) {
3072                 /* declare that device is doing timestamping */
3073                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3074                 stmmac_enable_tx_timestamp(priv, first);
3075         }
3076
3077         /* Complete the first descriptor before granting the DMA */
3078         stmmac_prepare_tso_tx_desc(priv, first, 1,
3079                         proto_hdr_len,
3080                         pay_len,
3081                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3082                         hdr / 4, (skb->len - proto_hdr_len));
3083
3084         /* If context desc is used to change MSS */
3085         if (mss_desc) {
3086                 /* Make sure that first descriptor has been completely
3087                  * written, including its own bit. This is because MSS is
3088                  * actually before first descriptor, so we need to make
3089                  * sure that MSS's own bit is the last thing written.
3090                  */
3091                 dma_wmb();
3092                 stmmac_set_tx_owner(priv, mss_desc);
3093         }
3094
3095         /* The own bit must be the latest setting done when prepare the
3096          * descriptor and then barrier is needed to make sure that
3097          * all is coherent before granting the DMA engine.
3098          */
3099         wmb();
3100
3101         if (netif_msg_pktdata(priv)) {
3102                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3103                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3104                         tx_q->cur_tx, first, nfrags);
3105
3106                 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3107
3108                 pr_info(">>> frame to be transmitted: ");
3109                 print_pkt(skb->data, skb_headlen(skb));
3110         }
3111
3112         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3113
3114         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3115         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3116
3117         return NETDEV_TX_OK;
3118
3119 dma_map_err:
3120         dev_err(priv->device, "Tx dma map failed\n");
3121         dev_kfree_skb(skb);
3122         priv->dev->stats.tx_dropped++;
3123         return NETDEV_TX_OK;
3124 }
3125
3126 /**
3127  *  stmmac_xmit - Tx entry point of the driver
3128  *  @skb : the socket buffer
3129  *  @dev : device pointer
3130  *  Description : this is the tx entry point of the driver.
3131  *  It programs the chain or the ring and supports oversized frames
3132  *  and SG feature.
3133  */
3134 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3135 {
3136         struct stmmac_priv *priv = netdev_priv(dev);
3137         unsigned int nopaged_len = skb_headlen(skb);
3138         int i, csum_insertion = 0, is_jumbo = 0;
3139         u32 queue = skb_get_queue_mapping(skb);
3140         int nfrags = skb_shinfo(skb)->nr_frags;
3141         int gso = skb_shinfo(skb)->gso_type;
3142         struct dma_desc *desc, *first;
3143         struct stmmac_tx_queue *tx_q;
3144         unsigned int first_entry;
3145         unsigned int enh_desc;
3146         dma_addr_t des;
3147         bool has_vlan;
3148         int entry;
3149
3150         tx_q = &priv->tx_queue[queue];
3151
3152         if (priv->tx_path_in_lpi_mode)
3153                 stmmac_disable_eee_mode(priv);
3154
3155         /* Manage oversized TCP frames for GMAC4 device */
3156         if (skb_is_gso(skb) && priv->tso) {
3157                 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3158                         return stmmac_tso_xmit(skb, dev);
3159                 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3160                         return stmmac_tso_xmit(skb, dev);
3161         }
3162
3163         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3164                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3165                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3166                                                                 queue));
3167                         /* This is a hard error, log it. */
3168                         netdev_err(priv->dev,
3169                                    "%s: Tx Ring full when queue awake\n",
3170                                    __func__);
3171                 }
3172                 return NETDEV_TX_BUSY;
3173         }
3174
3175         /* Check if VLAN can be inserted by HW */
3176         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3177
3178         entry = tx_q->cur_tx;
3179         first_entry = entry;
3180         WARN_ON(tx_q->tx_skbuff[first_entry]);
3181
3182         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3183
3184         if (likely(priv->extend_desc))
3185                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3186         else
3187                 desc = tx_q->dma_tx + entry;
3188
3189         first = desc;
3190
3191         if (has_vlan)
3192                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3193
3194         enh_desc = priv->plat->enh_desc;
3195         /* To program the descriptors according to the size of the frame */
3196         if (enh_desc)
3197                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3198
3199         if (unlikely(is_jumbo)) {
3200                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3201                 if (unlikely(entry < 0) && (entry != -EINVAL))
3202                         goto dma_map_err;
3203         }
3204
3205         for (i = 0; i < nfrags; i++) {
3206                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3207                 int len = skb_frag_size(frag);
3208                 bool last_segment = (i == (nfrags - 1));
3209
3210                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3211                 WARN_ON(tx_q->tx_skbuff[entry]);
3212
3213                 if (likely(priv->extend_desc))
3214                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3215                 else
3216                         desc = tx_q->dma_tx + entry;
3217
3218                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3219                                        DMA_TO_DEVICE);
3220                 if (dma_mapping_error(priv->device, des))
3221                         goto dma_map_err; /* should reuse desc w/o issues */
3222
3223                 tx_q->tx_skbuff_dma[entry].buf = des;
3224
3225                 stmmac_set_desc_addr(priv, desc, des);
3226
3227                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3228                 tx_q->tx_skbuff_dma[entry].len = len;
3229                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3230
3231                 /* Prepare the descriptor and set the own bit too */
3232                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3233                                 priv->mode, 1, last_segment, skb->len);
3234         }
3235
3236         /* Only the last descriptor gets to point to the skb. */
3237         tx_q->tx_skbuff[entry] = skb;
3238
3239         /* According to the coalesce parameter the IC bit for the latest
3240          * segment is reset and the timer re-started to clean the tx status.
3241          * This approach takes care about the fragments: desc is the first
3242          * element in case of no SG.
3243          */
3244         tx_q->tx_count_frames += nfrags + 1;
3245         if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3246             !((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3247               priv->hwts_tx_en)) {
3248                 stmmac_tx_timer_arm(priv, queue);
3249         } else {
3250                 if (likely(priv->extend_desc))
3251                         desc = &tx_q->dma_etx[entry].basic;
3252                 else
3253                         desc = &tx_q->dma_tx[entry];
3254
3255                 tx_q->tx_count_frames = 0;
3256                 stmmac_set_tx_ic(priv, desc);
3257                 priv->xstats.tx_set_ic_bit++;
3258         }
3259
3260         /* We've used all descriptors we need for this skb, however,
3261          * advance cur_tx so that it references a fresh descriptor.
3262          * ndo_start_xmit will fill this descriptor the next time it's
3263          * called and stmmac_tx_clean may clean up to this descriptor.
3264          */
3265         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3266         tx_q->cur_tx = entry;
3267
3268         if (netif_msg_pktdata(priv)) {
3269                 void *tx_head;
3270
3271                 netdev_dbg(priv->dev,
3272                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3273                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3274                            entry, first, nfrags);
3275
3276                 if (priv->extend_desc)
3277                         tx_head = (void *)tx_q->dma_etx;
3278                 else
3279                         tx_head = (void *)tx_q->dma_tx;
3280
3281                 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3282
3283                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3284                 print_pkt(skb->data, skb->len);
3285         }
3286
3287         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3288                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3289                           __func__);
3290                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3291         }
3292
3293         dev->stats.tx_bytes += skb->len;
3294
3295         if (priv->sarc_type)
3296                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3297
3298         skb_tx_timestamp(skb);
3299
3300         /* Ready to fill the first descriptor and set the OWN bit w/o any
3301          * problems because all the descriptors are actually ready to be
3302          * passed to the DMA engine.
3303          */
3304         if (likely(!is_jumbo)) {
3305                 bool last_segment = (nfrags == 0);
3306
3307                 des = dma_map_single(priv->device, skb->data,
3308                                      nopaged_len, DMA_TO_DEVICE);
3309                 if (dma_mapping_error(priv->device, des))
3310                         goto dma_map_err;
3311
3312                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3313
3314                 stmmac_set_desc_addr(priv, first, des);
3315
3316                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3317                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3318
3319                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3320                              priv->hwts_tx_en)) {
3321                         /* declare that device is doing timestamping */
3322                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3323                         stmmac_enable_tx_timestamp(priv, first);
3324                 }
3325
3326                 /* Prepare the first descriptor setting the OWN bit too */
3327                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3328                                 csum_insertion, priv->mode, 1, last_segment,
3329                                 skb->len);
3330         } else {
3331                 stmmac_set_tx_owner(priv, first);
3332         }
3333
3334         /* The own bit must be the latest setting done when prepare the
3335          * descriptor and then barrier is needed to make sure that
3336          * all is coherent before granting the DMA engine.
3337          */
3338         wmb();
3339
3340         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3341
3342         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3343
3344         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3345         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3346
3347         return NETDEV_TX_OK;
3348
3349 dma_map_err:
3350         netdev_err(priv->dev, "Tx DMA map failed\n");
3351         dev_kfree_skb(skb);
3352         priv->dev->stats.tx_dropped++;
3353         return NETDEV_TX_OK;
3354 }
3355
3356 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3357 {
3358         struct vlan_ethhdr *veth;
3359         __be16 vlan_proto;
3360         u16 vlanid;
3361
3362         veth = (struct vlan_ethhdr *)skb->data;
3363         vlan_proto = veth->h_vlan_proto;
3364
3365         if ((vlan_proto == htons(ETH_P_8021Q) &&
3366              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3367             (vlan_proto == htons(ETH_P_8021AD) &&
3368              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3369                 /* pop the vlan tag */
3370                 vlanid = ntohs(veth->h_vlan_TCI);
3371                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3372                 skb_pull(skb, VLAN_HLEN);
3373                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3374         }
3375 }
3376
3377
3378 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3379 {
3380         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3381                 return 0;
3382
3383         return 1;
3384 }
3385
3386 /**
3387  * stmmac_rx_refill - refill used skb preallocated buffers
3388  * @priv: driver private structure
3389  * @queue: RX queue index
3390  * Description : this is to reallocate the skb for the reception process
3391  * that is based on zero-copy.
3392  */
3393 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3394 {
3395         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3396         int len, dirty = stmmac_rx_dirty(priv, queue);
3397         unsigned int entry = rx_q->dirty_rx;
3398
3399         len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3400
3401         while (dirty-- > 0) {
3402                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3403                 struct dma_desc *p;
3404                 bool use_rx_wd;
3405
3406                 if (priv->extend_desc)
3407                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3408                 else
3409                         p = rx_q->dma_rx + entry;
3410
3411                 if (!buf->page) {
3412                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3413                         if (!buf->page)
3414                                 break;
3415                 }
3416
3417                 if (priv->sph && !buf->sec_page) {
3418                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3419                         if (!buf->sec_page)
3420                                 break;
3421
3422                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3423
3424                         dma_sync_single_for_device(priv->device, buf->sec_addr,
3425                                                    len, DMA_FROM_DEVICE);
3426                 }
3427
3428                 buf->addr = page_pool_get_dma_addr(buf->page);
3429
3430                 /* Sync whole allocation to device. This will invalidate old
3431                  * data.
3432                  */
3433                 dma_sync_single_for_device(priv->device, buf->addr, len,
3434                                            DMA_FROM_DEVICE);
3435
3436                 stmmac_set_desc_addr(priv, p, buf->addr);
3437                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3438                 stmmac_refill_desc3(priv, rx_q, p);
3439
3440                 rx_q->rx_count_frames++;
3441                 rx_q->rx_count_frames += priv->rx_coal_frames;
3442                 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3443                         rx_q->rx_count_frames = 0;
3444
3445                 use_rx_wd = !priv->rx_coal_frames;
3446                 use_rx_wd |= rx_q->rx_count_frames > 0;
3447                 if (!priv->use_riwt)
3448                         use_rx_wd = false;
3449
3450                 dma_wmb();
3451                 stmmac_set_rx_owner(priv, p, use_rx_wd);
3452
3453                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3454         }
3455         rx_q->dirty_rx = entry;
3456         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3457                             (rx_q->dirty_rx * sizeof(struct dma_desc));
3458         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3459 }
3460
3461 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3462                                        struct dma_desc *p,
3463                                        int status, unsigned int len)
3464 {
3465         int ret, coe = priv->hw->rx_csum;
3466         unsigned int plen = 0, hlen = 0;
3467
3468         /* Not first descriptor, buffer is always zero */
3469         if (priv->sph && len)
3470                 return 0;
3471
3472         /* First descriptor, get split header length */
3473         ret = stmmac_get_rx_header_len(priv, p, &hlen);
3474         if (priv->sph && hlen) {
3475                 priv->xstats.rx_split_hdr_pkt_n++;
3476                 return hlen;
3477         }
3478
3479         /* First descriptor, not last descriptor and not split header */
3480         if (status & rx_not_ls)
3481                 return priv->dma_buf_sz;
3482
3483         plen = stmmac_get_rx_frame_len(priv, p, coe);
3484
3485         /* First descriptor and last descriptor and not split header */
3486         return min_t(unsigned int, priv->dma_buf_sz, plen);
3487 }
3488
3489 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3490                                        struct dma_desc *p,
3491                                        int status, unsigned int len)
3492 {
3493         int coe = priv->hw->rx_csum;
3494         unsigned int plen = 0;
3495
3496         /* Not split header, buffer is not available */
3497         if (!priv->sph)
3498                 return 0;
3499
3500         /* Not last descriptor */
3501         if (status & rx_not_ls)
3502                 return priv->dma_buf_sz;
3503
3504         plen = stmmac_get_rx_frame_len(priv, p, coe);
3505
3506         /* Last descriptor */
3507         return plen - len;
3508 }
3509
3510 /**
3511  * stmmac_rx - manage the receive process
3512  * @priv: driver private structure
3513  * @limit: napi bugget
3514  * @queue: RX queue index.
3515  * Description :  this the function called by the napi poll method.
3516  * It gets all the frames inside the ring.
3517  */
3518 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3519 {
3520         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3521         struct stmmac_channel *ch = &priv->channel[queue];
3522         unsigned int count = 0, error = 0, len = 0;
3523         int status = 0, coe = priv->hw->rx_csum;
3524         unsigned int next_entry = rx_q->cur_rx;
3525         struct sk_buff *skb = NULL;
3526
3527         if (netif_msg_rx_status(priv)) {
3528                 void *rx_head;
3529
3530                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3531                 if (priv->extend_desc)
3532                         rx_head = (void *)rx_q->dma_erx;
3533                 else
3534                         rx_head = (void *)rx_q->dma_rx;
3535
3536                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3537         }
3538         while (count < limit) {
3539                 unsigned int buf1_len = 0, buf2_len = 0;
3540                 enum pkt_hash_types hash_type;
3541                 struct stmmac_rx_buffer *buf;
3542                 struct dma_desc *np, *p;
3543                 int entry;
3544                 u32 hash;
3545
3546                 if (!count && rx_q->state_saved) {
3547                         skb = rx_q->state.skb;
3548                         error = rx_q->state.error;
3549                         len = rx_q->state.len;
3550                 } else {
3551                         rx_q->state_saved = false;
3552                         skb = NULL;
3553                         error = 0;
3554                         len = 0;
3555                 }
3556
3557                 if (count >= limit)
3558                         break;
3559
3560 read_again:
3561                 buf1_len = 0;
3562                 buf2_len = 0;
3563                 entry = next_entry;
3564                 buf = &rx_q->buf_pool[entry];
3565
3566                 if (priv->extend_desc)
3567                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3568                 else
3569                         p = rx_q->dma_rx + entry;
3570
3571                 /* read the status of the incoming frame */
3572                 status = stmmac_rx_status(priv, &priv->dev->stats,
3573                                 &priv->xstats, p);
3574                 /* check if managed by the DMA otherwise go ahead */
3575                 if (unlikely(status & dma_own))
3576                         break;
3577
3578                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3579                 next_entry = rx_q->cur_rx;
3580
3581                 if (priv->extend_desc)
3582                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3583                 else
3584                         np = rx_q->dma_rx + next_entry;
3585
3586                 prefetch(np);
3587
3588                 if (priv->extend_desc)
3589                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3590                                         &priv->xstats, rx_q->dma_erx + entry);
3591                 if (unlikely(status == discard_frame)) {
3592                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3593                         buf->page = NULL;
3594                         error = 1;
3595                         if (!priv->hwts_rx_en)
3596                                 priv->dev->stats.rx_errors++;
3597                 }
3598
3599                 if (unlikely(error && (status & rx_not_ls)))
3600                         goto read_again;
3601                 if (unlikely(error)) {
3602                         dev_kfree_skb(skb);
3603                         skb = NULL;
3604                         count++;
3605                         continue;
3606                 }
3607
3608                 /* Buffer is good. Go on. */
3609
3610                 prefetch(page_address(buf->page));
3611                 if (buf->sec_page)
3612                         prefetch(page_address(buf->sec_page));
3613
3614                 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3615                 len += buf1_len;
3616                 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3617                 len += buf2_len;
3618
3619                 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3620                  * Type frames (LLC/LLC-SNAP)
3621                  *
3622                  * llc_snap is never checked in GMAC >= 4, so this ACS
3623                  * feature is always disabled and packets need to be
3624                  * stripped manually.
3625                  */
3626                 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3627                     unlikely(status != llc_snap)) {
3628                         if (buf2_len)
3629                                 buf2_len -= ETH_FCS_LEN;
3630                         else
3631                                 buf1_len -= ETH_FCS_LEN;
3632
3633                         len -= ETH_FCS_LEN;
3634                 }
3635
3636                 if (!skb) {
3637                         skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3638                         if (!skb) {
3639                                 priv->dev->stats.rx_dropped++;
3640                                 count++;
3641                                 goto drain_data;
3642                         }
3643
3644                         dma_sync_single_for_cpu(priv->device, buf->addr,
3645                                                 buf1_len, DMA_FROM_DEVICE);
3646                         skb_copy_to_linear_data(skb, page_address(buf->page),
3647                                                 buf1_len);
3648                         skb_put(skb, buf1_len);
3649
3650                         /* Data payload copied into SKB, page ready for recycle */
3651                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3652                         buf->page = NULL;
3653                 } else if (buf1_len) {
3654                         dma_sync_single_for_cpu(priv->device, buf->addr,
3655                                                 buf1_len, DMA_FROM_DEVICE);
3656                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3657                                         buf->page, 0, buf1_len,
3658                                         priv->dma_buf_sz);
3659
3660                         /* Data payload appended into SKB */
3661                         page_pool_release_page(rx_q->page_pool, buf->page);
3662                         buf->page = NULL;
3663                 }
3664
3665                 if (buf2_len) {
3666                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3667                                                 buf2_len, DMA_FROM_DEVICE);
3668                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3669                                         buf->sec_page, 0, buf2_len,
3670                                         priv->dma_buf_sz);
3671
3672                         /* Data payload appended into SKB */
3673                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
3674                         buf->sec_page = NULL;
3675                 }
3676
3677 drain_data:
3678                 if (likely(status & rx_not_ls))
3679                         goto read_again;
3680                 if (!skb)
3681                         continue;
3682
3683                 /* Got entire packet into SKB. Finish it. */
3684
3685                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3686                 stmmac_rx_vlan(priv->dev, skb);
3687                 skb->protocol = eth_type_trans(skb, priv->dev);
3688
3689                 if (unlikely(!coe))
3690                         skb_checksum_none_assert(skb);
3691                 else
3692                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3693
3694                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3695                         skb_set_hash(skb, hash, hash_type);
3696
3697                 skb_record_rx_queue(skb, queue);
3698                 napi_gro_receive(&ch->rx_napi, skb);
3699                 skb = NULL;
3700
3701                 priv->dev->stats.rx_packets++;
3702                 priv->dev->stats.rx_bytes += len;
3703                 count++;
3704         }
3705
3706         if (status & rx_not_ls || skb) {
3707                 rx_q->state_saved = true;
3708                 rx_q->state.skb = skb;
3709                 rx_q->state.error = error;
3710                 rx_q->state.len = len;
3711         }
3712
3713         stmmac_rx_refill(priv, queue);
3714
3715         priv->xstats.rx_pkt_n += count;
3716
3717         return count;
3718 }
3719
3720 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3721 {
3722         struct stmmac_channel *ch =
3723                 container_of(napi, struct stmmac_channel, rx_napi);
3724         struct stmmac_priv *priv = ch->priv_data;
3725         u32 chan = ch->index;
3726         int work_done;
3727
3728         priv->xstats.napi_poll++;
3729
3730         work_done = stmmac_rx(priv, budget, chan);
3731         if (work_done < budget && napi_complete_done(napi, work_done))
3732                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3733         return work_done;
3734 }
3735
3736 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3737 {
3738         struct stmmac_channel *ch =
3739                 container_of(napi, struct stmmac_channel, tx_napi);
3740         struct stmmac_priv *priv = ch->priv_data;
3741         struct stmmac_tx_queue *tx_q;
3742         u32 chan = ch->index;
3743         int work_done;
3744
3745         priv->xstats.napi_poll++;
3746
3747         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3748         work_done = min(work_done, budget);
3749
3750         if (work_done < budget)
3751                 napi_complete_done(napi, work_done);
3752
3753         /* Force transmission restart */
3754         tx_q = &priv->tx_queue[chan];
3755         if (tx_q->cur_tx != tx_q->dirty_tx) {
3756                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3757                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3758                                        chan);
3759         }
3760
3761         return work_done;
3762 }
3763
3764 /**
3765  *  stmmac_tx_timeout
3766  *  @dev : Pointer to net device structure
3767  *  Description: this function is called when a packet transmission fails to
3768  *   complete within a reasonable time. The driver will mark the error in the
3769  *   netdev structure and arrange for the device to be reset to a sane state
3770  *   in order to transmit a new packet.
3771  */
3772 static void stmmac_tx_timeout(struct net_device *dev)
3773 {
3774         struct stmmac_priv *priv = netdev_priv(dev);
3775
3776         stmmac_global_err(priv);
3777 }
3778
3779 /**
3780  *  stmmac_set_rx_mode - entry point for multicast addressing
3781  *  @dev : pointer to the device structure
3782  *  Description:
3783  *  This function is a driver entry point which gets called by the kernel
3784  *  whenever multicast addresses must be enabled/disabled.
3785  *  Return value:
3786  *  void.
3787  */
3788 static void stmmac_set_rx_mode(struct net_device *dev)
3789 {
3790         struct stmmac_priv *priv = netdev_priv(dev);
3791
3792         stmmac_set_filter(priv, priv->hw, dev);
3793 }
3794
3795 /**
3796  *  stmmac_change_mtu - entry point to change MTU size for the device.
3797  *  @dev : device pointer.
3798  *  @new_mtu : the new MTU size for the device.
3799  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3800  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3801  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3802  *  Return value:
3803  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3804  *  file on failure.
3805  */
3806 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3807 {
3808         struct stmmac_priv *priv = netdev_priv(dev);
3809
3810         if (netif_running(dev)) {
3811                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3812                 return -EBUSY;
3813         }
3814
3815         dev->mtu = new_mtu;
3816
3817         netdev_update_features(dev);
3818
3819         return 0;
3820 }
3821
3822 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3823                                              netdev_features_t features)
3824 {
3825         struct stmmac_priv *priv = netdev_priv(dev);
3826
3827         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3828                 features &= ~NETIF_F_RXCSUM;
3829
3830         if (!priv->plat->tx_coe)
3831                 features &= ~NETIF_F_CSUM_MASK;
3832
3833         /* Some GMAC devices have a bugged Jumbo frame support that
3834          * needs to have the Tx COE disabled for oversized frames
3835          * (due to limited buffer sizes). In this case we disable
3836          * the TX csum insertion in the TDES and not use SF.
3837          */
3838         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3839                 features &= ~NETIF_F_CSUM_MASK;
3840
3841         /* Disable tso if asked by ethtool */
3842         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3843                 if (features & NETIF_F_TSO)
3844                         priv->tso = true;
3845                 else
3846                         priv->tso = false;
3847         }
3848
3849         return features;
3850 }
3851
3852 static int stmmac_set_features(struct net_device *netdev,
3853                                netdev_features_t features)
3854 {
3855         struct stmmac_priv *priv = netdev_priv(netdev);
3856         bool sph_en;
3857         u32 chan;
3858
3859         /* Keep the COE Type in case of csum is supporting */
3860         if (features & NETIF_F_RXCSUM)
3861                 priv->hw->rx_csum = priv->plat->rx_coe;
3862         else
3863                 priv->hw->rx_csum = 0;
3864         /* No check needed because rx_coe has been set before and it will be
3865          * fixed in case of issue.
3866          */
3867         stmmac_rx_ipc(priv, priv->hw);
3868
3869         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3870         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3871                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3872
3873         return 0;
3874 }
3875
3876 /**
3877  *  stmmac_interrupt - main ISR
3878  *  @irq: interrupt number.
3879  *  @dev_id: to pass the net device pointer.
3880  *  Description: this is the main driver interrupt service routine.
3881  *  It can call:
3882  *  o DMA service routine (to manage incoming frame reception and transmission
3883  *    status)
3884  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3885  *    interrupts.
3886  */
3887 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3888 {
3889         struct net_device *dev = (struct net_device *)dev_id;
3890         struct stmmac_priv *priv = netdev_priv(dev);
3891         u32 rx_cnt = priv->plat->rx_queues_to_use;
3892         u32 tx_cnt = priv->plat->tx_queues_to_use;
3893         u32 queues_count;
3894         u32 queue;
3895         bool xmac;
3896
3897         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3898         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3899
3900         if (priv->irq_wake)
3901                 pm_wakeup_event(priv->device, 0);
3902
3903         if (unlikely(!dev)) {
3904                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3905                 return IRQ_NONE;
3906         }
3907
3908         /* Check if adapter is up */
3909         if (test_bit(STMMAC_DOWN, &priv->state))
3910                 return IRQ_HANDLED;
3911         /* Check if a fatal error happened */
3912         if (stmmac_safety_feat_interrupt(priv))
3913                 return IRQ_HANDLED;
3914
3915         /* To handle GMAC own interrupts */
3916         if ((priv->plat->has_gmac) || xmac) {
3917                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3918                 int mtl_status;
3919
3920                 if (unlikely(status)) {
3921                         /* For LPI we need to save the tx status */
3922                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3923                                 priv->tx_path_in_lpi_mode = true;
3924                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3925                                 priv->tx_path_in_lpi_mode = false;
3926                 }
3927
3928                 for (queue = 0; queue < queues_count; queue++) {
3929                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3930
3931                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3932                                                                 queue);
3933                         if (mtl_status != -EINVAL)
3934                                 status |= mtl_status;
3935
3936                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3937                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3938                                                        rx_q->rx_tail_addr,
3939                                                        queue);
3940                 }
3941
3942                 /* PCS link status */
3943                 if (priv->hw->pcs) {
3944                         if (priv->xstats.pcs_link)
3945                                 netif_carrier_on(dev);
3946                         else
3947                                 netif_carrier_off(dev);
3948                 }
3949         }
3950
3951         /* To handle DMA interrupts */
3952         stmmac_dma_interrupt(priv);
3953
3954         return IRQ_HANDLED;
3955 }
3956
3957 #ifdef CONFIG_NET_POLL_CONTROLLER
3958 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3959  * to allow network I/O with interrupts disabled.
3960  */
3961 static void stmmac_poll_controller(struct net_device *dev)
3962 {
3963         disable_irq(dev->irq);
3964         stmmac_interrupt(dev->irq, dev);
3965         enable_irq(dev->irq);
3966 }
3967 #endif
3968
3969 /**
3970  *  stmmac_ioctl - Entry point for the Ioctl
3971  *  @dev: Device pointer.
3972  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3973  *  a proprietary structure used to pass information to the driver.
3974  *  @cmd: IOCTL command
3975  *  Description:
3976  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3977  */
3978 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3979 {
3980         struct stmmac_priv *priv = netdev_priv (dev);
3981         int ret = -EOPNOTSUPP;
3982
3983         if (!netif_running(dev))
3984                 return -EINVAL;
3985
3986         switch (cmd) {
3987         case SIOCGMIIPHY:
3988         case SIOCGMIIREG:
3989         case SIOCSMIIREG:
3990                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3991                 break;
3992         case SIOCSHWTSTAMP:
3993                 ret = stmmac_hwtstamp_set(dev, rq);
3994                 break;
3995         case SIOCGHWTSTAMP:
3996                 ret = stmmac_hwtstamp_get(dev, rq);
3997                 break;
3998         default:
3999                 break;
4000         }
4001
4002         return ret;
4003 }
4004
4005 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4006                                     void *cb_priv)
4007 {
4008         struct stmmac_priv *priv = cb_priv;
4009         int ret = -EOPNOTSUPP;
4010
4011         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4012                 return ret;
4013
4014         stmmac_disable_all_queues(priv);
4015
4016         switch (type) {
4017         case TC_SETUP_CLSU32:
4018                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4019                 break;
4020         case TC_SETUP_CLSFLOWER:
4021                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4022                 break;
4023         default:
4024                 break;
4025         }
4026
4027         stmmac_enable_all_queues(priv);
4028         return ret;
4029 }
4030
4031 static LIST_HEAD(stmmac_block_cb_list);
4032
4033 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4034                            void *type_data)
4035 {
4036         struct stmmac_priv *priv = netdev_priv(ndev);
4037
4038         switch (type) {
4039         case TC_SETUP_BLOCK:
4040                 return flow_block_cb_setup_simple(type_data,
4041                                                   &stmmac_block_cb_list,
4042                                                   stmmac_setup_tc_block_cb,
4043                                                   priv, priv, true);
4044         case TC_SETUP_QDISC_CBS:
4045                 return stmmac_tc_setup_cbs(priv, priv, type_data);
4046         default:
4047                 return -EOPNOTSUPP;
4048         }
4049 }
4050
4051 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4052                                struct net_device *sb_dev)
4053 {
4054         int gso = skb_shinfo(skb)->gso_type;
4055
4056         if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4057                 /*
4058                  * There is no way to determine the number of TSO/USO
4059                  * capable Queues. Let's use always the Queue 0
4060                  * because if TSO/USO is supported then at least this
4061                  * one will be capable.
4062                  */
4063                 return 0;
4064         }
4065
4066         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4067 }
4068
4069 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4070 {
4071         struct stmmac_priv *priv = netdev_priv(ndev);
4072         int ret = 0;
4073
4074         ret = eth_mac_addr(ndev, addr);
4075         if (ret)
4076                 return ret;
4077
4078         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4079
4080         return ret;
4081 }
4082
4083 #ifdef CONFIG_DEBUG_FS
4084 static struct dentry *stmmac_fs_dir;
4085
4086 static void sysfs_display_ring(void *head, int size, int extend_desc,
4087                                struct seq_file *seq)
4088 {
4089         int i;
4090         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4091         struct dma_desc *p = (struct dma_desc *)head;
4092
4093         for (i = 0; i < size; i++) {
4094                 if (extend_desc) {
4095                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4096                                    i, (unsigned int)virt_to_phys(ep),
4097                                    le32_to_cpu(ep->basic.des0),
4098                                    le32_to_cpu(ep->basic.des1),
4099                                    le32_to_cpu(ep->basic.des2),
4100                                    le32_to_cpu(ep->basic.des3));
4101                         ep++;
4102                 } else {
4103                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4104                                    i, (unsigned int)virt_to_phys(p),
4105                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4106                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4107                         p++;
4108                 }
4109                 seq_printf(seq, "\n");
4110         }
4111 }
4112
4113 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4114 {
4115         struct net_device *dev = seq->private;
4116         struct stmmac_priv *priv = netdev_priv(dev);
4117         u32 rx_count = priv->plat->rx_queues_to_use;
4118         u32 tx_count = priv->plat->tx_queues_to_use;
4119         u32 queue;
4120
4121         if ((dev->flags & IFF_UP) == 0)
4122                 return 0;
4123
4124         for (queue = 0; queue < rx_count; queue++) {
4125                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4126
4127                 seq_printf(seq, "RX Queue %d:\n", queue);
4128
4129                 if (priv->extend_desc) {
4130                         seq_printf(seq, "Extended descriptor ring:\n");
4131                         sysfs_display_ring((void *)rx_q->dma_erx,
4132                                            DMA_RX_SIZE, 1, seq);
4133                 } else {
4134                         seq_printf(seq, "Descriptor ring:\n");
4135                         sysfs_display_ring((void *)rx_q->dma_rx,
4136                                            DMA_RX_SIZE, 0, seq);
4137                 }
4138         }
4139
4140         for (queue = 0; queue < tx_count; queue++) {
4141                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4142
4143                 seq_printf(seq, "TX Queue %d:\n", queue);
4144
4145                 if (priv->extend_desc) {
4146                         seq_printf(seq, "Extended descriptor ring:\n");
4147                         sysfs_display_ring((void *)tx_q->dma_etx,
4148                                            DMA_TX_SIZE, 1, seq);
4149                 } else {
4150                         seq_printf(seq, "Descriptor ring:\n");
4151                         sysfs_display_ring((void *)tx_q->dma_tx,
4152                                            DMA_TX_SIZE, 0, seq);
4153                 }
4154         }
4155
4156         return 0;
4157 }
4158 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4159
4160 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4161 {
4162         struct net_device *dev = seq->private;
4163         struct stmmac_priv *priv = netdev_priv(dev);
4164
4165         if (!priv->hw_cap_support) {
4166                 seq_printf(seq, "DMA HW features not supported\n");
4167                 return 0;
4168         }
4169
4170         seq_printf(seq, "==============================\n");
4171         seq_printf(seq, "\tDMA HW features\n");
4172         seq_printf(seq, "==============================\n");
4173
4174         seq_printf(seq, "\t10/100 Mbps: %s\n",
4175                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4176         seq_printf(seq, "\t1000 Mbps: %s\n",
4177                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
4178         seq_printf(seq, "\tHalf duplex: %s\n",
4179                    (priv->dma_cap.half_duplex) ? "Y" : "N");
4180         seq_printf(seq, "\tHash Filter: %s\n",
4181                    (priv->dma_cap.hash_filter) ? "Y" : "N");
4182         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4183                    (priv->dma_cap.multi_addr) ? "Y" : "N");
4184         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4185                    (priv->dma_cap.pcs) ? "Y" : "N");
4186         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4187                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
4188         seq_printf(seq, "\tPMT Remote wake up: %s\n",
4189                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4190         seq_printf(seq, "\tPMT Magic Frame: %s\n",
4191                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4192         seq_printf(seq, "\tRMON module: %s\n",
4193                    (priv->dma_cap.rmon) ? "Y" : "N");
4194         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4195                    (priv->dma_cap.time_stamp) ? "Y" : "N");
4196         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4197                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
4198         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4199                    (priv->dma_cap.eee) ? "Y" : "N");
4200         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4201         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4202                    (priv->dma_cap.tx_coe) ? "Y" : "N");
4203         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4204                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4205                            (priv->dma_cap.rx_coe) ? "Y" : "N");
4206         } else {
4207                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4208                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4209                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4210                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4211         }
4212         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4213                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4214         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4215                    priv->dma_cap.number_rx_channel);
4216         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4217                    priv->dma_cap.number_tx_channel);
4218         seq_printf(seq, "\tEnhanced descriptors: %s\n",
4219                    (priv->dma_cap.enh_desc) ? "Y" : "N");
4220
4221         return 0;
4222 }
4223 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4224
4225 static void stmmac_init_fs(struct net_device *dev)
4226 {
4227         struct stmmac_priv *priv = netdev_priv(dev);
4228
4229         /* Create per netdev entries */
4230         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4231
4232         /* Entry to report DMA RX/TX rings */
4233         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4234                             &stmmac_rings_status_fops);
4235
4236         /* Entry to report the DMA HW features */
4237         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4238                             &stmmac_dma_cap_fops);
4239 }
4240
4241 static void stmmac_exit_fs(struct net_device *dev)
4242 {
4243         struct stmmac_priv *priv = netdev_priv(dev);
4244
4245         debugfs_remove_recursive(priv->dbgfs_dir);
4246 }
4247 #endif /* CONFIG_DEBUG_FS */
4248
4249 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4250 {
4251         unsigned char *data = (unsigned char *)&vid_le;
4252         unsigned char data_byte = 0;
4253         u32 crc = ~0x0;
4254         u32 temp = 0;
4255         int i, bits;
4256
4257         bits = get_bitmask_order(VLAN_VID_MASK);
4258         for (i = 0; i < bits; i++) {
4259                 if ((i % 8) == 0)
4260                         data_byte = data[i / 8];
4261
4262                 temp = ((crc & 1) ^ data_byte) & 1;
4263                 crc >>= 1;
4264                 data_byte >>= 1;
4265
4266                 if (temp)
4267                         crc ^= 0xedb88320;
4268         }
4269
4270         return crc;
4271 }
4272
4273 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4274 {
4275         u32 crc, hash = 0;
4276         __le16 pmatch = 0;
4277         int count = 0;
4278         u16 vid = 0;
4279
4280         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4281                 __le16 vid_le = cpu_to_le16(vid);
4282                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4283                 hash |= (1 << crc);
4284                 count++;
4285         }
4286
4287         if (!priv->dma_cap.vlhash) {
4288                 if (count > 2) /* VID = 0 always passes filter */
4289                         return -EOPNOTSUPP;
4290
4291                 pmatch = cpu_to_le16(vid);
4292                 hash = 0;
4293         }
4294
4295         return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4296 }
4297
4298 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4299 {
4300         struct stmmac_priv *priv = netdev_priv(ndev);
4301         bool is_double = false;
4302         int ret;
4303
4304         if (be16_to_cpu(proto) == ETH_P_8021AD)
4305                 is_double = true;
4306
4307         set_bit(vid, priv->active_vlans);
4308         ret = stmmac_vlan_update(priv, is_double);
4309         if (ret) {
4310                 clear_bit(vid, priv->active_vlans);
4311                 return ret;
4312         }
4313
4314         return ret;
4315 }
4316
4317 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4318 {
4319         struct stmmac_priv *priv = netdev_priv(ndev);
4320         bool is_double = false;
4321
4322         if (be16_to_cpu(proto) == ETH_P_8021AD)
4323                 is_double = true;
4324
4325         clear_bit(vid, priv->active_vlans);
4326         return stmmac_vlan_update(priv, is_double);
4327 }
4328
4329 static const struct net_device_ops stmmac_netdev_ops = {
4330         .ndo_open = stmmac_open,
4331         .ndo_start_xmit = stmmac_xmit,
4332         .ndo_stop = stmmac_release,
4333         .ndo_change_mtu = stmmac_change_mtu,
4334         .ndo_fix_features = stmmac_fix_features,
4335         .ndo_set_features = stmmac_set_features,
4336         .ndo_set_rx_mode = stmmac_set_rx_mode,
4337         .ndo_tx_timeout = stmmac_tx_timeout,
4338         .ndo_do_ioctl = stmmac_ioctl,
4339         .ndo_setup_tc = stmmac_setup_tc,
4340         .ndo_select_queue = stmmac_select_queue,
4341 #ifdef CONFIG_NET_POLL_CONTROLLER
4342         .ndo_poll_controller = stmmac_poll_controller,
4343 #endif
4344         .ndo_set_mac_address = stmmac_set_mac_address,
4345         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4346         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4347 };
4348
4349 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4350 {
4351         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4352                 return;
4353         if (test_bit(STMMAC_DOWN, &priv->state))
4354                 return;
4355
4356         netdev_err(priv->dev, "Reset adapter.\n");
4357
4358         rtnl_lock();
4359         netif_trans_update(priv->dev);
4360         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4361                 usleep_range(1000, 2000);
4362
4363         set_bit(STMMAC_DOWN, &priv->state);
4364         dev_close(priv->dev);
4365         dev_open(priv->dev, NULL);
4366         clear_bit(STMMAC_DOWN, &priv->state);
4367         clear_bit(STMMAC_RESETING, &priv->state);
4368         rtnl_unlock();
4369 }
4370
4371 static void stmmac_service_task(struct work_struct *work)
4372 {
4373         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4374                         service_task);
4375
4376         stmmac_reset_subtask(priv);
4377         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4378 }
4379
4380 /**
4381  *  stmmac_hw_init - Init the MAC device
4382  *  @priv: driver private structure
4383  *  Description: this function is to configure the MAC device according to
4384  *  some platform parameters or the HW capability register. It prepares the
4385  *  driver to use either ring or chain modes and to setup either enhanced or
4386  *  normal descriptors.
4387  */
4388 static int stmmac_hw_init(struct stmmac_priv *priv)
4389 {
4390         int ret;
4391
4392         /* dwmac-sun8i only work in chain mode */
4393         if (priv->plat->has_sun8i)
4394                 chain_mode = 1;
4395         priv->chain_mode = chain_mode;
4396
4397         /* Initialize HW Interface */
4398         ret = stmmac_hwif_init(priv);
4399         if (ret)
4400                 return ret;
4401
4402         /* Get the HW capability (new GMAC newer than 3.50a) */
4403         priv->hw_cap_support = stmmac_get_hw_features(priv);
4404         if (priv->hw_cap_support) {
4405                 dev_info(priv->device, "DMA HW capability register supported\n");
4406
4407                 /* We can override some gmac/dma configuration fields: e.g.
4408                  * enh_desc, tx_coe (e.g. that are passed through the
4409                  * platform) with the values from the HW capability
4410                  * register (if supported).
4411                  */
4412                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4413                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4414                 priv->hw->pmt = priv->plat->pmt;
4415                 if (priv->dma_cap.hash_tb_sz) {
4416                         priv->hw->multicast_filter_bins =
4417                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
4418                         priv->hw->mcast_bits_log2 =
4419                                         ilog2(priv->hw->multicast_filter_bins);
4420                 }
4421
4422                 /* TXCOE doesn't work in thresh DMA mode */
4423                 if (priv->plat->force_thresh_dma_mode)
4424                         priv->plat->tx_coe = 0;
4425                 else
4426                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4427
4428                 /* In case of GMAC4 rx_coe is from HW cap register. */
4429                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4430
4431                 if (priv->dma_cap.rx_coe_type2)
4432                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4433                 else if (priv->dma_cap.rx_coe_type1)
4434                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4435
4436         } else {
4437                 dev_info(priv->device, "No HW DMA feature register supported\n");
4438         }
4439
4440         if (priv->plat->rx_coe) {
4441                 priv->hw->rx_csum = priv->plat->rx_coe;
4442                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4443                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4444                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4445         }
4446         if (priv->plat->tx_coe)
4447                 dev_info(priv->device, "TX Checksum insertion supported\n");
4448
4449         if (priv->plat->pmt) {
4450                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4451                 device_set_wakeup_capable(priv->device, 1);
4452         }
4453
4454         if (priv->dma_cap.tsoen)
4455                 dev_info(priv->device, "TSO supported\n");
4456
4457         /* Run HW quirks, if any */
4458         if (priv->hwif_quirks) {
4459                 ret = priv->hwif_quirks(priv);
4460                 if (ret)
4461                         return ret;
4462         }
4463
4464         /* Rx Watchdog is available in the COREs newer than the 3.40.
4465          * In some case, for example on bugged HW this feature
4466          * has to be disable and this can be done by passing the
4467          * riwt_off field from the platform.
4468          */
4469         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4470             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4471                 priv->use_riwt = 1;
4472                 dev_info(priv->device,
4473                          "Enable RX Mitigation via HW Watchdog Timer\n");
4474         }
4475
4476         return 0;
4477 }
4478
4479 /**
4480  * stmmac_dvr_probe
4481  * @device: device pointer
4482  * @plat_dat: platform data pointer
4483  * @res: stmmac resource pointer
4484  * Description: this is the main probe function used to
4485  * call the alloc_etherdev, allocate the priv structure.
4486  * Return:
4487  * returns 0 on success, otherwise errno.
4488  */
4489 int stmmac_dvr_probe(struct device *device,
4490                      struct plat_stmmacenet_data *plat_dat,
4491                      struct stmmac_resources *res)
4492 {
4493         struct net_device *ndev = NULL;
4494         struct stmmac_priv *priv;
4495         u32 queue, rxq, maxq;
4496         int i, ret = 0;
4497
4498         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4499                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4500         if (!ndev)
4501                 return -ENOMEM;
4502
4503         SET_NETDEV_DEV(ndev, device);
4504
4505         priv = netdev_priv(ndev);
4506         priv->device = device;
4507         priv->dev = ndev;
4508
4509         stmmac_set_ethtool_ops(ndev);
4510         priv->pause = pause;
4511         priv->plat = plat_dat;
4512         priv->ioaddr = res->addr;
4513         priv->dev->base_addr = (unsigned long)res->addr;
4514
4515         priv->dev->irq = res->irq;
4516         priv->wol_irq = res->wol_irq;
4517         priv->lpi_irq = res->lpi_irq;
4518
4519         if (!IS_ERR_OR_NULL(res->mac))
4520                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4521
4522         dev_set_drvdata(device, priv->dev);
4523
4524         /* Verify driver arguments */
4525         stmmac_verify_args();
4526
4527         /* Allocate workqueue */
4528         priv->wq = create_singlethread_workqueue("stmmac_wq");
4529         if (!priv->wq) {
4530                 dev_err(priv->device, "failed to create workqueue\n");
4531                 return -ENOMEM;
4532         }
4533
4534         INIT_WORK(&priv->service_task, stmmac_service_task);
4535
4536         /* Override with kernel parameters if supplied XXX CRS XXX
4537          * this needs to have multiple instances
4538          */
4539         if ((phyaddr >= 0) && (phyaddr <= 31))
4540                 priv->plat->phy_addr = phyaddr;
4541
4542         if (priv->plat->stmmac_rst) {
4543                 ret = reset_control_assert(priv->plat->stmmac_rst);
4544                 reset_control_deassert(priv->plat->stmmac_rst);
4545                 /* Some reset controllers have only reset callback instead of
4546                  * assert + deassert callbacks pair.
4547                  */
4548                 if (ret == -ENOTSUPP)
4549                         reset_control_reset(priv->plat->stmmac_rst);
4550         }
4551
4552         /* Init MAC and get the capabilities */
4553         ret = stmmac_hw_init(priv);
4554         if (ret)
4555                 goto error_hw_init;
4556
4557         stmmac_check_ether_addr(priv);
4558
4559         /* Configure real RX and TX queues */
4560         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4561         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4562
4563         ndev->netdev_ops = &stmmac_netdev_ops;
4564
4565         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4566                             NETIF_F_RXCSUM;
4567
4568         ret = stmmac_tc_init(priv, priv);
4569         if (!ret) {
4570                 ndev->hw_features |= NETIF_F_HW_TC;
4571         }
4572
4573         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4574                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4575                 if (priv->plat->has_gmac4)
4576                         ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4577                 priv->tso = true;
4578                 dev_info(priv->device, "TSO feature enabled\n");
4579         }
4580
4581         if (priv->dma_cap.sphen) {
4582                 ndev->hw_features |= NETIF_F_GRO;
4583                 priv->sph = true;
4584                 dev_info(priv->device, "SPH feature enabled\n");
4585         }
4586
4587         if (priv->dma_cap.addr64) {
4588                 ret = dma_set_mask_and_coherent(device,
4589                                 DMA_BIT_MASK(priv->dma_cap.addr64));
4590                 if (!ret) {
4591                         dev_info(priv->device, "Using %d bits DMA width\n",
4592                                  priv->dma_cap.addr64);
4593
4594                         /*
4595                          * If more than 32 bits can be addressed, make sure to
4596                          * enable enhanced addressing mode.
4597                          */
4598                         if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4599                                 priv->plat->dma_cfg->eame = true;
4600                 } else {
4601                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4602                         if (ret) {
4603                                 dev_err(priv->device, "Failed to set DMA Mask\n");
4604                                 goto error_hw_init;
4605                         }
4606
4607                         priv->dma_cap.addr64 = 32;
4608                 }
4609         }
4610
4611         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4612         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4613 #ifdef STMMAC_VLAN_TAG_USED
4614         /* Both mac100 and gmac support receive VLAN tag detection */
4615         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4616         if (priv->dma_cap.vlhash) {
4617                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4618                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4619         }
4620         if (priv->dma_cap.vlins) {
4621                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4622                 if (priv->dma_cap.dvlan)
4623                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4624         }
4625 #endif
4626         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4627
4628         /* Initialize RSS */
4629         rxq = priv->plat->rx_queues_to_use;
4630         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4631         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4632                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4633
4634         if (priv->dma_cap.rssen && priv->plat->rss_en)
4635                 ndev->features |= NETIF_F_RXHASH;
4636
4637         /* MTU range: 46 - hw-specific max */
4638         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4639         if (priv->plat->has_xgmac)
4640                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4641         else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4642                 ndev->max_mtu = JUMBO_LEN;
4643         else
4644                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4645         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4646          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4647          */
4648         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4649             (priv->plat->maxmtu >= ndev->min_mtu))
4650                 ndev->max_mtu = priv->plat->maxmtu;
4651         else if (priv->plat->maxmtu < ndev->min_mtu)
4652                 dev_warn(priv->device,
4653                          "%s: warning: maxmtu having invalid value (%d)\n",
4654                          __func__, priv->plat->maxmtu);
4655
4656         if (flow_ctrl)
4657                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4658
4659         /* Setup channels NAPI */
4660         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4661
4662         for (queue = 0; queue < maxq; queue++) {
4663                 struct stmmac_channel *ch = &priv->channel[queue];
4664
4665                 ch->priv_data = priv;
4666                 ch->index = queue;
4667
4668                 if (queue < priv->plat->rx_queues_to_use) {
4669                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4670                                        NAPI_POLL_WEIGHT);
4671                 }
4672                 if (queue < priv->plat->tx_queues_to_use) {
4673                         netif_tx_napi_add(ndev, &ch->tx_napi,
4674                                           stmmac_napi_poll_tx,
4675                                           NAPI_POLL_WEIGHT);
4676                 }
4677         }
4678
4679         mutex_init(&priv->lock);
4680
4681         /* If a specific clk_csr value is passed from the platform
4682          * this means that the CSR Clock Range selection cannot be
4683          * changed at run-time and it is fixed. Viceversa the driver'll try to
4684          * set the MDC clock dynamically according to the csr actual
4685          * clock input.
4686          */
4687         if (priv->plat->clk_csr >= 0)
4688                 priv->clk_csr = priv->plat->clk_csr;
4689         else
4690                 stmmac_clk_csr_set(priv);
4691
4692         stmmac_check_pcs_mode(priv);
4693
4694         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4695             priv->hw->pcs != STMMAC_PCS_TBI &&
4696             priv->hw->pcs != STMMAC_PCS_RTBI) {
4697                 /* MDIO bus Registration */
4698                 ret = stmmac_mdio_register(ndev);
4699                 if (ret < 0) {
4700                         dev_err(priv->device,
4701                                 "%s: MDIO bus (id: %d) registration failed",
4702                                 __func__, priv->plat->bus_id);
4703                         goto error_mdio_register;
4704                 }
4705         }
4706
4707         ret = stmmac_phy_setup(priv);
4708         if (ret) {
4709                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4710                 goto error_phy_setup;
4711         }
4712
4713         ret = register_netdev(ndev);
4714         if (ret) {
4715                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4716                         __func__, ret);
4717                 goto error_netdev_register;
4718         }
4719
4720 #ifdef CONFIG_DEBUG_FS
4721         stmmac_init_fs(ndev);
4722 #endif
4723
4724         return ret;
4725
4726 error_netdev_register:
4727         phylink_destroy(priv->phylink);
4728 error_phy_setup:
4729         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4730             priv->hw->pcs != STMMAC_PCS_TBI &&
4731             priv->hw->pcs != STMMAC_PCS_RTBI)
4732                 stmmac_mdio_unregister(ndev);
4733 error_mdio_register:
4734         for (queue = 0; queue < maxq; queue++) {
4735                 struct stmmac_channel *ch = &priv->channel[queue];
4736
4737                 if (queue < priv->plat->rx_queues_to_use)
4738                         netif_napi_del(&ch->rx_napi);
4739                 if (queue < priv->plat->tx_queues_to_use)
4740                         netif_napi_del(&ch->tx_napi);
4741         }
4742 error_hw_init:
4743         destroy_workqueue(priv->wq);
4744
4745         return ret;
4746 }
4747 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4748
4749 /**
4750  * stmmac_dvr_remove
4751  * @dev: device pointer
4752  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4753  * changes the link status, releases the DMA descriptor rings.
4754  */
4755 int stmmac_dvr_remove(struct device *dev)
4756 {
4757         struct net_device *ndev = dev_get_drvdata(dev);
4758         struct stmmac_priv *priv = netdev_priv(ndev);
4759
4760         netdev_info(priv->dev, "%s: removing driver", __func__);
4761
4762 #ifdef CONFIG_DEBUG_FS
4763         stmmac_exit_fs(ndev);
4764 #endif
4765         stmmac_stop_all_dma(priv);
4766
4767         stmmac_mac_set(priv, priv->ioaddr, false);
4768         netif_carrier_off(ndev);
4769         unregister_netdev(ndev);
4770         phylink_destroy(priv->phylink);
4771         if (priv->plat->stmmac_rst)
4772                 reset_control_assert(priv->plat->stmmac_rst);
4773         clk_disable_unprepare(priv->plat->pclk);
4774         clk_disable_unprepare(priv->plat->stmmac_clk);
4775         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4776             priv->hw->pcs != STMMAC_PCS_TBI &&
4777             priv->hw->pcs != STMMAC_PCS_RTBI)
4778                 stmmac_mdio_unregister(ndev);
4779         destroy_workqueue(priv->wq);
4780         mutex_destroy(&priv->lock);
4781
4782         return 0;
4783 }
4784 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4785
4786 /**
4787  * stmmac_suspend - suspend callback
4788  * @dev: device pointer
4789  * Description: this is the function to suspend the device and it is called
4790  * by the platform driver to stop the network queue, release the resources,
4791  * program the PMT register (for WoL), clean and release driver resources.
4792  */
4793 int stmmac_suspend(struct device *dev)
4794 {
4795         struct net_device *ndev = dev_get_drvdata(dev);
4796         struct stmmac_priv *priv = netdev_priv(ndev);
4797
4798         if (!ndev || !netif_running(ndev))
4799                 return 0;
4800
4801         phylink_mac_change(priv->phylink, false);
4802
4803         mutex_lock(&priv->lock);
4804
4805         netif_device_detach(ndev);
4806         stmmac_stop_all_queues(priv);
4807
4808         stmmac_disable_all_queues(priv);
4809
4810         /* Stop TX/RX DMA */
4811         stmmac_stop_all_dma(priv);
4812
4813         /* Enable Power down mode by programming the PMT regs */
4814         if (device_may_wakeup(priv->device)) {
4815                 stmmac_pmt(priv, priv->hw, priv->wolopts);
4816                 priv->irq_wake = 1;
4817         } else {
4818                 mutex_unlock(&priv->lock);
4819                 rtnl_lock();
4820                 phylink_stop(priv->phylink);
4821                 rtnl_unlock();
4822                 mutex_lock(&priv->lock);
4823
4824                 stmmac_mac_set(priv, priv->ioaddr, false);
4825                 pinctrl_pm_select_sleep_state(priv->device);
4826                 /* Disable clock in case of PWM is off */
4827                 if (priv->plat->clk_ptp_ref)
4828                         clk_disable_unprepare(priv->plat->clk_ptp_ref);
4829                 clk_disable_unprepare(priv->plat->pclk);
4830                 clk_disable_unprepare(priv->plat->stmmac_clk);
4831         }
4832         mutex_unlock(&priv->lock);
4833
4834         priv->speed = SPEED_UNKNOWN;
4835         return 0;
4836 }
4837 EXPORT_SYMBOL_GPL(stmmac_suspend);
4838
4839 /**
4840  * stmmac_reset_queues_param - reset queue parameters
4841  * @dev: device pointer
4842  */
4843 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4844 {
4845         u32 rx_cnt = priv->plat->rx_queues_to_use;
4846         u32 tx_cnt = priv->plat->tx_queues_to_use;
4847         u32 queue;
4848
4849         for (queue = 0; queue < rx_cnt; queue++) {
4850                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4851
4852                 rx_q->cur_rx = 0;
4853                 rx_q->dirty_rx = 0;
4854         }
4855
4856         for (queue = 0; queue < tx_cnt; queue++) {
4857                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4858
4859                 tx_q->cur_tx = 0;
4860                 tx_q->dirty_tx = 0;
4861                 tx_q->mss = 0;
4862         }
4863 }
4864
4865 /**
4866  * stmmac_resume - resume callback
4867  * @dev: device pointer
4868  * Description: when resume this function is invoked to setup the DMA and CORE
4869  * in a usable state.
4870  */
4871 int stmmac_resume(struct device *dev)
4872 {
4873         struct net_device *ndev = dev_get_drvdata(dev);
4874         struct stmmac_priv *priv = netdev_priv(ndev);
4875
4876         if (!netif_running(ndev))
4877                 return 0;
4878
4879         /* Power Down bit, into the PM register, is cleared
4880          * automatically as soon as a magic packet or a Wake-up frame
4881          * is received. Anyway, it's better to manually clear
4882          * this bit because it can generate problems while resuming
4883          * from another devices (e.g. serial console).
4884          */
4885         if (device_may_wakeup(priv->device)) {
4886                 mutex_lock(&priv->lock);
4887                 stmmac_pmt(priv, priv->hw, 0);
4888                 mutex_unlock(&priv->lock);
4889                 priv->irq_wake = 0;
4890         } else {
4891                 pinctrl_pm_select_default_state(priv->device);
4892                 /* enable the clk previously disabled */
4893                 clk_prepare_enable(priv->plat->stmmac_clk);
4894                 clk_prepare_enable(priv->plat->pclk);
4895                 if (priv->plat->clk_ptp_ref)
4896                         clk_prepare_enable(priv->plat->clk_ptp_ref);
4897                 /* reset the phy so that it's ready */
4898                 if (priv->mii)
4899                         stmmac_mdio_reset(priv->mii);
4900         }
4901
4902         netif_device_attach(ndev);
4903
4904         mutex_lock(&priv->lock);
4905
4906         stmmac_reset_queues_param(priv);
4907
4908         stmmac_clear_descriptors(priv);
4909
4910         stmmac_hw_setup(ndev, false);
4911         stmmac_init_coalesce(priv);
4912         stmmac_set_rx_mode(ndev);
4913
4914         stmmac_enable_all_queues(priv);
4915
4916         stmmac_start_all_queues(priv);
4917
4918         mutex_unlock(&priv->lock);
4919
4920         if (!device_may_wakeup(priv->device)) {
4921                 rtnl_lock();
4922                 phylink_start(priv->phylink);
4923                 rtnl_unlock();
4924         }
4925
4926         phylink_mac_change(priv->phylink, true);
4927
4928         return 0;
4929 }
4930 EXPORT_SYMBOL_GPL(stmmac_resume);
4931
4932 #ifndef MODULE
4933 static int __init stmmac_cmdline_opt(char *str)
4934 {
4935         char *opt;
4936
4937         if (!str || !*str)
4938                 return -EINVAL;
4939         while ((opt = strsep(&str, ",")) != NULL) {
4940                 if (!strncmp(opt, "debug:", 6)) {
4941                         if (kstrtoint(opt + 6, 0, &debug))
4942                                 goto err;
4943                 } else if (!strncmp(opt, "phyaddr:", 8)) {
4944                         if (kstrtoint(opt + 8, 0, &phyaddr))
4945                                 goto err;
4946                 } else if (!strncmp(opt, "buf_sz:", 7)) {
4947                         if (kstrtoint(opt + 7, 0, &buf_sz))
4948                                 goto err;
4949                 } else if (!strncmp(opt, "tc:", 3)) {
4950                         if (kstrtoint(opt + 3, 0, &tc))
4951                                 goto err;
4952                 } else if (!strncmp(opt, "watchdog:", 9)) {
4953                         if (kstrtoint(opt + 9, 0, &watchdog))
4954                                 goto err;
4955                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4956                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
4957                                 goto err;
4958                 } else if (!strncmp(opt, "pause:", 6)) {
4959                         if (kstrtoint(opt + 6, 0, &pause))
4960                                 goto err;
4961                 } else if (!strncmp(opt, "eee_timer:", 10)) {
4962                         if (kstrtoint(opt + 10, 0, &eee_timer))
4963                                 goto err;
4964                 } else if (!strncmp(opt, "chain_mode:", 11)) {
4965                         if (kstrtoint(opt + 11, 0, &chain_mode))
4966                                 goto err;
4967                 }
4968         }
4969         return 0;
4970
4971 err:
4972         pr_err("%s: ERROR broken module parameter conversion", __func__);
4973         return -EINVAL;
4974 }
4975
4976 __setup("stmmaceth=", stmmac_cmdline_opt);
4977 #endif /* MODULE */
4978
4979 static int __init stmmac_init(void)
4980 {
4981 #ifdef CONFIG_DEBUG_FS
4982         /* Create debugfs main directory if it doesn't exist yet */
4983         if (!stmmac_fs_dir)
4984                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4985 #endif
4986
4987         return 0;
4988 }
4989
4990 static void __exit stmmac_exit(void)
4991 {
4992 #ifdef CONFIG_DEBUG_FS
4993         debugfs_remove_recursive(stmmac_fs_dir);
4994 #endif
4995 }
4996
4997 module_init(stmmac_init)
4998 module_exit(stmmac_exit)
4999
5000 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5001 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5002 MODULE_LICENSE("GPL");