]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/phy/sfp.c
Merge tag 'firewire-update' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[linux.git] / drivers / net / phy / sfp.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18
19 #include "mdio-i2c.h"
20 #include "sfp.h"
21 #include "swphy.h"
22
23 enum {
24         GPIO_MODDEF0,
25         GPIO_LOS,
26         GPIO_TX_FAULT,
27         GPIO_TX_DISABLE,
28         GPIO_RATE_SELECT,
29         GPIO_MAX,
30
31         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32         SFP_F_LOS = BIT(GPIO_LOS),
33         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37         SFP_E_INSERT = 0,
38         SFP_E_REMOVE,
39         SFP_E_DEV_ATTACH,
40         SFP_E_DEV_DETACH,
41         SFP_E_DEV_DOWN,
42         SFP_E_DEV_UP,
43         SFP_E_TX_FAULT,
44         SFP_E_TX_CLEAR,
45         SFP_E_LOS_HIGH,
46         SFP_E_LOS_LOW,
47         SFP_E_TIMEOUT,
48
49         SFP_MOD_EMPTY = 0,
50         SFP_MOD_ERROR,
51         SFP_MOD_PROBE,
52         SFP_MOD_WAITDEV,
53         SFP_MOD_HPOWER,
54         SFP_MOD_WAITPWR,
55         SFP_MOD_PRESENT,
56
57         SFP_DEV_DETACHED = 0,
58         SFP_DEV_DOWN,
59         SFP_DEV_UP,
60
61         SFP_S_DOWN = 0,
62         SFP_S_WAIT,
63         SFP_S_INIT,
64         SFP_S_INIT_TX_FAULT,
65         SFP_S_WAIT_LOS,
66         SFP_S_LINK_UP,
67         SFP_S_TX_FAULT,
68         SFP_S_REINIT,
69         SFP_S_TX_DISABLE,
70 };
71
72 static const char  * const mod_state_strings[] = {
73         [SFP_MOD_EMPTY] = "empty",
74         [SFP_MOD_ERROR] = "error",
75         [SFP_MOD_PROBE] = "probe",
76         [SFP_MOD_WAITDEV] = "waitdev",
77         [SFP_MOD_HPOWER] = "hpower",
78         [SFP_MOD_WAITPWR] = "waitpwr",
79         [SFP_MOD_PRESENT] = "present",
80 };
81
82 static const char *mod_state_to_str(unsigned short mod_state)
83 {
84         if (mod_state >= ARRAY_SIZE(mod_state_strings))
85                 return "Unknown module state";
86         return mod_state_strings[mod_state];
87 }
88
89 static const char * const dev_state_strings[] = {
90         [SFP_DEV_DETACHED] = "detached",
91         [SFP_DEV_DOWN] = "down",
92         [SFP_DEV_UP] = "up",
93 };
94
95 static const char *dev_state_to_str(unsigned short dev_state)
96 {
97         if (dev_state >= ARRAY_SIZE(dev_state_strings))
98                 return "Unknown device state";
99         return dev_state_strings[dev_state];
100 }
101
102 static const char * const event_strings[] = {
103         [SFP_E_INSERT] = "insert",
104         [SFP_E_REMOVE] = "remove",
105         [SFP_E_DEV_ATTACH] = "dev_attach",
106         [SFP_E_DEV_DETACH] = "dev_detach",
107         [SFP_E_DEV_DOWN] = "dev_down",
108         [SFP_E_DEV_UP] = "dev_up",
109         [SFP_E_TX_FAULT] = "tx_fault",
110         [SFP_E_TX_CLEAR] = "tx_clear",
111         [SFP_E_LOS_HIGH] = "los_high",
112         [SFP_E_LOS_LOW] = "los_low",
113         [SFP_E_TIMEOUT] = "timeout",
114 };
115
116 static const char *event_to_str(unsigned short event)
117 {
118         if (event >= ARRAY_SIZE(event_strings))
119                 return "Unknown event";
120         return event_strings[event];
121 }
122
123 static const char * const sm_state_strings[] = {
124         [SFP_S_DOWN] = "down",
125         [SFP_S_WAIT] = "wait",
126         [SFP_S_INIT] = "init",
127         [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
128         [SFP_S_WAIT_LOS] = "wait_los",
129         [SFP_S_LINK_UP] = "link_up",
130         [SFP_S_TX_FAULT] = "tx_fault",
131         [SFP_S_REINIT] = "reinit",
132         [SFP_S_TX_DISABLE] = "rx_disable",
133 };
134
135 static const char *sm_state_to_str(unsigned short sm_state)
136 {
137         if (sm_state >= ARRAY_SIZE(sm_state_strings))
138                 return "Unknown state";
139         return sm_state_strings[sm_state];
140 }
141
142 static const char *gpio_of_names[] = {
143         "mod-def0",
144         "los",
145         "tx-fault",
146         "tx-disable",
147         "rate-select0",
148 };
149
150 static const enum gpiod_flags gpio_flags[] = {
151         GPIOD_IN,
152         GPIOD_IN,
153         GPIOD_IN,
154         GPIOD_ASIS,
155         GPIOD_ASIS,
156 };
157
158 #define T_WAIT          msecs_to_jiffies(50)
159 #define T_INIT_JIFFIES  msecs_to_jiffies(300)
160 #define T_RESET_US      10
161 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
162
163 /* SFP module presence detection is poor: the three MOD DEF signals are
164  * the same length on the PCB, which means it's possible for MOD DEF 0 to
165  * connect before the I2C bus on MOD DEF 1/2.
166  *
167  * The SFF-8472 specifies t_serial ("Time from power on until module is
168  * ready for data transmission over the two wire serial bus.") as 300ms.
169  */
170 #define T_SERIAL                msecs_to_jiffies(300)
171 #define T_HPOWER_LEVEL          msecs_to_jiffies(300)
172 #define T_PROBE_RETRY_INIT      msecs_to_jiffies(100)
173 #define R_PROBE_RETRY_INIT      10
174 #define T_PROBE_RETRY_SLOW      msecs_to_jiffies(5000)
175 #define R_PROBE_RETRY_SLOW      12
176
177 /* SFP modules appear to always have their PHY configured for bus address
178  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
179  */
180 #define SFP_PHY_ADDR    22
181
182 struct sff_data {
183         unsigned int gpios;
184         bool (*module_supported)(const struct sfp_eeprom_id *id);
185 };
186
187 struct sfp {
188         struct device *dev;
189         struct i2c_adapter *i2c;
190         struct mii_bus *i2c_mii;
191         struct sfp_bus *sfp_bus;
192         struct phy_device *mod_phy;
193         const struct sff_data *type;
194         u32 max_power_mW;
195
196         unsigned int (*get_state)(struct sfp *);
197         void (*set_state)(struct sfp *, unsigned int);
198         int (*read)(struct sfp *, bool, u8, void *, size_t);
199         int (*write)(struct sfp *, bool, u8, void *, size_t);
200
201         struct gpio_desc *gpio[GPIO_MAX];
202         int gpio_irq[GPIO_MAX];
203
204         bool need_poll;
205
206         struct mutex st_mutex;                  /* Protects state */
207         unsigned int state_soft_mask;
208         unsigned int state;
209         struct delayed_work poll;
210         struct delayed_work timeout;
211         struct mutex sm_mutex;                  /* Protects state machine */
212         unsigned char sm_mod_state;
213         unsigned char sm_mod_tries_init;
214         unsigned char sm_mod_tries;
215         unsigned char sm_dev_state;
216         unsigned short sm_state;
217         unsigned int sm_retries;
218
219         struct sfp_eeprom_id id;
220         unsigned int module_power_mW;
221
222 #if IS_ENABLED(CONFIG_HWMON)
223         struct sfp_diag diag;
224         struct delayed_work hwmon_probe;
225         unsigned int hwmon_tries;
226         struct device *hwmon_dev;
227         char *hwmon_name;
228 #endif
229
230 };
231
232 static bool sff_module_supported(const struct sfp_eeprom_id *id)
233 {
234         return id->base.phys_id == SFP_PHYS_ID_SFF &&
235                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
236 }
237
238 static const struct sff_data sff_data = {
239         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
240         .module_supported = sff_module_supported,
241 };
242
243 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
244 {
245         return id->base.phys_id == SFP_PHYS_ID_SFP &&
246                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
247 }
248
249 static const struct sff_data sfp_data = {
250         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
251                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
252         .module_supported = sfp_module_supported,
253 };
254
255 static const struct of_device_id sfp_of_match[] = {
256         { .compatible = "sff,sff", .data = &sff_data, },
257         { .compatible = "sff,sfp", .data = &sfp_data, },
258         { },
259 };
260 MODULE_DEVICE_TABLE(of, sfp_of_match);
261
262 static unsigned long poll_jiffies;
263
264 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
265 {
266         unsigned int i, state, v;
267
268         for (i = state = 0; i < GPIO_MAX; i++) {
269                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
270                         continue;
271
272                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
273                 if (v)
274                         state |= BIT(i);
275         }
276
277         return state;
278 }
279
280 static unsigned int sff_gpio_get_state(struct sfp *sfp)
281 {
282         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
283 }
284
285 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
286 {
287         if (state & SFP_F_PRESENT) {
288                 /* If the module is present, drive the signals */
289                 if (sfp->gpio[GPIO_TX_DISABLE])
290                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
291                                                state & SFP_F_TX_DISABLE);
292                 if (state & SFP_F_RATE_SELECT)
293                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
294                                                state & SFP_F_RATE_SELECT);
295         } else {
296                 /* Otherwise, let them float to the pull-ups */
297                 if (sfp->gpio[GPIO_TX_DISABLE])
298                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
299                 if (state & SFP_F_RATE_SELECT)
300                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
301         }
302 }
303
304 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
305                         size_t len)
306 {
307         struct i2c_msg msgs[2];
308         u8 bus_addr = a2 ? 0x51 : 0x50;
309         size_t this_len;
310         int ret;
311
312         msgs[0].addr = bus_addr;
313         msgs[0].flags = 0;
314         msgs[0].len = 1;
315         msgs[0].buf = &dev_addr;
316         msgs[1].addr = bus_addr;
317         msgs[1].flags = I2C_M_RD;
318         msgs[1].len = len;
319         msgs[1].buf = buf;
320
321         while (len) {
322                 this_len = len;
323                 if (this_len > 16)
324                         this_len = 16;
325
326                 msgs[1].len = this_len;
327
328                 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
329                 if (ret < 0)
330                         return ret;
331
332                 if (ret != ARRAY_SIZE(msgs))
333                         break;
334
335                 msgs[1].buf += this_len;
336                 dev_addr += this_len;
337                 len -= this_len;
338         }
339
340         return msgs[1].buf - (u8 *)buf;
341 }
342
343 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
344         size_t len)
345 {
346         struct i2c_msg msgs[1];
347         u8 bus_addr = a2 ? 0x51 : 0x50;
348         int ret;
349
350         msgs[0].addr = bus_addr;
351         msgs[0].flags = 0;
352         msgs[0].len = 1 + len;
353         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
354         if (!msgs[0].buf)
355                 return -ENOMEM;
356
357         msgs[0].buf[0] = dev_addr;
358         memcpy(&msgs[0].buf[1], buf, len);
359
360         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
361
362         kfree(msgs[0].buf);
363
364         if (ret < 0)
365                 return ret;
366
367         return ret == ARRAY_SIZE(msgs) ? len : 0;
368 }
369
370 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
371 {
372         struct mii_bus *i2c_mii;
373         int ret;
374
375         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
376                 return -EINVAL;
377
378         sfp->i2c = i2c;
379         sfp->read = sfp_i2c_read;
380         sfp->write = sfp_i2c_write;
381
382         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
383         if (IS_ERR(i2c_mii))
384                 return PTR_ERR(i2c_mii);
385
386         i2c_mii->name = "SFP I2C Bus";
387         i2c_mii->phy_mask = ~0;
388
389         ret = mdiobus_register(i2c_mii);
390         if (ret < 0) {
391                 mdiobus_free(i2c_mii);
392                 return ret;
393         }
394
395         sfp->i2c_mii = i2c_mii;
396
397         return 0;
398 }
399
400 /* Interface */
401 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
402 {
403         return sfp->read(sfp, a2, addr, buf, len);
404 }
405
406 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
407 {
408         return sfp->write(sfp, a2, addr, buf, len);
409 }
410
411 static unsigned int sfp_soft_get_state(struct sfp *sfp)
412 {
413         unsigned int state = 0;
414         u8 status;
415
416         if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
417                      sizeof(status)) {
418                 if (status & SFP_STATUS_RX_LOS)
419                         state |= SFP_F_LOS;
420                 if (status & SFP_STATUS_TX_FAULT)
421                         state |= SFP_F_TX_FAULT;
422         }
423
424         return state & sfp->state_soft_mask;
425 }
426
427 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
428 {
429         u8 status;
430
431         if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
432                      sizeof(status)) {
433                 if (state & SFP_F_TX_DISABLE)
434                         status |= SFP_STATUS_TX_DISABLE_FORCE;
435                 else
436                         status &= ~SFP_STATUS_TX_DISABLE_FORCE;
437
438                 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
439         }
440 }
441
442 static void sfp_soft_start_poll(struct sfp *sfp)
443 {
444         const struct sfp_eeprom_id *id = &sfp->id;
445
446         sfp->state_soft_mask = 0;
447         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
448             !sfp->gpio[GPIO_TX_DISABLE])
449                 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
450         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
451             !sfp->gpio[GPIO_TX_FAULT])
452                 sfp->state_soft_mask |= SFP_F_TX_FAULT;
453         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
454             !sfp->gpio[GPIO_LOS])
455                 sfp->state_soft_mask |= SFP_F_LOS;
456
457         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
458             !sfp->need_poll)
459                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
460 }
461
462 static void sfp_soft_stop_poll(struct sfp *sfp)
463 {
464         sfp->state_soft_mask = 0;
465 }
466
467 static unsigned int sfp_get_state(struct sfp *sfp)
468 {
469         unsigned int state = sfp->get_state(sfp);
470
471         if (state & SFP_F_PRESENT &&
472             sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
473                 state |= sfp_soft_get_state(sfp);
474
475         return state;
476 }
477
478 static void sfp_set_state(struct sfp *sfp, unsigned int state)
479 {
480         sfp->set_state(sfp, state);
481
482         if (state & SFP_F_PRESENT &&
483             sfp->state_soft_mask & SFP_F_TX_DISABLE)
484                 sfp_soft_set_state(sfp, state);
485 }
486
487 static unsigned int sfp_check(void *buf, size_t len)
488 {
489         u8 *p, check;
490
491         for (p = buf, check = 0; len; p++, len--)
492                 check += *p;
493
494         return check;
495 }
496
497 /* hwmon */
498 #if IS_ENABLED(CONFIG_HWMON)
499 static umode_t sfp_hwmon_is_visible(const void *data,
500                                     enum hwmon_sensor_types type,
501                                     u32 attr, int channel)
502 {
503         const struct sfp *sfp = data;
504
505         switch (type) {
506         case hwmon_temp:
507                 switch (attr) {
508                 case hwmon_temp_min_alarm:
509                 case hwmon_temp_max_alarm:
510                 case hwmon_temp_lcrit_alarm:
511                 case hwmon_temp_crit_alarm:
512                 case hwmon_temp_min:
513                 case hwmon_temp_max:
514                 case hwmon_temp_lcrit:
515                 case hwmon_temp_crit:
516                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
517                                 return 0;
518                         /* fall through */
519                 case hwmon_temp_input:
520                 case hwmon_temp_label:
521                         return 0444;
522                 default:
523                         return 0;
524                 }
525         case hwmon_in:
526                 switch (attr) {
527                 case hwmon_in_min_alarm:
528                 case hwmon_in_max_alarm:
529                 case hwmon_in_lcrit_alarm:
530                 case hwmon_in_crit_alarm:
531                 case hwmon_in_min:
532                 case hwmon_in_max:
533                 case hwmon_in_lcrit:
534                 case hwmon_in_crit:
535                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
536                                 return 0;
537                         /* fall through */
538                 case hwmon_in_input:
539                 case hwmon_in_label:
540                         return 0444;
541                 default:
542                         return 0;
543                 }
544         case hwmon_curr:
545                 switch (attr) {
546                 case hwmon_curr_min_alarm:
547                 case hwmon_curr_max_alarm:
548                 case hwmon_curr_lcrit_alarm:
549                 case hwmon_curr_crit_alarm:
550                 case hwmon_curr_min:
551                 case hwmon_curr_max:
552                 case hwmon_curr_lcrit:
553                 case hwmon_curr_crit:
554                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
555                                 return 0;
556                         /* fall through */
557                 case hwmon_curr_input:
558                 case hwmon_curr_label:
559                         return 0444;
560                 default:
561                         return 0;
562                 }
563         case hwmon_power:
564                 /* External calibration of receive power requires
565                  * floating point arithmetic. Doing that in the kernel
566                  * is not easy, so just skip it. If the module does
567                  * not require external calibration, we can however
568                  * show receiver power, since FP is then not needed.
569                  */
570                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
571                     channel == 1)
572                         return 0;
573                 switch (attr) {
574                 case hwmon_power_min_alarm:
575                 case hwmon_power_max_alarm:
576                 case hwmon_power_lcrit_alarm:
577                 case hwmon_power_crit_alarm:
578                 case hwmon_power_min:
579                 case hwmon_power_max:
580                 case hwmon_power_lcrit:
581                 case hwmon_power_crit:
582                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
583                                 return 0;
584                         /* fall through */
585                 case hwmon_power_input:
586                 case hwmon_power_label:
587                         return 0444;
588                 default:
589                         return 0;
590                 }
591         default:
592                 return 0;
593         }
594 }
595
596 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
597 {
598         __be16 val;
599         int err;
600
601         err = sfp_read(sfp, true, reg, &val, sizeof(val));
602         if (err < 0)
603                 return err;
604
605         *value = be16_to_cpu(val);
606
607         return 0;
608 }
609
610 static void sfp_hwmon_to_rx_power(long *value)
611 {
612         *value = DIV_ROUND_CLOSEST(*value, 10);
613 }
614
615 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
616                                 long *value)
617 {
618         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
619                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
620 }
621
622 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
623 {
624         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
625                             be16_to_cpu(sfp->diag.cal_t_offset), value);
626
627         if (*value >= 0x8000)
628                 *value -= 0x10000;
629
630         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
631 }
632
633 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
634 {
635         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
636                             be16_to_cpu(sfp->diag.cal_v_offset), value);
637
638         *value = DIV_ROUND_CLOSEST(*value, 10);
639 }
640
641 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
642 {
643         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
644                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
645
646         *value = DIV_ROUND_CLOSEST(*value, 500);
647 }
648
649 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
650 {
651         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
652                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
653
654         *value = DIV_ROUND_CLOSEST(*value, 10);
655 }
656
657 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
658 {
659         int err;
660
661         err = sfp_hwmon_read_sensor(sfp, reg, value);
662         if (err < 0)
663                 return err;
664
665         sfp_hwmon_calibrate_temp(sfp, value);
666
667         return 0;
668 }
669
670 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
671 {
672         int err;
673
674         err = sfp_hwmon_read_sensor(sfp, reg, value);
675         if (err < 0)
676                 return err;
677
678         sfp_hwmon_calibrate_vcc(sfp, value);
679
680         return 0;
681 }
682
683 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
684 {
685         int err;
686
687         err = sfp_hwmon_read_sensor(sfp, reg, value);
688         if (err < 0)
689                 return err;
690
691         sfp_hwmon_calibrate_bias(sfp, value);
692
693         return 0;
694 }
695
696 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
697 {
698         int err;
699
700         err = sfp_hwmon_read_sensor(sfp, reg, value);
701         if (err < 0)
702                 return err;
703
704         sfp_hwmon_calibrate_tx_power(sfp, value);
705
706         return 0;
707 }
708
709 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
710 {
711         int err;
712
713         err = sfp_hwmon_read_sensor(sfp, reg, value);
714         if (err < 0)
715                 return err;
716
717         sfp_hwmon_to_rx_power(value);
718
719         return 0;
720 }
721
722 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
723 {
724         u8 status;
725         int err;
726
727         switch (attr) {
728         case hwmon_temp_input:
729                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
730
731         case hwmon_temp_lcrit:
732                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
733                 sfp_hwmon_calibrate_temp(sfp, value);
734                 return 0;
735
736         case hwmon_temp_min:
737                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
738                 sfp_hwmon_calibrate_temp(sfp, value);
739                 return 0;
740         case hwmon_temp_max:
741                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
742                 sfp_hwmon_calibrate_temp(sfp, value);
743                 return 0;
744
745         case hwmon_temp_crit:
746                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
747                 sfp_hwmon_calibrate_temp(sfp, value);
748                 return 0;
749
750         case hwmon_temp_lcrit_alarm:
751                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
752                 if (err < 0)
753                         return err;
754
755                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
756                 return 0;
757
758         case hwmon_temp_min_alarm:
759                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
760                 if (err < 0)
761                         return err;
762
763                 *value = !!(status & SFP_WARN0_TEMP_LOW);
764                 return 0;
765
766         case hwmon_temp_max_alarm:
767                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
768                 if (err < 0)
769                         return err;
770
771                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
772                 return 0;
773
774         case hwmon_temp_crit_alarm:
775                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
776                 if (err < 0)
777                         return err;
778
779                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
780                 return 0;
781         default:
782                 return -EOPNOTSUPP;
783         }
784
785         return -EOPNOTSUPP;
786 }
787
788 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
789 {
790         u8 status;
791         int err;
792
793         switch (attr) {
794         case hwmon_in_input:
795                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
796
797         case hwmon_in_lcrit:
798                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
799                 sfp_hwmon_calibrate_vcc(sfp, value);
800                 return 0;
801
802         case hwmon_in_min:
803                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
804                 sfp_hwmon_calibrate_vcc(sfp, value);
805                 return 0;
806
807         case hwmon_in_max:
808                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
809                 sfp_hwmon_calibrate_vcc(sfp, value);
810                 return 0;
811
812         case hwmon_in_crit:
813                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
814                 sfp_hwmon_calibrate_vcc(sfp, value);
815                 return 0;
816
817         case hwmon_in_lcrit_alarm:
818                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
819                 if (err < 0)
820                         return err;
821
822                 *value = !!(status & SFP_ALARM0_VCC_LOW);
823                 return 0;
824
825         case hwmon_in_min_alarm:
826                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
827                 if (err < 0)
828                         return err;
829
830                 *value = !!(status & SFP_WARN0_VCC_LOW);
831                 return 0;
832
833         case hwmon_in_max_alarm:
834                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
835                 if (err < 0)
836                         return err;
837
838                 *value = !!(status & SFP_WARN0_VCC_HIGH);
839                 return 0;
840
841         case hwmon_in_crit_alarm:
842                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
843                 if (err < 0)
844                         return err;
845
846                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
847                 return 0;
848         default:
849                 return -EOPNOTSUPP;
850         }
851
852         return -EOPNOTSUPP;
853 }
854
855 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
856 {
857         u8 status;
858         int err;
859
860         switch (attr) {
861         case hwmon_curr_input:
862                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
863
864         case hwmon_curr_lcrit:
865                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
866                 sfp_hwmon_calibrate_bias(sfp, value);
867                 return 0;
868
869         case hwmon_curr_min:
870                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
871                 sfp_hwmon_calibrate_bias(sfp, value);
872                 return 0;
873
874         case hwmon_curr_max:
875                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
876                 sfp_hwmon_calibrate_bias(sfp, value);
877                 return 0;
878
879         case hwmon_curr_crit:
880                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
881                 sfp_hwmon_calibrate_bias(sfp, value);
882                 return 0;
883
884         case hwmon_curr_lcrit_alarm:
885                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
886                 if (err < 0)
887                         return err;
888
889                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
890                 return 0;
891
892         case hwmon_curr_min_alarm:
893                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
894                 if (err < 0)
895                         return err;
896
897                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
898                 return 0;
899
900         case hwmon_curr_max_alarm:
901                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
902                 if (err < 0)
903                         return err;
904
905                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
906                 return 0;
907
908         case hwmon_curr_crit_alarm:
909                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
910                 if (err < 0)
911                         return err;
912
913                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
914                 return 0;
915         default:
916                 return -EOPNOTSUPP;
917         }
918
919         return -EOPNOTSUPP;
920 }
921
922 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
923 {
924         u8 status;
925         int err;
926
927         switch (attr) {
928         case hwmon_power_input:
929                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
930
931         case hwmon_power_lcrit:
932                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
933                 sfp_hwmon_calibrate_tx_power(sfp, value);
934                 return 0;
935
936         case hwmon_power_min:
937                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
938                 sfp_hwmon_calibrate_tx_power(sfp, value);
939                 return 0;
940
941         case hwmon_power_max:
942                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
943                 sfp_hwmon_calibrate_tx_power(sfp, value);
944                 return 0;
945
946         case hwmon_power_crit:
947                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
948                 sfp_hwmon_calibrate_tx_power(sfp, value);
949                 return 0;
950
951         case hwmon_power_lcrit_alarm:
952                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
953                 if (err < 0)
954                         return err;
955
956                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
957                 return 0;
958
959         case hwmon_power_min_alarm:
960                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
961                 if (err < 0)
962                         return err;
963
964                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
965                 return 0;
966
967         case hwmon_power_max_alarm:
968                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
969                 if (err < 0)
970                         return err;
971
972                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
973                 return 0;
974
975         case hwmon_power_crit_alarm:
976                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
977                 if (err < 0)
978                         return err;
979
980                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
981                 return 0;
982         default:
983                 return -EOPNOTSUPP;
984         }
985
986         return -EOPNOTSUPP;
987 }
988
989 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
990 {
991         u8 status;
992         int err;
993
994         switch (attr) {
995         case hwmon_power_input:
996                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
997
998         case hwmon_power_lcrit:
999                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1000                 sfp_hwmon_to_rx_power(value);
1001                 return 0;
1002
1003         case hwmon_power_min:
1004                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1005                 sfp_hwmon_to_rx_power(value);
1006                 return 0;
1007
1008         case hwmon_power_max:
1009                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1010                 sfp_hwmon_to_rx_power(value);
1011                 return 0;
1012
1013         case hwmon_power_crit:
1014                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1015                 sfp_hwmon_to_rx_power(value);
1016                 return 0;
1017
1018         case hwmon_power_lcrit_alarm:
1019                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1020                 if (err < 0)
1021                         return err;
1022
1023                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1024                 return 0;
1025
1026         case hwmon_power_min_alarm:
1027                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1028                 if (err < 0)
1029                         return err;
1030
1031                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1032                 return 0;
1033
1034         case hwmon_power_max_alarm:
1035                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1036                 if (err < 0)
1037                         return err;
1038
1039                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1040                 return 0;
1041
1042         case hwmon_power_crit_alarm:
1043                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1044                 if (err < 0)
1045                         return err;
1046
1047                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1048                 return 0;
1049         default:
1050                 return -EOPNOTSUPP;
1051         }
1052
1053         return -EOPNOTSUPP;
1054 }
1055
1056 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1057                           u32 attr, int channel, long *value)
1058 {
1059         struct sfp *sfp = dev_get_drvdata(dev);
1060
1061         switch (type) {
1062         case hwmon_temp:
1063                 return sfp_hwmon_temp(sfp, attr, value);
1064         case hwmon_in:
1065                 return sfp_hwmon_vcc(sfp, attr, value);
1066         case hwmon_curr:
1067                 return sfp_hwmon_bias(sfp, attr, value);
1068         case hwmon_power:
1069                 switch (channel) {
1070                 case 0:
1071                         return sfp_hwmon_tx_power(sfp, attr, value);
1072                 case 1:
1073                         return sfp_hwmon_rx_power(sfp, attr, value);
1074                 default:
1075                         return -EOPNOTSUPP;
1076                 }
1077         default:
1078                 return -EOPNOTSUPP;
1079         }
1080 }
1081
1082 static const char *const sfp_hwmon_power_labels[] = {
1083         "TX_power",
1084         "RX_power",
1085 };
1086
1087 static int sfp_hwmon_read_string(struct device *dev,
1088                                  enum hwmon_sensor_types type,
1089                                  u32 attr, int channel, const char **str)
1090 {
1091         switch (type) {
1092         case hwmon_curr:
1093                 switch (attr) {
1094                 case hwmon_curr_label:
1095                         *str = "bias";
1096                         return 0;
1097                 default:
1098                         return -EOPNOTSUPP;
1099                 }
1100                 break;
1101         case hwmon_temp:
1102                 switch (attr) {
1103                 case hwmon_temp_label:
1104                         *str = "temperature";
1105                         return 0;
1106                 default:
1107                         return -EOPNOTSUPP;
1108                 }
1109                 break;
1110         case hwmon_in:
1111                 switch (attr) {
1112                 case hwmon_in_label:
1113                         *str = "VCC";
1114                         return 0;
1115                 default:
1116                         return -EOPNOTSUPP;
1117                 }
1118                 break;
1119         case hwmon_power:
1120                 switch (attr) {
1121                 case hwmon_power_label:
1122                         *str = sfp_hwmon_power_labels[channel];
1123                         return 0;
1124                 default:
1125                         return -EOPNOTSUPP;
1126                 }
1127                 break;
1128         default:
1129                 return -EOPNOTSUPP;
1130         }
1131
1132         return -EOPNOTSUPP;
1133 }
1134
1135 static const struct hwmon_ops sfp_hwmon_ops = {
1136         .is_visible = sfp_hwmon_is_visible,
1137         .read = sfp_hwmon_read,
1138         .read_string = sfp_hwmon_read_string,
1139 };
1140
1141 static u32 sfp_hwmon_chip_config[] = {
1142         HWMON_C_REGISTER_TZ,
1143         0,
1144 };
1145
1146 static const struct hwmon_channel_info sfp_hwmon_chip = {
1147         .type = hwmon_chip,
1148         .config = sfp_hwmon_chip_config,
1149 };
1150
1151 static u32 sfp_hwmon_temp_config[] = {
1152         HWMON_T_INPUT |
1153         HWMON_T_MAX | HWMON_T_MIN |
1154         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1155         HWMON_T_CRIT | HWMON_T_LCRIT |
1156         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1157         HWMON_T_LABEL,
1158         0,
1159 };
1160
1161 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1162         .type = hwmon_temp,
1163         .config = sfp_hwmon_temp_config,
1164 };
1165
1166 static u32 sfp_hwmon_vcc_config[] = {
1167         HWMON_I_INPUT |
1168         HWMON_I_MAX | HWMON_I_MIN |
1169         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1170         HWMON_I_CRIT | HWMON_I_LCRIT |
1171         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1172         HWMON_I_LABEL,
1173         0,
1174 };
1175
1176 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1177         .type = hwmon_in,
1178         .config = sfp_hwmon_vcc_config,
1179 };
1180
1181 static u32 sfp_hwmon_bias_config[] = {
1182         HWMON_C_INPUT |
1183         HWMON_C_MAX | HWMON_C_MIN |
1184         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1185         HWMON_C_CRIT | HWMON_C_LCRIT |
1186         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1187         HWMON_C_LABEL,
1188         0,
1189 };
1190
1191 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1192         .type = hwmon_curr,
1193         .config = sfp_hwmon_bias_config,
1194 };
1195
1196 static u32 sfp_hwmon_power_config[] = {
1197         /* Transmit power */
1198         HWMON_P_INPUT |
1199         HWMON_P_MAX | HWMON_P_MIN |
1200         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1201         HWMON_P_CRIT | HWMON_P_LCRIT |
1202         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1203         HWMON_P_LABEL,
1204         /* Receive power */
1205         HWMON_P_INPUT |
1206         HWMON_P_MAX | HWMON_P_MIN |
1207         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1208         HWMON_P_CRIT | HWMON_P_LCRIT |
1209         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1210         HWMON_P_LABEL,
1211         0,
1212 };
1213
1214 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1215         .type = hwmon_power,
1216         .config = sfp_hwmon_power_config,
1217 };
1218
1219 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1220         &sfp_hwmon_chip,
1221         &sfp_hwmon_vcc_channel_info,
1222         &sfp_hwmon_temp_channel_info,
1223         &sfp_hwmon_bias_channel_info,
1224         &sfp_hwmon_power_channel_info,
1225         NULL,
1226 };
1227
1228 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1229         .ops = &sfp_hwmon_ops,
1230         .info = sfp_hwmon_info,
1231 };
1232
1233 static void sfp_hwmon_probe(struct work_struct *work)
1234 {
1235         struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1236         int err, i;
1237
1238         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1239         if (err < 0) {
1240                 if (sfp->hwmon_tries--) {
1241                         mod_delayed_work(system_wq, &sfp->hwmon_probe,
1242                                          T_PROBE_RETRY_SLOW);
1243                 } else {
1244                         dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1245                 }
1246                 return;
1247         }
1248
1249         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1250         if (!sfp->hwmon_name) {
1251                 dev_err(sfp->dev, "out of memory for hwmon name\n");
1252                 return;
1253         }
1254
1255         for (i = 0; sfp->hwmon_name[i]; i++)
1256                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1257                         sfp->hwmon_name[i] = '_';
1258
1259         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1260                                                          sfp->hwmon_name, sfp,
1261                                                          &sfp_hwmon_chip_info,
1262                                                          NULL);
1263         if (IS_ERR(sfp->hwmon_dev))
1264                 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1265                         PTR_ERR(sfp->hwmon_dev));
1266 }
1267
1268 static int sfp_hwmon_insert(struct sfp *sfp)
1269 {
1270         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1271                 return 0;
1272
1273         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1274                 return 0;
1275
1276         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1277                 /* This driver in general does not support address
1278                  * change.
1279                  */
1280                 return 0;
1281
1282         mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1283         sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1284
1285         return 0;
1286 }
1287
1288 static void sfp_hwmon_remove(struct sfp *sfp)
1289 {
1290         cancel_delayed_work_sync(&sfp->hwmon_probe);
1291         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1292                 hwmon_device_unregister(sfp->hwmon_dev);
1293                 sfp->hwmon_dev = NULL;
1294                 kfree(sfp->hwmon_name);
1295         }
1296 }
1297
1298 static int sfp_hwmon_init(struct sfp *sfp)
1299 {
1300         INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1301
1302         return 0;
1303 }
1304
1305 static void sfp_hwmon_exit(struct sfp *sfp)
1306 {
1307         cancel_delayed_work_sync(&sfp->hwmon_probe);
1308 }
1309 #else
1310 static int sfp_hwmon_insert(struct sfp *sfp)
1311 {
1312         return 0;
1313 }
1314
1315 static void sfp_hwmon_remove(struct sfp *sfp)
1316 {
1317 }
1318
1319 static int sfp_hwmon_init(struct sfp *sfp)
1320 {
1321         return 0;
1322 }
1323
1324 static void sfp_hwmon_exit(struct sfp *sfp)
1325 {
1326 }
1327 #endif
1328
1329 /* Helpers */
1330 static void sfp_module_tx_disable(struct sfp *sfp)
1331 {
1332         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1333                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1334         sfp->state |= SFP_F_TX_DISABLE;
1335         sfp_set_state(sfp, sfp->state);
1336 }
1337
1338 static void sfp_module_tx_enable(struct sfp *sfp)
1339 {
1340         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1341                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1342         sfp->state &= ~SFP_F_TX_DISABLE;
1343         sfp_set_state(sfp, sfp->state);
1344 }
1345
1346 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1347 {
1348         unsigned int state = sfp->state;
1349
1350         if (state & SFP_F_TX_DISABLE)
1351                 return;
1352
1353         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1354
1355         udelay(T_RESET_US);
1356
1357         sfp_set_state(sfp, state);
1358 }
1359
1360 /* SFP state machine */
1361 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1362 {
1363         if (timeout)
1364                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1365                                  timeout);
1366         else
1367                 cancel_delayed_work(&sfp->timeout);
1368 }
1369
1370 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1371                         unsigned int timeout)
1372 {
1373         sfp->sm_state = state;
1374         sfp_sm_set_timer(sfp, timeout);
1375 }
1376
1377 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1378                             unsigned int timeout)
1379 {
1380         sfp->sm_mod_state = state;
1381         sfp_sm_set_timer(sfp, timeout);
1382 }
1383
1384 static void sfp_sm_phy_detach(struct sfp *sfp)
1385 {
1386         phy_stop(sfp->mod_phy);
1387         sfp_remove_phy(sfp->sfp_bus);
1388         phy_device_remove(sfp->mod_phy);
1389         phy_device_free(sfp->mod_phy);
1390         sfp->mod_phy = NULL;
1391 }
1392
1393 static void sfp_sm_probe_phy(struct sfp *sfp)
1394 {
1395         struct phy_device *phy;
1396         int err;
1397
1398         phy = mdiobus_scan(sfp->i2c_mii, SFP_PHY_ADDR);
1399         if (phy == ERR_PTR(-ENODEV)) {
1400                 dev_info(sfp->dev, "no PHY detected\n");
1401                 return;
1402         }
1403         if (IS_ERR(phy)) {
1404                 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1405                 return;
1406         }
1407
1408         err = sfp_add_phy(sfp->sfp_bus, phy);
1409         if (err) {
1410                 phy_device_remove(phy);
1411                 phy_device_free(phy);
1412                 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1413                 return;
1414         }
1415
1416         sfp->mod_phy = phy;
1417         phy_start(phy);
1418 }
1419
1420 static void sfp_sm_link_up(struct sfp *sfp)
1421 {
1422         sfp_link_up(sfp->sfp_bus);
1423         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1424 }
1425
1426 static void sfp_sm_link_down(struct sfp *sfp)
1427 {
1428         sfp_link_down(sfp->sfp_bus);
1429 }
1430
1431 static void sfp_sm_link_check_los(struct sfp *sfp)
1432 {
1433         unsigned int los = sfp->state & SFP_F_LOS;
1434
1435         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1436          * are set, we assume that no LOS signal is available.
1437          */
1438         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1439                 los ^= SFP_F_LOS;
1440         else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1441                 los = 0;
1442
1443         if (los)
1444                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1445         else
1446                 sfp_sm_link_up(sfp);
1447 }
1448
1449 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1450 {
1451         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1452                 event == SFP_E_LOS_LOW) ||
1453                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1454                 event == SFP_E_LOS_HIGH);
1455 }
1456
1457 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1458 {
1459         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1460                 event == SFP_E_LOS_HIGH) ||
1461                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1462                 event == SFP_E_LOS_LOW);
1463 }
1464
1465 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1466 {
1467         if (sfp->sm_retries && !--sfp->sm_retries) {
1468                 dev_err(sfp->dev,
1469                         "module persistently indicates fault, disabling\n");
1470                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1471         } else {
1472                 if (warn)
1473                         dev_err(sfp->dev, "module transmit fault indicated\n");
1474
1475                 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1476         }
1477 }
1478
1479 static void sfp_sm_probe_for_phy(struct sfp *sfp)
1480 {
1481         /* Setting the serdes link mode is guesswork: there's no
1482          * field in the EEPROM which indicates what mode should
1483          * be used.
1484          *
1485          * If it's a gigabit-only fiber module, it probably does
1486          * not have a PHY, so switch to 802.3z negotiation mode.
1487          * Otherwise, switch to SGMII mode (which is required to
1488          * support non-gigabit speeds) and probe for a PHY.
1489          */
1490         if (sfp->id.base.e1000_base_t ||
1491             sfp->id.base.e100_base_lx ||
1492             sfp->id.base.e100_base_fx)
1493                 sfp_sm_probe_phy(sfp);
1494 }
1495
1496 static int sfp_module_parse_power(struct sfp *sfp)
1497 {
1498         u32 power_mW = 1000;
1499
1500         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1501                 power_mW = 1500;
1502         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1503                 power_mW = 2000;
1504
1505         if (power_mW > sfp->max_power_mW) {
1506                 /* Module power specification exceeds the allowed maximum. */
1507                 if (sfp->id.ext.sff8472_compliance ==
1508                         SFP_SFF8472_COMPLIANCE_NONE &&
1509                     !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1510                         /* The module appears not to implement bus address
1511                          * 0xa2, so assume that the module powers up in the
1512                          * indicated mode.
1513                          */
1514                         dev_err(sfp->dev,
1515                                 "Host does not support %u.%uW modules\n",
1516                                 power_mW / 1000, (power_mW / 100) % 10);
1517                         return -EINVAL;
1518                 } else {
1519                         dev_warn(sfp->dev,
1520                                  "Host does not support %u.%uW modules, module left in power mode 1\n",
1521                                  power_mW / 1000, (power_mW / 100) % 10);
1522                         return 0;
1523                 }
1524         }
1525
1526         /* If the module requires a higher power mode, but also requires
1527          * an address change sequence, warn the user that the module may
1528          * not be functional.
1529          */
1530         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1531                 dev_warn(sfp->dev,
1532                          "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1533                          power_mW / 1000, (power_mW / 100) % 10);
1534                 return 0;
1535         }
1536
1537         sfp->module_power_mW = power_mW;
1538
1539         return 0;
1540 }
1541
1542 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1543 {
1544         u8 val;
1545         int err;
1546
1547         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1548         if (err != sizeof(val)) {
1549                 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1550                 return -EAGAIN;
1551         }
1552
1553         if (enable)
1554                 val |= BIT(0);
1555         else
1556                 val &= ~BIT(0);
1557
1558         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1559         if (err != sizeof(val)) {
1560                 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1561                 return -EAGAIN;
1562         }
1563
1564         if (enable)
1565                 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1566                          sfp->module_power_mW / 1000,
1567                          (sfp->module_power_mW / 100) % 10);
1568
1569         return 0;
1570 }
1571
1572 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1573 {
1574         /* SFP module inserted - read I2C data */
1575         struct sfp_eeprom_id id;
1576         bool cotsworks;
1577         u8 check;
1578         int ret;
1579
1580         ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1581         if (ret < 0) {
1582                 if (report)
1583                         dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1584                 return -EAGAIN;
1585         }
1586
1587         if (ret != sizeof(id)) {
1588                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1589                 return -EAGAIN;
1590         }
1591
1592         /* Cotsworks do not seem to update the checksums when they
1593          * do the final programming with the final module part number,
1594          * serial number and date code.
1595          */
1596         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1597
1598         /* Validate the checksum over the base structure */
1599         check = sfp_check(&id.base, sizeof(id.base) - 1);
1600         if (check != id.base.cc_base) {
1601                 if (cotsworks) {
1602                         dev_warn(sfp->dev,
1603                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1604                                  check, id.base.cc_base);
1605                 } else {
1606                         dev_err(sfp->dev,
1607                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1608                                 check, id.base.cc_base);
1609                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1610                                        16, 1, &id, sizeof(id), true);
1611                         return -EINVAL;
1612                 }
1613         }
1614
1615         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1616         if (check != id.ext.cc_ext) {
1617                 if (cotsworks) {
1618                         dev_warn(sfp->dev,
1619                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1620                                  check, id.ext.cc_ext);
1621                 } else {
1622                         dev_err(sfp->dev,
1623                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1624                                 check, id.ext.cc_ext);
1625                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1626                                        16, 1, &id, sizeof(id), true);
1627                         memset(&id.ext, 0, sizeof(id.ext));
1628                 }
1629         }
1630
1631         sfp->id = id;
1632
1633         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1634                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1635                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1636                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1637                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1638                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1639
1640         /* Check whether we support this module */
1641         if (!sfp->type->module_supported(&id)) {
1642                 dev_err(sfp->dev,
1643                         "module is not supported - phys id 0x%02x 0x%02x\n",
1644                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1645                 return -EINVAL;
1646         }
1647
1648         /* If the module requires address swap mode, warn about it */
1649         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1650                 dev_warn(sfp->dev,
1651                          "module address swap to access page 0xA2 is not supported.\n");
1652
1653         /* Parse the module power requirement */
1654         ret = sfp_module_parse_power(sfp);
1655         if (ret < 0)
1656                 return ret;
1657
1658         return 0;
1659 }
1660
1661 static void sfp_sm_mod_remove(struct sfp *sfp)
1662 {
1663         if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1664                 sfp_module_remove(sfp->sfp_bus);
1665
1666         sfp_hwmon_remove(sfp);
1667
1668         memset(&sfp->id, 0, sizeof(sfp->id));
1669         sfp->module_power_mW = 0;
1670
1671         dev_info(sfp->dev, "module removed\n");
1672 }
1673
1674 /* This state machine tracks the upstream's state */
1675 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1676 {
1677         switch (sfp->sm_dev_state) {
1678         default:
1679                 if (event == SFP_E_DEV_ATTACH)
1680                         sfp->sm_dev_state = SFP_DEV_DOWN;
1681                 break;
1682
1683         case SFP_DEV_DOWN:
1684                 if (event == SFP_E_DEV_DETACH)
1685                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1686                 else if (event == SFP_E_DEV_UP)
1687                         sfp->sm_dev_state = SFP_DEV_UP;
1688                 break;
1689
1690         case SFP_DEV_UP:
1691                 if (event == SFP_E_DEV_DETACH)
1692                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1693                 else if (event == SFP_E_DEV_DOWN)
1694                         sfp->sm_dev_state = SFP_DEV_DOWN;
1695                 break;
1696         }
1697 }
1698
1699 /* This state machine tracks the insert/remove state of the module, probes
1700  * the on-board EEPROM, and sets up the power level.
1701  */
1702 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1703 {
1704         int err;
1705
1706         /* Handle remove event globally, it resets this state machine */
1707         if (event == SFP_E_REMOVE) {
1708                 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1709                         sfp_sm_mod_remove(sfp);
1710                 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1711                 return;
1712         }
1713
1714         /* Handle device detach globally */
1715         if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1716             sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1717                 if (sfp->module_power_mW > 1000 &&
1718                     sfp->sm_mod_state > SFP_MOD_HPOWER)
1719                         sfp_sm_mod_hpower(sfp, false);
1720                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1721                 return;
1722         }
1723
1724         switch (sfp->sm_mod_state) {
1725         default:
1726                 if (event == SFP_E_INSERT) {
1727                         sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1728                         sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1729                         sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1730                 }
1731                 break;
1732
1733         case SFP_MOD_PROBE:
1734                 /* Wait for T_PROBE_INIT to time out */
1735                 if (event != SFP_E_TIMEOUT)
1736                         break;
1737
1738                 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1739                 if (err == -EAGAIN) {
1740                         if (sfp->sm_mod_tries_init &&
1741                            --sfp->sm_mod_tries_init) {
1742                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1743                                 break;
1744                         } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1745                                 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1746                                         dev_warn(sfp->dev,
1747                                                  "please wait, module slow to respond\n");
1748                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1749                                 break;
1750                         }
1751                 }
1752                 if (err < 0) {
1753                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1754                         break;
1755                 }
1756
1757                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1758                 /* fall through */
1759         case SFP_MOD_WAITDEV:
1760                 /* Ensure that the device is attached before proceeding */
1761                 if (sfp->sm_dev_state < SFP_DEV_DOWN)
1762                         break;
1763
1764                 /* Report the module insertion to the upstream device */
1765                 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1766                 if (err < 0) {
1767                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1768                         break;
1769                 }
1770
1771                 /* If this is a power level 1 module, we are done */
1772                 if (sfp->module_power_mW <= 1000)
1773                         goto insert;
1774
1775                 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
1776                 /* fall through */
1777         case SFP_MOD_HPOWER:
1778                 /* Enable high power mode */
1779                 err = sfp_sm_mod_hpower(sfp, true);
1780                 if (err < 0) {
1781                         if (err != -EAGAIN) {
1782                                 sfp_module_remove(sfp->sfp_bus);
1783                                 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1784                         } else {
1785                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1786                         }
1787                         break;
1788                 }
1789
1790                 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
1791                 break;
1792
1793         case SFP_MOD_WAITPWR:
1794                 /* Wait for T_HPOWER_LEVEL to time out */
1795                 if (event != SFP_E_TIMEOUT)
1796                         break;
1797
1798         insert:
1799                 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
1800                 break;
1801
1802         case SFP_MOD_PRESENT:
1803         case SFP_MOD_ERROR:
1804                 break;
1805         }
1806
1807 #if IS_ENABLED(CONFIG_HWMON)
1808         if (sfp->sm_mod_state >= SFP_MOD_WAITDEV &&
1809             IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1810                 err = sfp_hwmon_insert(sfp);
1811                 if (err)
1812                         dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1813         }
1814 #endif
1815 }
1816
1817 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
1818 {
1819         unsigned long timeout;
1820
1821         /* Some events are global */
1822         if (sfp->sm_state != SFP_S_DOWN &&
1823             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1824              sfp->sm_dev_state != SFP_DEV_UP)) {
1825                 if (sfp->sm_state == SFP_S_LINK_UP &&
1826                     sfp->sm_dev_state == SFP_DEV_UP)
1827                         sfp_sm_link_down(sfp);
1828                 if (sfp->mod_phy)
1829                         sfp_sm_phy_detach(sfp);
1830                 sfp_module_tx_disable(sfp);
1831                 sfp_soft_stop_poll(sfp);
1832                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1833                 return;
1834         }
1835
1836         /* The main state machine */
1837         switch (sfp->sm_state) {
1838         case SFP_S_DOWN:
1839                 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1840                     sfp->sm_dev_state != SFP_DEV_UP)
1841                         break;
1842
1843                 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
1844                         sfp_soft_start_poll(sfp);
1845
1846                 sfp_module_tx_enable(sfp);
1847
1848                 /* Initialise the fault clearance retries */
1849                 sfp->sm_retries = 5;
1850
1851                 /* We need to check the TX_FAULT state, which is not defined
1852                  * while TX_DISABLE is asserted. The earliest we want to do
1853                  * anything (such as probe for a PHY) is 50ms.
1854                  */
1855                 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
1856                 break;
1857
1858         case SFP_S_WAIT:
1859                 if (event != SFP_E_TIMEOUT)
1860                         break;
1861
1862                 if (sfp->state & SFP_F_TX_FAULT) {
1863                         /* Wait t_init before indicating that the link is up,
1864                          * provided the current state indicates no TX_FAULT. If
1865                          * TX_FAULT clears before this time, that's fine too.
1866                          */
1867                         timeout = T_INIT_JIFFIES;
1868                         if (timeout > T_WAIT)
1869                                 timeout -= T_WAIT;
1870                         else
1871                                 timeout = 1;
1872
1873                         sfp_sm_next(sfp, SFP_S_INIT, timeout);
1874                 } else {
1875                         /* TX_FAULT is not asserted, assume the module has
1876                          * finished initialising.
1877                          */
1878                         goto init_done;
1879                 }
1880                 break;
1881
1882         case SFP_S_INIT:
1883                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1884                         /* TX_FAULT is still asserted after t_init, so assume
1885                          * there is a fault.
1886                          */
1887                         sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
1888                                      sfp->sm_retries == 5);
1889                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1890         init_done:      /* TX_FAULT deasserted or we timed out with TX_FAULT
1891                          * clear.  Probe for the PHY and check the LOS state.
1892                          */
1893                         sfp_sm_probe_for_phy(sfp);
1894                         sfp_sm_link_check_los(sfp);
1895
1896                         /* Reset the fault retry count */
1897                         sfp->sm_retries = 5;
1898                 }
1899                 break;
1900
1901         case SFP_S_INIT_TX_FAULT:
1902                 if (event == SFP_E_TIMEOUT) {
1903                         sfp_module_tx_fault_reset(sfp);
1904                         sfp_sm_next(sfp, SFP_S_INIT, T_INIT_JIFFIES);
1905                 }
1906                 break;
1907
1908         case SFP_S_WAIT_LOS:
1909                 if (event == SFP_E_TX_FAULT)
1910                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
1911                 else if (sfp_los_event_inactive(sfp, event))
1912                         sfp_sm_link_up(sfp);
1913                 break;
1914
1915         case SFP_S_LINK_UP:
1916                 if (event == SFP_E_TX_FAULT) {
1917                         sfp_sm_link_down(sfp);
1918                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
1919                 } else if (sfp_los_event_active(sfp, event)) {
1920                         sfp_sm_link_down(sfp);
1921                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1922                 }
1923                 break;
1924
1925         case SFP_S_TX_FAULT:
1926                 if (event == SFP_E_TIMEOUT) {
1927                         sfp_module_tx_fault_reset(sfp);
1928                         sfp_sm_next(sfp, SFP_S_REINIT, T_INIT_JIFFIES);
1929                 }
1930                 break;
1931
1932         case SFP_S_REINIT:
1933                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1934                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
1935                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1936                         dev_info(sfp->dev, "module transmit fault recovered\n");
1937                         sfp_sm_link_check_los(sfp);
1938                 }
1939                 break;
1940
1941         case SFP_S_TX_DISABLE:
1942                 break;
1943         }
1944 }
1945
1946 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
1947 {
1948         mutex_lock(&sfp->sm_mutex);
1949
1950         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
1951                 mod_state_to_str(sfp->sm_mod_state),
1952                 dev_state_to_str(sfp->sm_dev_state),
1953                 sm_state_to_str(sfp->sm_state),
1954                 event_to_str(event));
1955
1956         sfp_sm_device(sfp, event);
1957         sfp_sm_module(sfp, event);
1958         sfp_sm_main(sfp, event);
1959
1960         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
1961                 mod_state_to_str(sfp->sm_mod_state),
1962                 dev_state_to_str(sfp->sm_dev_state),
1963                 sm_state_to_str(sfp->sm_state));
1964
1965         mutex_unlock(&sfp->sm_mutex);
1966 }
1967
1968 static void sfp_attach(struct sfp *sfp)
1969 {
1970         sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
1971 }
1972
1973 static void sfp_detach(struct sfp *sfp)
1974 {
1975         sfp_sm_event(sfp, SFP_E_DEV_DETACH);
1976 }
1977
1978 static void sfp_start(struct sfp *sfp)
1979 {
1980         sfp_sm_event(sfp, SFP_E_DEV_UP);
1981 }
1982
1983 static void sfp_stop(struct sfp *sfp)
1984 {
1985         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
1986 }
1987
1988 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
1989 {
1990         /* locking... and check module is present */
1991
1992         if (sfp->id.ext.sff8472_compliance &&
1993             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
1994                 modinfo->type = ETH_MODULE_SFF_8472;
1995                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
1996         } else {
1997                 modinfo->type = ETH_MODULE_SFF_8079;
1998                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
1999         }
2000         return 0;
2001 }
2002
2003 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2004                              u8 *data)
2005 {
2006         unsigned int first, last, len;
2007         int ret;
2008
2009         if (ee->len == 0)
2010                 return -EINVAL;
2011
2012         first = ee->offset;
2013         last = ee->offset + ee->len;
2014         if (first < ETH_MODULE_SFF_8079_LEN) {
2015                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2016                 len -= first;
2017
2018                 ret = sfp_read(sfp, false, first, data, len);
2019                 if (ret < 0)
2020                         return ret;
2021
2022                 first += len;
2023                 data += len;
2024         }
2025         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2026                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2027                 len -= first;
2028                 first -= ETH_MODULE_SFF_8079_LEN;
2029
2030                 ret = sfp_read(sfp, true, first, data, len);
2031                 if (ret < 0)
2032                         return ret;
2033         }
2034         return 0;
2035 }
2036
2037 static const struct sfp_socket_ops sfp_module_ops = {
2038         .attach = sfp_attach,
2039         .detach = sfp_detach,
2040         .start = sfp_start,
2041         .stop = sfp_stop,
2042         .module_info = sfp_module_info,
2043         .module_eeprom = sfp_module_eeprom,
2044 };
2045
2046 static void sfp_timeout(struct work_struct *work)
2047 {
2048         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2049
2050         rtnl_lock();
2051         sfp_sm_event(sfp, SFP_E_TIMEOUT);
2052         rtnl_unlock();
2053 }
2054
2055 static void sfp_check_state(struct sfp *sfp)
2056 {
2057         unsigned int state, i, changed;
2058
2059         mutex_lock(&sfp->st_mutex);
2060         state = sfp_get_state(sfp);
2061         changed = state ^ sfp->state;
2062         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2063
2064         for (i = 0; i < GPIO_MAX; i++)
2065                 if (changed & BIT(i))
2066                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2067                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2068
2069         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2070         sfp->state = state;
2071
2072         rtnl_lock();
2073         if (changed & SFP_F_PRESENT)
2074                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2075                                 SFP_E_INSERT : SFP_E_REMOVE);
2076
2077         if (changed & SFP_F_TX_FAULT)
2078                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2079                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2080
2081         if (changed & SFP_F_LOS)
2082                 sfp_sm_event(sfp, state & SFP_F_LOS ?
2083                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2084         rtnl_unlock();
2085         mutex_unlock(&sfp->st_mutex);
2086 }
2087
2088 static irqreturn_t sfp_irq(int irq, void *data)
2089 {
2090         struct sfp *sfp = data;
2091
2092         sfp_check_state(sfp);
2093
2094         return IRQ_HANDLED;
2095 }
2096
2097 static void sfp_poll(struct work_struct *work)
2098 {
2099         struct sfp *sfp = container_of(work, struct sfp, poll.work);
2100
2101         sfp_check_state(sfp);
2102
2103         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2104             sfp->need_poll)
2105                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2106 }
2107
2108 static struct sfp *sfp_alloc(struct device *dev)
2109 {
2110         struct sfp *sfp;
2111
2112         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2113         if (!sfp)
2114                 return ERR_PTR(-ENOMEM);
2115
2116         sfp->dev = dev;
2117
2118         mutex_init(&sfp->sm_mutex);
2119         mutex_init(&sfp->st_mutex);
2120         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2121         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2122
2123         sfp_hwmon_init(sfp);
2124
2125         return sfp;
2126 }
2127
2128 static void sfp_cleanup(void *data)
2129 {
2130         struct sfp *sfp = data;
2131
2132         sfp_hwmon_exit(sfp);
2133
2134         cancel_delayed_work_sync(&sfp->poll);
2135         cancel_delayed_work_sync(&sfp->timeout);
2136         if (sfp->i2c_mii) {
2137                 mdiobus_unregister(sfp->i2c_mii);
2138                 mdiobus_free(sfp->i2c_mii);
2139         }
2140         if (sfp->i2c)
2141                 i2c_put_adapter(sfp->i2c);
2142         kfree(sfp);
2143 }
2144
2145 static int sfp_probe(struct platform_device *pdev)
2146 {
2147         const struct sff_data *sff;
2148         struct i2c_adapter *i2c;
2149         struct sfp *sfp;
2150         int err, i;
2151
2152         sfp = sfp_alloc(&pdev->dev);
2153         if (IS_ERR(sfp))
2154                 return PTR_ERR(sfp);
2155
2156         platform_set_drvdata(pdev, sfp);
2157
2158         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2159         if (err < 0)
2160                 return err;
2161
2162         sff = sfp->type = &sfp_data;
2163
2164         if (pdev->dev.of_node) {
2165                 struct device_node *node = pdev->dev.of_node;
2166                 const struct of_device_id *id;
2167                 struct device_node *np;
2168
2169                 id = of_match_node(sfp_of_match, node);
2170                 if (WARN_ON(!id))
2171                         return -EINVAL;
2172
2173                 sff = sfp->type = id->data;
2174
2175                 np = of_parse_phandle(node, "i2c-bus", 0);
2176                 if (!np) {
2177                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2178                         return -ENODEV;
2179                 }
2180
2181                 i2c = of_find_i2c_adapter_by_node(np);
2182                 of_node_put(np);
2183         } else if (has_acpi_companion(&pdev->dev)) {
2184                 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2185                 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2186                 struct fwnode_reference_args args;
2187                 struct acpi_handle *acpi_handle;
2188                 int ret;
2189
2190                 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2191                 if (ret || !is_acpi_device_node(args.fwnode)) {
2192                         dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2193                         return -ENODEV;
2194                 }
2195
2196                 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2197                 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2198         } else {
2199                 return -EINVAL;
2200         }
2201
2202         if (!i2c)
2203                 return -EPROBE_DEFER;
2204
2205         err = sfp_i2c_configure(sfp, i2c);
2206         if (err < 0) {
2207                 i2c_put_adapter(i2c);
2208                 return err;
2209         }
2210
2211         for (i = 0; i < GPIO_MAX; i++)
2212                 if (sff->gpios & BIT(i)) {
2213                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2214                                            gpio_of_names[i], gpio_flags[i]);
2215                         if (IS_ERR(sfp->gpio[i]))
2216                                 return PTR_ERR(sfp->gpio[i]);
2217                 }
2218
2219         sfp->get_state = sfp_gpio_get_state;
2220         sfp->set_state = sfp_gpio_set_state;
2221
2222         /* Modules that have no detect signal are always present */
2223         if (!(sfp->gpio[GPIO_MODDEF0]))
2224                 sfp->get_state = sff_gpio_get_state;
2225
2226         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2227                                  &sfp->max_power_mW);
2228         if (!sfp->max_power_mW)
2229                 sfp->max_power_mW = 1000;
2230
2231         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2232                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2233
2234         /* Get the initial state, and always signal TX disable,
2235          * since the network interface will not be up.
2236          */
2237         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2238
2239         if (sfp->gpio[GPIO_RATE_SELECT] &&
2240             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2241                 sfp->state |= SFP_F_RATE_SELECT;
2242         sfp_set_state(sfp, sfp->state);
2243         sfp_module_tx_disable(sfp);
2244         if (sfp->state & SFP_F_PRESENT) {
2245                 rtnl_lock();
2246                 sfp_sm_event(sfp, SFP_E_INSERT);
2247                 rtnl_unlock();
2248         }
2249
2250         for (i = 0; i < GPIO_MAX; i++) {
2251                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2252                         continue;
2253
2254                 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2255                 if (!sfp->gpio_irq[i]) {
2256                         sfp->need_poll = true;
2257                         continue;
2258                 }
2259
2260                 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2261                                                 NULL, sfp_irq,
2262                                                 IRQF_ONESHOT |
2263                                                 IRQF_TRIGGER_RISING |
2264                                                 IRQF_TRIGGER_FALLING,
2265                                                 dev_name(sfp->dev), sfp);
2266                 if (err) {
2267                         sfp->gpio_irq[i] = 0;
2268                         sfp->need_poll = true;
2269                 }
2270         }
2271
2272         if (sfp->need_poll)
2273                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2274
2275         /* We could have an issue in cases no Tx disable pin is available or
2276          * wired as modules using a laser as their light source will continue to
2277          * be active when the fiber is removed. This could be a safety issue and
2278          * we should at least warn the user about that.
2279          */
2280         if (!sfp->gpio[GPIO_TX_DISABLE])
2281                 dev_warn(sfp->dev,
2282                          "No tx_disable pin: SFP modules will always be emitting.\n");
2283
2284         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2285         if (!sfp->sfp_bus)
2286                 return -ENOMEM;
2287
2288         return 0;
2289 }
2290
2291 static int sfp_remove(struct platform_device *pdev)
2292 {
2293         struct sfp *sfp = platform_get_drvdata(pdev);
2294
2295         sfp_unregister_socket(sfp->sfp_bus);
2296
2297         return 0;
2298 }
2299
2300 static void sfp_shutdown(struct platform_device *pdev)
2301 {
2302         struct sfp *sfp = platform_get_drvdata(pdev);
2303         int i;
2304
2305         for (i = 0; i < GPIO_MAX; i++) {
2306                 if (!sfp->gpio_irq[i])
2307                         continue;
2308
2309                 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2310         }
2311
2312         cancel_delayed_work_sync(&sfp->poll);
2313         cancel_delayed_work_sync(&sfp->timeout);
2314 }
2315
2316 static struct platform_driver sfp_driver = {
2317         .probe = sfp_probe,
2318         .remove = sfp_remove,
2319         .shutdown = sfp_shutdown,
2320         .driver = {
2321                 .name = "sfp",
2322                 .of_match_table = sfp_of_match,
2323         },
2324 };
2325
2326 static int sfp_init(void)
2327 {
2328         poll_jiffies = msecs_to_jiffies(100);
2329
2330         return platform_driver_register(&sfp_driver);
2331 }
2332 module_init(sfp_init);
2333
2334 static void sfp_exit(void)
2335 {
2336         platform_driver_unregister(&sfp_driver);
2337 }
2338 module_exit(sfp_exit);
2339
2340 MODULE_ALIAS("platform:sfp");
2341 MODULE_AUTHOR("Russell King");
2342 MODULE_LICENSE("GPL v2");