]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/hyperv/netvsc_drv.c
Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[linux.git] / drivers / net / hyperv / netvsc_drv.c
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * Authors:
17  *   Haiyang Zhang <haiyangz@microsoft.com>
18  *   Hank Janssen  <hjanssen@microsoft.com>
19  */
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/init.h>
23 #include <linux/atomic.h>
24 #include <linux/module.h>
25 #include <linux/highmem.h>
26 #include <linux/device.h>
27 #include <linux/io.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/inetdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/pci.h>
33 #include <linux/skbuff.h>
34 #include <linux/if_vlan.h>
35 #include <linux/in.h>
36 #include <linux/slab.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/netpoll.h>
39
40 #include <net/arp.h>
41 #include <net/route.h>
42 #include <net/sock.h>
43 #include <net/pkt_sched.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46
47 #include "hyperv_net.h"
48
49 #define RING_SIZE_MIN   64
50 #define RETRY_US_LO     5000
51 #define RETRY_US_HI     10000
52 #define RETRY_MAX       2000    /* >10 sec */
53
54 #define LINKCHANGE_INT (2 * HZ)
55 #define VF_TAKEOVER_INT (HZ / 10)
56
57 static unsigned int ring_size __ro_after_init = 128;
58 module_param(ring_size, uint, 0444);
59 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
60 unsigned int netvsc_ring_bytes __ro_after_init;
61
62 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
63                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
64                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
65                                 NETIF_MSG_TX_ERR;
66
67 static int debug = -1;
68 module_param(debug, int, 0444);
69 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71 static LIST_HEAD(netvsc_dev_list);
72
73 static void netvsc_change_rx_flags(struct net_device *net, int change)
74 {
75         struct net_device_context *ndev_ctx = netdev_priv(net);
76         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
77         int inc;
78
79         if (!vf_netdev)
80                 return;
81
82         if (change & IFF_PROMISC) {
83                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
84                 dev_set_promiscuity(vf_netdev, inc);
85         }
86
87         if (change & IFF_ALLMULTI) {
88                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
89                 dev_set_allmulti(vf_netdev, inc);
90         }
91 }
92
93 static void netvsc_set_rx_mode(struct net_device *net)
94 {
95         struct net_device_context *ndev_ctx = netdev_priv(net);
96         struct net_device *vf_netdev;
97         struct netvsc_device *nvdev;
98
99         rcu_read_lock();
100         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
101         if (vf_netdev) {
102                 dev_uc_sync(vf_netdev, net);
103                 dev_mc_sync(vf_netdev, net);
104         }
105
106         nvdev = rcu_dereference(ndev_ctx->nvdev);
107         if (nvdev)
108                 rndis_filter_update(nvdev);
109         rcu_read_unlock();
110 }
111
112 static int netvsc_open(struct net_device *net)
113 {
114         struct net_device_context *ndev_ctx = netdev_priv(net);
115         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
116         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
117         struct rndis_device *rdev;
118         int ret = 0;
119
120         netif_carrier_off(net);
121
122         /* Open up the device */
123         ret = rndis_filter_open(nvdev);
124         if (ret != 0) {
125                 netdev_err(net, "unable to open device (ret %d).\n", ret);
126                 return ret;
127         }
128
129         rdev = nvdev->extension;
130         if (!rdev->link_state) {
131                 netif_carrier_on(net);
132                 netif_tx_wake_all_queues(net);
133         }
134
135         if (vf_netdev) {
136                 /* Setting synthetic device up transparently sets
137                  * slave as up. If open fails, then slave will be
138                  * still be offline (and not used).
139                  */
140                 ret = dev_open(vf_netdev);
141                 if (ret)
142                         netdev_warn(net,
143                                     "unable to open slave: %s: %d\n",
144                                     vf_netdev->name, ret);
145         }
146         return 0;
147 }
148
149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 {
151         unsigned int retry = 0;
152         int i;
153
154         /* Ensure pending bytes in ring are read */
155         for (;;) {
156                 u32 aread = 0;
157
158                 for (i = 0; i < nvdev->num_chn; i++) {
159                         struct vmbus_channel *chn
160                                 = nvdev->chan_table[i].channel;
161
162                         if (!chn)
163                                 continue;
164
165                         /* make sure receive not running now */
166                         napi_synchronize(&nvdev->chan_table[i].napi);
167
168                         aread = hv_get_bytes_to_read(&chn->inbound);
169                         if (aread)
170                                 break;
171
172                         aread = hv_get_bytes_to_read(&chn->outbound);
173                         if (aread)
174                                 break;
175                 }
176
177                 if (aread == 0)
178                         return 0;
179
180                 if (++retry > RETRY_MAX)
181                         return -ETIMEDOUT;
182
183                 usleep_range(RETRY_US_LO, RETRY_US_HI);
184         }
185 }
186
187 static int netvsc_close(struct net_device *net)
188 {
189         struct net_device_context *net_device_ctx = netdev_priv(net);
190         struct net_device *vf_netdev
191                 = rtnl_dereference(net_device_ctx->vf_netdev);
192         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
193         int ret;
194
195         netif_tx_disable(net);
196
197         /* No need to close rndis filter if it is removed already */
198         if (!nvdev)
199                 return 0;
200
201         ret = rndis_filter_close(nvdev);
202         if (ret != 0) {
203                 netdev_err(net, "unable to close device (ret %d).\n", ret);
204                 return ret;
205         }
206
207         ret = netvsc_wait_until_empty(nvdev);
208         if (ret)
209                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
210
211         if (vf_netdev)
212                 dev_close(vf_netdev);
213
214         return ret;
215 }
216
217 static inline void *init_ppi_data(struct rndis_message *msg,
218                                   u32 ppi_size, u32 pkt_type)
219 {
220         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
221         struct rndis_per_packet_info *ppi;
222
223         rndis_pkt->data_offset += ppi_size;
224         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
225                 + rndis_pkt->per_pkt_info_len;
226
227         ppi->size = ppi_size;
228         ppi->type = pkt_type;
229         ppi->internal = 0;
230         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
231
232         rndis_pkt->per_pkt_info_len += ppi_size;
233
234         return ppi + 1;
235 }
236
237 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
238  * packets. We can use ethtool to change UDP hash level when necessary.
239  */
240 static inline u32 netvsc_get_hash(
241         struct sk_buff *skb,
242         const struct net_device_context *ndc)
243 {
244         struct flow_keys flow;
245         u32 hash, pkt_proto = 0;
246         static u32 hashrnd __read_mostly;
247
248         net_get_random_once(&hashrnd, sizeof(hashrnd));
249
250         if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
251                 return 0;
252
253         switch (flow.basic.ip_proto) {
254         case IPPROTO_TCP:
255                 if (flow.basic.n_proto == htons(ETH_P_IP))
256                         pkt_proto = HV_TCP4_L4HASH;
257                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
258                         pkt_proto = HV_TCP6_L4HASH;
259
260                 break;
261
262         case IPPROTO_UDP:
263                 if (flow.basic.n_proto == htons(ETH_P_IP))
264                         pkt_proto = HV_UDP4_L4HASH;
265                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
266                         pkt_proto = HV_UDP6_L4HASH;
267
268                 break;
269         }
270
271         if (pkt_proto & ndc->l4_hash) {
272                 return skb_get_hash(skb);
273         } else {
274                 if (flow.basic.n_proto == htons(ETH_P_IP))
275                         hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
276                 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
277                         hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
278                 else
279                         hash = 0;
280
281                 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
282         }
283
284         return hash;
285 }
286
287 static inline int netvsc_get_tx_queue(struct net_device *ndev,
288                                       struct sk_buff *skb, int old_idx)
289 {
290         const struct net_device_context *ndc = netdev_priv(ndev);
291         struct sock *sk = skb->sk;
292         int q_idx;
293
294         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
295                               (VRSS_SEND_TAB_SIZE - 1)];
296
297         /* If queue index changed record the new value */
298         if (q_idx != old_idx &&
299             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
300                 sk_tx_queue_set(sk, q_idx);
301
302         return q_idx;
303 }
304
305 /*
306  * Select queue for transmit.
307  *
308  * If a valid queue has already been assigned, then use that.
309  * Otherwise compute tx queue based on hash and the send table.
310  *
311  * This is basically similar to default (__netdev_pick_tx) with the added step
312  * of using the host send_table when no other queue has been assigned.
313  *
314  * TODO support XPS - but get_xps_queue not exported
315  */
316 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
317 {
318         int q_idx = sk_tx_queue_get(skb->sk);
319
320         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
321                 /* If forwarding a packet, we use the recorded queue when
322                  * available for better cache locality.
323                  */
324                 if (skb_rx_queue_recorded(skb))
325                         q_idx = skb_get_rx_queue(skb);
326                 else
327                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
328         }
329
330         return q_idx;
331 }
332
333 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
334                                struct net_device *sb_dev,
335                                select_queue_fallback_t fallback)
336 {
337         struct net_device_context *ndc = netdev_priv(ndev);
338         struct net_device *vf_netdev;
339         u16 txq;
340
341         rcu_read_lock();
342         vf_netdev = rcu_dereference(ndc->vf_netdev);
343         if (vf_netdev) {
344                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
345
346                 if (vf_ops->ndo_select_queue)
347                         txq = vf_ops->ndo_select_queue(vf_netdev, skb,
348                                                        sb_dev, fallback);
349                 else
350                         txq = fallback(vf_netdev, skb, NULL);
351
352                 /* Record the queue selected by VF so that it can be
353                  * used for common case where VF has more queues than
354                  * the synthetic device.
355                  */
356                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
357         } else {
358                 txq = netvsc_pick_tx(ndev, skb);
359         }
360         rcu_read_unlock();
361
362         while (unlikely(txq >= ndev->real_num_tx_queues))
363                 txq -= ndev->real_num_tx_queues;
364
365         return txq;
366 }
367
368 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
369                        struct hv_page_buffer *pb)
370 {
371         int j = 0;
372
373         /* Deal with compund pages by ignoring unused part
374          * of the page.
375          */
376         page += (offset >> PAGE_SHIFT);
377         offset &= ~PAGE_MASK;
378
379         while (len > 0) {
380                 unsigned long bytes;
381
382                 bytes = PAGE_SIZE - offset;
383                 if (bytes > len)
384                         bytes = len;
385                 pb[j].pfn = page_to_pfn(page);
386                 pb[j].offset = offset;
387                 pb[j].len = bytes;
388
389                 offset += bytes;
390                 len -= bytes;
391
392                 if (offset == PAGE_SIZE && len) {
393                         page++;
394                         offset = 0;
395                         j++;
396                 }
397         }
398
399         return j + 1;
400 }
401
402 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
403                            struct hv_netvsc_packet *packet,
404                            struct hv_page_buffer *pb)
405 {
406         u32 slots_used = 0;
407         char *data = skb->data;
408         int frags = skb_shinfo(skb)->nr_frags;
409         int i;
410
411         /* The packet is laid out thus:
412          * 1. hdr: RNDIS header and PPI
413          * 2. skb linear data
414          * 3. skb fragment data
415          */
416         slots_used += fill_pg_buf(virt_to_page(hdr),
417                                   offset_in_page(hdr),
418                                   len, &pb[slots_used]);
419
420         packet->rmsg_size = len;
421         packet->rmsg_pgcnt = slots_used;
422
423         slots_used += fill_pg_buf(virt_to_page(data),
424                                 offset_in_page(data),
425                                 skb_headlen(skb), &pb[slots_used]);
426
427         for (i = 0; i < frags; i++) {
428                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
429
430                 slots_used += fill_pg_buf(skb_frag_page(frag),
431                                         frag->page_offset,
432                                         skb_frag_size(frag), &pb[slots_used]);
433         }
434         return slots_used;
435 }
436
437 static int count_skb_frag_slots(struct sk_buff *skb)
438 {
439         int i, frags = skb_shinfo(skb)->nr_frags;
440         int pages = 0;
441
442         for (i = 0; i < frags; i++) {
443                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
444                 unsigned long size = skb_frag_size(frag);
445                 unsigned long offset = frag->page_offset;
446
447                 /* Skip unused frames from start of page */
448                 offset &= ~PAGE_MASK;
449                 pages += PFN_UP(offset + size);
450         }
451         return pages;
452 }
453
454 static int netvsc_get_slots(struct sk_buff *skb)
455 {
456         char *data = skb->data;
457         unsigned int offset = offset_in_page(data);
458         unsigned int len = skb_headlen(skb);
459         int slots;
460         int frag_slots;
461
462         slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
463         frag_slots = count_skb_frag_slots(skb);
464         return slots + frag_slots;
465 }
466
467 static u32 net_checksum_info(struct sk_buff *skb)
468 {
469         if (skb->protocol == htons(ETH_P_IP)) {
470                 struct iphdr *ip = ip_hdr(skb);
471
472                 if (ip->protocol == IPPROTO_TCP)
473                         return TRANSPORT_INFO_IPV4_TCP;
474                 else if (ip->protocol == IPPROTO_UDP)
475                         return TRANSPORT_INFO_IPV4_UDP;
476         } else {
477                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
478
479                 if (ip6->nexthdr == IPPROTO_TCP)
480                         return TRANSPORT_INFO_IPV6_TCP;
481                 else if (ip6->nexthdr == IPPROTO_UDP)
482                         return TRANSPORT_INFO_IPV6_UDP;
483         }
484
485         return TRANSPORT_INFO_NOT_IP;
486 }
487
488 /* Send skb on the slave VF device. */
489 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
490                           struct sk_buff *skb)
491 {
492         struct net_device_context *ndev_ctx = netdev_priv(net);
493         unsigned int len = skb->len;
494         int rc;
495
496         skb->dev = vf_netdev;
497         skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
498
499         rc = dev_queue_xmit(skb);
500         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
501                 struct netvsc_vf_pcpu_stats *pcpu_stats
502                         = this_cpu_ptr(ndev_ctx->vf_stats);
503
504                 u64_stats_update_begin(&pcpu_stats->syncp);
505                 pcpu_stats->tx_packets++;
506                 pcpu_stats->tx_bytes += len;
507                 u64_stats_update_end(&pcpu_stats->syncp);
508         } else {
509                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
510         }
511
512         return rc;
513 }
514
515 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
516 {
517         struct net_device_context *net_device_ctx = netdev_priv(net);
518         struct hv_netvsc_packet *packet = NULL;
519         int ret;
520         unsigned int num_data_pgs;
521         struct rndis_message *rndis_msg;
522         struct net_device *vf_netdev;
523         u32 rndis_msg_size;
524         u32 hash;
525         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
526
527         /* if VF is present and up then redirect packets
528          * already called with rcu_read_lock_bh
529          */
530         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
531         if (vf_netdev && netif_running(vf_netdev) &&
532             !netpoll_tx_running(net))
533                 return netvsc_vf_xmit(net, vf_netdev, skb);
534
535         /* We will atmost need two pages to describe the rndis
536          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
537          * of pages in a single packet. If skb is scattered around
538          * more pages we try linearizing it.
539          */
540
541         num_data_pgs = netvsc_get_slots(skb) + 2;
542
543         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
544                 ++net_device_ctx->eth_stats.tx_scattered;
545
546                 if (skb_linearize(skb))
547                         goto no_memory;
548
549                 num_data_pgs = netvsc_get_slots(skb) + 2;
550                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
551                         ++net_device_ctx->eth_stats.tx_too_big;
552                         goto drop;
553                 }
554         }
555
556         /*
557          * Place the rndis header in the skb head room and
558          * the skb->cb will be used for hv_netvsc_packet
559          * structure.
560          */
561         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
562         if (ret)
563                 goto no_memory;
564
565         /* Use the skb control buffer for building up the packet */
566         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
567                         FIELD_SIZEOF(struct sk_buff, cb));
568         packet = (struct hv_netvsc_packet *)skb->cb;
569
570         packet->q_idx = skb_get_queue_mapping(skb);
571
572         packet->total_data_buflen = skb->len;
573         packet->total_bytes = skb->len;
574         packet->total_packets = 1;
575
576         rndis_msg = (struct rndis_message *)skb->head;
577
578         /* Add the rndis header */
579         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
580         rndis_msg->msg_len = packet->total_data_buflen;
581
582         rndis_msg->msg.pkt = (struct rndis_packet) {
583                 .data_offset = sizeof(struct rndis_packet),
584                 .data_len = packet->total_data_buflen,
585                 .per_pkt_info_offset = sizeof(struct rndis_packet),
586         };
587
588         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
589
590         hash = skb_get_hash_raw(skb);
591         if (hash != 0 && net->real_num_tx_queues > 1) {
592                 u32 *hash_info;
593
594                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
595                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
596                                           NBL_HASH_VALUE);
597                 *hash_info = hash;
598         }
599
600         if (skb_vlan_tag_present(skb)) {
601                 struct ndis_pkt_8021q_info *vlan;
602
603                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
604                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
605                                      IEEE_8021Q_INFO);
606
607                 vlan->value = 0;
608                 vlan->vlanid = skb->vlan_tci & VLAN_VID_MASK;
609                 vlan->pri = (skb->vlan_tci & VLAN_PRIO_MASK) >>
610                                 VLAN_PRIO_SHIFT;
611         }
612
613         if (skb_is_gso(skb)) {
614                 struct ndis_tcp_lso_info *lso_info;
615
616                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
617                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
618                                          TCP_LARGESEND_PKTINFO);
619
620                 lso_info->value = 0;
621                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
622                 if (skb->protocol == htons(ETH_P_IP)) {
623                         lso_info->lso_v2_transmit.ip_version =
624                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
625                         ip_hdr(skb)->tot_len = 0;
626                         ip_hdr(skb)->check = 0;
627                         tcp_hdr(skb)->check =
628                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
629                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
630                 } else {
631                         lso_info->lso_v2_transmit.ip_version =
632                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
633                         ipv6_hdr(skb)->payload_len = 0;
634                         tcp_hdr(skb)->check =
635                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
636                                                  &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637                 }
638                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
639                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
640         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
641                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
642                         struct ndis_tcp_ip_checksum_info *csum_info;
643
644                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
645                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
646                                                   TCPIP_CHKSUM_PKTINFO);
647
648                         csum_info->value = 0;
649                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
650
651                         if (skb->protocol == htons(ETH_P_IP)) {
652                                 csum_info->transmit.is_ipv4 = 1;
653
654                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
655                                         csum_info->transmit.tcp_checksum = 1;
656                                 else
657                                         csum_info->transmit.udp_checksum = 1;
658                         } else {
659                                 csum_info->transmit.is_ipv6 = 1;
660
661                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
662                                         csum_info->transmit.tcp_checksum = 1;
663                                 else
664                                         csum_info->transmit.udp_checksum = 1;
665                         }
666                 } else {
667                         /* Can't do offload of this type of checksum */
668                         if (skb_checksum_help(skb))
669                                 goto drop;
670                 }
671         }
672
673         /* Start filling in the page buffers with the rndis hdr */
674         rndis_msg->msg_len += rndis_msg_size;
675         packet->total_data_buflen = rndis_msg->msg_len;
676         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
677                                                skb, packet, pb);
678
679         /* timestamp packet in software */
680         skb_tx_timestamp(skb);
681
682         ret = netvsc_send(net, packet, rndis_msg, pb, skb);
683         if (likely(ret == 0))
684                 return NETDEV_TX_OK;
685
686         if (ret == -EAGAIN) {
687                 ++net_device_ctx->eth_stats.tx_busy;
688                 return NETDEV_TX_BUSY;
689         }
690
691         if (ret == -ENOSPC)
692                 ++net_device_ctx->eth_stats.tx_no_space;
693
694 drop:
695         dev_kfree_skb_any(skb);
696         net->stats.tx_dropped++;
697
698         return NETDEV_TX_OK;
699
700 no_memory:
701         ++net_device_ctx->eth_stats.tx_no_memory;
702         goto drop;
703 }
704
705 /*
706  * netvsc_linkstatus_callback - Link up/down notification
707  */
708 void netvsc_linkstatus_callback(struct net_device *net,
709                                 struct rndis_message *resp)
710 {
711         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
712         struct net_device_context *ndev_ctx = netdev_priv(net);
713         struct netvsc_reconfig *event;
714         unsigned long flags;
715
716         /* Update the physical link speed when changing to another vSwitch */
717         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
718                 u32 speed;
719
720                 speed = *(u32 *)((void *)indicate
721                                  + indicate->status_buf_offset) / 10000;
722                 ndev_ctx->speed = speed;
723                 return;
724         }
725
726         /* Handle these link change statuses below */
727         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
728             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
729             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
730                 return;
731
732         if (net->reg_state != NETREG_REGISTERED)
733                 return;
734
735         event = kzalloc(sizeof(*event), GFP_ATOMIC);
736         if (!event)
737                 return;
738         event->event = indicate->status;
739
740         spin_lock_irqsave(&ndev_ctx->lock, flags);
741         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
742         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
743
744         schedule_delayed_work(&ndev_ctx->dwork, 0);
745 }
746
747 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
748                                              struct netvsc_channel *nvchan)
749 {
750         struct napi_struct *napi = &nvchan->napi;
751         const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
752         const struct ndis_tcp_ip_checksum_info *csum_info =
753                                                 nvchan->rsc.csum_info;
754         struct sk_buff *skb;
755         int i;
756
757         skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
758         if (!skb)
759                 return skb;
760
761         /*
762          * Copy to skb. This copy is needed here since the memory pointed by
763          * hv_netvsc_packet cannot be deallocated
764          */
765         for (i = 0; i < nvchan->rsc.cnt; i++)
766                 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
767
768         skb->protocol = eth_type_trans(skb, net);
769
770         /* skb is already created with CHECKSUM_NONE */
771         skb_checksum_none_assert(skb);
772
773         /*
774          * In Linux, the IP checksum is always checked.
775          * Do L4 checksum offload if enabled and present.
776          */
777         if (csum_info && (net->features & NETIF_F_RXCSUM)) {
778                 if (csum_info->receive.tcp_checksum_succeeded ||
779                     csum_info->receive.udp_checksum_succeeded)
780                         skb->ip_summed = CHECKSUM_UNNECESSARY;
781         }
782
783         if (vlan) {
784                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT);
785
786                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
787                                        vlan_tci);
788         }
789
790         return skb;
791 }
792
793 /*
794  * netvsc_recv_callback -  Callback when we receive a packet from the
795  * "wire" on the specified device.
796  */
797 int netvsc_recv_callback(struct net_device *net,
798                          struct netvsc_device *net_device,
799                          struct netvsc_channel *nvchan)
800 {
801         struct net_device_context *net_device_ctx = netdev_priv(net);
802         struct vmbus_channel *channel = nvchan->channel;
803         u16 q_idx = channel->offermsg.offer.sub_channel_index;
804         struct sk_buff *skb;
805         struct netvsc_stats *rx_stats;
806
807         if (net->reg_state != NETREG_REGISTERED)
808                 return NVSP_STAT_FAIL;
809
810         /* Allocate a skb - TODO direct I/O to pages? */
811         skb = netvsc_alloc_recv_skb(net, nvchan);
812
813         if (unlikely(!skb)) {
814                 ++net_device_ctx->eth_stats.rx_no_memory;
815                 rcu_read_unlock();
816                 return NVSP_STAT_FAIL;
817         }
818
819         skb_record_rx_queue(skb, q_idx);
820
821         /*
822          * Even if injecting the packet, record the statistics
823          * on the synthetic device because modifying the VF device
824          * statistics will not work correctly.
825          */
826         rx_stats = &nvchan->rx_stats;
827         u64_stats_update_begin(&rx_stats->syncp);
828         rx_stats->packets++;
829         rx_stats->bytes += nvchan->rsc.pktlen;
830
831         if (skb->pkt_type == PACKET_BROADCAST)
832                 ++rx_stats->broadcast;
833         else if (skb->pkt_type == PACKET_MULTICAST)
834                 ++rx_stats->multicast;
835         u64_stats_update_end(&rx_stats->syncp);
836
837         napi_gro_receive(&nvchan->napi, skb);
838         return NVSP_STAT_SUCCESS;
839 }
840
841 static void netvsc_get_drvinfo(struct net_device *net,
842                                struct ethtool_drvinfo *info)
843 {
844         strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
845         strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
846 }
847
848 static void netvsc_get_channels(struct net_device *net,
849                                 struct ethtool_channels *channel)
850 {
851         struct net_device_context *net_device_ctx = netdev_priv(net);
852         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
853
854         if (nvdev) {
855                 channel->max_combined   = nvdev->max_chn;
856                 channel->combined_count = nvdev->num_chn;
857         }
858 }
859
860 static int netvsc_detach(struct net_device *ndev,
861                          struct netvsc_device *nvdev)
862 {
863         struct net_device_context *ndev_ctx = netdev_priv(ndev);
864         struct hv_device *hdev = ndev_ctx->device_ctx;
865         int ret;
866
867         /* Don't try continuing to try and setup sub channels */
868         if (cancel_work_sync(&nvdev->subchan_work))
869                 nvdev->num_chn = 1;
870
871         /* If device was up (receiving) then shutdown */
872         if (netif_running(ndev)) {
873                 netif_tx_disable(ndev);
874
875                 ret = rndis_filter_close(nvdev);
876                 if (ret) {
877                         netdev_err(ndev,
878                                    "unable to close device (ret %d).\n", ret);
879                         return ret;
880                 }
881
882                 ret = netvsc_wait_until_empty(nvdev);
883                 if (ret) {
884                         netdev_err(ndev,
885                                    "Ring buffer not empty after closing rndis\n");
886                         return ret;
887                 }
888         }
889
890         netif_device_detach(ndev);
891
892         rndis_filter_device_remove(hdev, nvdev);
893
894         return 0;
895 }
896
897 static int netvsc_attach(struct net_device *ndev,
898                          struct netvsc_device_info *dev_info)
899 {
900         struct net_device_context *ndev_ctx = netdev_priv(ndev);
901         struct hv_device *hdev = ndev_ctx->device_ctx;
902         struct netvsc_device *nvdev;
903         struct rndis_device *rdev;
904         int ret;
905
906         nvdev = rndis_filter_device_add(hdev, dev_info);
907         if (IS_ERR(nvdev))
908                 return PTR_ERR(nvdev);
909
910         if (nvdev->num_chn > 1) {
911                 ret = rndis_set_subchannel(ndev, nvdev);
912
913                 /* if unavailable, just proceed with one queue */
914                 if (ret) {
915                         nvdev->max_chn = 1;
916                         nvdev->num_chn = 1;
917                 }
918         }
919
920         /* In any case device is now ready */
921         netif_device_attach(ndev);
922
923         /* Note: enable and attach happen when sub-channels setup */
924         netif_carrier_off(ndev);
925
926         if (netif_running(ndev)) {
927                 ret = rndis_filter_open(nvdev);
928                 if (ret)
929                         return ret;
930
931                 rdev = nvdev->extension;
932                 if (!rdev->link_state)
933                         netif_carrier_on(ndev);
934         }
935
936         return 0;
937 }
938
939 static int netvsc_set_channels(struct net_device *net,
940                                struct ethtool_channels *channels)
941 {
942         struct net_device_context *net_device_ctx = netdev_priv(net);
943         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
944         unsigned int orig, count = channels->combined_count;
945         struct netvsc_device_info device_info;
946         int ret;
947
948         /* We do not support separate count for rx, tx, or other */
949         if (count == 0 ||
950             channels->rx_count || channels->tx_count || channels->other_count)
951                 return -EINVAL;
952
953         if (!nvdev || nvdev->destroy)
954                 return -ENODEV;
955
956         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
957                 return -EINVAL;
958
959         if (count > nvdev->max_chn)
960                 return -EINVAL;
961
962         orig = nvdev->num_chn;
963
964         memset(&device_info, 0, sizeof(device_info));
965         device_info.num_chn = count;
966         device_info.send_sections = nvdev->send_section_cnt;
967         device_info.send_section_size = nvdev->send_section_size;
968         device_info.recv_sections = nvdev->recv_section_cnt;
969         device_info.recv_section_size = nvdev->recv_section_size;
970
971         ret = netvsc_detach(net, nvdev);
972         if (ret)
973                 return ret;
974
975         ret = netvsc_attach(net, &device_info);
976         if (ret) {
977                 device_info.num_chn = orig;
978                 if (netvsc_attach(net, &device_info))
979                         netdev_err(net, "restoring channel setting failed\n");
980         }
981
982         return ret;
983 }
984
985 static bool
986 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
987 {
988         struct ethtool_link_ksettings diff1 = *cmd;
989         struct ethtool_link_ksettings diff2 = {};
990
991         diff1.base.speed = 0;
992         diff1.base.duplex = 0;
993         /* advertising and cmd are usually set */
994         ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
995         diff1.base.cmd = 0;
996         /* We set port to PORT_OTHER */
997         diff2.base.port = PORT_OTHER;
998
999         return !memcmp(&diff1, &diff2, sizeof(diff1));
1000 }
1001
1002 static void netvsc_init_settings(struct net_device *dev)
1003 {
1004         struct net_device_context *ndc = netdev_priv(dev);
1005
1006         ndc->l4_hash = HV_DEFAULT_L4HASH;
1007
1008         ndc->speed = SPEED_UNKNOWN;
1009         ndc->duplex = DUPLEX_FULL;
1010
1011         dev->features = NETIF_F_LRO;
1012 }
1013
1014 static int netvsc_get_link_ksettings(struct net_device *dev,
1015                                      struct ethtool_link_ksettings *cmd)
1016 {
1017         struct net_device_context *ndc = netdev_priv(dev);
1018
1019         cmd->base.speed = ndc->speed;
1020         cmd->base.duplex = ndc->duplex;
1021         cmd->base.port = PORT_OTHER;
1022
1023         return 0;
1024 }
1025
1026 static int netvsc_set_link_ksettings(struct net_device *dev,
1027                                      const struct ethtool_link_ksettings *cmd)
1028 {
1029         struct net_device_context *ndc = netdev_priv(dev);
1030         u32 speed;
1031
1032         speed = cmd->base.speed;
1033         if (!ethtool_validate_speed(speed) ||
1034             !ethtool_validate_duplex(cmd->base.duplex) ||
1035             !netvsc_validate_ethtool_ss_cmd(cmd))
1036                 return -EINVAL;
1037
1038         ndc->speed = speed;
1039         ndc->duplex = cmd->base.duplex;
1040
1041         return 0;
1042 }
1043
1044 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1045 {
1046         struct net_device_context *ndevctx = netdev_priv(ndev);
1047         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1048         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1049         int orig_mtu = ndev->mtu;
1050         struct netvsc_device_info device_info;
1051         int ret = 0;
1052
1053         if (!nvdev || nvdev->destroy)
1054                 return -ENODEV;
1055
1056         /* Change MTU of underlying VF netdev first. */
1057         if (vf_netdev) {
1058                 ret = dev_set_mtu(vf_netdev, mtu);
1059                 if (ret)
1060                         return ret;
1061         }
1062
1063         memset(&device_info, 0, sizeof(device_info));
1064         device_info.num_chn = nvdev->num_chn;
1065         device_info.send_sections = nvdev->send_section_cnt;
1066         device_info.send_section_size = nvdev->send_section_size;
1067         device_info.recv_sections = nvdev->recv_section_cnt;
1068         device_info.recv_section_size = nvdev->recv_section_size;
1069
1070         ret = netvsc_detach(ndev, nvdev);
1071         if (ret)
1072                 goto rollback_vf;
1073
1074         ndev->mtu = mtu;
1075
1076         ret = netvsc_attach(ndev, &device_info);
1077         if (ret)
1078                 goto rollback;
1079
1080         return 0;
1081
1082 rollback:
1083         /* Attempt rollback to original MTU */
1084         ndev->mtu = orig_mtu;
1085
1086         if (netvsc_attach(ndev, &device_info))
1087                 netdev_err(ndev, "restoring mtu failed\n");
1088 rollback_vf:
1089         if (vf_netdev)
1090                 dev_set_mtu(vf_netdev, orig_mtu);
1091
1092         return ret;
1093 }
1094
1095 static void netvsc_get_vf_stats(struct net_device *net,
1096                                 struct netvsc_vf_pcpu_stats *tot)
1097 {
1098         struct net_device_context *ndev_ctx = netdev_priv(net);
1099         int i;
1100
1101         memset(tot, 0, sizeof(*tot));
1102
1103         for_each_possible_cpu(i) {
1104                 const struct netvsc_vf_pcpu_stats *stats
1105                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1106                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1107                 unsigned int start;
1108
1109                 do {
1110                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1111                         rx_packets = stats->rx_packets;
1112                         tx_packets = stats->tx_packets;
1113                         rx_bytes = stats->rx_bytes;
1114                         tx_bytes = stats->tx_bytes;
1115                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1116
1117                 tot->rx_packets += rx_packets;
1118                 tot->tx_packets += tx_packets;
1119                 tot->rx_bytes   += rx_bytes;
1120                 tot->tx_bytes   += tx_bytes;
1121                 tot->tx_dropped += stats->tx_dropped;
1122         }
1123 }
1124
1125 static void netvsc_get_pcpu_stats(struct net_device *net,
1126                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1127 {
1128         struct net_device_context *ndev_ctx = netdev_priv(net);
1129         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1130         int i;
1131
1132         /* fetch percpu stats of vf */
1133         for_each_possible_cpu(i) {
1134                 const struct netvsc_vf_pcpu_stats *stats =
1135                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1136                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1137                 unsigned int start;
1138
1139                 do {
1140                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1141                         this_tot->vf_rx_packets = stats->rx_packets;
1142                         this_tot->vf_tx_packets = stats->tx_packets;
1143                         this_tot->vf_rx_bytes = stats->rx_bytes;
1144                         this_tot->vf_tx_bytes = stats->tx_bytes;
1145                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1146                 this_tot->rx_packets = this_tot->vf_rx_packets;
1147                 this_tot->tx_packets = this_tot->vf_tx_packets;
1148                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1149                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1150         }
1151
1152         /* fetch percpu stats of netvsc */
1153         for (i = 0; i < nvdev->num_chn; i++) {
1154                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1155                 const struct netvsc_stats *stats;
1156                 struct netvsc_ethtool_pcpu_stats *this_tot =
1157                         &pcpu_tot[nvchan->channel->target_cpu];
1158                 u64 packets, bytes;
1159                 unsigned int start;
1160
1161                 stats = &nvchan->tx_stats;
1162                 do {
1163                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1164                         packets = stats->packets;
1165                         bytes = stats->bytes;
1166                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1167
1168                 this_tot->tx_bytes      += bytes;
1169                 this_tot->tx_packets    += packets;
1170
1171                 stats = &nvchan->rx_stats;
1172                 do {
1173                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1174                         packets = stats->packets;
1175                         bytes = stats->bytes;
1176                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1177
1178                 this_tot->rx_bytes      += bytes;
1179                 this_tot->rx_packets    += packets;
1180         }
1181 }
1182
1183 static void netvsc_get_stats64(struct net_device *net,
1184                                struct rtnl_link_stats64 *t)
1185 {
1186         struct net_device_context *ndev_ctx = netdev_priv(net);
1187         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1188         struct netvsc_vf_pcpu_stats vf_tot;
1189         int i;
1190
1191         if (!nvdev)
1192                 return;
1193
1194         netdev_stats_to_stats64(t, &net->stats);
1195
1196         netvsc_get_vf_stats(net, &vf_tot);
1197         t->rx_packets += vf_tot.rx_packets;
1198         t->tx_packets += vf_tot.tx_packets;
1199         t->rx_bytes   += vf_tot.rx_bytes;
1200         t->tx_bytes   += vf_tot.tx_bytes;
1201         t->tx_dropped += vf_tot.tx_dropped;
1202
1203         for (i = 0; i < nvdev->num_chn; i++) {
1204                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1205                 const struct netvsc_stats *stats;
1206                 u64 packets, bytes, multicast;
1207                 unsigned int start;
1208
1209                 stats = &nvchan->tx_stats;
1210                 do {
1211                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1212                         packets = stats->packets;
1213                         bytes = stats->bytes;
1214                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1215
1216                 t->tx_bytes     += bytes;
1217                 t->tx_packets   += packets;
1218
1219                 stats = &nvchan->rx_stats;
1220                 do {
1221                         start = u64_stats_fetch_begin_irq(&stats->syncp);
1222                         packets = stats->packets;
1223                         bytes = stats->bytes;
1224                         multicast = stats->multicast + stats->broadcast;
1225                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1226
1227                 t->rx_bytes     += bytes;
1228                 t->rx_packets   += packets;
1229                 t->multicast    += multicast;
1230         }
1231 }
1232
1233 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1234 {
1235         struct net_device_context *ndc = netdev_priv(ndev);
1236         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1237         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1238         struct sockaddr *addr = p;
1239         int err;
1240
1241         err = eth_prepare_mac_addr_change(ndev, p);
1242         if (err)
1243                 return err;
1244
1245         if (!nvdev)
1246                 return -ENODEV;
1247
1248         if (vf_netdev) {
1249                 err = dev_set_mac_address(vf_netdev, addr);
1250                 if (err)
1251                         return err;
1252         }
1253
1254         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1255         if (!err) {
1256                 eth_commit_mac_addr_change(ndev, p);
1257         } else if (vf_netdev) {
1258                 /* rollback change on VF */
1259                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1260                 dev_set_mac_address(vf_netdev, addr);
1261         }
1262
1263         return err;
1264 }
1265
1266 static const struct {
1267         char name[ETH_GSTRING_LEN];
1268         u16 offset;
1269 } netvsc_stats[] = {
1270         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1271         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1272         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1273         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1274         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1275         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1276         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1277         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1278         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1279         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1280 }, pcpu_stats[] = {
1281         { "cpu%u_rx_packets",
1282                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1283         { "cpu%u_rx_bytes",
1284                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1285         { "cpu%u_tx_packets",
1286                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1287         { "cpu%u_tx_bytes",
1288                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1289         { "cpu%u_vf_rx_packets",
1290                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1291         { "cpu%u_vf_rx_bytes",
1292                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1293         { "cpu%u_vf_tx_packets",
1294                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1295         { "cpu%u_vf_tx_bytes",
1296                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1297 }, vf_stats[] = {
1298         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1299         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1300         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1301         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1302         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1303 };
1304
1305 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1306 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1307
1308 /* statistics per queue (rx/tx packets/bytes) */
1309 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1310
1311 /* 4 statistics per queue (rx/tx packets/bytes) */
1312 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1313
1314 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1315 {
1316         struct net_device_context *ndc = netdev_priv(dev);
1317         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1318
1319         if (!nvdev)
1320                 return -ENODEV;
1321
1322         switch (string_set) {
1323         case ETH_SS_STATS:
1324                 return NETVSC_GLOBAL_STATS_LEN
1325                         + NETVSC_VF_STATS_LEN
1326                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1327                         + NETVSC_PCPU_STATS_LEN;
1328         default:
1329                 return -EINVAL;
1330         }
1331 }
1332
1333 static void netvsc_get_ethtool_stats(struct net_device *dev,
1334                                      struct ethtool_stats *stats, u64 *data)
1335 {
1336         struct net_device_context *ndc = netdev_priv(dev);
1337         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1338         const void *nds = &ndc->eth_stats;
1339         const struct netvsc_stats *qstats;
1340         struct netvsc_vf_pcpu_stats sum;
1341         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1342         unsigned int start;
1343         u64 packets, bytes;
1344         int i, j, cpu;
1345
1346         if (!nvdev)
1347                 return;
1348
1349         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1350                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1351
1352         netvsc_get_vf_stats(dev, &sum);
1353         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1354                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1355
1356         for (j = 0; j < nvdev->num_chn; j++) {
1357                 qstats = &nvdev->chan_table[j].tx_stats;
1358
1359                 do {
1360                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1361                         packets = qstats->packets;
1362                         bytes = qstats->bytes;
1363                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1364                 data[i++] = packets;
1365                 data[i++] = bytes;
1366
1367                 qstats = &nvdev->chan_table[j].rx_stats;
1368                 do {
1369                         start = u64_stats_fetch_begin_irq(&qstats->syncp);
1370                         packets = qstats->packets;
1371                         bytes = qstats->bytes;
1372                 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1373                 data[i++] = packets;
1374                 data[i++] = bytes;
1375         }
1376
1377         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1378                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1379                                   GFP_KERNEL);
1380         netvsc_get_pcpu_stats(dev, pcpu_sum);
1381         for_each_present_cpu(cpu) {
1382                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1383
1384                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1385                         data[i++] = *(u64 *)((void *)this_sum
1386                                              + pcpu_stats[j].offset);
1387         }
1388         kvfree(pcpu_sum);
1389 }
1390
1391 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1392 {
1393         struct net_device_context *ndc = netdev_priv(dev);
1394         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1395         u8 *p = data;
1396         int i, cpu;
1397
1398         if (!nvdev)
1399                 return;
1400
1401         switch (stringset) {
1402         case ETH_SS_STATS:
1403                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1404                         memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1405                         p += ETH_GSTRING_LEN;
1406                 }
1407
1408                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1409                         memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1410                         p += ETH_GSTRING_LEN;
1411                 }
1412
1413                 for (i = 0; i < nvdev->num_chn; i++) {
1414                         sprintf(p, "tx_queue_%u_packets", i);
1415                         p += ETH_GSTRING_LEN;
1416                         sprintf(p, "tx_queue_%u_bytes", i);
1417                         p += ETH_GSTRING_LEN;
1418                         sprintf(p, "rx_queue_%u_packets", i);
1419                         p += ETH_GSTRING_LEN;
1420                         sprintf(p, "rx_queue_%u_bytes", i);
1421                         p += ETH_GSTRING_LEN;
1422                 }
1423
1424                 for_each_present_cpu(cpu) {
1425                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1426                                 sprintf(p, pcpu_stats[i].name, cpu);
1427                                 p += ETH_GSTRING_LEN;
1428                         }
1429                 }
1430
1431                 break;
1432         }
1433 }
1434
1435 static int
1436 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1437                          struct ethtool_rxnfc *info)
1438 {
1439         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1440
1441         info->data = RXH_IP_SRC | RXH_IP_DST;
1442
1443         switch (info->flow_type) {
1444         case TCP_V4_FLOW:
1445                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1446                         info->data |= l4_flag;
1447
1448                 break;
1449
1450         case TCP_V6_FLOW:
1451                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1452                         info->data |= l4_flag;
1453
1454                 break;
1455
1456         case UDP_V4_FLOW:
1457                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1458                         info->data |= l4_flag;
1459
1460                 break;
1461
1462         case UDP_V6_FLOW:
1463                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1464                         info->data |= l4_flag;
1465
1466                 break;
1467
1468         case IPV4_FLOW:
1469         case IPV6_FLOW:
1470                 break;
1471         default:
1472                 info->data = 0;
1473                 break;
1474         }
1475
1476         return 0;
1477 }
1478
1479 static int
1480 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1481                  u32 *rules)
1482 {
1483         struct net_device_context *ndc = netdev_priv(dev);
1484         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1485
1486         if (!nvdev)
1487                 return -ENODEV;
1488
1489         switch (info->cmd) {
1490         case ETHTOOL_GRXRINGS:
1491                 info->data = nvdev->num_chn;
1492                 return 0;
1493
1494         case ETHTOOL_GRXFH:
1495                 return netvsc_get_rss_hash_opts(ndc, info);
1496         }
1497         return -EOPNOTSUPP;
1498 }
1499
1500 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1501                                     struct ethtool_rxnfc *info)
1502 {
1503         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1504                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1505                 switch (info->flow_type) {
1506                 case TCP_V4_FLOW:
1507                         ndc->l4_hash |= HV_TCP4_L4HASH;
1508                         break;
1509
1510                 case TCP_V6_FLOW:
1511                         ndc->l4_hash |= HV_TCP6_L4HASH;
1512                         break;
1513
1514                 case UDP_V4_FLOW:
1515                         ndc->l4_hash |= HV_UDP4_L4HASH;
1516                         break;
1517
1518                 case UDP_V6_FLOW:
1519                         ndc->l4_hash |= HV_UDP6_L4HASH;
1520                         break;
1521
1522                 default:
1523                         return -EOPNOTSUPP;
1524                 }
1525
1526                 return 0;
1527         }
1528
1529         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1530                 switch (info->flow_type) {
1531                 case TCP_V4_FLOW:
1532                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1533                         break;
1534
1535                 case TCP_V6_FLOW:
1536                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1537                         break;
1538
1539                 case UDP_V4_FLOW:
1540                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1541                         break;
1542
1543                 case UDP_V6_FLOW:
1544                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1545                         break;
1546
1547                 default:
1548                         return -EOPNOTSUPP;
1549                 }
1550
1551                 return 0;
1552         }
1553
1554         return -EOPNOTSUPP;
1555 }
1556
1557 static int
1558 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1559 {
1560         struct net_device_context *ndc = netdev_priv(ndev);
1561
1562         if (info->cmd == ETHTOOL_SRXFH)
1563                 return netvsc_set_rss_hash_opts(ndc, info);
1564
1565         return -EOPNOTSUPP;
1566 }
1567
1568 #ifdef CONFIG_NET_POLL_CONTROLLER
1569 static void netvsc_poll_controller(struct net_device *dev)
1570 {
1571         struct net_device_context *ndc = netdev_priv(dev);
1572         struct netvsc_device *ndev;
1573         int i;
1574
1575         rcu_read_lock();
1576         ndev = rcu_dereference(ndc->nvdev);
1577         if (ndev) {
1578                 for (i = 0; i < ndev->num_chn; i++) {
1579                         struct netvsc_channel *nvchan = &ndev->chan_table[i];
1580
1581                         napi_schedule(&nvchan->napi);
1582                 }
1583         }
1584         rcu_read_unlock();
1585 }
1586 #endif
1587
1588 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1589 {
1590         return NETVSC_HASH_KEYLEN;
1591 }
1592
1593 static u32 netvsc_rss_indir_size(struct net_device *dev)
1594 {
1595         return ITAB_NUM;
1596 }
1597
1598 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1599                            u8 *hfunc)
1600 {
1601         struct net_device_context *ndc = netdev_priv(dev);
1602         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1603         struct rndis_device *rndis_dev;
1604         int i;
1605
1606         if (!ndev)
1607                 return -ENODEV;
1608
1609         if (hfunc)
1610                 *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1611
1612         rndis_dev = ndev->extension;
1613         if (indir) {
1614                 for (i = 0; i < ITAB_NUM; i++)
1615                         indir[i] = rndis_dev->rx_table[i];
1616         }
1617
1618         if (key)
1619                 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1620
1621         return 0;
1622 }
1623
1624 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1625                            const u8 *key, const u8 hfunc)
1626 {
1627         struct net_device_context *ndc = netdev_priv(dev);
1628         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1629         struct rndis_device *rndis_dev;
1630         int i;
1631
1632         if (!ndev)
1633                 return -ENODEV;
1634
1635         if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1636                 return -EOPNOTSUPP;
1637
1638         rndis_dev = ndev->extension;
1639         if (indir) {
1640                 for (i = 0; i < ITAB_NUM; i++)
1641                         if (indir[i] >= ndev->num_chn)
1642                                 return -EINVAL;
1643
1644                 for (i = 0; i < ITAB_NUM; i++)
1645                         rndis_dev->rx_table[i] = indir[i];
1646         }
1647
1648         if (!key) {
1649                 if (!indir)
1650                         return 0;
1651
1652                 key = rndis_dev->rss_key;
1653         }
1654
1655         return rndis_filter_set_rss_param(rndis_dev, key);
1656 }
1657
1658 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1659  * It does have pre-allocated receive area which is divided into sections.
1660  */
1661 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1662                                    struct ethtool_ringparam *ring)
1663 {
1664         u32 max_buf_size;
1665
1666         ring->rx_pending = nvdev->recv_section_cnt;
1667         ring->tx_pending = nvdev->send_section_cnt;
1668
1669         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1670                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1671         else
1672                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1673
1674         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1675         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1676                 / nvdev->send_section_size;
1677 }
1678
1679 static void netvsc_get_ringparam(struct net_device *ndev,
1680                                  struct ethtool_ringparam *ring)
1681 {
1682         struct net_device_context *ndevctx = netdev_priv(ndev);
1683         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1684
1685         if (!nvdev)
1686                 return;
1687
1688         __netvsc_get_ringparam(nvdev, ring);
1689 }
1690
1691 static int netvsc_set_ringparam(struct net_device *ndev,
1692                                 struct ethtool_ringparam *ring)
1693 {
1694         struct net_device_context *ndevctx = netdev_priv(ndev);
1695         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1696         struct netvsc_device_info device_info;
1697         struct ethtool_ringparam orig;
1698         u32 new_tx, new_rx;
1699         int ret = 0;
1700
1701         if (!nvdev || nvdev->destroy)
1702                 return -ENODEV;
1703
1704         memset(&orig, 0, sizeof(orig));
1705         __netvsc_get_ringparam(nvdev, &orig);
1706
1707         new_tx = clamp_t(u32, ring->tx_pending,
1708                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1709         new_rx = clamp_t(u32, ring->rx_pending,
1710                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1711
1712         if (new_tx == orig.tx_pending &&
1713             new_rx == orig.rx_pending)
1714                 return 0;        /* no change */
1715
1716         memset(&device_info, 0, sizeof(device_info));
1717         device_info.num_chn = nvdev->num_chn;
1718         device_info.send_sections = new_tx;
1719         device_info.send_section_size = nvdev->send_section_size;
1720         device_info.recv_sections = new_rx;
1721         device_info.recv_section_size = nvdev->recv_section_size;
1722
1723         ret = netvsc_detach(ndev, nvdev);
1724         if (ret)
1725                 return ret;
1726
1727         ret = netvsc_attach(ndev, &device_info);
1728         if (ret) {
1729                 device_info.send_sections = orig.tx_pending;
1730                 device_info.recv_sections = orig.rx_pending;
1731
1732                 if (netvsc_attach(ndev, &device_info))
1733                         netdev_err(ndev, "restoring ringparam failed");
1734         }
1735
1736         return ret;
1737 }
1738
1739 static int netvsc_set_features(struct net_device *ndev,
1740                                netdev_features_t features)
1741 {
1742         netdev_features_t change = features ^ ndev->features;
1743         struct net_device_context *ndevctx = netdev_priv(ndev);
1744         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1745         struct ndis_offload_params offloads;
1746
1747         if (!nvdev || nvdev->destroy)
1748                 return -ENODEV;
1749
1750         if (!(change & NETIF_F_LRO))
1751                 return 0;
1752
1753         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1754
1755         if (features & NETIF_F_LRO) {
1756                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1757                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1758         } else {
1759                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1760                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1761         }
1762
1763         return rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1764 }
1765
1766 static u32 netvsc_get_msglevel(struct net_device *ndev)
1767 {
1768         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1769
1770         return ndev_ctx->msg_enable;
1771 }
1772
1773 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1774 {
1775         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1776
1777         ndev_ctx->msg_enable = val;
1778 }
1779
1780 static const struct ethtool_ops ethtool_ops = {
1781         .get_drvinfo    = netvsc_get_drvinfo,
1782         .get_msglevel   = netvsc_get_msglevel,
1783         .set_msglevel   = netvsc_set_msglevel,
1784         .get_link       = ethtool_op_get_link,
1785         .get_ethtool_stats = netvsc_get_ethtool_stats,
1786         .get_sset_count = netvsc_get_sset_count,
1787         .get_strings    = netvsc_get_strings,
1788         .get_channels   = netvsc_get_channels,
1789         .set_channels   = netvsc_set_channels,
1790         .get_ts_info    = ethtool_op_get_ts_info,
1791         .get_rxnfc      = netvsc_get_rxnfc,
1792         .set_rxnfc      = netvsc_set_rxnfc,
1793         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1794         .get_rxfh_indir_size = netvsc_rss_indir_size,
1795         .get_rxfh       = netvsc_get_rxfh,
1796         .set_rxfh       = netvsc_set_rxfh,
1797         .get_link_ksettings = netvsc_get_link_ksettings,
1798         .set_link_ksettings = netvsc_set_link_ksettings,
1799         .get_ringparam  = netvsc_get_ringparam,
1800         .set_ringparam  = netvsc_set_ringparam,
1801 };
1802
1803 static const struct net_device_ops device_ops = {
1804         .ndo_open =                     netvsc_open,
1805         .ndo_stop =                     netvsc_close,
1806         .ndo_start_xmit =               netvsc_start_xmit,
1807         .ndo_change_rx_flags =          netvsc_change_rx_flags,
1808         .ndo_set_rx_mode =              netvsc_set_rx_mode,
1809         .ndo_set_features =             netvsc_set_features,
1810         .ndo_change_mtu =               netvsc_change_mtu,
1811         .ndo_validate_addr =            eth_validate_addr,
1812         .ndo_set_mac_address =          netvsc_set_mac_addr,
1813         .ndo_select_queue =             netvsc_select_queue,
1814         .ndo_get_stats64 =              netvsc_get_stats64,
1815 #ifdef CONFIG_NET_POLL_CONTROLLER
1816         .ndo_poll_controller =          netvsc_poll_controller,
1817 #endif
1818 };
1819
1820 /*
1821  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1822  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1823  * present send GARP packet to network peers with netif_notify_peers().
1824  */
1825 static void netvsc_link_change(struct work_struct *w)
1826 {
1827         struct net_device_context *ndev_ctx =
1828                 container_of(w, struct net_device_context, dwork.work);
1829         struct hv_device *device_obj = ndev_ctx->device_ctx;
1830         struct net_device *net = hv_get_drvdata(device_obj);
1831         struct netvsc_device *net_device;
1832         struct rndis_device *rdev;
1833         struct netvsc_reconfig *event = NULL;
1834         bool notify = false, reschedule = false;
1835         unsigned long flags, next_reconfig, delay;
1836
1837         /* if changes are happening, comeback later */
1838         if (!rtnl_trylock()) {
1839                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1840                 return;
1841         }
1842
1843         net_device = rtnl_dereference(ndev_ctx->nvdev);
1844         if (!net_device)
1845                 goto out_unlock;
1846
1847         rdev = net_device->extension;
1848
1849         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1850         if (time_is_after_jiffies(next_reconfig)) {
1851                 /* link_watch only sends one notification with current state
1852                  * per second, avoid doing reconfig more frequently. Handle
1853                  * wrap around.
1854                  */
1855                 delay = next_reconfig - jiffies;
1856                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1857                 schedule_delayed_work(&ndev_ctx->dwork, delay);
1858                 goto out_unlock;
1859         }
1860         ndev_ctx->last_reconfig = jiffies;
1861
1862         spin_lock_irqsave(&ndev_ctx->lock, flags);
1863         if (!list_empty(&ndev_ctx->reconfig_events)) {
1864                 event = list_first_entry(&ndev_ctx->reconfig_events,
1865                                          struct netvsc_reconfig, list);
1866                 list_del(&event->list);
1867                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1868         }
1869         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1870
1871         if (!event)
1872                 goto out_unlock;
1873
1874         switch (event->event) {
1875                 /* Only the following events are possible due to the check in
1876                  * netvsc_linkstatus_callback()
1877                  */
1878         case RNDIS_STATUS_MEDIA_CONNECT:
1879                 if (rdev->link_state) {
1880                         rdev->link_state = false;
1881                         netif_carrier_on(net);
1882                         netif_tx_wake_all_queues(net);
1883                 } else {
1884                         notify = true;
1885                 }
1886                 kfree(event);
1887                 break;
1888         case RNDIS_STATUS_MEDIA_DISCONNECT:
1889                 if (!rdev->link_state) {
1890                         rdev->link_state = true;
1891                         netif_carrier_off(net);
1892                         netif_tx_stop_all_queues(net);
1893                 }
1894                 kfree(event);
1895                 break;
1896         case RNDIS_STATUS_NETWORK_CHANGE:
1897                 /* Only makes sense if carrier is present */
1898                 if (!rdev->link_state) {
1899                         rdev->link_state = true;
1900                         netif_carrier_off(net);
1901                         netif_tx_stop_all_queues(net);
1902                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
1903                         spin_lock_irqsave(&ndev_ctx->lock, flags);
1904                         list_add(&event->list, &ndev_ctx->reconfig_events);
1905                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1906                         reschedule = true;
1907                 }
1908                 break;
1909         }
1910
1911         rtnl_unlock();
1912
1913         if (notify)
1914                 netdev_notify_peers(net);
1915
1916         /* link_watch only sends one notification with current state per
1917          * second, handle next reconfig event in 2 seconds.
1918          */
1919         if (reschedule)
1920                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1921
1922         return;
1923
1924 out_unlock:
1925         rtnl_unlock();
1926 }
1927
1928 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1929 {
1930         struct net_device_context *net_device_ctx;
1931         struct net_device *dev;
1932
1933         dev = netdev_master_upper_dev_get(vf_netdev);
1934         if (!dev || dev->netdev_ops != &device_ops)
1935                 return NULL;    /* not a netvsc device */
1936
1937         net_device_ctx = netdev_priv(dev);
1938         if (!rtnl_dereference(net_device_ctx->nvdev))
1939                 return NULL;    /* device is removed */
1940
1941         return dev;
1942 }
1943
1944 /* Called when VF is injecting data into network stack.
1945  * Change the associated network device from VF to netvsc.
1946  * note: already called with rcu_read_lock
1947  */
1948 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
1949 {
1950         struct sk_buff *skb = *pskb;
1951         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
1952         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1953         struct netvsc_vf_pcpu_stats *pcpu_stats
1954                  = this_cpu_ptr(ndev_ctx->vf_stats);
1955
1956         skb->dev = ndev;
1957
1958         u64_stats_update_begin(&pcpu_stats->syncp);
1959         pcpu_stats->rx_packets++;
1960         pcpu_stats->rx_bytes += skb->len;
1961         u64_stats_update_end(&pcpu_stats->syncp);
1962
1963         return RX_HANDLER_ANOTHER;
1964 }
1965
1966 static int netvsc_vf_join(struct net_device *vf_netdev,
1967                           struct net_device *ndev)
1968 {
1969         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1970         int ret;
1971
1972         ret = netdev_rx_handler_register(vf_netdev,
1973                                          netvsc_vf_handle_frame, ndev);
1974         if (ret != 0) {
1975                 netdev_err(vf_netdev,
1976                            "can not register netvsc VF receive handler (err = %d)\n",
1977                            ret);
1978                 goto rx_handler_failed;
1979         }
1980
1981         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
1982                                            NULL, NULL, NULL);
1983         if (ret != 0) {
1984                 netdev_err(vf_netdev,
1985                            "can not set master device %s (err = %d)\n",
1986                            ndev->name, ret);
1987                 goto upper_link_failed;
1988         }
1989
1990         /* set slave flag before open to prevent IPv6 addrconf */
1991         vf_netdev->flags |= IFF_SLAVE;
1992
1993         schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
1994
1995         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
1996
1997         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
1998         return 0;
1999
2000 upper_link_failed:
2001         netdev_rx_handler_unregister(vf_netdev);
2002 rx_handler_failed:
2003         return ret;
2004 }
2005
2006 static void __netvsc_vf_setup(struct net_device *ndev,
2007                               struct net_device *vf_netdev)
2008 {
2009         int ret;
2010
2011         /* Align MTU of VF with master */
2012         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2013         if (ret)
2014                 netdev_warn(vf_netdev,
2015                             "unable to change mtu to %u\n", ndev->mtu);
2016
2017         /* set multicast etc flags on VF */
2018         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE);
2019
2020         /* sync address list from ndev to VF */
2021         netif_addr_lock_bh(ndev);
2022         dev_uc_sync(vf_netdev, ndev);
2023         dev_mc_sync(vf_netdev, ndev);
2024         netif_addr_unlock_bh(ndev);
2025
2026         if (netif_running(ndev)) {
2027                 ret = dev_open(vf_netdev);
2028                 if (ret)
2029                         netdev_warn(vf_netdev,
2030                                     "unable to open: %d\n", ret);
2031         }
2032 }
2033
2034 /* Setup VF as slave of the synthetic device.
2035  * Runs in workqueue to avoid recursion in netlink callbacks.
2036  */
2037 static void netvsc_vf_setup(struct work_struct *w)
2038 {
2039         struct net_device_context *ndev_ctx
2040                 = container_of(w, struct net_device_context, vf_takeover.work);
2041         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2042         struct net_device *vf_netdev;
2043
2044         if (!rtnl_trylock()) {
2045                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2046                 return;
2047         }
2048
2049         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2050         if (vf_netdev)
2051                 __netvsc_vf_setup(ndev, vf_netdev);
2052
2053         rtnl_unlock();
2054 }
2055
2056 /* Find netvsc by VMBus serial number.
2057  * The PCI hyperv controller records the serial number as the slot.
2058  */
2059 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2060 {
2061         struct device *parent = vf_netdev->dev.parent;
2062         struct net_device_context *ndev_ctx;
2063         struct pci_dev *pdev;
2064
2065         if (!parent || !dev_is_pci(parent))
2066                 return NULL; /* not a PCI device */
2067
2068         pdev = to_pci_dev(parent);
2069         if (!pdev->slot) {
2070                 netdev_notice(vf_netdev, "no PCI slot information\n");
2071                 return NULL;
2072         }
2073
2074         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2075                 if (!ndev_ctx->vf_alloc)
2076                         continue;
2077
2078                 if (ndev_ctx->vf_serial == pdev->slot->number)
2079                         return hv_get_drvdata(ndev_ctx->device_ctx);
2080         }
2081
2082         netdev_notice(vf_netdev,
2083                       "no netdev found for slot %u\n", pdev->slot->number);
2084         return NULL;
2085 }
2086
2087 static int netvsc_register_vf(struct net_device *vf_netdev)
2088 {
2089         struct net_device_context *net_device_ctx;
2090         struct netvsc_device *netvsc_dev;
2091         struct net_device *ndev;
2092         int ret;
2093
2094         if (vf_netdev->addr_len != ETH_ALEN)
2095                 return NOTIFY_DONE;
2096
2097         ndev = get_netvsc_byslot(vf_netdev);
2098         if (!ndev)
2099                 return NOTIFY_DONE;
2100
2101         net_device_ctx = netdev_priv(ndev);
2102         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2103         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2104                 return NOTIFY_DONE;
2105
2106         /* if syntihetic interface is a different namespace,
2107          * then move the VF to that namespace; join will be
2108          * done again in that context.
2109          */
2110         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2111                 ret = dev_change_net_namespace(vf_netdev,
2112                                                dev_net(ndev), "eth%d");
2113                 if (ret)
2114                         netdev_err(vf_netdev,
2115                                    "could not move to same namespace as %s: %d\n",
2116                                    ndev->name, ret);
2117                 else
2118                         netdev_info(vf_netdev,
2119                                     "VF moved to namespace with: %s\n",
2120                                     ndev->name);
2121                 return NOTIFY_DONE;
2122         }
2123
2124         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2125
2126         if (netvsc_vf_join(vf_netdev, ndev) != 0)
2127                 return NOTIFY_DONE;
2128
2129         dev_hold(vf_netdev);
2130         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2131         return NOTIFY_OK;
2132 }
2133
2134 /* VF up/down change detected, schedule to change data path */
2135 static int netvsc_vf_changed(struct net_device *vf_netdev)
2136 {
2137         struct net_device_context *net_device_ctx;
2138         struct netvsc_device *netvsc_dev;
2139         struct net_device *ndev;
2140         bool vf_is_up = netif_running(vf_netdev);
2141
2142         ndev = get_netvsc_byref(vf_netdev);
2143         if (!ndev)
2144                 return NOTIFY_DONE;
2145
2146         net_device_ctx = netdev_priv(ndev);
2147         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2148         if (!netvsc_dev)
2149                 return NOTIFY_DONE;
2150
2151         netvsc_switch_datapath(ndev, vf_is_up);
2152         netdev_info(ndev, "Data path switched %s VF: %s\n",
2153                     vf_is_up ? "to" : "from", vf_netdev->name);
2154
2155         return NOTIFY_OK;
2156 }
2157
2158 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2159 {
2160         struct net_device *ndev;
2161         struct net_device_context *net_device_ctx;
2162
2163         ndev = get_netvsc_byref(vf_netdev);
2164         if (!ndev)
2165                 return NOTIFY_DONE;
2166
2167         net_device_ctx = netdev_priv(ndev);
2168         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2169
2170         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2171
2172         netdev_rx_handler_unregister(vf_netdev);
2173         netdev_upper_dev_unlink(vf_netdev, ndev);
2174         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2175         dev_put(vf_netdev);
2176
2177         return NOTIFY_OK;
2178 }
2179
2180 static int netvsc_probe(struct hv_device *dev,
2181                         const struct hv_vmbus_device_id *dev_id)
2182 {
2183         struct net_device *net = NULL;
2184         struct net_device_context *net_device_ctx;
2185         struct netvsc_device_info device_info;
2186         struct netvsc_device *nvdev;
2187         int ret = -ENOMEM;
2188
2189         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2190                                 VRSS_CHANNEL_MAX);
2191         if (!net)
2192                 goto no_net;
2193
2194         netif_carrier_off(net);
2195
2196         netvsc_init_settings(net);
2197
2198         net_device_ctx = netdev_priv(net);
2199         net_device_ctx->device_ctx = dev;
2200         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2201         if (netif_msg_probe(net_device_ctx))
2202                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2203                            net_device_ctx->msg_enable);
2204
2205         hv_set_drvdata(dev, net);
2206
2207         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2208
2209         spin_lock_init(&net_device_ctx->lock);
2210         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2211         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2212
2213         net_device_ctx->vf_stats
2214                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2215         if (!net_device_ctx->vf_stats)
2216                 goto no_stats;
2217
2218         net->netdev_ops = &device_ops;
2219         net->ethtool_ops = &ethtool_ops;
2220         SET_NETDEV_DEV(net, &dev->device);
2221
2222         /* We always need headroom for rndis header */
2223         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2224
2225         /* Initialize the number of queues to be 1, we may change it if more
2226          * channels are offered later.
2227          */
2228         netif_set_real_num_tx_queues(net, 1);
2229         netif_set_real_num_rx_queues(net, 1);
2230
2231         /* Notify the netvsc driver of the new device */
2232         memset(&device_info, 0, sizeof(device_info));
2233         device_info.num_chn = VRSS_CHANNEL_DEFAULT;
2234         device_info.send_sections = NETVSC_DEFAULT_TX;
2235         device_info.send_section_size = NETVSC_SEND_SECTION_SIZE;
2236         device_info.recv_sections = NETVSC_DEFAULT_RX;
2237         device_info.recv_section_size = NETVSC_RECV_SECTION_SIZE;
2238
2239         nvdev = rndis_filter_device_add(dev, &device_info);
2240         if (IS_ERR(nvdev)) {
2241                 ret = PTR_ERR(nvdev);
2242                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2243                 goto rndis_failed;
2244         }
2245
2246         memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);
2247
2248         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2249          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2250          * all subchannels to show up, but that may not happen because
2251          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2252          * -> ... -> device_add() -> ... -> __device_attach() can't get
2253          * the device lock, so all the subchannels can't be processed --
2254          * finally netvsc_subchan_work() hangs for ever.
2255          */
2256         rtnl_lock();
2257
2258         if (nvdev->num_chn > 1)
2259                 schedule_work(&nvdev->subchan_work);
2260
2261         /* hw_features computed in rndis_netdev_set_hwcaps() */
2262         net->features = net->hw_features |
2263                 NETIF_F_HIGHDMA | NETIF_F_SG |
2264                 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
2265         net->vlan_features = net->features;
2266
2267         netdev_lockdep_set_classes(net);
2268
2269         /* MTU range: 68 - 1500 or 65521 */
2270         net->min_mtu = NETVSC_MTU_MIN;
2271         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2272                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2273         else
2274                 net->max_mtu = ETH_DATA_LEN;
2275
2276         ret = register_netdevice(net);
2277         if (ret != 0) {
2278                 pr_err("Unable to register netdev.\n");
2279                 goto register_failed;
2280         }
2281
2282         list_add(&net_device_ctx->list, &netvsc_dev_list);
2283         rtnl_unlock();
2284         return 0;
2285
2286 register_failed:
2287         rtnl_unlock();
2288         rndis_filter_device_remove(dev, nvdev);
2289 rndis_failed:
2290         free_percpu(net_device_ctx->vf_stats);
2291 no_stats:
2292         hv_set_drvdata(dev, NULL);
2293         free_netdev(net);
2294 no_net:
2295         return ret;
2296 }
2297
2298 static int netvsc_remove(struct hv_device *dev)
2299 {
2300         struct net_device_context *ndev_ctx;
2301         struct net_device *vf_netdev, *net;
2302         struct netvsc_device *nvdev;
2303
2304         net = hv_get_drvdata(dev);
2305         if (net == NULL) {
2306                 dev_err(&dev->device, "No net device to remove\n");
2307                 return 0;
2308         }
2309
2310         ndev_ctx = netdev_priv(net);
2311
2312         cancel_delayed_work_sync(&ndev_ctx->dwork);
2313
2314         rtnl_lock();
2315         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2316         if (nvdev)
2317                 cancel_work_sync(&nvdev->subchan_work);
2318
2319         /*
2320          * Call to the vsc driver to let it know that the device is being
2321          * removed. Also blocks mtu and channel changes.
2322          */
2323         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2324         if (vf_netdev)
2325                 netvsc_unregister_vf(vf_netdev);
2326
2327         if (nvdev)
2328                 rndis_filter_device_remove(dev, nvdev);
2329
2330         unregister_netdevice(net);
2331         list_del(&ndev_ctx->list);
2332
2333         rtnl_unlock();
2334
2335         hv_set_drvdata(dev, NULL);
2336
2337         free_percpu(ndev_ctx->vf_stats);
2338         free_netdev(net);
2339         return 0;
2340 }
2341
2342 static const struct hv_vmbus_device_id id_table[] = {
2343         /* Network guid */
2344         { HV_NIC_GUID, },
2345         { },
2346 };
2347
2348 MODULE_DEVICE_TABLE(vmbus, id_table);
2349
2350 /* The one and only one */
2351 static struct  hv_driver netvsc_drv = {
2352         .name = KBUILD_MODNAME,
2353         .id_table = id_table,
2354         .probe = netvsc_probe,
2355         .remove = netvsc_remove,
2356         .driver = {
2357                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2358         },
2359 };
2360
2361 /*
2362  * On Hyper-V, every VF interface is matched with a corresponding
2363  * synthetic interface. The synthetic interface is presented first
2364  * to the guest. When the corresponding VF instance is registered,
2365  * we will take care of switching the data path.
2366  */
2367 static int netvsc_netdev_event(struct notifier_block *this,
2368                                unsigned long event, void *ptr)
2369 {
2370         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2371
2372         /* Skip our own events */
2373         if (event_dev->netdev_ops == &device_ops)
2374                 return NOTIFY_DONE;
2375
2376         /* Avoid non-Ethernet type devices */
2377         if (event_dev->type != ARPHRD_ETHER)
2378                 return NOTIFY_DONE;
2379
2380         /* Avoid Vlan dev with same MAC registering as VF */
2381         if (is_vlan_dev(event_dev))
2382                 return NOTIFY_DONE;
2383
2384         /* Avoid Bonding master dev with same MAC registering as VF */
2385         if ((event_dev->priv_flags & IFF_BONDING) &&
2386             (event_dev->flags & IFF_MASTER))
2387                 return NOTIFY_DONE;
2388
2389         switch (event) {
2390         case NETDEV_REGISTER:
2391                 return netvsc_register_vf(event_dev);
2392         case NETDEV_UNREGISTER:
2393                 return netvsc_unregister_vf(event_dev);
2394         case NETDEV_UP:
2395         case NETDEV_DOWN:
2396                 return netvsc_vf_changed(event_dev);
2397         default:
2398                 return NOTIFY_DONE;
2399         }
2400 }
2401
2402 static struct notifier_block netvsc_netdev_notifier = {
2403         .notifier_call = netvsc_netdev_event,
2404 };
2405
2406 static void __exit netvsc_drv_exit(void)
2407 {
2408         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2409         vmbus_driver_unregister(&netvsc_drv);
2410 }
2411
2412 static int __init netvsc_drv_init(void)
2413 {
2414         int ret;
2415
2416         if (ring_size < RING_SIZE_MIN) {
2417                 ring_size = RING_SIZE_MIN;
2418                 pr_info("Increased ring_size to %u (min allowed)\n",
2419                         ring_size);
2420         }
2421         netvsc_ring_bytes = ring_size * PAGE_SIZE;
2422
2423         ret = vmbus_driver_register(&netvsc_drv);
2424         if (ret)
2425                 return ret;
2426
2427         register_netdevice_notifier(&netvsc_netdev_notifier);
2428         return 0;
2429 }
2430
2431 MODULE_LICENSE("GPL");
2432 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2433
2434 module_init(netvsc_drv_init);
2435 module_exit(netvsc_drv_exit);