]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/wireless/ath/ath10k/htt_rx.c
Merge branch 'lorenzo/pci/armada8k'
[linux.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
5  *
6  * Permission to use, copy, modify, and/or distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18
19 #include "core.h"
20 #include "htc.h"
21 #include "htt.h"
22 #include "txrx.h"
23 #include "debug.h"
24 #include "trace.h"
25 #include "mac.h"
26
27 #include <linux/log2.h>
28
29 /* when under memory pressure rx ring refill may fail and needs a retry */
30 #define HTT_RX_RING_REFILL_RETRY_MS 50
31
32 #define HTT_RX_RING_REFILL_RESCHED_MS 5
33
34 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
35
36 static struct sk_buff *
37 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr)
38 {
39         struct ath10k_skb_rxcb *rxcb;
40
41         hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr)
42                 if (rxcb->paddr == paddr)
43                         return ATH10K_RXCB_SKB(rxcb);
44
45         WARN_ON_ONCE(1);
46         return NULL;
47 }
48
49 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
50 {
51         struct sk_buff *skb;
52         struct ath10k_skb_rxcb *rxcb;
53         struct hlist_node *n;
54         int i;
55
56         if (htt->rx_ring.in_ord_rx) {
57                 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) {
58                         skb = ATH10K_RXCB_SKB(rxcb);
59                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
60                                          skb->len + skb_tailroom(skb),
61                                          DMA_FROM_DEVICE);
62                         hash_del(&rxcb->hlist);
63                         dev_kfree_skb_any(skb);
64                 }
65         } else {
66                 for (i = 0; i < htt->rx_ring.size; i++) {
67                         skb = htt->rx_ring.netbufs_ring[i];
68                         if (!skb)
69                                 continue;
70
71                         rxcb = ATH10K_SKB_RXCB(skb);
72                         dma_unmap_single(htt->ar->dev, rxcb->paddr,
73                                          skb->len + skb_tailroom(skb),
74                                          DMA_FROM_DEVICE);
75                         dev_kfree_skb_any(skb);
76                 }
77         }
78
79         htt->rx_ring.fill_cnt = 0;
80         hash_init(htt->rx_ring.skb_table);
81         memset(htt->rx_ring.netbufs_ring, 0,
82                htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0]));
83 }
84
85 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt)
86 {
87         return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32);
88 }
89
90 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt)
91 {
92         return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64);
93 }
94
95 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt,
96                                              void *vaddr)
97 {
98         htt->rx_ring.paddrs_ring_32 = vaddr;
99 }
100
101 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt,
102                                              void *vaddr)
103 {
104         htt->rx_ring.paddrs_ring_64 = vaddr;
105 }
106
107 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt,
108                                           dma_addr_t paddr, int idx)
109 {
110         htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr);
111 }
112
113 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt,
114                                           dma_addr_t paddr, int idx)
115 {
116         htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr);
117 }
118
119 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx)
120 {
121         htt->rx_ring.paddrs_ring_32[idx] = 0;
122 }
123
124 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx)
125 {
126         htt->rx_ring.paddrs_ring_64[idx] = 0;
127 }
128
129 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt)
130 {
131         return (void *)htt->rx_ring.paddrs_ring_32;
132 }
133
134 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt)
135 {
136         return (void *)htt->rx_ring.paddrs_ring_64;
137 }
138
139 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
140 {
141         struct htt_rx_desc *rx_desc;
142         struct ath10k_skb_rxcb *rxcb;
143         struct sk_buff *skb;
144         dma_addr_t paddr;
145         int ret = 0, idx;
146
147         /* The Full Rx Reorder firmware has no way of telling the host
148          * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring.
149          * To keep things simple make sure ring is always half empty. This
150          * guarantees there'll be no replenishment overruns possible.
151          */
152         BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2);
153
154         idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr);
155         while (num > 0) {
156                 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
157                 if (!skb) {
158                         ret = -ENOMEM;
159                         goto fail;
160                 }
161
162                 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
163                         skb_pull(skb,
164                                  PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
165                                  skb->data);
166
167                 /* Clear rx_desc attention word before posting to Rx ring */
168                 rx_desc = (struct htt_rx_desc *)skb->data;
169                 rx_desc->attention.flags = __cpu_to_le32(0);
170
171                 paddr = dma_map_single(htt->ar->dev, skb->data,
172                                        skb->len + skb_tailroom(skb),
173                                        DMA_FROM_DEVICE);
174
175                 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
176                         dev_kfree_skb_any(skb);
177                         ret = -ENOMEM;
178                         goto fail;
179                 }
180
181                 rxcb = ATH10K_SKB_RXCB(skb);
182                 rxcb->paddr = paddr;
183                 htt->rx_ring.netbufs_ring[idx] = skb;
184                 htt->rx_ops->htt_set_paddrs_ring(htt, paddr, idx);
185                 htt->rx_ring.fill_cnt++;
186
187                 if (htt->rx_ring.in_ord_rx) {
188                         hash_add(htt->rx_ring.skb_table,
189                                  &ATH10K_SKB_RXCB(skb)->hlist,
190                                  paddr);
191                 }
192
193                 num--;
194                 idx++;
195                 idx &= htt->rx_ring.size_mask;
196         }
197
198 fail:
199         /*
200          * Make sure the rx buffer is updated before available buffer
201          * index to avoid any potential rx ring corruption.
202          */
203         mb();
204         *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx);
205         return ret;
206 }
207
208 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
209 {
210         lockdep_assert_held(&htt->rx_ring.lock);
211         return __ath10k_htt_rx_ring_fill_n(htt, num);
212 }
213
214 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
215 {
216         int ret, num_deficit, num_to_fill;
217
218         /* Refilling the whole RX ring buffer proves to be a bad idea. The
219          * reason is RX may take up significant amount of CPU cycles and starve
220          * other tasks, e.g. TX on an ethernet device while acting as a bridge
221          * with ath10k wlan interface. This ended up with very poor performance
222          * once CPU the host system was overwhelmed with RX on ath10k.
223          *
224          * By limiting the number of refills the replenishing occurs
225          * progressively. This in turns makes use of the fact tasklets are
226          * processed in FIFO order. This means actual RX processing can starve
227          * out refilling. If there's not enough buffers on RX ring FW will not
228          * report RX until it is refilled with enough buffers. This
229          * automatically balances load wrt to CPU power.
230          *
231          * This probably comes at a cost of lower maximum throughput but
232          * improves the average and stability.
233          */
234         spin_lock_bh(&htt->rx_ring.lock);
235         num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
236         num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
237         num_deficit -= num_to_fill;
238         ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
239         if (ret == -ENOMEM) {
240                 /*
241                  * Failed to fill it to the desired level -
242                  * we'll start a timer and try again next time.
243                  * As long as enough buffers are left in the ring for
244                  * another A-MPDU rx, no special recovery is needed.
245                  */
246                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
247                           msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
248         } else if (num_deficit > 0) {
249                 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
250                           msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS));
251         }
252         spin_unlock_bh(&htt->rx_ring.lock);
253 }
254
255 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t)
256 {
257         struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer);
258
259         ath10k_htt_rx_msdu_buff_replenish(htt);
260 }
261
262 int ath10k_htt_rx_ring_refill(struct ath10k *ar)
263 {
264         struct ath10k_htt *htt = &ar->htt;
265         int ret;
266
267         spin_lock_bh(&htt->rx_ring.lock);
268         ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level -
269                                               htt->rx_ring.fill_cnt));
270         spin_unlock_bh(&htt->rx_ring.lock);
271
272         if (ret)
273                 ath10k_htt_rx_ring_free(htt);
274
275         return ret;
276 }
277
278 void ath10k_htt_rx_free(struct ath10k_htt *htt)
279 {
280         del_timer_sync(&htt->rx_ring.refill_retry_timer);
281
282         skb_queue_purge(&htt->rx_msdus_q);
283         skb_queue_purge(&htt->rx_in_ord_compl_q);
284         skb_queue_purge(&htt->tx_fetch_ind_q);
285
286         ath10k_htt_rx_ring_free(htt);
287
288         dma_free_coherent(htt->ar->dev,
289                           htt->rx_ops->htt_get_rx_ring_size(htt),
290                           htt->rx_ops->htt_get_vaddr_ring(htt),
291                           htt->rx_ring.base_paddr);
292
293         dma_free_coherent(htt->ar->dev,
294                           sizeof(*htt->rx_ring.alloc_idx.vaddr),
295                           htt->rx_ring.alloc_idx.vaddr,
296                           htt->rx_ring.alloc_idx.paddr);
297
298         kfree(htt->rx_ring.netbufs_ring);
299 }
300
301 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
302 {
303         struct ath10k *ar = htt->ar;
304         int idx;
305         struct sk_buff *msdu;
306
307         lockdep_assert_held(&htt->rx_ring.lock);
308
309         if (htt->rx_ring.fill_cnt == 0) {
310                 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n");
311                 return NULL;
312         }
313
314         idx = htt->rx_ring.sw_rd_idx.msdu_payld;
315         msdu = htt->rx_ring.netbufs_ring[idx];
316         htt->rx_ring.netbufs_ring[idx] = NULL;
317         htt->rx_ops->htt_reset_paddrs_ring(htt, idx);
318
319         idx++;
320         idx &= htt->rx_ring.size_mask;
321         htt->rx_ring.sw_rd_idx.msdu_payld = idx;
322         htt->rx_ring.fill_cnt--;
323
324         dma_unmap_single(htt->ar->dev,
325                          ATH10K_SKB_RXCB(msdu)->paddr,
326                          msdu->len + skb_tailroom(msdu),
327                          DMA_FROM_DEVICE);
328         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
329                         msdu->data, msdu->len + skb_tailroom(msdu));
330
331         return msdu;
332 }
333
334 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */
335 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
336                                    struct sk_buff_head *amsdu)
337 {
338         struct ath10k *ar = htt->ar;
339         int msdu_len, msdu_chaining = 0;
340         struct sk_buff *msdu;
341         struct htt_rx_desc *rx_desc;
342
343         lockdep_assert_held(&htt->rx_ring.lock);
344
345         for (;;) {
346                 int last_msdu, msdu_len_invalid, msdu_chained;
347
348                 msdu = ath10k_htt_rx_netbuf_pop(htt);
349                 if (!msdu) {
350                         __skb_queue_purge(amsdu);
351                         return -ENOENT;
352                 }
353
354                 __skb_queue_tail(amsdu, msdu);
355
356                 rx_desc = (struct htt_rx_desc *)msdu->data;
357
358                 /* FIXME: we must report msdu payload since this is what caller
359                  * expects now
360                  */
361                 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
362                 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
363
364                 /*
365                  * Sanity check - confirm the HW is finished filling in the
366                  * rx data.
367                  * If the HW and SW are working correctly, then it's guaranteed
368                  * that the HW's MAC DMA is done before this point in the SW.
369                  * To prevent the case that we handle a stale Rx descriptor,
370                  * just assert for now until we have a way to recover.
371                  */
372                 if (!(__le32_to_cpu(rx_desc->attention.flags)
373                                 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
374                         __skb_queue_purge(amsdu);
375                         return -EIO;
376                 }
377
378                 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
379                                         & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
380                                            RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
381                 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.common.info0),
382                               RX_MSDU_START_INFO0_MSDU_LENGTH);
383                 msdu_chained = rx_desc->frag_info.ring2_more_count;
384
385                 if (msdu_len_invalid)
386                         msdu_len = 0;
387
388                 skb_trim(msdu, 0);
389                 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
390                 msdu_len -= msdu->len;
391
392                 /* Note: Chained buffers do not contain rx descriptor */
393                 while (msdu_chained--) {
394                         msdu = ath10k_htt_rx_netbuf_pop(htt);
395                         if (!msdu) {
396                                 __skb_queue_purge(amsdu);
397                                 return -ENOENT;
398                         }
399
400                         __skb_queue_tail(amsdu, msdu);
401                         skb_trim(msdu, 0);
402                         skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE));
403                         msdu_len -= msdu->len;
404                         msdu_chaining = 1;
405                 }
406
407                 last_msdu = __le32_to_cpu(rx_desc->msdu_end.common.info0) &
408                                 RX_MSDU_END_INFO0_LAST_MSDU;
409
410                 trace_ath10k_htt_rx_desc(ar, &rx_desc->attention,
411                                          sizeof(*rx_desc) - sizeof(u32));
412
413                 if (last_msdu)
414                         break;
415         }
416
417         if (skb_queue_empty(amsdu))
418                 msdu_chaining = -1;
419
420         /*
421          * Don't refill the ring yet.
422          *
423          * First, the elements popped here are still in use - it is not
424          * safe to overwrite them until the matching call to
425          * mpdu_desc_list_next. Second, for efficiency it is preferable to
426          * refill the rx ring with 1 PPDU's worth of rx buffers (something
427          * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
428          * (something like 3 buffers). Consequently, we'll rely on the txrx
429          * SW to tell us when it is done pulling all the PPDU's rx buffers
430          * out of the rx ring, and then refill it just once.
431          */
432
433         return msdu_chaining;
434 }
435
436 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt,
437                                                u64 paddr)
438 {
439         struct ath10k *ar = htt->ar;
440         struct ath10k_skb_rxcb *rxcb;
441         struct sk_buff *msdu;
442
443         lockdep_assert_held(&htt->rx_ring.lock);
444
445         msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr);
446         if (!msdu)
447                 return NULL;
448
449         rxcb = ATH10K_SKB_RXCB(msdu);
450         hash_del(&rxcb->hlist);
451         htt->rx_ring.fill_cnt--;
452
453         dma_unmap_single(htt->ar->dev, rxcb->paddr,
454                          msdu->len + skb_tailroom(msdu),
455                          DMA_FROM_DEVICE);
456         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ",
457                         msdu->data, msdu->len + skb_tailroom(msdu));
458
459         return msdu;
460 }
461
462 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt,
463                                           struct htt_rx_in_ord_ind *ev,
464                                           struct sk_buff_head *list)
465 {
466         struct ath10k *ar = htt->ar;
467         struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32;
468         struct htt_rx_desc *rxd;
469         struct sk_buff *msdu;
470         int msdu_count;
471         bool is_offload;
472         u32 paddr;
473
474         lockdep_assert_held(&htt->rx_ring.lock);
475
476         msdu_count = __le16_to_cpu(ev->msdu_count);
477         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
478
479         while (msdu_count--) {
480                 paddr = __le32_to_cpu(msdu_desc->msdu_paddr);
481
482                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
483                 if (!msdu) {
484                         __skb_queue_purge(list);
485                         return -ENOENT;
486                 }
487
488                 __skb_queue_tail(list, msdu);
489
490                 if (!is_offload) {
491                         rxd = (void *)msdu->data;
492
493                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
494
495                         skb_put(msdu, sizeof(*rxd));
496                         skb_pull(msdu, sizeof(*rxd));
497                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
498
499                         if (!(__le32_to_cpu(rxd->attention.flags) &
500                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
501                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
502                                 return -EIO;
503                         }
504                 }
505
506                 msdu_desc++;
507         }
508
509         return 0;
510 }
511
512 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt,
513                                           struct htt_rx_in_ord_ind *ev,
514                                           struct sk_buff_head *list)
515 {
516         struct ath10k *ar = htt->ar;
517         struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64;
518         struct htt_rx_desc *rxd;
519         struct sk_buff *msdu;
520         int msdu_count;
521         bool is_offload;
522         u64 paddr;
523
524         lockdep_assert_held(&htt->rx_ring.lock);
525
526         msdu_count = __le16_to_cpu(ev->msdu_count);
527         is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
528
529         while (msdu_count--) {
530                 paddr = __le64_to_cpu(msdu_desc->msdu_paddr);
531                 msdu = ath10k_htt_rx_pop_paddr(htt, paddr);
532                 if (!msdu) {
533                         __skb_queue_purge(list);
534                         return -ENOENT;
535                 }
536
537                 __skb_queue_tail(list, msdu);
538
539                 if (!is_offload) {
540                         rxd = (void *)msdu->data;
541
542                         trace_ath10k_htt_rx_desc(ar, rxd, sizeof(*rxd));
543
544                         skb_put(msdu, sizeof(*rxd));
545                         skb_pull(msdu, sizeof(*rxd));
546                         skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len));
547
548                         if (!(__le32_to_cpu(rxd->attention.flags) &
549                               RX_ATTENTION_FLAGS_MSDU_DONE)) {
550                                 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n");
551                                 return -EIO;
552                         }
553                 }
554
555                 msdu_desc++;
556         }
557
558         return 0;
559 }
560
561 int ath10k_htt_rx_alloc(struct ath10k_htt *htt)
562 {
563         struct ath10k *ar = htt->ar;
564         dma_addr_t paddr;
565         void *vaddr, *vaddr_ring;
566         size_t size;
567         struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
568
569         htt->rx_confused = false;
570
571         /* XXX: The fill level could be changed during runtime in response to
572          * the host processing latency. Is this really worth it?
573          */
574         htt->rx_ring.size = HTT_RX_RING_SIZE;
575         htt->rx_ring.size_mask = htt->rx_ring.size - 1;
576         htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level;
577
578         if (!is_power_of_2(htt->rx_ring.size)) {
579                 ath10k_warn(ar, "htt rx ring size is not power of 2\n");
580                 return -EINVAL;
581         }
582
583         htt->rx_ring.netbufs_ring =
584                 kzalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
585                         GFP_KERNEL);
586         if (!htt->rx_ring.netbufs_ring)
587                 goto err_netbuf;
588
589         size = htt->rx_ops->htt_get_rx_ring_size(htt);
590
591         vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL);
592         if (!vaddr_ring)
593                 goto err_dma_ring;
594
595         htt->rx_ops->htt_config_paddrs_ring(htt, vaddr_ring);
596         htt->rx_ring.base_paddr = paddr;
597
598         vaddr = dma_alloc_coherent(htt->ar->dev,
599                                    sizeof(*htt->rx_ring.alloc_idx.vaddr),
600                                    &paddr, GFP_KERNEL);
601         if (!vaddr)
602                 goto err_dma_idx;
603
604         htt->rx_ring.alloc_idx.vaddr = vaddr;
605         htt->rx_ring.alloc_idx.paddr = paddr;
606         htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask;
607         *htt->rx_ring.alloc_idx.vaddr = 0;
608
609         /* Initialize the Rx refill retry timer */
610         timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0);
611
612         spin_lock_init(&htt->rx_ring.lock);
613
614         htt->rx_ring.fill_cnt = 0;
615         htt->rx_ring.sw_rd_idx.msdu_payld = 0;
616         hash_init(htt->rx_ring.skb_table);
617
618         skb_queue_head_init(&htt->rx_msdus_q);
619         skb_queue_head_init(&htt->rx_in_ord_compl_q);
620         skb_queue_head_init(&htt->tx_fetch_ind_q);
621         atomic_set(&htt->num_mpdus_ready, 0);
622
623         ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
624                    htt->rx_ring.size, htt->rx_ring.fill_level);
625         return 0;
626
627 err_dma_idx:
628         dma_free_coherent(htt->ar->dev,
629                           htt->rx_ops->htt_get_rx_ring_size(htt),
630                           vaddr_ring,
631                           htt->rx_ring.base_paddr);
632 err_dma_ring:
633         kfree(htt->rx_ring.netbufs_ring);
634 err_netbuf:
635         return -ENOMEM;
636 }
637
638 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar,
639                                           enum htt_rx_mpdu_encrypt_type type)
640 {
641         switch (type) {
642         case HTT_RX_MPDU_ENCRYPT_NONE:
643                 return 0;
644         case HTT_RX_MPDU_ENCRYPT_WEP40:
645         case HTT_RX_MPDU_ENCRYPT_WEP104:
646                 return IEEE80211_WEP_IV_LEN;
647         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
648         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
649                 return IEEE80211_TKIP_IV_LEN;
650         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
651                 return IEEE80211_CCMP_HDR_LEN;
652         case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
653                 return IEEE80211_CCMP_256_HDR_LEN;
654         case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
655         case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
656                 return IEEE80211_GCMP_HDR_LEN;
657         case HTT_RX_MPDU_ENCRYPT_WEP128:
658         case HTT_RX_MPDU_ENCRYPT_WAPI:
659                 break;
660         }
661
662         ath10k_warn(ar, "unsupported encryption type %d\n", type);
663         return 0;
664 }
665
666 #define MICHAEL_MIC_LEN 8
667
668 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar,
669                                         enum htt_rx_mpdu_encrypt_type type)
670 {
671         switch (type) {
672         case HTT_RX_MPDU_ENCRYPT_NONE:
673         case HTT_RX_MPDU_ENCRYPT_WEP40:
674         case HTT_RX_MPDU_ENCRYPT_WEP104:
675         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
676         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
677                 return 0;
678         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
679                 return IEEE80211_CCMP_MIC_LEN;
680         case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
681                 return IEEE80211_CCMP_256_MIC_LEN;
682         case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
683         case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
684                 return IEEE80211_GCMP_MIC_LEN;
685         case HTT_RX_MPDU_ENCRYPT_WEP128:
686         case HTT_RX_MPDU_ENCRYPT_WAPI:
687                 break;
688         }
689
690         ath10k_warn(ar, "unsupported encryption type %d\n", type);
691         return 0;
692 }
693
694 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar,
695                                         enum htt_rx_mpdu_encrypt_type type)
696 {
697         switch (type) {
698         case HTT_RX_MPDU_ENCRYPT_NONE:
699         case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
700         case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2:
701         case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2:
702         case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2:
703                 return 0;
704         case HTT_RX_MPDU_ENCRYPT_WEP40:
705         case HTT_RX_MPDU_ENCRYPT_WEP104:
706                 return IEEE80211_WEP_ICV_LEN;
707         case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
708         case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
709                 return IEEE80211_TKIP_ICV_LEN;
710         case HTT_RX_MPDU_ENCRYPT_WEP128:
711         case HTT_RX_MPDU_ENCRYPT_WAPI:
712                 break;
713         }
714
715         ath10k_warn(ar, "unsupported encryption type %d\n", type);
716         return 0;
717 }
718
719 struct amsdu_subframe_hdr {
720         u8 dst[ETH_ALEN];
721         u8 src[ETH_ALEN];
722         __be16 len;
723 } __packed;
724
725 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63)
726
727 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw)
728 {
729         u8 ret = 0;
730
731         switch (bw) {
732         case 0:
733                 ret = RATE_INFO_BW_20;
734                 break;
735         case 1:
736                 ret = RATE_INFO_BW_40;
737                 break;
738         case 2:
739                 ret = RATE_INFO_BW_80;
740                 break;
741         case 3:
742                 ret = RATE_INFO_BW_160;
743                 break;
744         }
745
746         return ret;
747 }
748
749 static void ath10k_htt_rx_h_rates(struct ath10k *ar,
750                                   struct ieee80211_rx_status *status,
751                                   struct htt_rx_desc *rxd)
752 {
753         struct ieee80211_supported_band *sband;
754         u8 cck, rate, bw, sgi, mcs, nss;
755         u8 preamble = 0;
756         u8 group_id;
757         u32 info1, info2, info3;
758
759         info1 = __le32_to_cpu(rxd->ppdu_start.info1);
760         info2 = __le32_to_cpu(rxd->ppdu_start.info2);
761         info3 = __le32_to_cpu(rxd->ppdu_start.info3);
762
763         preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE);
764
765         switch (preamble) {
766         case HTT_RX_LEGACY:
767                 /* To get legacy rate index band is required. Since band can't
768                  * be undefined check if freq is non-zero.
769                  */
770                 if (!status->freq)
771                         return;
772
773                 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT;
774                 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE);
775                 rate &= ~RX_PPDU_START_RATE_FLAG;
776
777                 sband = &ar->mac.sbands[status->band];
778                 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck);
779                 break;
780         case HTT_RX_HT:
781         case HTT_RX_HT_WITH_TXBF:
782                 /* HT-SIG - Table 20-11 in info2 and info3 */
783                 mcs = info2 & 0x1F;
784                 nss = mcs >> 3;
785                 bw = (info2 >> 7) & 1;
786                 sgi = (info3 >> 7) & 1;
787
788                 status->rate_idx = mcs;
789                 status->encoding = RX_ENC_HT;
790                 if (sgi)
791                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
792                 if (bw)
793                         status->bw = RATE_INFO_BW_40;
794                 break;
795         case HTT_RX_VHT:
796         case HTT_RX_VHT_WITH_TXBF:
797                 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3
798                  * TODO check this
799                  */
800                 bw = info2 & 3;
801                 sgi = info3 & 1;
802                 group_id = (info2 >> 4) & 0x3F;
803
804                 if (GROUP_ID_IS_SU_MIMO(group_id)) {
805                         mcs = (info3 >> 4) & 0x0F;
806                         nss = ((info2 >> 10) & 0x07) + 1;
807                 } else {
808                         /* Hardware doesn't decode VHT-SIG-B into Rx descriptor
809                          * so it's impossible to decode MCS. Also since
810                          * firmware consumes Group Id Management frames host
811                          * has no knowledge regarding group/user position
812                          * mapping so it's impossible to pick the correct Nsts
813                          * from VHT-SIG-A1.
814                          *
815                          * Bandwidth and SGI are valid so report the rateinfo
816                          * on best-effort basis.
817                          */
818                         mcs = 0;
819                         nss = 1;
820                 }
821
822                 if (mcs > 0x09) {
823                         ath10k_warn(ar, "invalid MCS received %u\n", mcs);
824                         ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n",
825                                     __le32_to_cpu(rxd->attention.flags),
826                                     __le32_to_cpu(rxd->mpdu_start.info0),
827                                     __le32_to_cpu(rxd->mpdu_start.info1),
828                                     __le32_to_cpu(rxd->msdu_start.common.info0),
829                                     __le32_to_cpu(rxd->msdu_start.common.info1),
830                                     rxd->ppdu_start.info0,
831                                     __le32_to_cpu(rxd->ppdu_start.info1),
832                                     __le32_to_cpu(rxd->ppdu_start.info2),
833                                     __le32_to_cpu(rxd->ppdu_start.info3),
834                                     __le32_to_cpu(rxd->ppdu_start.info4));
835
836                         ath10k_warn(ar, "msdu end %08x mpdu end %08x\n",
837                                     __le32_to_cpu(rxd->msdu_end.common.info0),
838                                     __le32_to_cpu(rxd->mpdu_end.info0));
839
840                         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL,
841                                         "rx desc msdu payload: ",
842                                         rxd->msdu_payload, 50);
843                 }
844
845                 status->rate_idx = mcs;
846                 status->nss = nss;
847
848                 if (sgi)
849                         status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
850
851                 status->bw = ath10k_bw_to_mac80211_bw(bw);
852                 status->encoding = RX_ENC_VHT;
853                 break;
854         default:
855                 break;
856         }
857 }
858
859 static struct ieee80211_channel *
860 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd)
861 {
862         struct ath10k_peer *peer;
863         struct ath10k_vif *arvif;
864         struct cfg80211_chan_def def;
865         u16 peer_id;
866
867         lockdep_assert_held(&ar->data_lock);
868
869         if (!rxd)
870                 return NULL;
871
872         if (rxd->attention.flags &
873             __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID))
874                 return NULL;
875
876         if (!(rxd->msdu_end.common.info0 &
877               __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)))
878                 return NULL;
879
880         peer_id = MS(__le32_to_cpu(rxd->mpdu_start.info0),
881                      RX_MPDU_START_INFO0_PEER_IDX);
882
883         peer = ath10k_peer_find_by_id(ar, peer_id);
884         if (!peer)
885                 return NULL;
886
887         arvif = ath10k_get_arvif(ar, peer->vdev_id);
888         if (WARN_ON_ONCE(!arvif))
889                 return NULL;
890
891         if (ath10k_mac_vif_chan(arvif->vif, &def))
892                 return NULL;
893
894         return def.chan;
895 }
896
897 static struct ieee80211_channel *
898 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id)
899 {
900         struct ath10k_vif *arvif;
901         struct cfg80211_chan_def def;
902
903         lockdep_assert_held(&ar->data_lock);
904
905         list_for_each_entry(arvif, &ar->arvifs, list) {
906                 if (arvif->vdev_id == vdev_id &&
907                     ath10k_mac_vif_chan(arvif->vif, &def) == 0)
908                         return def.chan;
909         }
910
911         return NULL;
912 }
913
914 static void
915 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw,
916                               struct ieee80211_chanctx_conf *conf,
917                               void *data)
918 {
919         struct cfg80211_chan_def *def = data;
920
921         *def = conf->def;
922 }
923
924 static struct ieee80211_channel *
925 ath10k_htt_rx_h_any_channel(struct ath10k *ar)
926 {
927         struct cfg80211_chan_def def = {};
928
929         ieee80211_iter_chan_contexts_atomic(ar->hw,
930                                             ath10k_htt_rx_h_any_chan_iter,
931                                             &def);
932
933         return def.chan;
934 }
935
936 static bool ath10k_htt_rx_h_channel(struct ath10k *ar,
937                                     struct ieee80211_rx_status *status,
938                                     struct htt_rx_desc *rxd,
939                                     u32 vdev_id)
940 {
941         struct ieee80211_channel *ch;
942
943         spin_lock_bh(&ar->data_lock);
944         ch = ar->scan_channel;
945         if (!ch)
946                 ch = ar->rx_channel;
947         if (!ch)
948                 ch = ath10k_htt_rx_h_peer_channel(ar, rxd);
949         if (!ch)
950                 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id);
951         if (!ch)
952                 ch = ath10k_htt_rx_h_any_channel(ar);
953         if (!ch)
954                 ch = ar->tgt_oper_chan;
955         spin_unlock_bh(&ar->data_lock);
956
957         if (!ch)
958                 return false;
959
960         status->band = ch->band;
961         status->freq = ch->center_freq;
962
963         return true;
964 }
965
966 static void ath10k_htt_rx_h_signal(struct ath10k *ar,
967                                    struct ieee80211_rx_status *status,
968                                    struct htt_rx_desc *rxd)
969 {
970         int i;
971
972         for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) {
973                 status->chains &= ~BIT(i);
974
975                 if (rxd->ppdu_start.rssi_chains[i].pri20_mhz != 0x80) {
976                         status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR +
977                                 rxd->ppdu_start.rssi_chains[i].pri20_mhz;
978
979                         status->chains |= BIT(i);
980                 }
981         }
982
983         /* FIXME: Get real NF */
984         status->signal = ATH10K_DEFAULT_NOISE_FLOOR +
985                          rxd->ppdu_start.rssi_comb;
986         status->flag &= ~RX_FLAG_NO_SIGNAL_VAL;
987 }
988
989 static void ath10k_htt_rx_h_mactime(struct ath10k *ar,
990                                     struct ieee80211_rx_status *status,
991                                     struct htt_rx_desc *rxd)
992 {
993         /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This
994          * means all prior MSDUs in a PPDU are reported to mac80211 without the
995          * TSF. Is it worth holding frames until end of PPDU is known?
996          *
997          * FIXME: Can we get/compute 64bit TSF?
998          */
999         status->mactime = __le32_to_cpu(rxd->ppdu_end.common.tsf_timestamp);
1000         status->flag |= RX_FLAG_MACTIME_END;
1001 }
1002
1003 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar,
1004                                  struct sk_buff_head *amsdu,
1005                                  struct ieee80211_rx_status *status,
1006                                  u32 vdev_id)
1007 {
1008         struct sk_buff *first;
1009         struct htt_rx_desc *rxd;
1010         bool is_first_ppdu;
1011         bool is_last_ppdu;
1012
1013         if (skb_queue_empty(amsdu))
1014                 return;
1015
1016         first = skb_peek(amsdu);
1017         rxd = (void *)first->data - sizeof(*rxd);
1018
1019         is_first_ppdu = !!(rxd->attention.flags &
1020                            __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU));
1021         is_last_ppdu = !!(rxd->attention.flags &
1022                           __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU));
1023
1024         if (is_first_ppdu) {
1025                 /* New PPDU starts so clear out the old per-PPDU status. */
1026                 status->freq = 0;
1027                 status->rate_idx = 0;
1028                 status->nss = 0;
1029                 status->encoding = RX_ENC_LEGACY;
1030                 status->bw = RATE_INFO_BW_20;
1031
1032                 status->flag &= ~RX_FLAG_MACTIME_END;
1033                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
1034
1035                 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST);
1036                 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1037                 status->ampdu_reference = ar->ampdu_reference;
1038
1039                 ath10k_htt_rx_h_signal(ar, status, rxd);
1040                 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id);
1041                 ath10k_htt_rx_h_rates(ar, status, rxd);
1042         }
1043
1044         if (is_last_ppdu) {
1045                 ath10k_htt_rx_h_mactime(ar, status, rxd);
1046
1047                 /* set ampdu last segment flag */
1048                 status->flag |= RX_FLAG_AMPDU_IS_LAST;
1049                 ar->ampdu_reference++;
1050         }
1051 }
1052
1053 static const char * const tid_to_ac[] = {
1054         "BE",
1055         "BK",
1056         "BK",
1057         "BE",
1058         "VI",
1059         "VI",
1060         "VO",
1061         "VO",
1062 };
1063
1064 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size)
1065 {
1066         u8 *qc;
1067         int tid;
1068
1069         if (!ieee80211_is_data_qos(hdr->frame_control))
1070                 return "";
1071
1072         qc = ieee80211_get_qos_ctl(hdr);
1073         tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1074         if (tid < 8)
1075                 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]);
1076         else
1077                 snprintf(out, size, "tid %d", tid);
1078
1079         return out;
1080 }
1081
1082 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar,
1083                                        struct ieee80211_rx_status *rx_status,
1084                                        struct sk_buff *skb)
1085 {
1086         struct ieee80211_rx_status *status;
1087
1088         status = IEEE80211_SKB_RXCB(skb);
1089         *status = *rx_status;
1090
1091         __skb_queue_tail(&ar->htt.rx_msdus_q, skb);
1092 }
1093
1094 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb)
1095 {
1096         struct ieee80211_rx_status *status;
1097         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1098         char tid[32];
1099
1100         status = IEEE80211_SKB_RXCB(skb);
1101
1102         ath10k_dbg(ar, ATH10K_DBG_DATA,
1103                    "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n",
1104                    skb,
1105                    skb->len,
1106                    ieee80211_get_SA(hdr),
1107                    ath10k_get_tid(hdr, tid, sizeof(tid)),
1108                    is_multicast_ether_addr(ieee80211_get_DA(hdr)) ?
1109                                                         "mcast" : "ucast",
1110                    (__le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ) >> 4,
1111                    (status->encoding == RX_ENC_LEGACY) ? "legacy" : "",
1112                    (status->encoding == RX_ENC_HT) ? "ht" : "",
1113                    (status->encoding == RX_ENC_VHT) ? "vht" : "",
1114                    (status->bw == RATE_INFO_BW_40) ? "40" : "",
1115                    (status->bw == RATE_INFO_BW_80) ? "80" : "",
1116                    (status->bw == RATE_INFO_BW_160) ? "160" : "",
1117                    status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "",
1118                    status->rate_idx,
1119                    status->nss,
1120                    status->freq,
1121                    status->band, status->flag,
1122                    !!(status->flag & RX_FLAG_FAILED_FCS_CRC),
1123                    !!(status->flag & RX_FLAG_MMIC_ERROR),
1124                    !!(status->flag & RX_FLAG_AMSDU_MORE));
1125         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ",
1126                         skb->data, skb->len);
1127         trace_ath10k_rx_hdr(ar, skb->data, skb->len);
1128         trace_ath10k_rx_payload(ar, skb->data, skb->len);
1129
1130         ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi);
1131 }
1132
1133 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar,
1134                                       struct ieee80211_hdr *hdr)
1135 {
1136         int len = ieee80211_hdrlen(hdr->frame_control);
1137
1138         if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING,
1139                       ar->running_fw->fw_file.fw_features))
1140                 len = round_up(len, 4);
1141
1142         return len;
1143 }
1144
1145 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar,
1146                                         struct sk_buff *msdu,
1147                                         struct ieee80211_rx_status *status,
1148                                         enum htt_rx_mpdu_encrypt_type enctype,
1149                                         bool is_decrypted)
1150 {
1151         struct ieee80211_hdr *hdr;
1152         struct htt_rx_desc *rxd;
1153         size_t hdr_len;
1154         size_t crypto_len;
1155         bool is_first;
1156         bool is_last;
1157
1158         rxd = (void *)msdu->data - sizeof(*rxd);
1159         is_first = !!(rxd->msdu_end.common.info0 &
1160                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1161         is_last = !!(rxd->msdu_end.common.info0 &
1162                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1163
1164         /* Delivered decapped frame:
1165          * [802.11 header]
1166          * [crypto param] <-- can be trimmed if !fcs_err &&
1167          *                    !decrypt_err && !peer_idx_invalid
1168          * [amsdu header] <-- only if A-MSDU
1169          * [rfc1042/llc]
1170          * [payload]
1171          * [FCS] <-- at end, needs to be trimmed
1172          */
1173
1174         /* This probably shouldn't happen but warn just in case */
1175         if (unlikely(WARN_ON_ONCE(!is_first)))
1176                 return;
1177
1178         /* This probably shouldn't happen but warn just in case */
1179         if (unlikely(WARN_ON_ONCE(!(is_first && is_last))))
1180                 return;
1181
1182         skb_trim(msdu, msdu->len - FCS_LEN);
1183
1184         /* In most cases this will be true for sniffed frames. It makes sense
1185          * to deliver them as-is without stripping the crypto param. This is
1186          * necessary for software based decryption.
1187          *
1188          * If there's no error then the frame is decrypted. At least that is
1189          * the case for frames that come in via fragmented rx indication.
1190          */
1191         if (!is_decrypted)
1192                 return;
1193
1194         /* The payload is decrypted so strip crypto params. Start from tail
1195          * since hdr is used to compute some stuff.
1196          */
1197
1198         hdr = (void *)msdu->data;
1199
1200         /* Tail */
1201         if (status->flag & RX_FLAG_IV_STRIPPED) {
1202                 skb_trim(msdu, msdu->len -
1203                          ath10k_htt_rx_crypto_mic_len(ar, enctype));
1204
1205                 skb_trim(msdu, msdu->len -
1206                          ath10k_htt_rx_crypto_icv_len(ar, enctype));
1207         } else {
1208                 /* MIC */
1209                 if (status->flag & RX_FLAG_MIC_STRIPPED)
1210                         skb_trim(msdu, msdu->len -
1211                                  ath10k_htt_rx_crypto_mic_len(ar, enctype));
1212
1213                 /* ICV */
1214                 if (status->flag & RX_FLAG_ICV_STRIPPED)
1215                         skb_trim(msdu, msdu->len -
1216                                  ath10k_htt_rx_crypto_icv_len(ar, enctype));
1217         }
1218
1219         /* MMIC */
1220         if ((status->flag & RX_FLAG_MMIC_STRIPPED) &&
1221             !ieee80211_has_morefrags(hdr->frame_control) &&
1222             enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1223                 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN);
1224
1225         /* Head */
1226         if (status->flag & RX_FLAG_IV_STRIPPED) {
1227                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1228                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1229
1230                 memmove((void *)msdu->data + crypto_len,
1231                         (void *)msdu->data, hdr_len);
1232                 skb_pull(msdu, crypto_len);
1233         }
1234 }
1235
1236 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar,
1237                                           struct sk_buff *msdu,
1238                                           struct ieee80211_rx_status *status,
1239                                           const u8 first_hdr[64],
1240                                           enum htt_rx_mpdu_encrypt_type enctype)
1241 {
1242         struct ieee80211_hdr *hdr;
1243         struct htt_rx_desc *rxd;
1244         size_t hdr_len;
1245         u8 da[ETH_ALEN];
1246         u8 sa[ETH_ALEN];
1247         int l3_pad_bytes;
1248         int bytes_aligned = ar->hw_params.decap_align_bytes;
1249
1250         /* Delivered decapped frame:
1251          * [nwifi 802.11 header] <-- replaced with 802.11 hdr
1252          * [rfc1042/llc]
1253          *
1254          * Note: The nwifi header doesn't have QoS Control and is
1255          * (always?) a 3addr frame.
1256          *
1257          * Note2: There's no A-MSDU subframe header. Even if it's part
1258          * of an A-MSDU.
1259          */
1260
1261         /* pull decapped header and copy SA & DA */
1262         rxd = (void *)msdu->data - sizeof(*rxd);
1263
1264         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1265         skb_put(msdu, l3_pad_bytes);
1266
1267         hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes);
1268
1269         hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr);
1270         ether_addr_copy(da, ieee80211_get_DA(hdr));
1271         ether_addr_copy(sa, ieee80211_get_SA(hdr));
1272         skb_pull(msdu, hdr_len);
1273
1274         /* push original 802.11 header */
1275         hdr = (struct ieee80211_hdr *)first_hdr;
1276         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1277
1278         if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1279                 memcpy(skb_push(msdu,
1280                                 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1281                        (void *)hdr + round_up(hdr_len, bytes_aligned),
1282                         ath10k_htt_rx_crypto_param_len(ar, enctype));
1283         }
1284
1285         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1286
1287         /* original 802.11 header has a different DA and in
1288          * case of 4addr it may also have different SA
1289          */
1290         hdr = (struct ieee80211_hdr *)msdu->data;
1291         ether_addr_copy(ieee80211_get_DA(hdr), da);
1292         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1293 }
1294
1295 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar,
1296                                           struct sk_buff *msdu,
1297                                           enum htt_rx_mpdu_encrypt_type enctype)
1298 {
1299         struct ieee80211_hdr *hdr;
1300         struct htt_rx_desc *rxd;
1301         size_t hdr_len, crypto_len;
1302         void *rfc1042;
1303         bool is_first, is_last, is_amsdu;
1304         int bytes_aligned = ar->hw_params.decap_align_bytes;
1305
1306         rxd = (void *)msdu->data - sizeof(*rxd);
1307         hdr = (void *)rxd->rx_hdr_status;
1308
1309         is_first = !!(rxd->msdu_end.common.info0 &
1310                       __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU));
1311         is_last = !!(rxd->msdu_end.common.info0 &
1312                      __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU));
1313         is_amsdu = !(is_first && is_last);
1314
1315         rfc1042 = hdr;
1316
1317         if (is_first) {
1318                 hdr_len = ieee80211_hdrlen(hdr->frame_control);
1319                 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype);
1320
1321                 rfc1042 += round_up(hdr_len, bytes_aligned) +
1322                            round_up(crypto_len, bytes_aligned);
1323         }
1324
1325         if (is_amsdu)
1326                 rfc1042 += sizeof(struct amsdu_subframe_hdr);
1327
1328         return rfc1042;
1329 }
1330
1331 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar,
1332                                         struct sk_buff *msdu,
1333                                         struct ieee80211_rx_status *status,
1334                                         const u8 first_hdr[64],
1335                                         enum htt_rx_mpdu_encrypt_type enctype)
1336 {
1337         struct ieee80211_hdr *hdr;
1338         struct ethhdr *eth;
1339         size_t hdr_len;
1340         void *rfc1042;
1341         u8 da[ETH_ALEN];
1342         u8 sa[ETH_ALEN];
1343         int l3_pad_bytes;
1344         struct htt_rx_desc *rxd;
1345         int bytes_aligned = ar->hw_params.decap_align_bytes;
1346
1347         /* Delivered decapped frame:
1348          * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc
1349          * [payload]
1350          */
1351
1352         rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype);
1353         if (WARN_ON_ONCE(!rfc1042))
1354                 return;
1355
1356         rxd = (void *)msdu->data - sizeof(*rxd);
1357         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1358         skb_put(msdu, l3_pad_bytes);
1359         skb_pull(msdu, l3_pad_bytes);
1360
1361         /* pull decapped header and copy SA & DA */
1362         eth = (struct ethhdr *)msdu->data;
1363         ether_addr_copy(da, eth->h_dest);
1364         ether_addr_copy(sa, eth->h_source);
1365         skb_pull(msdu, sizeof(struct ethhdr));
1366
1367         /* push rfc1042/llc/snap */
1368         memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042,
1369                sizeof(struct rfc1042_hdr));
1370
1371         /* push original 802.11 header */
1372         hdr = (struct ieee80211_hdr *)first_hdr;
1373         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1374
1375         if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1376                 memcpy(skb_push(msdu,
1377                                 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1378                        (void *)hdr + round_up(hdr_len, bytes_aligned),
1379                         ath10k_htt_rx_crypto_param_len(ar, enctype));
1380         }
1381
1382         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1383
1384         /* original 802.11 header has a different DA and in
1385          * case of 4addr it may also have different SA
1386          */
1387         hdr = (struct ieee80211_hdr *)msdu->data;
1388         ether_addr_copy(ieee80211_get_DA(hdr), da);
1389         ether_addr_copy(ieee80211_get_SA(hdr), sa);
1390 }
1391
1392 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar,
1393                                          struct sk_buff *msdu,
1394                                          struct ieee80211_rx_status *status,
1395                                          const u8 first_hdr[64],
1396                                          enum htt_rx_mpdu_encrypt_type enctype)
1397 {
1398         struct ieee80211_hdr *hdr;
1399         size_t hdr_len;
1400         int l3_pad_bytes;
1401         struct htt_rx_desc *rxd;
1402         int bytes_aligned = ar->hw_params.decap_align_bytes;
1403
1404         /* Delivered decapped frame:
1405          * [amsdu header] <-- replaced with 802.11 hdr
1406          * [rfc1042/llc]
1407          * [payload]
1408          */
1409
1410         rxd = (void *)msdu->data - sizeof(*rxd);
1411         l3_pad_bytes = ath10k_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd);
1412
1413         skb_put(msdu, l3_pad_bytes);
1414         skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes);
1415
1416         hdr = (struct ieee80211_hdr *)first_hdr;
1417         hdr_len = ieee80211_hdrlen(hdr->frame_control);
1418
1419         if (!(status->flag & RX_FLAG_IV_STRIPPED)) {
1420                 memcpy(skb_push(msdu,
1421                                 ath10k_htt_rx_crypto_param_len(ar, enctype)),
1422                        (void *)hdr + round_up(hdr_len, bytes_aligned),
1423                         ath10k_htt_rx_crypto_param_len(ar, enctype));
1424         }
1425
1426         memcpy(skb_push(msdu, hdr_len), hdr, hdr_len);
1427 }
1428
1429 static void ath10k_htt_rx_h_undecap(struct ath10k *ar,
1430                                     struct sk_buff *msdu,
1431                                     struct ieee80211_rx_status *status,
1432                                     u8 first_hdr[64],
1433                                     enum htt_rx_mpdu_encrypt_type enctype,
1434                                     bool is_decrypted)
1435 {
1436         struct htt_rx_desc *rxd;
1437         enum rx_msdu_decap_format decap;
1438
1439         /* First msdu's decapped header:
1440          * [802.11 header] <-- padded to 4 bytes long
1441          * [crypto param] <-- padded to 4 bytes long
1442          * [amsdu header] <-- only if A-MSDU
1443          * [rfc1042/llc]
1444          *
1445          * Other (2nd, 3rd, ..) msdu's decapped header:
1446          * [amsdu header] <-- only if A-MSDU
1447          * [rfc1042/llc]
1448          */
1449
1450         rxd = (void *)msdu->data - sizeof(*rxd);
1451         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1452                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1453
1454         switch (decap) {
1455         case RX_MSDU_DECAP_RAW:
1456                 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype,
1457                                             is_decrypted);
1458                 break;
1459         case RX_MSDU_DECAP_NATIVE_WIFI:
1460                 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr,
1461                                               enctype);
1462                 break;
1463         case RX_MSDU_DECAP_ETHERNET2_DIX:
1464                 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype);
1465                 break;
1466         case RX_MSDU_DECAP_8023_SNAP_LLC:
1467                 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr,
1468                                              enctype);
1469                 break;
1470         }
1471 }
1472
1473 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
1474 {
1475         struct htt_rx_desc *rxd;
1476         u32 flags, info;
1477         bool is_ip4, is_ip6;
1478         bool is_tcp, is_udp;
1479         bool ip_csum_ok, tcpudp_csum_ok;
1480
1481         rxd = (void *)skb->data - sizeof(*rxd);
1482         flags = __le32_to_cpu(rxd->attention.flags);
1483         info = __le32_to_cpu(rxd->msdu_start.common.info1);
1484
1485         is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
1486         is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
1487         is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
1488         is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
1489         ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
1490         tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
1491
1492         if (!is_ip4 && !is_ip6)
1493                 return CHECKSUM_NONE;
1494         if (!is_tcp && !is_udp)
1495                 return CHECKSUM_NONE;
1496         if (!ip_csum_ok)
1497                 return CHECKSUM_NONE;
1498         if (!tcpudp_csum_ok)
1499                 return CHECKSUM_NONE;
1500
1501         return CHECKSUM_UNNECESSARY;
1502 }
1503
1504 static void ath10k_htt_rx_h_csum_offload(struct sk_buff *msdu)
1505 {
1506         msdu->ip_summed = ath10k_htt_rx_get_csum_state(msdu);
1507 }
1508
1509 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar,
1510                                  struct sk_buff_head *amsdu,
1511                                  struct ieee80211_rx_status *status,
1512                                  bool fill_crypt_header,
1513                                  u8 *rx_hdr,
1514                                  enum ath10k_pkt_rx_err *err)
1515 {
1516         struct sk_buff *first;
1517         struct sk_buff *last;
1518         struct sk_buff *msdu;
1519         struct htt_rx_desc *rxd;
1520         struct ieee80211_hdr *hdr;
1521         enum htt_rx_mpdu_encrypt_type enctype;
1522         u8 first_hdr[64];
1523         u8 *qos;
1524         bool has_fcs_err;
1525         bool has_crypto_err;
1526         bool has_tkip_err;
1527         bool has_peer_idx_invalid;
1528         bool is_decrypted;
1529         bool is_mgmt;
1530         u32 attention;
1531
1532         if (skb_queue_empty(amsdu))
1533                 return;
1534
1535         first = skb_peek(amsdu);
1536         rxd = (void *)first->data - sizeof(*rxd);
1537
1538         is_mgmt = !!(rxd->attention.flags &
1539                      __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE));
1540
1541         enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1542                      RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1543
1544         /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11
1545          * decapped header. It'll be used for undecapping of each MSDU.
1546          */
1547         hdr = (void *)rxd->rx_hdr_status;
1548         memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1549
1550         if (rx_hdr)
1551                 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN);
1552
1553         /* Each A-MSDU subframe will use the original header as the base and be
1554          * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl.
1555          */
1556         hdr = (void *)first_hdr;
1557
1558         if (ieee80211_is_data_qos(hdr->frame_control)) {
1559                 qos = ieee80211_get_qos_ctl(hdr);
1560                 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1561         }
1562
1563         /* Some attention flags are valid only in the last MSDU. */
1564         last = skb_peek_tail(amsdu);
1565         rxd = (void *)last->data - sizeof(*rxd);
1566         attention = __le32_to_cpu(rxd->attention.flags);
1567
1568         has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR);
1569         has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR);
1570         has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1571         has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID);
1572
1573         /* Note: If hardware captures an encrypted frame that it can't decrypt,
1574          * e.g. due to fcs error, missing peer or invalid key data it will
1575          * report the frame as raw.
1576          */
1577         is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE &&
1578                         !has_fcs_err &&
1579                         !has_crypto_err &&
1580                         !has_peer_idx_invalid);
1581
1582         /* Clear per-MPDU flags while leaving per-PPDU flags intact. */
1583         status->flag &= ~(RX_FLAG_FAILED_FCS_CRC |
1584                           RX_FLAG_MMIC_ERROR |
1585                           RX_FLAG_DECRYPTED |
1586                           RX_FLAG_IV_STRIPPED |
1587                           RX_FLAG_ONLY_MONITOR |
1588                           RX_FLAG_MMIC_STRIPPED);
1589
1590         if (has_fcs_err)
1591                 status->flag |= RX_FLAG_FAILED_FCS_CRC;
1592
1593         if (has_tkip_err)
1594                 status->flag |= RX_FLAG_MMIC_ERROR;
1595
1596         if (err) {
1597                 if (has_fcs_err)
1598                         *err = ATH10K_PKT_RX_ERR_FCS;
1599                 else if (has_tkip_err)
1600                         *err = ATH10K_PKT_RX_ERR_TKIP;
1601                 else if (has_crypto_err)
1602                         *err = ATH10K_PKT_RX_ERR_CRYPT;
1603                 else if (has_peer_idx_invalid)
1604                         *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL;
1605         }
1606
1607         /* Firmware reports all necessary management frames via WMI already.
1608          * They are not reported to monitor interfaces at all so pass the ones
1609          * coming via HTT to monitor interfaces instead. This simplifies
1610          * matters a lot.
1611          */
1612         if (is_mgmt)
1613                 status->flag |= RX_FLAG_ONLY_MONITOR;
1614
1615         if (is_decrypted) {
1616                 status->flag |= RX_FLAG_DECRYPTED;
1617
1618                 if (likely(!is_mgmt))
1619                         status->flag |= RX_FLAG_MMIC_STRIPPED;
1620
1621                 if (fill_crypt_header)
1622                         status->flag |= RX_FLAG_MIC_STRIPPED |
1623                                         RX_FLAG_ICV_STRIPPED;
1624                 else
1625                         status->flag |= RX_FLAG_IV_STRIPPED;
1626         }
1627
1628         skb_queue_walk(amsdu, msdu) {
1629                 ath10k_htt_rx_h_csum_offload(msdu);
1630                 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype,
1631                                         is_decrypted);
1632
1633                 /* Undecapping involves copying the original 802.11 header back
1634                  * to sk_buff. If frame is protected and hardware has decrypted
1635                  * it then remove the protected bit.
1636                  */
1637                 if (!is_decrypted)
1638                         continue;
1639                 if (is_mgmt)
1640                         continue;
1641
1642                 if (fill_crypt_header)
1643                         continue;
1644
1645                 hdr = (void *)msdu->data;
1646                 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1647         }
1648 }
1649
1650 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar,
1651                                     struct sk_buff_head *amsdu,
1652                                     struct ieee80211_rx_status *status)
1653 {
1654         struct sk_buff *msdu;
1655         struct sk_buff *first_subframe;
1656
1657         first_subframe = skb_peek(amsdu);
1658
1659         while ((msdu = __skb_dequeue(amsdu))) {
1660                 /* Setup per-MSDU flags */
1661                 if (skb_queue_empty(amsdu))
1662                         status->flag &= ~RX_FLAG_AMSDU_MORE;
1663                 else
1664                         status->flag |= RX_FLAG_AMSDU_MORE;
1665
1666                 if (msdu == first_subframe) {
1667                         first_subframe = NULL;
1668                         status->flag &= ~RX_FLAG_ALLOW_SAME_PN;
1669                 } else {
1670                         status->flag |= RX_FLAG_ALLOW_SAME_PN;
1671                 }
1672
1673                 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
1674         }
1675 }
1676
1677 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu,
1678                                unsigned long int *unchain_cnt)
1679 {
1680         struct sk_buff *skb, *first;
1681         int space;
1682         int total_len = 0;
1683         int amsdu_len = skb_queue_len(amsdu);
1684
1685         /* TODO:  Might could optimize this by using
1686          * skb_try_coalesce or similar method to
1687          * decrease copying, or maybe get mac80211 to
1688          * provide a way to just receive a list of
1689          * skb?
1690          */
1691
1692         first = __skb_dequeue(amsdu);
1693
1694         /* Allocate total length all at once. */
1695         skb_queue_walk(amsdu, skb)
1696                 total_len += skb->len;
1697
1698         space = total_len - skb_tailroom(first);
1699         if ((space > 0) &&
1700             (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) {
1701                 /* TODO:  bump some rx-oom error stat */
1702                 /* put it back together so we can free the
1703                  * whole list at once.
1704                  */
1705                 __skb_queue_head(amsdu, first);
1706                 return -1;
1707         }
1708
1709         /* Walk list again, copying contents into
1710          * msdu_head
1711          */
1712         while ((skb = __skb_dequeue(amsdu))) {
1713                 skb_copy_from_linear_data(skb, skb_put(first, skb->len),
1714                                           skb->len);
1715                 dev_kfree_skb_any(skb);
1716         }
1717
1718         __skb_queue_head(amsdu, first);
1719
1720         *unchain_cnt += amsdu_len - 1;
1721
1722         return 0;
1723 }
1724
1725 static void ath10k_htt_rx_h_unchain(struct ath10k *ar,
1726                                     struct sk_buff_head *amsdu,
1727                                     unsigned long int *drop_cnt,
1728                                     unsigned long int *unchain_cnt)
1729 {
1730         struct sk_buff *first;
1731         struct htt_rx_desc *rxd;
1732         enum rx_msdu_decap_format decap;
1733
1734         first = skb_peek(amsdu);
1735         rxd = (void *)first->data - sizeof(*rxd);
1736         decap = MS(__le32_to_cpu(rxd->msdu_start.common.info1),
1737                    RX_MSDU_START_INFO1_DECAP_FORMAT);
1738
1739         /* FIXME: Current unchaining logic can only handle simple case of raw
1740          * msdu chaining. If decapping is other than raw the chaining may be
1741          * more complex and this isn't handled by the current code. Don't even
1742          * try re-constructing such frames - it'll be pretty much garbage.
1743          */
1744         if (decap != RX_MSDU_DECAP_RAW ||
1745             skb_queue_len(amsdu) != 1 + rxd->frag_info.ring2_more_count) {
1746                 *drop_cnt += skb_queue_len(amsdu);
1747                 __skb_queue_purge(amsdu);
1748                 return;
1749         }
1750
1751         ath10k_unchain_msdu(amsdu, unchain_cnt);
1752 }
1753
1754 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar,
1755                                         struct sk_buff_head *amsdu,
1756                                         struct ieee80211_rx_status *rx_status)
1757 {
1758         /* FIXME: It might be a good idea to do some fuzzy-testing to drop
1759          * invalid/dangerous frames.
1760          */
1761
1762         if (!rx_status->freq) {
1763                 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n");
1764                 return false;
1765         }
1766
1767         if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) {
1768                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n");
1769                 return false;
1770         }
1771
1772         return true;
1773 }
1774
1775 static void ath10k_htt_rx_h_filter(struct ath10k *ar,
1776                                    struct sk_buff_head *amsdu,
1777                                    struct ieee80211_rx_status *rx_status,
1778                                    unsigned long int *drop_cnt)
1779 {
1780         if (skb_queue_empty(amsdu))
1781                 return;
1782
1783         if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status))
1784                 return;
1785
1786         if (drop_cnt)
1787                 *drop_cnt += skb_queue_len(amsdu);
1788
1789         __skb_queue_purge(amsdu);
1790 }
1791
1792 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt)
1793 {
1794         struct ath10k *ar = htt->ar;
1795         struct ieee80211_rx_status *rx_status = &htt->rx_status;
1796         struct sk_buff_head amsdu;
1797         int ret;
1798         unsigned long int drop_cnt = 0;
1799         unsigned long int unchain_cnt = 0;
1800         unsigned long int drop_cnt_filter = 0;
1801         unsigned long int msdus_to_queue, num_msdus;
1802         enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX;
1803         u8 first_hdr[RX_HTT_HDR_STATUS_LEN];
1804
1805         __skb_queue_head_init(&amsdu);
1806
1807         spin_lock_bh(&htt->rx_ring.lock);
1808         if (htt->rx_confused) {
1809                 spin_unlock_bh(&htt->rx_ring.lock);
1810                 return -EIO;
1811         }
1812         ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu);
1813         spin_unlock_bh(&htt->rx_ring.lock);
1814
1815         if (ret < 0) {
1816                 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret);
1817                 __skb_queue_purge(&amsdu);
1818                 /* FIXME: It's probably a good idea to reboot the
1819                  * device instead of leaving it inoperable.
1820                  */
1821                 htt->rx_confused = true;
1822                 return ret;
1823         }
1824
1825         num_msdus = skb_queue_len(&amsdu);
1826
1827         ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff);
1828
1829         /* only for ret = 1 indicates chained msdus */
1830         if (ret > 0)
1831                 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt);
1832
1833         ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter);
1834         ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err);
1835         msdus_to_queue = skb_queue_len(&amsdu);
1836         ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status);
1837
1838         ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err,
1839                                        unchain_cnt, drop_cnt, drop_cnt_filter,
1840                                        msdus_to_queue);
1841
1842         return 0;
1843 }
1844
1845 static void ath10k_htt_rx_proc_rx_ind(struct ath10k_htt *htt,
1846                                       struct htt_rx_indication *rx)
1847 {
1848         struct ath10k *ar = htt->ar;
1849         struct htt_rx_indication_mpdu_range *mpdu_ranges;
1850         int num_mpdu_ranges;
1851         int i, mpdu_count = 0;
1852         u16 peer_id;
1853         u8 tid;
1854
1855         num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
1856                              HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
1857         peer_id = __le16_to_cpu(rx->hdr.peer_id);
1858         tid =  MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID);
1859
1860         mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
1861
1862         ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
1863                         rx, sizeof(*rx) +
1864                         (sizeof(struct htt_rx_indication_mpdu_range) *
1865                                 num_mpdu_ranges));
1866
1867         for (i = 0; i < num_mpdu_ranges; i++)
1868                 mpdu_count += mpdu_ranges[i].mpdu_count;
1869
1870         atomic_add(mpdu_count, &htt->num_mpdus_ready);
1871
1872         ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges,
1873                                              num_mpdu_ranges);
1874 }
1875
1876 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar,
1877                                        struct sk_buff *skb)
1878 {
1879         struct ath10k_htt *htt = &ar->htt;
1880         struct htt_resp *resp = (struct htt_resp *)skb->data;
1881         struct htt_tx_done tx_done = {};
1882         int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS);
1883         __le16 msdu_id;
1884         int i;
1885
1886         switch (status) {
1887         case HTT_DATA_TX_STATUS_NO_ACK:
1888                 tx_done.status = HTT_TX_COMPL_STATE_NOACK;
1889                 break;
1890         case HTT_DATA_TX_STATUS_OK:
1891                 tx_done.status = HTT_TX_COMPL_STATE_ACK;
1892                 break;
1893         case HTT_DATA_TX_STATUS_DISCARD:
1894         case HTT_DATA_TX_STATUS_POSTPONE:
1895         case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1896                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1897                 break;
1898         default:
1899                 ath10k_warn(ar, "unhandled tx completion status %d\n", status);
1900                 tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
1901                 break;
1902         }
1903
1904         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1905                    resp->data_tx_completion.num_msdus);
1906
1907         for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1908                 msdu_id = resp->data_tx_completion.msdus[i];
1909                 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1910
1911                 /* kfifo_put: In practice firmware shouldn't fire off per-CE
1912                  * interrupt and main interrupt (MSI/-X range case) for the same
1913                  * HTC service so it should be safe to use kfifo_put w/o lock.
1914                  *
1915                  * From kfifo_put() documentation:
1916                  *  Note that with only one concurrent reader and one concurrent
1917                  *  writer, you don't need extra locking to use these macro.
1918                  */
1919                 if (!kfifo_put(&htt->txdone_fifo, tx_done)) {
1920                         ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n",
1921                                     tx_done.msdu_id, tx_done.status);
1922                         ath10k_txrx_tx_unref(htt, &tx_done);
1923                 }
1924         }
1925 }
1926
1927 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp)
1928 {
1929         struct htt_rx_addba *ev = &resp->rx_addba;
1930         struct ath10k_peer *peer;
1931         struct ath10k_vif *arvif;
1932         u16 info0, tid, peer_id;
1933
1934         info0 = __le16_to_cpu(ev->info0);
1935         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1936         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1937
1938         ath10k_dbg(ar, ATH10K_DBG_HTT,
1939                    "htt rx addba tid %hu peer_id %hu size %hhu\n",
1940                    tid, peer_id, ev->window_size);
1941
1942         spin_lock_bh(&ar->data_lock);
1943         peer = ath10k_peer_find_by_id(ar, peer_id);
1944         if (!peer) {
1945                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1946                             peer_id);
1947                 spin_unlock_bh(&ar->data_lock);
1948                 return;
1949         }
1950
1951         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1952         if (!arvif) {
1953                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1954                             peer->vdev_id);
1955                 spin_unlock_bh(&ar->data_lock);
1956                 return;
1957         }
1958
1959         ath10k_dbg(ar, ATH10K_DBG_HTT,
1960                    "htt rx start rx ba session sta %pM tid %hu size %hhu\n",
1961                    peer->addr, tid, ev->window_size);
1962
1963         ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid);
1964         spin_unlock_bh(&ar->data_lock);
1965 }
1966
1967 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp)
1968 {
1969         struct htt_rx_delba *ev = &resp->rx_delba;
1970         struct ath10k_peer *peer;
1971         struct ath10k_vif *arvif;
1972         u16 info0, tid, peer_id;
1973
1974         info0 = __le16_to_cpu(ev->info0);
1975         tid = MS(info0, HTT_RX_BA_INFO0_TID);
1976         peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID);
1977
1978         ath10k_dbg(ar, ATH10K_DBG_HTT,
1979                    "htt rx delba tid %hu peer_id %hu\n",
1980                    tid, peer_id);
1981
1982         spin_lock_bh(&ar->data_lock);
1983         peer = ath10k_peer_find_by_id(ar, peer_id);
1984         if (!peer) {
1985                 ath10k_warn(ar, "received addba event for invalid peer_id: %hu\n",
1986                             peer_id);
1987                 spin_unlock_bh(&ar->data_lock);
1988                 return;
1989         }
1990
1991         arvif = ath10k_get_arvif(ar, peer->vdev_id);
1992         if (!arvif) {
1993                 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n",
1994                             peer->vdev_id);
1995                 spin_unlock_bh(&ar->data_lock);
1996                 return;
1997         }
1998
1999         ath10k_dbg(ar, ATH10K_DBG_HTT,
2000                    "htt rx stop rx ba session sta %pM tid %hu\n",
2001                    peer->addr, tid);
2002
2003         ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid);
2004         spin_unlock_bh(&ar->data_lock);
2005 }
2006
2007 static int ath10k_htt_rx_extract_amsdu(struct sk_buff_head *list,
2008                                        struct sk_buff_head *amsdu)
2009 {
2010         struct sk_buff *msdu;
2011         struct htt_rx_desc *rxd;
2012
2013         if (skb_queue_empty(list))
2014                 return -ENOBUFS;
2015
2016         if (WARN_ON(!skb_queue_empty(amsdu)))
2017                 return -EINVAL;
2018
2019         while ((msdu = __skb_dequeue(list))) {
2020                 __skb_queue_tail(amsdu, msdu);
2021
2022                 rxd = (void *)msdu->data - sizeof(*rxd);
2023                 if (rxd->msdu_end.common.info0 &
2024                     __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))
2025                         break;
2026         }
2027
2028         msdu = skb_peek_tail(amsdu);
2029         rxd = (void *)msdu->data - sizeof(*rxd);
2030         if (!(rxd->msdu_end.common.info0 &
2031               __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) {
2032                 skb_queue_splice_init(amsdu, list);
2033                 return -EAGAIN;
2034         }
2035
2036         return 0;
2037 }
2038
2039 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status,
2040                                             struct sk_buff *skb)
2041 {
2042         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2043
2044         if (!ieee80211_has_protected(hdr->frame_control))
2045                 return;
2046
2047         /* Offloaded frames are already decrypted but firmware insists they are
2048          * protected in the 802.11 header. Strip the flag.  Otherwise mac80211
2049          * will drop the frame.
2050          */
2051
2052         hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED);
2053         status->flag |= RX_FLAG_DECRYPTED |
2054                         RX_FLAG_IV_STRIPPED |
2055                         RX_FLAG_MMIC_STRIPPED;
2056 }
2057
2058 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar,
2059                                        struct sk_buff_head *list)
2060 {
2061         struct ath10k_htt *htt = &ar->htt;
2062         struct ieee80211_rx_status *status = &htt->rx_status;
2063         struct htt_rx_offload_msdu *rx;
2064         struct sk_buff *msdu;
2065         size_t offset;
2066
2067         while ((msdu = __skb_dequeue(list))) {
2068                 /* Offloaded frames don't have Rx descriptor. Instead they have
2069                  * a short meta information header.
2070                  */
2071
2072                 rx = (void *)msdu->data;
2073
2074                 skb_put(msdu, sizeof(*rx));
2075                 skb_pull(msdu, sizeof(*rx));
2076
2077                 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) {
2078                         ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n");
2079                         dev_kfree_skb_any(msdu);
2080                         continue;
2081                 }
2082
2083                 skb_put(msdu, __le16_to_cpu(rx->msdu_len));
2084
2085                 /* Offloaded rx header length isn't multiple of 2 nor 4 so the
2086                  * actual payload is unaligned. Align the frame.  Otherwise
2087                  * mac80211 complains.  This shouldn't reduce performance much
2088                  * because these offloaded frames are rare.
2089                  */
2090                 offset = 4 - ((unsigned long)msdu->data & 3);
2091                 skb_put(msdu, offset);
2092                 memmove(msdu->data + offset, msdu->data, msdu->len);
2093                 skb_pull(msdu, offset);
2094
2095                 /* FIXME: The frame is NWifi. Re-construct QoS Control
2096                  * if possible later.
2097                  */
2098
2099                 memset(status, 0, sizeof(*status));
2100                 status->flag |= RX_FLAG_NO_SIGNAL_VAL;
2101
2102                 ath10k_htt_rx_h_rx_offload_prot(status, msdu);
2103                 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id);
2104                 ath10k_htt_rx_h_queue_msdu(ar, status, msdu);
2105         }
2106 }
2107
2108 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb)
2109 {
2110         struct ath10k_htt *htt = &ar->htt;
2111         struct htt_resp *resp = (void *)skb->data;
2112         struct ieee80211_rx_status *status = &htt->rx_status;
2113         struct sk_buff_head list;
2114         struct sk_buff_head amsdu;
2115         u16 peer_id;
2116         u16 msdu_count;
2117         u8 vdev_id;
2118         u8 tid;
2119         bool offload;
2120         bool frag;
2121         int ret;
2122
2123         lockdep_assert_held(&htt->rx_ring.lock);
2124
2125         if (htt->rx_confused)
2126                 return -EIO;
2127
2128         skb_pull(skb, sizeof(resp->hdr));
2129         skb_pull(skb, sizeof(resp->rx_in_ord_ind));
2130
2131         peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id);
2132         msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count);
2133         vdev_id = resp->rx_in_ord_ind.vdev_id;
2134         tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID);
2135         offload = !!(resp->rx_in_ord_ind.info &
2136                         HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK);
2137         frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK);
2138
2139         ath10k_dbg(ar, ATH10K_DBG_HTT,
2140                    "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n",
2141                    vdev_id, peer_id, tid, offload, frag, msdu_count);
2142
2143         if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) {
2144                 ath10k_warn(ar, "dropping invalid in order rx indication\n");
2145                 return -EINVAL;
2146         }
2147
2148         /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later
2149          * extracted and processed.
2150          */
2151         __skb_queue_head_init(&list);
2152         if (ar->hw_params.target_64bit)
2153                 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind,
2154                                                      &list);
2155         else
2156                 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind,
2157                                                      &list);
2158
2159         if (ret < 0) {
2160                 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret);
2161                 htt->rx_confused = true;
2162                 return -EIO;
2163         }
2164
2165         /* Offloaded frames are very different and need to be handled
2166          * separately.
2167          */
2168         if (offload)
2169                 ath10k_htt_rx_h_rx_offload(ar, &list);
2170
2171         while (!skb_queue_empty(&list)) {
2172                 __skb_queue_head_init(&amsdu);
2173                 ret = ath10k_htt_rx_extract_amsdu(&list, &amsdu);
2174                 switch (ret) {
2175                 case 0:
2176                         /* Note: The in-order indication may report interleaved
2177                          * frames from different PPDUs meaning reported rx rate
2178                          * to mac80211 isn't accurate/reliable. It's still
2179                          * better to report something than nothing though. This
2180                          * should still give an idea about rx rate to the user.
2181                          */
2182                         ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id);
2183                         ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL);
2184                         ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL,
2185                                              NULL);
2186                         ath10k_htt_rx_h_enqueue(ar, &amsdu, status);
2187                         break;
2188                 case -EAGAIN:
2189                         /* fall through */
2190                 default:
2191                         /* Should not happen. */
2192                         ath10k_warn(ar, "failed to extract amsdu: %d\n", ret);
2193                         htt->rx_confused = true;
2194                         __skb_queue_purge(&list);
2195                         return -EIO;
2196                 }
2197         }
2198         return ret;
2199 }
2200
2201 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar,
2202                                                    const __le32 *resp_ids,
2203                                                    int num_resp_ids)
2204 {
2205         int i;
2206         u32 resp_id;
2207
2208         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n",
2209                    num_resp_ids);
2210
2211         for (i = 0; i < num_resp_ids; i++) {
2212                 resp_id = le32_to_cpu(resp_ids[i]);
2213
2214                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n",
2215                            resp_id);
2216
2217                 /* TODO: free resp_id */
2218         }
2219 }
2220
2221 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb)
2222 {
2223         struct ieee80211_hw *hw = ar->hw;
2224         struct ieee80211_txq *txq;
2225         struct htt_resp *resp = (struct htt_resp *)skb->data;
2226         struct htt_tx_fetch_record *record;
2227         size_t len;
2228         size_t max_num_bytes;
2229         size_t max_num_msdus;
2230         size_t num_bytes;
2231         size_t num_msdus;
2232         const __le32 *resp_ids;
2233         u16 num_records;
2234         u16 num_resp_ids;
2235         u16 peer_id;
2236         u8 tid;
2237         int ret;
2238         int i;
2239
2240         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n");
2241
2242         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind);
2243         if (unlikely(skb->len < len)) {
2244                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n");
2245                 return;
2246         }
2247
2248         num_records = le16_to_cpu(resp->tx_fetch_ind.num_records);
2249         num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids);
2250
2251         len += sizeof(resp->tx_fetch_ind.records[0]) * num_records;
2252         len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids;
2253
2254         if (unlikely(skb->len < len)) {
2255                 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n");
2256                 return;
2257         }
2258
2259         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %hu num resps %hu seq %hu\n",
2260                    num_records, num_resp_ids,
2261                    le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num));
2262
2263         if (!ar->htt.tx_q_state.enabled) {
2264                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n");
2265                 return;
2266         }
2267
2268         if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) {
2269                 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n");
2270                 return;
2271         }
2272
2273         rcu_read_lock();
2274
2275         for (i = 0; i < num_records; i++) {
2276                 record = &resp->tx_fetch_ind.records[i];
2277                 peer_id = MS(le16_to_cpu(record->info),
2278                              HTT_TX_FETCH_RECORD_INFO_PEER_ID);
2279                 tid = MS(le16_to_cpu(record->info),
2280                          HTT_TX_FETCH_RECORD_INFO_TID);
2281                 max_num_msdus = le16_to_cpu(record->num_msdus);
2282                 max_num_bytes = le32_to_cpu(record->num_bytes);
2283
2284                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %hu tid %hhu msdus %zu bytes %zu\n",
2285                            i, peer_id, tid, max_num_msdus, max_num_bytes);
2286
2287                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2288                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2289                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2290                                     peer_id, tid);
2291                         continue;
2292                 }
2293
2294                 spin_lock_bh(&ar->data_lock);
2295                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2296                 spin_unlock_bh(&ar->data_lock);
2297
2298                 /* It is okay to release the lock and use txq because RCU read
2299                  * lock is held.
2300                  */
2301
2302                 if (unlikely(!txq)) {
2303                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2304                                     peer_id, tid);
2305                         continue;
2306                 }
2307
2308                 num_msdus = 0;
2309                 num_bytes = 0;
2310
2311                 while (num_msdus < max_num_msdus &&
2312                        num_bytes < max_num_bytes) {
2313                         ret = ath10k_mac_tx_push_txq(hw, txq);
2314                         if (ret < 0)
2315                                 break;
2316
2317                         num_msdus++;
2318                         num_bytes += ret;
2319                 }
2320
2321                 record->num_msdus = cpu_to_le16(num_msdus);
2322                 record->num_bytes = cpu_to_le32(num_bytes);
2323
2324                 ath10k_htt_tx_txq_recalc(hw, txq);
2325         }
2326
2327         rcu_read_unlock();
2328
2329         resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind);
2330         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids);
2331
2332         ret = ath10k_htt_tx_fetch_resp(ar,
2333                                        resp->tx_fetch_ind.token,
2334                                        resp->tx_fetch_ind.fetch_seq_num,
2335                                        resp->tx_fetch_ind.records,
2336                                        num_records);
2337         if (unlikely(ret)) {
2338                 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n",
2339                             le32_to_cpu(resp->tx_fetch_ind.token), ret);
2340                 /* FIXME: request fw restart */
2341         }
2342
2343         ath10k_htt_tx_txq_sync(ar);
2344 }
2345
2346 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar,
2347                                            struct sk_buff *skb)
2348 {
2349         const struct htt_resp *resp = (void *)skb->data;
2350         size_t len;
2351         int num_resp_ids;
2352
2353         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n");
2354
2355         len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm);
2356         if (unlikely(skb->len < len)) {
2357                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n");
2358                 return;
2359         }
2360
2361         num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids);
2362         len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids;
2363
2364         if (unlikely(skb->len < len)) {
2365                 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n");
2366                 return;
2367         }
2368
2369         ath10k_htt_rx_tx_fetch_resp_id_confirm(ar,
2370                                                resp->tx_fetch_confirm.resp_ids,
2371                                                num_resp_ids);
2372 }
2373
2374 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar,
2375                                              struct sk_buff *skb)
2376 {
2377         const struct htt_resp *resp = (void *)skb->data;
2378         const struct htt_tx_mode_switch_record *record;
2379         struct ieee80211_txq *txq;
2380         struct ath10k_txq *artxq;
2381         size_t len;
2382         size_t num_records;
2383         enum htt_tx_mode_switch_mode mode;
2384         bool enable;
2385         u16 info0;
2386         u16 info1;
2387         u16 threshold;
2388         u16 peer_id;
2389         u8 tid;
2390         int i;
2391
2392         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n");
2393
2394         len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind);
2395         if (unlikely(skb->len < len)) {
2396                 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n");
2397                 return;
2398         }
2399
2400         info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0);
2401         info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1);
2402
2403         enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE);
2404         num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2405         mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE);
2406         threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD);
2407
2408         ath10k_dbg(ar, ATH10K_DBG_HTT,
2409                    "htt rx tx mode switch ind info0 0x%04hx info1 0x%04hx enable %d num records %zd mode %d threshold %hu\n",
2410                    info0, info1, enable, num_records, mode, threshold);
2411
2412         len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records;
2413
2414         if (unlikely(skb->len < len)) {
2415                 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n");
2416                 return;
2417         }
2418
2419         switch (mode) {
2420         case HTT_TX_MODE_SWITCH_PUSH:
2421         case HTT_TX_MODE_SWITCH_PUSH_PULL:
2422                 break;
2423         default:
2424                 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n",
2425                             mode);
2426                 return;
2427         }
2428
2429         if (!enable)
2430                 return;
2431
2432         ar->htt.tx_q_state.enabled = enable;
2433         ar->htt.tx_q_state.mode = mode;
2434         ar->htt.tx_q_state.num_push_allowed = threshold;
2435
2436         rcu_read_lock();
2437
2438         for (i = 0; i < num_records; i++) {
2439                 record = &resp->tx_mode_switch_ind.records[i];
2440                 info0 = le16_to_cpu(record->info0);
2441                 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID);
2442                 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID);
2443
2444                 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) ||
2445                     unlikely(tid >= ar->htt.tx_q_state.num_tids)) {
2446                         ath10k_warn(ar, "received out of range peer_id %hu tid %hhu\n",
2447                                     peer_id, tid);
2448                         continue;
2449                 }
2450
2451                 spin_lock_bh(&ar->data_lock);
2452                 txq = ath10k_mac_txq_lookup(ar, peer_id, tid);
2453                 spin_unlock_bh(&ar->data_lock);
2454
2455                 /* It is okay to release the lock and use txq because RCU read
2456                  * lock is held.
2457                  */
2458
2459                 if (unlikely(!txq)) {
2460                         ath10k_warn(ar, "failed to lookup txq for peer_id %hu tid %hhu\n",
2461                                     peer_id, tid);
2462                         continue;
2463                 }
2464
2465                 spin_lock_bh(&ar->htt.tx_lock);
2466                 artxq = (void *)txq->drv_priv;
2467                 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus);
2468                 spin_unlock_bh(&ar->htt.tx_lock);
2469         }
2470
2471         rcu_read_unlock();
2472
2473         ath10k_mac_tx_push_pending(ar);
2474 }
2475
2476 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2477 {
2478         bool release;
2479
2480         release = ath10k_htt_t2h_msg_handler(ar, skb);
2481
2482         /* Free the indication buffer */
2483         if (release)
2484                 dev_kfree_skb_any(skb);
2485 }
2486
2487 static inline bool is_valid_legacy_rate(u8 rate)
2488 {
2489         static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12,
2490                                           18, 24, 36, 48, 54};
2491         int i;
2492
2493         for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) {
2494                 if (rate == legacy_rates[i])
2495                         return true;
2496         }
2497
2498         return false;
2499 }
2500
2501 static void
2502 ath10k_update_per_peer_tx_stats(struct ath10k *ar,
2503                                 struct ieee80211_sta *sta,
2504                                 struct ath10k_per_peer_tx_stats *peer_stats)
2505 {
2506         struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv;
2507         u8 rate = 0, sgi;
2508         struct rate_info txrate;
2509
2510         lockdep_assert_held(&ar->data_lock);
2511
2512         txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode);
2513         txrate.bw = ATH10K_HW_BW(peer_stats->flags);
2514         txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode);
2515         txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode);
2516         sgi = ATH10K_HW_GI(peer_stats->flags);
2517
2518         if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) {
2519                 ath10k_warn(ar, "Invalid VHT mcs %hhd peer stats",  txrate.mcs);
2520                 return;
2521         }
2522
2523         if (txrate.flags == WMI_RATE_PREAMBLE_HT &&
2524             (txrate.mcs > 7 || txrate.nss < 1)) {
2525                 ath10k_warn(ar, "Invalid HT mcs %hhd nss %hhd peer stats",
2526                             txrate.mcs, txrate.nss);
2527                 return;
2528         }
2529
2530         memset(&arsta->txrate, 0, sizeof(arsta->txrate));
2531
2532         if (txrate.flags == WMI_RATE_PREAMBLE_CCK ||
2533             txrate.flags == WMI_RATE_PREAMBLE_OFDM) {
2534                 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode);
2535
2536                 if (!is_valid_legacy_rate(rate)) {
2537                         ath10k_warn(ar, "Invalid legacy rate %hhd peer stats",
2538                                     rate);
2539                         return;
2540                 }
2541
2542                 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */
2543                 rate *= 10;
2544                 if (rate == 60 && txrate.flags == WMI_RATE_PREAMBLE_CCK)
2545                         rate = rate - 5;
2546                 arsta->txrate.legacy = rate;
2547         } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) {
2548                 arsta->txrate.flags = RATE_INFO_FLAGS_MCS;
2549                 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1);
2550         } else {
2551                 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS;
2552                 arsta->txrate.mcs = txrate.mcs;
2553         }
2554
2555         if (sgi)
2556                 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
2557
2558         arsta->txrate.nss = txrate.nss;
2559         arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw);
2560 }
2561
2562 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar,
2563                                         struct sk_buff *skb)
2564 {
2565         struct htt_resp *resp = (struct htt_resp *)skb->data;
2566         struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2567         struct htt_per_peer_tx_stats_ind *tx_stats;
2568         struct ieee80211_sta *sta;
2569         struct ath10k_peer *peer;
2570         int peer_id, i;
2571         u8 ppdu_len, num_ppdu;
2572
2573         num_ppdu = resp->peer_tx_stats.num_ppdu;
2574         ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32);
2575
2576         if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) {
2577                 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len);
2578                 return;
2579         }
2580
2581         tx_stats = (struct htt_per_peer_tx_stats_ind *)
2582                         (resp->peer_tx_stats.payload);
2583         peer_id = __le16_to_cpu(tx_stats->peer_id);
2584
2585         rcu_read_lock();
2586         spin_lock_bh(&ar->data_lock);
2587         peer = ath10k_peer_find_by_id(ar, peer_id);
2588         if (!peer) {
2589                 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n",
2590                             peer_id);
2591                 goto out;
2592         }
2593
2594         sta = peer->sta;
2595         for (i = 0; i < num_ppdu; i++) {
2596                 tx_stats = (struct htt_per_peer_tx_stats_ind *)
2597                            (resp->peer_tx_stats.payload + i * ppdu_len);
2598
2599                 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes);
2600                 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes);
2601                 p_tx_stats->failed_bytes =
2602                                 __le32_to_cpu(tx_stats->failed_bytes);
2603                 p_tx_stats->ratecode = tx_stats->ratecode;
2604                 p_tx_stats->flags = tx_stats->flags;
2605                 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts);
2606                 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts);
2607                 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts);
2608
2609                 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2610         }
2611
2612 out:
2613         spin_unlock_bh(&ar->data_lock);
2614         rcu_read_unlock();
2615 }
2616
2617 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data)
2618 {
2619         struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data;
2620         struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats;
2621         struct ath10k_10_2_peer_tx_stats *tx_stats;
2622         struct ieee80211_sta *sta;
2623         struct ath10k_peer *peer;
2624         u16 log_type = __le16_to_cpu(hdr->log_type);
2625         u32 peer_id = 0, i;
2626
2627         if (log_type != ATH_PKTLOG_TYPE_TX_STAT)
2628                 return;
2629
2630         tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) +
2631                     ATH10K_10_2_TX_STATS_OFFSET);
2632
2633         if (!tx_stats->tx_ppdu_cnt)
2634                 return;
2635
2636         peer_id = tx_stats->peer_id;
2637
2638         rcu_read_lock();
2639         spin_lock_bh(&ar->data_lock);
2640         peer = ath10k_peer_find_by_id(ar, peer_id);
2641         if (!peer) {
2642                 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n",
2643                             peer_id);
2644                 goto out;
2645         }
2646
2647         sta = peer->sta;
2648         for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) {
2649                 p_tx_stats->succ_bytes =
2650                         __le16_to_cpu(tx_stats->success_bytes[i]);
2651                 p_tx_stats->retry_bytes =
2652                         __le16_to_cpu(tx_stats->retry_bytes[i]);
2653                 p_tx_stats->failed_bytes =
2654                         __le16_to_cpu(tx_stats->failed_bytes[i]);
2655                 p_tx_stats->ratecode = tx_stats->ratecode[i];
2656                 p_tx_stats->flags = tx_stats->flags[i];
2657                 p_tx_stats->succ_pkts = tx_stats->success_pkts[i];
2658                 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i];
2659                 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i];
2660
2661                 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats);
2662         }
2663         spin_unlock_bh(&ar->data_lock);
2664         rcu_read_unlock();
2665
2666         return;
2667
2668 out:
2669         spin_unlock_bh(&ar->data_lock);
2670         rcu_read_unlock();
2671 }
2672
2673 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
2674 {
2675         struct ath10k_htt *htt = &ar->htt;
2676         struct htt_resp *resp = (struct htt_resp *)skb->data;
2677         enum htt_t2h_msg_type type;
2678
2679         /* confirm alignment */
2680         if (!IS_ALIGNED((unsigned long)skb->data, 4))
2681                 ath10k_warn(ar, "unaligned htt message, expect trouble\n");
2682
2683         ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n",
2684                    resp->hdr.msg_type);
2685
2686         if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) {
2687                 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X",
2688                            resp->hdr.msg_type, ar->htt.t2h_msg_types_max);
2689                 return true;
2690         }
2691         type = ar->htt.t2h_msg_types[resp->hdr.msg_type];
2692
2693         switch (type) {
2694         case HTT_T2H_MSG_TYPE_VERSION_CONF: {
2695                 htt->target_version_major = resp->ver_resp.major;
2696                 htt->target_version_minor = resp->ver_resp.minor;
2697                 complete(&htt->target_version_received);
2698                 break;
2699         }
2700         case HTT_T2H_MSG_TYPE_RX_IND:
2701                 ath10k_htt_rx_proc_rx_ind(htt, &resp->rx_ind);
2702                 break;
2703         case HTT_T2H_MSG_TYPE_PEER_MAP: {
2704                 struct htt_peer_map_event ev = {
2705                         .vdev_id = resp->peer_map.vdev_id,
2706                         .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
2707                 };
2708                 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
2709                 ath10k_peer_map_event(htt, &ev);
2710                 break;
2711         }
2712         case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
2713                 struct htt_peer_unmap_event ev = {
2714                         .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
2715                 };
2716                 ath10k_peer_unmap_event(htt, &ev);
2717                 break;
2718         }
2719         case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
2720                 struct htt_tx_done tx_done = {};
2721                 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
2722
2723                 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
2724
2725                 switch (status) {
2726                 case HTT_MGMT_TX_STATUS_OK:
2727                         tx_done.status = HTT_TX_COMPL_STATE_ACK;
2728                         break;
2729                 case HTT_MGMT_TX_STATUS_RETRY:
2730                         tx_done.status = HTT_TX_COMPL_STATE_NOACK;
2731                         break;
2732                 case HTT_MGMT_TX_STATUS_DROP:
2733                         tx_done.status = HTT_TX_COMPL_STATE_DISCARD;
2734                         break;
2735                 }
2736
2737                 status = ath10k_txrx_tx_unref(htt, &tx_done);
2738                 if (!status) {
2739                         spin_lock_bh(&htt->tx_lock);
2740                         ath10k_htt_tx_mgmt_dec_pending(htt);
2741                         spin_unlock_bh(&htt->tx_lock);
2742                 }
2743                 break;
2744         }
2745         case HTT_T2H_MSG_TYPE_TX_COMPL_IND:
2746                 ath10k_htt_rx_tx_compl_ind(htt->ar, skb);
2747                 break;
2748         case HTT_T2H_MSG_TYPE_SEC_IND: {
2749                 struct ath10k *ar = htt->ar;
2750                 struct htt_security_indication *ev = &resp->security_indication;
2751
2752                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2753                            "sec ind peer_id %d unicast %d type %d\n",
2754                           __le16_to_cpu(ev->peer_id),
2755                           !!(ev->flags & HTT_SECURITY_IS_UNICAST),
2756                           MS(ev->flags, HTT_SECURITY_TYPE));
2757                 complete(&ar->install_key_done);
2758                 break;
2759         }
2760         case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
2761                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2762                                 skb->data, skb->len);
2763                 atomic_inc(&htt->num_mpdus_ready);
2764                 break;
2765         }
2766         case HTT_T2H_MSG_TYPE_TEST:
2767                 break;
2768         case HTT_T2H_MSG_TYPE_STATS_CONF:
2769                 trace_ath10k_htt_stats(ar, skb->data, skb->len);
2770                 break;
2771         case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
2772                 /* Firmware can return tx frames if it's unable to fully
2773                  * process them and suspects host may be able to fix it. ath10k
2774                  * sends all tx frames as already inspected so this shouldn't
2775                  * happen unless fw has a bug.
2776                  */
2777                 ath10k_warn(ar, "received an unexpected htt tx inspect event\n");
2778                 break;
2779         case HTT_T2H_MSG_TYPE_RX_ADDBA:
2780                 ath10k_htt_rx_addba(ar, resp);
2781                 break;
2782         case HTT_T2H_MSG_TYPE_RX_DELBA:
2783                 ath10k_htt_rx_delba(ar, resp);
2784                 break;
2785         case HTT_T2H_MSG_TYPE_PKTLOG: {
2786                 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload,
2787                                         skb->len -
2788                                         offsetof(struct htt_resp,
2789                                                  pktlog_msg.payload));
2790
2791                 if (ath10k_peer_stats_enabled(ar))
2792                         ath10k_fetch_10_2_tx_stats(ar,
2793                                                    resp->pktlog_msg.payload);
2794                 break;
2795         }
2796         case HTT_T2H_MSG_TYPE_RX_FLUSH: {
2797                 /* Ignore this event because mac80211 takes care of Rx
2798                  * aggregation reordering.
2799                  */
2800                 break;
2801         }
2802         case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: {
2803                 __skb_queue_tail(&htt->rx_in_ord_compl_q, skb);
2804                 return false;
2805         }
2806         case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND:
2807                 break;
2808         case HTT_T2H_MSG_TYPE_CHAN_CHANGE: {
2809                 u32 phymode = __le32_to_cpu(resp->chan_change.phymode);
2810                 u32 freq = __le32_to_cpu(resp->chan_change.freq);
2811
2812                 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq);
2813                 ath10k_dbg(ar, ATH10K_DBG_HTT,
2814                            "htt chan change freq %u phymode %s\n",
2815                            freq, ath10k_wmi_phymode_str(phymode));
2816                 break;
2817         }
2818         case HTT_T2H_MSG_TYPE_AGGR_CONF:
2819                 break;
2820         case HTT_T2H_MSG_TYPE_TX_FETCH_IND: {
2821                 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC);
2822
2823                 if (!tx_fetch_ind) {
2824                         ath10k_warn(ar, "failed to copy htt tx fetch ind\n");
2825                         break;
2826                 }
2827                 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind);
2828                 break;
2829         }
2830         case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM:
2831                 ath10k_htt_rx_tx_fetch_confirm(ar, skb);
2832                 break;
2833         case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND:
2834                 ath10k_htt_rx_tx_mode_switch_ind(ar, skb);
2835                 break;
2836         case HTT_T2H_MSG_TYPE_PEER_STATS:
2837                 ath10k_htt_fetch_peer_stats(ar, skb);
2838                 break;
2839         case HTT_T2H_MSG_TYPE_EN_STATS:
2840         default:
2841                 ath10k_warn(ar, "htt event (%d) not handled\n",
2842                             resp->hdr.msg_type);
2843                 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
2844                                 skb->data, skb->len);
2845                 break;
2846         }
2847         return true;
2848 }
2849 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler);
2850
2851 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar,
2852                                              struct sk_buff *skb)
2853 {
2854         trace_ath10k_htt_pktlog(ar, skb->data, skb->len);
2855         dev_kfree_skb_any(skb);
2856 }
2857 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler);
2858
2859 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget)
2860 {
2861         struct sk_buff *skb;
2862
2863         while (quota < budget) {
2864                 if (skb_queue_empty(&ar->htt.rx_msdus_q))
2865                         break;
2866
2867                 skb = __skb_dequeue(&ar->htt.rx_msdus_q);
2868                 if (!skb)
2869                         break;
2870                 ath10k_process_rx(ar, skb);
2871                 quota++;
2872         }
2873
2874         return quota;
2875 }
2876
2877 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget)
2878 {
2879         struct ath10k_htt *htt = &ar->htt;
2880         struct htt_tx_done tx_done = {};
2881         struct sk_buff_head tx_ind_q;
2882         struct sk_buff *skb;
2883         unsigned long flags;
2884         int quota = 0, done, ret;
2885         bool resched_napi = false;
2886
2887         __skb_queue_head_init(&tx_ind_q);
2888
2889         /* Process pending frames before dequeuing more data
2890          * from hardware.
2891          */
2892         quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2893         if (quota == budget) {
2894                 resched_napi = true;
2895                 goto exit;
2896         }
2897
2898         while ((skb = __skb_dequeue(&htt->rx_in_ord_compl_q))) {
2899                 spin_lock_bh(&htt->rx_ring.lock);
2900                 ret = ath10k_htt_rx_in_ord_ind(ar, skb);
2901                 spin_unlock_bh(&htt->rx_ring.lock);
2902
2903                 dev_kfree_skb_any(skb);
2904                 if (ret == -EIO) {
2905                         resched_napi = true;
2906                         goto exit;
2907                 }
2908         }
2909
2910         while (atomic_read(&htt->num_mpdus_ready)) {
2911                 ret = ath10k_htt_rx_handle_amsdu(htt);
2912                 if (ret == -EIO) {
2913                         resched_napi = true;
2914                         goto exit;
2915                 }
2916                 atomic_dec(&htt->num_mpdus_ready);
2917         }
2918
2919         /* Deliver received data after processing data from hardware */
2920         quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget);
2921
2922         /* From NAPI documentation:
2923          *  The napi poll() function may also process TX completions, in which
2924          *  case if it processes the entire TX ring then it should count that
2925          *  work as the rest of the budget.
2926          */
2927         if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo))
2928                 quota = budget;
2929
2930         /* kfifo_get: called only within txrx_tasklet so it's neatly serialized.
2931          * From kfifo_get() documentation:
2932          *  Note that with only one concurrent reader and one concurrent writer,
2933          *  you don't need extra locking to use these macro.
2934          */
2935         while (kfifo_get(&htt->txdone_fifo, &tx_done))
2936                 ath10k_txrx_tx_unref(htt, &tx_done);
2937
2938         ath10k_mac_tx_push_pending(ar);
2939
2940         spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags);
2941         skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q);
2942         spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags);
2943
2944         while ((skb = __skb_dequeue(&tx_ind_q))) {
2945                 ath10k_htt_rx_tx_fetch_ind(ar, skb);
2946                 dev_kfree_skb_any(skb);
2947         }
2948
2949 exit:
2950         ath10k_htt_rx_msdu_buff_replenish(htt);
2951         /* In case of rx failure or more data to read, report budget
2952          * to reschedule NAPI poll
2953          */
2954         done = resched_napi ? budget : quota;
2955
2956         return done;
2957 }
2958 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task);
2959
2960 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = {
2961         .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32,
2962         .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32,
2963         .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32,
2964         .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32,
2965         .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32,
2966 };
2967
2968 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = {
2969         .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64,
2970         .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64,
2971         .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64,
2972         .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64,
2973         .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64,
2974 };
2975
2976 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt)
2977 {
2978         struct ath10k *ar = htt->ar;
2979
2980         if (ar->hw_params.target_64bit)
2981                 htt->rx_ops = &htt_rx_ops_64;
2982         else
2983                 htt->rx_ops = &htt_rx_ops_32;
2984 }