]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
net: stmmac: Implement L3/L4 Filters using TC Flower
[linux.git] / drivers / net / ethernet / stmicro / stmmac / stmmac_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5
6         Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11   Documentation available at:
12         http://www.stlinux.com
13   Support available at:
14         https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47
48 #define STMMAC_ALIGN(x)         __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define TSO_MAX_BUFF_SIZE       (SZ_16K - 1)
50
51 /* Module parameters */
52 #define TX_TIMEO        5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64
65 #define STMMAC_TX_THRESH        (DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH        (DMA_RX_SIZE / 4)
67
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80
81 #define DEFAULT_BUFSIZE 1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85
86 #define STMMAC_RX_COPYBREAK     256
87
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
90                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91
92 #define STMMAC_DEFAULT_LPI_TIMER        1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106
107 #ifdef CONFIG_DEBUG_FS
108 static void stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121         if (unlikely(watchdog < 0))
122                 watchdog = TX_TIMEO;
123         if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124                 buf_sz = DEFAULT_BUFSIZE;
125         if (unlikely(flow_ctrl > 1))
126                 flow_ctrl = FLOW_AUTO;
127         else if (likely(flow_ctrl < 0))
128                 flow_ctrl = FLOW_OFF;
129         if (unlikely((pause < 0) || (pause > 0xffff)))
130                 pause = PAUSE_TIME;
131         if (eee_timer < 0)
132                 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144         u32 queue;
145
146         for (queue = 0; queue < maxq; queue++) {
147                 struct stmmac_channel *ch = &priv->channel[queue];
148
149                 if (queue < rx_queues_cnt)
150                         napi_disable(&ch->rx_napi);
151                 if (queue < tx_queues_cnt)
152                         napi_disable(&ch->tx_napi);
153         }
154 }
155
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162         u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164         u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165         u32 queue;
166
167         for (queue = 0; queue < maxq; queue++) {
168                 struct stmmac_channel *ch = &priv->channel[queue];
169
170                 if (queue < rx_queues_cnt)
171                         napi_enable(&ch->rx_napi);
172                 if (queue < tx_queues_cnt)
173                         napi_enable(&ch->tx_napi);
174         }
175 }
176
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184         u32 queue;
185
186         for (queue = 0; queue < tx_queues_cnt; queue++)
187                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196         u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197         u32 queue;
198
199         for (queue = 0; queue < tx_queues_cnt; queue++)
200                 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205         if (!test_bit(STMMAC_DOWN, &priv->state) &&
206             !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207                 queue_work(priv->wq, &priv->service_task);
208 }
209
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212         netif_carrier_off(priv->dev);
213         set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214         stmmac_service_event_schedule(priv);
215 }
216
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *      If a specific clk_csr value is passed from the platform
224  *      this means that the CSR Clock Range selection cannot be
225  *      changed at run-time and it is fixed (as reported in the driver
226  *      documentation). Viceversa the driver will try to set the MDC
227  *      clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231         u32 clk_rate;
232
233         clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234
235         /* Platform provided default clk_csr would be assumed valid
236          * for all other cases except for the below mentioned ones.
237          * For values higher than the IEEE 802.3 specified frequency
238          * we can not estimate the proper divider as it is not known
239          * the frequency of clk_csr_i. So we do not change the default
240          * divider.
241          */
242         if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243                 if (clk_rate < CSR_F_35M)
244                         priv->clk_csr = STMMAC_CSR_20_35M;
245                 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246                         priv->clk_csr = STMMAC_CSR_35_60M;
247                 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248                         priv->clk_csr = STMMAC_CSR_60_100M;
249                 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250                         priv->clk_csr = STMMAC_CSR_100_150M;
251                 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252                         priv->clk_csr = STMMAC_CSR_150_250M;
253                 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254                         priv->clk_csr = STMMAC_CSR_250_300M;
255         }
256
257         if (priv->plat->has_sun8i) {
258                 if (clk_rate > 160000000)
259                         priv->clk_csr = 0x03;
260                 else if (clk_rate > 80000000)
261                         priv->clk_csr = 0x02;
262                 else if (clk_rate > 40000000)
263                         priv->clk_csr = 0x01;
264                 else
265                         priv->clk_csr = 0;
266         }
267
268         if (priv->plat->has_xgmac) {
269                 if (clk_rate > 400000000)
270                         priv->clk_csr = 0x5;
271                 else if (clk_rate > 350000000)
272                         priv->clk_csr = 0x4;
273                 else if (clk_rate > 300000000)
274                         priv->clk_csr = 0x3;
275                 else if (clk_rate > 250000000)
276                         priv->clk_csr = 0x2;
277                 else if (clk_rate > 150000000)
278                         priv->clk_csr = 0x1;
279                 else
280                         priv->clk_csr = 0x0;
281         }
282 }
283
284 static void print_pkt(unsigned char *buf, int len)
285 {
286         pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287         print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293         u32 avail;
294
295         if (tx_q->dirty_tx > tx_q->cur_tx)
296                 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297         else
298                 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299
300         return avail;
301 }
302
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311         u32 dirty;
312
313         if (rx_q->dirty_rx <= rx_q->cur_rx)
314                 dirty = rx_q->cur_rx - rx_q->dirty_rx;
315         else
316                 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317
318         return dirty;
319 }
320
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329         u32 tx_cnt = priv->plat->tx_queues_to_use;
330         u32 queue;
331
332         /* check if all TX queues have the work finished */
333         for (queue = 0; queue < tx_cnt; queue++) {
334                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335
336                 if (tx_q->dirty_tx != tx_q->cur_tx)
337                         return; /* still unfinished work */
338         }
339
340         /* Check and enter in LPI mode */
341         if (!priv->tx_path_in_lpi_mode)
342                 stmmac_set_eee_mode(priv, priv->hw,
343                                 priv->plat->en_tx_lpi_clockgating);
344 }
345
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354         stmmac_reset_eee_mode(priv, priv->hw);
355         del_timer_sync(&priv->eee_ctrl_timer);
356         priv->tx_path_in_lpi_mode = false;
357 }
358
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368         struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369
370         stmmac_enable_eee_mode(priv);
371         mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384         int tx_lpi_timer = priv->tx_lpi_timer;
385
386         /* Using PCS we cannot dial with the phy registers at this stage
387          * so we do not support extra feature like EEE.
388          */
389         if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390             (priv->hw->pcs == STMMAC_PCS_TBI) ||
391             (priv->hw->pcs == STMMAC_PCS_RTBI))
392                 return false;
393
394         /* Check if MAC core supports the EEE feature. */
395         if (!priv->dma_cap.eee)
396                 return false;
397
398         mutex_lock(&priv->lock);
399
400         /* Check if it needs to be deactivated */
401         if (!priv->eee_active) {
402                 if (priv->eee_enabled) {
403                         netdev_dbg(priv->dev, "disable EEE\n");
404                         del_timer_sync(&priv->eee_ctrl_timer);
405                         stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406                 }
407                 mutex_unlock(&priv->lock);
408                 return false;
409         }
410
411         if (priv->eee_active && !priv->eee_enabled) {
412                 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414                 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415                                      tx_lpi_timer);
416         }
417
418         mutex_unlock(&priv->lock);
419         netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420         return true;
421 }
422
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432                                    struct dma_desc *p, struct sk_buff *skb)
433 {
434         struct skb_shared_hwtstamps shhwtstamp;
435         bool found = false;
436         u64 ns = 0;
437
438         if (!priv->hwts_tx_en)
439                 return;
440
441         /* exit if skb doesn't support hw tstamp */
442         if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
443                 return;
444
445         /* check tx tstamp status */
446         if (stmmac_get_tx_timestamp_status(priv, p)) {
447                 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448                 found = true;
449         } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
450                 found = true;
451         }
452
453         if (found) {
454                 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
455                 shhwtstamp.hwtstamp = ns_to_ktime(ns);
456
457                 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
458                 /* pass tstamp to stack */
459                 skb_tstamp_tx(skb, &shhwtstamp);
460         }
461 }
462
463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
464  * @priv: driver private structure
465  * @p : descriptor pointer
466  * @np : next descriptor pointer
467  * @skb : the socket buffer
468  * Description :
469  * This function will read received packet's timestamp from the descriptor
470  * and pass it to stack. It also perform some sanity checks.
471  */
472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
473                                    struct dma_desc *np, struct sk_buff *skb)
474 {
475         struct skb_shared_hwtstamps *shhwtstamp = NULL;
476         struct dma_desc *desc = p;
477         u64 ns = 0;
478
479         if (!priv->hwts_rx_en)
480                 return;
481         /* For GMAC4, the valid timestamp is from CTX next desc. */
482         if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
483                 desc = np;
484
485         /* Check if timestamp is available */
486         if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
487                 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
488                 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
489                 shhwtstamp = skb_hwtstamps(skb);
490                 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
491                 shhwtstamp->hwtstamp = ns_to_ktime(ns);
492         } else  {
493                 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
494         }
495 }
496
497 /**
498  *  stmmac_hwtstamp_set - control hardware timestamping.
499  *  @dev: device pointer.
500  *  @ifr: An IOCTL specific structure, that can contain a pointer to
501  *  a proprietary structure used to pass information to the driver.
502  *  Description:
503  *  This function configures the MAC to enable/disable both outgoing(TX)
504  *  and incoming(RX) packets time stamping based on user input.
505  *  Return Value:
506  *  0 on success and an appropriate -ve integer on failure.
507  */
508 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
509 {
510         struct stmmac_priv *priv = netdev_priv(dev);
511         struct hwtstamp_config config;
512         struct timespec64 now;
513         u64 temp = 0;
514         u32 ptp_v2 = 0;
515         u32 tstamp_all = 0;
516         u32 ptp_over_ipv4_udp = 0;
517         u32 ptp_over_ipv6_udp = 0;
518         u32 ptp_over_ethernet = 0;
519         u32 snap_type_sel = 0;
520         u32 ts_master_en = 0;
521         u32 ts_event_en = 0;
522         u32 sec_inc = 0;
523         u32 value = 0;
524         bool xmac;
525
526         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
527
528         if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
529                 netdev_alert(priv->dev, "No support for HW time stamping\n");
530                 priv->hwts_tx_en = 0;
531                 priv->hwts_rx_en = 0;
532
533                 return -EOPNOTSUPP;
534         }
535
536         if (copy_from_user(&config, ifr->ifr_data,
537                            sizeof(config)))
538                 return -EFAULT;
539
540         netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
541                    __func__, config.flags, config.tx_type, config.rx_filter);
542
543         /* reserved for future extensions */
544         if (config.flags)
545                 return -EINVAL;
546
547         if (config.tx_type != HWTSTAMP_TX_OFF &&
548             config.tx_type != HWTSTAMP_TX_ON)
549                 return -ERANGE;
550
551         if (priv->adv_ts) {
552                 switch (config.rx_filter) {
553                 case HWTSTAMP_FILTER_NONE:
554                         /* time stamp no incoming packet at all */
555                         config.rx_filter = HWTSTAMP_FILTER_NONE;
556                         break;
557
558                 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
559                         /* PTP v1, UDP, any kind of event packet */
560                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
561                         /* 'xmac' hardware can support Sync, Pdelay_Req and
562                          * Pdelay_resp by setting bit14 and bits17/16 to 01
563                          * This leaves Delay_Req timestamps out.
564                          * Enable all events *and* general purpose message
565                          * timestamping
566                          */
567                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
568                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570                         break;
571
572                 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
573                         /* PTP v1, UDP, Sync packet */
574                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
575                         /* take time stamp for SYNC messages only */
576                         ts_event_en = PTP_TCR_TSEVNTENA;
577
578                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
579                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
580                         break;
581
582                 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
583                         /* PTP v1, UDP, Delay_req packet */
584                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
585                         /* take time stamp for Delay_Req messages only */
586                         ts_master_en = PTP_TCR_TSMSTRENA;
587                         ts_event_en = PTP_TCR_TSEVNTENA;
588
589                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
590                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
591                         break;
592
593                 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
594                         /* PTP v2, UDP, any kind of event packet */
595                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
596                         ptp_v2 = PTP_TCR_TSVER2ENA;
597                         /* take time stamp for all event messages */
598                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
599
600                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
601                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
602                         break;
603
604                 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
605                         /* PTP v2, UDP, Sync packet */
606                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
607                         ptp_v2 = PTP_TCR_TSVER2ENA;
608                         /* take time stamp for SYNC messages only */
609                         ts_event_en = PTP_TCR_TSEVNTENA;
610
611                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
612                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
613                         break;
614
615                 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
616                         /* PTP v2, UDP, Delay_req packet */
617                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
618                         ptp_v2 = PTP_TCR_TSVER2ENA;
619                         /* take time stamp for Delay_Req messages only */
620                         ts_master_en = PTP_TCR_TSMSTRENA;
621                         ts_event_en = PTP_TCR_TSEVNTENA;
622
623                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
624                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
625                         break;
626
627                 case HWTSTAMP_FILTER_PTP_V2_EVENT:
628                         /* PTP v2/802.AS1 any layer, any kind of event packet */
629                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
630                         ptp_v2 = PTP_TCR_TSVER2ENA;
631                         snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
632                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
633                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
634                         ptp_over_ethernet = PTP_TCR_TSIPENA;
635                         break;
636
637                 case HWTSTAMP_FILTER_PTP_V2_SYNC:
638                         /* PTP v2/802.AS1, any layer, Sync packet */
639                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
640                         ptp_v2 = PTP_TCR_TSVER2ENA;
641                         /* take time stamp for SYNC messages only */
642                         ts_event_en = PTP_TCR_TSEVNTENA;
643
644                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
645                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
646                         ptp_over_ethernet = PTP_TCR_TSIPENA;
647                         break;
648
649                 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
650                         /* PTP v2/802.AS1, any layer, Delay_req packet */
651                         config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
652                         ptp_v2 = PTP_TCR_TSVER2ENA;
653                         /* take time stamp for Delay_Req messages only */
654                         ts_master_en = PTP_TCR_TSMSTRENA;
655                         ts_event_en = PTP_TCR_TSEVNTENA;
656
657                         ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
658                         ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
659                         ptp_over_ethernet = PTP_TCR_TSIPENA;
660                         break;
661
662                 case HWTSTAMP_FILTER_NTP_ALL:
663                 case HWTSTAMP_FILTER_ALL:
664                         /* time stamp any incoming packet */
665                         config.rx_filter = HWTSTAMP_FILTER_ALL;
666                         tstamp_all = PTP_TCR_TSENALL;
667                         break;
668
669                 default:
670                         return -ERANGE;
671                 }
672         } else {
673                 switch (config.rx_filter) {
674                 case HWTSTAMP_FILTER_NONE:
675                         config.rx_filter = HWTSTAMP_FILTER_NONE;
676                         break;
677                 default:
678                         /* PTP v1, UDP, any kind of event packet */
679                         config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
680                         break;
681                 }
682         }
683         priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
684         priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
685
686         if (!priv->hwts_tx_en && !priv->hwts_rx_en)
687                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
688         else {
689                 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
690                          tstamp_all | ptp_v2 | ptp_over_ethernet |
691                          ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
692                          ts_master_en | snap_type_sel);
693                 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
694
695                 /* program Sub Second Increment reg */
696                 stmmac_config_sub_second_increment(priv,
697                                 priv->ptpaddr, priv->plat->clk_ptp_rate,
698                                 xmac, &sec_inc);
699                 temp = div_u64(1000000000ULL, sec_inc);
700
701                 /* Store sub second increment and flags for later use */
702                 priv->sub_second_inc = sec_inc;
703                 priv->systime_flags = value;
704
705                 /* calculate default added value:
706                  * formula is :
707                  * addend = (2^32)/freq_div_ratio;
708                  * where, freq_div_ratio = 1e9ns/sec_inc
709                  */
710                 temp = (u64)(temp << 32);
711                 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
712                 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
713
714                 /* initialize system time */
715                 ktime_get_real_ts64(&now);
716
717                 /* lower 32 bits of tv_sec are safe until y2106 */
718                 stmmac_init_systime(priv, priv->ptpaddr,
719                                 (u32)now.tv_sec, now.tv_nsec);
720         }
721
722         memcpy(&priv->tstamp_config, &config, sizeof(config));
723
724         return copy_to_user(ifr->ifr_data, &config,
725                             sizeof(config)) ? -EFAULT : 0;
726 }
727
728 /**
729  *  stmmac_hwtstamp_get - read hardware timestamping.
730  *  @dev: device pointer.
731  *  @ifr: An IOCTL specific structure, that can contain a pointer to
732  *  a proprietary structure used to pass information to the driver.
733  *  Description:
734  *  This function obtain the current hardware timestamping settings
735     as requested.
736  */
737 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
738 {
739         struct stmmac_priv *priv = netdev_priv(dev);
740         struct hwtstamp_config *config = &priv->tstamp_config;
741
742         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
743                 return -EOPNOTSUPP;
744
745         return copy_to_user(ifr->ifr_data, config,
746                             sizeof(*config)) ? -EFAULT : 0;
747 }
748
749 /**
750  * stmmac_init_ptp - init PTP
751  * @priv: driver private structure
752  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
753  * This is done by looking at the HW cap. register.
754  * This function also registers the ptp driver.
755  */
756 static int stmmac_init_ptp(struct stmmac_priv *priv)
757 {
758         bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
759
760         if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
761                 return -EOPNOTSUPP;
762
763         priv->adv_ts = 0;
764         /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
765         if (xmac && priv->dma_cap.atime_stamp)
766                 priv->adv_ts = 1;
767         /* Dwmac 3.x core with extend_desc can support adv_ts */
768         else if (priv->extend_desc && priv->dma_cap.atime_stamp)
769                 priv->adv_ts = 1;
770
771         if (priv->dma_cap.time_stamp)
772                 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
773
774         if (priv->adv_ts)
775                 netdev_info(priv->dev,
776                             "IEEE 1588-2008 Advanced Timestamp supported\n");
777
778         priv->hwts_tx_en = 0;
779         priv->hwts_rx_en = 0;
780
781         stmmac_ptp_register(priv);
782
783         return 0;
784 }
785
786 static void stmmac_release_ptp(struct stmmac_priv *priv)
787 {
788         if (priv->plat->clk_ptp_ref)
789                 clk_disable_unprepare(priv->plat->clk_ptp_ref);
790         stmmac_ptp_unregister(priv);
791 }
792
793 /**
794  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
795  *  @priv: driver private structure
796  *  Description: It is used for configuring the flow control in all queues
797  */
798 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
799 {
800         u32 tx_cnt = priv->plat->tx_queues_to_use;
801
802         stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
803                         priv->pause, tx_cnt);
804 }
805
806 static void stmmac_validate(struct phylink_config *config,
807                             unsigned long *supported,
808                             struct phylink_link_state *state)
809 {
810         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
811         __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
812         __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
813         int tx_cnt = priv->plat->tx_queues_to_use;
814         int max_speed = priv->plat->max_speed;
815
816         phylink_set(mac_supported, 10baseT_Half);
817         phylink_set(mac_supported, 10baseT_Full);
818         phylink_set(mac_supported, 100baseT_Half);
819         phylink_set(mac_supported, 100baseT_Full);
820         phylink_set(mac_supported, 1000baseT_Half);
821         phylink_set(mac_supported, 1000baseT_Full);
822         phylink_set(mac_supported, 1000baseKX_Full);
823
824         phylink_set(mac_supported, Autoneg);
825         phylink_set(mac_supported, Pause);
826         phylink_set(mac_supported, Asym_Pause);
827         phylink_set_port_modes(mac_supported);
828
829         /* Cut down 1G if asked to */
830         if ((max_speed > 0) && (max_speed < 1000)) {
831                 phylink_set(mask, 1000baseT_Full);
832                 phylink_set(mask, 1000baseX_Full);
833         } else if (priv->plat->has_xgmac) {
834                 phylink_set(mac_supported, 2500baseT_Full);
835                 phylink_set(mac_supported, 5000baseT_Full);
836                 phylink_set(mac_supported, 10000baseSR_Full);
837                 phylink_set(mac_supported, 10000baseLR_Full);
838                 phylink_set(mac_supported, 10000baseER_Full);
839                 phylink_set(mac_supported, 10000baseLRM_Full);
840                 phylink_set(mac_supported, 10000baseT_Full);
841                 phylink_set(mac_supported, 10000baseKX4_Full);
842                 phylink_set(mac_supported, 10000baseKR_Full);
843         }
844
845         /* Half-Duplex can only work with single queue */
846         if (tx_cnt > 1) {
847                 phylink_set(mask, 10baseT_Half);
848                 phylink_set(mask, 100baseT_Half);
849                 phylink_set(mask, 1000baseT_Half);
850         }
851
852         bitmap_and(supported, supported, mac_supported,
853                    __ETHTOOL_LINK_MODE_MASK_NBITS);
854         bitmap_andnot(supported, supported, mask,
855                       __ETHTOOL_LINK_MODE_MASK_NBITS);
856         bitmap_and(state->advertising, state->advertising, mac_supported,
857                    __ETHTOOL_LINK_MODE_MASK_NBITS);
858         bitmap_andnot(state->advertising, state->advertising, mask,
859                       __ETHTOOL_LINK_MODE_MASK_NBITS);
860 }
861
862 static int stmmac_mac_link_state(struct phylink_config *config,
863                                  struct phylink_link_state *state)
864 {
865         return -EOPNOTSUPP;
866 }
867
868 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
869                               const struct phylink_link_state *state)
870 {
871         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
872         u32 ctrl;
873
874         ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
875         ctrl &= ~priv->hw->link.speed_mask;
876
877         if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
878                 switch (state->speed) {
879                 case SPEED_10000:
880                         ctrl |= priv->hw->link.xgmii.speed10000;
881                         break;
882                 case SPEED_5000:
883                         ctrl |= priv->hw->link.xgmii.speed5000;
884                         break;
885                 case SPEED_2500:
886                         ctrl |= priv->hw->link.xgmii.speed2500;
887                         break;
888                 default:
889                         return;
890                 }
891         } else {
892                 switch (state->speed) {
893                 case SPEED_2500:
894                         ctrl |= priv->hw->link.speed2500;
895                         break;
896                 case SPEED_1000:
897                         ctrl |= priv->hw->link.speed1000;
898                         break;
899                 case SPEED_100:
900                         ctrl |= priv->hw->link.speed100;
901                         break;
902                 case SPEED_10:
903                         ctrl |= priv->hw->link.speed10;
904                         break;
905                 default:
906                         return;
907                 }
908         }
909
910         priv->speed = state->speed;
911
912         if (priv->plat->fix_mac_speed)
913                 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
914
915         if (!state->duplex)
916                 ctrl &= ~priv->hw->link.duplex;
917         else
918                 ctrl |= priv->hw->link.duplex;
919
920         /* Flow Control operation */
921         if (state->pause)
922                 stmmac_mac_flow_ctrl(priv, state->duplex);
923
924         writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
925 }
926
927 static void stmmac_mac_an_restart(struct phylink_config *config)
928 {
929         /* Not Supported */
930 }
931
932 static void stmmac_mac_link_down(struct phylink_config *config,
933                                  unsigned int mode, phy_interface_t interface)
934 {
935         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
936
937         stmmac_mac_set(priv, priv->ioaddr, false);
938         priv->eee_active = false;
939         stmmac_eee_init(priv);
940         stmmac_set_eee_pls(priv, priv->hw, false);
941 }
942
943 static void stmmac_mac_link_up(struct phylink_config *config,
944                                unsigned int mode, phy_interface_t interface,
945                                struct phy_device *phy)
946 {
947         struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
948
949         stmmac_mac_set(priv, priv->ioaddr, true);
950         if (phy && priv->dma_cap.eee) {
951                 priv->eee_active = phy_init_eee(phy, 1) >= 0;
952                 priv->eee_enabled = stmmac_eee_init(priv);
953                 stmmac_set_eee_pls(priv, priv->hw, true);
954         }
955 }
956
957 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
958         .validate = stmmac_validate,
959         .mac_link_state = stmmac_mac_link_state,
960         .mac_config = stmmac_mac_config,
961         .mac_an_restart = stmmac_mac_an_restart,
962         .mac_link_down = stmmac_mac_link_down,
963         .mac_link_up = stmmac_mac_link_up,
964 };
965
966 /**
967  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
968  * @priv: driver private structure
969  * Description: this is to verify if the HW supports the PCS.
970  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
971  * configured for the TBI, RTBI, or SGMII PHY interface.
972  */
973 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
974 {
975         int interface = priv->plat->interface;
976
977         if (priv->dma_cap.pcs) {
978                 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
979                     (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
980                     (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
981                     (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
982                         netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
983                         priv->hw->pcs = STMMAC_PCS_RGMII;
984                 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
985                         netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
986                         priv->hw->pcs = STMMAC_PCS_SGMII;
987                 }
988         }
989 }
990
991 /**
992  * stmmac_init_phy - PHY initialization
993  * @dev: net device structure
994  * Description: it initializes the driver's PHY state, and attaches the PHY
995  * to the mac driver.
996  *  Return value:
997  *  0 on success
998  */
999 static int stmmac_init_phy(struct net_device *dev)
1000 {
1001         struct stmmac_priv *priv = netdev_priv(dev);
1002         struct device_node *node;
1003         int ret;
1004
1005         node = priv->plat->phylink_node;
1006
1007         if (node)
1008                 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1009
1010         /* Some DT bindings do not set-up the PHY handle. Let's try to
1011          * manually parse it
1012          */
1013         if (!node || ret) {
1014                 int addr = priv->plat->phy_addr;
1015                 struct phy_device *phydev;
1016
1017                 phydev = mdiobus_get_phy(priv->mii, addr);
1018                 if (!phydev) {
1019                         netdev_err(priv->dev, "no phy at addr %d\n", addr);
1020                         return -ENODEV;
1021                 }
1022
1023                 ret = phylink_connect_phy(priv->phylink, phydev);
1024         }
1025
1026         return ret;
1027 }
1028
1029 static int stmmac_phy_setup(struct stmmac_priv *priv)
1030 {
1031         struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1032         int mode = priv->plat->interface;
1033         struct phylink *phylink;
1034
1035         priv->phylink_config.dev = &priv->dev->dev;
1036         priv->phylink_config.type = PHYLINK_NETDEV;
1037
1038         phylink = phylink_create(&priv->phylink_config, fwnode,
1039                                  mode, &stmmac_phylink_mac_ops);
1040         if (IS_ERR(phylink))
1041                 return PTR_ERR(phylink);
1042
1043         priv->phylink = phylink;
1044         return 0;
1045 }
1046
1047 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1048 {
1049         u32 rx_cnt = priv->plat->rx_queues_to_use;
1050         void *head_rx;
1051         u32 queue;
1052
1053         /* Display RX rings */
1054         for (queue = 0; queue < rx_cnt; queue++) {
1055                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1056
1057                 pr_info("\tRX Queue %u rings\n", queue);
1058
1059                 if (priv->extend_desc)
1060                         head_rx = (void *)rx_q->dma_erx;
1061                 else
1062                         head_rx = (void *)rx_q->dma_rx;
1063
1064                 /* Display RX ring */
1065                 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1066         }
1067 }
1068
1069 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1070 {
1071         u32 tx_cnt = priv->plat->tx_queues_to_use;
1072         void *head_tx;
1073         u32 queue;
1074
1075         /* Display TX rings */
1076         for (queue = 0; queue < tx_cnt; queue++) {
1077                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1078
1079                 pr_info("\tTX Queue %d rings\n", queue);
1080
1081                 if (priv->extend_desc)
1082                         head_tx = (void *)tx_q->dma_etx;
1083                 else
1084                         head_tx = (void *)tx_q->dma_tx;
1085
1086                 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1087         }
1088 }
1089
1090 static void stmmac_display_rings(struct stmmac_priv *priv)
1091 {
1092         /* Display RX ring */
1093         stmmac_display_rx_rings(priv);
1094
1095         /* Display TX ring */
1096         stmmac_display_tx_rings(priv);
1097 }
1098
1099 static int stmmac_set_bfsize(int mtu, int bufsize)
1100 {
1101         int ret = bufsize;
1102
1103         if (mtu >= BUF_SIZE_4KiB)
1104                 ret = BUF_SIZE_8KiB;
1105         else if (mtu >= BUF_SIZE_2KiB)
1106                 ret = BUF_SIZE_4KiB;
1107         else if (mtu > DEFAULT_BUFSIZE)
1108                 ret = BUF_SIZE_2KiB;
1109         else
1110                 ret = DEFAULT_BUFSIZE;
1111
1112         return ret;
1113 }
1114
1115 /**
1116  * stmmac_clear_rx_descriptors - clear RX descriptors
1117  * @priv: driver private structure
1118  * @queue: RX queue index
1119  * Description: this function is called to clear the RX descriptors
1120  * in case of both basic and extended descriptors are used.
1121  */
1122 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1123 {
1124         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1125         int i;
1126
1127         /* Clear the RX descriptors */
1128         for (i = 0; i < DMA_RX_SIZE; i++)
1129                 if (priv->extend_desc)
1130                         stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1131                                         priv->use_riwt, priv->mode,
1132                                         (i == DMA_RX_SIZE - 1),
1133                                         priv->dma_buf_sz);
1134                 else
1135                         stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1136                                         priv->use_riwt, priv->mode,
1137                                         (i == DMA_RX_SIZE - 1),
1138                                         priv->dma_buf_sz);
1139 }
1140
1141 /**
1142  * stmmac_clear_tx_descriptors - clear tx descriptors
1143  * @priv: driver private structure
1144  * @queue: TX queue index.
1145  * Description: this function is called to clear the TX descriptors
1146  * in case of both basic and extended descriptors are used.
1147  */
1148 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1149 {
1150         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1151         int i;
1152
1153         /* Clear the TX descriptors */
1154         for (i = 0; i < DMA_TX_SIZE; i++)
1155                 if (priv->extend_desc)
1156                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1157                                         priv->mode, (i == DMA_TX_SIZE - 1));
1158                 else
1159                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1160                                         priv->mode, (i == DMA_TX_SIZE - 1));
1161 }
1162
1163 /**
1164  * stmmac_clear_descriptors - clear descriptors
1165  * @priv: driver private structure
1166  * Description: this function is called to clear the TX and RX descriptors
1167  * in case of both basic and extended descriptors are used.
1168  */
1169 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1170 {
1171         u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1172         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1173         u32 queue;
1174
1175         /* Clear the RX descriptors */
1176         for (queue = 0; queue < rx_queue_cnt; queue++)
1177                 stmmac_clear_rx_descriptors(priv, queue);
1178
1179         /* Clear the TX descriptors */
1180         for (queue = 0; queue < tx_queue_cnt; queue++)
1181                 stmmac_clear_tx_descriptors(priv, queue);
1182 }
1183
1184 /**
1185  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1186  * @priv: driver private structure
1187  * @p: descriptor pointer
1188  * @i: descriptor index
1189  * @flags: gfp flag
1190  * @queue: RX queue index
1191  * Description: this function is called to allocate a receive buffer, perform
1192  * the DMA mapping and init the descriptor.
1193  */
1194 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1195                                   int i, gfp_t flags, u32 queue)
1196 {
1197         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1198         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1199
1200         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1201         if (!buf->page)
1202                 return -ENOMEM;
1203
1204         if (priv->sph) {
1205                 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1206                 if (!buf->sec_page)
1207                         return -ENOMEM;
1208
1209                 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1210                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1211         } else {
1212                 buf->sec_page = NULL;
1213         }
1214
1215         buf->addr = page_pool_get_dma_addr(buf->page);
1216         stmmac_set_desc_addr(priv, p, buf->addr);
1217         if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1218                 stmmac_init_desc3(priv, p);
1219
1220         return 0;
1221 }
1222
1223 /**
1224  * stmmac_free_rx_buffer - free RX dma buffers
1225  * @priv: private structure
1226  * @queue: RX queue index
1227  * @i: buffer index.
1228  */
1229 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1230 {
1231         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1232         struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1233
1234         if (buf->page)
1235                 page_pool_put_page(rx_q->page_pool, buf->page, false);
1236         buf->page = NULL;
1237
1238         if (buf->sec_page)
1239                 page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1240         buf->sec_page = NULL;
1241 }
1242
1243 /**
1244  * stmmac_free_tx_buffer - free RX dma buffers
1245  * @priv: private structure
1246  * @queue: RX queue index
1247  * @i: buffer index.
1248  */
1249 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1250 {
1251         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1252
1253         if (tx_q->tx_skbuff_dma[i].buf) {
1254                 if (tx_q->tx_skbuff_dma[i].map_as_page)
1255                         dma_unmap_page(priv->device,
1256                                        tx_q->tx_skbuff_dma[i].buf,
1257                                        tx_q->tx_skbuff_dma[i].len,
1258                                        DMA_TO_DEVICE);
1259                 else
1260                         dma_unmap_single(priv->device,
1261                                          tx_q->tx_skbuff_dma[i].buf,
1262                                          tx_q->tx_skbuff_dma[i].len,
1263                                          DMA_TO_DEVICE);
1264         }
1265
1266         if (tx_q->tx_skbuff[i]) {
1267                 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1268                 tx_q->tx_skbuff[i] = NULL;
1269                 tx_q->tx_skbuff_dma[i].buf = 0;
1270                 tx_q->tx_skbuff_dma[i].map_as_page = false;
1271         }
1272 }
1273
1274 /**
1275  * init_dma_rx_desc_rings - init the RX descriptor rings
1276  * @dev: net device structure
1277  * @flags: gfp flag.
1278  * Description: this function initializes the DMA RX descriptors
1279  * and allocates the socket buffers. It supports the chained and ring
1280  * modes.
1281  */
1282 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1283 {
1284         struct stmmac_priv *priv = netdev_priv(dev);
1285         u32 rx_count = priv->plat->rx_queues_to_use;
1286         int ret = -ENOMEM;
1287         int bfsize = 0;
1288         int queue;
1289         int i;
1290
1291         bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1292         if (bfsize < 0)
1293                 bfsize = 0;
1294
1295         if (bfsize < BUF_SIZE_16KiB)
1296                 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1297
1298         priv->dma_buf_sz = bfsize;
1299
1300         /* RX INITIALIZATION */
1301         netif_dbg(priv, probe, priv->dev,
1302                   "SKB addresses:\nskb\t\tskb data\tdma data\n");
1303
1304         for (queue = 0; queue < rx_count; queue++) {
1305                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1306
1307                 netif_dbg(priv, probe, priv->dev,
1308                           "(%s) dma_rx_phy=0x%08x\n", __func__,
1309                           (u32)rx_q->dma_rx_phy);
1310
1311                 stmmac_clear_rx_descriptors(priv, queue);
1312
1313                 for (i = 0; i < DMA_RX_SIZE; i++) {
1314                         struct dma_desc *p;
1315
1316                         if (priv->extend_desc)
1317                                 p = &((rx_q->dma_erx + i)->basic);
1318                         else
1319                                 p = rx_q->dma_rx + i;
1320
1321                         ret = stmmac_init_rx_buffers(priv, p, i, flags,
1322                                                      queue);
1323                         if (ret)
1324                                 goto err_init_rx_buffers;
1325                 }
1326
1327                 rx_q->cur_rx = 0;
1328                 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1329
1330                 /* Setup the chained descriptor addresses */
1331                 if (priv->mode == STMMAC_CHAIN_MODE) {
1332                         if (priv->extend_desc)
1333                                 stmmac_mode_init(priv, rx_q->dma_erx,
1334                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1335                         else
1336                                 stmmac_mode_init(priv, rx_q->dma_rx,
1337                                                 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1338                 }
1339         }
1340
1341         buf_sz = bfsize;
1342
1343         return 0;
1344
1345 err_init_rx_buffers:
1346         while (queue >= 0) {
1347                 while (--i >= 0)
1348                         stmmac_free_rx_buffer(priv, queue, i);
1349
1350                 if (queue == 0)
1351                         break;
1352
1353                 i = DMA_RX_SIZE;
1354                 queue--;
1355         }
1356
1357         return ret;
1358 }
1359
1360 /**
1361  * init_dma_tx_desc_rings - init the TX descriptor rings
1362  * @dev: net device structure.
1363  * Description: this function initializes the DMA TX descriptors
1364  * and allocates the socket buffers. It supports the chained and ring
1365  * modes.
1366  */
1367 static int init_dma_tx_desc_rings(struct net_device *dev)
1368 {
1369         struct stmmac_priv *priv = netdev_priv(dev);
1370         u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1371         u32 queue;
1372         int i;
1373
1374         for (queue = 0; queue < tx_queue_cnt; queue++) {
1375                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1376
1377                 netif_dbg(priv, probe, priv->dev,
1378                           "(%s) dma_tx_phy=0x%08x\n", __func__,
1379                          (u32)tx_q->dma_tx_phy);
1380
1381                 /* Setup the chained descriptor addresses */
1382                 if (priv->mode == STMMAC_CHAIN_MODE) {
1383                         if (priv->extend_desc)
1384                                 stmmac_mode_init(priv, tx_q->dma_etx,
1385                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1386                         else
1387                                 stmmac_mode_init(priv, tx_q->dma_tx,
1388                                                 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1389                 }
1390
1391                 for (i = 0; i < DMA_TX_SIZE; i++) {
1392                         struct dma_desc *p;
1393                         if (priv->extend_desc)
1394                                 p = &((tx_q->dma_etx + i)->basic);
1395                         else
1396                                 p = tx_q->dma_tx + i;
1397
1398                         stmmac_clear_desc(priv, p);
1399
1400                         tx_q->tx_skbuff_dma[i].buf = 0;
1401                         tx_q->tx_skbuff_dma[i].map_as_page = false;
1402                         tx_q->tx_skbuff_dma[i].len = 0;
1403                         tx_q->tx_skbuff_dma[i].last_segment = false;
1404                         tx_q->tx_skbuff[i] = NULL;
1405                 }
1406
1407                 tx_q->dirty_tx = 0;
1408                 tx_q->cur_tx = 0;
1409                 tx_q->mss = 0;
1410
1411                 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1412         }
1413
1414         return 0;
1415 }
1416
1417 /**
1418  * init_dma_desc_rings - init the RX/TX descriptor rings
1419  * @dev: net device structure
1420  * @flags: gfp flag.
1421  * Description: this function initializes the DMA RX/TX descriptors
1422  * and allocates the socket buffers. It supports the chained and ring
1423  * modes.
1424  */
1425 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1426 {
1427         struct stmmac_priv *priv = netdev_priv(dev);
1428         int ret;
1429
1430         ret = init_dma_rx_desc_rings(dev, flags);
1431         if (ret)
1432                 return ret;
1433
1434         ret = init_dma_tx_desc_rings(dev);
1435
1436         stmmac_clear_descriptors(priv);
1437
1438         if (netif_msg_hw(priv))
1439                 stmmac_display_rings(priv);
1440
1441         return ret;
1442 }
1443
1444 /**
1445  * dma_free_rx_skbufs - free RX dma buffers
1446  * @priv: private structure
1447  * @queue: RX queue index
1448  */
1449 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1450 {
1451         int i;
1452
1453         for (i = 0; i < DMA_RX_SIZE; i++)
1454                 stmmac_free_rx_buffer(priv, queue, i);
1455 }
1456
1457 /**
1458  * dma_free_tx_skbufs - free TX dma buffers
1459  * @priv: private structure
1460  * @queue: TX queue index
1461  */
1462 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1463 {
1464         int i;
1465
1466         for (i = 0; i < DMA_TX_SIZE; i++)
1467                 stmmac_free_tx_buffer(priv, queue, i);
1468 }
1469
1470 /**
1471  * free_dma_rx_desc_resources - free RX dma desc resources
1472  * @priv: private structure
1473  */
1474 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1475 {
1476         u32 rx_count = priv->plat->rx_queues_to_use;
1477         u32 queue;
1478
1479         /* Free RX queue resources */
1480         for (queue = 0; queue < rx_count; queue++) {
1481                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1482
1483                 /* Release the DMA RX socket buffers */
1484                 dma_free_rx_skbufs(priv, queue);
1485
1486                 /* Free DMA regions of consistent memory previously allocated */
1487                 if (!priv->extend_desc)
1488                         dma_free_coherent(priv->device,
1489                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1490                                           rx_q->dma_rx, rx_q->dma_rx_phy);
1491                 else
1492                         dma_free_coherent(priv->device, DMA_RX_SIZE *
1493                                           sizeof(struct dma_extended_desc),
1494                                           rx_q->dma_erx, rx_q->dma_rx_phy);
1495
1496                 kfree(rx_q->buf_pool);
1497                 if (rx_q->page_pool) {
1498                         page_pool_request_shutdown(rx_q->page_pool);
1499                         page_pool_destroy(rx_q->page_pool);
1500                 }
1501         }
1502 }
1503
1504 /**
1505  * free_dma_tx_desc_resources - free TX dma desc resources
1506  * @priv: private structure
1507  */
1508 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1509 {
1510         u32 tx_count = priv->plat->tx_queues_to_use;
1511         u32 queue;
1512
1513         /* Free TX queue resources */
1514         for (queue = 0; queue < tx_count; queue++) {
1515                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1516
1517                 /* Release the DMA TX socket buffers */
1518                 dma_free_tx_skbufs(priv, queue);
1519
1520                 /* Free DMA regions of consistent memory previously allocated */
1521                 if (!priv->extend_desc)
1522                         dma_free_coherent(priv->device,
1523                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1524                                           tx_q->dma_tx, tx_q->dma_tx_phy);
1525                 else
1526                         dma_free_coherent(priv->device, DMA_TX_SIZE *
1527                                           sizeof(struct dma_extended_desc),
1528                                           tx_q->dma_etx, tx_q->dma_tx_phy);
1529
1530                 kfree(tx_q->tx_skbuff_dma);
1531                 kfree(tx_q->tx_skbuff);
1532         }
1533 }
1534
1535 /**
1536  * alloc_dma_rx_desc_resources - alloc RX resources.
1537  * @priv: private structure
1538  * Description: according to which descriptor can be used (extend or basic)
1539  * this function allocates the resources for TX and RX paths. In case of
1540  * reception, for example, it pre-allocated the RX socket buffer in order to
1541  * allow zero-copy mechanism.
1542  */
1543 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1544 {
1545         u32 rx_count = priv->plat->rx_queues_to_use;
1546         int ret = -ENOMEM;
1547         u32 queue;
1548
1549         /* RX queues buffers and DMA */
1550         for (queue = 0; queue < rx_count; queue++) {
1551                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1552                 struct page_pool_params pp_params = { 0 };
1553
1554                 rx_q->queue_index = queue;
1555                 rx_q->priv_data = priv;
1556
1557                 pp_params.flags = PP_FLAG_DMA_MAP;
1558                 pp_params.pool_size = DMA_RX_SIZE;
1559                 pp_params.order = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1560                 pp_params.nid = dev_to_node(priv->device);
1561                 pp_params.dev = priv->device;
1562                 pp_params.dma_dir = DMA_FROM_DEVICE;
1563
1564                 rx_q->page_pool = page_pool_create(&pp_params);
1565                 if (IS_ERR(rx_q->page_pool)) {
1566                         ret = PTR_ERR(rx_q->page_pool);
1567                         rx_q->page_pool = NULL;
1568                         goto err_dma;
1569                 }
1570
1571                 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1572                                          GFP_KERNEL);
1573                 if (!rx_q->buf_pool)
1574                         goto err_dma;
1575
1576                 if (priv->extend_desc) {
1577                         rx_q->dma_erx = dma_alloc_coherent(priv->device,
1578                                                            DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1579                                                            &rx_q->dma_rx_phy,
1580                                                            GFP_KERNEL);
1581                         if (!rx_q->dma_erx)
1582                                 goto err_dma;
1583
1584                 } else {
1585                         rx_q->dma_rx = dma_alloc_coherent(priv->device,
1586                                                           DMA_RX_SIZE * sizeof(struct dma_desc),
1587                                                           &rx_q->dma_rx_phy,
1588                                                           GFP_KERNEL);
1589                         if (!rx_q->dma_rx)
1590                                 goto err_dma;
1591                 }
1592         }
1593
1594         return 0;
1595
1596 err_dma:
1597         free_dma_rx_desc_resources(priv);
1598
1599         return ret;
1600 }
1601
1602 /**
1603  * alloc_dma_tx_desc_resources - alloc TX resources.
1604  * @priv: private structure
1605  * Description: according to which descriptor can be used (extend or basic)
1606  * this function allocates the resources for TX and RX paths. In case of
1607  * reception, for example, it pre-allocated the RX socket buffer in order to
1608  * allow zero-copy mechanism.
1609  */
1610 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1611 {
1612         u32 tx_count = priv->plat->tx_queues_to_use;
1613         int ret = -ENOMEM;
1614         u32 queue;
1615
1616         /* TX queues buffers and DMA */
1617         for (queue = 0; queue < tx_count; queue++) {
1618                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1619
1620                 tx_q->queue_index = queue;
1621                 tx_q->priv_data = priv;
1622
1623                 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1624                                               sizeof(*tx_q->tx_skbuff_dma),
1625                                               GFP_KERNEL);
1626                 if (!tx_q->tx_skbuff_dma)
1627                         goto err_dma;
1628
1629                 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1630                                           sizeof(struct sk_buff *),
1631                                           GFP_KERNEL);
1632                 if (!tx_q->tx_skbuff)
1633                         goto err_dma;
1634
1635                 if (priv->extend_desc) {
1636                         tx_q->dma_etx = dma_alloc_coherent(priv->device,
1637                                                            DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1638                                                            &tx_q->dma_tx_phy,
1639                                                            GFP_KERNEL);
1640                         if (!tx_q->dma_etx)
1641                                 goto err_dma;
1642                 } else {
1643                         tx_q->dma_tx = dma_alloc_coherent(priv->device,
1644                                                           DMA_TX_SIZE * sizeof(struct dma_desc),
1645                                                           &tx_q->dma_tx_phy,
1646                                                           GFP_KERNEL);
1647                         if (!tx_q->dma_tx)
1648                                 goto err_dma;
1649                 }
1650         }
1651
1652         return 0;
1653
1654 err_dma:
1655         free_dma_tx_desc_resources(priv);
1656
1657         return ret;
1658 }
1659
1660 /**
1661  * alloc_dma_desc_resources - alloc TX/RX resources.
1662  * @priv: private structure
1663  * Description: according to which descriptor can be used (extend or basic)
1664  * this function allocates the resources for TX and RX paths. In case of
1665  * reception, for example, it pre-allocated the RX socket buffer in order to
1666  * allow zero-copy mechanism.
1667  */
1668 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1669 {
1670         /* RX Allocation */
1671         int ret = alloc_dma_rx_desc_resources(priv);
1672
1673         if (ret)
1674                 return ret;
1675
1676         ret = alloc_dma_tx_desc_resources(priv);
1677
1678         return ret;
1679 }
1680
1681 /**
1682  * free_dma_desc_resources - free dma desc resources
1683  * @priv: private structure
1684  */
1685 static void free_dma_desc_resources(struct stmmac_priv *priv)
1686 {
1687         /* Release the DMA RX socket buffers */
1688         free_dma_rx_desc_resources(priv);
1689
1690         /* Release the DMA TX socket buffers */
1691         free_dma_tx_desc_resources(priv);
1692 }
1693
1694 /**
1695  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1696  *  @priv: driver private structure
1697  *  Description: It is used for enabling the rx queues in the MAC
1698  */
1699 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1700 {
1701         u32 rx_queues_count = priv->plat->rx_queues_to_use;
1702         int queue;
1703         u8 mode;
1704
1705         for (queue = 0; queue < rx_queues_count; queue++) {
1706                 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1707                 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1708         }
1709 }
1710
1711 /**
1712  * stmmac_start_rx_dma - start RX DMA channel
1713  * @priv: driver private structure
1714  * @chan: RX channel index
1715  * Description:
1716  * This starts a RX DMA channel
1717  */
1718 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1719 {
1720         netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1721         stmmac_start_rx(priv, priv->ioaddr, chan);
1722 }
1723
1724 /**
1725  * stmmac_start_tx_dma - start TX DMA channel
1726  * @priv: driver private structure
1727  * @chan: TX channel index
1728  * Description:
1729  * This starts a TX DMA channel
1730  */
1731 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1732 {
1733         netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1734         stmmac_start_tx(priv, priv->ioaddr, chan);
1735 }
1736
1737 /**
1738  * stmmac_stop_rx_dma - stop RX DMA channel
1739  * @priv: driver private structure
1740  * @chan: RX channel index
1741  * Description:
1742  * This stops a RX DMA channel
1743  */
1744 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1745 {
1746         netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1747         stmmac_stop_rx(priv, priv->ioaddr, chan);
1748 }
1749
1750 /**
1751  * stmmac_stop_tx_dma - stop TX DMA channel
1752  * @priv: driver private structure
1753  * @chan: TX channel index
1754  * Description:
1755  * This stops a TX DMA channel
1756  */
1757 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1758 {
1759         netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1760         stmmac_stop_tx(priv, priv->ioaddr, chan);
1761 }
1762
1763 /**
1764  * stmmac_start_all_dma - start all RX and TX DMA channels
1765  * @priv: driver private structure
1766  * Description:
1767  * This starts all the RX and TX DMA channels
1768  */
1769 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1770 {
1771         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1772         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1773         u32 chan = 0;
1774
1775         for (chan = 0; chan < rx_channels_count; chan++)
1776                 stmmac_start_rx_dma(priv, chan);
1777
1778         for (chan = 0; chan < tx_channels_count; chan++)
1779                 stmmac_start_tx_dma(priv, chan);
1780 }
1781
1782 /**
1783  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1784  * @priv: driver private structure
1785  * Description:
1786  * This stops the RX and TX DMA channels
1787  */
1788 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1789 {
1790         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1791         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1792         u32 chan = 0;
1793
1794         for (chan = 0; chan < rx_channels_count; chan++)
1795                 stmmac_stop_rx_dma(priv, chan);
1796
1797         for (chan = 0; chan < tx_channels_count; chan++)
1798                 stmmac_stop_tx_dma(priv, chan);
1799 }
1800
1801 /**
1802  *  stmmac_dma_operation_mode - HW DMA operation mode
1803  *  @priv: driver private structure
1804  *  Description: it is used for configuring the DMA operation mode register in
1805  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1806  */
1807 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1808 {
1809         u32 rx_channels_count = priv->plat->rx_queues_to_use;
1810         u32 tx_channels_count = priv->plat->tx_queues_to_use;
1811         int rxfifosz = priv->plat->rx_fifo_size;
1812         int txfifosz = priv->plat->tx_fifo_size;
1813         u32 txmode = 0;
1814         u32 rxmode = 0;
1815         u32 chan = 0;
1816         u8 qmode = 0;
1817
1818         if (rxfifosz == 0)
1819                 rxfifosz = priv->dma_cap.rx_fifo_size;
1820         if (txfifosz == 0)
1821                 txfifosz = priv->dma_cap.tx_fifo_size;
1822
1823         /* Adjust for real per queue fifo size */
1824         rxfifosz /= rx_channels_count;
1825         txfifosz /= tx_channels_count;
1826
1827         if (priv->plat->force_thresh_dma_mode) {
1828                 txmode = tc;
1829                 rxmode = tc;
1830         } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1831                 /*
1832                  * In case of GMAC, SF mode can be enabled
1833                  * to perform the TX COE in HW. This depends on:
1834                  * 1) TX COE if actually supported
1835                  * 2) There is no bugged Jumbo frame support
1836                  *    that needs to not insert csum in the TDES.
1837                  */
1838                 txmode = SF_DMA_MODE;
1839                 rxmode = SF_DMA_MODE;
1840                 priv->xstats.threshold = SF_DMA_MODE;
1841         } else {
1842                 txmode = tc;
1843                 rxmode = SF_DMA_MODE;
1844         }
1845
1846         /* configure all channels */
1847         for (chan = 0; chan < rx_channels_count; chan++) {
1848                 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1849
1850                 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1851                                 rxfifosz, qmode);
1852                 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1853                                 chan);
1854         }
1855
1856         for (chan = 0; chan < tx_channels_count; chan++) {
1857                 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1858
1859                 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1860                                 txfifosz, qmode);
1861         }
1862 }
1863
1864 /**
1865  * stmmac_tx_clean - to manage the transmission completion
1866  * @priv: driver private structure
1867  * @queue: TX queue index
1868  * Description: it reclaims the transmit resources after transmission completes.
1869  */
1870 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1871 {
1872         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1873         unsigned int bytes_compl = 0, pkts_compl = 0;
1874         unsigned int entry, count = 0;
1875
1876         __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1877
1878         priv->xstats.tx_clean++;
1879
1880         entry = tx_q->dirty_tx;
1881         while ((entry != tx_q->cur_tx) && (count < budget)) {
1882                 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1883                 struct dma_desc *p;
1884                 int status;
1885
1886                 if (priv->extend_desc)
1887                         p = (struct dma_desc *)(tx_q->dma_etx + entry);
1888                 else
1889                         p = tx_q->dma_tx + entry;
1890
1891                 status = stmmac_tx_status(priv, &priv->dev->stats,
1892                                 &priv->xstats, p, priv->ioaddr);
1893                 /* Check if the descriptor is owned by the DMA */
1894                 if (unlikely(status & tx_dma_own))
1895                         break;
1896
1897                 count++;
1898
1899                 /* Make sure descriptor fields are read after reading
1900                  * the own bit.
1901                  */
1902                 dma_rmb();
1903
1904                 /* Just consider the last segment and ...*/
1905                 if (likely(!(status & tx_not_ls))) {
1906                         /* ... verify the status error condition */
1907                         if (unlikely(status & tx_err)) {
1908                                 priv->dev->stats.tx_errors++;
1909                         } else {
1910                                 priv->dev->stats.tx_packets++;
1911                                 priv->xstats.tx_pkt_n++;
1912                         }
1913                         stmmac_get_tx_hwtstamp(priv, p, skb);
1914                 }
1915
1916                 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1917                         if (tx_q->tx_skbuff_dma[entry].map_as_page)
1918                                 dma_unmap_page(priv->device,
1919                                                tx_q->tx_skbuff_dma[entry].buf,
1920                                                tx_q->tx_skbuff_dma[entry].len,
1921                                                DMA_TO_DEVICE);
1922                         else
1923                                 dma_unmap_single(priv->device,
1924                                                  tx_q->tx_skbuff_dma[entry].buf,
1925                                                  tx_q->tx_skbuff_dma[entry].len,
1926                                                  DMA_TO_DEVICE);
1927                         tx_q->tx_skbuff_dma[entry].buf = 0;
1928                         tx_q->tx_skbuff_dma[entry].len = 0;
1929                         tx_q->tx_skbuff_dma[entry].map_as_page = false;
1930                 }
1931
1932                 stmmac_clean_desc3(priv, tx_q, p);
1933
1934                 tx_q->tx_skbuff_dma[entry].last_segment = false;
1935                 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1936
1937                 if (likely(skb != NULL)) {
1938                         pkts_compl++;
1939                         bytes_compl += skb->len;
1940                         dev_consume_skb_any(skb);
1941                         tx_q->tx_skbuff[entry] = NULL;
1942                 }
1943
1944                 stmmac_release_tx_desc(priv, p, priv->mode);
1945
1946                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1947         }
1948         tx_q->dirty_tx = entry;
1949
1950         netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1951                                   pkts_compl, bytes_compl);
1952
1953         if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1954                                                                 queue))) &&
1955             stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1956
1957                 netif_dbg(priv, tx_done, priv->dev,
1958                           "%s: restart transmit\n", __func__);
1959                 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1960         }
1961
1962         if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1963                 stmmac_enable_eee_mode(priv);
1964                 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1965         }
1966
1967         /* We still have pending packets, let's call for a new scheduling */
1968         if (tx_q->dirty_tx != tx_q->cur_tx)
1969                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1970
1971         __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1972
1973         return count;
1974 }
1975
1976 /**
1977  * stmmac_tx_err - to manage the tx error
1978  * @priv: driver private structure
1979  * @chan: channel index
1980  * Description: it cleans the descriptors and restarts the transmission
1981  * in case of transmission errors.
1982  */
1983 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1984 {
1985         struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1986         int i;
1987
1988         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1989
1990         stmmac_stop_tx_dma(priv, chan);
1991         dma_free_tx_skbufs(priv, chan);
1992         for (i = 0; i < DMA_TX_SIZE; i++)
1993                 if (priv->extend_desc)
1994                         stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1995                                         priv->mode, (i == DMA_TX_SIZE - 1));
1996                 else
1997                         stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1998                                         priv->mode, (i == DMA_TX_SIZE - 1));
1999         tx_q->dirty_tx = 0;
2000         tx_q->cur_tx = 0;
2001         tx_q->mss = 0;
2002         netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2003         stmmac_start_tx_dma(priv, chan);
2004
2005         priv->dev->stats.tx_errors++;
2006         netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2007 }
2008
2009 /**
2010  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2011  *  @priv: driver private structure
2012  *  @txmode: TX operating mode
2013  *  @rxmode: RX operating mode
2014  *  @chan: channel index
2015  *  Description: it is used for configuring of the DMA operation mode in
2016  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2017  *  mode.
2018  */
2019 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2020                                           u32 rxmode, u32 chan)
2021 {
2022         u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2023         u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2024         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2025         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2026         int rxfifosz = priv->plat->rx_fifo_size;
2027         int txfifosz = priv->plat->tx_fifo_size;
2028
2029         if (rxfifosz == 0)
2030                 rxfifosz = priv->dma_cap.rx_fifo_size;
2031         if (txfifosz == 0)
2032                 txfifosz = priv->dma_cap.tx_fifo_size;
2033
2034         /* Adjust for real per queue fifo size */
2035         rxfifosz /= rx_channels_count;
2036         txfifosz /= tx_channels_count;
2037
2038         stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2039         stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2040 }
2041
2042 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2043 {
2044         int ret;
2045
2046         ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2047                         priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2048         if (ret && (ret != -EINVAL)) {
2049                 stmmac_global_err(priv);
2050                 return true;
2051         }
2052
2053         return false;
2054 }
2055
2056 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2057 {
2058         int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2059                                                  &priv->xstats, chan);
2060         struct stmmac_channel *ch = &priv->channel[chan];
2061
2062         if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2063                 if (napi_schedule_prep(&ch->rx_napi)) {
2064                         stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2065                         __napi_schedule_irqoff(&ch->rx_napi);
2066                         status |= handle_tx;
2067                 }
2068         }
2069
2070         if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2071                 napi_schedule_irqoff(&ch->tx_napi);
2072
2073         return status;
2074 }
2075
2076 /**
2077  * stmmac_dma_interrupt - DMA ISR
2078  * @priv: driver private structure
2079  * Description: this is the DMA ISR. It is called by the main ISR.
2080  * It calls the dwmac dma routine and schedule poll method in case of some
2081  * work can be done.
2082  */
2083 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2084 {
2085         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2086         u32 rx_channel_count = priv->plat->rx_queues_to_use;
2087         u32 channels_to_check = tx_channel_count > rx_channel_count ?
2088                                 tx_channel_count : rx_channel_count;
2089         u32 chan;
2090         int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2091
2092         /* Make sure we never check beyond our status buffer. */
2093         if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2094                 channels_to_check = ARRAY_SIZE(status);
2095
2096         for (chan = 0; chan < channels_to_check; chan++)
2097                 status[chan] = stmmac_napi_check(priv, chan);
2098
2099         for (chan = 0; chan < tx_channel_count; chan++) {
2100                 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2101                         /* Try to bump up the dma threshold on this failure */
2102                         if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2103                             (tc <= 256)) {
2104                                 tc += 64;
2105                                 if (priv->plat->force_thresh_dma_mode)
2106                                         stmmac_set_dma_operation_mode(priv,
2107                                                                       tc,
2108                                                                       tc,
2109                                                                       chan);
2110                                 else
2111                                         stmmac_set_dma_operation_mode(priv,
2112                                                                     tc,
2113                                                                     SF_DMA_MODE,
2114                                                                     chan);
2115                                 priv->xstats.threshold = tc;
2116                         }
2117                 } else if (unlikely(status[chan] == tx_hard_error)) {
2118                         stmmac_tx_err(priv, chan);
2119                 }
2120         }
2121 }
2122
2123 /**
2124  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2125  * @priv: driver private structure
2126  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2127  */
2128 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2129 {
2130         unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2131                             MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2132
2133         stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2134
2135         if (priv->dma_cap.rmon) {
2136                 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2137                 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2138         } else
2139                 netdev_info(priv->dev, "No MAC Management Counters available\n");
2140 }
2141
2142 /**
2143  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2144  * @priv: driver private structure
2145  * Description:
2146  *  new GMAC chip generations have a new register to indicate the
2147  *  presence of the optional feature/functions.
2148  *  This can be also used to override the value passed through the
2149  *  platform and necessary for old MAC10/100 and GMAC chips.
2150  */
2151 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2152 {
2153         return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2154 }
2155
2156 /**
2157  * stmmac_check_ether_addr - check if the MAC addr is valid
2158  * @priv: driver private structure
2159  * Description:
2160  * it is to verify if the MAC address is valid, in case of failures it
2161  * generates a random MAC address
2162  */
2163 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2164 {
2165         if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2166                 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2167                 if (!is_valid_ether_addr(priv->dev->dev_addr))
2168                         eth_hw_addr_random(priv->dev);
2169                 dev_info(priv->device, "device MAC address %pM\n",
2170                          priv->dev->dev_addr);
2171         }
2172 }
2173
2174 /**
2175  * stmmac_init_dma_engine - DMA init.
2176  * @priv: driver private structure
2177  * Description:
2178  * It inits the DMA invoking the specific MAC/GMAC callback.
2179  * Some DMA parameters can be passed from the platform;
2180  * in case of these are not passed a default is kept for the MAC or GMAC.
2181  */
2182 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2183 {
2184         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2185         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2186         u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2187         struct stmmac_rx_queue *rx_q;
2188         struct stmmac_tx_queue *tx_q;
2189         u32 chan = 0;
2190         int atds = 0;
2191         int ret = 0;
2192
2193         if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2194                 dev_err(priv->device, "Invalid DMA configuration\n");
2195                 return -EINVAL;
2196         }
2197
2198         if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2199                 atds = 1;
2200
2201         ret = stmmac_reset(priv, priv->ioaddr);
2202         if (ret) {
2203                 dev_err(priv->device, "Failed to reset the dma\n");
2204                 return ret;
2205         }
2206
2207         /* DMA Configuration */
2208         stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2209
2210         if (priv->plat->axi)
2211                 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2212
2213         /* DMA CSR Channel configuration */
2214         for (chan = 0; chan < dma_csr_ch; chan++)
2215                 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2216
2217         /* DMA RX Channel Configuration */
2218         for (chan = 0; chan < rx_channels_count; chan++) {
2219                 rx_q = &priv->rx_queue[chan];
2220
2221                 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2222                                     rx_q->dma_rx_phy, chan);
2223
2224                 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2225                             (DMA_RX_SIZE * sizeof(struct dma_desc));
2226                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2227                                        rx_q->rx_tail_addr, chan);
2228         }
2229
2230         /* DMA TX Channel Configuration */
2231         for (chan = 0; chan < tx_channels_count; chan++) {
2232                 tx_q = &priv->tx_queue[chan];
2233
2234                 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2235                                     tx_q->dma_tx_phy, chan);
2236
2237                 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2238                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2239                                        tx_q->tx_tail_addr, chan);
2240         }
2241
2242         return ret;
2243 }
2244
2245 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2246 {
2247         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2248
2249         mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2250 }
2251
2252 /**
2253  * stmmac_tx_timer - mitigation sw timer for tx.
2254  * @data: data pointer
2255  * Description:
2256  * This is the timer handler to directly invoke the stmmac_tx_clean.
2257  */
2258 static void stmmac_tx_timer(struct timer_list *t)
2259 {
2260         struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2261         struct stmmac_priv *priv = tx_q->priv_data;
2262         struct stmmac_channel *ch;
2263
2264         ch = &priv->channel[tx_q->queue_index];
2265
2266         /*
2267          * If NAPI is already running we can miss some events. Let's rearm
2268          * the timer and try again.
2269          */
2270         if (likely(napi_schedule_prep(&ch->tx_napi)))
2271                 __napi_schedule(&ch->tx_napi);
2272         else
2273                 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2274 }
2275
2276 /**
2277  * stmmac_init_coalesce - init mitigation options.
2278  * @priv: driver private structure
2279  * Description:
2280  * This inits the coalesce parameters: i.e. timer rate,
2281  * timer handler and default threshold used for enabling the
2282  * interrupt on completion bit.
2283  */
2284 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2285 {
2286         u32 tx_channel_count = priv->plat->tx_queues_to_use;
2287         u32 chan;
2288
2289         priv->tx_coal_frames = STMMAC_TX_FRAMES;
2290         priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2291         priv->rx_coal_frames = STMMAC_RX_FRAMES;
2292
2293         for (chan = 0; chan < tx_channel_count; chan++) {
2294                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2295
2296                 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2297         }
2298 }
2299
2300 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2301 {
2302         u32 rx_channels_count = priv->plat->rx_queues_to_use;
2303         u32 tx_channels_count = priv->plat->tx_queues_to_use;
2304         u32 chan;
2305
2306         /* set TX ring length */
2307         for (chan = 0; chan < tx_channels_count; chan++)
2308                 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2309                                 (DMA_TX_SIZE - 1), chan);
2310
2311         /* set RX ring length */
2312         for (chan = 0; chan < rx_channels_count; chan++)
2313                 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2314                                 (DMA_RX_SIZE - 1), chan);
2315 }
2316
2317 /**
2318  *  stmmac_set_tx_queue_weight - Set TX queue weight
2319  *  @priv: driver private structure
2320  *  Description: It is used for setting TX queues weight
2321  */
2322 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2323 {
2324         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2325         u32 weight;
2326         u32 queue;
2327
2328         for (queue = 0; queue < tx_queues_count; queue++) {
2329                 weight = priv->plat->tx_queues_cfg[queue].weight;
2330                 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2331         }
2332 }
2333
2334 /**
2335  *  stmmac_configure_cbs - Configure CBS in TX queue
2336  *  @priv: driver private structure
2337  *  Description: It is used for configuring CBS in AVB TX queues
2338  */
2339 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2340 {
2341         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2342         u32 mode_to_use;
2343         u32 queue;
2344
2345         /* queue 0 is reserved for legacy traffic */
2346         for (queue = 1; queue < tx_queues_count; queue++) {
2347                 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2348                 if (mode_to_use == MTL_QUEUE_DCB)
2349                         continue;
2350
2351                 stmmac_config_cbs(priv, priv->hw,
2352                                 priv->plat->tx_queues_cfg[queue].send_slope,
2353                                 priv->plat->tx_queues_cfg[queue].idle_slope,
2354                                 priv->plat->tx_queues_cfg[queue].high_credit,
2355                                 priv->plat->tx_queues_cfg[queue].low_credit,
2356                                 queue);
2357         }
2358 }
2359
2360 /**
2361  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2362  *  @priv: driver private structure
2363  *  Description: It is used for mapping RX queues to RX dma channels
2364  */
2365 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2366 {
2367         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2368         u32 queue;
2369         u32 chan;
2370
2371         for (queue = 0; queue < rx_queues_count; queue++) {
2372                 chan = priv->plat->rx_queues_cfg[queue].chan;
2373                 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2374         }
2375 }
2376
2377 /**
2378  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2379  *  @priv: driver private structure
2380  *  Description: It is used for configuring the RX Queue Priority
2381  */
2382 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2383 {
2384         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2385         u32 queue;
2386         u32 prio;
2387
2388         for (queue = 0; queue < rx_queues_count; queue++) {
2389                 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2390                         continue;
2391
2392                 prio = priv->plat->rx_queues_cfg[queue].prio;
2393                 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2394         }
2395 }
2396
2397 /**
2398  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2399  *  @priv: driver private structure
2400  *  Description: It is used for configuring the TX Queue Priority
2401  */
2402 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2403 {
2404         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2405         u32 queue;
2406         u32 prio;
2407
2408         for (queue = 0; queue < tx_queues_count; queue++) {
2409                 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2410                         continue;
2411
2412                 prio = priv->plat->tx_queues_cfg[queue].prio;
2413                 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2414         }
2415 }
2416
2417 /**
2418  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2419  *  @priv: driver private structure
2420  *  Description: It is used for configuring the RX queue routing
2421  */
2422 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2423 {
2424         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2425         u32 queue;
2426         u8 packet;
2427
2428         for (queue = 0; queue < rx_queues_count; queue++) {
2429                 /* no specific packet type routing specified for the queue */
2430                 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2431                         continue;
2432
2433                 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2434                 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2435         }
2436 }
2437
2438 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2439 {
2440         if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2441                 priv->rss.enable = false;
2442                 return;
2443         }
2444
2445         if (priv->dev->features & NETIF_F_RXHASH)
2446                 priv->rss.enable = true;
2447         else
2448                 priv->rss.enable = false;
2449
2450         stmmac_rss_configure(priv, priv->hw, &priv->rss,
2451                              priv->plat->rx_queues_to_use);
2452 }
2453
2454 /**
2455  *  stmmac_mtl_configuration - Configure MTL
2456  *  @priv: driver private structure
2457  *  Description: It is used for configurring MTL
2458  */
2459 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2460 {
2461         u32 rx_queues_count = priv->plat->rx_queues_to_use;
2462         u32 tx_queues_count = priv->plat->tx_queues_to_use;
2463
2464         if (tx_queues_count > 1)
2465                 stmmac_set_tx_queue_weight(priv);
2466
2467         /* Configure MTL RX algorithms */
2468         if (rx_queues_count > 1)
2469                 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2470                                 priv->plat->rx_sched_algorithm);
2471
2472         /* Configure MTL TX algorithms */
2473         if (tx_queues_count > 1)
2474                 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2475                                 priv->plat->tx_sched_algorithm);
2476
2477         /* Configure CBS in AVB TX queues */
2478         if (tx_queues_count > 1)
2479                 stmmac_configure_cbs(priv);
2480
2481         /* Map RX MTL to DMA channels */
2482         stmmac_rx_queue_dma_chan_map(priv);
2483
2484         /* Enable MAC RX Queues */
2485         stmmac_mac_enable_rx_queues(priv);
2486
2487         /* Set RX priorities */
2488         if (rx_queues_count > 1)
2489                 stmmac_mac_config_rx_queues_prio(priv);
2490
2491         /* Set TX priorities */
2492         if (tx_queues_count > 1)
2493                 stmmac_mac_config_tx_queues_prio(priv);
2494
2495         /* Set RX routing */
2496         if (rx_queues_count > 1)
2497                 stmmac_mac_config_rx_queues_routing(priv);
2498
2499         /* Receive Side Scaling */
2500         if (rx_queues_count > 1)
2501                 stmmac_mac_config_rss(priv);
2502 }
2503
2504 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2505 {
2506         if (priv->dma_cap.asp) {
2507                 netdev_info(priv->dev, "Enabling Safety Features\n");
2508                 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2509         } else {
2510                 netdev_info(priv->dev, "No Safety Features support found\n");
2511         }
2512 }
2513
2514 /**
2515  * stmmac_hw_setup - setup mac in a usable state.
2516  *  @dev : pointer to the device structure.
2517  *  Description:
2518  *  this is the main function to setup the HW in a usable state because the
2519  *  dma engine is reset, the core registers are configured (e.g. AXI,
2520  *  Checksum features, timers). The DMA is ready to start receiving and
2521  *  transmitting.
2522  *  Return value:
2523  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2524  *  file on failure.
2525  */
2526 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2527 {
2528         struct stmmac_priv *priv = netdev_priv(dev);
2529         u32 rx_cnt = priv->plat->rx_queues_to_use;
2530         u32 tx_cnt = priv->plat->tx_queues_to_use;
2531         u32 chan;
2532         int ret;
2533
2534         /* DMA initialization and SW reset */
2535         ret = stmmac_init_dma_engine(priv);
2536         if (ret < 0) {
2537                 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2538                            __func__);
2539                 return ret;
2540         }
2541
2542         /* Copy the MAC addr into the HW  */
2543         stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2544
2545         /* PS and related bits will be programmed according to the speed */
2546         if (priv->hw->pcs) {
2547                 int speed = priv->plat->mac_port_sel_speed;
2548
2549                 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2550                     (speed == SPEED_1000)) {
2551                         priv->hw->ps = speed;
2552                 } else {
2553                         dev_warn(priv->device, "invalid port speed\n");
2554                         priv->hw->ps = 0;
2555                 }
2556         }
2557
2558         /* Initialize the MAC Core */
2559         stmmac_core_init(priv, priv->hw, dev);
2560
2561         /* Initialize MTL*/
2562         stmmac_mtl_configuration(priv);
2563
2564         /* Initialize Safety Features */
2565         stmmac_safety_feat_configuration(priv);
2566
2567         ret = stmmac_rx_ipc(priv, priv->hw);
2568         if (!ret) {
2569                 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2570                 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2571                 priv->hw->rx_csum = 0;
2572         }
2573
2574         /* Enable the MAC Rx/Tx */
2575         stmmac_mac_set(priv, priv->ioaddr, true);
2576
2577         /* Set the HW DMA mode and the COE */
2578         stmmac_dma_operation_mode(priv);
2579
2580         stmmac_mmc_setup(priv);
2581
2582         if (init_ptp) {
2583                 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2584                 if (ret < 0)
2585                         netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2586
2587                 ret = stmmac_init_ptp(priv);
2588                 if (ret == -EOPNOTSUPP)
2589                         netdev_warn(priv->dev, "PTP not supported by HW\n");
2590                 else if (ret)
2591                         netdev_warn(priv->dev, "PTP init failed\n");
2592         }
2593
2594         priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2595
2596         if (priv->use_riwt) {
2597                 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2598                 if (!ret)
2599                         priv->rx_riwt = MIN_DMA_RIWT;
2600         }
2601
2602         if (priv->hw->pcs)
2603                 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2604
2605         /* set TX and RX rings length */
2606         stmmac_set_rings_length(priv);
2607
2608         /* Enable TSO */
2609         if (priv->tso) {
2610                 for (chan = 0; chan < tx_cnt; chan++)
2611                         stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2612         }
2613
2614         /* Enable Split Header */
2615         if (priv->sph && priv->hw->rx_csum) {
2616                 for (chan = 0; chan < rx_cnt; chan++)
2617                         stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2618         }
2619
2620         /* VLAN Tag Insertion */
2621         if (priv->dma_cap.vlins)
2622                 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2623
2624         /* Start the ball rolling... */
2625         stmmac_start_all_dma(priv);
2626
2627         return 0;
2628 }
2629
2630 static void stmmac_hw_teardown(struct net_device *dev)
2631 {
2632         struct stmmac_priv *priv = netdev_priv(dev);
2633
2634         clk_disable_unprepare(priv->plat->clk_ptp_ref);
2635 }
2636
2637 /**
2638  *  stmmac_open - open entry point of the driver
2639  *  @dev : pointer to the device structure.
2640  *  Description:
2641  *  This function is the open entry point of the driver.
2642  *  Return value:
2643  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2644  *  file on failure.
2645  */
2646 static int stmmac_open(struct net_device *dev)
2647 {
2648         struct stmmac_priv *priv = netdev_priv(dev);
2649         u32 chan;
2650         int ret;
2651
2652         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2653             priv->hw->pcs != STMMAC_PCS_TBI &&
2654             priv->hw->pcs != STMMAC_PCS_RTBI) {
2655                 ret = stmmac_init_phy(dev);
2656                 if (ret) {
2657                         netdev_err(priv->dev,
2658                                    "%s: Cannot attach to PHY (error: %d)\n",
2659                                    __func__, ret);
2660                         return ret;
2661                 }
2662         }
2663
2664         /* Extra statistics */
2665         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2666         priv->xstats.threshold = tc;
2667
2668         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2669         priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2670
2671         ret = alloc_dma_desc_resources(priv);
2672         if (ret < 0) {
2673                 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2674                            __func__);
2675                 goto dma_desc_error;
2676         }
2677
2678         ret = init_dma_desc_rings(dev, GFP_KERNEL);
2679         if (ret < 0) {
2680                 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2681                            __func__);
2682                 goto init_error;
2683         }
2684
2685         ret = stmmac_hw_setup(dev, true);
2686         if (ret < 0) {
2687                 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2688                 goto init_error;
2689         }
2690
2691         stmmac_init_coalesce(priv);
2692
2693         phylink_start(priv->phylink);
2694
2695         /* Request the IRQ lines */
2696         ret = request_irq(dev->irq, stmmac_interrupt,
2697                           IRQF_SHARED, dev->name, dev);
2698         if (unlikely(ret < 0)) {
2699                 netdev_err(priv->dev,
2700                            "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2701                            __func__, dev->irq, ret);
2702                 goto irq_error;
2703         }
2704
2705         /* Request the Wake IRQ in case of another line is used for WoL */
2706         if (priv->wol_irq != dev->irq) {
2707                 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2708                                   IRQF_SHARED, dev->name, dev);
2709                 if (unlikely(ret < 0)) {
2710                         netdev_err(priv->dev,
2711                                    "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2712                                    __func__, priv->wol_irq, ret);
2713                         goto wolirq_error;
2714                 }
2715         }
2716
2717         /* Request the IRQ lines */
2718         if (priv->lpi_irq > 0) {
2719                 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2720                                   dev->name, dev);
2721                 if (unlikely(ret < 0)) {
2722                         netdev_err(priv->dev,
2723                                    "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2724                                    __func__, priv->lpi_irq, ret);
2725                         goto lpiirq_error;
2726                 }
2727         }
2728
2729         stmmac_enable_all_queues(priv);
2730         stmmac_start_all_queues(priv);
2731
2732         return 0;
2733
2734 lpiirq_error:
2735         if (priv->wol_irq != dev->irq)
2736                 free_irq(priv->wol_irq, dev);
2737 wolirq_error:
2738         free_irq(dev->irq, dev);
2739 irq_error:
2740         phylink_stop(priv->phylink);
2741
2742         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2743                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2744
2745         stmmac_hw_teardown(dev);
2746 init_error:
2747         free_dma_desc_resources(priv);
2748 dma_desc_error:
2749         phylink_disconnect_phy(priv->phylink);
2750         return ret;
2751 }
2752
2753 /**
2754  *  stmmac_release - close entry point of the driver
2755  *  @dev : device pointer.
2756  *  Description:
2757  *  This is the stop entry point of the driver.
2758  */
2759 static int stmmac_release(struct net_device *dev)
2760 {
2761         struct stmmac_priv *priv = netdev_priv(dev);
2762         u32 chan;
2763
2764         if (priv->eee_enabled)
2765                 del_timer_sync(&priv->eee_ctrl_timer);
2766
2767         /* Stop and disconnect the PHY */
2768         phylink_stop(priv->phylink);
2769         phylink_disconnect_phy(priv->phylink);
2770
2771         stmmac_stop_all_queues(priv);
2772
2773         stmmac_disable_all_queues(priv);
2774
2775         for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2776                 del_timer_sync(&priv->tx_queue[chan].txtimer);
2777
2778         /* Free the IRQ lines */
2779         free_irq(dev->irq, dev);
2780         if (priv->wol_irq != dev->irq)
2781                 free_irq(priv->wol_irq, dev);
2782         if (priv->lpi_irq > 0)
2783                 free_irq(priv->lpi_irq, dev);
2784
2785         /* Stop TX/RX DMA and clear the descriptors */
2786         stmmac_stop_all_dma(priv);
2787
2788         /* Release and free the Rx/Tx resources */
2789         free_dma_desc_resources(priv);
2790
2791         /* Disable the MAC Rx/Tx */
2792         stmmac_mac_set(priv, priv->ioaddr, false);
2793
2794         netif_carrier_off(dev);
2795
2796         stmmac_release_ptp(priv);
2797
2798         return 0;
2799 }
2800
2801 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2802                                struct stmmac_tx_queue *tx_q)
2803 {
2804         u16 tag = 0x0, inner_tag = 0x0;
2805         u32 inner_type = 0x0;
2806         struct dma_desc *p;
2807
2808         if (!priv->dma_cap.vlins)
2809                 return false;
2810         if (!skb_vlan_tag_present(skb))
2811                 return false;
2812         if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2813                 inner_tag = skb_vlan_tag_get(skb);
2814                 inner_type = STMMAC_VLAN_INSERT;
2815         }
2816
2817         tag = skb_vlan_tag_get(skb);
2818
2819         p = tx_q->dma_tx + tx_q->cur_tx;
2820         if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2821                 return false;
2822
2823         stmmac_set_tx_owner(priv, p);
2824         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2825         return true;
2826 }
2827
2828 /**
2829  *  stmmac_tso_allocator - close entry point of the driver
2830  *  @priv: driver private structure
2831  *  @des: buffer start address
2832  *  @total_len: total length to fill in descriptors
2833  *  @last_segmant: condition for the last descriptor
2834  *  @queue: TX queue index
2835  *  Description:
2836  *  This function fills descriptor and request new descriptors according to
2837  *  buffer length to fill
2838  */
2839 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2840                                  int total_len, bool last_segment, u32 queue)
2841 {
2842         struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2843         struct dma_desc *desc;
2844         u32 buff_size;
2845         int tmp_len;
2846
2847         tmp_len = total_len;
2848
2849         while (tmp_len > 0) {
2850                 dma_addr_t curr_addr;
2851
2852                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2853                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2854                 desc = tx_q->dma_tx + tx_q->cur_tx;
2855
2856                 curr_addr = des + (total_len - tmp_len);
2857                 if (priv->dma_cap.addr64 <= 32)
2858                         desc->des0 = cpu_to_le32(curr_addr);
2859                 else
2860                         stmmac_set_desc_addr(priv, desc, curr_addr);
2861
2862                 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2863                             TSO_MAX_BUFF_SIZE : tmp_len;
2864
2865                 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2866                                 0, 1,
2867                                 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2868                                 0, 0);
2869
2870                 tmp_len -= TSO_MAX_BUFF_SIZE;
2871         }
2872 }
2873
2874 /**
2875  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2876  *  @skb : the socket buffer
2877  *  @dev : device pointer
2878  *  Description: this is the transmit function that is called on TSO frames
2879  *  (support available on GMAC4 and newer chips).
2880  *  Diagram below show the ring programming in case of TSO frames:
2881  *
2882  *  First Descriptor
2883  *   --------
2884  *   | DES0 |---> buffer1 = L2/L3/L4 header
2885  *   | DES1 |---> TCP Payload (can continue on next descr...)
2886  *   | DES2 |---> buffer 1 and 2 len
2887  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2888  *   --------
2889  *      |
2890  *     ...
2891  *      |
2892  *   --------
2893  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2894  *   | DES1 | --|
2895  *   | DES2 | --> buffer 1 and 2 len
2896  *   | DES3 |
2897  *   --------
2898  *
2899  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2900  */
2901 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2902 {
2903         struct dma_desc *desc, *first, *mss_desc = NULL;
2904         struct stmmac_priv *priv = netdev_priv(dev);
2905         int nfrags = skb_shinfo(skb)->nr_frags;
2906         u32 queue = skb_get_queue_mapping(skb);
2907         struct stmmac_tx_queue *tx_q;
2908         unsigned int first_entry;
2909         int tmp_pay_len = 0;
2910         u32 pay_len, mss;
2911         u8 proto_hdr_len;
2912         dma_addr_t des;
2913         bool has_vlan;
2914         int i;
2915
2916         tx_q = &priv->tx_queue[queue];
2917
2918         /* Compute header lengths */
2919         proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2920
2921         /* Desc availability based on threshold should be enough safe */
2922         if (unlikely(stmmac_tx_avail(priv, queue) <
2923                 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2924                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2925                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2926                                                                 queue));
2927                         /* This is a hard error, log it. */
2928                         netdev_err(priv->dev,
2929                                    "%s: Tx Ring full when queue awake\n",
2930                                    __func__);
2931                 }
2932                 return NETDEV_TX_BUSY;
2933         }
2934
2935         pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2936
2937         mss = skb_shinfo(skb)->gso_size;
2938
2939         /* set new MSS value if needed */
2940         if (mss != tx_q->mss) {
2941                 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2942                 stmmac_set_mss(priv, mss_desc, mss);
2943                 tx_q->mss = mss;
2944                 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2945                 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2946         }
2947
2948         if (netif_msg_tx_queued(priv)) {
2949                 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2950                         __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2951                 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2952                         skb->data_len);
2953         }
2954
2955         /* Check if VLAN can be inserted by HW */
2956         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2957
2958         first_entry = tx_q->cur_tx;
2959         WARN_ON(tx_q->tx_skbuff[first_entry]);
2960
2961         desc = tx_q->dma_tx + first_entry;
2962         first = desc;
2963
2964         if (has_vlan)
2965                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2966
2967         /* first descriptor: fill Headers on Buf1 */
2968         des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2969                              DMA_TO_DEVICE);
2970         if (dma_mapping_error(priv->device, des))
2971                 goto dma_map_err;
2972
2973         tx_q->tx_skbuff_dma[first_entry].buf = des;
2974         tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2975
2976         if (priv->dma_cap.addr64 <= 32) {
2977                 first->des0 = cpu_to_le32(des);
2978
2979                 /* Fill start of payload in buff2 of first descriptor */
2980                 if (pay_len)
2981                         first->des1 = cpu_to_le32(des + proto_hdr_len);
2982
2983                 /* If needed take extra descriptors to fill the remaining payload */
2984                 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2985         } else {
2986                 stmmac_set_desc_addr(priv, first, des);
2987                 tmp_pay_len = pay_len;
2988         }
2989
2990         stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2991
2992         /* Prepare fragments */
2993         for (i = 0; i < nfrags; i++) {
2994                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2995
2996                 des = skb_frag_dma_map(priv->device, frag, 0,
2997                                        skb_frag_size(frag),
2998                                        DMA_TO_DEVICE);
2999                 if (dma_mapping_error(priv->device, des))
3000                         goto dma_map_err;
3001
3002                 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3003                                      (i == nfrags - 1), queue);
3004
3005                 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3006                 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3007                 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3008         }
3009
3010         tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3011
3012         /* Only the last descriptor gets to point to the skb. */
3013         tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3014
3015         /* We've used all descriptors we need for this skb, however,
3016          * advance cur_tx so that it references a fresh descriptor.
3017          * ndo_start_xmit will fill this descriptor the next time it's
3018          * called and stmmac_tx_clean may clean up to this descriptor.
3019          */
3020         tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3021
3022         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3023                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3024                           __func__);
3025                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3026         }
3027
3028         dev->stats.tx_bytes += skb->len;
3029         priv->xstats.tx_tso_frames++;
3030         priv->xstats.tx_tso_nfrags += nfrags;
3031
3032         /* Manage tx mitigation */
3033         tx_q->tx_count_frames += nfrags + 1;
3034         if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3035             !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3036             (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3037             priv->hwts_tx_en)) {
3038                 stmmac_tx_timer_arm(priv, queue);
3039         } else {
3040                 tx_q->tx_count_frames = 0;
3041                 stmmac_set_tx_ic(priv, desc);
3042                 priv->xstats.tx_set_ic_bit++;
3043         }
3044
3045         if (priv->sarc_type)
3046                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3047
3048         skb_tx_timestamp(skb);
3049
3050         if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3051                      priv->hwts_tx_en)) {
3052                 /* declare that device is doing timestamping */
3053                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3054                 stmmac_enable_tx_timestamp(priv, first);
3055         }
3056
3057         /* Complete the first descriptor before granting the DMA */
3058         stmmac_prepare_tso_tx_desc(priv, first, 1,
3059                         proto_hdr_len,
3060                         pay_len,
3061                         1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3062                         tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
3063
3064         /* If context desc is used to change MSS */
3065         if (mss_desc) {
3066                 /* Make sure that first descriptor has been completely
3067                  * written, including its own bit. This is because MSS is
3068                  * actually before first descriptor, so we need to make
3069                  * sure that MSS's own bit is the last thing written.
3070                  */
3071                 dma_wmb();
3072                 stmmac_set_tx_owner(priv, mss_desc);
3073         }
3074
3075         /* The own bit must be the latest setting done when prepare the
3076          * descriptor and then barrier is needed to make sure that
3077          * all is coherent before granting the DMA engine.
3078          */
3079         wmb();
3080
3081         if (netif_msg_pktdata(priv)) {
3082                 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3083                         __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3084                         tx_q->cur_tx, first, nfrags);
3085
3086                 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3087
3088                 pr_info(">>> frame to be transmitted: ");
3089                 print_pkt(skb->data, skb_headlen(skb));
3090         }
3091
3092         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3093
3094         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3095         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3096
3097         return NETDEV_TX_OK;
3098
3099 dma_map_err:
3100         dev_err(priv->device, "Tx dma map failed\n");
3101         dev_kfree_skb(skb);
3102         priv->dev->stats.tx_dropped++;
3103         return NETDEV_TX_OK;
3104 }
3105
3106 /**
3107  *  stmmac_xmit - Tx entry point of the driver
3108  *  @skb : the socket buffer
3109  *  @dev : device pointer
3110  *  Description : this is the tx entry point of the driver.
3111  *  It programs the chain or the ring and supports oversized frames
3112  *  and SG feature.
3113  */
3114 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3115 {
3116         struct stmmac_priv *priv = netdev_priv(dev);
3117         unsigned int nopaged_len = skb_headlen(skb);
3118         int i, csum_insertion = 0, is_jumbo = 0;
3119         u32 queue = skb_get_queue_mapping(skb);
3120         int nfrags = skb_shinfo(skb)->nr_frags;
3121         struct dma_desc *desc, *first;
3122         struct stmmac_tx_queue *tx_q;
3123         unsigned int first_entry;
3124         unsigned int enh_desc;
3125         dma_addr_t des;
3126         bool has_vlan;
3127         int entry;
3128
3129         tx_q = &priv->tx_queue[queue];
3130
3131         if (priv->tx_path_in_lpi_mode)
3132                 stmmac_disable_eee_mode(priv);
3133
3134         /* Manage oversized TCP frames for GMAC4 device */
3135         if (skb_is_gso(skb) && priv->tso) {
3136                 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3137                         return stmmac_tso_xmit(skb, dev);
3138         }
3139
3140         if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3141                 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3142                         netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3143                                                                 queue));
3144                         /* This is a hard error, log it. */
3145                         netdev_err(priv->dev,
3146                                    "%s: Tx Ring full when queue awake\n",
3147                                    __func__);
3148                 }
3149                 return NETDEV_TX_BUSY;
3150         }
3151
3152         /* Check if VLAN can be inserted by HW */
3153         has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3154
3155         entry = tx_q->cur_tx;
3156         first_entry = entry;
3157         WARN_ON(tx_q->tx_skbuff[first_entry]);
3158
3159         csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3160
3161         if (likely(priv->extend_desc))
3162                 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3163         else
3164                 desc = tx_q->dma_tx + entry;
3165
3166         first = desc;
3167
3168         if (has_vlan)
3169                 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3170
3171         enh_desc = priv->plat->enh_desc;
3172         /* To program the descriptors according to the size of the frame */
3173         if (enh_desc)
3174                 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3175
3176         if (unlikely(is_jumbo)) {
3177                 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3178                 if (unlikely(entry < 0) && (entry != -EINVAL))
3179                         goto dma_map_err;
3180         }
3181
3182         for (i = 0; i < nfrags; i++) {
3183                 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3184                 int len = skb_frag_size(frag);
3185                 bool last_segment = (i == (nfrags - 1));
3186
3187                 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3188                 WARN_ON(tx_q->tx_skbuff[entry]);
3189
3190                 if (likely(priv->extend_desc))
3191                         desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3192                 else
3193                         desc = tx_q->dma_tx + entry;
3194
3195                 des = skb_frag_dma_map(priv->device, frag, 0, len,
3196                                        DMA_TO_DEVICE);
3197                 if (dma_mapping_error(priv->device, des))
3198                         goto dma_map_err; /* should reuse desc w/o issues */
3199
3200                 tx_q->tx_skbuff_dma[entry].buf = des;
3201
3202                 stmmac_set_desc_addr(priv, desc, des);
3203
3204                 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3205                 tx_q->tx_skbuff_dma[entry].len = len;
3206                 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3207
3208                 /* Prepare the descriptor and set the own bit too */
3209                 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3210                                 priv->mode, 1, last_segment, skb->len);
3211         }
3212
3213         /* Only the last descriptor gets to point to the skb. */
3214         tx_q->tx_skbuff[entry] = skb;
3215
3216         /* We've used all descriptors we need for this skb, however,
3217          * advance cur_tx so that it references a fresh descriptor.
3218          * ndo_start_xmit will fill this descriptor the next time it's
3219          * called and stmmac_tx_clean may clean up to this descriptor.
3220          */
3221         entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3222         tx_q->cur_tx = entry;
3223
3224         if (netif_msg_pktdata(priv)) {
3225                 void *tx_head;
3226
3227                 netdev_dbg(priv->dev,
3228                            "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3229                            __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3230                            entry, first, nfrags);
3231
3232                 if (priv->extend_desc)
3233                         tx_head = (void *)tx_q->dma_etx;
3234                 else
3235                         tx_head = (void *)tx_q->dma_tx;
3236
3237                 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3238
3239                 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3240                 print_pkt(skb->data, skb->len);
3241         }
3242
3243         if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3244                 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3245                           __func__);
3246                 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3247         }
3248
3249         dev->stats.tx_bytes += skb->len;
3250
3251         /* According to the coalesce parameter the IC bit for the latest
3252          * segment is reset and the timer re-started to clean the tx status.
3253          * This approach takes care about the fragments: desc is the first
3254          * element in case of no SG.
3255          */
3256         tx_q->tx_count_frames += nfrags + 1;
3257         if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3258             !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3259             (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3260             priv->hwts_tx_en)) {
3261                 stmmac_tx_timer_arm(priv, queue);
3262         } else {
3263                 tx_q->tx_count_frames = 0;
3264                 stmmac_set_tx_ic(priv, desc);
3265                 priv->xstats.tx_set_ic_bit++;
3266         }
3267
3268         if (priv->sarc_type)
3269                 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3270
3271         skb_tx_timestamp(skb);
3272
3273         /* Ready to fill the first descriptor and set the OWN bit w/o any
3274          * problems because all the descriptors are actually ready to be
3275          * passed to the DMA engine.
3276          */
3277         if (likely(!is_jumbo)) {
3278                 bool last_segment = (nfrags == 0);
3279
3280                 des = dma_map_single(priv->device, skb->data,
3281                                      nopaged_len, DMA_TO_DEVICE);
3282                 if (dma_mapping_error(priv->device, des))
3283                         goto dma_map_err;
3284
3285                 tx_q->tx_skbuff_dma[first_entry].buf = des;
3286
3287                 stmmac_set_desc_addr(priv, first, des);
3288
3289                 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3290                 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3291
3292                 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3293                              priv->hwts_tx_en)) {
3294                         /* declare that device is doing timestamping */
3295                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3296                         stmmac_enable_tx_timestamp(priv, first);
3297                 }
3298
3299                 /* Prepare the first descriptor setting the OWN bit too */
3300                 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3301                                 csum_insertion, priv->mode, 1, last_segment,
3302                                 skb->len);
3303         } else {
3304                 stmmac_set_tx_owner(priv, first);
3305         }
3306
3307         /* The own bit must be the latest setting done when prepare the
3308          * descriptor and then barrier is needed to make sure that
3309          * all is coherent before granting the DMA engine.
3310          */
3311         wmb();
3312
3313         netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3314
3315         stmmac_enable_dma_transmission(priv, priv->ioaddr);
3316
3317         tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3318         stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3319
3320         return NETDEV_TX_OK;
3321
3322 dma_map_err:
3323         netdev_err(priv->dev, "Tx DMA map failed\n");
3324         dev_kfree_skb(skb);
3325         priv->dev->stats.tx_dropped++;
3326         return NETDEV_TX_OK;
3327 }
3328
3329 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3330 {
3331         struct vlan_ethhdr *veth;
3332         __be16 vlan_proto;
3333         u16 vlanid;
3334
3335         veth = (struct vlan_ethhdr *)skb->data;
3336         vlan_proto = veth->h_vlan_proto;
3337
3338         if ((vlan_proto == htons(ETH_P_8021Q) &&
3339              dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3340             (vlan_proto == htons(ETH_P_8021AD) &&
3341              dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3342                 /* pop the vlan tag */
3343                 vlanid = ntohs(veth->h_vlan_TCI);
3344                 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3345                 skb_pull(skb, VLAN_HLEN);
3346                 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3347         }
3348 }
3349
3350
3351 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3352 {
3353         if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3354                 return 0;
3355
3356         return 1;
3357 }
3358
3359 /**
3360  * stmmac_rx_refill - refill used skb preallocated buffers
3361  * @priv: driver private structure
3362  * @queue: RX queue index
3363  * Description : this is to reallocate the skb for the reception process
3364  * that is based on zero-copy.
3365  */
3366 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3367 {
3368         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3369         int len, dirty = stmmac_rx_dirty(priv, queue);
3370         unsigned int entry = rx_q->dirty_rx;
3371
3372         len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3373
3374         while (dirty-- > 0) {
3375                 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3376                 struct dma_desc *p;
3377                 bool use_rx_wd;
3378
3379                 if (priv->extend_desc)
3380                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3381                 else
3382                         p = rx_q->dma_rx + entry;
3383
3384                 if (!buf->page) {
3385                         buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3386                         if (!buf->page)
3387                                 break;
3388                 }
3389
3390                 if (priv->sph && !buf->sec_page) {
3391                         buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3392                         if (!buf->sec_page)
3393                                 break;
3394
3395                         buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3396
3397                         dma_sync_single_for_device(priv->device, buf->sec_addr,
3398                                                    len, DMA_FROM_DEVICE);
3399                 }
3400
3401                 buf->addr = page_pool_get_dma_addr(buf->page);
3402
3403                 /* Sync whole allocation to device. This will invalidate old
3404                  * data.
3405                  */
3406                 dma_sync_single_for_device(priv->device, buf->addr, len,
3407                                            DMA_FROM_DEVICE);
3408
3409                 stmmac_set_desc_addr(priv, p, buf->addr);
3410                 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3411                 stmmac_refill_desc3(priv, rx_q, p);
3412
3413                 rx_q->rx_count_frames++;
3414                 rx_q->rx_count_frames %= priv->rx_coal_frames;
3415                 use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3416
3417                 dma_wmb();
3418                 stmmac_set_rx_owner(priv, p, use_rx_wd);
3419
3420                 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3421         }
3422         rx_q->dirty_rx = entry;
3423         rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3424                             (rx_q->dirty_rx * sizeof(struct dma_desc));
3425         stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3426 }
3427
3428 /**
3429  * stmmac_rx - manage the receive process
3430  * @priv: driver private structure
3431  * @limit: napi bugget
3432  * @queue: RX queue index.
3433  * Description :  this the function called by the napi poll method.
3434  * It gets all the frames inside the ring.
3435  */
3436 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3437 {
3438         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3439         struct stmmac_channel *ch = &priv->channel[queue];
3440         unsigned int count = 0, error = 0, len = 0;
3441         int status = 0, coe = priv->hw->rx_csum;
3442         unsigned int next_entry = rx_q->cur_rx;
3443         struct sk_buff *skb = NULL;
3444
3445         if (netif_msg_rx_status(priv)) {
3446                 void *rx_head;
3447
3448                 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3449                 if (priv->extend_desc)
3450                         rx_head = (void *)rx_q->dma_erx;
3451                 else
3452                         rx_head = (void *)rx_q->dma_rx;
3453
3454                 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3455         }
3456         while (count < limit) {
3457                 unsigned int hlen = 0, prev_len = 0;
3458                 enum pkt_hash_types hash_type;
3459                 struct stmmac_rx_buffer *buf;
3460                 struct dma_desc *np, *p;
3461                 unsigned int sec_len;
3462                 int entry;
3463                 u32 hash;
3464
3465                 if (!count && rx_q->state_saved) {
3466                         skb = rx_q->state.skb;
3467                         error = rx_q->state.error;
3468                         len = rx_q->state.len;
3469                 } else {
3470                         rx_q->state_saved = false;
3471                         skb = NULL;
3472                         error = 0;
3473                         len = 0;
3474                 }
3475
3476                 if (count >= limit)
3477                         break;
3478
3479 read_again:
3480                 sec_len = 0;
3481                 entry = next_entry;
3482                 buf = &rx_q->buf_pool[entry];
3483
3484                 if (priv->extend_desc)
3485                         p = (struct dma_desc *)(rx_q->dma_erx + entry);
3486                 else
3487                         p = rx_q->dma_rx + entry;
3488
3489                 /* read the status of the incoming frame */
3490                 status = stmmac_rx_status(priv, &priv->dev->stats,
3491                                 &priv->xstats, p);
3492                 /* check if managed by the DMA otherwise go ahead */
3493                 if (unlikely(status & dma_own))
3494                         break;
3495
3496                 count++;
3497
3498                 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3499                 next_entry = rx_q->cur_rx;
3500
3501                 if (priv->extend_desc)
3502                         np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3503                 else
3504                         np = rx_q->dma_rx + next_entry;
3505
3506                 prefetch(np);
3507                 prefetch(page_address(buf->page));
3508
3509                 if (priv->extend_desc)
3510                         stmmac_rx_extended_status(priv, &priv->dev->stats,
3511                                         &priv->xstats, rx_q->dma_erx + entry);
3512                 if (unlikely(status == discard_frame)) {
3513                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3514                         priv->dev->stats.rx_errors++;
3515                         buf->page = NULL;
3516                         error = 1;
3517                 }
3518
3519                 if (unlikely(error && (status & rx_not_ls)))
3520                         goto read_again;
3521                 if (unlikely(error)) {
3522                         dev_kfree_skb(skb);
3523                         continue;
3524                 }
3525
3526                 /* Buffer is good. Go on. */
3527
3528                 if (likely(status & rx_not_ls)) {
3529                         len += priv->dma_buf_sz;
3530                 } else {
3531                         prev_len = len;
3532                         len = stmmac_get_rx_frame_len(priv, p, coe);
3533
3534                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3535                          * Type frames (LLC/LLC-SNAP)
3536                          *
3537                          * llc_snap is never checked in GMAC >= 4, so this ACS
3538                          * feature is always disabled and packets need to be
3539                          * stripped manually.
3540                          */
3541                         if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3542                             unlikely(status != llc_snap))
3543                                 len -= ETH_FCS_LEN;
3544                 }
3545
3546                 if (!skb) {
3547                         int ret = stmmac_get_rx_header_len(priv, p, &hlen);
3548
3549                         if (priv->sph && !ret && (hlen > 0)) {
3550                                 sec_len = len;
3551                                 if (!(status & rx_not_ls))
3552                                         sec_len = sec_len - hlen;
3553                                 len = hlen;
3554
3555                                 prefetch(page_address(buf->sec_page));
3556                                 priv->xstats.rx_split_hdr_pkt_n++;
3557                         }
3558
3559                         skb = napi_alloc_skb(&ch->rx_napi, len);
3560                         if (!skb) {
3561                                 priv->dev->stats.rx_dropped++;
3562                                 continue;
3563                         }
3564
3565                         dma_sync_single_for_cpu(priv->device, buf->addr, len,
3566                                                 DMA_FROM_DEVICE);
3567                         skb_copy_to_linear_data(skb, page_address(buf->page),
3568                                                 len);
3569                         skb_put(skb, len);
3570
3571                         /* Data payload copied into SKB, page ready for recycle */
3572                         page_pool_recycle_direct(rx_q->page_pool, buf->page);
3573                         buf->page = NULL;
3574                 } else {
3575                         unsigned int buf_len = len - prev_len;
3576
3577                         if (likely(status & rx_not_ls))
3578                                 buf_len = priv->dma_buf_sz;
3579
3580                         dma_sync_single_for_cpu(priv->device, buf->addr,
3581                                                 buf_len, DMA_FROM_DEVICE);
3582                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3583                                         buf->page, 0, buf_len,
3584                                         priv->dma_buf_sz);
3585
3586                         /* Data payload appended into SKB */
3587                         page_pool_release_page(rx_q->page_pool, buf->page);
3588                         buf->page = NULL;
3589                 }
3590
3591                 if (sec_len > 0) {
3592                         dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3593                                                 sec_len, DMA_FROM_DEVICE);
3594                         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3595                                         buf->sec_page, 0, sec_len,
3596                                         priv->dma_buf_sz);
3597
3598                         len += sec_len;
3599
3600                         /* Data payload appended into SKB */
3601                         page_pool_release_page(rx_q->page_pool, buf->sec_page);
3602                         buf->sec_page = NULL;
3603                 }
3604
3605                 if (likely(status & rx_not_ls))
3606                         goto read_again;
3607
3608                 /* Got entire packet into SKB. Finish it. */
3609
3610                 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3611                 stmmac_rx_vlan(priv->dev, skb);
3612                 skb->protocol = eth_type_trans(skb, priv->dev);
3613
3614                 if (unlikely(!coe))
3615                         skb_checksum_none_assert(skb);
3616                 else
3617                         skb->ip_summed = CHECKSUM_UNNECESSARY;
3618
3619                 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3620                         skb_set_hash(skb, hash, hash_type);
3621
3622                 skb_record_rx_queue(skb, queue);
3623                 napi_gro_receive(&ch->rx_napi, skb);
3624
3625                 priv->dev->stats.rx_packets++;
3626                 priv->dev->stats.rx_bytes += len;
3627         }
3628
3629         if (status & rx_not_ls) {
3630                 rx_q->state_saved = true;
3631                 rx_q->state.skb = skb;
3632                 rx_q->state.error = error;
3633                 rx_q->state.len = len;
3634         }
3635
3636         stmmac_rx_refill(priv, queue);
3637
3638         priv->xstats.rx_pkt_n += count;
3639
3640         return count;
3641 }
3642
3643 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3644 {
3645         struct stmmac_channel *ch =
3646                 container_of(napi, struct stmmac_channel, rx_napi);
3647         struct stmmac_priv *priv = ch->priv_data;
3648         u32 chan = ch->index;
3649         int work_done;
3650
3651         priv->xstats.napi_poll++;
3652
3653         work_done = stmmac_rx(priv, budget, chan);
3654         if (work_done < budget && napi_complete_done(napi, work_done))
3655                 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3656         return work_done;
3657 }
3658
3659 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3660 {
3661         struct stmmac_channel *ch =
3662                 container_of(napi, struct stmmac_channel, tx_napi);
3663         struct stmmac_priv *priv = ch->priv_data;
3664         struct stmmac_tx_queue *tx_q;
3665         u32 chan = ch->index;
3666         int work_done;
3667
3668         priv->xstats.napi_poll++;
3669
3670         work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3671         work_done = min(work_done, budget);
3672
3673         if (work_done < budget)
3674                 napi_complete_done(napi, work_done);
3675
3676         /* Force transmission restart */
3677         tx_q = &priv->tx_queue[chan];
3678         if (tx_q->cur_tx != tx_q->dirty_tx) {
3679                 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3680                 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3681                                        chan);
3682         }
3683
3684         return work_done;
3685 }
3686
3687 /**
3688  *  stmmac_tx_timeout
3689  *  @dev : Pointer to net device structure
3690  *  Description: this function is called when a packet transmission fails to
3691  *   complete within a reasonable time. The driver will mark the error in the
3692  *   netdev structure and arrange for the device to be reset to a sane state
3693  *   in order to transmit a new packet.
3694  */
3695 static void stmmac_tx_timeout(struct net_device *dev)
3696 {
3697         struct stmmac_priv *priv = netdev_priv(dev);
3698
3699         stmmac_global_err(priv);
3700 }
3701
3702 /**
3703  *  stmmac_set_rx_mode - entry point for multicast addressing
3704  *  @dev : pointer to the device structure
3705  *  Description:
3706  *  This function is a driver entry point which gets called by the kernel
3707  *  whenever multicast addresses must be enabled/disabled.
3708  *  Return value:
3709  *  void.
3710  */
3711 static void stmmac_set_rx_mode(struct net_device *dev)
3712 {
3713         struct stmmac_priv *priv = netdev_priv(dev);
3714
3715         stmmac_set_filter(priv, priv->hw, dev);
3716 }
3717
3718 /**
3719  *  stmmac_change_mtu - entry point to change MTU size for the device.
3720  *  @dev : device pointer.
3721  *  @new_mtu : the new MTU size for the device.
3722  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3723  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3724  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3725  *  Return value:
3726  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3727  *  file on failure.
3728  */
3729 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3730 {
3731         struct stmmac_priv *priv = netdev_priv(dev);
3732
3733         if (netif_running(dev)) {
3734                 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3735                 return -EBUSY;
3736         }
3737
3738         dev->mtu = new_mtu;
3739
3740         netdev_update_features(dev);
3741
3742         return 0;
3743 }
3744
3745 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3746                                              netdev_features_t features)
3747 {
3748         struct stmmac_priv *priv = netdev_priv(dev);
3749
3750         if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3751                 features &= ~NETIF_F_RXCSUM;
3752
3753         if (!priv->plat->tx_coe)
3754                 features &= ~NETIF_F_CSUM_MASK;
3755
3756         /* Some GMAC devices have a bugged Jumbo frame support that
3757          * needs to have the Tx COE disabled for oversized frames
3758          * (due to limited buffer sizes). In this case we disable
3759          * the TX csum insertion in the TDES and not use SF.
3760          */
3761         if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3762                 features &= ~NETIF_F_CSUM_MASK;
3763
3764         /* Disable tso if asked by ethtool */
3765         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3766                 if (features & NETIF_F_TSO)
3767                         priv->tso = true;
3768                 else
3769                         priv->tso = false;
3770         }
3771
3772         return features;
3773 }
3774
3775 static int stmmac_set_features(struct net_device *netdev,
3776                                netdev_features_t features)
3777 {
3778         struct stmmac_priv *priv = netdev_priv(netdev);
3779         bool sph_en;
3780         u32 chan;
3781
3782         /* Keep the COE Type in case of csum is supporting */
3783         if (features & NETIF_F_RXCSUM)
3784                 priv->hw->rx_csum = priv->plat->rx_coe;
3785         else
3786                 priv->hw->rx_csum = 0;
3787         /* No check needed because rx_coe has been set before and it will be
3788          * fixed in case of issue.
3789          */
3790         stmmac_rx_ipc(priv, priv->hw);
3791
3792         sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3793         for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3794                 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3795
3796         return 0;
3797 }
3798
3799 /**
3800  *  stmmac_interrupt - main ISR
3801  *  @irq: interrupt number.
3802  *  @dev_id: to pass the net device pointer.
3803  *  Description: this is the main driver interrupt service routine.
3804  *  It can call:
3805  *  o DMA service routine (to manage incoming frame reception and transmission
3806  *    status)
3807  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3808  *    interrupts.
3809  */
3810 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3811 {
3812         struct net_device *dev = (struct net_device *)dev_id;
3813         struct stmmac_priv *priv = netdev_priv(dev);
3814         u32 rx_cnt = priv->plat->rx_queues_to_use;
3815         u32 tx_cnt = priv->plat->tx_queues_to_use;
3816         u32 queues_count;
3817         u32 queue;
3818         bool xmac;
3819
3820         xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3821         queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3822
3823         if (priv->irq_wake)
3824                 pm_wakeup_event(priv->device, 0);
3825
3826         if (unlikely(!dev)) {
3827                 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3828                 return IRQ_NONE;
3829         }
3830
3831         /* Check if adapter is up */
3832         if (test_bit(STMMAC_DOWN, &priv->state))
3833                 return IRQ_HANDLED;
3834         /* Check if a fatal error happened */
3835         if (stmmac_safety_feat_interrupt(priv))
3836                 return IRQ_HANDLED;
3837
3838         /* To handle GMAC own interrupts */
3839         if ((priv->plat->has_gmac) || xmac) {
3840                 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3841                 int mtl_status;
3842
3843                 if (unlikely(status)) {
3844                         /* For LPI we need to save the tx status */
3845                         if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3846                                 priv->tx_path_in_lpi_mode = true;
3847                         if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3848                                 priv->tx_path_in_lpi_mode = false;
3849                 }
3850
3851                 for (queue = 0; queue < queues_count; queue++) {
3852                         struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3853
3854                         mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3855                                                                 queue);
3856                         if (mtl_status != -EINVAL)
3857                                 status |= mtl_status;
3858
3859                         if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3860                                 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3861                                                        rx_q->rx_tail_addr,
3862                                                        queue);
3863                 }
3864
3865                 /* PCS link status */
3866                 if (priv->hw->pcs) {
3867                         if (priv->xstats.pcs_link)
3868                                 netif_carrier_on(dev);
3869                         else
3870                                 netif_carrier_off(dev);
3871                 }
3872         }
3873
3874         /* To handle DMA interrupts */
3875         stmmac_dma_interrupt(priv);
3876
3877         return IRQ_HANDLED;
3878 }
3879
3880 #ifdef CONFIG_NET_POLL_CONTROLLER
3881 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3882  * to allow network I/O with interrupts disabled.
3883  */
3884 static void stmmac_poll_controller(struct net_device *dev)
3885 {
3886         disable_irq(dev->irq);
3887         stmmac_interrupt(dev->irq, dev);
3888         enable_irq(dev->irq);
3889 }
3890 #endif
3891
3892 /**
3893  *  stmmac_ioctl - Entry point for the Ioctl
3894  *  @dev: Device pointer.
3895  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3896  *  a proprietary structure used to pass information to the driver.
3897  *  @cmd: IOCTL command
3898  *  Description:
3899  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3900  */
3901 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3902 {
3903         struct stmmac_priv *priv = netdev_priv (dev);
3904         int ret = -EOPNOTSUPP;
3905
3906         if (!netif_running(dev))
3907                 return -EINVAL;
3908
3909         switch (cmd) {
3910         case SIOCGMIIPHY:
3911         case SIOCGMIIREG:
3912         case SIOCSMIIREG:
3913                 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3914                 break;
3915         case SIOCSHWTSTAMP:
3916                 ret = stmmac_hwtstamp_set(dev, rq);
3917                 break;
3918         case SIOCGHWTSTAMP:
3919                 ret = stmmac_hwtstamp_get(dev, rq);
3920                 break;
3921         default:
3922                 break;
3923         }
3924
3925         return ret;
3926 }
3927
3928 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3929                                     void *cb_priv)
3930 {
3931         struct stmmac_priv *priv = cb_priv;
3932         int ret = -EOPNOTSUPP;
3933
3934         if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
3935                 return ret;
3936
3937         stmmac_disable_all_queues(priv);
3938
3939         switch (type) {
3940         case TC_SETUP_CLSU32:
3941                 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3942                 break;
3943         case TC_SETUP_CLSFLOWER:
3944                 ret = stmmac_tc_setup_cls(priv, priv, type_data);
3945                 break;
3946         default:
3947                 break;
3948         }
3949
3950         stmmac_enable_all_queues(priv);
3951         return ret;
3952 }
3953
3954 static LIST_HEAD(stmmac_block_cb_list);
3955
3956 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3957                            void *type_data)
3958 {
3959         struct stmmac_priv *priv = netdev_priv(ndev);
3960
3961         switch (type) {
3962         case TC_SETUP_BLOCK:
3963                 return flow_block_cb_setup_simple(type_data,
3964                                                   &stmmac_block_cb_list,
3965                                                   stmmac_setup_tc_block_cb,
3966                                                   priv, priv, true);
3967         case TC_SETUP_QDISC_CBS:
3968                 return stmmac_tc_setup_cbs(priv, priv, type_data);
3969         default:
3970                 return -EOPNOTSUPP;
3971         }
3972 }
3973
3974 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3975                                struct net_device *sb_dev)
3976 {
3977         if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3978                 /*
3979                  * There is no way to determine the number of TSO
3980                  * capable Queues. Let's use always the Queue 0
3981                  * because if TSO is supported then at least this
3982                  * one will be capable.
3983                  */
3984                 return 0;
3985         }
3986
3987         return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
3988 }
3989
3990 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3991 {
3992         struct stmmac_priv *priv = netdev_priv(ndev);
3993         int ret = 0;
3994
3995         ret = eth_mac_addr(ndev, addr);
3996         if (ret)
3997                 return ret;
3998
3999         stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4000
4001         return ret;
4002 }
4003
4004 #ifdef CONFIG_DEBUG_FS
4005 static struct dentry *stmmac_fs_dir;
4006
4007 static void sysfs_display_ring(void *head, int size, int extend_desc,
4008                                struct seq_file *seq)
4009 {
4010         int i;
4011         struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4012         struct dma_desc *p = (struct dma_desc *)head;
4013
4014         for (i = 0; i < size; i++) {
4015                 if (extend_desc) {
4016                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4017                                    i, (unsigned int)virt_to_phys(ep),
4018                                    le32_to_cpu(ep->basic.des0),
4019                                    le32_to_cpu(ep->basic.des1),
4020                                    le32_to_cpu(ep->basic.des2),
4021                                    le32_to_cpu(ep->basic.des3));
4022                         ep++;
4023                 } else {
4024                         seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4025                                    i, (unsigned int)virt_to_phys(p),
4026                                    le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4027                                    le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4028                         p++;
4029                 }
4030                 seq_printf(seq, "\n");
4031         }
4032 }
4033
4034 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4035 {
4036         struct net_device *dev = seq->private;
4037         struct stmmac_priv *priv = netdev_priv(dev);
4038         u32 rx_count = priv->plat->rx_queues_to_use;
4039         u32 tx_count = priv->plat->tx_queues_to_use;
4040         u32 queue;
4041
4042         if ((dev->flags & IFF_UP) == 0)
4043                 return 0;
4044
4045         for (queue = 0; queue < rx_count; queue++) {
4046                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4047
4048                 seq_printf(seq, "RX Queue %d:\n", queue);
4049
4050                 if (priv->extend_desc) {
4051                         seq_printf(seq, "Extended descriptor ring:\n");
4052                         sysfs_display_ring((void *)rx_q->dma_erx,
4053                                            DMA_RX_SIZE, 1, seq);
4054                 } else {
4055                         seq_printf(seq, "Descriptor ring:\n");
4056                         sysfs_display_ring((void *)rx_q->dma_rx,
4057                                            DMA_RX_SIZE, 0, seq);
4058                 }
4059         }
4060
4061         for (queue = 0; queue < tx_count; queue++) {
4062                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4063
4064                 seq_printf(seq, "TX Queue %d:\n", queue);
4065
4066                 if (priv->extend_desc) {
4067                         seq_printf(seq, "Extended descriptor ring:\n");
4068                         sysfs_display_ring((void *)tx_q->dma_etx,
4069                                            DMA_TX_SIZE, 1, seq);
4070                 } else {
4071                         seq_printf(seq, "Descriptor ring:\n");
4072                         sysfs_display_ring((void *)tx_q->dma_tx,
4073                                            DMA_TX_SIZE, 0, seq);
4074                 }
4075         }
4076
4077         return 0;
4078 }
4079 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4080
4081 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4082 {
4083         struct net_device *dev = seq->private;
4084         struct stmmac_priv *priv = netdev_priv(dev);
4085
4086         if (!priv->hw_cap_support) {
4087                 seq_printf(seq, "DMA HW features not supported\n");
4088                 return 0;
4089         }
4090
4091         seq_printf(seq, "==============================\n");
4092         seq_printf(seq, "\tDMA HW features\n");
4093         seq_printf(seq, "==============================\n");
4094
4095         seq_printf(seq, "\t10/100 Mbps: %s\n",
4096                    (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4097         seq_printf(seq, "\t1000 Mbps: %s\n",
4098                    (priv->dma_cap.mbps_1000) ? "Y" : "N");
4099         seq_printf(seq, "\tHalf duplex: %s\n",
4100                    (priv->dma_cap.half_duplex) ? "Y" : "N");
4101         seq_printf(seq, "\tHash Filter: %s\n",
4102                    (priv->dma_cap.hash_filter) ? "Y" : "N");
4103         seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4104                    (priv->dma_cap.multi_addr) ? "Y" : "N");
4105         seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4106                    (priv->dma_cap.pcs) ? "Y" : "N");
4107         seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4108                    (priv->dma_cap.sma_mdio) ? "Y" : "N");
4109         seq_printf(seq, "\tPMT Remote wake up: %s\n",
4110                    (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4111         seq_printf(seq, "\tPMT Magic Frame: %s\n",
4112                    (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4113         seq_printf(seq, "\tRMON module: %s\n",
4114                    (priv->dma_cap.rmon) ? "Y" : "N");
4115         seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4116                    (priv->dma_cap.time_stamp) ? "Y" : "N");
4117         seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4118                    (priv->dma_cap.atime_stamp) ? "Y" : "N");
4119         seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4120                    (priv->dma_cap.eee) ? "Y" : "N");
4121         seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4122         seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4123                    (priv->dma_cap.tx_coe) ? "Y" : "N");
4124         if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4125                 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4126                            (priv->dma_cap.rx_coe) ? "Y" : "N");
4127         } else {
4128                 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4129                            (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4130                 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4131                            (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4132         }
4133         seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4134                    (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4135         seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4136                    priv->dma_cap.number_rx_channel);
4137         seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4138                    priv->dma_cap.number_tx_channel);
4139         seq_printf(seq, "\tEnhanced descriptors: %s\n",
4140                    (priv->dma_cap.enh_desc) ? "Y" : "N");
4141
4142         return 0;
4143 }
4144 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4145
4146 static void stmmac_init_fs(struct net_device *dev)
4147 {
4148         struct stmmac_priv *priv = netdev_priv(dev);
4149
4150         /* Create per netdev entries */
4151         priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4152
4153         /* Entry to report DMA RX/TX rings */
4154         debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4155                             &stmmac_rings_status_fops);
4156
4157         /* Entry to report the DMA HW features */
4158         debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4159                             &stmmac_dma_cap_fops);
4160 }
4161
4162 static void stmmac_exit_fs(struct net_device *dev)
4163 {
4164         struct stmmac_priv *priv = netdev_priv(dev);
4165
4166         debugfs_remove_recursive(priv->dbgfs_dir);
4167 }
4168 #endif /* CONFIG_DEBUG_FS */
4169
4170 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4171 {
4172         unsigned char *data = (unsigned char *)&vid_le;
4173         unsigned char data_byte = 0;
4174         u32 crc = ~0x0;
4175         u32 temp = 0;
4176         int i, bits;
4177
4178         bits = get_bitmask_order(VLAN_VID_MASK);
4179         for (i = 0; i < bits; i++) {
4180                 if ((i % 8) == 0)
4181                         data_byte = data[i / 8];
4182
4183                 temp = ((crc & 1) ^ data_byte) & 1;
4184                 crc >>= 1;
4185                 data_byte >>= 1;
4186
4187                 if (temp)
4188                         crc ^= 0xedb88320;
4189         }
4190
4191         return crc;
4192 }
4193
4194 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4195 {
4196         u32 crc, hash = 0;
4197         u16 vid;
4198
4199         for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4200                 __le16 vid_le = cpu_to_le16(vid);
4201                 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4202                 hash |= (1 << crc);
4203         }
4204
4205         return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double);
4206 }
4207
4208 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4209 {
4210         struct stmmac_priv *priv = netdev_priv(ndev);
4211         bool is_double = false;
4212         int ret;
4213
4214         if (!priv->dma_cap.vlhash)
4215                 return -EOPNOTSUPP;
4216         if (be16_to_cpu(proto) == ETH_P_8021AD)
4217                 is_double = true;
4218
4219         set_bit(vid, priv->active_vlans);
4220         ret = stmmac_vlan_update(priv, is_double);
4221         if (ret) {
4222                 clear_bit(vid, priv->active_vlans);
4223                 return ret;
4224         }
4225
4226         return ret;
4227 }
4228
4229 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4230 {
4231         struct stmmac_priv *priv = netdev_priv(ndev);
4232         bool is_double = false;
4233
4234         if (!priv->dma_cap.vlhash)
4235                 return -EOPNOTSUPP;
4236         if (be16_to_cpu(proto) == ETH_P_8021AD)
4237                 is_double = true;
4238
4239         clear_bit(vid, priv->active_vlans);
4240         return stmmac_vlan_update(priv, is_double);
4241 }
4242
4243 static const struct net_device_ops stmmac_netdev_ops = {
4244         .ndo_open = stmmac_open,
4245         .ndo_start_xmit = stmmac_xmit,
4246         .ndo_stop = stmmac_release,
4247         .ndo_change_mtu = stmmac_change_mtu,
4248         .ndo_fix_features = stmmac_fix_features,
4249         .ndo_set_features = stmmac_set_features,
4250         .ndo_set_rx_mode = stmmac_set_rx_mode,
4251         .ndo_tx_timeout = stmmac_tx_timeout,
4252         .ndo_do_ioctl = stmmac_ioctl,
4253         .ndo_setup_tc = stmmac_setup_tc,
4254         .ndo_select_queue = stmmac_select_queue,
4255 #ifdef CONFIG_NET_POLL_CONTROLLER
4256         .ndo_poll_controller = stmmac_poll_controller,
4257 #endif
4258         .ndo_set_mac_address = stmmac_set_mac_address,
4259         .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4260         .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4261 };
4262
4263 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4264 {
4265         if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4266                 return;
4267         if (test_bit(STMMAC_DOWN, &priv->state))
4268                 return;
4269
4270         netdev_err(priv->dev, "Reset adapter.\n");
4271
4272         rtnl_lock();
4273         netif_trans_update(priv->dev);
4274         while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4275                 usleep_range(1000, 2000);
4276
4277         set_bit(STMMAC_DOWN, &priv->state);
4278         dev_close(priv->dev);
4279         dev_open(priv->dev, NULL);
4280         clear_bit(STMMAC_DOWN, &priv->state);
4281         clear_bit(STMMAC_RESETING, &priv->state);
4282         rtnl_unlock();
4283 }
4284
4285 static void stmmac_service_task(struct work_struct *work)
4286 {
4287         struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4288                         service_task);
4289
4290         stmmac_reset_subtask(priv);
4291         clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4292 }
4293
4294 /**
4295  *  stmmac_hw_init - Init the MAC device
4296  *  @priv: driver private structure
4297  *  Description: this function is to configure the MAC device according to
4298  *  some platform parameters or the HW capability register. It prepares the
4299  *  driver to use either ring or chain modes and to setup either enhanced or
4300  *  normal descriptors.
4301  */
4302 static int stmmac_hw_init(struct stmmac_priv *priv)
4303 {
4304         int ret;
4305
4306         /* dwmac-sun8i only work in chain mode */
4307         if (priv->plat->has_sun8i)
4308                 chain_mode = 1;
4309         priv->chain_mode = chain_mode;
4310
4311         /* Initialize HW Interface */
4312         ret = stmmac_hwif_init(priv);
4313         if (ret)
4314                 return ret;
4315
4316         /* Get the HW capability (new GMAC newer than 3.50a) */
4317         priv->hw_cap_support = stmmac_get_hw_features(priv);
4318         if (priv->hw_cap_support) {
4319                 dev_info(priv->device, "DMA HW capability register supported\n");
4320
4321                 /* We can override some gmac/dma configuration fields: e.g.
4322                  * enh_desc, tx_coe (e.g. that are passed through the
4323                  * platform) with the values from the HW capability
4324                  * register (if supported).
4325                  */
4326                 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4327                 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4328                 priv->hw->pmt = priv->plat->pmt;
4329                 if (priv->dma_cap.hash_tb_sz) {
4330                         priv->hw->multicast_filter_bins =
4331                                         (BIT(priv->dma_cap.hash_tb_sz) << 5);
4332                         priv->hw->mcast_bits_log2 =
4333                                         ilog2(priv->hw->multicast_filter_bins);
4334                 }
4335
4336                 /* TXCOE doesn't work in thresh DMA mode */
4337                 if (priv->plat->force_thresh_dma_mode)
4338                         priv->plat->tx_coe = 0;
4339                 else
4340                         priv->plat->tx_coe = priv->dma_cap.tx_coe;
4341
4342                 /* In case of GMAC4 rx_coe is from HW cap register. */
4343                 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4344
4345                 if (priv->dma_cap.rx_coe_type2)
4346                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4347                 else if (priv->dma_cap.rx_coe_type1)
4348                         priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4349
4350         } else {
4351                 dev_info(priv->device, "No HW DMA feature register supported\n");
4352         }
4353
4354         if (priv->plat->rx_coe) {
4355                 priv->hw->rx_csum = priv->plat->rx_coe;
4356                 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4357                 if (priv->synopsys_id < DWMAC_CORE_4_00)
4358                         dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4359         }
4360         if (priv->plat->tx_coe)
4361                 dev_info(priv->device, "TX Checksum insertion supported\n");
4362
4363         if (priv->plat->pmt) {
4364                 dev_info(priv->device, "Wake-Up On Lan supported\n");
4365                 device_set_wakeup_capable(priv->device, 1);
4366         }
4367
4368         if (priv->dma_cap.tsoen)
4369                 dev_info(priv->device, "TSO supported\n");
4370
4371         /* Run HW quirks, if any */
4372         if (priv->hwif_quirks) {
4373                 ret = priv->hwif_quirks(priv);
4374                 if (ret)
4375                         return ret;
4376         }
4377
4378         /* Rx Watchdog is available in the COREs newer than the 3.40.
4379          * In some case, for example on bugged HW this feature
4380          * has to be disable and this can be done by passing the
4381          * riwt_off field from the platform.
4382          */
4383         if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4384             (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4385                 priv->use_riwt = 1;
4386                 dev_info(priv->device,
4387                          "Enable RX Mitigation via HW Watchdog Timer\n");
4388         }
4389
4390         return 0;
4391 }
4392
4393 /**
4394  * stmmac_dvr_probe
4395  * @device: device pointer
4396  * @plat_dat: platform data pointer
4397  * @res: stmmac resource pointer
4398  * Description: this is the main probe function used to
4399  * call the alloc_etherdev, allocate the priv structure.
4400  * Return:
4401  * returns 0 on success, otherwise errno.
4402  */
4403 int stmmac_dvr_probe(struct device *device,
4404                      struct plat_stmmacenet_data *plat_dat,
4405                      struct stmmac_resources *res)
4406 {
4407         struct net_device *ndev = NULL;
4408         struct stmmac_priv *priv;
4409         u32 queue, rxq, maxq;
4410         int i, ret = 0;
4411
4412         ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4413                                        MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4414         if (!ndev)
4415                 return -ENOMEM;
4416
4417         SET_NETDEV_DEV(ndev, device);
4418
4419         priv = netdev_priv(ndev);
4420         priv->device = device;
4421         priv->dev = ndev;
4422
4423         stmmac_set_ethtool_ops(ndev);
4424         priv->pause = pause;
4425         priv->plat = plat_dat;
4426         priv->ioaddr = res->addr;
4427         priv->dev->base_addr = (unsigned long)res->addr;
4428
4429         priv->dev->irq = res->irq;
4430         priv->wol_irq = res->wol_irq;
4431         priv->lpi_irq = res->lpi_irq;
4432
4433         if (!IS_ERR_OR_NULL(res->mac))
4434                 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4435
4436         dev_set_drvdata(device, priv->dev);
4437
4438         /* Verify driver arguments */
4439         stmmac_verify_args();
4440
4441         /* Allocate workqueue */
4442         priv->wq = create_singlethread_workqueue("stmmac_wq");
4443         if (!priv->wq) {
4444                 dev_err(priv->device, "failed to create workqueue\n");
4445                 return -ENOMEM;
4446         }
4447
4448         INIT_WORK(&priv->service_task, stmmac_service_task);
4449
4450         /* Override with kernel parameters if supplied XXX CRS XXX
4451          * this needs to have multiple instances
4452          */
4453         if ((phyaddr >= 0) && (phyaddr <= 31))
4454                 priv->plat->phy_addr = phyaddr;
4455
4456         if (priv->plat->stmmac_rst) {
4457                 ret = reset_control_assert(priv->plat->stmmac_rst);
4458                 reset_control_deassert(priv->plat->stmmac_rst);
4459                 /* Some reset controllers have only reset callback instead of
4460                  * assert + deassert callbacks pair.
4461                  */
4462                 if (ret == -ENOTSUPP)
4463                         reset_control_reset(priv->plat->stmmac_rst);
4464         }
4465
4466         /* Init MAC and get the capabilities */
4467         ret = stmmac_hw_init(priv);
4468         if (ret)
4469                 goto error_hw_init;
4470
4471         stmmac_check_ether_addr(priv);
4472
4473         /* Configure real RX and TX queues */
4474         netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4475         netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4476
4477         ndev->netdev_ops = &stmmac_netdev_ops;
4478
4479         ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4480                             NETIF_F_RXCSUM;
4481
4482         ret = stmmac_tc_init(priv, priv);
4483         if (!ret) {
4484                 ndev->hw_features |= NETIF_F_HW_TC;
4485         }
4486
4487         if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4488                 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4489                 priv->tso = true;
4490                 dev_info(priv->device, "TSO feature enabled\n");
4491         }
4492
4493         if (priv->dma_cap.sphen) {
4494                 ndev->hw_features |= NETIF_F_GRO;
4495                 priv->sph = true;
4496                 dev_info(priv->device, "SPH feature enabled\n");
4497         }
4498
4499         if (priv->dma_cap.addr64) {
4500                 ret = dma_set_mask_and_coherent(device,
4501                                 DMA_BIT_MASK(priv->dma_cap.addr64));
4502                 if (!ret) {
4503                         dev_info(priv->device, "Using %d bits DMA width\n",
4504                                  priv->dma_cap.addr64);
4505                 } else {
4506                         ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4507                         if (ret) {
4508                                 dev_err(priv->device, "Failed to set DMA Mask\n");
4509                                 goto error_hw_init;
4510                         }
4511
4512                         priv->dma_cap.addr64 = 32;
4513                 }
4514         }
4515
4516         ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4517         ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4518 #ifdef STMMAC_VLAN_TAG_USED
4519         /* Both mac100 and gmac support receive VLAN tag detection */
4520         ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4521         if (priv->dma_cap.vlhash) {
4522                 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4523                 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4524         }
4525         if (priv->dma_cap.vlins) {
4526                 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4527                 if (priv->dma_cap.dvlan)
4528                         ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4529         }
4530 #endif
4531         priv->msg_enable = netif_msg_init(debug, default_msg_level);
4532
4533         /* Initialize RSS */
4534         rxq = priv->plat->rx_queues_to_use;
4535         netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4536         for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4537                 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4538
4539         if (priv->dma_cap.rssen && priv->plat->rss_en)
4540                 ndev->features |= NETIF_F_RXHASH;
4541
4542         /* MTU range: 46 - hw-specific max */
4543         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4544         if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4545                 ndev->max_mtu = JUMBO_LEN;
4546         else if (priv->plat->has_xgmac)
4547                 ndev->max_mtu = XGMAC_JUMBO_LEN;
4548         else
4549                 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4550         /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4551          * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4552          */
4553         if ((priv->plat->maxmtu < ndev->max_mtu) &&
4554             (priv->plat->maxmtu >= ndev->min_mtu))
4555                 ndev->max_mtu = priv->plat->maxmtu;
4556         else if (priv->plat->maxmtu < ndev->min_mtu)
4557                 dev_warn(priv->device,
4558                          "%s: warning: maxmtu having invalid value (%d)\n",
4559                          __func__, priv->plat->maxmtu);
4560
4561         if (flow_ctrl)
4562                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
4563
4564         /* Setup channels NAPI */
4565         maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4566
4567         for (queue = 0; queue < maxq; queue++) {
4568                 struct stmmac_channel *ch = &priv->channel[queue];
4569
4570                 ch->priv_data = priv;
4571                 ch->index = queue;
4572
4573                 if (queue < priv->plat->rx_queues_to_use) {
4574                         netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4575                                        NAPI_POLL_WEIGHT);
4576                 }
4577                 if (queue < priv->plat->tx_queues_to_use) {
4578                         netif_tx_napi_add(ndev, &ch->tx_napi,
4579                                           stmmac_napi_poll_tx,
4580                                           NAPI_POLL_WEIGHT);
4581                 }
4582         }
4583
4584         mutex_init(&priv->lock);
4585
4586         /* If a specific clk_csr value is passed from the platform
4587          * this means that the CSR Clock Range selection cannot be
4588          * changed at run-time and it is fixed. Viceversa the driver'll try to
4589          * set the MDC clock dynamically according to the csr actual
4590          * clock input.
4591          */
4592         if (priv->plat->clk_csr >= 0)
4593                 priv->clk_csr = priv->plat->clk_csr;
4594         else
4595                 stmmac_clk_csr_set(priv);
4596
4597         stmmac_check_pcs_mode(priv);
4598
4599         if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4600             priv->hw->pcs != STMMAC_PCS_TBI &&
4601             priv->hw->pcs != STMMAC_PCS_RTBI) {
4602                 /* MDIO bus Registration */
4603                 ret = stmmac_mdio_register(ndev);
4604                 if (ret < 0) {
4605                         dev_err(priv->device,
4606                                 "%s: MDIO bus (id: %d) registration failed",
4607                                 __func__, priv->plat->bus_id);
4608                         goto error_mdio_register;
4609                 }
4610         }
4611
4612         ret = stmmac_phy_setup(priv);
4613         if (ret) {
4614                 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4615                 goto error_phy_setup;
4616         }
4617
4618         ret = register_netdev(ndev);
4619         if (ret) {
4620                 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4621                         __func__, ret);
4622                 goto error_netdev_register;
4623         }
4624
4625 #ifdef CONFIG_DEBUG_FS
4626         stmmac_init_fs(ndev);
4627 #endif
4628
4629         return ret;
4630
4631 error_netdev_register:
4632         phylink_destroy(priv->phylink);
4633 error_phy_setup:
4634         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4635             priv->hw->pcs != STMMAC_PCS_TBI &&
4636             priv->hw->pcs != STMMAC_PCS_RTBI)
4637                 stmmac_mdio_unregister(ndev);
4638 error_mdio_register:
4639         for (queue = 0; queue < maxq; queue++) {
4640                 struct stmmac_channel *ch = &priv->channel[queue];
4641
4642                 if (queue < priv->plat->rx_queues_to_use)
4643                         netif_napi_del(&ch->rx_napi);
4644                 if (queue < priv->plat->tx_queues_to_use)
4645                         netif_napi_del(&ch->tx_napi);
4646         }
4647 error_hw_init:
4648         destroy_workqueue(priv->wq);
4649
4650         return ret;
4651 }
4652 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4653
4654 /**
4655  * stmmac_dvr_remove
4656  * @dev: device pointer
4657  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4658  * changes the link status, releases the DMA descriptor rings.
4659  */
4660 int stmmac_dvr_remove(struct device *dev)
4661 {
4662         struct net_device *ndev = dev_get_drvdata(dev);
4663         struct stmmac_priv *priv = netdev_priv(ndev);
4664
4665         netdev_info(priv->dev, "%s: removing driver", __func__);
4666
4667 #ifdef CONFIG_DEBUG_FS
4668         stmmac_exit_fs(ndev);
4669 #endif
4670         stmmac_stop_all_dma(priv);
4671
4672         stmmac_mac_set(priv, priv->ioaddr, false);
4673         netif_carrier_off(ndev);
4674         unregister_netdev(ndev);
4675         phylink_destroy(priv->phylink);
4676         if (priv->plat->stmmac_rst)
4677                 reset_control_assert(priv->plat->stmmac_rst);
4678         clk_disable_unprepare(priv->plat->pclk);
4679         clk_disable_unprepare(priv->plat->stmmac_clk);
4680         if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4681             priv->hw->pcs != STMMAC_PCS_TBI &&
4682             priv->hw->pcs != STMMAC_PCS_RTBI)
4683                 stmmac_mdio_unregister(ndev);
4684         destroy_workqueue(priv->wq);
4685         mutex_destroy(&priv->lock);
4686
4687         return 0;
4688 }
4689 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4690
4691 /**
4692  * stmmac_suspend - suspend callback
4693  * @dev: device pointer
4694  * Description: this is the function to suspend the device and it is called
4695  * by the platform driver to stop the network queue, release the resources,
4696  * program the PMT register (for WoL), clean and release driver resources.
4697  */
4698 int stmmac_suspend(struct device *dev)
4699 {
4700         struct net_device *ndev = dev_get_drvdata(dev);
4701         struct stmmac_priv *priv = netdev_priv(ndev);
4702
4703         if (!ndev || !netif_running(ndev))
4704                 return 0;
4705
4706         phylink_stop(priv->phylink);
4707
4708         mutex_lock(&priv->lock);
4709
4710         netif_device_detach(ndev);
4711         stmmac_stop_all_queues(priv);
4712
4713         stmmac_disable_all_queues(priv);
4714
4715         /* Stop TX/RX DMA */
4716         stmmac_stop_all_dma(priv);
4717
4718         /* Enable Power down mode by programming the PMT regs */
4719         if (device_may_wakeup(priv->device)) {
4720                 stmmac_pmt(priv, priv->hw, priv->wolopts);
4721                 priv->irq_wake = 1;
4722         } else {
4723                 stmmac_mac_set(priv, priv->ioaddr, false);
4724                 pinctrl_pm_select_sleep_state(priv->device);
4725                 /* Disable clock in case of PWM is off */
4726                 clk_disable(priv->plat->pclk);
4727                 clk_disable(priv->plat->stmmac_clk);
4728         }
4729         mutex_unlock(&priv->lock);
4730
4731         priv->speed = SPEED_UNKNOWN;
4732         return 0;
4733 }
4734 EXPORT_SYMBOL_GPL(stmmac_suspend);
4735
4736 /**
4737  * stmmac_reset_queues_param - reset queue parameters
4738  * @dev: device pointer
4739  */
4740 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4741 {
4742         u32 rx_cnt = priv->plat->rx_queues_to_use;
4743         u32 tx_cnt = priv->plat->tx_queues_to_use;
4744         u32 queue;
4745
4746         for (queue = 0; queue < rx_cnt; queue++) {
4747                 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4748
4749                 rx_q->cur_rx = 0;
4750                 rx_q->dirty_rx = 0;
4751         }
4752
4753         for (queue = 0; queue < tx_cnt; queue++) {
4754                 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4755
4756                 tx_q->cur_tx = 0;
4757                 tx_q->dirty_tx = 0;
4758                 tx_q->mss = 0;
4759         }
4760 }
4761
4762 /**
4763  * stmmac_resume - resume callback
4764  * @dev: device pointer
4765  * Description: when resume this function is invoked to setup the DMA and CORE
4766  * in a usable state.
4767  */
4768 int stmmac_resume(struct device *dev)
4769 {
4770         struct net_device *ndev = dev_get_drvdata(dev);
4771         struct stmmac_priv *priv = netdev_priv(ndev);
4772
4773         if (!netif_running(ndev))
4774                 return 0;
4775
4776         /* Power Down bit, into the PM register, is cleared
4777          * automatically as soon as a magic packet or a Wake-up frame
4778          * is received. Anyway, it's better to manually clear
4779          * this bit because it can generate problems while resuming
4780          * from another devices (e.g. serial console).
4781          */
4782         if (device_may_wakeup(priv->device)) {
4783                 mutex_lock(&priv->lock);
4784                 stmmac_pmt(priv, priv->hw, 0);
4785                 mutex_unlock(&priv->lock);
4786                 priv->irq_wake = 0;
4787         } else {
4788                 pinctrl_pm_select_default_state(priv->device);
4789                 /* enable the clk previously disabled */
4790                 clk_enable(priv->plat->stmmac_clk);
4791                 clk_enable(priv->plat->pclk);
4792                 /* reset the phy so that it's ready */
4793                 if (priv->mii)
4794                         stmmac_mdio_reset(priv->mii);
4795         }
4796
4797         netif_device_attach(ndev);
4798
4799         mutex_lock(&priv->lock);
4800
4801         stmmac_reset_queues_param(priv);
4802
4803         stmmac_clear_descriptors(priv);
4804
4805         stmmac_hw_setup(ndev, false);
4806         stmmac_init_coalesce(priv);
4807         stmmac_set_rx_mode(ndev);
4808
4809         stmmac_enable_all_queues(priv);
4810
4811         stmmac_start_all_queues(priv);
4812
4813         mutex_unlock(&priv->lock);
4814
4815         phylink_start(priv->phylink);
4816
4817         return 0;
4818 }
4819 EXPORT_SYMBOL_GPL(stmmac_resume);
4820
4821 #ifndef MODULE
4822 static int __init stmmac_cmdline_opt(char *str)
4823 {
4824         char *opt;
4825
4826         if (!str || !*str)
4827                 return -EINVAL;
4828         while ((opt = strsep(&str, ",")) != NULL) {
4829                 if (!strncmp(opt, "debug:", 6)) {
4830                         if (kstrtoint(opt + 6, 0, &debug))
4831                                 goto err;
4832                 } else if (!strncmp(opt, "phyaddr:", 8)) {
4833                         if (kstrtoint(opt + 8, 0, &phyaddr))
4834                                 goto err;
4835                 } else if (!strncmp(opt, "buf_sz:", 7)) {
4836                         if (kstrtoint(opt + 7, 0, &buf_sz))
4837                                 goto err;
4838                 } else if (!strncmp(opt, "tc:", 3)) {
4839                         if (kstrtoint(opt + 3, 0, &tc))
4840                                 goto err;
4841                 } else if (!strncmp(opt, "watchdog:", 9)) {
4842                         if (kstrtoint(opt + 9, 0, &watchdog))
4843                                 goto err;
4844                 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4845                         if (kstrtoint(opt + 10, 0, &flow_ctrl))
4846                                 goto err;
4847                 } else if (!strncmp(opt, "pause:", 6)) {
4848                         if (kstrtoint(opt + 6, 0, &pause))
4849                                 goto err;
4850                 } else if (!strncmp(opt, "eee_timer:", 10)) {
4851                         if (kstrtoint(opt + 10, 0, &eee_timer))
4852                                 goto err;
4853                 } else if (!strncmp(opt, "chain_mode:", 11)) {
4854                         if (kstrtoint(opt + 11, 0, &chain_mode))
4855                                 goto err;
4856                 }
4857         }
4858         return 0;
4859
4860 err:
4861         pr_err("%s: ERROR broken module parameter conversion", __func__);
4862         return -EINVAL;
4863 }
4864
4865 __setup("stmmaceth=", stmmac_cmdline_opt);
4866 #endif /* MODULE */
4867
4868 static int __init stmmac_init(void)
4869 {
4870 #ifdef CONFIG_DEBUG_FS
4871         /* Create debugfs main directory if it doesn't exist yet */
4872         if (!stmmac_fs_dir)
4873                 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4874 #endif
4875
4876         return 0;
4877 }
4878
4879 static void __exit stmmac_exit(void)
4880 {
4881 #ifdef CONFIG_DEBUG_FS
4882         debugfs_remove_recursive(stmmac_fs_dir);
4883 #endif
4884 }
4885
4886 module_init(stmmac_init)
4887 module_exit(stmmac_exit)
4888
4889 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4890 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4891 MODULE_LICENSE("GPL");