]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/phy/sfp.c
Merge branch 'improve-clause-45-support-in-phylink'
[linux.git] / drivers / net / phy / sfp.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/acpi.h>
3 #include <linux/ctype.h>
4 #include <linux/delay.h>
5 #include <linux/gpio/consumer.h>
6 #include <linux/hwmon.h>
7 #include <linux/i2c.h>
8 #include <linux/interrupt.h>
9 #include <linux/jiffies.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18
19 #include "mdio-i2c.h"
20 #include "sfp.h"
21 #include "swphy.h"
22
23 enum {
24         GPIO_MODDEF0,
25         GPIO_LOS,
26         GPIO_TX_FAULT,
27         GPIO_TX_DISABLE,
28         GPIO_RATE_SELECT,
29         GPIO_MAX,
30
31         SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32         SFP_F_LOS = BIT(GPIO_LOS),
33         SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34         SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35         SFP_F_RATE_SELECT = BIT(GPIO_RATE_SELECT),
36
37         SFP_E_INSERT = 0,
38         SFP_E_REMOVE,
39         SFP_E_DEV_ATTACH,
40         SFP_E_DEV_DETACH,
41         SFP_E_DEV_DOWN,
42         SFP_E_DEV_UP,
43         SFP_E_TX_FAULT,
44         SFP_E_TX_CLEAR,
45         SFP_E_LOS_HIGH,
46         SFP_E_LOS_LOW,
47         SFP_E_TIMEOUT,
48
49         SFP_MOD_EMPTY = 0,
50         SFP_MOD_ERROR,
51         SFP_MOD_PROBE,
52         SFP_MOD_WAITDEV,
53         SFP_MOD_HPOWER,
54         SFP_MOD_WAITPWR,
55         SFP_MOD_PRESENT,
56
57         SFP_DEV_DETACHED = 0,
58         SFP_DEV_DOWN,
59         SFP_DEV_UP,
60
61         SFP_S_DOWN = 0,
62         SFP_S_FAIL,
63         SFP_S_WAIT,
64         SFP_S_INIT,
65         SFP_S_INIT_PHY,
66         SFP_S_INIT_TX_FAULT,
67         SFP_S_WAIT_LOS,
68         SFP_S_LINK_UP,
69         SFP_S_TX_FAULT,
70         SFP_S_REINIT,
71         SFP_S_TX_DISABLE,
72 };
73
74 static const char  * const mod_state_strings[] = {
75         [SFP_MOD_EMPTY] = "empty",
76         [SFP_MOD_ERROR] = "error",
77         [SFP_MOD_PROBE] = "probe",
78         [SFP_MOD_WAITDEV] = "waitdev",
79         [SFP_MOD_HPOWER] = "hpower",
80         [SFP_MOD_WAITPWR] = "waitpwr",
81         [SFP_MOD_PRESENT] = "present",
82 };
83
84 static const char *mod_state_to_str(unsigned short mod_state)
85 {
86         if (mod_state >= ARRAY_SIZE(mod_state_strings))
87                 return "Unknown module state";
88         return mod_state_strings[mod_state];
89 }
90
91 static const char * const dev_state_strings[] = {
92         [SFP_DEV_DETACHED] = "detached",
93         [SFP_DEV_DOWN] = "down",
94         [SFP_DEV_UP] = "up",
95 };
96
97 static const char *dev_state_to_str(unsigned short dev_state)
98 {
99         if (dev_state >= ARRAY_SIZE(dev_state_strings))
100                 return "Unknown device state";
101         return dev_state_strings[dev_state];
102 }
103
104 static const char * const event_strings[] = {
105         [SFP_E_INSERT] = "insert",
106         [SFP_E_REMOVE] = "remove",
107         [SFP_E_DEV_ATTACH] = "dev_attach",
108         [SFP_E_DEV_DETACH] = "dev_detach",
109         [SFP_E_DEV_DOWN] = "dev_down",
110         [SFP_E_DEV_UP] = "dev_up",
111         [SFP_E_TX_FAULT] = "tx_fault",
112         [SFP_E_TX_CLEAR] = "tx_clear",
113         [SFP_E_LOS_HIGH] = "los_high",
114         [SFP_E_LOS_LOW] = "los_low",
115         [SFP_E_TIMEOUT] = "timeout",
116 };
117
118 static const char *event_to_str(unsigned short event)
119 {
120         if (event >= ARRAY_SIZE(event_strings))
121                 return "Unknown event";
122         return event_strings[event];
123 }
124
125 static const char * const sm_state_strings[] = {
126         [SFP_S_DOWN] = "down",
127         [SFP_S_FAIL] = "fail",
128         [SFP_S_WAIT] = "wait",
129         [SFP_S_INIT] = "init",
130         [SFP_S_INIT_PHY] = "init_phy",
131         [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
132         [SFP_S_WAIT_LOS] = "wait_los",
133         [SFP_S_LINK_UP] = "link_up",
134         [SFP_S_TX_FAULT] = "tx_fault",
135         [SFP_S_REINIT] = "reinit",
136         [SFP_S_TX_DISABLE] = "rx_disable",
137 };
138
139 static const char *sm_state_to_str(unsigned short sm_state)
140 {
141         if (sm_state >= ARRAY_SIZE(sm_state_strings))
142                 return "Unknown state";
143         return sm_state_strings[sm_state];
144 }
145
146 static const char *gpio_of_names[] = {
147         "mod-def0",
148         "los",
149         "tx-fault",
150         "tx-disable",
151         "rate-select0",
152 };
153
154 static const enum gpiod_flags gpio_flags[] = {
155         GPIOD_IN,
156         GPIOD_IN,
157         GPIOD_IN,
158         GPIOD_ASIS,
159         GPIOD_ASIS,
160 };
161
162 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
163  * non-cooled module to initialise its laser safety circuitry. We wait
164  * an initial T_WAIT period before we check the tx fault to give any PHY
165  * on board (for a copper SFP) time to initialise.
166  */
167 #define T_WAIT                  msecs_to_jiffies(50)
168 #define T_START_UP              msecs_to_jiffies(300)
169 #define T_START_UP_BAD_GPON     msecs_to_jiffies(60000)
170
171 /* t_reset is the time required to assert the TX_DISABLE signal to reset
172  * an indicated TX_FAULT.
173  */
174 #define T_RESET_US              10
175 #define T_FAULT_RECOVER         msecs_to_jiffies(1000)
176
177 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
178  * time. If the TX_FAULT signal is not deasserted after this number of
179  * attempts at clearing it, we decide that the module is faulty.
180  * N_FAULT is the same but after the module has initialised.
181  */
182 #define N_FAULT_INIT            5
183 #define N_FAULT                 5
184
185 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
186  * R_PHY_RETRY is the number of attempts.
187  */
188 #define T_PHY_RETRY             msecs_to_jiffies(50)
189 #define R_PHY_RETRY             12
190
191 /* SFP module presence detection is poor: the three MOD DEF signals are
192  * the same length on the PCB, which means it's possible for MOD DEF 0 to
193  * connect before the I2C bus on MOD DEF 1/2.
194  *
195  * The SFF-8472 specifies t_serial ("Time from power on until module is
196  * ready for data transmission over the two wire serial bus.") as 300ms.
197  */
198 #define T_SERIAL                msecs_to_jiffies(300)
199 #define T_HPOWER_LEVEL          msecs_to_jiffies(300)
200 #define T_PROBE_RETRY_INIT      msecs_to_jiffies(100)
201 #define R_PROBE_RETRY_INIT      10
202 #define T_PROBE_RETRY_SLOW      msecs_to_jiffies(5000)
203 #define R_PROBE_RETRY_SLOW      12
204
205 /* SFP modules appear to always have their PHY configured for bus address
206  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
207  */
208 #define SFP_PHY_ADDR    22
209
210 struct sff_data {
211         unsigned int gpios;
212         bool (*module_supported)(const struct sfp_eeprom_id *id);
213 };
214
215 struct sfp {
216         struct device *dev;
217         struct i2c_adapter *i2c;
218         struct mii_bus *i2c_mii;
219         struct sfp_bus *sfp_bus;
220         struct phy_device *mod_phy;
221         const struct sff_data *type;
222         u32 max_power_mW;
223
224         unsigned int (*get_state)(struct sfp *);
225         void (*set_state)(struct sfp *, unsigned int);
226         int (*read)(struct sfp *, bool, u8, void *, size_t);
227         int (*write)(struct sfp *, bool, u8, void *, size_t);
228
229         struct gpio_desc *gpio[GPIO_MAX];
230         int gpio_irq[GPIO_MAX];
231
232         bool need_poll;
233
234         struct mutex st_mutex;                  /* Protects state */
235         unsigned int state_soft_mask;
236         unsigned int state;
237         struct delayed_work poll;
238         struct delayed_work timeout;
239         struct mutex sm_mutex;                  /* Protects state machine */
240         unsigned char sm_mod_state;
241         unsigned char sm_mod_tries_init;
242         unsigned char sm_mod_tries;
243         unsigned char sm_dev_state;
244         unsigned short sm_state;
245         unsigned char sm_fault_retries;
246         unsigned char sm_phy_retries;
247
248         struct sfp_eeprom_id id;
249         unsigned int module_power_mW;
250         unsigned int module_t_start_up;
251
252 #if IS_ENABLED(CONFIG_HWMON)
253         struct sfp_diag diag;
254         struct delayed_work hwmon_probe;
255         unsigned int hwmon_tries;
256         struct device *hwmon_dev;
257         char *hwmon_name;
258 #endif
259
260 };
261
262 static bool sff_module_supported(const struct sfp_eeprom_id *id)
263 {
264         return id->base.phys_id == SFF8024_ID_SFF_8472 &&
265                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
266 }
267
268 static const struct sff_data sff_data = {
269         .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
270         .module_supported = sff_module_supported,
271 };
272
273 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
274 {
275         return id->base.phys_id == SFF8024_ID_SFP &&
276                id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
277 }
278
279 static const struct sff_data sfp_data = {
280         .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
281                  SFP_F_TX_DISABLE | SFP_F_RATE_SELECT,
282         .module_supported = sfp_module_supported,
283 };
284
285 static const struct of_device_id sfp_of_match[] = {
286         { .compatible = "sff,sff", .data = &sff_data, },
287         { .compatible = "sff,sfp", .data = &sfp_data, },
288         { },
289 };
290 MODULE_DEVICE_TABLE(of, sfp_of_match);
291
292 static unsigned long poll_jiffies;
293
294 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
295 {
296         unsigned int i, state, v;
297
298         for (i = state = 0; i < GPIO_MAX; i++) {
299                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
300                         continue;
301
302                 v = gpiod_get_value_cansleep(sfp->gpio[i]);
303                 if (v)
304                         state |= BIT(i);
305         }
306
307         return state;
308 }
309
310 static unsigned int sff_gpio_get_state(struct sfp *sfp)
311 {
312         return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
313 }
314
315 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
316 {
317         if (state & SFP_F_PRESENT) {
318                 /* If the module is present, drive the signals */
319                 if (sfp->gpio[GPIO_TX_DISABLE])
320                         gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
321                                                state & SFP_F_TX_DISABLE);
322                 if (state & SFP_F_RATE_SELECT)
323                         gpiod_direction_output(sfp->gpio[GPIO_RATE_SELECT],
324                                                state & SFP_F_RATE_SELECT);
325         } else {
326                 /* Otherwise, let them float to the pull-ups */
327                 if (sfp->gpio[GPIO_TX_DISABLE])
328                         gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
329                 if (state & SFP_F_RATE_SELECT)
330                         gpiod_direction_input(sfp->gpio[GPIO_RATE_SELECT]);
331         }
332 }
333
334 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
335                         size_t len)
336 {
337         struct i2c_msg msgs[2];
338         u8 bus_addr = a2 ? 0x51 : 0x50;
339         size_t this_len;
340         int ret;
341
342         msgs[0].addr = bus_addr;
343         msgs[0].flags = 0;
344         msgs[0].len = 1;
345         msgs[0].buf = &dev_addr;
346         msgs[1].addr = bus_addr;
347         msgs[1].flags = I2C_M_RD;
348         msgs[1].len = len;
349         msgs[1].buf = buf;
350
351         while (len) {
352                 this_len = len;
353                 if (this_len > 16)
354                         this_len = 16;
355
356                 msgs[1].len = this_len;
357
358                 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
359                 if (ret < 0)
360                         return ret;
361
362                 if (ret != ARRAY_SIZE(msgs))
363                         break;
364
365                 msgs[1].buf += this_len;
366                 dev_addr += this_len;
367                 len -= this_len;
368         }
369
370         return msgs[1].buf - (u8 *)buf;
371 }
372
373 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
374         size_t len)
375 {
376         struct i2c_msg msgs[1];
377         u8 bus_addr = a2 ? 0x51 : 0x50;
378         int ret;
379
380         msgs[0].addr = bus_addr;
381         msgs[0].flags = 0;
382         msgs[0].len = 1 + len;
383         msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
384         if (!msgs[0].buf)
385                 return -ENOMEM;
386
387         msgs[0].buf[0] = dev_addr;
388         memcpy(&msgs[0].buf[1], buf, len);
389
390         ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
391
392         kfree(msgs[0].buf);
393
394         if (ret < 0)
395                 return ret;
396
397         return ret == ARRAY_SIZE(msgs) ? len : 0;
398 }
399
400 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
401 {
402         struct mii_bus *i2c_mii;
403         int ret;
404
405         if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
406                 return -EINVAL;
407
408         sfp->i2c = i2c;
409         sfp->read = sfp_i2c_read;
410         sfp->write = sfp_i2c_write;
411
412         i2c_mii = mdio_i2c_alloc(sfp->dev, i2c);
413         if (IS_ERR(i2c_mii))
414                 return PTR_ERR(i2c_mii);
415
416         i2c_mii->name = "SFP I2C Bus";
417         i2c_mii->phy_mask = ~0;
418
419         ret = mdiobus_register(i2c_mii);
420         if (ret < 0) {
421                 mdiobus_free(i2c_mii);
422                 return ret;
423         }
424
425         sfp->i2c_mii = i2c_mii;
426
427         return 0;
428 }
429
430 /* Interface */
431 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
432 {
433         return sfp->read(sfp, a2, addr, buf, len);
434 }
435
436 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
437 {
438         return sfp->write(sfp, a2, addr, buf, len);
439 }
440
441 static unsigned int sfp_soft_get_state(struct sfp *sfp)
442 {
443         unsigned int state = 0;
444         u8 status;
445
446         if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
447                      sizeof(status)) {
448                 if (status & SFP_STATUS_RX_LOS)
449                         state |= SFP_F_LOS;
450                 if (status & SFP_STATUS_TX_FAULT)
451                         state |= SFP_F_TX_FAULT;
452         }
453
454         return state & sfp->state_soft_mask;
455 }
456
457 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state)
458 {
459         u8 status;
460
461         if (sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)) ==
462                      sizeof(status)) {
463                 if (state & SFP_F_TX_DISABLE)
464                         status |= SFP_STATUS_TX_DISABLE_FORCE;
465                 else
466                         status &= ~SFP_STATUS_TX_DISABLE_FORCE;
467
468                 sfp_write(sfp, true, SFP_STATUS, &status, sizeof(status));
469         }
470 }
471
472 static void sfp_soft_start_poll(struct sfp *sfp)
473 {
474         const struct sfp_eeprom_id *id = &sfp->id;
475
476         sfp->state_soft_mask = 0;
477         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE &&
478             !sfp->gpio[GPIO_TX_DISABLE])
479                 sfp->state_soft_mask |= SFP_F_TX_DISABLE;
480         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT &&
481             !sfp->gpio[GPIO_TX_FAULT])
482                 sfp->state_soft_mask |= SFP_F_TX_FAULT;
483         if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS &&
484             !sfp->gpio[GPIO_LOS])
485                 sfp->state_soft_mask |= SFP_F_LOS;
486
487         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
488             !sfp->need_poll)
489                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
490 }
491
492 static void sfp_soft_stop_poll(struct sfp *sfp)
493 {
494         sfp->state_soft_mask = 0;
495 }
496
497 static unsigned int sfp_get_state(struct sfp *sfp)
498 {
499         unsigned int state = sfp->get_state(sfp);
500
501         if (state & SFP_F_PRESENT &&
502             sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT))
503                 state |= sfp_soft_get_state(sfp);
504
505         return state;
506 }
507
508 static void sfp_set_state(struct sfp *sfp, unsigned int state)
509 {
510         sfp->set_state(sfp, state);
511
512         if (state & SFP_F_PRESENT &&
513             sfp->state_soft_mask & SFP_F_TX_DISABLE)
514                 sfp_soft_set_state(sfp, state);
515 }
516
517 static unsigned int sfp_check(void *buf, size_t len)
518 {
519         u8 *p, check;
520
521         for (p = buf, check = 0; len; p++, len--)
522                 check += *p;
523
524         return check;
525 }
526
527 /* hwmon */
528 #if IS_ENABLED(CONFIG_HWMON)
529 static umode_t sfp_hwmon_is_visible(const void *data,
530                                     enum hwmon_sensor_types type,
531                                     u32 attr, int channel)
532 {
533         const struct sfp *sfp = data;
534
535         switch (type) {
536         case hwmon_temp:
537                 switch (attr) {
538                 case hwmon_temp_min_alarm:
539                 case hwmon_temp_max_alarm:
540                 case hwmon_temp_lcrit_alarm:
541                 case hwmon_temp_crit_alarm:
542                 case hwmon_temp_min:
543                 case hwmon_temp_max:
544                 case hwmon_temp_lcrit:
545                 case hwmon_temp_crit:
546                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
547                                 return 0;
548                         /* fall through */
549                 case hwmon_temp_input:
550                 case hwmon_temp_label:
551                         return 0444;
552                 default:
553                         return 0;
554                 }
555         case hwmon_in:
556                 switch (attr) {
557                 case hwmon_in_min_alarm:
558                 case hwmon_in_max_alarm:
559                 case hwmon_in_lcrit_alarm:
560                 case hwmon_in_crit_alarm:
561                 case hwmon_in_min:
562                 case hwmon_in_max:
563                 case hwmon_in_lcrit:
564                 case hwmon_in_crit:
565                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
566                                 return 0;
567                         /* fall through */
568                 case hwmon_in_input:
569                 case hwmon_in_label:
570                         return 0444;
571                 default:
572                         return 0;
573                 }
574         case hwmon_curr:
575                 switch (attr) {
576                 case hwmon_curr_min_alarm:
577                 case hwmon_curr_max_alarm:
578                 case hwmon_curr_lcrit_alarm:
579                 case hwmon_curr_crit_alarm:
580                 case hwmon_curr_min:
581                 case hwmon_curr_max:
582                 case hwmon_curr_lcrit:
583                 case hwmon_curr_crit:
584                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
585                                 return 0;
586                         /* fall through */
587                 case hwmon_curr_input:
588                 case hwmon_curr_label:
589                         return 0444;
590                 default:
591                         return 0;
592                 }
593         case hwmon_power:
594                 /* External calibration of receive power requires
595                  * floating point arithmetic. Doing that in the kernel
596                  * is not easy, so just skip it. If the module does
597                  * not require external calibration, we can however
598                  * show receiver power, since FP is then not needed.
599                  */
600                 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
601                     channel == 1)
602                         return 0;
603                 switch (attr) {
604                 case hwmon_power_min_alarm:
605                 case hwmon_power_max_alarm:
606                 case hwmon_power_lcrit_alarm:
607                 case hwmon_power_crit_alarm:
608                 case hwmon_power_min:
609                 case hwmon_power_max:
610                 case hwmon_power_lcrit:
611                 case hwmon_power_crit:
612                         if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
613                                 return 0;
614                         /* fall through */
615                 case hwmon_power_input:
616                 case hwmon_power_label:
617                         return 0444;
618                 default:
619                         return 0;
620                 }
621         default:
622                 return 0;
623         }
624 }
625
626 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
627 {
628         __be16 val;
629         int err;
630
631         err = sfp_read(sfp, true, reg, &val, sizeof(val));
632         if (err < 0)
633                 return err;
634
635         *value = be16_to_cpu(val);
636
637         return 0;
638 }
639
640 static void sfp_hwmon_to_rx_power(long *value)
641 {
642         *value = DIV_ROUND_CLOSEST(*value, 10);
643 }
644
645 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
646                                 long *value)
647 {
648         if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
649                 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
650 }
651
652 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
653 {
654         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
655                             be16_to_cpu(sfp->diag.cal_t_offset), value);
656
657         if (*value >= 0x8000)
658                 *value -= 0x10000;
659
660         *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
661 }
662
663 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
664 {
665         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
666                             be16_to_cpu(sfp->diag.cal_v_offset), value);
667
668         *value = DIV_ROUND_CLOSEST(*value, 10);
669 }
670
671 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
672 {
673         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
674                             be16_to_cpu(sfp->diag.cal_txi_offset), value);
675
676         *value = DIV_ROUND_CLOSEST(*value, 500);
677 }
678
679 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
680 {
681         sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
682                             be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
683
684         *value = DIV_ROUND_CLOSEST(*value, 10);
685 }
686
687 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
688 {
689         int err;
690
691         err = sfp_hwmon_read_sensor(sfp, reg, value);
692         if (err < 0)
693                 return err;
694
695         sfp_hwmon_calibrate_temp(sfp, value);
696
697         return 0;
698 }
699
700 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
701 {
702         int err;
703
704         err = sfp_hwmon_read_sensor(sfp, reg, value);
705         if (err < 0)
706                 return err;
707
708         sfp_hwmon_calibrate_vcc(sfp, value);
709
710         return 0;
711 }
712
713 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
714 {
715         int err;
716
717         err = sfp_hwmon_read_sensor(sfp, reg, value);
718         if (err < 0)
719                 return err;
720
721         sfp_hwmon_calibrate_bias(sfp, value);
722
723         return 0;
724 }
725
726 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
727 {
728         int err;
729
730         err = sfp_hwmon_read_sensor(sfp, reg, value);
731         if (err < 0)
732                 return err;
733
734         sfp_hwmon_calibrate_tx_power(sfp, value);
735
736         return 0;
737 }
738
739 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
740 {
741         int err;
742
743         err = sfp_hwmon_read_sensor(sfp, reg, value);
744         if (err < 0)
745                 return err;
746
747         sfp_hwmon_to_rx_power(value);
748
749         return 0;
750 }
751
752 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
753 {
754         u8 status;
755         int err;
756
757         switch (attr) {
758         case hwmon_temp_input:
759                 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
760
761         case hwmon_temp_lcrit:
762                 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
763                 sfp_hwmon_calibrate_temp(sfp, value);
764                 return 0;
765
766         case hwmon_temp_min:
767                 *value = be16_to_cpu(sfp->diag.temp_low_warn);
768                 sfp_hwmon_calibrate_temp(sfp, value);
769                 return 0;
770         case hwmon_temp_max:
771                 *value = be16_to_cpu(sfp->diag.temp_high_warn);
772                 sfp_hwmon_calibrate_temp(sfp, value);
773                 return 0;
774
775         case hwmon_temp_crit:
776                 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
777                 sfp_hwmon_calibrate_temp(sfp, value);
778                 return 0;
779
780         case hwmon_temp_lcrit_alarm:
781                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
782                 if (err < 0)
783                         return err;
784
785                 *value = !!(status & SFP_ALARM0_TEMP_LOW);
786                 return 0;
787
788         case hwmon_temp_min_alarm:
789                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
790                 if (err < 0)
791                         return err;
792
793                 *value = !!(status & SFP_WARN0_TEMP_LOW);
794                 return 0;
795
796         case hwmon_temp_max_alarm:
797                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
798                 if (err < 0)
799                         return err;
800
801                 *value = !!(status & SFP_WARN0_TEMP_HIGH);
802                 return 0;
803
804         case hwmon_temp_crit_alarm:
805                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
806                 if (err < 0)
807                         return err;
808
809                 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
810                 return 0;
811         default:
812                 return -EOPNOTSUPP;
813         }
814
815         return -EOPNOTSUPP;
816 }
817
818 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
819 {
820         u8 status;
821         int err;
822
823         switch (attr) {
824         case hwmon_in_input:
825                 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
826
827         case hwmon_in_lcrit:
828                 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
829                 sfp_hwmon_calibrate_vcc(sfp, value);
830                 return 0;
831
832         case hwmon_in_min:
833                 *value = be16_to_cpu(sfp->diag.volt_low_warn);
834                 sfp_hwmon_calibrate_vcc(sfp, value);
835                 return 0;
836
837         case hwmon_in_max:
838                 *value = be16_to_cpu(sfp->diag.volt_high_warn);
839                 sfp_hwmon_calibrate_vcc(sfp, value);
840                 return 0;
841
842         case hwmon_in_crit:
843                 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
844                 sfp_hwmon_calibrate_vcc(sfp, value);
845                 return 0;
846
847         case hwmon_in_lcrit_alarm:
848                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
849                 if (err < 0)
850                         return err;
851
852                 *value = !!(status & SFP_ALARM0_VCC_LOW);
853                 return 0;
854
855         case hwmon_in_min_alarm:
856                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
857                 if (err < 0)
858                         return err;
859
860                 *value = !!(status & SFP_WARN0_VCC_LOW);
861                 return 0;
862
863         case hwmon_in_max_alarm:
864                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
865                 if (err < 0)
866                         return err;
867
868                 *value = !!(status & SFP_WARN0_VCC_HIGH);
869                 return 0;
870
871         case hwmon_in_crit_alarm:
872                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
873                 if (err < 0)
874                         return err;
875
876                 *value = !!(status & SFP_ALARM0_VCC_HIGH);
877                 return 0;
878         default:
879                 return -EOPNOTSUPP;
880         }
881
882         return -EOPNOTSUPP;
883 }
884
885 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
886 {
887         u8 status;
888         int err;
889
890         switch (attr) {
891         case hwmon_curr_input:
892                 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
893
894         case hwmon_curr_lcrit:
895                 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
896                 sfp_hwmon_calibrate_bias(sfp, value);
897                 return 0;
898
899         case hwmon_curr_min:
900                 *value = be16_to_cpu(sfp->diag.bias_low_warn);
901                 sfp_hwmon_calibrate_bias(sfp, value);
902                 return 0;
903
904         case hwmon_curr_max:
905                 *value = be16_to_cpu(sfp->diag.bias_high_warn);
906                 sfp_hwmon_calibrate_bias(sfp, value);
907                 return 0;
908
909         case hwmon_curr_crit:
910                 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
911                 sfp_hwmon_calibrate_bias(sfp, value);
912                 return 0;
913
914         case hwmon_curr_lcrit_alarm:
915                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
916                 if (err < 0)
917                         return err;
918
919                 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
920                 return 0;
921
922         case hwmon_curr_min_alarm:
923                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
924                 if (err < 0)
925                         return err;
926
927                 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
928                 return 0;
929
930         case hwmon_curr_max_alarm:
931                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
932                 if (err < 0)
933                         return err;
934
935                 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
936                 return 0;
937
938         case hwmon_curr_crit_alarm:
939                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
940                 if (err < 0)
941                         return err;
942
943                 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
944                 return 0;
945         default:
946                 return -EOPNOTSUPP;
947         }
948
949         return -EOPNOTSUPP;
950 }
951
952 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
953 {
954         u8 status;
955         int err;
956
957         switch (attr) {
958         case hwmon_power_input:
959                 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
960
961         case hwmon_power_lcrit:
962                 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
963                 sfp_hwmon_calibrate_tx_power(sfp, value);
964                 return 0;
965
966         case hwmon_power_min:
967                 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
968                 sfp_hwmon_calibrate_tx_power(sfp, value);
969                 return 0;
970
971         case hwmon_power_max:
972                 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
973                 sfp_hwmon_calibrate_tx_power(sfp, value);
974                 return 0;
975
976         case hwmon_power_crit:
977                 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
978                 sfp_hwmon_calibrate_tx_power(sfp, value);
979                 return 0;
980
981         case hwmon_power_lcrit_alarm:
982                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
983                 if (err < 0)
984                         return err;
985
986                 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
987                 return 0;
988
989         case hwmon_power_min_alarm:
990                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
991                 if (err < 0)
992                         return err;
993
994                 *value = !!(status & SFP_WARN0_TXPWR_LOW);
995                 return 0;
996
997         case hwmon_power_max_alarm:
998                 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
999                 if (err < 0)
1000                         return err;
1001
1002                 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1003                 return 0;
1004
1005         case hwmon_power_crit_alarm:
1006                 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1007                 if (err < 0)
1008                         return err;
1009
1010                 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1011                 return 0;
1012         default:
1013                 return -EOPNOTSUPP;
1014         }
1015
1016         return -EOPNOTSUPP;
1017 }
1018
1019 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1020 {
1021         u8 status;
1022         int err;
1023
1024         switch (attr) {
1025         case hwmon_power_input:
1026                 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1027
1028         case hwmon_power_lcrit:
1029                 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1030                 sfp_hwmon_to_rx_power(value);
1031                 return 0;
1032
1033         case hwmon_power_min:
1034                 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1035                 sfp_hwmon_to_rx_power(value);
1036                 return 0;
1037
1038         case hwmon_power_max:
1039                 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1040                 sfp_hwmon_to_rx_power(value);
1041                 return 0;
1042
1043         case hwmon_power_crit:
1044                 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1045                 sfp_hwmon_to_rx_power(value);
1046                 return 0;
1047
1048         case hwmon_power_lcrit_alarm:
1049                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1050                 if (err < 0)
1051                         return err;
1052
1053                 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1054                 return 0;
1055
1056         case hwmon_power_min_alarm:
1057                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1058                 if (err < 0)
1059                         return err;
1060
1061                 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1062                 return 0;
1063
1064         case hwmon_power_max_alarm:
1065                 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1066                 if (err < 0)
1067                         return err;
1068
1069                 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1070                 return 0;
1071
1072         case hwmon_power_crit_alarm:
1073                 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1074                 if (err < 0)
1075                         return err;
1076
1077                 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1078                 return 0;
1079         default:
1080                 return -EOPNOTSUPP;
1081         }
1082
1083         return -EOPNOTSUPP;
1084 }
1085
1086 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1087                           u32 attr, int channel, long *value)
1088 {
1089         struct sfp *sfp = dev_get_drvdata(dev);
1090
1091         switch (type) {
1092         case hwmon_temp:
1093                 return sfp_hwmon_temp(sfp, attr, value);
1094         case hwmon_in:
1095                 return sfp_hwmon_vcc(sfp, attr, value);
1096         case hwmon_curr:
1097                 return sfp_hwmon_bias(sfp, attr, value);
1098         case hwmon_power:
1099                 switch (channel) {
1100                 case 0:
1101                         return sfp_hwmon_tx_power(sfp, attr, value);
1102                 case 1:
1103                         return sfp_hwmon_rx_power(sfp, attr, value);
1104                 default:
1105                         return -EOPNOTSUPP;
1106                 }
1107         default:
1108                 return -EOPNOTSUPP;
1109         }
1110 }
1111
1112 static const char *const sfp_hwmon_power_labels[] = {
1113         "TX_power",
1114         "RX_power",
1115 };
1116
1117 static int sfp_hwmon_read_string(struct device *dev,
1118                                  enum hwmon_sensor_types type,
1119                                  u32 attr, int channel, const char **str)
1120 {
1121         switch (type) {
1122         case hwmon_curr:
1123                 switch (attr) {
1124                 case hwmon_curr_label:
1125                         *str = "bias";
1126                         return 0;
1127                 default:
1128                         return -EOPNOTSUPP;
1129                 }
1130                 break;
1131         case hwmon_temp:
1132                 switch (attr) {
1133                 case hwmon_temp_label:
1134                         *str = "temperature";
1135                         return 0;
1136                 default:
1137                         return -EOPNOTSUPP;
1138                 }
1139                 break;
1140         case hwmon_in:
1141                 switch (attr) {
1142                 case hwmon_in_label:
1143                         *str = "VCC";
1144                         return 0;
1145                 default:
1146                         return -EOPNOTSUPP;
1147                 }
1148                 break;
1149         case hwmon_power:
1150                 switch (attr) {
1151                 case hwmon_power_label:
1152                         *str = sfp_hwmon_power_labels[channel];
1153                         return 0;
1154                 default:
1155                         return -EOPNOTSUPP;
1156                 }
1157                 break;
1158         default:
1159                 return -EOPNOTSUPP;
1160         }
1161
1162         return -EOPNOTSUPP;
1163 }
1164
1165 static const struct hwmon_ops sfp_hwmon_ops = {
1166         .is_visible = sfp_hwmon_is_visible,
1167         .read = sfp_hwmon_read,
1168         .read_string = sfp_hwmon_read_string,
1169 };
1170
1171 static u32 sfp_hwmon_chip_config[] = {
1172         HWMON_C_REGISTER_TZ,
1173         0,
1174 };
1175
1176 static const struct hwmon_channel_info sfp_hwmon_chip = {
1177         .type = hwmon_chip,
1178         .config = sfp_hwmon_chip_config,
1179 };
1180
1181 static u32 sfp_hwmon_temp_config[] = {
1182         HWMON_T_INPUT |
1183         HWMON_T_MAX | HWMON_T_MIN |
1184         HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1185         HWMON_T_CRIT | HWMON_T_LCRIT |
1186         HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1187         HWMON_T_LABEL,
1188         0,
1189 };
1190
1191 static const struct hwmon_channel_info sfp_hwmon_temp_channel_info = {
1192         .type = hwmon_temp,
1193         .config = sfp_hwmon_temp_config,
1194 };
1195
1196 static u32 sfp_hwmon_vcc_config[] = {
1197         HWMON_I_INPUT |
1198         HWMON_I_MAX | HWMON_I_MIN |
1199         HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1200         HWMON_I_CRIT | HWMON_I_LCRIT |
1201         HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1202         HWMON_I_LABEL,
1203         0,
1204 };
1205
1206 static const struct hwmon_channel_info sfp_hwmon_vcc_channel_info = {
1207         .type = hwmon_in,
1208         .config = sfp_hwmon_vcc_config,
1209 };
1210
1211 static u32 sfp_hwmon_bias_config[] = {
1212         HWMON_C_INPUT |
1213         HWMON_C_MAX | HWMON_C_MIN |
1214         HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1215         HWMON_C_CRIT | HWMON_C_LCRIT |
1216         HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1217         HWMON_C_LABEL,
1218         0,
1219 };
1220
1221 static const struct hwmon_channel_info sfp_hwmon_bias_channel_info = {
1222         .type = hwmon_curr,
1223         .config = sfp_hwmon_bias_config,
1224 };
1225
1226 static u32 sfp_hwmon_power_config[] = {
1227         /* Transmit power */
1228         HWMON_P_INPUT |
1229         HWMON_P_MAX | HWMON_P_MIN |
1230         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1231         HWMON_P_CRIT | HWMON_P_LCRIT |
1232         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1233         HWMON_P_LABEL,
1234         /* Receive power */
1235         HWMON_P_INPUT |
1236         HWMON_P_MAX | HWMON_P_MIN |
1237         HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1238         HWMON_P_CRIT | HWMON_P_LCRIT |
1239         HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1240         HWMON_P_LABEL,
1241         0,
1242 };
1243
1244 static const struct hwmon_channel_info sfp_hwmon_power_channel_info = {
1245         .type = hwmon_power,
1246         .config = sfp_hwmon_power_config,
1247 };
1248
1249 static const struct hwmon_channel_info *sfp_hwmon_info[] = {
1250         &sfp_hwmon_chip,
1251         &sfp_hwmon_vcc_channel_info,
1252         &sfp_hwmon_temp_channel_info,
1253         &sfp_hwmon_bias_channel_info,
1254         &sfp_hwmon_power_channel_info,
1255         NULL,
1256 };
1257
1258 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1259         .ops = &sfp_hwmon_ops,
1260         .info = sfp_hwmon_info,
1261 };
1262
1263 static void sfp_hwmon_probe(struct work_struct *work)
1264 {
1265         struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1266         int err, i;
1267
1268         err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1269         if (err < 0) {
1270                 if (sfp->hwmon_tries--) {
1271                         mod_delayed_work(system_wq, &sfp->hwmon_probe,
1272                                          T_PROBE_RETRY_SLOW);
1273                 } else {
1274                         dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1275                 }
1276                 return;
1277         }
1278
1279         sfp->hwmon_name = kstrdup(dev_name(sfp->dev), GFP_KERNEL);
1280         if (!sfp->hwmon_name) {
1281                 dev_err(sfp->dev, "out of memory for hwmon name\n");
1282                 return;
1283         }
1284
1285         for (i = 0; sfp->hwmon_name[i]; i++)
1286                 if (hwmon_is_bad_char(sfp->hwmon_name[i]))
1287                         sfp->hwmon_name[i] = '_';
1288
1289         sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1290                                                          sfp->hwmon_name, sfp,
1291                                                          &sfp_hwmon_chip_info,
1292                                                          NULL);
1293         if (IS_ERR(sfp->hwmon_dev))
1294                 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1295                         PTR_ERR(sfp->hwmon_dev));
1296 }
1297
1298 static int sfp_hwmon_insert(struct sfp *sfp)
1299 {
1300         if (sfp->id.ext.sff8472_compliance == SFP_SFF8472_COMPLIANCE_NONE)
1301                 return 0;
1302
1303         if (!(sfp->id.ext.diagmon & SFP_DIAGMON_DDM))
1304                 return 0;
1305
1306         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1307                 /* This driver in general does not support address
1308                  * change.
1309                  */
1310                 return 0;
1311
1312         mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1313         sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1314
1315         return 0;
1316 }
1317
1318 static void sfp_hwmon_remove(struct sfp *sfp)
1319 {
1320         cancel_delayed_work_sync(&sfp->hwmon_probe);
1321         if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1322                 hwmon_device_unregister(sfp->hwmon_dev);
1323                 sfp->hwmon_dev = NULL;
1324                 kfree(sfp->hwmon_name);
1325         }
1326 }
1327
1328 static int sfp_hwmon_init(struct sfp *sfp)
1329 {
1330         INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1331
1332         return 0;
1333 }
1334
1335 static void sfp_hwmon_exit(struct sfp *sfp)
1336 {
1337         cancel_delayed_work_sync(&sfp->hwmon_probe);
1338 }
1339 #else
1340 static int sfp_hwmon_insert(struct sfp *sfp)
1341 {
1342         return 0;
1343 }
1344
1345 static void sfp_hwmon_remove(struct sfp *sfp)
1346 {
1347 }
1348
1349 static int sfp_hwmon_init(struct sfp *sfp)
1350 {
1351         return 0;
1352 }
1353
1354 static void sfp_hwmon_exit(struct sfp *sfp)
1355 {
1356 }
1357 #endif
1358
1359 /* Helpers */
1360 static void sfp_module_tx_disable(struct sfp *sfp)
1361 {
1362         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1363                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1364         sfp->state |= SFP_F_TX_DISABLE;
1365         sfp_set_state(sfp, sfp->state);
1366 }
1367
1368 static void sfp_module_tx_enable(struct sfp *sfp)
1369 {
1370         dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1371                 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1372         sfp->state &= ~SFP_F_TX_DISABLE;
1373         sfp_set_state(sfp, sfp->state);
1374 }
1375
1376 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1377 {
1378         unsigned int state = sfp->state;
1379
1380         if (state & SFP_F_TX_DISABLE)
1381                 return;
1382
1383         sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1384
1385         udelay(T_RESET_US);
1386
1387         sfp_set_state(sfp, state);
1388 }
1389
1390 /* SFP state machine */
1391 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1392 {
1393         if (timeout)
1394                 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1395                                  timeout);
1396         else
1397                 cancel_delayed_work(&sfp->timeout);
1398 }
1399
1400 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1401                         unsigned int timeout)
1402 {
1403         sfp->sm_state = state;
1404         sfp_sm_set_timer(sfp, timeout);
1405 }
1406
1407 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1408                             unsigned int timeout)
1409 {
1410         sfp->sm_mod_state = state;
1411         sfp_sm_set_timer(sfp, timeout);
1412 }
1413
1414 static void sfp_sm_phy_detach(struct sfp *sfp)
1415 {
1416         sfp_remove_phy(sfp->sfp_bus);
1417         phy_device_remove(sfp->mod_phy);
1418         phy_device_free(sfp->mod_phy);
1419         sfp->mod_phy = NULL;
1420 }
1421
1422 static int sfp_sm_probe_phy(struct sfp *sfp, bool is_c45)
1423 {
1424         struct phy_device *phy;
1425         int err;
1426
1427         phy = get_phy_device(sfp->i2c_mii, SFP_PHY_ADDR, is_c45);
1428         if (phy == ERR_PTR(-ENODEV))
1429                 return PTR_ERR(phy);
1430         if (IS_ERR(phy)) {
1431                 dev_err(sfp->dev, "mdiobus scan returned %ld\n", PTR_ERR(phy));
1432                 return PTR_ERR(phy);
1433         }
1434
1435         err = phy_device_register(phy);
1436         if (err) {
1437                 phy_device_free(phy);
1438                 dev_err(sfp->dev, "phy_device_register failed: %d\n", err);
1439                 return err;
1440         }
1441
1442         err = sfp_add_phy(sfp->sfp_bus, phy);
1443         if (err) {
1444                 phy_device_remove(phy);
1445                 phy_device_free(phy);
1446                 dev_err(sfp->dev, "sfp_add_phy failed: %d\n", err);
1447                 return err;
1448         }
1449
1450         sfp->mod_phy = phy;
1451
1452         return 0;
1453 }
1454
1455 static void sfp_sm_link_up(struct sfp *sfp)
1456 {
1457         sfp_link_up(sfp->sfp_bus);
1458         sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1459 }
1460
1461 static void sfp_sm_link_down(struct sfp *sfp)
1462 {
1463         sfp_link_down(sfp->sfp_bus);
1464 }
1465
1466 static void sfp_sm_link_check_los(struct sfp *sfp)
1467 {
1468         unsigned int los = sfp->state & SFP_F_LOS;
1469
1470         /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1471          * are set, we assume that no LOS signal is available.
1472          */
1473         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED))
1474                 los ^= SFP_F_LOS;
1475         else if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL)))
1476                 los = 0;
1477
1478         if (los)
1479                 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1480         else
1481                 sfp_sm_link_up(sfp);
1482 }
1483
1484 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1485 {
1486         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1487                 event == SFP_E_LOS_LOW) ||
1488                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1489                 event == SFP_E_LOS_HIGH);
1490 }
1491
1492 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1493 {
1494         return (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_INVERTED) &&
1495                 event == SFP_E_LOS_HIGH) ||
1496                (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_LOS_NORMAL) &&
1497                 event == SFP_E_LOS_LOW);
1498 }
1499
1500 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1501 {
1502         if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1503                 dev_err(sfp->dev,
1504                         "module persistently indicates fault, disabling\n");
1505                 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1506         } else {
1507                 if (warn)
1508                         dev_err(sfp->dev, "module transmit fault indicated\n");
1509
1510                 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1511         }
1512 }
1513
1514 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1515  * normally sits at I2C bus address 0x56, and may either be a clause 22
1516  * or clause 45 PHY.
1517  *
1518  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1519  * negotiation enabled, but some may be in 1000base-X - which is for the
1520  * PHY driver to determine.
1521  *
1522  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1523  * mode according to the negotiated line speed.
1524  */
1525 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1526 {
1527         int err = 0;
1528
1529         switch (sfp->id.base.extended_cc) {
1530         case SFF8024_ECC_10GBASE_T_SFI:
1531         case SFF8024_ECC_10GBASE_T_SR:
1532         case SFF8024_ECC_5GBASE_T:
1533         case SFF8024_ECC_2_5GBASE_T:
1534                 err = sfp_sm_probe_phy(sfp, true);
1535                 break;
1536
1537         default:
1538                 if (sfp->id.base.e1000_base_t)
1539                         err = sfp_sm_probe_phy(sfp, false);
1540                 break;
1541         }
1542         return err;
1543 }
1544
1545 static int sfp_module_parse_power(struct sfp *sfp)
1546 {
1547         u32 power_mW = 1000;
1548
1549         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1550                 power_mW = 1500;
1551         if (sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1552                 power_mW = 2000;
1553
1554         if (power_mW > sfp->max_power_mW) {
1555                 /* Module power specification exceeds the allowed maximum. */
1556                 if (sfp->id.ext.sff8472_compliance ==
1557                         SFP_SFF8472_COMPLIANCE_NONE &&
1558                     !(sfp->id.ext.diagmon & SFP_DIAGMON_DDM)) {
1559                         /* The module appears not to implement bus address
1560                          * 0xa2, so assume that the module powers up in the
1561                          * indicated mode.
1562                          */
1563                         dev_err(sfp->dev,
1564                                 "Host does not support %u.%uW modules\n",
1565                                 power_mW / 1000, (power_mW / 100) % 10);
1566                         return -EINVAL;
1567                 } else {
1568                         dev_warn(sfp->dev,
1569                                  "Host does not support %u.%uW modules, module left in power mode 1\n",
1570                                  power_mW / 1000, (power_mW / 100) % 10);
1571                         return 0;
1572                 }
1573         }
1574
1575         /* If the module requires a higher power mode, but also requires
1576          * an address change sequence, warn the user that the module may
1577          * not be functional.
1578          */
1579         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE && power_mW > 1000) {
1580                 dev_warn(sfp->dev,
1581                          "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1582                          power_mW / 1000, (power_mW / 100) % 10);
1583                 return 0;
1584         }
1585
1586         sfp->module_power_mW = power_mW;
1587
1588         return 0;
1589 }
1590
1591 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1592 {
1593         u8 val;
1594         int err;
1595
1596         err = sfp_read(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1597         if (err != sizeof(val)) {
1598                 dev_err(sfp->dev, "Failed to read EEPROM: %d\n", err);
1599                 return -EAGAIN;
1600         }
1601
1602         /* DM7052 reports as a high power module, responds to reads (with
1603          * all bytes 0xff) at 0x51 but does not accept writes.  In any case,
1604          * if the bit is already set, we're already in high power mode.
1605          */
1606         if (!!(val & BIT(0)) == enable)
1607                 return 0;
1608
1609         if (enable)
1610                 val |= BIT(0);
1611         else
1612                 val &= ~BIT(0);
1613
1614         err = sfp_write(sfp, true, SFP_EXT_STATUS, &val, sizeof(val));
1615         if (err != sizeof(val)) {
1616                 dev_err(sfp->dev, "Failed to write EEPROM: %d\n", err);
1617                 return -EAGAIN;
1618         }
1619
1620         if (enable)
1621                 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1622                          sfp->module_power_mW / 1000,
1623                          (sfp->module_power_mW / 100) % 10);
1624
1625         return 0;
1626 }
1627
1628 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
1629 {
1630         /* SFP module inserted - read I2C data */
1631         struct sfp_eeprom_id id;
1632         bool cotsworks;
1633         u8 check;
1634         int ret;
1635
1636         ret = sfp_read(sfp, false, 0, &id, sizeof(id));
1637         if (ret < 0) {
1638                 if (report)
1639                         dev_err(sfp->dev, "failed to read EEPROM: %d\n", ret);
1640                 return -EAGAIN;
1641         }
1642
1643         if (ret != sizeof(id)) {
1644                 dev_err(sfp->dev, "EEPROM short read: %d\n", ret);
1645                 return -EAGAIN;
1646         }
1647
1648         /* Cotsworks do not seem to update the checksums when they
1649          * do the final programming with the final module part number,
1650          * serial number and date code.
1651          */
1652         cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
1653
1654         /* Validate the checksum over the base structure */
1655         check = sfp_check(&id.base, sizeof(id.base) - 1);
1656         if (check != id.base.cc_base) {
1657                 if (cotsworks) {
1658                         dev_warn(sfp->dev,
1659                                  "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
1660                                  check, id.base.cc_base);
1661                 } else {
1662                         dev_err(sfp->dev,
1663                                 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
1664                                 check, id.base.cc_base);
1665                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1666                                        16, 1, &id, sizeof(id), true);
1667                         return -EINVAL;
1668                 }
1669         }
1670
1671         check = sfp_check(&id.ext, sizeof(id.ext) - 1);
1672         if (check != id.ext.cc_ext) {
1673                 if (cotsworks) {
1674                         dev_warn(sfp->dev,
1675                                  "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
1676                                  check, id.ext.cc_ext);
1677                 } else {
1678                         dev_err(sfp->dev,
1679                                 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
1680                                 check, id.ext.cc_ext);
1681                         print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
1682                                        16, 1, &id, sizeof(id), true);
1683                         memset(&id.ext, 0, sizeof(id.ext));
1684                 }
1685         }
1686
1687         sfp->id = id;
1688
1689         dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
1690                  (int)sizeof(id.base.vendor_name), id.base.vendor_name,
1691                  (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
1692                  (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
1693                  (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
1694                  (int)sizeof(id.ext.datecode), id.ext.datecode);
1695
1696         /* Check whether we support this module */
1697         if (!sfp->type->module_supported(&id)) {
1698                 dev_err(sfp->dev,
1699                         "module is not supported - phys id 0x%02x 0x%02x\n",
1700                         sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
1701                 return -EINVAL;
1702         }
1703
1704         /* If the module requires address swap mode, warn about it */
1705         if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
1706                 dev_warn(sfp->dev,
1707                          "module address swap to access page 0xA2 is not supported.\n");
1708
1709         /* Parse the module power requirement */
1710         ret = sfp_module_parse_power(sfp);
1711         if (ret < 0)
1712                 return ret;
1713
1714         if (!memcmp(id.base.vendor_name, "ALCATELLUCENT   ", 16) &&
1715             !memcmp(id.base.vendor_pn, "3FE46541AA      ", 16))
1716                 sfp->module_t_start_up = T_START_UP_BAD_GPON;
1717         else
1718                 sfp->module_t_start_up = T_START_UP;
1719
1720         return 0;
1721 }
1722
1723 static void sfp_sm_mod_remove(struct sfp *sfp)
1724 {
1725         if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
1726                 sfp_module_remove(sfp->sfp_bus);
1727
1728         sfp_hwmon_remove(sfp);
1729
1730         memset(&sfp->id, 0, sizeof(sfp->id));
1731         sfp->module_power_mW = 0;
1732
1733         dev_info(sfp->dev, "module removed\n");
1734 }
1735
1736 /* This state machine tracks the upstream's state */
1737 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
1738 {
1739         switch (sfp->sm_dev_state) {
1740         default:
1741                 if (event == SFP_E_DEV_ATTACH)
1742                         sfp->sm_dev_state = SFP_DEV_DOWN;
1743                 break;
1744
1745         case SFP_DEV_DOWN:
1746                 if (event == SFP_E_DEV_DETACH)
1747                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1748                 else if (event == SFP_E_DEV_UP)
1749                         sfp->sm_dev_state = SFP_DEV_UP;
1750                 break;
1751
1752         case SFP_DEV_UP:
1753                 if (event == SFP_E_DEV_DETACH)
1754                         sfp->sm_dev_state = SFP_DEV_DETACHED;
1755                 else if (event == SFP_E_DEV_DOWN)
1756                         sfp->sm_dev_state = SFP_DEV_DOWN;
1757                 break;
1758         }
1759 }
1760
1761 /* This state machine tracks the insert/remove state of the module, probes
1762  * the on-board EEPROM, and sets up the power level.
1763  */
1764 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
1765 {
1766         int err;
1767
1768         /* Handle remove event globally, it resets this state machine */
1769         if (event == SFP_E_REMOVE) {
1770                 if (sfp->sm_mod_state > SFP_MOD_PROBE)
1771                         sfp_sm_mod_remove(sfp);
1772                 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
1773                 return;
1774         }
1775
1776         /* Handle device detach globally */
1777         if (sfp->sm_dev_state < SFP_DEV_DOWN &&
1778             sfp->sm_mod_state > SFP_MOD_WAITDEV) {
1779                 if (sfp->module_power_mW > 1000 &&
1780                     sfp->sm_mod_state > SFP_MOD_HPOWER)
1781                         sfp_sm_mod_hpower(sfp, false);
1782                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1783                 return;
1784         }
1785
1786         switch (sfp->sm_mod_state) {
1787         default:
1788                 if (event == SFP_E_INSERT) {
1789                         sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
1790                         sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
1791                         sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
1792                 }
1793                 break;
1794
1795         case SFP_MOD_PROBE:
1796                 /* Wait for T_PROBE_INIT to time out */
1797                 if (event != SFP_E_TIMEOUT)
1798                         break;
1799
1800                 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
1801                 if (err == -EAGAIN) {
1802                         if (sfp->sm_mod_tries_init &&
1803                            --sfp->sm_mod_tries_init) {
1804                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1805                                 break;
1806                         } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
1807                                 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
1808                                         dev_warn(sfp->dev,
1809                                                  "please wait, module slow to respond\n");
1810                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
1811                                 break;
1812                         }
1813                 }
1814                 if (err < 0) {
1815                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1816                         break;
1817                 }
1818
1819                 err = sfp_hwmon_insert(sfp);
1820                 if (err)
1821                         dev_warn(sfp->dev, "hwmon probe failed: %d\n", err);
1822
1823                 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
1824                 /* fall through */
1825         case SFP_MOD_WAITDEV:
1826                 /* Ensure that the device is attached before proceeding */
1827                 if (sfp->sm_dev_state < SFP_DEV_DOWN)
1828                         break;
1829
1830                 /* Report the module insertion to the upstream device */
1831                 err = sfp_module_insert(sfp->sfp_bus, &sfp->id);
1832                 if (err < 0) {
1833                         sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1834                         break;
1835                 }
1836
1837                 /* If this is a power level 1 module, we are done */
1838                 if (sfp->module_power_mW <= 1000)
1839                         goto insert;
1840
1841                 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
1842                 /* fall through */
1843         case SFP_MOD_HPOWER:
1844                 /* Enable high power mode */
1845                 err = sfp_sm_mod_hpower(sfp, true);
1846                 if (err < 0) {
1847                         if (err != -EAGAIN) {
1848                                 sfp_module_remove(sfp->sfp_bus);
1849                                 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
1850                         } else {
1851                                 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
1852                         }
1853                         break;
1854                 }
1855
1856                 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
1857                 break;
1858
1859         case SFP_MOD_WAITPWR:
1860                 /* Wait for T_HPOWER_LEVEL to time out */
1861                 if (event != SFP_E_TIMEOUT)
1862                         break;
1863
1864         insert:
1865                 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
1866                 break;
1867
1868         case SFP_MOD_PRESENT:
1869         case SFP_MOD_ERROR:
1870                 break;
1871         }
1872 }
1873
1874 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
1875 {
1876         unsigned long timeout;
1877         int ret;
1878
1879         /* Some events are global */
1880         if (sfp->sm_state != SFP_S_DOWN &&
1881             (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1882              sfp->sm_dev_state != SFP_DEV_UP)) {
1883                 if (sfp->sm_state == SFP_S_LINK_UP &&
1884                     sfp->sm_dev_state == SFP_DEV_UP)
1885                         sfp_sm_link_down(sfp);
1886                 if (sfp->sm_state > SFP_S_INIT)
1887                         sfp_module_stop(sfp->sfp_bus);
1888                 if (sfp->mod_phy)
1889                         sfp_sm_phy_detach(sfp);
1890                 sfp_module_tx_disable(sfp);
1891                 sfp_soft_stop_poll(sfp);
1892                 sfp_sm_next(sfp, SFP_S_DOWN, 0);
1893                 return;
1894         }
1895
1896         /* The main state machine */
1897         switch (sfp->sm_state) {
1898         case SFP_S_DOWN:
1899                 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
1900                     sfp->sm_dev_state != SFP_DEV_UP)
1901                         break;
1902
1903                 if (!(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE))
1904                         sfp_soft_start_poll(sfp);
1905
1906                 sfp_module_tx_enable(sfp);
1907
1908                 /* Initialise the fault clearance retries */
1909                 sfp->sm_fault_retries = N_FAULT_INIT;
1910
1911                 /* We need to check the TX_FAULT state, which is not defined
1912                  * while TX_DISABLE is asserted. The earliest we want to do
1913                  * anything (such as probe for a PHY) is 50ms.
1914                  */
1915                 sfp_sm_next(sfp, SFP_S_WAIT, T_WAIT);
1916                 break;
1917
1918         case SFP_S_WAIT:
1919                 if (event != SFP_E_TIMEOUT)
1920                         break;
1921
1922                 if (sfp->state & SFP_F_TX_FAULT) {
1923                         /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
1924                          * from the TX_DISABLE deassertion for the module to
1925                          * initialise, which is indicated by TX_FAULT
1926                          * deasserting.
1927                          */
1928                         timeout = sfp->module_t_start_up;
1929                         if (timeout > T_WAIT)
1930                                 timeout -= T_WAIT;
1931                         else
1932                                 timeout = 1;
1933
1934                         sfp_sm_next(sfp, SFP_S_INIT, timeout);
1935                 } else {
1936                         /* TX_FAULT is not asserted, assume the module has
1937                          * finished initialising.
1938                          */
1939                         goto init_done;
1940                 }
1941                 break;
1942
1943         case SFP_S_INIT:
1944                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
1945                         /* TX_FAULT is still asserted after t_init or
1946                          * or t_start_up, so assume there is a fault.
1947                          */
1948                         sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
1949                                      sfp->sm_fault_retries == N_FAULT_INIT);
1950                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
1951         init_done:
1952                         sfp->sm_phy_retries = R_PHY_RETRY;
1953                         goto phy_probe;
1954                 }
1955                 break;
1956
1957         case SFP_S_INIT_PHY:
1958                 if (event != SFP_E_TIMEOUT)
1959                         break;
1960         phy_probe:
1961                 /* TX_FAULT deasserted or we timed out with TX_FAULT
1962                  * clear.  Probe for the PHY and check the LOS state.
1963                  */
1964                 ret = sfp_sm_probe_for_phy(sfp);
1965                 if (ret == -ENODEV) {
1966                         if (--sfp->sm_phy_retries) {
1967                                 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
1968                                 break;
1969                         } else {
1970                                 dev_info(sfp->dev, "no PHY detected\n");
1971                         }
1972                 } else if (ret) {
1973                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
1974                         break;
1975                 }
1976                 if (sfp_module_start(sfp->sfp_bus)) {
1977                         sfp_sm_next(sfp, SFP_S_FAIL, 0);
1978                         break;
1979                 }
1980                 sfp_sm_link_check_los(sfp);
1981
1982                 /* Reset the fault retry count */
1983                 sfp->sm_fault_retries = N_FAULT;
1984                 break;
1985
1986         case SFP_S_INIT_TX_FAULT:
1987                 if (event == SFP_E_TIMEOUT) {
1988                         sfp_module_tx_fault_reset(sfp);
1989                         sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
1990                 }
1991                 break;
1992
1993         case SFP_S_WAIT_LOS:
1994                 if (event == SFP_E_TX_FAULT)
1995                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
1996                 else if (sfp_los_event_inactive(sfp, event))
1997                         sfp_sm_link_up(sfp);
1998                 break;
1999
2000         case SFP_S_LINK_UP:
2001                 if (event == SFP_E_TX_FAULT) {
2002                         sfp_sm_link_down(sfp);
2003                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2004                 } else if (sfp_los_event_active(sfp, event)) {
2005                         sfp_sm_link_down(sfp);
2006                         sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2007                 }
2008                 break;
2009
2010         case SFP_S_TX_FAULT:
2011                 if (event == SFP_E_TIMEOUT) {
2012                         sfp_module_tx_fault_reset(sfp);
2013                         sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2014                 }
2015                 break;
2016
2017         case SFP_S_REINIT:
2018                 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2019                         sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2020                 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2021                         dev_info(sfp->dev, "module transmit fault recovered\n");
2022                         sfp_sm_link_check_los(sfp);
2023                 }
2024                 break;
2025
2026         case SFP_S_TX_DISABLE:
2027                 break;
2028         }
2029 }
2030
2031 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2032 {
2033         mutex_lock(&sfp->sm_mutex);
2034
2035         dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2036                 mod_state_to_str(sfp->sm_mod_state),
2037                 dev_state_to_str(sfp->sm_dev_state),
2038                 sm_state_to_str(sfp->sm_state),
2039                 event_to_str(event));
2040
2041         sfp_sm_device(sfp, event);
2042         sfp_sm_module(sfp, event);
2043         sfp_sm_main(sfp, event);
2044
2045         dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2046                 mod_state_to_str(sfp->sm_mod_state),
2047                 dev_state_to_str(sfp->sm_dev_state),
2048                 sm_state_to_str(sfp->sm_state));
2049
2050         mutex_unlock(&sfp->sm_mutex);
2051 }
2052
2053 static void sfp_attach(struct sfp *sfp)
2054 {
2055         sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2056 }
2057
2058 static void sfp_detach(struct sfp *sfp)
2059 {
2060         sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2061 }
2062
2063 static void sfp_start(struct sfp *sfp)
2064 {
2065         sfp_sm_event(sfp, SFP_E_DEV_UP);
2066 }
2067
2068 static void sfp_stop(struct sfp *sfp)
2069 {
2070         sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2071 }
2072
2073 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2074 {
2075         /* locking... and check module is present */
2076
2077         if (sfp->id.ext.sff8472_compliance &&
2078             !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2079                 modinfo->type = ETH_MODULE_SFF_8472;
2080                 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2081         } else {
2082                 modinfo->type = ETH_MODULE_SFF_8079;
2083                 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2084         }
2085         return 0;
2086 }
2087
2088 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2089                              u8 *data)
2090 {
2091         unsigned int first, last, len;
2092         int ret;
2093
2094         if (ee->len == 0)
2095                 return -EINVAL;
2096
2097         first = ee->offset;
2098         last = ee->offset + ee->len;
2099         if (first < ETH_MODULE_SFF_8079_LEN) {
2100                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2101                 len -= first;
2102
2103                 ret = sfp_read(sfp, false, first, data, len);
2104                 if (ret < 0)
2105                         return ret;
2106
2107                 first += len;
2108                 data += len;
2109         }
2110         if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2111                 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2112                 len -= first;
2113                 first -= ETH_MODULE_SFF_8079_LEN;
2114
2115                 ret = sfp_read(sfp, true, first, data, len);
2116                 if (ret < 0)
2117                         return ret;
2118         }
2119         return 0;
2120 }
2121
2122 static const struct sfp_socket_ops sfp_module_ops = {
2123         .attach = sfp_attach,
2124         .detach = sfp_detach,
2125         .start = sfp_start,
2126         .stop = sfp_stop,
2127         .module_info = sfp_module_info,
2128         .module_eeprom = sfp_module_eeprom,
2129 };
2130
2131 static void sfp_timeout(struct work_struct *work)
2132 {
2133         struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2134
2135         rtnl_lock();
2136         sfp_sm_event(sfp, SFP_E_TIMEOUT);
2137         rtnl_unlock();
2138 }
2139
2140 static void sfp_check_state(struct sfp *sfp)
2141 {
2142         unsigned int state, i, changed;
2143
2144         mutex_lock(&sfp->st_mutex);
2145         state = sfp_get_state(sfp);
2146         changed = state ^ sfp->state;
2147         changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2148
2149         for (i = 0; i < GPIO_MAX; i++)
2150                 if (changed & BIT(i))
2151                         dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_of_names[i],
2152                                 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2153
2154         state |= sfp->state & (SFP_F_TX_DISABLE | SFP_F_RATE_SELECT);
2155         sfp->state = state;
2156
2157         rtnl_lock();
2158         if (changed & SFP_F_PRESENT)
2159                 sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2160                                 SFP_E_INSERT : SFP_E_REMOVE);
2161
2162         if (changed & SFP_F_TX_FAULT)
2163                 sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2164                                 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2165
2166         if (changed & SFP_F_LOS)
2167                 sfp_sm_event(sfp, state & SFP_F_LOS ?
2168                                 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2169         rtnl_unlock();
2170         mutex_unlock(&sfp->st_mutex);
2171 }
2172
2173 static irqreturn_t sfp_irq(int irq, void *data)
2174 {
2175         struct sfp *sfp = data;
2176
2177         sfp_check_state(sfp);
2178
2179         return IRQ_HANDLED;
2180 }
2181
2182 static void sfp_poll(struct work_struct *work)
2183 {
2184         struct sfp *sfp = container_of(work, struct sfp, poll.work);
2185
2186         sfp_check_state(sfp);
2187
2188         if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2189             sfp->need_poll)
2190                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2191 }
2192
2193 static struct sfp *sfp_alloc(struct device *dev)
2194 {
2195         struct sfp *sfp;
2196
2197         sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2198         if (!sfp)
2199                 return ERR_PTR(-ENOMEM);
2200
2201         sfp->dev = dev;
2202
2203         mutex_init(&sfp->sm_mutex);
2204         mutex_init(&sfp->st_mutex);
2205         INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2206         INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2207
2208         sfp_hwmon_init(sfp);
2209
2210         return sfp;
2211 }
2212
2213 static void sfp_cleanup(void *data)
2214 {
2215         struct sfp *sfp = data;
2216
2217         sfp_hwmon_exit(sfp);
2218
2219         cancel_delayed_work_sync(&sfp->poll);
2220         cancel_delayed_work_sync(&sfp->timeout);
2221         if (sfp->i2c_mii) {
2222                 mdiobus_unregister(sfp->i2c_mii);
2223                 mdiobus_free(sfp->i2c_mii);
2224         }
2225         if (sfp->i2c)
2226                 i2c_put_adapter(sfp->i2c);
2227         kfree(sfp);
2228 }
2229
2230 static int sfp_probe(struct platform_device *pdev)
2231 {
2232         const struct sff_data *sff;
2233         struct i2c_adapter *i2c;
2234         struct sfp *sfp;
2235         int err, i;
2236
2237         sfp = sfp_alloc(&pdev->dev);
2238         if (IS_ERR(sfp))
2239                 return PTR_ERR(sfp);
2240
2241         platform_set_drvdata(pdev, sfp);
2242
2243         err = devm_add_action(sfp->dev, sfp_cleanup, sfp);
2244         if (err < 0)
2245                 return err;
2246
2247         sff = sfp->type = &sfp_data;
2248
2249         if (pdev->dev.of_node) {
2250                 struct device_node *node = pdev->dev.of_node;
2251                 const struct of_device_id *id;
2252                 struct device_node *np;
2253
2254                 id = of_match_node(sfp_of_match, node);
2255                 if (WARN_ON(!id))
2256                         return -EINVAL;
2257
2258                 sff = sfp->type = id->data;
2259
2260                 np = of_parse_phandle(node, "i2c-bus", 0);
2261                 if (!np) {
2262                         dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2263                         return -ENODEV;
2264                 }
2265
2266                 i2c = of_find_i2c_adapter_by_node(np);
2267                 of_node_put(np);
2268         } else if (has_acpi_companion(&pdev->dev)) {
2269                 struct acpi_device *adev = ACPI_COMPANION(&pdev->dev);
2270                 struct fwnode_handle *fw = acpi_fwnode_handle(adev);
2271                 struct fwnode_reference_args args;
2272                 struct acpi_handle *acpi_handle;
2273                 int ret;
2274
2275                 ret = acpi_node_get_property_reference(fw, "i2c-bus", 0, &args);
2276                 if (ret || !is_acpi_device_node(args.fwnode)) {
2277                         dev_err(&pdev->dev, "missing 'i2c-bus' property\n");
2278                         return -ENODEV;
2279                 }
2280
2281                 acpi_handle = ACPI_HANDLE_FWNODE(args.fwnode);
2282                 i2c = i2c_acpi_find_adapter_by_handle(acpi_handle);
2283         } else {
2284                 return -EINVAL;
2285         }
2286
2287         if (!i2c)
2288                 return -EPROBE_DEFER;
2289
2290         err = sfp_i2c_configure(sfp, i2c);
2291         if (err < 0) {
2292                 i2c_put_adapter(i2c);
2293                 return err;
2294         }
2295
2296         for (i = 0; i < GPIO_MAX; i++)
2297                 if (sff->gpios & BIT(i)) {
2298                         sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2299                                            gpio_of_names[i], gpio_flags[i]);
2300                         if (IS_ERR(sfp->gpio[i]))
2301                                 return PTR_ERR(sfp->gpio[i]);
2302                 }
2303
2304         sfp->get_state = sfp_gpio_get_state;
2305         sfp->set_state = sfp_gpio_set_state;
2306
2307         /* Modules that have no detect signal are always present */
2308         if (!(sfp->gpio[GPIO_MODDEF0]))
2309                 sfp->get_state = sff_gpio_get_state;
2310
2311         device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
2312                                  &sfp->max_power_mW);
2313         if (!sfp->max_power_mW)
2314                 sfp->max_power_mW = 1000;
2315
2316         dev_info(sfp->dev, "Host maximum power %u.%uW\n",
2317                  sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
2318
2319         /* Get the initial state, and always signal TX disable,
2320          * since the network interface will not be up.
2321          */
2322         sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
2323
2324         if (sfp->gpio[GPIO_RATE_SELECT] &&
2325             gpiod_get_value_cansleep(sfp->gpio[GPIO_RATE_SELECT]))
2326                 sfp->state |= SFP_F_RATE_SELECT;
2327         sfp_set_state(sfp, sfp->state);
2328         sfp_module_tx_disable(sfp);
2329         if (sfp->state & SFP_F_PRESENT) {
2330                 rtnl_lock();
2331                 sfp_sm_event(sfp, SFP_E_INSERT);
2332                 rtnl_unlock();
2333         }
2334
2335         for (i = 0; i < GPIO_MAX; i++) {
2336                 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
2337                         continue;
2338
2339                 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
2340                 if (!sfp->gpio_irq[i]) {
2341                         sfp->need_poll = true;
2342                         continue;
2343                 }
2344
2345                 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
2346                                                 NULL, sfp_irq,
2347                                                 IRQF_ONESHOT |
2348                                                 IRQF_TRIGGER_RISING |
2349                                                 IRQF_TRIGGER_FALLING,
2350                                                 dev_name(sfp->dev), sfp);
2351                 if (err) {
2352                         sfp->gpio_irq[i] = 0;
2353                         sfp->need_poll = true;
2354                 }
2355         }
2356
2357         if (sfp->need_poll)
2358                 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2359
2360         /* We could have an issue in cases no Tx disable pin is available or
2361          * wired as modules using a laser as their light source will continue to
2362          * be active when the fiber is removed. This could be a safety issue and
2363          * we should at least warn the user about that.
2364          */
2365         if (!sfp->gpio[GPIO_TX_DISABLE])
2366                 dev_warn(sfp->dev,
2367                          "No tx_disable pin: SFP modules will always be emitting.\n");
2368
2369         sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
2370         if (!sfp->sfp_bus)
2371                 return -ENOMEM;
2372
2373         return 0;
2374 }
2375
2376 static int sfp_remove(struct platform_device *pdev)
2377 {
2378         struct sfp *sfp = platform_get_drvdata(pdev);
2379
2380         sfp_unregister_socket(sfp->sfp_bus);
2381
2382         rtnl_lock();
2383         sfp_sm_event(sfp, SFP_E_REMOVE);
2384         rtnl_unlock();
2385
2386         return 0;
2387 }
2388
2389 static void sfp_shutdown(struct platform_device *pdev)
2390 {
2391         struct sfp *sfp = platform_get_drvdata(pdev);
2392         int i;
2393
2394         for (i = 0; i < GPIO_MAX; i++) {
2395                 if (!sfp->gpio_irq[i])
2396                         continue;
2397
2398                 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
2399         }
2400
2401         cancel_delayed_work_sync(&sfp->poll);
2402         cancel_delayed_work_sync(&sfp->timeout);
2403 }
2404
2405 static struct platform_driver sfp_driver = {
2406         .probe = sfp_probe,
2407         .remove = sfp_remove,
2408         .shutdown = sfp_shutdown,
2409         .driver = {
2410                 .name = "sfp",
2411                 .of_match_table = sfp_of_match,
2412         },
2413 };
2414
2415 static int sfp_init(void)
2416 {
2417         poll_jiffies = msecs_to_jiffies(100);
2418
2419         return platform_driver_register(&sfp_driver);
2420 }
2421 module_init(sfp_init);
2422
2423 static void sfp_exit(void)
2424 {
2425         platform_driver_unregister(&sfp_driver);
2426 }
2427 module_exit(sfp_exit);
2428
2429 MODULE_ALIAS("platform:sfp");
2430 MODULE_AUTHOR("Russell King");
2431 MODULE_LICENSE("GPL v2");