]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/hyperv/netvsc_drv.c
fac44c5c8d0d6fa5f4ced3e267f3b6a5e3f653f2
[linux.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33 #include <linux/if_vlan.h>
34 #include <linux/in.h>
35 #include <linux/slab.h>
36 #include <linux/rtnetlink.h>
37 #include <linux/netpoll.h>
38
39 #include <net/arp.h>
40 #include <net/route.h>
41 #include <net/sock.h>
42 #include <net/pkt_sched.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45
46 #include "hyperv_net.h"
47
48 #define RING_SIZE_MIN           64
49 #define NETVSC_MIN_TX_SECTIONS  10
50 #define NETVSC_DEFAULT_TX       192     /* ~1M */
51 #define NETVSC_MIN_RX_SECTIONS  10      /* ~64K */
52 #define NETVSC_DEFAULT_RX       2048    /* ~4M */
53
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56
57 static int ring_size = 128;
58 module_param(ring_size, int, S_IRUGO);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60
61 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
62                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
63                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
64                                 NETIF_MSG_TX_ERR;
65
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO);
68 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
69
70 static void netvsc_set_multicast_list(struct net_device *net)
71 {
72         struct net_device_context *net_device_ctx = netdev_priv(net);
73         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
74
75         rndis_filter_update(nvdev);
76 }
77
78 static int netvsc_open(struct net_device *net)
79 {
80         struct net_device_context *ndev_ctx = netdev_priv(net);
81         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
82         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
83         struct rndis_device *rdev;
84         int ret = 0;
85
86         netif_carrier_off(net);
87
88         /* Open up the device */
89         ret = rndis_filter_open(nvdev);
90         if (ret != 0) {
91                 netdev_err(net, "unable to open device (ret %d).\n", ret);
92                 return ret;
93         }
94
95         netif_tx_wake_all_queues(net);
96
97         rdev = nvdev->extension;
98
99         if (!rdev->link_state)
100                 netif_carrier_on(net);
101
102         if (vf_netdev) {
103                 /* Setting synthetic device up transparently sets
104                  * slave as up. If open fails, then slave will be
105                  * still be offline (and not used).
106                  */
107                 ret = dev_open(vf_netdev);
108                 if (ret)
109                         netdev_warn(net,
110                                     "unable to open slave: %s: %d\n",
111                                     vf_netdev->name, ret);
112         }
113         return 0;
114 }
115
116 static int netvsc_close(struct net_device *net)
117 {
118         struct net_device_context *net_device_ctx = netdev_priv(net);
119         struct net_device *vf_netdev
120                 = rtnl_dereference(net_device_ctx->vf_netdev);
121         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
122         int ret = 0;
123         u32 aread, i, msec = 10, retry = 0, retry_max = 20;
124         struct vmbus_channel *chn;
125
126         netif_tx_disable(net);
127
128         /* No need to close rndis filter if it is removed already */
129         if (!nvdev)
130                 goto out;
131
132         ret = rndis_filter_close(nvdev);
133         if (ret != 0) {
134                 netdev_err(net, "unable to close device (ret %d).\n", ret);
135                 return ret;
136         }
137
138         /* Ensure pending bytes in ring are read */
139         while (true) {
140                 aread = 0;
141                 for (i = 0; i < nvdev->num_chn; i++) {
142                         chn = nvdev->chan_table[i].channel;
143                         if (!chn)
144                                 continue;
145
146                         aread = hv_get_bytes_to_read(&chn->inbound);
147                         if (aread)
148                                 break;
149
150                         aread = hv_get_bytes_to_read(&chn->outbound);
151                         if (aread)
152                                 break;
153                 }
154
155                 retry++;
156                 if (retry > retry_max || aread == 0)
157                         break;
158
159                 msleep(msec);
160
161                 if (msec < 1000)
162                         msec *= 2;
163         }
164
165         if (aread) {
166                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
167                 ret = -ETIMEDOUT;
168         }
169
170 out:
171         if (vf_netdev)
172                 dev_close(vf_netdev);
173
174         return ret;
175 }
176
177 static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
178                            int pkt_type)
179 {
180         struct rndis_packet *rndis_pkt;
181         struct rndis_per_packet_info *ppi;
182
183         rndis_pkt = &msg->msg.pkt;
184         rndis_pkt->data_offset += ppi_size;
185
186         ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
187                 rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);
188
189         ppi->size = ppi_size;
190         ppi->type = pkt_type;
191         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
192
193         rndis_pkt->per_pkt_info_len += ppi_size;
194
195         return ppi;
196 }
197
198 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
199  * packets. We can use ethtool to change UDP hash level when necessary.
200  */
201 static inline u32 netvsc_get_hash(
202         struct sk_buff *skb,
203         const struct net_device_context *ndc)
204 {
205         struct flow_keys flow;
206         u32 hash;
207         static u32 hashrnd __read_mostly;
208
209         net_get_random_once(&hashrnd, sizeof(hashrnd));
210
211         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
212                 return 0;
213
214         if (flow.basic.ip_proto == IPPROTO_TCP ||
215             (flow.basic.ip_proto == IPPROTO_UDP &&
216              ((flow.basic.n_proto == htons(ETH_P_IP) && ndc->udp4_l4_hash) ||
217               (flow.basic.n_proto == htons(ETH_P_IPV6) &&
218                ndc->udp6_l4_hash)))) {
219                 return skb_get_hash(skb);
220         } else {
221                 if (flow.basic.n_proto == htons(ETH_P_IP))
222                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
223                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
224                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
225                 else
226                         hash = 0;
227
228                 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
229         }
230
231         return hash;
232 }
233
234 static inline int netvsc_get_tx_queue(struct net_device *ndev,
235                                       struct sk_buff *skb, int old_idx)
236 {
237         const struct net_device_context *ndc = netdev_priv(ndev);
238         struct sock *sk = skb->sk;
239         int q_idx;
240
241         q_idx = ndc->tx_send_table[netvsc_get_hash(skb, ndc) &
242                                    (VRSS_SEND_TAB_SIZE - 1)];
243
244         /* If queue index changed record the new value */
245         if (q_idx != old_idx &&
246             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
247                 sk_tx_queue_set(sk, q_idx);
248
249         return q_idx;
250 }
251
252 /*
253  * Select queue for transmit.
254  *
255  * If a valid queue has already been assigned, then use that.
256  * Otherwise compute tx queue based on hash and the send table.
257  *
258  * This is basically similar to default (__netdev_pick_tx) with the added step
259  * of using the host send_table when no other queue has been assigned.
260  *
261  * TODO support XPS - but get_xps_queue not exported
262  */
263 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
264 {
265         int q_idx = sk_tx_queue_get(skb->sk);
266
267         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
268                 /* If forwarding a packet, we use the recorded queue when
269                  * available for better cache locality.
270                  */
271                 if (skb_rx_queue_recorded(skb))
272                         q_idx = skb_get_rx_queue(skb);
273                 else
274                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
275         }
276
277         return q_idx;
278 }
279
280 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
281                                void *accel_priv,
282                                select_queue_fallback_t fallback)
283 {
284         struct net_device_context *ndc = netdev_priv(ndev);
285         struct net_device *vf_netdev;
286         u16 txq;
287
288         rcu_read_lock();
289         vf_netdev = rcu_dereference(ndc->vf_netdev);
290         if (vf_netdev) {
291                 txq = skb_rx_queue_recorded(skb) ? skb_get_rx_queue(skb) : 0;
292                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = skb->queue_mapping;
293         } else {
294                 txq = netvsc_pick_tx(ndev, skb);
295         }
296         rcu_read_unlock();
297
298         while (unlikely(txq >= ndev->real_num_tx_queues))
299                 txq -= ndev->real_num_tx_queues;
300
301         return txq;
302 }
303
304 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
305                        struct hv_page_buffer *pb)
306 {
307         int j = 0;
308
309         /* Deal with compund pages by ignoring unused part
310          * of the page.
311          */
312         page += (offset >> PAGE_SHIFT);
313         offset &= ~PAGE_MASK;
314
315         while (len > 0) {
316                 unsigned long bytes;
317
318                 bytes = PAGE_SIZE - offset;
319                 if (bytes > len)
320                         bytes = len;
321                 pb[j].pfn = page_to_pfn(page);
322                 pb[j].offset = offset;
323                 pb[j].len = bytes;
324
325                 offset += bytes;
326                 len -= bytes;
327
328                 if (offset == PAGE_SIZE && len) {
329                         page++;
330                         offset = 0;
331                         j++;
332                 }
333         }
334
335         return j + 1;
336 }
337
338 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
339                            struct hv_netvsc_packet *packet,
340                            struct hv_page_buffer *pb)
341 {
342         u32 slots_used = 0;
343         char *data = skb->data;
344         int frags = skb_shinfo(skb)->nr_frags;
345         int i;
346
347         /* The packet is laid out thus:
348          * 1. hdr: RNDIS header and PPI
349          * 2. skb linear data
350          * 3. skb fragment data
351          */
352         slots_used += fill_pg_buf(virt_to_page(hdr),
353                                   offset_in_page(hdr),
354                                   len, &pb[slots_used]);
355
356         packet->rmsg_size = len;
357         packet->rmsg_pgcnt = slots_used;
358
359         slots_used += fill_pg_buf(virt_to_page(data),
360                                 offset_in_page(data),
361                                 skb_headlen(skb), &pb[slots_used]);
362
363         for (i = 0; i < frags; i++) {
364                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
365
366                 slots_used += fill_pg_buf(skb_frag_page(frag),
367                                         frag->page_offset,
368                                         skb_frag_size(frag), &pb[slots_used]);
369         }
370         return slots_used;
371 }
372
373 static int count_skb_frag_slots(struct sk_buff *skb)
374 {
375         int i, frags = skb_shinfo(skb)->nr_frags;
376         int pages = 0;
377
378         for (i = 0; i < frags; i++) {
379                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
380                 unsigned long size = skb_frag_size(frag);
381                 unsigned long offset = frag->page_offset;
382
383                 /* Skip unused frames from start of page */
384                 offset &= ~PAGE_MASK;
385                 pages += PFN_UP(offset + size);
386         }
387         return pages;
388 }
389
390 static int netvsc_get_slots(struct sk_buff *skb)
391 {
392         char *data = skb->data;
393         unsigned int offset = offset_in_page(data);
394         unsigned int len = skb_headlen(skb);
395         int slots;
396         int frag_slots;
397
398         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
399         frag_slots = count_skb_frag_slots(skb);
400         return slots + frag_slots;
401 }
402
403 static u32 net_checksum_info(struct sk_buff *skb)
404 {
405         if (skb->protocol == htons(ETH_P_IP)) {
406                 struct iphdr *ip = ip_hdr(skb);
407
408                 if (ip->protocol == IPPROTO_TCP)
409                         return TRANSPORT_INFO_IPV4_TCP;
410                 else if (ip->protocol == IPPROTO_UDP)
411                         return TRANSPORT_INFO_IPV4_UDP;
412         } else {
413                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
414
415                 if (ip6->nexthdr == IPPROTO_TCP)
416                         return TRANSPORT_INFO_IPV6_TCP;
417                 else if (ip6->nexthdr == IPPROTO_UDP)
418                         return TRANSPORT_INFO_IPV6_UDP;
419         }
420
421         return TRANSPORT_INFO_NOT_IP;
422 }
423
424 /* Send skb on the slave VF device. */
425 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
426                           struct sk_buff *skb)
427 {
428         struct net_device_context *ndev_ctx = netdev_priv(net);
429         unsigned int len = skb->len;
430         int rc;
431
432         skb->dev = vf_netdev;
433         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
434
435         rc = dev_queue_xmit(skb);
436         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
437                 struct netvsc_vf_pcpu_stats *pcpu_stats
438                         = this_cpu_ptr(ndev_ctx->vf_stats);
439
440                 u64_stats_update_begin(&pcpu_stats->syncp);
441                 pcpu_stats->tx_packets++;
442                 pcpu_stats->tx_bytes += len;
443                 u64_stats_update_end(&pcpu_stats->syncp);
444         } else {
445                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
446         }
447
448         return rc;
449 }
450
451 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
452 {
453         struct net_device_context *net_device_ctx = netdev_priv(net);
454         struct hv_netvsc_packet *packet = NULL;
455         int ret;
456         unsigned int num_data_pgs;
457         struct rndis_message *rndis_msg;
458         struct rndis_packet *rndis_pkt;
459         struct net_device *vf_netdev;
460         u32 rndis_msg_size;
461         struct rndis_per_packet_info *ppi;
462         u32 hash;
463         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
464
465         /* if VF is present and up then redirect packets
466          * already called with rcu_read_lock_bh
467          */
468         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
469         if (vf_netdev && netif_running(vf_netdev) &&
470             !netpoll_tx_running(net))
471                 return netvsc_vf_xmit(net, vf_netdev, skb);
472
473         /* We will atmost need two pages to describe the rndis
474          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
475          * of pages in a single packet. If skb is scattered around
476          * more pages we try linearizing it.
477          */
478
479         num_data_pgs = netvsc_get_slots(skb) + 2;
480
481         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
482                 ++net_device_ctx->eth_stats.tx_scattered;
483
484                 if (skb_linearize(skb))
485                         goto no_memory;
486
487                 num_data_pgs = netvsc_get_slots(skb) + 2;
488                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
489                         ++net_device_ctx->eth_stats.tx_too_big;
490                         goto drop;
491                 }
492         }
493
494         /*
495          * Place the rndis header in the skb head room and
496          * the skb->cb will be used for hv_netvsc_packet
497          * structure.
498          */
499         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
500         if (ret)
501                 goto no_memory;
502
503         /* Use the skb control buffer for building up the packet */
504         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
505                         FIELD_SIZEOF(struct sk_buff, cb));
506         packet = (struct hv_netvsc_packet *)skb->cb;
507
508         packet->q_idx = skb_get_queue_mapping(skb);
509
510         packet->total_data_buflen = skb->len;
511         packet->total_bytes = skb->len;
512         packet->total_packets = 1;
513
514         rndis_msg = (struct rndis_message *)skb->head;
515
516         memset(rndis_msg, 0, RNDIS_AND_PPI_SIZE);
517
518         /* Add the rndis header */
519         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
520         rndis_msg->msg_len = packet->total_data_buflen;
521         rndis_pkt = &rndis_msg->msg.pkt;
522         rndis_pkt->data_offset = sizeof(struct rndis_packet);
523         rndis_pkt->data_len = packet->total_data_buflen;
524         rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);
525
526         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
527
528         hash = skb_get_hash_raw(skb);
529         if (hash != 0 && net->real_num_tx_queues > 1) {
530                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
531                 ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
532                                     NBL_HASH_VALUE);
533                 *(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
534         }
535
536         if (skb_vlan_tag_present(skb)) {
537                 struct ndis_pkt_8021q_info *vlan;
538
539                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
540                 ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
541                                     IEEE_8021Q_INFO);
542
543                 vlan = (void *)ppi + ppi->ppi_offset;
544                 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
545                 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
546                                 VLAN_PRIO_SHIFT;
547         }
548
549         if (skb_is_gso(skb)) {
550                 struct ndis_tcp_lso_info *lso_info;
551
552                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
553                 ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
554                                     TCP_LARGESEND_PKTINFO);
555
556                 lso_info = (void *)ppi + ppi->ppi_offset;
557
558                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
559                 if (skb->protocol == htons(ETH_P_IP)) {
560                         lso_info->lso_v2_transmit.ip_version =
561                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
562                         ip_hdr(skb)->tot_len = 0;
563                         ip_hdr(skb)->check = 0;
564                         tcp_hdr(skb)->check =
565                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
566                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
567                 } else {
568                         lso_info->lso_v2_transmit.ip_version =
569                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
570                         ipv6_hdr(skb)->payload_len = 0;
571                         tcp_hdr(skb)->check =
572                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
573                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
574                 }
575                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
576                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
577         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
578                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
579                         struct ndis_tcp_ip_checksum_info *csum_info;
580
581                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
582                         ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
583                                             TCPIP_CHKSUM_PKTINFO);
584
585                         csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
586                                                                          ppi->ppi_offset);
587
588                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
589
590                         if (skb->protocol == htons(ETH_P_IP)) {
591                                 csum_info->transmit.is_ipv4 = 1;
592
593                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
594                                         csum_info->transmit.tcp_checksum = 1;
595                                 else
596                                         csum_info->transmit.udp_checksum = 1;
597                         } else {
598                                 csum_info->transmit.is_ipv6 = 1;
599
600                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
601                                         csum_info->transmit.tcp_checksum = 1;
602                                 else
603                                         csum_info->transmit.udp_checksum = 1;
604                         }
605                 } else {
606                         /* Can't do offload of this type of checksum */
607                         if (skb_checksum_help(skb))
608                                 goto drop;
609                 }
610         }
611
612         /* Start filling in the page buffers with the rndis hdr */
613         rndis_msg->msg_len += rndis_msg_size;
614         packet->total_data_buflen = rndis_msg->msg_len;
615         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
616                                                skb, packet, pb);
617
618         /* timestamp packet in software */
619         skb_tx_timestamp(skb);
620
621         ret = netvsc_send(net_device_ctx, packet, rndis_msg, pb, skb);
622         if (likely(ret == 0))
623                 return NETDEV_TX_OK;
624
625         if (ret == -EAGAIN) {
626                 ++net_device_ctx->eth_stats.tx_busy;
627                 return NETDEV_TX_BUSY;
628         }
629
630         if (ret == -ENOSPC)
631                 ++net_device_ctx->eth_stats.tx_no_space;
632
633 drop:
634         dev_kfree_skb_any(skb);
635         net->stats.tx_dropped++;
636
637         return NETDEV_TX_OK;
638
639 no_memory:
640         ++net_device_ctx->eth_stats.tx_no_memory;
641         goto drop;
642 }
643
644 /*
645  * netvsc_linkstatus_callback - Link up/down notification
646  */
647 void netvsc_linkstatus_callback(struct hv_device *device_obj,
648                                 struct rndis_message *resp)
649 {
650         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
651         struct net_device *net;
652         struct net_device_context *ndev_ctx;
653         struct netvsc_reconfig *event;
654         unsigned long flags;
655
656         net = hv_get_drvdata(device_obj);
657
658         if (!net)
659                 return;
660
661         ndev_ctx = netdev_priv(net);
662
663         /* Update the physical link speed when changing to another vSwitch */
664         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
665                 u32 speed;
666
667                 speed = *(u32 *)((void *)indicate
668                                  + indicate->status_buf_offset) / 10000;
669                 ndev_ctx->speed = speed;
670                 return;
671         }
672
673         /* Handle these link change statuses below */
674         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
675             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
676             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
677                 return;
678
679         if (net->reg_state != NETREG_REGISTERED)
680                 return;
681
682         event = kzalloc(sizeof(*event), GFP_ATOMIC);
683         if (!event)
684                 return;
685         event->event = indicate->status;
686
687         spin_lock_irqsave(&ndev_ctx->lock, flags);
688         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
689         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
690
691         schedule_delayed_work(&ndev_ctx->dwork, 0);
692 }
693
694 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
695                                              struct napi_struct *napi,
696                                              const struct ndis_tcp_ip_checksum_info *csum_info,
697                                              const struct ndis_pkt_8021q_info *vlan,
698                                              void *data, u32 buflen)
699 {
700         struct sk_buff *skb;
701
702         skb = napi_alloc_skb(napi, buflen);
703         if (!skb)
704                 return skb;
705
706         /*
707          * Copy to skb. This copy is needed here since the memory pointed by
708          * hv_netvsc_packet cannot be deallocated
709          */
710         skb_put_data(skb, data, buflen);
711
712         skb->protocol = eth_type_trans(skb, net);
713
714         /* skb is already created with CHECKSUM_NONE */
715         skb_checksum_none_assert(skb);
716
717         /*
718          * In Linux, the IP checksum is always checked.
719          * Do L4 checksum offload if enabled and present.
720          */
721         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
722                 if (csum_info->receive.tcp_checksum_succeeded ||
723                     csum_info->receive.udp_checksum_succeeded)
724                         skb->ip_summed = CHECKSUM_UNNECESSARY;
725         }
726
727         if (vlan) {
728                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
729
730                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
731                                        vlan_tci);
732         }
733
734         return skb;
735 }
736
737 /*
738  * netvsc_recv_callback -  Callback when we receive a packet from the
739  * "wire" on the specified device.
740  */
741 int netvsc_recv_callback(struct net_device *net,
742                          struct vmbus_channel *channel,
743                          void  *data, u32 len,
744                          const struct ndis_tcp_ip_checksum_info *csum_info,
745                          const struct ndis_pkt_8021q_info *vlan)
746 {
747         struct net_device_context *net_device_ctx = netdev_priv(net);
748         struct netvsc_device *net_device;
749         u16 q_idx = channel->offermsg.offer.sub_channel_index;
750         struct netvsc_channel *nvchan;
751         struct sk_buff *skb;
752         struct netvsc_stats *rx_stats;
753
754         if (net->reg_state != NETREG_REGISTERED)
755                 return NVSP_STAT_FAIL;
756
757         rcu_read_lock();
758         net_device = rcu_dereference(net_device_ctx->nvdev);
759         if (unlikely(!net_device))
760                 goto drop;
761
762         nvchan = &net_device->chan_table[q_idx];
763
764         /* Allocate a skb - TODO direct I/O to pages? */
765         skb = netvsc_alloc_recv_skb(net, &nvchan->napi,
766                                     csum_info, vlan, data, len);
767         if (unlikely(!skb)) {
768 drop:
769                 ++net->stats.rx_dropped;
770                 rcu_read_unlock();
771                 return NVSP_STAT_FAIL;
772         }
773
774         skb_record_rx_queue(skb, q_idx);
775
776         /*
777          * Even if injecting the packet, record the statistics
778          * on the synthetic device because modifying the VF device
779          * statistics will not work correctly.
780          */
781         rx_stats = &nvchan->rx_stats;
782         u64_stats_update_begin(&rx_stats->syncp);
783         rx_stats->packets++;
784         rx_stats->bytes += len;
785
786         if (skb->pkt_type == PACKET_BROADCAST)
787                 ++rx_stats->broadcast;
788         else if (skb->pkt_type == PACKET_MULTICAST)
789                 ++rx_stats->multicast;
790         u64_stats_update_end(&rx_stats->syncp);
791
792         napi_gro_receive(&nvchan->napi, skb);
793         rcu_read_unlock();
794
795         return 0;
796 }
797
798 static void netvsc_get_drvinfo(struct net_device *net,
799                                struct ethtool_drvinfo *info)
800 {
801         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
802         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
803 }
804
805 static void netvsc_get_channels(struct net_device *net,
806                                 struct ethtool_channels *channel)
807 {
808         struct net_device_context *net_device_ctx = netdev_priv(net);
809         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
810
811         if (nvdev) {
812                 channel->max_combined   = nvdev->max_chn;
813                 channel->combined_count = nvdev->num_chn;
814         }
815 }
816
817 static int netvsc_set_channels(struct net_device *net,
818                                struct ethtool_channels *channels)
819 {
820         struct net_device_context *net_device_ctx = netdev_priv(net);
821         struct hv_device *dev = net_device_ctx->device_ctx;
822         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
823         unsigned int orig, count = channels->combined_count;
824         struct netvsc_device_info device_info;
825         bool was_opened;
826         int ret = 0;
827
828         /* We do not support separate count for rx, tx, or other */
829         if (count == 0 ||
830             channels->rx_count || channels->tx_count || channels->other_count)
831                 return -EINVAL;
832
833         if (count > net->num_tx_queues || count > VRSS_CHANNEL_MAX)
834                 return -EINVAL;
835
836         if (!nvdev || nvdev->destroy)
837                 return -ENODEV;
838
839         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
840                 return -EINVAL;
841
842         if (count > nvdev->max_chn)
843                 return -EINVAL;
844
845         orig = nvdev->num_chn;
846         was_opened = rndis_filter_opened(nvdev);
847         if (was_opened)
848                 rndis_filter_close(nvdev);
849
850         memset(&device_info, 0, sizeof(device_info));
851         device_info.num_chn = count;
852         device_info.ring_size = ring_size;
853         device_info.send_sections = nvdev->send_section_cnt;
854         device_info.recv_sections = nvdev->recv_section_cnt;
855
856         rndis_filter_device_remove(dev, nvdev);
857
858         nvdev = rndis_filter_device_add(dev, &device_info);
859         if (!IS_ERR(nvdev)) {
860                 netif_set_real_num_tx_queues(net, nvdev->num_chn);
861                 netif_set_real_num_rx_queues(net, nvdev->num_chn);
862         } else {
863                 ret = PTR_ERR(nvdev);
864                 device_info.num_chn = orig;
865                 nvdev = rndis_filter_device_add(dev, &device_info);
866
867                 if (IS_ERR(nvdev)) {
868                         netdev_err(net, "restoring channel setting failed: %ld\n",
869                                    PTR_ERR(nvdev));
870                         return ret;
871                 }
872         }
873
874         if (was_opened)
875                 rndis_filter_open(nvdev);
876
877         /* We may have missed link change notifications */
878         net_device_ctx->last_reconfig = 0;
879         schedule_delayed_work(&net_device_ctx->dwork, 0);
880
881         return ret;
882 }
883
884 static bool
885 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
886 {
887         struct ethtool_link_ksettings diff1 = *cmd;
888         struct ethtool_link_ksettings diff2 = {};
889
890         diff1.base.speed = 0;
891         diff1.base.duplex = 0;
892         /* advertising and cmd are usually set */
893         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
894         diff1.base.cmd = 0;
895         /* We set port to PORT_OTHER */
896         diff2.base.port = PORT_OTHER;
897
898         return !memcmp(&diff1, &diff2, sizeof(diff1));
899 }
900
901 static void netvsc_init_settings(struct net_device *dev)
902 {
903         struct net_device_context *ndc = netdev_priv(dev);
904
905         ndc->udp4_l4_hash = true;
906         ndc->udp6_l4_hash = true;
907
908         ndc->speed = SPEED_UNKNOWN;
909         ndc->duplex = DUPLEX_FULL;
910 }
911
912 static int netvsc_get_link_ksettings(struct net_device *dev,
913                                      struct ethtool_link_ksettings *cmd)
914 {
915         struct net_device_context *ndc = netdev_priv(dev);
916
917         cmd->base.speed = ndc->speed;
918         cmd->base.duplex = ndc->duplex;
919         cmd->base.port = PORT_OTHER;
920
921         return 0;
922 }
923
924 static int netvsc_set_link_ksettings(struct net_device *dev,
925                                      const struct ethtool_link_ksettings *cmd)
926 {
927         struct net_device_context *ndc = netdev_priv(dev);
928         u32 speed;
929
930         speed = cmd->base.speed;
931         if (!ethtool_validate_speed(speed) ||
932             !ethtool_validate_duplex(cmd->base.duplex) ||
933             !netvsc_validate_ethtool_ss_cmd(cmd))
934                 return -EINVAL;
935
936         ndc->speed = speed;
937         ndc->duplex = cmd->base.duplex;
938
939         return 0;
940 }
941
942 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
943 {
944         struct net_device_context *ndevctx = netdev_priv(ndev);
945         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
946         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
947         struct hv_device *hdev = ndevctx->device_ctx;
948         int orig_mtu = ndev->mtu;
949         struct netvsc_device_info device_info;
950         bool was_opened;
951         int ret = 0;
952
953         if (!nvdev || nvdev->destroy)
954                 return -ENODEV;
955
956         /* Change MTU of underlying VF netdev first. */
957         if (vf_netdev) {
958                 ret = dev_set_mtu(vf_netdev, mtu);
959                 if (ret)
960                         return ret;
961         }
962
963         netif_device_detach(ndev);
964         was_opened = rndis_filter_opened(nvdev);
965         if (was_opened)
966                 rndis_filter_close(nvdev);
967
968         memset(&device_info, 0, sizeof(device_info));
969         device_info.ring_size = ring_size;
970         device_info.num_chn = nvdev->num_chn;
971         device_info.send_sections = nvdev->send_section_cnt;
972         device_info.recv_sections = nvdev->recv_section_cnt;
973
974         rndis_filter_device_remove(hdev, nvdev);
975
976         ndev->mtu = mtu;
977
978         nvdev = rndis_filter_device_add(hdev, &device_info);
979         if (IS_ERR(nvdev)) {
980                 ret = PTR_ERR(nvdev);
981
982                 /* Attempt rollback to original MTU */
983                 ndev->mtu = orig_mtu;
984                 nvdev = rndis_filter_device_add(hdev, &device_info);
985
986                 if (vf_netdev)
987                         dev_set_mtu(vf_netdev, orig_mtu);
988
989                 if (IS_ERR(nvdev)) {
990                         netdev_err(ndev, "restoring mtu failed: %ld\n",
991                                    PTR_ERR(nvdev));
992                         return ret;
993                 }
994         }
995
996         if (was_opened)
997                 rndis_filter_open(nvdev);
998
999         netif_device_attach(ndev);
1000
1001         /* We may have missed link change notifications */
1002         schedule_delayed_work(&ndevctx->dwork, 0);
1003
1004         return ret;
1005 }
1006
1007 static void netvsc_get_vf_stats(struct net_device *net,
1008                                 struct netvsc_vf_pcpu_stats *tot)
1009 {
1010         struct net_device_context *ndev_ctx = netdev_priv(net);
1011         int i;
1012
1013         memset(tot, 0, sizeof(*tot));
1014
1015         for_each_possible_cpu(i) {
1016                 const struct netvsc_vf_pcpu_stats *stats
1017                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1018                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1019                 unsigned int start;
1020
1021                 do {
1022                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1023                         rx_packets = stats->rx_packets;
1024                         tx_packets = stats->tx_packets;
1025                         rx_bytes = stats->rx_bytes;
1026                         tx_bytes = stats->tx_bytes;
1027                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1028
1029                 tot->rx_packets += rx_packets;
1030                 tot->tx_packets += tx_packets;
1031                 tot->rx_bytes   += rx_bytes;
1032                 tot->tx_bytes   += tx_bytes;
1033                 tot->tx_dropped += stats->tx_dropped;
1034         }
1035 }
1036
1037 static void netvsc_get_stats64(struct net_device *net,
1038                                struct rtnl_link_stats64 *t)
1039 {
1040         struct net_device_context *ndev_ctx = netdev_priv(net);
1041         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1042         struct netvsc_vf_pcpu_stats vf_tot;
1043         int i;
1044
1045         if (!nvdev)
1046                 return;
1047
1048         netdev_stats_to_stats64(t, &net->stats);
1049
1050         netvsc_get_vf_stats(net, &vf_tot);
1051         t->rx_packets += vf_tot.rx_packets;
1052         t->tx_packets += vf_tot.tx_packets;
1053         t->rx_bytes   += vf_tot.rx_bytes;
1054         t->tx_bytes   += vf_tot.tx_bytes;
1055         t->tx_dropped += vf_tot.tx_dropped;
1056
1057         for (i = 0; i < nvdev->num_chn; i++) {
1058                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1059                 const struct netvsc_stats *stats;
1060                 u64 packets, bytes, multicast;
1061                 unsigned int start;
1062
1063                 stats = &nvchan->tx_stats;
1064                 do {
1065                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1066                         packets = stats->packets;
1067                         bytes = stats->bytes;
1068                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1069
1070                 t->tx_bytes     += bytes;
1071                 t->tx_packets   += packets;
1072
1073                 stats = &nvchan->rx_stats;
1074                 do {
1075                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1076                         packets = stats->packets;
1077                         bytes = stats->bytes;
1078                         multicast = stats->multicast + stats->broadcast;
1079                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1080
1081                 t->rx_bytes     += bytes;
1082                 t->rx_packets   += packets;
1083                 t->multicast    += multicast;
1084         }
1085 }
1086
1087 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1088 {
1089         struct net_device_context *ndc = netdev_priv(ndev);
1090         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1091         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1092         struct sockaddr *addr = p;
1093         int err;
1094
1095         err = eth_prepare_mac_addr_change(ndev, p);
1096         if (err)
1097                 return err;
1098
1099         if (!nvdev)
1100                 return -ENODEV;
1101
1102         if (vf_netdev) {
1103                 err = dev_set_mac_address(vf_netdev, addr);
1104                 if (err)
1105                         return err;
1106         }
1107
1108         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1109         if (!err) {
1110                 eth_commit_mac_addr_change(ndev, p);
1111         } else if (vf_netdev) {
1112                 /* rollback change on VF */
1113                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1114                 dev_set_mac_address(vf_netdev, addr);
1115         }
1116
1117         return err;
1118 }
1119
1120 static const struct {
1121         char name[ETH_GSTRING_LEN];
1122         u16 offset;
1123 } netvsc_stats[] = {
1124         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1125         { "tx_no_memory",  offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1126         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1127         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1128         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1129         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1130         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1131 }, vf_stats[] = {
1132         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1133         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1134         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1135         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1136         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1137 };
1138
1139 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1140 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1141
1142 /* 4 statistics per queue (rx/tx packets/bytes) */
1143 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1144
1145 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1146 {
1147         struct net_device_context *ndc = netdev_priv(dev);
1148         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1149
1150         if (!nvdev)
1151                 return -ENODEV;
1152
1153         switch (string_set) {
1154         case ETH_SS_STATS:
1155                 return NETVSC_GLOBAL_STATS_LEN
1156                         + NETVSC_VF_STATS_LEN
1157                         + NETVSC_QUEUE_STATS_LEN(nvdev);
1158         default:
1159                 return -EINVAL;
1160         }
1161 }
1162
1163 static void netvsc_get_ethtool_stats(struct net_device *dev,
1164                                      struct ethtool_stats *stats, u64 *data)
1165 {
1166         struct net_device_context *ndc = netdev_priv(dev);
1167         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1168         const void *nds = &ndc->eth_stats;
1169         const struct netvsc_stats *qstats;
1170         struct netvsc_vf_pcpu_stats sum;
1171         unsigned int start;
1172         u64 packets, bytes;
1173         int i, j;
1174
1175         if (!nvdev)
1176                 return;
1177
1178         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1179                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1180
1181         netvsc_get_vf_stats(dev, &sum);
1182         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1183                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1184
1185         for (j = 0; j < nvdev->num_chn; j++) {
1186                 qstats = &nvdev->chan_table[j].tx_stats;
1187
1188                 do {
1189                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1190                         packets = qstats->packets;
1191                         bytes = qstats->bytes;
1192                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1193                 data[i++] = packets;
1194                 data[i++] = bytes;
1195
1196                 qstats = &nvdev->chan_table[j].rx_stats;
1197                 do {
1198                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1199                         packets = qstats->packets;
1200                         bytes = qstats->bytes;
1201                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1202                 data[i++] = packets;
1203                 data[i++] = bytes;
1204         }
1205 }
1206
1207 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1208 {
1209         struct net_device_context *ndc = netdev_priv(dev);
1210         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1211         u8 *p = data;
1212         int i;
1213
1214         if (!nvdev)
1215                 return;
1216
1217         switch (stringset) {
1218         case ETH_SS_STATS:
1219                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1220                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1221                         p += ETH_GSTRING_LEN;
1222                 }
1223
1224                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1225                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1226                         p += ETH_GSTRING_LEN;
1227                 }
1228
1229                 for (i = 0; i < nvdev->num_chn; i++) {
1230                         sprintf(p, "tx_queue_%u_packets", i);
1231                         p += ETH_GSTRING_LEN;
1232                         sprintf(p, "tx_queue_%u_bytes", i);
1233                         p += ETH_GSTRING_LEN;
1234                         sprintf(p, "rx_queue_%u_packets", i);
1235                         p += ETH_GSTRING_LEN;
1236                         sprintf(p, "rx_queue_%u_bytes", i);
1237                         p += ETH_GSTRING_LEN;
1238                 }
1239
1240                 break;
1241         }
1242 }
1243
1244 static int
1245 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1246                          struct ethtool_rxnfc *info)
1247 {
1248         info->data = RXH_IP_SRC | RXH_IP_DST;
1249
1250         switch (info->flow_type) {
1251         case TCP_V4_FLOW:
1252         case TCP_V6_FLOW:
1253                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1254                 break;
1255
1256         case UDP_V4_FLOW:
1257                 if (ndc->udp4_l4_hash)
1258                         info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1259
1260                 break;
1261
1262         case UDP_V6_FLOW:
1263                 if (ndc->udp6_l4_hash)
1264                         info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
1265
1266                 break;
1267
1268         case IPV4_FLOW:
1269         case IPV6_FLOW:
1270                 break;
1271         default:
1272                 info->data = 0;
1273                 break;
1274         }
1275
1276         return 0;
1277 }
1278
1279 static int
1280 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1281                  u32 *rules)
1282 {
1283         struct net_device_context *ndc = netdev_priv(dev);
1284         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1285
1286         if (!nvdev)
1287                 return -ENODEV;
1288
1289         switch (info->cmd) {
1290         case ETHTOOL_GRXRINGS:
1291                 info->data = nvdev->num_chn;
1292                 return 0;
1293
1294         case ETHTOOL_GRXFH:
1295                 return netvsc_get_rss_hash_opts(ndc, info);
1296         }
1297         return -EOPNOTSUPP;
1298 }
1299
1300 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1301                                     struct ethtool_rxnfc *info)
1302 {
1303         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1304                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1305                 if (info->flow_type == UDP_V4_FLOW)
1306                         ndc->udp4_l4_hash = true;
1307                 else if (info->flow_type == UDP_V6_FLOW)
1308                         ndc->udp6_l4_hash = true;
1309                 else
1310                         return -EOPNOTSUPP;
1311
1312                 return 0;
1313         }
1314
1315         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1316                 if (info->flow_type == UDP_V4_FLOW)
1317                         ndc->udp4_l4_hash = false;
1318                 else if (info->flow_type == UDP_V6_FLOW)
1319                         ndc->udp6_l4_hash = false;
1320                 else
1321                         return -EOPNOTSUPP;
1322
1323                 return 0;
1324         }
1325
1326         return -EOPNOTSUPP;
1327 }
1328
1329 static int
1330 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1331 {
1332         struct net_device_context *ndc = netdev_priv(ndev);
1333
1334         if (info->cmd == ETHTOOL_SRXFH)
1335                 return netvsc_set_rss_hash_opts(ndc, info);
1336
1337         return -EOPNOTSUPP;
1338 }
1339
1340 #ifdef CONFIG_NET_POLL_CONTROLLER
1341 static void netvsc_poll_controller(struct net_device *dev)
1342 {
1343         struct net_device_context *ndc = netdev_priv(dev);
1344         struct netvsc_device *ndev;
1345         int i;
1346
1347         rcu_read_lock();
1348         ndev = rcu_dereference(ndc->nvdev);
1349         if (ndev) {
1350                 for (i = 0; i < ndev->num_chn; i++) {
1351                         struct netvsc_channel *nvchan = &ndev->chan_table[i];
1352
1353                         napi_schedule(&nvchan->napi);
1354                 }
1355         }
1356         rcu_read_unlock();
1357 }
1358 #endif
1359
1360 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1361 {
1362         return NETVSC_HASH_KEYLEN;
1363 }
1364
1365 static u32 netvsc_rss_indir_size(struct net_device *dev)
1366 {
1367         return ITAB_NUM;
1368 }
1369
1370 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1371                            u8 *hfunc)
1372 {
1373         struct net_device_context *ndc = netdev_priv(dev);
1374         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1375         struct rndis_device *rndis_dev;
1376         int i;
1377
1378         if (!ndev)
1379                 return -ENODEV;
1380
1381         if (hfunc)
1382                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1383
1384         rndis_dev = ndev->extension;
1385         if (indir) {
1386                 for (i = 0; i < ITAB_NUM; i++)
1387                         indir[i] = rndis_dev->ind_table[i];
1388         }
1389
1390         if (key)
1391                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1392
1393         return 0;
1394 }
1395
1396 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1397                            const u8 *key, const u8 hfunc)
1398 {
1399         struct net_device_context *ndc = netdev_priv(dev);
1400         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1401         struct rndis_device *rndis_dev;
1402         int i;
1403
1404         if (!ndev)
1405                 return -ENODEV;
1406
1407         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1408                 return -EOPNOTSUPP;
1409
1410         rndis_dev = ndev->extension;
1411         if (indir) {
1412                 for (i = 0; i < ITAB_NUM; i++)
1413                         if (indir[i] >= VRSS_CHANNEL_MAX)
1414                                 return -EINVAL;
1415
1416                 for (i = 0; i < ITAB_NUM; i++)
1417                         rndis_dev->ind_table[i] = indir[i];
1418         }
1419
1420         if (!key) {
1421                 if (!indir)
1422                         return 0;
1423
1424                 key = rndis_dev->rss_key;
1425         }
1426
1427         return rndis_filter_set_rss_param(rndis_dev, key, ndev->num_chn);
1428 }
1429
1430 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1431  * It does have pre-allocated receive area which is divided into sections.
1432  */
1433 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1434                                    struct ethtool_ringparam *ring)
1435 {
1436         u32 max_buf_size;
1437
1438         ring->rx_pending = nvdev->recv_section_cnt;
1439         ring->tx_pending = nvdev->send_section_cnt;
1440
1441         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1442                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1443         else
1444                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1445
1446         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1447         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1448                 / nvdev->send_section_size;
1449 }
1450
1451 static void netvsc_get_ringparam(struct net_device *ndev,
1452                                  struct ethtool_ringparam *ring)
1453 {
1454         struct net_device_context *ndevctx = netdev_priv(ndev);
1455         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1456
1457         if (!nvdev)
1458                 return;
1459
1460         __netvsc_get_ringparam(nvdev, ring);
1461 }
1462
1463 static int netvsc_set_ringparam(struct net_device *ndev,
1464                                 struct ethtool_ringparam *ring)
1465 {
1466         struct net_device_context *ndevctx = netdev_priv(ndev);
1467         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1468         struct hv_device *hdev = ndevctx->device_ctx;
1469         struct netvsc_device_info device_info;
1470         struct ethtool_ringparam orig;
1471         u32 new_tx, new_rx;
1472         bool was_opened;
1473         int ret = 0;
1474
1475         if (!nvdev || nvdev->destroy)
1476                 return -ENODEV;
1477
1478         memset(&orig, 0, sizeof(orig));
1479         __netvsc_get_ringparam(nvdev, &orig);
1480
1481         new_tx = clamp_t(u32, ring->tx_pending,
1482                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1483         new_rx = clamp_t(u32, ring->rx_pending,
1484                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1485
1486         if (new_tx == orig.tx_pending &&
1487             new_rx == orig.rx_pending)
1488                 return 0;        /* no change */
1489
1490         memset(&device_info, 0, sizeof(device_info));
1491         device_info.num_chn = nvdev->num_chn;
1492         device_info.ring_size = ring_size;
1493         device_info.send_sections = new_tx;
1494         device_info.recv_sections = new_rx;
1495
1496         netif_device_detach(ndev);
1497         was_opened = rndis_filter_opened(nvdev);
1498         if (was_opened)
1499                 rndis_filter_close(nvdev);
1500
1501         rndis_filter_device_remove(hdev, nvdev);
1502
1503         nvdev = rndis_filter_device_add(hdev, &device_info);
1504         if (IS_ERR(nvdev)) {
1505                 ret = PTR_ERR(nvdev);
1506
1507                 device_info.send_sections = orig.tx_pending;
1508                 device_info.recv_sections = orig.rx_pending;
1509                 nvdev = rndis_filter_device_add(hdev, &device_info);
1510                 if (IS_ERR(nvdev)) {
1511                         netdev_err(ndev, "restoring ringparam failed: %ld\n",
1512                                    PTR_ERR(nvdev));
1513                         return ret;
1514                 }
1515         }
1516
1517         if (was_opened)
1518                 rndis_filter_open(nvdev);
1519         netif_device_attach(ndev);
1520
1521         /* We may have missed link change notifications */
1522         ndevctx->last_reconfig = 0;
1523         schedule_delayed_work(&ndevctx->dwork, 0);
1524
1525         return ret;
1526 }
1527
1528 static const struct ethtool_ops ethtool_ops = {
1529         .get_drvinfo    = netvsc_get_drvinfo,
1530         .get_link       = ethtool_op_get_link,
1531         .get_ethtool_stats = netvsc_get_ethtool_stats,
1532         .get_sset_count = netvsc_get_sset_count,
1533         .get_strings    = netvsc_get_strings,
1534         .get_channels   = netvsc_get_channels,
1535         .set_channels   = netvsc_set_channels,
1536         .get_ts_info    = ethtool_op_get_ts_info,
1537         .get_rxnfc      = netvsc_get_rxnfc,
1538         .set_rxnfc      = netvsc_set_rxnfc,
1539         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1540         .get_rxfh_indir_size = netvsc_rss_indir_size,
1541         .get_rxfh       = netvsc_get_rxfh,
1542         .set_rxfh       = netvsc_set_rxfh,
1543         .get_link_ksettings = netvsc_get_link_ksettings,
1544         .set_link_ksettings = netvsc_set_link_ksettings,
1545         .get_ringparam  = netvsc_get_ringparam,
1546         .set_ringparam  = netvsc_set_ringparam,
1547 };
1548
1549 static const struct net_device_ops device_ops = {
1550         .ndo_open =                     netvsc_open,
1551         .ndo_stop =                     netvsc_close,
1552         .ndo_start_xmit =               netvsc_start_xmit,
1553         .ndo_set_rx_mode =              netvsc_set_multicast_list,
1554         .ndo_change_mtu =               netvsc_change_mtu,
1555         .ndo_validate_addr =            eth_validate_addr,
1556         .ndo_set_mac_address =          netvsc_set_mac_addr,
1557         .ndo_select_queue =             netvsc_select_queue,
1558         .ndo_get_stats64 =              netvsc_get_stats64,
1559 #ifdef CONFIG_NET_POLL_CONTROLLER
1560         .ndo_poll_controller =          netvsc_poll_controller,
1561 #endif
1562 };
1563
1564 /*
1565  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1566  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1567  * present send GARP packet to network peers with netif_notify_peers().
1568  */
1569 static void netvsc_link_change(struct work_struct *w)
1570 {
1571         struct net_device_context *ndev_ctx =
1572                 container_of(w, struct net_device_context, dwork.work);
1573         struct hv_device *device_obj = ndev_ctx->device_ctx;
1574         struct net_device *net = hv_get_drvdata(device_obj);
1575         struct netvsc_device *net_device;
1576         struct rndis_device *rdev;
1577         struct netvsc_reconfig *event = NULL;
1578         bool notify = false, reschedule = false;
1579         unsigned long flags, next_reconfig, delay;
1580
1581         rtnl_lock();
1582         net_device = rtnl_dereference(ndev_ctx->nvdev);
1583         if (!net_device)
1584                 goto out_unlock;
1585
1586         rdev = net_device->extension;
1587
1588         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1589         if (time_is_after_jiffies(next_reconfig)) {
1590                 /* link_watch only sends one notification with current state
1591                  * per second, avoid doing reconfig more frequently. Handle
1592                  * wrap around.
1593                  */
1594                 delay = next_reconfig - jiffies;
1595                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1596                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1597                 goto out_unlock;
1598         }
1599         ndev_ctx->last_reconfig = jiffies;
1600
1601         spin_lock_irqsave(&ndev_ctx->lock, flags);
1602         if (!list_empty(&ndev_ctx->reconfig_events)) {
1603                 event = list_first_entry(&ndev_ctx->reconfig_events,
1604                                          struct netvsc_reconfig, list);
1605                 list_del(&event->list);
1606                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1607         }
1608         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1609
1610         if (!event)
1611                 goto out_unlock;
1612
1613         switch (event->event) {
1614                 /* Only the following events are possible due to the check in
1615                  * netvsc_linkstatus_callback()
1616                  */
1617         case RNDIS_STATUS_MEDIA_CONNECT:
1618                 if (rdev->link_state) {
1619                         rdev->link_state = false;
1620                         netif_carrier_on(net);
1621                         netif_tx_wake_all_queues(net);
1622                 } else {
1623                         notify = true;
1624                 }
1625                 kfree(event);
1626                 break;
1627         case RNDIS_STATUS_MEDIA_DISCONNECT:
1628                 if (!rdev->link_state) {
1629                         rdev->link_state = true;
1630                         netif_carrier_off(net);
1631                         netif_tx_stop_all_queues(net);
1632                 }
1633                 kfree(event);
1634                 break;
1635         case RNDIS_STATUS_NETWORK_CHANGE:
1636                 /* Only makes sense if carrier is present */
1637                 if (!rdev->link_state) {
1638                         rdev->link_state = true;
1639                         netif_carrier_off(net);
1640                         netif_tx_stop_all_queues(net);
1641                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1642                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1643                         list_add(&event->list, &ndev_ctx->reconfig_events);
1644                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1645                         reschedule = true;
1646                 }
1647                 break;
1648         }
1649
1650         rtnl_unlock();
1651
1652         if (notify)
1653                 netdev_notify_peers(net);
1654
1655         /* link_watch only sends one notification with current state per
1656          * second, handle next reconfig event in 2 seconds.
1657          */
1658         if (reschedule)
1659                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1660
1661         return;
1662
1663 out_unlock:
1664         rtnl_unlock();
1665 }
1666
1667 static struct net_device *get_netvsc_bymac(const u8 *mac)
1668 {
1669         struct net_device *dev;
1670
1671         ASSERT_RTNL();
1672
1673         for_each_netdev(&init_net, dev) {
1674                 if (dev->netdev_ops != &device_ops)
1675                         continue;       /* not a netvsc device */
1676
1677                 if (ether_addr_equal(mac, dev->perm_addr))
1678                         return dev;
1679         }
1680
1681         return NULL;
1682 }
1683
1684 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1685 {
1686         struct net_device *dev;
1687
1688         ASSERT_RTNL();
1689
1690         for_each_netdev(&init_net, dev) {
1691                 struct net_device_context *net_device_ctx;
1692
1693                 if (dev->netdev_ops != &device_ops)
1694                         continue;       /* not a netvsc device */
1695
1696                 net_device_ctx = netdev_priv(dev);
1697                 if (!rtnl_dereference(net_device_ctx->nvdev))
1698                         continue;       /* device is removed */
1699
1700                 if (rtnl_dereference(net_device_ctx->vf_netdev) == vf_netdev)
1701                         return dev;     /* a match */
1702         }
1703
1704         return NULL;
1705 }
1706
1707 /* Called when VF is injecting data into network stack.
1708  * Change the associated network device from VF to netvsc.
1709  * note: already called with rcu_read_lock
1710  */
1711 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1712 {
1713         struct sk_buff *skb = *pskb;
1714         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1715         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1716         struct netvsc_vf_pcpu_stats *pcpu_stats
1717                  = this_cpu_ptr(ndev_ctx->vf_stats);
1718
1719         skb->dev = ndev;
1720
1721         u64_stats_update_begin(&pcpu_stats->syncp);
1722         pcpu_stats->rx_packets++;
1723         pcpu_stats->rx_bytes += skb->len;
1724         u64_stats_update_end(&pcpu_stats->syncp);
1725
1726         return RX_HANDLER_ANOTHER;
1727 }
1728
1729 static int netvsc_vf_join(struct net_device *vf_netdev,
1730                           struct net_device *ndev)
1731 {
1732         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1733         int ret;
1734
1735         ret = netdev_rx_handler_register(vf_netdev,
1736                                          netvsc_vf_handle_frame, ndev);
1737         if (ret != 0) {
1738                 netdev_err(vf_netdev,
1739                            "can not register netvsc VF receive handler (err = %d)\n",
1740                            ret);
1741                 goto rx_handler_failed;
1742         }
1743
1744         ret = netdev_upper_dev_link(vf_netdev, ndev);
1745         if (ret != 0) {
1746                 netdev_err(vf_netdev,
1747                            "can not set master device %s (err = %d)\n",
1748                            ndev->name, ret);
1749                 goto upper_link_failed;
1750         }
1751
1752         /* set slave flag before open to prevent IPv6 addrconf */
1753         vf_netdev->flags |= IFF_SLAVE;
1754
1755         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1756
1757         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1758
1759         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1760         return 0;
1761
1762 upper_link_failed:
1763         netdev_rx_handler_unregister(vf_netdev);
1764 rx_handler_failed:
1765         return ret;
1766 }
1767
1768 static void __netvsc_vf_setup(struct net_device *ndev,
1769                               struct net_device *vf_netdev)
1770 {
1771         int ret;
1772
1773         /* Align MTU of VF with master */
1774         ret = dev_set_mtu(vf_netdev, ndev->mtu);
1775         if (ret)
1776                 netdev_warn(vf_netdev,
1777                             "unable to change mtu to %u\n", ndev->mtu);
1778
1779         if (netif_running(ndev)) {
1780                 ret = dev_open(vf_netdev);
1781                 if (ret)
1782                         netdev_warn(vf_netdev,
1783                                     "unable to open: %d\n", ret);
1784         }
1785 }
1786
1787 /* Setup VF as slave of the synthetic device.
1788  * Runs in workqueue to avoid recursion in netlink callbacks.
1789  */
1790 static void netvsc_vf_setup(struct work_struct *w)
1791 {
1792         struct net_device_context *ndev_ctx
1793                 = container_of(w, struct net_device_context, vf_takeover.work);
1794         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
1795         struct net_device *vf_netdev;
1796
1797         if (!rtnl_trylock()) {
1798                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
1799                 return;
1800         }
1801
1802         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
1803         if (vf_netdev)
1804                 __netvsc_vf_setup(ndev, vf_netdev);
1805
1806         rtnl_unlock();
1807 }
1808
1809 static int netvsc_register_vf(struct net_device *vf_netdev)
1810 {
1811         struct net_device *ndev;
1812         struct net_device_context *net_device_ctx;
1813         struct netvsc_device *netvsc_dev;
1814
1815         if (vf_netdev->addr_len != ETH_ALEN)
1816                 return NOTIFY_DONE;
1817
1818         /*
1819          * We will use the MAC address to locate the synthetic interface to
1820          * associate with the VF interface. If we don't find a matching
1821          * synthetic interface, move on.
1822          */
1823         ndev = get_netvsc_bymac(vf_netdev->perm_addr);
1824         if (!ndev)
1825                 return NOTIFY_DONE;
1826
1827         net_device_ctx = netdev_priv(ndev);
1828         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1829         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
1830                 return NOTIFY_DONE;
1831
1832         if (netvsc_vf_join(vf_netdev, ndev) != 0)
1833                 return NOTIFY_DONE;
1834
1835         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
1836
1837         /* Prevent this module from being unloaded while VF is registered */
1838         try_module_get(THIS_MODULE);
1839
1840         dev_hold(vf_netdev);
1841         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
1842         return NOTIFY_OK;
1843 }
1844
1845 static int netvsc_vf_up(struct net_device *vf_netdev)
1846 {
1847         struct net_device_context *net_device_ctx;
1848         struct netvsc_device *netvsc_dev;
1849         struct net_device *ndev;
1850
1851         ndev = get_netvsc_byref(vf_netdev);
1852         if (!ndev)
1853                 return NOTIFY_DONE;
1854
1855         net_device_ctx = netdev_priv(ndev);
1856         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1857         if (!netvsc_dev)
1858                 return NOTIFY_DONE;
1859
1860         /* Bump refcount when datapath is acvive - Why? */
1861         rndis_filter_open(netvsc_dev);
1862
1863         /* notify the host to switch the data path. */
1864         netvsc_switch_datapath(ndev, true);
1865         netdev_info(ndev, "Data path switched to VF: %s\n", vf_netdev->name);
1866
1867         return NOTIFY_OK;
1868 }
1869
1870 static int netvsc_vf_down(struct net_device *vf_netdev)
1871 {
1872         struct net_device_context *net_device_ctx;
1873         struct netvsc_device *netvsc_dev;
1874         struct net_device *ndev;
1875
1876         ndev = get_netvsc_byref(vf_netdev);
1877         if (!ndev)
1878                 return NOTIFY_DONE;
1879
1880         net_device_ctx = netdev_priv(ndev);
1881         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
1882         if (!netvsc_dev)
1883                 return NOTIFY_DONE;
1884
1885         netvsc_switch_datapath(ndev, false);
1886         netdev_info(ndev, "Data path switched from VF: %s\n", vf_netdev->name);
1887         rndis_filter_close(netvsc_dev);
1888
1889         return NOTIFY_OK;
1890 }
1891
1892 static int netvsc_unregister_vf(struct net_device *vf_netdev)
1893 {
1894         struct net_device *ndev;
1895         struct net_device_context *net_device_ctx;
1896
1897         ndev = get_netvsc_byref(vf_netdev);
1898         if (!ndev)
1899                 return NOTIFY_DONE;
1900
1901         net_device_ctx = netdev_priv(ndev);
1902         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
1903
1904         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
1905
1906         netdev_upper_dev_unlink(vf_netdev, ndev);
1907         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
1908         dev_put(vf_netdev);
1909         module_put(THIS_MODULE);
1910         return NOTIFY_OK;
1911 }
1912
1913 static int netvsc_probe(struct hv_device *dev,
1914                         const struct hv_vmbus_device_id *dev_id)
1915 {
1916         struct net_device *net = NULL;
1917         struct net_device_context *net_device_ctx;
1918         struct netvsc_device_info device_info;
1919         struct netvsc_device *nvdev;
1920         int ret = -ENOMEM;
1921
1922         net = alloc_etherdev_mq(sizeof(struct net_device_context),
1923                                 VRSS_CHANNEL_MAX);
1924         if (!net)
1925                 goto no_net;
1926
1927         netif_carrier_off(net);
1928
1929         netvsc_init_settings(net);
1930
1931         net_device_ctx = netdev_priv(net);
1932         net_device_ctx->device_ctx = dev;
1933         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
1934         if (netif_msg_probe(net_device_ctx))
1935                 netdev_dbg(net, "netvsc msg_enable: %d\n",
1936                            net_device_ctx->msg_enable);
1937
1938         hv_set_drvdata(dev, net);
1939
1940         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
1941
1942         spin_lock_init(&net_device_ctx->lock);
1943         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
1944         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
1945
1946         net_device_ctx->vf_stats
1947                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
1948         if (!net_device_ctx->vf_stats)
1949                 goto no_stats;
1950
1951         net->netdev_ops = &device_ops;
1952         net->ethtool_ops = &ethtool_ops;
1953         SET_NETDEV_DEV(net, &dev->device);
1954
1955         /* We always need headroom for rndis header */
1956         net->needed_headroom = RNDIS_AND_PPI_SIZE;
1957
1958         /* Notify the netvsc driver of the new device */
1959         memset(&device_info, 0, sizeof(device_info));
1960         device_info.ring_size = ring_size;
1961         device_info.num_chn = VRSS_CHANNEL_DEFAULT;
1962         device_info.send_sections = NETVSC_DEFAULT_TX;
1963         device_info.recv_sections = NETVSC_DEFAULT_RX;
1964
1965         nvdev = rndis_filter_device_add(dev, &device_info);
1966         if (IS_ERR(nvdev)) {
1967                 ret = PTR_ERR(nvdev);
1968                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
1969                 goto rndis_failed;
1970         }
1971
1972         memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
1973
1974         /* hw_features computed in rndis_filter_device_add */
1975         net->features = net->hw_features |
1976                 NETIF_F_HIGHDMA | NETIF_F_SG |
1977                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1978         net->vlan_features = net->features;
1979
1980         netif_set_real_num_tx_queues(net, nvdev->num_chn);
1981         netif_set_real_num_rx_queues(net, nvdev->num_chn);
1982
1983         netdev_lockdep_set_classes(net);
1984
1985         /* MTU range: 68 - 1500 or 65521 */
1986         net->min_mtu = NETVSC_MTU_MIN;
1987         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
1988                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
1989         else
1990                 net->max_mtu = ETH_DATA_LEN;
1991
1992         ret = register_netdev(net);
1993         if (ret != 0) {
1994                 pr_err("Unable to register netdev.\n");
1995                 goto register_failed;
1996         }
1997
1998         return ret;
1999
2000 register_failed:
2001         rndis_filter_device_remove(dev, nvdev);
2002 rndis_failed:
2003         free_percpu(net_device_ctx->vf_stats);
2004 no_stats:
2005         hv_set_drvdata(dev, NULL);
2006         free_netdev(net);
2007 no_net:
2008         return ret;
2009 }
2010
2011 static int netvsc_remove(struct hv_device *dev)
2012 {
2013         struct net_device *net;
2014         struct net_device_context *ndev_ctx;
2015
2016         net = hv_get_drvdata(dev);
2017
2018         if (net == NULL) {
2019                 dev_err(&dev->device, "No net device to remove\n");
2020                 return 0;
2021         }
2022
2023         ndev_ctx = netdev_priv(net);
2024
2025         netif_device_detach(net);
2026
2027         cancel_delayed_work_sync(&ndev_ctx->dwork);
2028
2029         /*
2030          * Call to the vsc driver to let it know that the device is being
2031          * removed. Also blocks mtu and channel changes.
2032          */
2033         rtnl_lock();
2034         rndis_filter_device_remove(dev,
2035                                    rtnl_dereference(ndev_ctx->nvdev));
2036         rtnl_unlock();
2037
2038         unregister_netdev(net);
2039
2040         hv_set_drvdata(dev, NULL);
2041
2042         free_percpu(ndev_ctx->vf_stats);
2043         free_netdev(net);
2044         return 0;
2045 }
2046
2047 static const struct hv_vmbus_device_id id_table[] = {
2048         /* Network guid */
2049         { HV_NIC_GUID, },
2050         { },
2051 };
2052
2053 MODULE_DEVICE_TABLE(vmbus, id_table);
2054
2055 /* The one and only one */
2056 static struct  hv_driver netvsc_drv = {
2057         .name = KBUILD_MODNAME,
2058         .id_table = id_table,
2059         .probe = netvsc_probe,
2060         .remove = netvsc_remove,
2061 };
2062
2063 /*
2064  * On Hyper-V, every VF interface is matched with a corresponding
2065  * synthetic interface. The synthetic interface is presented first
2066  * to the guest. When the corresponding VF instance is registered,
2067  * we will take care of switching the data path.
2068  */
2069 static int netvsc_netdev_event(struct notifier_block *this,
2070                                unsigned long event, void *ptr)
2071 {
2072         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2073
2074         /* Skip our own events */
2075         if (event_dev->netdev_ops == &device_ops)
2076                 return NOTIFY_DONE;
2077
2078         /* Avoid non-Ethernet type devices */
2079         if (event_dev->type != ARPHRD_ETHER)
2080                 return NOTIFY_DONE;
2081
2082         /* Avoid Vlan dev with same MAC registering as VF */
2083         if (is_vlan_dev(event_dev))
2084                 return NOTIFY_DONE;
2085
2086         /* Avoid Bonding master dev with same MAC registering as VF */
2087         if ((event_dev->priv_flags & IFF_BONDING) &&
2088             (event_dev->flags & IFF_MASTER))
2089                 return NOTIFY_DONE;
2090
2091         switch (event) {
2092         case NETDEV_REGISTER:
2093                 return netvsc_register_vf(event_dev);
2094         case NETDEV_UNREGISTER:
2095                 return netvsc_unregister_vf(event_dev);
2096         case NETDEV_UP:
2097                 return netvsc_vf_up(event_dev);
2098         case NETDEV_DOWN:
2099                 return netvsc_vf_down(event_dev);
2100         default:
2101                 return NOTIFY_DONE;
2102         }
2103 }
2104
2105 static struct notifier_block netvsc_netdev_notifier = {
2106         .notifier_call = netvsc_netdev_event,
2107 };
2108
2109 static void __exit netvsc_drv_exit(void)
2110 {
2111         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2112         vmbus_driver_unregister(&netvsc_drv);
2113 }
2114
2115 static int __init netvsc_drv_init(void)
2116 {
2117         int ret;
2118
2119         if (ring_size < RING_SIZE_MIN) {
2120                 ring_size = RING_SIZE_MIN;
2121                 pr_info("Increased ring_size to %d (min allowed)\n",
2122                         ring_size);
2123         }
2124         ret = vmbus_driver_register(&netvsc_drv);
2125
2126         if (ret)
2127                 return ret;
2128
2129         register_netdevice_notifier(&netvsc_netdev_notifier);
2130         return 0;
2131 }
2132
2133 MODULE_LICENSE("GPL");
2134 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2135
2136 module_init(netvsc_drv_init);
2137 module_exit(netvsc_drv_exit);