]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/wireless/intel/ipw2x00/ipw2200.c
Merge tag 'trace-v4.17' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux.git] / drivers / net / wireless / intel / ipw2x00 / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38
39
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107         'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114
115 static struct ieee80211_rate ipw2200_rates[] = {
116         { .bitrate = 10 },
117         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120         { .bitrate = 60 },
121         { .bitrate = 90 },
122         { .bitrate = 120 },
123         { .bitrate = 180 },
124         { .bitrate = 240 },
125         { .bitrate = 360 },
126         { .bitrate = 480 },
127         { .bitrate = 540 }
128 };
129
130 #define ipw2200_a_rates         (ipw2200_rates + 4)
131 #define ipw2200_num_a_rates     8
132 #define ipw2200_bg_rates        (ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates    12
134
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139         (((x) <= 14) ? \
140         (((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141         ((x) + 1000) * 5)
142
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152          QOS_TX3_CW_MIN_OFDM},
153         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154          QOS_TX3_CW_MAX_OFDM},
155         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163          QOS_TX3_CW_MIN_CCK},
164         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165          QOS_TX3_CW_MAX_CCK},
166         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169          QOS_TX3_TXOP_LIMIT_CCK}
170 };
171
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174          DEF_TX3_CW_MIN_OFDM},
175         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176          DEF_TX3_CW_MAX_OFDM},
177         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182
183 static struct libipw_qos_parameters def_parameters_CCK = {
184         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185          DEF_TX3_CW_MIN_CCK},
186         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187          DEF_TX3_CW_MAX_CCK},
188         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191          DEF_TX3_TXOP_LIMIT_CCK}
192 };
193
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195
196 static int from_priority_to_tx_queue[] = {
197         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204                                        *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206                                      *qos_param);
207 #endif                          /* CONFIG_IPW2200_QOS */
208
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213                                 struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217                              int len, int sync);
218
219 static void ipw_tx_queue_free(struct ipw_priv *);
220
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230                                 struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233
234 static int snprint_line(char *buf, size_t count,
235                         const u8 * data, u32 len, u32 ofs)
236 {
237         int out, i, j, l;
238         char c;
239
240         out = snprintf(buf, count, "%08X", ofs);
241
242         for (l = 0, i = 0; i < 2; i++) {
243                 out += snprintf(buf + out, count - out, " ");
244                 for (j = 0; j < 8 && l < len; j++, l++)
245                         out += snprintf(buf + out, count - out, "%02X ",
246                                         data[(i * 8 + j)]);
247                 for (; j < 8; j++)
248                         out += snprintf(buf + out, count - out, "   ");
249         }
250
251         out += snprintf(buf + out, count - out, " ");
252         for (l = 0, i = 0; i < 2; i++) {
253                 out += snprintf(buf + out, count - out, " ");
254                 for (j = 0; j < 8 && l < len; j++, l++) {
255                         c = data[(i * 8 + j)];
256                         if (!isascii(c) || !isprint(c))
257                                 c = '.';
258
259                         out += snprintf(buf + out, count - out, "%c", c);
260                 }
261
262                 for (; j < 8; j++)
263                         out += snprintf(buf + out, count - out, " ");
264         }
265
266         return out;
267 }
268
269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271         char line[81];
272         u32 ofs = 0;
273         if (!(ipw_debug_level & level))
274                 return;
275
276         while (len) {
277                 snprint_line(line, sizeof(line), &data[ofs],
278                              min(len, 16U), ofs);
279                 printk(KERN_DEBUG "%s\n", line);
280                 ofs += 16;
281                 len -= min(len, 16U);
282         }
283 }
284
285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287         size_t out = size;
288         u32 ofs = 0;
289         int total = 0;
290
291         while (size && len) {
292                 out = snprint_line(output, size, &data[ofs],
293                                    min_t(size_t, len, 16U), ofs);
294
295                 ofs += 16;
296                 output += out;
297                 size -= out;
298                 len -= min_t(size_t, len, 16U);
299                 total += out;
300         }
301         return total;
302 }
303
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317                      __LINE__, (u32) (b), (u32) (c));
318         _ipw_write_reg8(a, b, c);
319 }
320
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326                      __LINE__, (u32) (b), (u32) (c));
327         _ipw_write_reg16(a, b, c);
328 }
329
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335                      __LINE__, (u32) (b), (u32) (c));
336         _ipw_write_reg32(a, b, c);
337 }
338
339 /* 8-bit direct write (low 4K) */
340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341                 u8 val)
342 {
343         writeb(val, ipw->hw_base + ofs);
344 }
345
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348         IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349                         __LINE__, (u32)(ofs), (u32)(val)); \
350         _ipw_write8(ipw, ofs, val); \
351 } while (0)
352
353 /* 16-bit direct write (low 4K) */
354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355                 u16 val)
356 {
357         writew(val, ipw->hw_base + ofs);
358 }
359
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362         IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363                         __LINE__, (u32)(ofs), (u32)(val)); \
364         _ipw_write16(ipw, ofs, val); \
365 } while (0)
366
367 /* 32-bit direct write (low 4K) */
368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369                 u32 val)
370 {
371         writel(val, ipw->hw_base + ofs);
372 }
373
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376         IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377                         __LINE__, (u32)(ofs), (u32)(val)); \
378         _ipw_write32(ipw, ofs, val); \
379 } while (0)
380
381 /* 8-bit direct read (low 4K) */
382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384         return readb(ipw->hw_base + ofs);
385 }
386
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390                         (u32)(ofs)); \
391         _ipw_read8(ipw, ofs); \
392 })
393
394 /* 16-bit direct read (low 4K) */
395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397         return readw(ipw->hw_base + ofs);
398 }
399
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403                         (u32)(ofs)); \
404         _ipw_read16(ipw, ofs); \
405 })
406
407 /* 32-bit direct read (low 4K) */
408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410         return readl(ipw->hw_base + ofs);
411 }
412
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416                         (u32)(ofs)); \
417         _ipw_read32(ipw, ofs); \
418 })
419
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424                         __LINE__, (u32)(b), (u32)(d)); \
425         _ipw_read_indirect(a, b, c, d); \
426 })
427
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430                                 int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433                         __LINE__, (u32)(b), (u32)(d)); \
434         _ipw_write_indirect(a, b, c, d); \
435 } while (0)
436
437 /* 32-bit indirect write (above 4K) */
438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444
445 /* 8-bit indirect write (above 4K) */
446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
449         u32 dif_len = reg - aligned_addr;
450
451         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455
456 /* 16-bit indirect write (above 4K) */
457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
460         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461
462         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466
467 /* 8-bit indirect read (above 4K) */
468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470         u32 word;
471         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472         IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474         return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476
477 /* 32-bit indirect read (above 4K) */
478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480         u32 value;
481
482         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483
484         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487         return value;
488 }
489
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493                                int num)
494 {
495         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
496         u32 dif_len = addr - aligned_addr;
497         u32 i;
498
499         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500
501         if (num <= 0) {
502                 return;
503         }
504
505         /* Read the first dword (or portion) byte by byte */
506         if (unlikely(dif_len)) {
507                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508                 /* Start reading at aligned_addr + dif_len */
509                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511                 aligned_addr += 4;
512         }
513
514         /* Read all of the middle dwords as dwords, with auto-increment */
515         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518
519         /* Read the last dword (or portion) byte by byte */
520         if (unlikely(num)) {
521                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522                 for (i = 0; num > 0; i++, num--)
523                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524         }
525 }
526
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530                                 int num)
531 {
532         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
533         u32 dif_len = addr - aligned_addr;
534         u32 i;
535
536         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537
538         if (num <= 0) {
539                 return;
540         }
541
542         /* Write the first dword (or portion) byte by byte */
543         if (unlikely(dif_len)) {
544                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545                 /* Start writing at aligned_addr + dif_len */
546                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548                 aligned_addr += 4;
549         }
550
551         /* Write all of the middle dwords as dwords, with auto-increment */
552         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555
556         /* Write the last dword (or portion) byte by byte */
557         if (unlikely(num)) {
558                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559                 for (i = 0; num > 0; i++, num--, buf++)
560                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561         }
562 }
563
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567                              int num)
568 {
569         memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571
572 /* Set bit(s) in low 4K of SRAM/regs */
573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577
578 /* Clear bit(s) in low 4K of SRAM/regs */
579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583
584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586         if (priv->status & STATUS_INT_ENABLED)
587                 return;
588         priv->status |= STATUS_INT_ENABLED;
589         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591
592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594         if (!(priv->status & STATUS_INT_ENABLED))
595                 return;
596         priv->status &= ~STATUS_INT_ENABLED;
597         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599
600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602         unsigned long flags;
603
604         spin_lock_irqsave(&priv->irq_lock, flags);
605         __ipw_enable_interrupts(priv);
606         spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608
609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611         unsigned long flags;
612
613         spin_lock_irqsave(&priv->irq_lock, flags);
614         __ipw_disable_interrupts(priv);
615         spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617
618 static char *ipw_error_desc(u32 val)
619 {
620         switch (val) {
621         case IPW_FW_ERROR_OK:
622                 return "ERROR_OK";
623         case IPW_FW_ERROR_FAIL:
624                 return "ERROR_FAIL";
625         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626                 return "MEMORY_UNDERFLOW";
627         case IPW_FW_ERROR_MEMORY_OVERFLOW:
628                 return "MEMORY_OVERFLOW";
629         case IPW_FW_ERROR_BAD_PARAM:
630                 return "BAD_PARAM";
631         case IPW_FW_ERROR_BAD_CHECKSUM:
632                 return "BAD_CHECKSUM";
633         case IPW_FW_ERROR_NMI_INTERRUPT:
634                 return "NMI_INTERRUPT";
635         case IPW_FW_ERROR_BAD_DATABASE:
636                 return "BAD_DATABASE";
637         case IPW_FW_ERROR_ALLOC_FAIL:
638                 return "ALLOC_FAIL";
639         case IPW_FW_ERROR_DMA_UNDERRUN:
640                 return "DMA_UNDERRUN";
641         case IPW_FW_ERROR_DMA_STATUS:
642                 return "DMA_STATUS";
643         case IPW_FW_ERROR_DINO_ERROR:
644                 return "DINO_ERROR";
645         case IPW_FW_ERROR_EEPROM_ERROR:
646                 return "EEPROM_ERROR";
647         case IPW_FW_ERROR_SYSASSERT:
648                 return "SYSASSERT";
649         case IPW_FW_ERROR_FATAL_ERROR:
650                 return "FATAL_ERROR";
651         default:
652                 return "UNKNOWN_ERROR";
653         }
654 }
655
656 static void ipw_dump_error_log(struct ipw_priv *priv,
657                                struct ipw_fw_error *error)
658 {
659         u32 i;
660
661         if (!error) {
662                 IPW_ERROR("Error allocating and capturing error log.  "
663                           "Nothing to dump.\n");
664                 return;
665         }
666
667         IPW_ERROR("Start IPW Error Log Dump:\n");
668         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669                   error->status, error->config);
670
671         for (i = 0; i < error->elem_len; i++)
672                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673                           ipw_error_desc(error->elem[i].desc),
674                           error->elem[i].time,
675                           error->elem[i].blink1,
676                           error->elem[i].blink2,
677                           error->elem[i].link1,
678                           error->elem[i].link2, error->elem[i].data);
679         for (i = 0; i < error->log_len; i++)
680                 IPW_ERROR("%i\t0x%08x\t%i\n",
681                           error->log[i].time,
682                           error->log[i].data, error->log[i].event);
683 }
684
685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687         return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689
690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692         u32 addr, field_info, field_len, field_count, total_len;
693
694         IPW_DEBUG_ORD("ordinal = %i\n", ord);
695
696         if (!priv || !val || !len) {
697                 IPW_DEBUG_ORD("Invalid argument\n");
698                 return -EINVAL;
699         }
700
701         /* verify device ordinal tables have been initialized */
702         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
704                 return -EINVAL;
705         }
706
707         switch (IPW_ORD_TABLE_ID_MASK & ord) {
708         case IPW_ORD_TABLE_0_MASK:
709                 /*
710                  * TABLE 0: Direct access to a table of 32 bit values
711                  *
712                  * This is a very simple table with the data directly
713                  * read from the table
714                  */
715
716                 /* remove the table id from the ordinal */
717                 ord &= IPW_ORD_TABLE_VALUE_MASK;
718
719                 /* boundary check */
720                 if (ord > priv->table0_len) {
721                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
722                                       "max (%i)\n", ord, priv->table0_len);
723                         return -EINVAL;
724                 }
725
726                 /* verify we have enough room to store the value */
727                 if (*len < sizeof(u32)) {
728                         IPW_DEBUG_ORD("ordinal buffer length too small, "
729                                       "need %zd\n", sizeof(u32));
730                         return -EINVAL;
731                 }
732
733                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734                               ord, priv->table0_addr + (ord << 2));
735
736                 *len = sizeof(u32);
737                 ord <<= 2;
738                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739                 break;
740
741         case IPW_ORD_TABLE_1_MASK:
742                 /*
743                  * TABLE 1: Indirect access to a table of 32 bit values
744                  *
745                  * This is a fairly large table of u32 values each
746                  * representing starting addr for the data (which is
747                  * also a u32)
748                  */
749
750                 /* remove the table id from the ordinal */
751                 ord &= IPW_ORD_TABLE_VALUE_MASK;
752
753                 /* boundary check */
754                 if (ord > priv->table1_len) {
755                         IPW_DEBUG_ORD("ordinal value too long\n");
756                         return -EINVAL;
757                 }
758
759                 /* verify we have enough room to store the value */
760                 if (*len < sizeof(u32)) {
761                         IPW_DEBUG_ORD("ordinal buffer length too small, "
762                                       "need %zd\n", sizeof(u32));
763                         return -EINVAL;
764                 }
765
766                 *((u32 *) val) =
767                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768                 *len = sizeof(u32);
769                 break;
770
771         case IPW_ORD_TABLE_2_MASK:
772                 /*
773                  * TABLE 2: Indirect access to a table of variable sized values
774                  *
775                  * This table consist of six values, each containing
776                  *     - dword containing the starting offset of the data
777                  *     - dword containing the lengh in the first 16bits
778                  *       and the count in the second 16bits
779                  */
780
781                 /* remove the table id from the ordinal */
782                 ord &= IPW_ORD_TABLE_VALUE_MASK;
783
784                 /* boundary check */
785                 if (ord > priv->table2_len) {
786                         IPW_DEBUG_ORD("ordinal value too long\n");
787                         return -EINVAL;
788                 }
789
790                 /* get the address of statistic */
791                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792
793                 /* get the second DW of statistics ;
794                  * two 16-bit words - first is length, second is count */
795                 field_info =
796                     ipw_read_reg32(priv,
797                                    priv->table2_addr + (ord << 3) +
798                                    sizeof(u32));
799
800                 /* get each entry length */
801                 field_len = *((u16 *) & field_info);
802
803                 /* get number of entries */
804                 field_count = *(((u16 *) & field_info) + 1);
805
806                 /* abort if not enough memory */
807                 total_len = field_len * field_count;
808                 if (total_len > *len) {
809                         *len = total_len;
810                         return -EINVAL;
811                 }
812
813                 *len = total_len;
814                 if (!total_len)
815                         return 0;
816
817                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818                               "field_info = 0x%08x\n",
819                               addr, total_len, field_info);
820                 ipw_read_indirect(priv, addr, val, total_len);
821                 break;
822
823         default:
824                 IPW_DEBUG_ORD("Invalid ordinal!\n");
825                 return -EINVAL;
826
827         }
828
829         return 0;
830 }
831
832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835         priv->table0_len = ipw_read32(priv, priv->table0_addr);
836
837         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838                       priv->table0_addr, priv->table0_len);
839
840         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842
843         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844                       priv->table1_addr, priv->table1_len);
845
846         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848         priv->table2_len &= 0x0000ffff; /* use first two bytes */
849
850         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851                       priv->table2_addr, priv->table2_len);
852
853 }
854
855 static u32 ipw_register_toggle(u32 reg)
856 {
857         reg &= ~IPW_START_STANDBY;
858         if (reg & IPW_GATE_ODMA)
859                 reg &= ~IPW_GATE_ODMA;
860         if (reg & IPW_GATE_IDMA)
861                 reg &= ~IPW_GATE_IDMA;
862         if (reg & IPW_GATE_ADMA)
863                 reg &= ~IPW_GATE_ADMA;
864         return reg;
865 }
866
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879
880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882         unsigned long flags;
883         u32 led;
884
885         /* If configured to not use LEDs, or nic_type is 1,
886          * then we don't toggle a LINK led */
887         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888                 return;
889
890         spin_lock_irqsave(&priv->lock, flags);
891
892         if (!(priv->status & STATUS_RF_KILL_MASK) &&
893             !(priv->status & STATUS_LED_LINK_ON)) {
894                 IPW_DEBUG_LED("Link LED On\n");
895                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
896                 led |= priv->led_association_on;
897
898                 led = ipw_register_toggle(led);
899
900                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
902
903                 priv->status |= STATUS_LED_LINK_ON;
904
905                 /* If we aren't associated, schedule turning the LED off */
906                 if (!(priv->status & STATUS_ASSOCIATED))
907                         schedule_delayed_work(&priv->led_link_off,
908                                               LD_TIME_LINK_ON);
909         }
910
911         spin_unlock_irqrestore(&priv->lock, flags);
912 }
913
914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916         struct ipw_priv *priv =
917                 container_of(work, struct ipw_priv, led_link_on.work);
918         mutex_lock(&priv->mutex);
919         ipw_led_link_on(priv);
920         mutex_unlock(&priv->mutex);
921 }
922
923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925         unsigned long flags;
926         u32 led;
927
928         /* If configured not to use LEDs, or nic type is 1,
929          * then we don't goggle the LINK led. */
930         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931                 return;
932
933         spin_lock_irqsave(&priv->lock, flags);
934
935         if (priv->status & STATUS_LED_LINK_ON) {
936                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
937                 led &= priv->led_association_off;
938                 led = ipw_register_toggle(led);
939
940                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
942
943                 IPW_DEBUG_LED("Link LED Off\n");
944
945                 priv->status &= ~STATUS_LED_LINK_ON;
946
947                 /* If we aren't associated and the radio is on, schedule
948                  * turning the LED on (blink while unassociated) */
949                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
950                     !(priv->status & STATUS_ASSOCIATED))
951                         schedule_delayed_work(&priv->led_link_on,
952                                               LD_TIME_LINK_OFF);
953
954         }
955
956         spin_unlock_irqrestore(&priv->lock, flags);
957 }
958
959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961         struct ipw_priv *priv =
962                 container_of(work, struct ipw_priv, led_link_off.work);
963         mutex_lock(&priv->mutex);
964         ipw_led_link_off(priv);
965         mutex_unlock(&priv->mutex);
966 }
967
968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970         u32 led;
971
972         if (priv->config & CFG_NO_LED)
973                 return;
974
975         if (priv->status & STATUS_RF_KILL_MASK)
976                 return;
977
978         if (!(priv->status & STATUS_LED_ACT_ON)) {
979                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
980                 led |= priv->led_activity_on;
981
982                 led = ipw_register_toggle(led);
983
984                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
986
987                 IPW_DEBUG_LED("Activity LED On\n");
988
989                 priv->status |= STATUS_LED_ACT_ON;
990
991                 cancel_delayed_work(&priv->led_act_off);
992                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993         } else {
994                 /* Reschedule LED off for full time period */
995                 cancel_delayed_work(&priv->led_act_off);
996                 schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997         }
998 }
999
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003         unsigned long flags;
1004         spin_lock_irqsave(&priv->lock, flags);
1005         __ipw_led_activity_on(priv);
1006         spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009
1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012         unsigned long flags;
1013         u32 led;
1014
1015         if (priv->config & CFG_NO_LED)
1016                 return;
1017
1018         spin_lock_irqsave(&priv->lock, flags);
1019
1020         if (priv->status & STATUS_LED_ACT_ON) {
1021                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022                 led &= priv->led_activity_off;
1023
1024                 led = ipw_register_toggle(led);
1025
1026                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028
1029                 IPW_DEBUG_LED("Activity LED Off\n");
1030
1031                 priv->status &= ~STATUS_LED_ACT_ON;
1032         }
1033
1034         spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036
1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039         struct ipw_priv *priv =
1040                 container_of(work, struct ipw_priv, led_act_off.work);
1041         mutex_lock(&priv->mutex);
1042         ipw_led_activity_off(priv);
1043         mutex_unlock(&priv->mutex);
1044 }
1045
1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048         unsigned long flags;
1049         u32 led;
1050
1051         /* Only nic type 1 supports mode LEDs */
1052         if (priv->config & CFG_NO_LED ||
1053             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054                 return;
1055
1056         spin_lock_irqsave(&priv->lock, flags);
1057
1058         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059         if (priv->assoc_network->mode == IEEE_A) {
1060                 led |= priv->led_ofdm_on;
1061                 led &= priv->led_association_off;
1062                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063         } else if (priv->assoc_network->mode == IEEE_G) {
1064                 led |= priv->led_ofdm_on;
1065                 led |= priv->led_association_on;
1066                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067         } else {
1068                 led &= priv->led_ofdm_off;
1069                 led |= priv->led_association_on;
1070                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071         }
1072
1073         led = ipw_register_toggle(led);
1074
1075         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077
1078         spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080
1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083         unsigned long flags;
1084         u32 led;
1085
1086         /* Only nic type 1 supports mode LEDs */
1087         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088                 return;
1089
1090         spin_lock_irqsave(&priv->lock, flags);
1091
1092         led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093         led &= priv->led_ofdm_off;
1094         led &= priv->led_association_off;
1095
1096         led = ipw_register_toggle(led);
1097
1098         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099         ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100
1101         spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103
1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106         ipw_led_link_on(priv);
1107 }
1108
1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111         ipw_led_activity_off(priv);
1112         ipw_led_link_off(priv);
1113 }
1114
1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117         /* Set the Link Led on for all nic types */
1118         ipw_led_link_on(priv);
1119 }
1120
1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123         ipw_led_activity_off(priv);
1124         ipw_led_link_off(priv);
1125
1126         if (priv->status & STATUS_RF_KILL_MASK)
1127                 ipw_led_radio_off(priv);
1128 }
1129
1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133
1134         /* Set the default PINs for the link and activity leds */
1135         priv->led_activity_on = IPW_ACTIVITY_LED;
1136         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137
1138         priv->led_association_on = IPW_ASSOCIATED_LED;
1139         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140
1141         /* Set the default PINs for the OFDM leds */
1142         priv->led_ofdm_on = IPW_OFDM_LED;
1143         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144
1145         switch (priv->nic_type) {
1146         case EEPROM_NIC_TYPE_1:
1147                 /* In this NIC type, the LEDs are reversed.... */
1148                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1149                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150                 priv->led_association_on = IPW_ACTIVITY_LED;
1151                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152
1153                 if (!(priv->config & CFG_NO_LED))
1154                         ipw_led_band_on(priv);
1155
1156                 /* And we don't blink link LEDs for this nic, so
1157                  * just return here */
1158                 return;
1159
1160         case EEPROM_NIC_TYPE_3:
1161         case EEPROM_NIC_TYPE_2:
1162         case EEPROM_NIC_TYPE_4:
1163         case EEPROM_NIC_TYPE_0:
1164                 break;
1165
1166         default:
1167                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168                                priv->nic_type);
1169                 priv->nic_type = EEPROM_NIC_TYPE_0;
1170                 break;
1171         }
1172
1173         if (!(priv->config & CFG_NO_LED)) {
1174                 if (priv->status & STATUS_ASSOCIATED)
1175                         ipw_led_link_on(priv);
1176                 else
1177                         ipw_led_link_off(priv);
1178         }
1179 }
1180
1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183         ipw_led_activity_off(priv);
1184         ipw_led_link_off(priv);
1185         ipw_led_band_off(priv);
1186         cancel_delayed_work(&priv->led_link_on);
1187         cancel_delayed_work(&priv->led_link_off);
1188         cancel_delayed_work(&priv->led_act_off);
1189 }
1190
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
1198 static ssize_t debug_level_show(struct device_driver *d, char *buf)
1199 {
1200         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202
1203 static ssize_t debug_level_store(struct device_driver *d, const char *buf,
1204                                  size_t count)
1205 {
1206         char *p = (char *)buf;
1207         u32 val;
1208
1209         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210                 p++;
1211                 if (p[0] == 'x' || p[0] == 'X')
1212                         p++;
1213                 val = simple_strtoul(p, &p, 16);
1214         } else
1215                 val = simple_strtoul(p, &p, 10);
1216         if (p == buf)
1217                 printk(KERN_INFO DRV_NAME
1218                        ": %s is not in hex or decimal form.\n", buf);
1219         else
1220                 ipw_debug_level = val;
1221
1222         return strnlen(buf, count);
1223 }
1224 static DRIVER_ATTR_RW(debug_level);
1225
1226 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1227 {
1228         /* length = 1st dword in log */
1229         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1230 }
1231
1232 static void ipw_capture_event_log(struct ipw_priv *priv,
1233                                   u32 log_len, struct ipw_event *log)
1234 {
1235         u32 base;
1236
1237         if (log_len) {
1238                 base = ipw_read32(priv, IPW_EVENT_LOG);
1239                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1240                                   (u8 *) log, sizeof(*log) * log_len);
1241         }
1242 }
1243
1244 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1245 {
1246         struct ipw_fw_error *error;
1247         u32 log_len = ipw_get_event_log_len(priv);
1248         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1249         u32 elem_len = ipw_read_reg32(priv, base);
1250
1251         error = kmalloc(sizeof(*error) +
1252                         sizeof(*error->elem) * elem_len +
1253                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1254         if (!error) {
1255                 IPW_ERROR("Memory allocation for firmware error log "
1256                           "failed.\n");
1257                 return NULL;
1258         }
1259         error->jiffies = jiffies;
1260         error->status = priv->status;
1261         error->config = priv->config;
1262         error->elem_len = elem_len;
1263         error->log_len = log_len;
1264         error->elem = (struct ipw_error_elem *)error->payload;
1265         error->log = (struct ipw_event *)(error->elem + elem_len);
1266
1267         ipw_capture_event_log(priv, log_len, error->log);
1268
1269         if (elem_len)
1270                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1271                                   sizeof(*error->elem) * elem_len);
1272
1273         return error;
1274 }
1275
1276 static ssize_t show_event_log(struct device *d,
1277                               struct device_attribute *attr, char *buf)
1278 {
1279         struct ipw_priv *priv = dev_get_drvdata(d);
1280         u32 log_len = ipw_get_event_log_len(priv);
1281         u32 log_size;
1282         struct ipw_event *log;
1283         u32 len = 0, i;
1284
1285         /* not using min() because of its strict type checking */
1286         log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1287                         sizeof(*log) * log_len : PAGE_SIZE;
1288         log = kzalloc(log_size, GFP_KERNEL);
1289         if (!log) {
1290                 IPW_ERROR("Unable to allocate memory for log\n");
1291                 return 0;
1292         }
1293         log_len = log_size / sizeof(*log);
1294         ipw_capture_event_log(priv, log_len, log);
1295
1296         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1297         for (i = 0; i < log_len; i++)
1298                 len += snprintf(buf + len, PAGE_SIZE - len,
1299                                 "\n%08X%08X%08X",
1300                                 log[i].time, log[i].event, log[i].data);
1301         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1302         kfree(log);
1303         return len;
1304 }
1305
1306 static DEVICE_ATTR(event_log, 0444, show_event_log, NULL);
1307
1308 static ssize_t show_error(struct device *d,
1309                           struct device_attribute *attr, char *buf)
1310 {
1311         struct ipw_priv *priv = dev_get_drvdata(d);
1312         u32 len = 0, i;
1313         if (!priv->error)
1314                 return 0;
1315         len += snprintf(buf + len, PAGE_SIZE - len,
1316                         "%08lX%08X%08X%08X",
1317                         priv->error->jiffies,
1318                         priv->error->status,
1319                         priv->error->config, priv->error->elem_len);
1320         for (i = 0; i < priv->error->elem_len; i++)
1321                 len += snprintf(buf + len, PAGE_SIZE - len,
1322                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1323                                 priv->error->elem[i].time,
1324                                 priv->error->elem[i].desc,
1325                                 priv->error->elem[i].blink1,
1326                                 priv->error->elem[i].blink2,
1327                                 priv->error->elem[i].link1,
1328                                 priv->error->elem[i].link2,
1329                                 priv->error->elem[i].data);
1330
1331         len += snprintf(buf + len, PAGE_SIZE - len,
1332                         "\n%08X", priv->error->log_len);
1333         for (i = 0; i < priv->error->log_len; i++)
1334                 len += snprintf(buf + len, PAGE_SIZE - len,
1335                                 "\n%08X%08X%08X",
1336                                 priv->error->log[i].time,
1337                                 priv->error->log[i].event,
1338                                 priv->error->log[i].data);
1339         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1340         return len;
1341 }
1342
1343 static ssize_t clear_error(struct device *d,
1344                            struct device_attribute *attr,
1345                            const char *buf, size_t count)
1346 {
1347         struct ipw_priv *priv = dev_get_drvdata(d);
1348
1349         kfree(priv->error);
1350         priv->error = NULL;
1351         return count;
1352 }
1353
1354 static DEVICE_ATTR(error, 0644, show_error, clear_error);
1355
1356 static ssize_t show_cmd_log(struct device *d,
1357                             struct device_attribute *attr, char *buf)
1358 {
1359         struct ipw_priv *priv = dev_get_drvdata(d);
1360         u32 len = 0, i;
1361         if (!priv->cmdlog)
1362                 return 0;
1363         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1364              (i != priv->cmdlog_pos) && (len < PAGE_SIZE);
1365              i = (i + 1) % priv->cmdlog_len) {
1366                 len +=
1367                     snprintf(buf + len, PAGE_SIZE - len,
1368                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1369                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1370                              priv->cmdlog[i].cmd.len);
1371                 len +=
1372                     snprintk_buf(buf + len, PAGE_SIZE - len,
1373                                  (u8 *) priv->cmdlog[i].cmd.param,
1374                                  priv->cmdlog[i].cmd.len);
1375                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1376         }
1377         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378         return len;
1379 }
1380
1381 static DEVICE_ATTR(cmd_log, 0444, show_cmd_log, NULL);
1382
1383 #ifdef CONFIG_IPW2200_PROMISCUOUS
1384 static void ipw_prom_free(struct ipw_priv *priv);
1385 static int ipw_prom_alloc(struct ipw_priv *priv);
1386 static ssize_t store_rtap_iface(struct device *d,
1387                          struct device_attribute *attr,
1388                          const char *buf, size_t count)
1389 {
1390         struct ipw_priv *priv = dev_get_drvdata(d);
1391         int rc = 0;
1392
1393         if (count < 1)
1394                 return -EINVAL;
1395
1396         switch (buf[0]) {
1397         case '0':
1398                 if (!rtap_iface)
1399                         return count;
1400
1401                 if (netif_running(priv->prom_net_dev)) {
1402                         IPW_WARNING("Interface is up.  Cannot unregister.\n");
1403                         return count;
1404                 }
1405
1406                 ipw_prom_free(priv);
1407                 rtap_iface = 0;
1408                 break;
1409
1410         case '1':
1411                 if (rtap_iface)
1412                         return count;
1413
1414                 rc = ipw_prom_alloc(priv);
1415                 if (!rc)
1416                         rtap_iface = 1;
1417                 break;
1418
1419         default:
1420                 return -EINVAL;
1421         }
1422
1423         if (rc) {
1424                 IPW_ERROR("Failed to register promiscuous network "
1425                           "device (error %d).\n", rc);
1426         }
1427
1428         return count;
1429 }
1430
1431 static ssize_t show_rtap_iface(struct device *d,
1432                         struct device_attribute *attr,
1433                         char *buf)
1434 {
1435         struct ipw_priv *priv = dev_get_drvdata(d);
1436         if (rtap_iface)
1437                 return sprintf(buf, "%s", priv->prom_net_dev->name);
1438         else {
1439                 buf[0] = '-';
1440                 buf[1] = '1';
1441                 buf[2] = '\0';
1442                 return 3;
1443         }
1444 }
1445
1446 static DEVICE_ATTR(rtap_iface, 0600, show_rtap_iface, store_rtap_iface);
1447
1448 static ssize_t store_rtap_filter(struct device *d,
1449                          struct device_attribute *attr,
1450                          const char *buf, size_t count)
1451 {
1452         struct ipw_priv *priv = dev_get_drvdata(d);
1453
1454         if (!priv->prom_priv) {
1455                 IPW_ERROR("Attempting to set filter without "
1456                           "rtap_iface enabled.\n");
1457                 return -EPERM;
1458         }
1459
1460         priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1461
1462         IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1463                        BIT_ARG16(priv->prom_priv->filter));
1464
1465         return count;
1466 }
1467
1468 static ssize_t show_rtap_filter(struct device *d,
1469                         struct device_attribute *attr,
1470                         char *buf)
1471 {
1472         struct ipw_priv *priv = dev_get_drvdata(d);
1473         return sprintf(buf, "0x%04X",
1474                        priv->prom_priv ? priv->prom_priv->filter : 0);
1475 }
1476
1477 static DEVICE_ATTR(rtap_filter, 0600, show_rtap_filter, store_rtap_filter);
1478 #endif
1479
1480 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1481                              char *buf)
1482 {
1483         struct ipw_priv *priv = dev_get_drvdata(d);
1484         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1485 }
1486
1487 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1488                               const char *buf, size_t count)
1489 {
1490         struct ipw_priv *priv = dev_get_drvdata(d);
1491         struct net_device *dev = priv->net_dev;
1492         char buffer[] = "00000000";
1493         unsigned long len =
1494             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1495         unsigned long val;
1496         char *p = buffer;
1497
1498         IPW_DEBUG_INFO("enter\n");
1499
1500         strncpy(buffer, buf, len);
1501         buffer[len] = 0;
1502
1503         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1504                 p++;
1505                 if (p[0] == 'x' || p[0] == 'X')
1506                         p++;
1507                 val = simple_strtoul(p, &p, 16);
1508         } else
1509                 val = simple_strtoul(p, &p, 10);
1510         if (p == buffer) {
1511                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1512         } else {
1513                 priv->ieee->scan_age = val;
1514                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1515         }
1516
1517         IPW_DEBUG_INFO("exit\n");
1518         return len;
1519 }
1520
1521 static DEVICE_ATTR(scan_age, 0644, show_scan_age, store_scan_age);
1522
1523 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1524                         char *buf)
1525 {
1526         struct ipw_priv *priv = dev_get_drvdata(d);
1527         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1528 }
1529
1530 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1531                          const char *buf, size_t count)
1532 {
1533         struct ipw_priv *priv = dev_get_drvdata(d);
1534
1535         IPW_DEBUG_INFO("enter\n");
1536
1537         if (count == 0)
1538                 return 0;
1539
1540         if (*buf == 0) {
1541                 IPW_DEBUG_LED("Disabling LED control.\n");
1542                 priv->config |= CFG_NO_LED;
1543                 ipw_led_shutdown(priv);
1544         } else {
1545                 IPW_DEBUG_LED("Enabling LED control.\n");
1546                 priv->config &= ~CFG_NO_LED;
1547                 ipw_led_init(priv);
1548         }
1549
1550         IPW_DEBUG_INFO("exit\n");
1551         return count;
1552 }
1553
1554 static DEVICE_ATTR(led, 0644, show_led, store_led);
1555
1556 static ssize_t show_status(struct device *d,
1557                            struct device_attribute *attr, char *buf)
1558 {
1559         struct ipw_priv *p = dev_get_drvdata(d);
1560         return sprintf(buf, "0x%08x\n", (int)p->status);
1561 }
1562
1563 static DEVICE_ATTR(status, 0444, show_status, NULL);
1564
1565 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1566                         char *buf)
1567 {
1568         struct ipw_priv *p = dev_get_drvdata(d);
1569         return sprintf(buf, "0x%08x\n", (int)p->config);
1570 }
1571
1572 static DEVICE_ATTR(cfg, 0444, show_cfg, NULL);
1573
1574 static ssize_t show_nic_type(struct device *d,
1575                              struct device_attribute *attr, char *buf)
1576 {
1577         struct ipw_priv *priv = dev_get_drvdata(d);
1578         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1579 }
1580
1581 static DEVICE_ATTR(nic_type, 0444, show_nic_type, NULL);
1582
1583 static ssize_t show_ucode_version(struct device *d,
1584                                   struct device_attribute *attr, char *buf)
1585 {
1586         u32 len = sizeof(u32), tmp = 0;
1587         struct ipw_priv *p = dev_get_drvdata(d);
1588
1589         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1590                 return 0;
1591
1592         return sprintf(buf, "0x%08x\n", tmp);
1593 }
1594
1595 static DEVICE_ATTR(ucode_version, 0644, show_ucode_version, NULL);
1596
1597 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1598                         char *buf)
1599 {
1600         u32 len = sizeof(u32), tmp = 0;
1601         struct ipw_priv *p = dev_get_drvdata(d);
1602
1603         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1604                 return 0;
1605
1606         return sprintf(buf, "0x%08x\n", tmp);
1607 }
1608
1609 static DEVICE_ATTR(rtc, 0644, show_rtc, NULL);
1610
1611 /*
1612  * Add a device attribute to view/control the delay between eeprom
1613  * operations.
1614  */
1615 static ssize_t show_eeprom_delay(struct device *d,
1616                                  struct device_attribute *attr, char *buf)
1617 {
1618         struct ipw_priv *p = dev_get_drvdata(d);
1619         int n = p->eeprom_delay;
1620         return sprintf(buf, "%i\n", n);
1621 }
1622 static ssize_t store_eeprom_delay(struct device *d,
1623                                   struct device_attribute *attr,
1624                                   const char *buf, size_t count)
1625 {
1626         struct ipw_priv *p = dev_get_drvdata(d);
1627         sscanf(buf, "%i", &p->eeprom_delay);
1628         return strnlen(buf, count);
1629 }
1630
1631 static DEVICE_ATTR(eeprom_delay, 0644, show_eeprom_delay, store_eeprom_delay);
1632
1633 static ssize_t show_command_event_reg(struct device *d,
1634                                       struct device_attribute *attr, char *buf)
1635 {
1636         u32 reg = 0;
1637         struct ipw_priv *p = dev_get_drvdata(d);
1638
1639         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1640         return sprintf(buf, "0x%08x\n", reg);
1641 }
1642 static ssize_t store_command_event_reg(struct device *d,
1643                                        struct device_attribute *attr,
1644                                        const char *buf, size_t count)
1645 {
1646         u32 reg;
1647         struct ipw_priv *p = dev_get_drvdata(d);
1648
1649         sscanf(buf, "%x", &reg);
1650         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1651         return strnlen(buf, count);
1652 }
1653
1654 static DEVICE_ATTR(command_event_reg, 0644,
1655                    show_command_event_reg, store_command_event_reg);
1656
1657 static ssize_t show_mem_gpio_reg(struct device *d,
1658                                  struct device_attribute *attr, char *buf)
1659 {
1660         u32 reg = 0;
1661         struct ipw_priv *p = dev_get_drvdata(d);
1662
1663         reg = ipw_read_reg32(p, 0x301100);
1664         return sprintf(buf, "0x%08x\n", reg);
1665 }
1666 static ssize_t store_mem_gpio_reg(struct device *d,
1667                                   struct device_attribute *attr,
1668                                   const char *buf, size_t count)
1669 {
1670         u32 reg;
1671         struct ipw_priv *p = dev_get_drvdata(d);
1672
1673         sscanf(buf, "%x", &reg);
1674         ipw_write_reg32(p, 0x301100, reg);
1675         return strnlen(buf, count);
1676 }
1677
1678 static DEVICE_ATTR(mem_gpio_reg, 0644, show_mem_gpio_reg, store_mem_gpio_reg);
1679
1680 static ssize_t show_indirect_dword(struct device *d,
1681                                    struct device_attribute *attr, char *buf)
1682 {
1683         u32 reg = 0;
1684         struct ipw_priv *priv = dev_get_drvdata(d);
1685
1686         if (priv->status & STATUS_INDIRECT_DWORD)
1687                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1688         else
1689                 reg = 0;
1690
1691         return sprintf(buf, "0x%08x\n", reg);
1692 }
1693 static ssize_t store_indirect_dword(struct device *d,
1694                                     struct device_attribute *attr,
1695                                     const char *buf, size_t count)
1696 {
1697         struct ipw_priv *priv = dev_get_drvdata(d);
1698
1699         sscanf(buf, "%x", &priv->indirect_dword);
1700         priv->status |= STATUS_INDIRECT_DWORD;
1701         return strnlen(buf, count);
1702 }
1703
1704 static DEVICE_ATTR(indirect_dword, 0644,
1705                    show_indirect_dword, store_indirect_dword);
1706
1707 static ssize_t show_indirect_byte(struct device *d,
1708                                   struct device_attribute *attr, char *buf)
1709 {
1710         u8 reg = 0;
1711         struct ipw_priv *priv = dev_get_drvdata(d);
1712
1713         if (priv->status & STATUS_INDIRECT_BYTE)
1714                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1715         else
1716                 reg = 0;
1717
1718         return sprintf(buf, "0x%02x\n", reg);
1719 }
1720 static ssize_t store_indirect_byte(struct device *d,
1721                                    struct device_attribute *attr,
1722                                    const char *buf, size_t count)
1723 {
1724         struct ipw_priv *priv = dev_get_drvdata(d);
1725
1726         sscanf(buf, "%x", &priv->indirect_byte);
1727         priv->status |= STATUS_INDIRECT_BYTE;
1728         return strnlen(buf, count);
1729 }
1730
1731 static DEVICE_ATTR(indirect_byte, 0644,
1732                    show_indirect_byte, store_indirect_byte);
1733
1734 static ssize_t show_direct_dword(struct device *d,
1735                                  struct device_attribute *attr, char *buf)
1736 {
1737         u32 reg = 0;
1738         struct ipw_priv *priv = dev_get_drvdata(d);
1739
1740         if (priv->status & STATUS_DIRECT_DWORD)
1741                 reg = ipw_read32(priv, priv->direct_dword);
1742         else
1743                 reg = 0;
1744
1745         return sprintf(buf, "0x%08x\n", reg);
1746 }
1747 static ssize_t store_direct_dword(struct device *d,
1748                                   struct device_attribute *attr,
1749                                   const char *buf, size_t count)
1750 {
1751         struct ipw_priv *priv = dev_get_drvdata(d);
1752
1753         sscanf(buf, "%x", &priv->direct_dword);
1754         priv->status |= STATUS_DIRECT_DWORD;
1755         return strnlen(buf, count);
1756 }
1757
1758 static DEVICE_ATTR(direct_dword, 0644, show_direct_dword, store_direct_dword);
1759
1760 static int rf_kill_active(struct ipw_priv *priv)
1761 {
1762         if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1763                 priv->status |= STATUS_RF_KILL_HW;
1764                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1765         } else {
1766                 priv->status &= ~STATUS_RF_KILL_HW;
1767                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1768         }
1769
1770         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1771 }
1772
1773 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1774                             char *buf)
1775 {
1776         /* 0 - RF kill not enabled
1777            1 - SW based RF kill active (sysfs)
1778            2 - HW based RF kill active
1779            3 - Both HW and SW baed RF kill active */
1780         struct ipw_priv *priv = dev_get_drvdata(d);
1781         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1782             (rf_kill_active(priv) ? 0x2 : 0x0);
1783         return sprintf(buf, "%i\n", val);
1784 }
1785
1786 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1787 {
1788         if ((disable_radio ? 1 : 0) ==
1789             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1790                 return 0;
1791
1792         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1793                           disable_radio ? "OFF" : "ON");
1794
1795         if (disable_radio) {
1796                 priv->status |= STATUS_RF_KILL_SW;
1797
1798                 cancel_delayed_work(&priv->request_scan);
1799                 cancel_delayed_work(&priv->request_direct_scan);
1800                 cancel_delayed_work(&priv->request_passive_scan);
1801                 cancel_delayed_work(&priv->scan_event);
1802                 schedule_work(&priv->down);
1803         } else {
1804                 priv->status &= ~STATUS_RF_KILL_SW;
1805                 if (rf_kill_active(priv)) {
1806                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1807                                           "disabled by HW switch\n");
1808                         /* Make sure the RF_KILL check timer is running */
1809                         cancel_delayed_work(&priv->rf_kill);
1810                         schedule_delayed_work(&priv->rf_kill,
1811                                               round_jiffies_relative(2 * HZ));
1812                 } else
1813                         schedule_work(&priv->up);
1814         }
1815
1816         return 1;
1817 }
1818
1819 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1820                              const char *buf, size_t count)
1821 {
1822         struct ipw_priv *priv = dev_get_drvdata(d);
1823
1824         ipw_radio_kill_sw(priv, buf[0] == '1');
1825
1826         return count;
1827 }
1828
1829 static DEVICE_ATTR(rf_kill, 0644, show_rf_kill, store_rf_kill);
1830
1831 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1832                                char *buf)
1833 {
1834         struct ipw_priv *priv = dev_get_drvdata(d);
1835         int pos = 0, len = 0;
1836         if (priv->config & CFG_SPEED_SCAN) {
1837                 while (priv->speed_scan[pos] != 0)
1838                         len += sprintf(&buf[len], "%d ",
1839                                        priv->speed_scan[pos++]);
1840                 return len + sprintf(&buf[len], "\n");
1841         }
1842
1843         return sprintf(buf, "0\n");
1844 }
1845
1846 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1847                                 const char *buf, size_t count)
1848 {
1849         struct ipw_priv *priv = dev_get_drvdata(d);
1850         int channel, pos = 0;
1851         const char *p = buf;
1852
1853         /* list of space separated channels to scan, optionally ending with 0 */
1854         while ((channel = simple_strtol(p, NULL, 0))) {
1855                 if (pos == MAX_SPEED_SCAN - 1) {
1856                         priv->speed_scan[pos] = 0;
1857                         break;
1858                 }
1859
1860                 if (libipw_is_valid_channel(priv->ieee, channel))
1861                         priv->speed_scan[pos++] = channel;
1862                 else
1863                         IPW_WARNING("Skipping invalid channel request: %d\n",
1864                                     channel);
1865                 p = strchr(p, ' ');
1866                 if (!p)
1867                         break;
1868                 while (*p == ' ' || *p == '\t')
1869                         p++;
1870         }
1871
1872         if (pos == 0)
1873                 priv->config &= ~CFG_SPEED_SCAN;
1874         else {
1875                 priv->speed_scan_pos = 0;
1876                 priv->config |= CFG_SPEED_SCAN;
1877         }
1878
1879         return count;
1880 }
1881
1882 static DEVICE_ATTR(speed_scan, 0644, show_speed_scan, store_speed_scan);
1883
1884 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1885                               char *buf)
1886 {
1887         struct ipw_priv *priv = dev_get_drvdata(d);
1888         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1889 }
1890
1891 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1892                                const char *buf, size_t count)
1893 {
1894         struct ipw_priv *priv = dev_get_drvdata(d);
1895         if (buf[0] == '1')
1896                 priv->config |= CFG_NET_STATS;
1897         else
1898                 priv->config &= ~CFG_NET_STATS;
1899
1900         return count;
1901 }
1902
1903 static DEVICE_ATTR(net_stats, 0644, show_net_stats, store_net_stats);
1904
1905 static ssize_t show_channels(struct device *d,
1906                              struct device_attribute *attr,
1907                              char *buf)
1908 {
1909         struct ipw_priv *priv = dev_get_drvdata(d);
1910         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1911         int len = 0, i;
1912
1913         len = sprintf(&buf[len],
1914                       "Displaying %d channels in 2.4Ghz band "
1915                       "(802.11bg):\n", geo->bg_channels);
1916
1917         for (i = 0; i < geo->bg_channels; i++) {
1918                 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1919                                geo->bg[i].channel,
1920                                geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1921                                " (radar spectrum)" : "",
1922                                ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1923                                 (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1924                                ? "" : ", IBSS",
1925                                geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1926                                "passive only" : "active/passive",
1927                                geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1928                                "B" : "B/G");
1929         }
1930
1931         len += sprintf(&buf[len],
1932                        "Displaying %d channels in 5.2Ghz band "
1933                        "(802.11a):\n", geo->a_channels);
1934         for (i = 0; i < geo->a_channels; i++) {
1935                 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1936                                geo->a[i].channel,
1937                                geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1938                                " (radar spectrum)" : "",
1939                                ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1940                                 (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1941                                ? "" : ", IBSS",
1942                                geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1943                                "passive only" : "active/passive");
1944         }
1945
1946         return len;
1947 }
1948
1949 static DEVICE_ATTR(channels, 0400, show_channels, NULL);
1950
1951 static void notify_wx_assoc_event(struct ipw_priv *priv)
1952 {
1953         union iwreq_data wrqu;
1954         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1955         if (priv->status & STATUS_ASSOCIATED)
1956                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1957         else
1958                 eth_zero_addr(wrqu.ap_addr.sa_data);
1959         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1960 }
1961
1962 static void ipw_irq_tasklet(struct ipw_priv *priv)
1963 {
1964         u32 inta, inta_mask, handled = 0;
1965         unsigned long flags;
1966         int rc = 0;
1967
1968         spin_lock_irqsave(&priv->irq_lock, flags);
1969
1970         inta = ipw_read32(priv, IPW_INTA_RW);
1971         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1972
1973         if (inta == 0xFFFFFFFF) {
1974                 /* Hardware disappeared */
1975                 IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1976                 /* Only handle the cached INTA values */
1977                 inta = 0;
1978         }
1979         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1980
1981         /* Add any cached INTA values that need to be handled */
1982         inta |= priv->isr_inta;
1983
1984         spin_unlock_irqrestore(&priv->irq_lock, flags);
1985
1986         spin_lock_irqsave(&priv->lock, flags);
1987
1988         /* handle all the justifications for the interrupt */
1989         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1990                 ipw_rx(priv);
1991                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1992         }
1993
1994         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1995                 IPW_DEBUG_HC("Command completed.\n");
1996                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1997                 priv->status &= ~STATUS_HCMD_ACTIVE;
1998                 wake_up_interruptible(&priv->wait_command_queue);
1999                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2000         }
2001
2002         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2003                 IPW_DEBUG_TX("TX_QUEUE_1\n");
2004                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2005                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
2006         }
2007
2008         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2009                 IPW_DEBUG_TX("TX_QUEUE_2\n");
2010                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2011                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
2012         }
2013
2014         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2015                 IPW_DEBUG_TX("TX_QUEUE_3\n");
2016                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2017                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
2018         }
2019
2020         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2021                 IPW_DEBUG_TX("TX_QUEUE_4\n");
2022                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2023                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
2024         }
2025
2026         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2027                 IPW_WARNING("STATUS_CHANGE\n");
2028                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
2029         }
2030
2031         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2032                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
2033                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2034         }
2035
2036         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2037                 IPW_WARNING("HOST_CMD_DONE\n");
2038                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2039         }
2040
2041         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2042                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
2043                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2044         }
2045
2046         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2047                 IPW_WARNING("PHY_OFF_DONE\n");
2048                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2049         }
2050
2051         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2052                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2053                 priv->status |= STATUS_RF_KILL_HW;
2054                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2055                 wake_up_interruptible(&priv->wait_command_queue);
2056                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2057                 cancel_delayed_work(&priv->request_scan);
2058                 cancel_delayed_work(&priv->request_direct_scan);
2059                 cancel_delayed_work(&priv->request_passive_scan);
2060                 cancel_delayed_work(&priv->scan_event);
2061                 schedule_work(&priv->link_down);
2062                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2063                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2064         }
2065
2066         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2067                 IPW_WARNING("Firmware error detected.  Restarting.\n");
2068                 if (priv->error) {
2069                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2070                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2071                                 struct ipw_fw_error *error =
2072                                     ipw_alloc_error_log(priv);
2073                                 ipw_dump_error_log(priv, error);
2074                                 kfree(error);
2075                         }
2076                 } else {
2077                         priv->error = ipw_alloc_error_log(priv);
2078                         if (priv->error)
2079                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2080                         else
2081                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2082                                              "log.\n");
2083                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
2084                                 ipw_dump_error_log(priv, priv->error);
2085                 }
2086
2087                 /* XXX: If hardware encryption is for WPA/WPA2,
2088                  * we have to notify the supplicant. */
2089                 if (priv->ieee->sec.encrypt) {
2090                         priv->status &= ~STATUS_ASSOCIATED;
2091                         notify_wx_assoc_event(priv);
2092                 }
2093
2094                 /* Keep the restart process from trying to send host
2095                  * commands by clearing the INIT status bit */
2096                 priv->status &= ~STATUS_INIT;
2097
2098                 /* Cancel currently queued command. */
2099                 priv->status &= ~STATUS_HCMD_ACTIVE;
2100                 wake_up_interruptible(&priv->wait_command_queue);
2101
2102                 schedule_work(&priv->adapter_restart);
2103                 handled |= IPW_INTA_BIT_FATAL_ERROR;
2104         }
2105
2106         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2107                 IPW_ERROR("Parity error\n");
2108                 handled |= IPW_INTA_BIT_PARITY_ERROR;
2109         }
2110
2111         if (handled != inta) {
2112                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2113         }
2114
2115         spin_unlock_irqrestore(&priv->lock, flags);
2116
2117         /* enable all interrupts */
2118         ipw_enable_interrupts(priv);
2119 }
2120
2121 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2122 static char *get_cmd_string(u8 cmd)
2123 {
2124         switch (cmd) {
2125                 IPW_CMD(HOST_COMPLETE);
2126                 IPW_CMD(POWER_DOWN);
2127                 IPW_CMD(SYSTEM_CONFIG);
2128                 IPW_CMD(MULTICAST_ADDRESS);
2129                 IPW_CMD(SSID);
2130                 IPW_CMD(ADAPTER_ADDRESS);
2131                 IPW_CMD(PORT_TYPE);
2132                 IPW_CMD(RTS_THRESHOLD);
2133                 IPW_CMD(FRAG_THRESHOLD);
2134                 IPW_CMD(POWER_MODE);
2135                 IPW_CMD(WEP_KEY);
2136                 IPW_CMD(TGI_TX_KEY);
2137                 IPW_CMD(SCAN_REQUEST);
2138                 IPW_CMD(SCAN_REQUEST_EXT);
2139                 IPW_CMD(ASSOCIATE);
2140                 IPW_CMD(SUPPORTED_RATES);
2141                 IPW_CMD(SCAN_ABORT);
2142                 IPW_CMD(TX_FLUSH);
2143                 IPW_CMD(QOS_PARAMETERS);
2144                 IPW_CMD(DINO_CONFIG);
2145                 IPW_CMD(RSN_CAPABILITIES);
2146                 IPW_CMD(RX_KEY);
2147                 IPW_CMD(CARD_DISABLE);
2148                 IPW_CMD(SEED_NUMBER);
2149                 IPW_CMD(TX_POWER);
2150                 IPW_CMD(COUNTRY_INFO);
2151                 IPW_CMD(AIRONET_INFO);
2152                 IPW_CMD(AP_TX_POWER);
2153                 IPW_CMD(CCKM_INFO);
2154                 IPW_CMD(CCX_VER_INFO);
2155                 IPW_CMD(SET_CALIBRATION);
2156                 IPW_CMD(SENSITIVITY_CALIB);
2157                 IPW_CMD(RETRY_LIMIT);
2158                 IPW_CMD(IPW_PRE_POWER_DOWN);
2159                 IPW_CMD(VAP_BEACON_TEMPLATE);
2160                 IPW_CMD(VAP_DTIM_PERIOD);
2161                 IPW_CMD(EXT_SUPPORTED_RATES);
2162                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2163                 IPW_CMD(VAP_QUIET_INTERVALS);
2164                 IPW_CMD(VAP_CHANNEL_SWITCH);
2165                 IPW_CMD(VAP_MANDATORY_CHANNELS);
2166                 IPW_CMD(VAP_CELL_PWR_LIMIT);
2167                 IPW_CMD(VAP_CF_PARAM_SET);
2168                 IPW_CMD(VAP_SET_BEACONING_STATE);
2169                 IPW_CMD(MEASUREMENT);
2170                 IPW_CMD(POWER_CAPABILITY);
2171                 IPW_CMD(SUPPORTED_CHANNELS);
2172                 IPW_CMD(TPC_REPORT);
2173                 IPW_CMD(WME_INFO);
2174                 IPW_CMD(PRODUCTION_COMMAND);
2175         default:
2176                 return "UNKNOWN";
2177         }
2178 }
2179
2180 #define HOST_COMPLETE_TIMEOUT HZ
2181
2182 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2183 {
2184         int rc = 0;
2185         unsigned long flags;
2186         unsigned long now, end;
2187
2188         spin_lock_irqsave(&priv->lock, flags);
2189         if (priv->status & STATUS_HCMD_ACTIVE) {
2190                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2191                           get_cmd_string(cmd->cmd));
2192                 spin_unlock_irqrestore(&priv->lock, flags);
2193                 return -EAGAIN;
2194         }
2195
2196         priv->status |= STATUS_HCMD_ACTIVE;
2197
2198         if (priv->cmdlog) {
2199                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2200                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2201                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2202                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2203                        cmd->len);
2204                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2205         }
2206
2207         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2208                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2209                      priv->status);
2210
2211 #ifndef DEBUG_CMD_WEP_KEY
2212         if (cmd->cmd == IPW_CMD_WEP_KEY)
2213                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2214         else
2215 #endif
2216                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2217
2218         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2219         if (rc) {
2220                 priv->status &= ~STATUS_HCMD_ACTIVE;
2221                 IPW_ERROR("Failed to send %s: Reason %d\n",
2222                           get_cmd_string(cmd->cmd), rc);
2223                 spin_unlock_irqrestore(&priv->lock, flags);
2224                 goto exit;
2225         }
2226         spin_unlock_irqrestore(&priv->lock, flags);
2227
2228         now = jiffies;
2229         end = now + HOST_COMPLETE_TIMEOUT;
2230 again:
2231         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2232                                               !(priv->
2233                                                 status & STATUS_HCMD_ACTIVE),
2234                                               end - now);
2235         if (rc < 0) {
2236                 now = jiffies;
2237                 if (time_before(now, end))
2238                         goto again;
2239                 rc = 0;
2240         }
2241
2242         if (rc == 0) {
2243                 spin_lock_irqsave(&priv->lock, flags);
2244                 if (priv->status & STATUS_HCMD_ACTIVE) {
2245                         IPW_ERROR("Failed to send %s: Command timed out.\n",
2246                                   get_cmd_string(cmd->cmd));
2247                         priv->status &= ~STATUS_HCMD_ACTIVE;
2248                         spin_unlock_irqrestore(&priv->lock, flags);
2249                         rc = -EIO;
2250                         goto exit;
2251                 }
2252                 spin_unlock_irqrestore(&priv->lock, flags);
2253         } else
2254                 rc = 0;
2255
2256         if (priv->status & STATUS_RF_KILL_HW) {
2257                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2258                           get_cmd_string(cmd->cmd));
2259                 rc = -EIO;
2260                 goto exit;
2261         }
2262
2263       exit:
2264         if (priv->cmdlog) {
2265                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2266                 priv->cmdlog_pos %= priv->cmdlog_len;
2267         }
2268         return rc;
2269 }
2270
2271 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2272 {
2273         struct host_cmd cmd = {
2274                 .cmd = command,
2275         };
2276
2277         return __ipw_send_cmd(priv, &cmd);
2278 }
2279
2280 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2281                             void *data)
2282 {
2283         struct host_cmd cmd = {
2284                 .cmd = command,
2285                 .len = len,
2286                 .param = data,
2287         };
2288
2289         return __ipw_send_cmd(priv, &cmd);
2290 }
2291
2292 static int ipw_send_host_complete(struct ipw_priv *priv)
2293 {
2294         if (!priv) {
2295                 IPW_ERROR("Invalid args\n");
2296                 return -1;
2297         }
2298
2299         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2300 }
2301
2302 static int ipw_send_system_config(struct ipw_priv *priv)
2303 {
2304         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2305                                 sizeof(priv->sys_config),
2306                                 &priv->sys_config);
2307 }
2308
2309 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2310 {
2311         if (!priv || !ssid) {
2312                 IPW_ERROR("Invalid args\n");
2313                 return -1;
2314         }
2315
2316         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2317                                 ssid);
2318 }
2319
2320 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2321 {
2322         if (!priv || !mac) {
2323                 IPW_ERROR("Invalid args\n");
2324                 return -1;
2325         }
2326
2327         IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2328                        priv->net_dev->name, mac);
2329
2330         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2331 }
2332
2333 static void ipw_adapter_restart(void *adapter)
2334 {
2335         struct ipw_priv *priv = adapter;
2336
2337         if (priv->status & STATUS_RF_KILL_MASK)
2338                 return;
2339
2340         ipw_down(priv);
2341
2342         if (priv->assoc_network &&
2343             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2344                 ipw_remove_current_network(priv);
2345
2346         if (ipw_up(priv)) {
2347                 IPW_ERROR("Failed to up device\n");
2348                 return;
2349         }
2350 }
2351
2352 static void ipw_bg_adapter_restart(struct work_struct *work)
2353 {
2354         struct ipw_priv *priv =
2355                 container_of(work, struct ipw_priv, adapter_restart);
2356         mutex_lock(&priv->mutex);
2357         ipw_adapter_restart(priv);
2358         mutex_unlock(&priv->mutex);
2359 }
2360
2361 static void ipw_abort_scan(struct ipw_priv *priv);
2362
2363 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2364
2365 static void ipw_scan_check(void *data)
2366 {
2367         struct ipw_priv *priv = data;
2368
2369         if (priv->status & STATUS_SCAN_ABORTING) {
2370                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2371                                "adapter after (%dms).\n",
2372                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2373                 schedule_work(&priv->adapter_restart);
2374         } else if (priv->status & STATUS_SCANNING) {
2375                 IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2376                                "after (%dms).\n",
2377                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2378                 ipw_abort_scan(priv);
2379                 schedule_delayed_work(&priv->scan_check, HZ);
2380         }
2381 }
2382
2383 static void ipw_bg_scan_check(struct work_struct *work)
2384 {
2385         struct ipw_priv *priv =
2386                 container_of(work, struct ipw_priv, scan_check.work);
2387         mutex_lock(&priv->mutex);
2388         ipw_scan_check(priv);
2389         mutex_unlock(&priv->mutex);
2390 }
2391
2392 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2393                                      struct ipw_scan_request_ext *request)
2394 {
2395         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2396                                 sizeof(*request), request);
2397 }
2398
2399 static int ipw_send_scan_abort(struct ipw_priv *priv)
2400 {
2401         if (!priv) {
2402                 IPW_ERROR("Invalid args\n");
2403                 return -1;
2404         }
2405
2406         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2407 }
2408
2409 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2410 {
2411         struct ipw_sensitivity_calib calib = {
2412                 .beacon_rssi_raw = cpu_to_le16(sens),
2413         };
2414
2415         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2416                                 &calib);
2417 }
2418
2419 static int ipw_send_associate(struct ipw_priv *priv,
2420                               struct ipw_associate *associate)
2421 {
2422         if (!priv || !associate) {
2423                 IPW_ERROR("Invalid args\n");
2424                 return -1;
2425         }
2426
2427         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2428                                 associate);
2429 }
2430
2431 static int ipw_send_supported_rates(struct ipw_priv *priv,
2432                                     struct ipw_supported_rates *rates)
2433 {
2434         if (!priv || !rates) {
2435                 IPW_ERROR("Invalid args\n");
2436                 return -1;
2437         }
2438
2439         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2440                                 rates);
2441 }
2442
2443 static int ipw_set_random_seed(struct ipw_priv *priv)
2444 {
2445         u32 val;
2446
2447         if (!priv) {
2448                 IPW_ERROR("Invalid args\n");
2449                 return -1;
2450         }
2451
2452         get_random_bytes(&val, sizeof(val));
2453
2454         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2455 }
2456
2457 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2458 {
2459         __le32 v = cpu_to_le32(phy_off);
2460         if (!priv) {
2461                 IPW_ERROR("Invalid args\n");
2462                 return -1;
2463         }
2464
2465         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2466 }
2467
2468 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2469 {
2470         if (!priv || !power) {
2471                 IPW_ERROR("Invalid args\n");
2472                 return -1;
2473         }
2474
2475         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2476 }
2477
2478 static int ipw_set_tx_power(struct ipw_priv *priv)
2479 {
2480         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2481         struct ipw_tx_power tx_power;
2482         s8 max_power;
2483         int i;
2484
2485         memset(&tx_power, 0, sizeof(tx_power));
2486
2487         /* configure device for 'G' band */
2488         tx_power.ieee_mode = IPW_G_MODE;
2489         tx_power.num_channels = geo->bg_channels;
2490         for (i = 0; i < geo->bg_channels; i++) {
2491                 max_power = geo->bg[i].max_power;
2492                 tx_power.channels_tx_power[i].channel_number =
2493                     geo->bg[i].channel;
2494                 tx_power.channels_tx_power[i].tx_power = max_power ?
2495                     min(max_power, priv->tx_power) : priv->tx_power;
2496         }
2497         if (ipw_send_tx_power(priv, &tx_power))
2498                 return -EIO;
2499
2500         /* configure device to also handle 'B' band */
2501         tx_power.ieee_mode = IPW_B_MODE;
2502         if (ipw_send_tx_power(priv, &tx_power))
2503                 return -EIO;
2504
2505         /* configure device to also handle 'A' band */
2506         if (priv->ieee->abg_true) {
2507                 tx_power.ieee_mode = IPW_A_MODE;
2508                 tx_power.num_channels = geo->a_channels;
2509                 for (i = 0; i < tx_power.num_channels; i++) {
2510                         max_power = geo->a[i].max_power;
2511                         tx_power.channels_tx_power[i].channel_number =
2512                             geo->a[i].channel;
2513                         tx_power.channels_tx_power[i].tx_power = max_power ?
2514                             min(max_power, priv->tx_power) : priv->tx_power;
2515                 }
2516                 if (ipw_send_tx_power(priv, &tx_power))
2517                         return -EIO;
2518         }
2519         return 0;
2520 }
2521
2522 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2523 {
2524         struct ipw_rts_threshold rts_threshold = {
2525                 .rts_threshold = cpu_to_le16(rts),
2526         };
2527
2528         if (!priv) {
2529                 IPW_ERROR("Invalid args\n");
2530                 return -1;
2531         }
2532
2533         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2534                                 sizeof(rts_threshold), &rts_threshold);
2535 }
2536
2537 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2538 {
2539         struct ipw_frag_threshold frag_threshold = {
2540                 .frag_threshold = cpu_to_le16(frag),
2541         };
2542
2543         if (!priv) {
2544                 IPW_ERROR("Invalid args\n");
2545                 return -1;
2546         }
2547
2548         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2549                                 sizeof(frag_threshold), &frag_threshold);
2550 }
2551
2552 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2553 {
2554         __le32 param;
2555
2556         if (!priv) {
2557                 IPW_ERROR("Invalid args\n");
2558                 return -1;
2559         }
2560
2561         /* If on battery, set to 3, if AC set to CAM, else user
2562          * level */
2563         switch (mode) {
2564         case IPW_POWER_BATTERY:
2565                 param = cpu_to_le32(IPW_POWER_INDEX_3);
2566                 break;
2567         case IPW_POWER_AC:
2568                 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2569                 break;
2570         default:
2571                 param = cpu_to_le32(mode);
2572                 break;
2573         }
2574
2575         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2576                                 &param);
2577 }
2578
2579 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2580 {
2581         struct ipw_retry_limit retry_limit = {
2582                 .short_retry_limit = slimit,
2583                 .long_retry_limit = llimit
2584         };
2585
2586         if (!priv) {
2587                 IPW_ERROR("Invalid args\n");
2588                 return -1;
2589         }
2590
2591         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2592                                 &retry_limit);
2593 }
2594
2595 /*
2596  * The IPW device contains a Microwire compatible EEPROM that stores
2597  * various data like the MAC address.  Usually the firmware has exclusive
2598  * access to the eeprom, but during device initialization (before the
2599  * device driver has sent the HostComplete command to the firmware) the
2600  * device driver has read access to the EEPROM by way of indirect addressing
2601  * through a couple of memory mapped registers.
2602  *
2603  * The following is a simplified implementation for pulling data out of the
2604  * the eeprom, along with some helper functions to find information in
2605  * the per device private data's copy of the eeprom.
2606  *
2607  * NOTE: To better understand how these functions work (i.e what is a chip
2608  *       select and why do have to keep driving the eeprom clock?), read
2609  *       just about any data sheet for a Microwire compatible EEPROM.
2610  */
2611
2612 /* write a 32 bit value into the indirect accessor register */
2613 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2614 {
2615         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2616
2617         /* the eeprom requires some time to complete the operation */
2618         udelay(p->eeprom_delay);
2619 }
2620
2621 /* perform a chip select operation */
2622 static void eeprom_cs(struct ipw_priv *priv)
2623 {
2624         eeprom_write_reg(priv, 0);
2625         eeprom_write_reg(priv, EEPROM_BIT_CS);
2626         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2627         eeprom_write_reg(priv, EEPROM_BIT_CS);
2628 }
2629
2630 /* perform a chip select operation */
2631 static void eeprom_disable_cs(struct ipw_priv *priv)
2632 {
2633         eeprom_write_reg(priv, EEPROM_BIT_CS);
2634         eeprom_write_reg(priv, 0);
2635         eeprom_write_reg(priv, EEPROM_BIT_SK);
2636 }
2637
2638 /* push a single bit down to the eeprom */
2639 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2640 {
2641         int d = (bit ? EEPROM_BIT_DI : 0);
2642         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2643         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2644 }
2645
2646 /* push an opcode followed by an address down to the eeprom */
2647 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2648 {
2649         int i;
2650
2651         eeprom_cs(priv);
2652         eeprom_write_bit(priv, 1);
2653         eeprom_write_bit(priv, op & 2);
2654         eeprom_write_bit(priv, op & 1);
2655         for (i = 7; i >= 0; i--) {
2656                 eeprom_write_bit(priv, addr & (1 << i));
2657         }
2658 }
2659
2660 /* pull 16 bits off the eeprom, one bit at a time */
2661 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2662 {
2663         int i;
2664         u16 r = 0;
2665
2666         /* Send READ Opcode */
2667         eeprom_op(priv, EEPROM_CMD_READ, addr);
2668
2669         /* Send dummy bit */
2670         eeprom_write_reg(priv, EEPROM_BIT_CS);
2671
2672         /* Read the byte off the eeprom one bit at a time */
2673         for (i = 0; i < 16; i++) {
2674                 u32 data = 0;
2675                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2676                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2677                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2678                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2679         }
2680
2681         /* Send another dummy bit */
2682         eeprom_write_reg(priv, 0);
2683         eeprom_disable_cs(priv);
2684
2685         return r;
2686 }
2687
2688 /* helper function for pulling the mac address out of the private */
2689 /* data's copy of the eeprom data                                 */
2690 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2691 {
2692         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], ETH_ALEN);
2693 }
2694
2695 static void ipw_read_eeprom(struct ipw_priv *priv)
2696 {
2697         int i;
2698         __le16 *eeprom = (__le16 *) priv->eeprom;
2699
2700         IPW_DEBUG_TRACE(">>\n");
2701
2702         /* read entire contents of eeprom into private buffer */
2703         for (i = 0; i < 128; i++)
2704                 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2705
2706         IPW_DEBUG_TRACE("<<\n");
2707 }
2708
2709 /*
2710  * Either the device driver (i.e. the host) or the firmware can
2711  * load eeprom data into the designated region in SRAM.  If neither
2712  * happens then the FW will shutdown with a fatal error.
2713  *
2714  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2715  * bit needs region of shared SRAM needs to be non-zero.
2716  */
2717 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2718 {
2719         int i;
2720
2721         IPW_DEBUG_TRACE(">>\n");
2722
2723         /*
2724            If the data looks correct, then copy it to our private
2725            copy.  Otherwise let the firmware know to perform the operation
2726            on its own.
2727          */
2728         if (priv->eeprom[EEPROM_VERSION] != 0) {
2729                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2730
2731                 /* write the eeprom data to sram */
2732                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2733                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2734
2735                 /* Do not load eeprom data on fatal error or suspend */
2736                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2737         } else {
2738                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2739
2740                 /* Load eeprom data on fatal error or suspend */
2741                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2742         }
2743
2744         IPW_DEBUG_TRACE("<<\n");
2745 }
2746
2747 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2748 {
2749         count >>= 2;
2750         if (!count)
2751                 return;
2752         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2753         while (count--)
2754                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2755 }
2756
2757 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2758 {
2759         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2760                         CB_NUMBER_OF_ELEMENTS_SMALL *
2761                         sizeof(struct command_block));
2762 }
2763
2764 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2765 {                               /* start dma engine but no transfers yet */
2766
2767         IPW_DEBUG_FW(">> :\n");
2768
2769         /* Start the dma */
2770         ipw_fw_dma_reset_command_blocks(priv);
2771
2772         /* Write CB base address */
2773         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2774
2775         IPW_DEBUG_FW("<< :\n");
2776         return 0;
2777 }
2778
2779 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2780 {
2781         u32 control = 0;
2782
2783         IPW_DEBUG_FW(">> :\n");
2784
2785         /* set the Stop and Abort bit */
2786         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2787         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2788         priv->sram_desc.last_cb_index = 0;
2789
2790         IPW_DEBUG_FW("<<\n");
2791 }
2792
2793 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2794                                           struct command_block *cb)
2795 {
2796         u32 address =
2797             IPW_SHARED_SRAM_DMA_CONTROL +
2798             (sizeof(struct command_block) * index);
2799         IPW_DEBUG_FW(">> :\n");
2800
2801         ipw_write_indirect(priv, address, (u8 *) cb,
2802                            (int)sizeof(struct command_block));
2803
2804         IPW_DEBUG_FW("<< :\n");
2805         return 0;
2806
2807 }
2808
2809 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2810 {
2811         u32 control = 0;
2812         u32 index = 0;
2813
2814         IPW_DEBUG_FW(">> :\n");
2815
2816         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2817                 ipw_fw_dma_write_command_block(priv, index,
2818                                                &priv->sram_desc.cb_list[index]);
2819
2820         /* Enable the DMA in the CSR register */
2821         ipw_clear_bit(priv, IPW_RESET_REG,
2822                       IPW_RESET_REG_MASTER_DISABLED |
2823                       IPW_RESET_REG_STOP_MASTER);
2824
2825         /* Set the Start bit. */
2826         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2827         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2828
2829         IPW_DEBUG_FW("<< :\n");
2830         return 0;
2831 }
2832
2833 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2834 {
2835         u32 address;
2836         u32 register_value = 0;
2837         u32 cb_fields_address = 0;
2838
2839         IPW_DEBUG_FW(">> :\n");
2840         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2841         IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2842
2843         /* Read the DMA Controlor register */
2844         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2845         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2846
2847         /* Print the CB values */
2848         cb_fields_address = address;
2849         register_value = ipw_read_reg32(priv, cb_fields_address);
2850         IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2851
2852         cb_fields_address += sizeof(u32);
2853         register_value = ipw_read_reg32(priv, cb_fields_address);
2854         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2855
2856         cb_fields_address += sizeof(u32);
2857         register_value = ipw_read_reg32(priv, cb_fields_address);
2858         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2859                           register_value);
2860
2861         cb_fields_address += sizeof(u32);
2862         register_value = ipw_read_reg32(priv, cb_fields_address);
2863         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2864
2865         IPW_DEBUG_FW(">> :\n");
2866 }
2867
2868 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2869 {
2870         u32 current_cb_address = 0;
2871         u32 current_cb_index = 0;
2872
2873         IPW_DEBUG_FW("<< :\n");
2874         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2875
2876         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2877             sizeof(struct command_block);
2878
2879         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2880                           current_cb_index, current_cb_address);
2881
2882         IPW_DEBUG_FW(">> :\n");
2883         return current_cb_index;
2884
2885 }
2886
2887 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2888                                         u32 src_address,
2889                                         u32 dest_address,
2890                                         u32 length,
2891                                         int interrupt_enabled, int is_last)
2892 {
2893
2894         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2895             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2896             CB_DEST_SIZE_LONG;
2897         struct command_block *cb;
2898         u32 last_cb_element = 0;
2899
2900         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2901                           src_address, dest_address, length);
2902
2903         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2904                 return -1;
2905
2906         last_cb_element = priv->sram_desc.last_cb_index;
2907         cb = &priv->sram_desc.cb_list[last_cb_element];
2908         priv->sram_desc.last_cb_index++;
2909
2910         /* Calculate the new CB control word */
2911         if (interrupt_enabled)
2912                 control |= CB_INT_ENABLED;
2913
2914         if (is_last)
2915                 control |= CB_LAST_VALID;
2916
2917         control |= length;
2918
2919         /* Calculate the CB Element's checksum value */
2920         cb->status = control ^ src_address ^ dest_address;
2921
2922         /* Copy the Source and Destination addresses */
2923         cb->dest_addr = dest_address;
2924         cb->source_addr = src_address;
2925
2926         /* Copy the Control Word last */
2927         cb->control = control;
2928
2929         return 0;
2930 }
2931
2932 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2933                                  int nr, u32 dest_address, u32 len)
2934 {
2935         int ret, i;
2936         u32 size;
2937
2938         IPW_DEBUG_FW(">>\n");
2939         IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2940                           nr, dest_address, len);
2941
2942         for (i = 0; i < nr; i++) {
2943                 size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2944                 ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2945                                                    dest_address +
2946                                                    i * CB_MAX_LENGTH, size,
2947                                                    0, 0);
2948                 if (ret) {
2949                         IPW_DEBUG_FW_INFO(": Failed\n");
2950                         return -1;
2951                 } else
2952                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2953         }
2954
2955         IPW_DEBUG_FW("<<\n");
2956         return 0;
2957 }
2958
2959 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2960 {
2961         u32 current_index = 0, previous_index;
2962         u32 watchdog = 0;
2963
2964         IPW_DEBUG_FW(">> :\n");
2965
2966         current_index = ipw_fw_dma_command_block_index(priv);
2967         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2968                           (int)priv->sram_desc.last_cb_index);
2969
2970         while (current_index < priv->sram_desc.last_cb_index) {
2971                 udelay(50);
2972                 previous_index = current_index;
2973                 current_index = ipw_fw_dma_command_block_index(priv);
2974
2975                 if (previous_index < current_index) {
2976                         watchdog = 0;
2977                         continue;
2978                 }
2979                 if (++watchdog > 400) {
2980                         IPW_DEBUG_FW_INFO("Timeout\n");
2981                         ipw_fw_dma_dump_command_block(priv);
2982                         ipw_fw_dma_abort(priv);
2983                         return -1;
2984                 }
2985         }
2986
2987         ipw_fw_dma_abort(priv);
2988
2989         /*Disable the DMA in the CSR register */
2990         ipw_set_bit(priv, IPW_RESET_REG,
2991                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2992
2993         IPW_DEBUG_FW("<< dmaWaitSync\n");
2994         return 0;
2995 }
2996
2997 static void ipw_remove_current_network(struct ipw_priv *priv)
2998 {
2999         struct list_head *element, *safe;
3000         struct libipw_network *network = NULL;
3001         unsigned long flags;
3002
3003         spin_lock_irqsave(&priv->ieee->lock, flags);
3004         list_for_each_safe(element, safe, &priv->ieee->network_list) {
3005                 network = list_entry(element, struct libipw_network, list);
3006                 if (ether_addr_equal(network->bssid, priv->bssid)) {
3007                         list_del(element);
3008                         list_add_tail(&network->list,
3009                                       &priv->ieee->network_free_list);
3010                 }
3011         }
3012         spin_unlock_irqrestore(&priv->ieee->lock, flags);
3013 }
3014
3015 /**
3016  * Check that card is still alive.
3017  * Reads debug register from domain0.
3018  * If card is present, pre-defined value should
3019  * be found there.
3020  *
3021  * @param priv
3022  * @return 1 if card is present, 0 otherwise
3023  */
3024 static inline int ipw_alive(struct ipw_priv *priv)
3025 {
3026         return ipw_read32(priv, 0x90) == 0xd55555d5;
3027 }
3028
3029 /* timeout in msec, attempted in 10-msec quanta */
3030 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3031                                int timeout)
3032 {
3033         int i = 0;
3034
3035         do {
3036                 if ((ipw_read32(priv, addr) & mask) == mask)
3037                         return i;
3038                 mdelay(10);
3039                 i += 10;
3040         } while (i < timeout);
3041
3042         return -ETIME;
3043 }
3044
3045 /* These functions load the firmware and micro code for the operation of
3046  * the ipw hardware.  It assumes the buffer has all the bits for the
3047  * image and the caller is handling the memory allocation and clean up.
3048  */
3049
3050 static int ipw_stop_master(struct ipw_priv *priv)
3051 {
3052         int rc;
3053
3054         IPW_DEBUG_TRACE(">>\n");
3055         /* stop master. typical delay - 0 */
3056         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3057
3058         /* timeout is in msec, polled in 10-msec quanta */
3059         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3060                           IPW_RESET_REG_MASTER_DISABLED, 100);
3061         if (rc < 0) {
3062                 IPW_ERROR("wait for stop master failed after 100ms\n");
3063                 return -1;
3064         }
3065
3066         IPW_DEBUG_INFO("stop master %dms\n", rc);
3067
3068         return rc;
3069 }
3070
3071 static void ipw_arc_release(struct ipw_priv *priv)
3072 {
3073         IPW_DEBUG_TRACE(">>\n");
3074         mdelay(5);
3075
3076         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3077
3078         /* no one knows timing, for safety add some delay */
3079         mdelay(5);
3080 }
3081
3082 struct fw_chunk {
3083         __le32 address;
3084         __le32 length;
3085 };
3086
3087 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3088 {
3089         int rc = 0, i, addr;
3090         u8 cr = 0;
3091         __le16 *image;
3092
3093         image = (__le16 *) data;
3094
3095         IPW_DEBUG_TRACE(">>\n");
3096
3097         rc = ipw_stop_master(priv);
3098
3099         if (rc < 0)
3100                 return rc;
3101
3102         for (addr = IPW_SHARED_LOWER_BOUND;
3103              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3104                 ipw_write32(priv, addr, 0);
3105         }
3106
3107         /* no ucode (yet) */
3108         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3109         /* destroy DMA queues */
3110         /* reset sequence */
3111
3112         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3113         ipw_arc_release(priv);
3114         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3115         mdelay(1);
3116
3117         /* reset PHY */
3118         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3119         mdelay(1);
3120
3121         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3122         mdelay(1);
3123
3124         /* enable ucode store */
3125         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3126         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3127         mdelay(1);
3128
3129         /* write ucode */
3130         /**
3131          * @bug
3132          * Do NOT set indirect address register once and then
3133          * store data to indirect data register in the loop.
3134          * It seems very reasonable, but in this case DINO do not
3135          * accept ucode. It is essential to set address each time.
3136          */
3137         /* load new ipw uCode */
3138         for (i = 0; i < len / 2; i++)
3139                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3140                                 le16_to_cpu(image[i]));
3141
3142         /* enable DINO */
3143         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3144         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3145
3146         /* this is where the igx / win driver deveates from the VAP driver. */
3147
3148         /* wait for alive response */
3149         for (i = 0; i < 100; i++) {
3150                 /* poll for incoming data */
3151                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3152                 if (cr & DINO_RXFIFO_DATA)
3153                         break;
3154                 mdelay(1);
3155         }
3156
3157         if (cr & DINO_RXFIFO_DATA) {
3158                 /* alive_command_responce size is NOT multiple of 4 */
3159                 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3160
3161                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3162                         response_buffer[i] =
3163                             cpu_to_le32(ipw_read_reg32(priv,
3164                                                        IPW_BASEBAND_RX_FIFO_READ));
3165                 memcpy(&priv->dino_alive, response_buffer,
3166                        sizeof(priv->dino_alive));
3167                 if (priv->dino_alive.alive_command == 1
3168                     && priv->dino_alive.ucode_valid == 1) {
3169                         rc = 0;
3170                         IPW_DEBUG_INFO
3171                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3172                              "of %02d/%02d/%02d %02d:%02d\n",
3173                              priv->dino_alive.software_revision,
3174                              priv->dino_alive.software_revision,
3175                              priv->dino_alive.device_identifier,
3176                              priv->dino_alive.device_identifier,
3177                              priv->dino_alive.time_stamp[0],
3178                              priv->dino_alive.time_stamp[1],
3179                              priv->dino_alive.time_stamp[2],
3180                              priv->dino_alive.time_stamp[3],
3181                              priv->dino_alive.time_stamp[4]);
3182                 } else {
3183                         IPW_DEBUG_INFO("Microcode is not alive\n");
3184                         rc = -EINVAL;
3185                 }
3186         } else {
3187                 IPW_DEBUG_INFO("No alive response from DINO\n");
3188                 rc = -ETIME;
3189         }
3190
3191         /* disable DINO, otherwise for some reason
3192            firmware have problem getting alive resp. */
3193         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3194
3195         return rc;
3196 }
3197
3198 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3199 {
3200         int ret = -1;
3201         int offset = 0;
3202         struct fw_chunk *chunk;
3203         int total_nr = 0;
3204         int i;
3205         struct dma_pool *pool;
3206         void **virts;
3207         dma_addr_t *phys;
3208
3209         IPW_DEBUG_TRACE("<< :\n");
3210
3211         virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3212                         GFP_KERNEL);
3213         if (!virts)
3214                 return -ENOMEM;
3215
3216         phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3217                         GFP_KERNEL);
3218         if (!phys) {
3219                 kfree(virts);
3220                 return -ENOMEM;
3221         }
3222         pool = dma_pool_create("ipw2200", &priv->pci_dev->dev, CB_MAX_LENGTH, 0,
3223                                0);
3224         if (!pool) {
3225                 IPW_ERROR("dma_pool_create failed\n");
3226                 kfree(phys);
3227                 kfree(virts);
3228                 return -ENOMEM;
3229         }
3230
3231         /* Start the Dma */
3232         ret = ipw_fw_dma_enable(priv);
3233
3234         /* the DMA is already ready this would be a bug. */
3235         BUG_ON(priv->sram_desc.last_cb_index > 0);
3236
3237         do {
3238                 u32 chunk_len;
3239                 u8 *start;
3240                 int size;
3241                 int nr = 0;
3242
3243                 chunk = (struct fw_chunk *)(data + offset);
3244                 offset += sizeof(struct fw_chunk);
3245                 chunk_len = le32_to_cpu(chunk->length);
3246                 start = data + offset;
3247
3248                 nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3249                 for (i = 0; i < nr; i++) {
3250                         virts[total_nr] = dma_pool_alloc(pool, GFP_KERNEL,
3251                                                          &phys[total_nr]);
3252                         if (!virts[total_nr]) {
3253                                 ret = -ENOMEM;
3254                                 goto out;
3255                         }
3256                         size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3257                                      CB_MAX_LENGTH);
3258                         memcpy(virts[total_nr], start, size);
3259                         start += size;
3260                         total_nr++;
3261                         /* We don't support fw chunk larger than 64*8K */
3262                         BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3263                 }
3264
3265                 /* build DMA packet and queue up for sending */
3266                 /* dma to chunk->address, the chunk->length bytes from data +
3267                  * offeset*/
3268                 /* Dma loading */
3269                 ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3270                                             nr, le32_to_cpu(chunk->address),
3271                                             chunk_len);
3272                 if (ret) {
3273                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3274                         goto out;
3275                 }
3276
3277                 offset += chunk_len;
3278         } while (offset < len);
3279
3280         /* Run the DMA and wait for the answer */
3281         ret = ipw_fw_dma_kick(priv);
3282         if (ret) {
3283                 IPW_ERROR("dmaKick Failed\n");
3284                 goto out;
3285         }
3286
3287         ret = ipw_fw_dma_wait(priv);
3288         if (ret) {
3289                 IPW_ERROR("dmaWaitSync Failed\n");
3290                 goto out;
3291         }
3292  out:
3293         for (i = 0; i < total_nr; i++)
3294                 dma_pool_free(pool, virts[i], phys[i]);
3295
3296         dma_pool_destroy(pool);
3297         kfree(phys);
3298         kfree(virts);
3299
3300         return ret;
3301 }
3302
3303 /* stop nic */
3304 static int ipw_stop_nic(struct ipw_priv *priv)
3305 {
3306         int rc = 0;
3307
3308         /* stop */
3309         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3310
3311         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3312                           IPW_RESET_REG_MASTER_DISABLED, 500);
3313         if (rc < 0) {
3314                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3315                 return rc;
3316         }
3317
3318         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3319
3320         return rc;
3321 }
3322
3323 static void ipw_start_nic(struct ipw_priv *priv)
3324 {
3325         IPW_DEBUG_TRACE(">>\n");
3326
3327         /* prvHwStartNic  release ARC */
3328         ipw_clear_bit(priv, IPW_RESET_REG,
3329                       IPW_RESET_REG_MASTER_DISABLED |
3330                       IPW_RESET_REG_STOP_MASTER |
3331                       CBD_RESET_REG_PRINCETON_RESET);
3332
3333         /* enable power management */
3334         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3335                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3336
3337         IPW_DEBUG_TRACE("<<\n");
3338 }
3339
3340 static int ipw_init_nic(struct ipw_priv *priv)
3341 {
3342         int rc;
3343
3344         IPW_DEBUG_TRACE(">>\n");
3345         /* reset */
3346         /*prvHwInitNic */
3347         /* set "initialization complete" bit to move adapter to D0 state */
3348         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3349
3350         /* low-level PLL activation */
3351         ipw_write32(priv, IPW_READ_INT_REGISTER,
3352                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3353
3354         /* wait for clock stabilization */
3355         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3356                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3357         if (rc < 0)
3358                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3359
3360         /* assert SW reset */
3361         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3362
3363         udelay(10);
3364
3365         /* set "initialization complete" bit to move adapter to D0 state */
3366         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3367
3368         IPW_DEBUG_TRACE(">>\n");
3369         return 0;
3370 }
3371
3372 /* Call this function from process context, it will sleep in request_firmware.
3373  * Probe is an ok place to call this from.
3374  */
3375 static int ipw_reset_nic(struct ipw_priv *priv)
3376 {
3377         int rc = 0;
3378         unsigned long flags;
3379
3380         IPW_DEBUG_TRACE(">>\n");
3381
3382         rc = ipw_init_nic(priv);
3383
3384         spin_lock_irqsave(&priv->lock, flags);
3385         /* Clear the 'host command active' bit... */
3386         priv->status &= ~STATUS_HCMD_ACTIVE;
3387         wake_up_interruptible(&priv->wait_command_queue);
3388         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3389         wake_up_interruptible(&priv->wait_state);
3390         spin_unlock_irqrestore(&priv->lock, flags);
3391
3392         IPW_DEBUG_TRACE("<<\n");
3393         return rc;
3394 }
3395
3396
3397 struct ipw_fw {
3398         __le32 ver;
3399         __le32 boot_size;
3400         __le32 ucode_size;
3401         __le32 fw_size;
3402         u8 data[0];
3403 };
3404
3405 static int ipw_get_fw(struct ipw_priv *priv,
3406                       const struct firmware **raw, const char *name)
3407 {
3408         struct ipw_fw *fw;
3409         int rc;
3410
3411         /* ask firmware_class module to get the boot firmware off disk */
3412         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3413         if (rc < 0) {
3414                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3415                 return rc;
3416         }
3417
3418         if ((*raw)->size < sizeof(*fw)) {
3419                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3420                 return -EINVAL;
3421         }
3422
3423         fw = (void *)(*raw)->data;
3424
3425         if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3426             le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3427                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3428                           name, (*raw)->size);
3429                 return -EINVAL;
3430         }
3431
3432         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3433                        name,
3434                        le32_to_cpu(fw->ver) >> 16,
3435                        le32_to_cpu(fw->ver) & 0xff,
3436                        (*raw)->size - sizeof(*fw));
3437         return 0;
3438 }
3439
3440 #define IPW_RX_BUF_SIZE (3000)
3441
3442 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3443                                       struct ipw_rx_queue *rxq)
3444 {
3445         unsigned long flags;
3446         int i;
3447
3448         spin_lock_irqsave(&rxq->lock, flags);
3449
3450         INIT_LIST_HEAD(&rxq->rx_free);
3451         INIT_LIST_HEAD(&rxq->rx_used);
3452
3453         /* Fill the rx_used queue with _all_ of the Rx buffers */
3454         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3455                 /* In the reset function, these buffers may have been allocated
3456                  * to an SKB, so we need to unmap and free potential storage */
3457                 if (rxq->pool[i].skb != NULL) {
3458                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3459                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3460                         dev_kfree_skb(rxq->pool[i].skb);
3461                         rxq->pool[i].skb = NULL;
3462                 }
3463                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3464         }
3465
3466         /* Set us so that we have processed and used all buffers, but have
3467          * not restocked the Rx queue with fresh buffers */
3468         rxq->read = rxq->write = 0;
3469         rxq->free_count = 0;
3470         spin_unlock_irqrestore(&rxq->lock, flags);
3471 }
3472
3473 #ifdef CONFIG_PM
3474 static int fw_loaded = 0;
3475 static const struct firmware *raw = NULL;
3476
3477 static void free_firmware(void)
3478 {
3479         if (fw_loaded) {
3480                 release_firmware(raw);
3481                 raw = NULL;
3482                 fw_loaded = 0;
3483         }
3484 }
3485 #else
3486 #define free_firmware() do {} while (0)
3487 #endif
3488
3489 static int ipw_load(struct ipw_priv *priv)
3490 {
3491 #ifndef CONFIG_PM
3492         const struct firmware *raw = NULL;
3493 #endif
3494         struct ipw_fw *fw;
3495         u8 *boot_img, *ucode_img, *fw_img;
3496         u8 *name = NULL;
3497         int rc = 0, retries = 3;
3498
3499         switch (priv->ieee->iw_mode) {
3500         case IW_MODE_ADHOC:
3501                 name = "ipw2200-ibss.fw";
3502                 break;
3503 #ifdef CONFIG_IPW2200_MONITOR
3504         case IW_MODE_MONITOR:
3505                 name = "ipw2200-sniffer.fw";
3506                 break;
3507 #endif
3508         case IW_MODE_INFRA:
3509                 name = "ipw2200-bss.fw";
3510                 break;
3511         }
3512
3513         if (!name) {
3514                 rc = -EINVAL;
3515                 goto error;
3516         }
3517
3518 #ifdef CONFIG_PM
3519         if (!fw_loaded) {
3520 #endif
3521                 rc = ipw_get_fw(priv, &raw, name);
3522                 if (rc < 0)
3523                         goto error;
3524 #ifdef CONFIG_PM
3525         }
3526 #endif
3527
3528         fw = (void *)raw->data;
3529         boot_img = &fw->data[0];
3530         ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3531         fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3532                            le32_to_cpu(fw->ucode_size)];
3533
3534         if (!priv->rxq)
3535                 priv->rxq = ipw_rx_queue_alloc(priv);
3536         else
3537                 ipw_rx_queue_reset(priv, priv->rxq);
3538         if (!priv->rxq) {
3539                 IPW_ERROR("Unable to initialize Rx queue\n");
3540                 rc = -ENOMEM;
3541                 goto error;
3542         }
3543
3544       retry:
3545         /* Ensure interrupts are disabled */
3546         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3547         priv->status &= ~STATUS_INT_ENABLED;
3548
3549         /* ack pending interrupts */
3550         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3551
3552         ipw_stop_nic(priv);
3553
3554         rc = ipw_reset_nic(priv);
3555         if (rc < 0) {
3556                 IPW_ERROR("Unable to reset NIC\n");
3557                 goto error;
3558         }
3559
3560         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3561                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3562
3563         /* DMA the initial boot firmware into the device */
3564         rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3565         if (rc < 0) {
3566                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3567                 goto error;
3568         }
3569
3570         /* kick start the device */
3571         ipw_start_nic(priv);
3572
3573         /* wait for the device to finish its initial startup sequence */
3574         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3575                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3576         if (rc < 0) {
3577                 IPW_ERROR("device failed to boot initial fw image\n");
3578                 goto error;
3579         }
3580         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3581
3582         /* ack fw init done interrupt */
3583         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3584
3585         /* DMA the ucode into the device */
3586         rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3587         if (rc < 0) {
3588                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3589                 goto error;
3590         }
3591
3592         /* stop nic */
3593         ipw_stop_nic(priv);
3594
3595         /* DMA bss firmware into the device */
3596         rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3597         if (rc < 0) {
3598                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3599                 goto error;
3600         }
3601 #ifdef CONFIG_PM
3602         fw_loaded = 1;
3603 #endif
3604
3605         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3606
3607         rc = ipw_queue_reset(priv);
3608         if (rc < 0) {
3609                 IPW_ERROR("Unable to initialize queues\n");
3610                 goto error;
3611         }
3612
3613         /* Ensure interrupts are disabled */
3614         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3615         /* ack pending interrupts */
3616         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3617
3618         /* kick start the device */
3619         ipw_start_nic(priv);
3620
3621         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3622                 if (retries > 0) {
3623                         IPW_WARNING("Parity error.  Retrying init.\n");
3624                         retries--;
3625                         goto retry;
3626                 }
3627
3628                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3629                 rc = -EIO;
3630                 goto error;
3631         }
3632
3633         /* wait for the device */
3634         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3635                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3636         if (rc < 0) {
3637                 IPW_ERROR("device failed to start within 500ms\n");
3638                 goto error;
3639         }
3640         IPW_DEBUG_INFO("device response after %dms\n", rc);
3641
3642         /* ack fw init done interrupt */
3643         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3644
3645         /* read eeprom data */
3646         priv->eeprom_delay = 1;
3647         ipw_read_eeprom(priv);
3648         /* initialize the eeprom region of sram */
3649         ipw_eeprom_init_sram(priv);
3650
3651         /* enable interrupts */
3652         ipw_enable_interrupts(priv);
3653
3654         /* Ensure our queue has valid packets */
3655         ipw_rx_queue_replenish(priv);
3656
3657         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3658
3659         /* ack pending interrupts */
3660         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3661
3662 #ifndef CONFIG_PM
3663         release_firmware(raw);
3664 #endif
3665         return 0;
3666
3667       error:
3668         if (priv->rxq) {
3669                 ipw_rx_queue_free(priv, priv->rxq);
3670                 priv->rxq = NULL;
3671         }
3672         ipw_tx_queue_free(priv);
3673         release_firmware(raw);
3674 #ifdef CONFIG_PM
3675         fw_loaded = 0;
3676         raw = NULL;
3677 #endif
3678
3679         return rc;
3680 }
3681
3682 /**
3683  * DMA services
3684  *
3685  * Theory of operation
3686  *
3687  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3688  * 2 empty entries always kept in the buffer to protect from overflow.
3689  *
3690  * For Tx queue, there are low mark and high mark limits. If, after queuing
3691  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3692  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3693  * Tx queue resumed.
3694  *
3695  * The IPW operates with six queues, one receive queue in the device's
3696  * sram, one transmit queue for sending commands to the device firmware,
3697  * and four transmit queues for data.
3698  *
3699  * The four transmit queues allow for performing quality of service (qos)
3700  * transmissions as per the 802.11 protocol.  Currently Linux does not
3701  * provide a mechanism to the user for utilizing prioritized queues, so
3702  * we only utilize the first data transmit queue (queue1).
3703  */
3704
3705 /**
3706  * Driver allocates buffers of this size for Rx
3707  */
3708
3709 /**
3710  * ipw_rx_queue_space - Return number of free slots available in queue.
3711  */
3712 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3713 {
3714         int s = q->read - q->write;
3715         if (s <= 0)
3716                 s += RX_QUEUE_SIZE;
3717         /* keep some buffer to not confuse full and empty queue */
3718         s -= 2;
3719         if (s < 0)
3720                 s = 0;
3721         return s;
3722 }
3723
3724 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3725 {
3726         int s = q->last_used - q->first_empty;
3727         if (s <= 0)
3728                 s += q->n_bd;
3729         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3730         if (s < 0)
3731                 s = 0;
3732         return s;
3733 }
3734
3735 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3736 {
3737         return (++index == n_bd) ? 0 : index;
3738 }
3739
3740 /**
3741  * Initialize common DMA queue structure
3742  *
3743  * @param q                queue to init
3744  * @param count            Number of BD's to allocate. Should be power of 2
3745  * @param read_register    Address for 'read' register
3746  *                         (not offset within BAR, full address)
3747  * @param write_register   Address for 'write' register
3748  *                         (not offset within BAR, full address)
3749  * @param base_register    Address for 'base' register
3750  *                         (not offset within BAR, full address)
3751  * @param size             Address for 'size' register
3752  *                         (not offset within BAR, full address)
3753  */
3754 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3755                            int count, u32 read, u32 write, u32 base, u32 size)
3756 {
3757         q->n_bd = count;
3758
3759         q->low_mark = q->n_bd / 4;
3760         if (q->low_mark < 4)
3761                 q->low_mark = 4;
3762
3763         q->high_mark = q->n_bd / 8;
3764         if (q->high_mark < 2)
3765                 q->high_mark = 2;
3766
3767         q->first_empty = q->last_used = 0;
3768         q->reg_r = read;
3769         q->reg_w = write;
3770
3771         ipw_write32(priv, base, q->dma_addr);
3772         ipw_write32(priv, size, count);
3773         ipw_write32(priv, read, 0);
3774         ipw_write32(priv, write, 0);
3775
3776         _ipw_read32(priv, 0x90);
3777 }
3778
3779 static int ipw_queue_tx_init(struct ipw_priv *priv,
3780                              struct clx2_tx_queue *q,
3781                              int count, u32 read, u32 write, u32 base, u32 size)
3782 {
3783         struct pci_dev *dev = priv->pci_dev;
3784
3785         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3786         if (!q->txb) {
3787                 IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3788                 return -ENOMEM;
3789         }
3790
3791         q->bd =
3792             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3793         if (!q->bd) {
3794                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3795                           sizeof(q->bd[0]) * count);
3796                 kfree(q->txb);
3797                 q->txb = NULL;
3798                 return -ENOMEM;
3799         }
3800
3801         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3802         return 0;
3803 }
3804
3805 /**
3806  * Free one TFD, those at index [txq->q.last_used].
3807  * Do NOT advance any indexes
3808  *
3809  * @param dev
3810  * @param txq
3811  */
3812 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3813                                   struct clx2_tx_queue *txq)
3814 {
3815         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3816         struct pci_dev *dev = priv->pci_dev;
3817         int i;
3818
3819         /* classify bd */
3820         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3821                 /* nothing to cleanup after for host commands */
3822                 return;
3823
3824         /* sanity check */
3825         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3826                 IPW_ERROR("Too many chunks: %i\n",
3827                           le32_to_cpu(bd->u.data.num_chunks));
3828                 /** @todo issue fatal error, it is quite serious situation */
3829                 return;
3830         }
3831
3832         /* unmap chunks if any */
3833         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3834                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3835                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3836                                  PCI_DMA_TODEVICE);
3837                 if (txq->txb[txq->q.last_used]) {
3838                         libipw_txb_free(txq->txb[txq->q.last_used]);
3839                         txq->txb[txq->q.last_used] = NULL;
3840                 }
3841         }
3842 }
3843
3844 /**
3845  * Deallocate DMA queue.
3846  *
3847  * Empty queue by removing and destroying all BD's.
3848  * Free all buffers.
3849  *
3850  * @param dev
3851  * @param q
3852  */
3853 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3854 {
3855         struct clx2_queue *q = &txq->q;
3856         struct pci_dev *dev = priv->pci_dev;
3857
3858         if (q->n_bd == 0)
3859                 return;
3860
3861         /* first, empty all BD's */
3862         for (; q->first_empty != q->last_used;
3863              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3864                 ipw_queue_tx_free_tfd(priv, txq);
3865         }
3866
3867         /* free buffers belonging to queue itself */
3868         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3869                             q->dma_addr);
3870         kfree(txq->txb);
3871
3872         /* 0 fill whole structure */
3873         memset(txq, 0, sizeof(*txq));
3874 }
3875
3876 /**
3877  * Destroy all DMA queues and structures
3878  *
3879  * @param priv
3880  */
3881 static void ipw_tx_queue_free(struct ipw_priv *priv)
3882 {
3883         /* Tx CMD queue */
3884         ipw_queue_tx_free(priv, &priv->txq_cmd);
3885
3886         /* Tx queues */
3887         ipw_queue_tx_free(priv, &priv->txq[0]);
3888         ipw_queue_tx_free(priv, &priv->txq[1]);
3889         ipw_queue_tx_free(priv, &priv->txq[2]);
3890         ipw_queue_tx_free(priv, &priv->txq[3]);
3891 }
3892
3893 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3894 {
3895         /* First 3 bytes are manufacturer */
3896         bssid[0] = priv->mac_addr[0];
3897         bssid[1] = priv->mac_addr[1];
3898         bssid[2] = priv->mac_addr[2];
3899
3900         /* Last bytes are random */
3901         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3902
3903         bssid[0] &= 0xfe;       /* clear multicast bit */
3904         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3905 }
3906
3907 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3908 {
3909         struct ipw_station_entry entry;
3910         int i;
3911
3912         for (i = 0; i < priv->num_stations; i++) {
3913                 if (ether_addr_equal(priv->stations[i], bssid)) {
3914                         /* Another node is active in network */
3915                         priv->missed_adhoc_beacons = 0;
3916                         if (!(priv->config & CFG_STATIC_CHANNEL))
3917                                 /* when other nodes drop out, we drop out */
3918                                 priv->config &= ~CFG_ADHOC_PERSIST;
3919
3920                         return i;
3921                 }
3922         }
3923
3924         if (i == MAX_STATIONS)
3925                 return IPW_INVALID_STATION;
3926
3927         IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3928
3929         entry.reserved = 0;
3930         entry.support_mode = 0;
3931         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3932         memcpy(priv->stations[i], bssid, ETH_ALEN);
3933         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3934                          &entry, sizeof(entry));
3935         priv->num_stations++;
3936
3937         return i;
3938 }
3939
3940 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3941 {
3942         int i;
3943
3944         for (i = 0; i < priv->num_stations; i++)
3945                 if (ether_addr_equal(priv->stations[i], bssid))
3946                         return i;
3947
3948         return IPW_INVALID_STATION;
3949 }
3950
3951 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3952 {
3953         int err;
3954
3955         if (priv->status & STATUS_ASSOCIATING) {
3956                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3957                 schedule_work(&priv->disassociate);
3958                 return;
3959         }
3960
3961         if (!(priv->status & STATUS_ASSOCIATED)) {
3962                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3963                 return;
3964         }
3965
3966         IPW_DEBUG_ASSOC("Disassociation attempt from %pM "
3967                         "on channel %d.\n",
3968                         priv->assoc_request.bssid,
3969                         priv->assoc_request.channel);
3970
3971         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3972         priv->status |= STATUS_DISASSOCIATING;
3973
3974         if (quiet)
3975                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3976         else
3977                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3978
3979         err = ipw_send_associate(priv, &priv->assoc_request);
3980         if (err) {
3981                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3982                              "failed.\n");
3983                 return;
3984         }
3985
3986 }
3987
3988 static int ipw_disassociate(void *data)
3989 {
3990         struct ipw_priv *priv = data;
3991         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3992                 return 0;
3993         ipw_send_disassociate(data, 0);
3994         netif_carrier_off(priv->net_dev);
3995         return 1;
3996 }
3997
3998 static void ipw_bg_disassociate(struct work_struct *work)
3999 {
4000         struct ipw_priv *priv =
4001                 container_of(work, struct ipw_priv, disassociate);
4002         mutex_lock(&priv->mutex);
4003         ipw_disassociate(priv);
4004         mutex_unlock(&priv->mutex);
4005 }
4006
4007 static void ipw_system_config(struct work_struct *work)
4008 {
4009         struct ipw_priv *priv =
4010                 container_of(work, struct ipw_priv, system_config);
4011
4012 #ifdef CONFIG_IPW2200_PROMISCUOUS
4013         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4014                 priv->sys_config.accept_all_data_frames = 1;
4015                 priv->sys_config.accept_non_directed_frames = 1;
4016                 priv->sys_config.accept_all_mgmt_bcpr = 1;
4017                 priv->sys_config.accept_all_mgmt_frames = 1;
4018         }
4019 #endif
4020
4021         ipw_send_system_config(priv);
4022 }
4023
4024 struct ipw_status_code {
4025         u16 status;
4026         const char *reason;
4027 };
4028
4029 static const struct ipw_status_code ipw_status_codes[] = {
4030         {0x00, "Successful"},
4031         {0x01, "Unspecified failure"},
4032         {0x0A, "Cannot support all requested capabilities in the "
4033          "Capability information field"},
4034         {0x0B, "Reassociation denied due to inability to confirm that "
4035          "association exists"},
4036         {0x0C, "Association denied due to reason outside the scope of this "
4037          "standard"},
4038         {0x0D,
4039          "Responding station does not support the specified authentication "
4040          "algorithm"},
4041         {0x0E,
4042          "Received an Authentication frame with authentication sequence "
4043          "transaction sequence number out of expected sequence"},
4044         {0x0F, "Authentication rejected because of challenge failure"},
4045         {0x10, "Authentication rejected due to timeout waiting for next "
4046          "frame in sequence"},
4047         {0x11, "Association denied because AP is unable to handle additional "
4048          "associated stations"},
4049         {0x12,
4050          "Association denied due to requesting station not supporting all "
4051          "of the datarates in the BSSBasicServiceSet Parameter"},
4052         {0x13,
4053          "Association denied due to requesting station not supporting "
4054          "short preamble operation"},
4055         {0x14,
4056          "Association denied due to requesting station not supporting "
4057          "PBCC encoding"},
4058         {0x15,
4059          "Association denied due to requesting station not supporting "
4060          "channel agility"},
4061         {0x19,
4062          "Association denied due to requesting station not supporting "
4063          "short slot operation"},
4064         {0x1A,
4065          "Association denied due to requesting station not supporting "
4066          "DSSS-OFDM operation"},
4067         {0x28, "Invalid Information Element"},
4068         {0x29, "Group Cipher is not valid"},
4069         {0x2A, "Pairwise Cipher is not valid"},
4070         {0x2B, "AKMP is not valid"},
4071         {0x2C, "Unsupported RSN IE version"},
4072         {0x2D, "Invalid RSN IE Capabilities"},
4073         {0x2E, "Cipher suite is rejected per security policy"},
4074 };
4075
4076 static const char *ipw_get_status_code(u16 status)
4077 {
4078         int i;
4079         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4080                 if (ipw_status_codes[i].status == (status & 0xff))
4081                         return ipw_status_codes[i].reason;
4082         return "Unknown status value.";
4083 }
4084
4085 static inline void average_init(struct average *avg)
4086 {
4087         memset(avg, 0, sizeof(*avg));
4088 }
4089
4090 #define DEPTH_RSSI 8
4091 #define DEPTH_NOISE 16
4092 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4093 {
4094         return ((depth-1)*prev_avg +  val)/depth;
4095 }
4096
4097 static void average_add(struct average *avg, s16 val)
4098 {
4099         avg->sum -= avg->entries[avg->pos];
4100         avg->sum += val;
4101         avg->entries[avg->pos++] = val;
4102         if (unlikely(avg->pos == AVG_ENTRIES)) {
4103                 avg->init = 1;
4104                 avg->pos = 0;
4105         }
4106 }
4107
4108 static s16 average_value(struct average *avg)
4109 {
4110         if (!unlikely(avg->init)) {
4111                 if (avg->pos)
4112                         return avg->sum / avg->pos;
4113                 return 0;
4114         }
4115
4116         return avg->sum / AVG_ENTRIES;
4117 }
4118
4119 static void ipw_reset_stats(struct ipw_priv *priv)
4120 {
4121         u32 len = sizeof(u32);
4122
4123         priv->quality = 0;
4124
4125         average_init(&priv->average_missed_beacons);
4126         priv->exp_avg_rssi = -60;
4127         priv->exp_avg_noise = -85 + 0x100;
4128
4129         priv->last_rate = 0;
4130         priv->last_missed_beacons = 0;
4131         priv->last_rx_packets = 0;
4132         priv->last_tx_packets = 0;
4133         priv->last_tx_failures = 0;
4134
4135         /* Firmware managed, reset only when NIC is restarted, so we have to
4136          * normalize on the current value */
4137         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4138                         &priv->last_rx_err, &len);
4139         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4140                         &priv->last_tx_failures, &len);
4141
4142         /* Driver managed, reset with each association */
4143         priv->missed_adhoc_beacons = 0;
4144         priv->missed_beacons = 0;
4145         priv->tx_packets = 0;
4146         priv->rx_packets = 0;
4147
4148 }
4149
4150 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4151 {
4152         u32 i = 0x80000000;
4153         u32 mask = priv->rates_mask;
4154         /* If currently associated in B mode, restrict the maximum
4155          * rate match to B rates */
4156         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4157                 mask &= LIBIPW_CCK_RATES_MASK;
4158
4159         /* TODO: Verify that the rate is supported by the current rates
4160          * list. */
4161
4162         while (i && !(mask & i))
4163                 i >>= 1;
4164         switch (i) {
4165         case LIBIPW_CCK_RATE_1MB_MASK:
4166                 return 1000000;
4167         case LIBIPW_CCK_RATE_2MB_MASK:
4168                 return 2000000;
4169         case LIBIPW_CCK_RATE_5MB_MASK:
4170                 return 5500000;
4171         case LIBIPW_OFDM_RATE_6MB_MASK:
4172                 return 6000000;
4173         case LIBIPW_OFDM_RATE_9MB_MASK:
4174                 return 9000000;
4175         case LIBIPW_CCK_RATE_11MB_MASK:
4176                 return 11000000;
4177         case LIBIPW_OFDM_RATE_12MB_MASK:
4178                 return 12000000;
4179         case LIBIPW_OFDM_RATE_18MB_MASK:
4180                 return 18000000;
4181         case LIBIPW_OFDM_RATE_24MB_MASK:
4182                 return 24000000;
4183         case LIBIPW_OFDM_RATE_36MB_MASK:
4184                 return 36000000;
4185         case LIBIPW_OFDM_RATE_48MB_MASK:
4186                 return 48000000;
4187         case LIBIPW_OFDM_RATE_54MB_MASK:
4188                 return 54000000;
4189         }
4190
4191         if (priv->ieee->mode == IEEE_B)
4192                 return 11000000;
4193         else
4194                 return 54000000;
4195 }
4196
4197 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4198 {
4199         u32 rate, len = sizeof(rate);
4200         int err;
4201
4202         if (!(priv->status & STATUS_ASSOCIATED))
4203                 return 0;
4204
4205         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4206                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4207                                       &len);
4208                 if (err) {
4209                         IPW_DEBUG_INFO("failed querying ordinals.\n");
4210                         return 0;
4211                 }
4212         } else
4213                 return ipw_get_max_rate(priv);
4214
4215         switch (rate) {
4216         case IPW_TX_RATE_1MB:
4217                 return 1000000;
4218         case IPW_TX_RATE_2MB:
4219                 return 2000000;
4220         case IPW_TX_RATE_5MB:
4221                 return 5500000;
4222         case IPW_TX_RATE_6MB:
4223                 return 6000000;
4224         case IPW_TX_RATE_9MB:
4225                 return 9000000;
4226         case IPW_TX_RATE_11MB:
4227                 return 11000000;
4228         case IPW_TX_RATE_12MB:
4229                 return 12000000;
4230         case IPW_TX_RATE_18MB:
4231                 return 18000000;
4232         case IPW_TX_RATE_24MB:
4233                 return 24000000;
4234         case IPW_TX_RATE_36MB:
4235                 return 36000000;
4236         case IPW_TX_RATE_48MB:
4237                 return 48000000;
4238         case IPW_TX_RATE_54MB:
4239                 return 54000000;
4240         }
4241
4242         return 0;
4243 }
4244
4245 #define IPW_STATS_INTERVAL (2 * HZ)
4246 static void ipw_gather_stats(struct ipw_priv *priv)
4247 {
4248         u32 rx_err, rx_err_delta, rx_packets_delta;
4249         u32 tx_failures, tx_failures_delta, tx_packets_delta;
4250         u32 missed_beacons_percent, missed_beacons_delta;
4251         u32 quality = 0;
4252         u32 len = sizeof(u32);
4253         s16 rssi;
4254         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4255             rate_quality;
4256         u32 max_rate;
4257
4258         if (!(priv->status & STATUS_ASSOCIATED)) {
4259                 priv->quality = 0;
4260                 return;
4261         }
4262
4263         /* Update the statistics */
4264         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4265                         &priv->missed_beacons, &len);
4266         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4267         priv->last_missed_beacons = priv->missed_beacons;
4268         if (priv->assoc_request.beacon_interval) {
4269                 missed_beacons_percent = missed_beacons_delta *
4270                     (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4271                     (IPW_STATS_INTERVAL * 10);
4272         } else {
4273                 missed_beacons_percent = 0;
4274         }
4275         average_add(&priv->average_missed_beacons, missed_beacons_percent);
4276
4277         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4278         rx_err_delta = rx_err - priv->last_rx_err;
4279         priv->last_rx_err = rx_err;
4280
4281         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4282         tx_failures_delta = tx_failures - priv->last_tx_failures;
4283         priv->last_tx_failures = tx_failures;
4284
4285         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4286         priv->last_rx_packets = priv->rx_packets;
4287
4288         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4289         priv->last_tx_packets = priv->tx_packets;
4290
4291         /* Calculate quality based on the following:
4292          *
4293          * Missed beacon: 100% = 0, 0% = 70% missed
4294          * Rate: 60% = 1Mbs, 100% = Max
4295          * Rx and Tx errors represent a straight % of total Rx/Tx
4296          * RSSI: 100% = > -50,  0% = < -80
4297          * Rx errors: 100% = 0, 0% = 50% missed
4298          *
4299          * The lowest computed quality is used.
4300          *
4301          */
4302 #define BEACON_THRESHOLD 5
4303         beacon_quality = 100 - missed_beacons_percent;
4304         if (beacon_quality < BEACON_THRESHOLD)
4305                 beacon_quality = 0;
4306         else
4307                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4308                     (100 - BEACON_THRESHOLD);
4309         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4310                         beacon_quality, missed_beacons_percent);
4311
4312         priv->last_rate = ipw_get_current_rate(priv);
4313         max_rate = ipw_get_max_rate(priv);
4314         rate_quality = priv->last_rate * 40 / max_rate + 60;
4315         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4316                         rate_quality, priv->last_rate / 1000000);
4317
4318         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4319                 rx_quality = 100 - (rx_err_delta * 100) /
4320                     (rx_packets_delta + rx_err_delta);
4321         else
4322                 rx_quality = 100;
4323         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4324                         rx_quality, rx_err_delta, rx_packets_delta);
4325
4326         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4327                 tx_quality = 100 - (tx_failures_delta * 100) /
4328                     (tx_packets_delta + tx_failures_delta);
4329         else
4330                 tx_quality = 100;
4331         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4332                         tx_quality, tx_failures_delta, tx_packets_delta);
4333
4334         rssi = priv->exp_avg_rssi;
4335         signal_quality =
4336             (100 *
4337              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4338              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4339              (priv->ieee->perfect_rssi - rssi) *
4340              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4341               62 * (priv->ieee->perfect_rssi - rssi))) /
4342             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4343              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4344         if (signal_quality > 100)
4345                 signal_quality = 100;
4346         else if (signal_quality < 1)
4347                 signal_quality = 0;
4348
4349         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4350                         signal_quality, rssi);
4351
4352         quality = min(rx_quality, signal_quality);
4353         quality = min(tx_quality, quality);
4354         quality = min(rate_quality, quality);
4355         quality = min(beacon_quality, quality);
4356         if (quality == beacon_quality)
4357                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4358                                 quality);
4359         if (quality == rate_quality)
4360                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4361                                 quality);
4362         if (quality == tx_quality)
4363                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4364                                 quality);
4365         if (quality == rx_quality)
4366                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4367                                 quality);
4368         if (quality == signal_quality)
4369                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4370                                 quality);
4371
4372         priv->quality = quality;
4373
4374         schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4375 }
4376
4377 static void ipw_bg_gather_stats(struct work_struct *work)
4378 {
4379         struct ipw_priv *priv =
4380                 container_of(work, struct ipw_priv, gather_stats.work);
4381         mutex_lock(&priv->mutex);
4382         ipw_gather_stats(priv);
4383         mutex_unlock(&priv->mutex);
4384 }
4385
4386 /* Missed beacon behavior:
4387  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4388  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4389  * Above disassociate threshold, give up and stop scanning.
4390  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4391 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4392                                             int missed_count)
4393 {
4394         priv->notif_missed_beacons = missed_count;
4395
4396         if (missed_count > priv->disassociate_threshold &&
4397             priv->status & STATUS_ASSOCIATED) {
4398                 /* If associated and we've hit the missed
4399                  * beacon threshold, disassociate, turn
4400                  * off roaming, and abort any active scans */
4401                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4402                           IPW_DL_STATE | IPW_DL_ASSOC,
4403                           "Missed beacon: %d - disassociate\n", missed_count);
4404                 priv->status &= ~STATUS_ROAMING;
4405                 if (priv->status & STATUS_SCANNING) {
4406                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4407                                   IPW_DL_STATE,
4408                                   "Aborting scan with missed beacon.\n");
4409                         schedule_work(&priv->abort_scan);
4410                 }
4411
4412                 schedule_work(&priv->disassociate);
4413                 return;
4414         }
4415
4416         if (priv->status & STATUS_ROAMING) {
4417                 /* If we are currently roaming, then just
4418                  * print a debug statement... */
4419                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420                           "Missed beacon: %d - roam in progress\n",
4421                           missed_count);
4422                 return;
4423         }
4424
4425         if (roaming &&
4426             (missed_count > priv->roaming_threshold &&
4427              missed_count <= priv->disassociate_threshold)) {
4428                 /* If we are not already roaming, set the ROAM
4429                  * bit in the status and kick off a scan.
4430                  * This can happen several times before we reach
4431                  * disassociate_threshold. */
4432                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4433                           "Missed beacon: %d - initiate "
4434                           "roaming\n", missed_count);
4435                 if (!(priv->status & STATUS_ROAMING)) {
4436                         priv->status |= STATUS_ROAMING;
4437                         if (!(priv->status & STATUS_SCANNING))
4438                                 schedule_delayed_work(&priv->request_scan, 0);
4439                 }
4440                 return;
4441         }
4442
4443         if (priv->status & STATUS_SCANNING &&
4444             missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4445                 /* Stop scan to keep fw from getting
4446                  * stuck (only if we aren't roaming --
4447                  * otherwise we'll never scan more than 2 or 3
4448                  * channels..) */
4449                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4450                           "Aborting scan with missed beacon.\n");
4451                 schedule_work(&priv->abort_scan);
4452         }
4453
4454         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4455 }
4456
4457 static void ipw_scan_event(struct work_struct *work)
4458 {
4459         union iwreq_data wrqu;
4460
4461         struct ipw_priv *priv =
4462                 container_of(work, struct ipw_priv, scan_event.work);
4463
4464         wrqu.data.length = 0;
4465         wrqu.data.flags = 0;
4466         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4467 }
4468
4469 static void handle_scan_event(struct ipw_priv *priv)
4470 {
4471         /* Only userspace-requested scan completion events go out immediately */
4472         if (!priv->user_requested_scan) {
4473                 schedule_delayed_work(&priv->scan_event,
4474                                       round_jiffies_relative(msecs_to_jiffies(4000)));
4475         } else {
4476                 priv->user_requested_scan = 0;
4477                 mod_delayed_work(system_wq, &priv->scan_event, 0);
4478         }
4479 }
4480
4481 /**
4482  * Handle host notification packet.
4483  * Called from interrupt routine
4484  */
4485 static void ipw_rx_notification(struct ipw_priv *priv,
4486                                        struct ipw_rx_notification *notif)
4487 {
4488         u16 size = le16_to_cpu(notif->size);
4489
4490         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4491
4492         switch (notif->subtype) {
4493         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4494                         struct notif_association *assoc = &notif->u.assoc;
4495
4496                         switch (assoc->state) {
4497                         case CMAS_ASSOCIATED:{
4498                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4499                                                   IPW_DL_ASSOC,
4500                                                   "associated: '%*pE' %pM\n",
4501                                                   priv->essid_len, priv->essid,
4502                                                   priv->bssid);
4503
4504                                         switch (priv->ieee->iw_mode) {
4505                                         case IW_MODE_INFRA:
4506                                                 memcpy(priv->ieee->bssid,
4507                                                        priv->bssid, ETH_ALEN);
4508                                                 break;
4509
4510                                         case IW_MODE_ADHOC:
4511                                                 memcpy(priv->ieee->bssid,
4512                                                        priv->bssid, ETH_ALEN);
4513
4514                                                 /* clear out the station table */
4515                                                 priv->num_stations = 0;
4516
4517                                                 IPW_DEBUG_ASSOC
4518                                                     ("queueing adhoc check\n");
4519                                                 schedule_delayed_work(
4520                                                         &priv->adhoc_check,
4521                                                         le16_to_cpu(priv->
4522                                                         assoc_request.
4523                                                         beacon_interval));
4524                                                 break;
4525                                         }
4526
4527                                         priv->status &= ~STATUS_ASSOCIATING;
4528                                         priv->status |= STATUS_ASSOCIATED;
4529                                         schedule_work(&priv->system_config);
4530
4531 #ifdef CONFIG_IPW2200_QOS
4532 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4533                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4534                                         if ((priv->status & STATUS_AUTH) &&
4535                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4536                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4537                                                 if ((sizeof
4538                                                      (struct
4539                                                       libipw_assoc_response)
4540                                                      <= size)
4541                                                     && (size <= 2314)) {
4542                                                         struct
4543                                                         libipw_rx_stats
4544                                                             stats = {
4545                                                                 .len = size - 1,
4546                                                         };
4547
4548                                                         IPW_DEBUG_QOS
4549                                                             ("QoS Associate "
4550                                                              "size %d\n", size);
4551                                                         libipw_rx_mgt(priv->
4552                                                                          ieee,
4553                                                                          (struct
4554                                                                           libipw_hdr_4addr
4555                                                                           *)
4556                                                                          &notif->u.raw, &stats);
4557                                                 }
4558                                         }
4559 #endif
4560
4561                                         schedule_work(&priv->link_up);
4562
4563                                         break;
4564                                 }
4565
4566                         case CMAS_AUTHENTICATED:{
4567                                         if (priv->
4568                                             status & (STATUS_ASSOCIATED |
4569                                                       STATUS_AUTH)) {
4570                                                 struct notif_authenticate *auth
4571                                                     = &notif->u.auth;
4572                                                 IPW_DEBUG(IPW_DL_NOTIF |
4573                                                           IPW_DL_STATE |
4574                                                           IPW_DL_ASSOC,
4575                                                           "deauthenticated: '%*pE' %pM: (0x%04X) - %s\n",
4576                                                           priv->essid_len,
4577                                                           priv->essid,
4578                                                           priv->bssid,
4579                                                           le16_to_cpu(auth->status),
4580                                                           ipw_get_status_code
4581                                                           (le16_to_cpu
4582                                                            (auth->status)));
4583
4584                                                 priv->status &=
4585                                                     ~(STATUS_ASSOCIATING |
4586                                                       STATUS_AUTH |
4587                                                       STATUS_ASSOCIATED);
4588
4589                                                 schedule_work(&priv->link_down);
4590                                                 break;
4591                                         }
4592
4593                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4594                                                   IPW_DL_ASSOC,
4595                                                   "authenticated: '%*pE' %pM\n",
4596                                                   priv->essid_len, priv->essid,
4597                                                   priv->bssid);
4598                                         break;
4599                                 }
4600
4601                         case CMAS_INIT:{
4602                                         if (priv->status & STATUS_AUTH) {
4603                                                 struct
4604                                                     libipw_assoc_response
4605                                                 *resp;
4606                                                 resp =
4607                                                     (struct
4608                                                      libipw_assoc_response
4609                                                      *)&notif->u.raw;
4610                                                 IPW_DEBUG(IPW_DL_NOTIF |
4611                                                           IPW_DL_STATE |
4612                                                           IPW_DL_ASSOC,
4613                                                           "association failed (0x%04X): %s\n",
4614                                                           le16_to_cpu(resp->status),
4615                                                           ipw_get_status_code
4616                                                           (le16_to_cpu
4617                                                            (resp->status)));
4618                                         }
4619
4620                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4621                                                   IPW_DL_ASSOC,
4622                                                   "disassociated: '%*pE' %pM\n",
4623                                                   priv->essid_len, priv->essid,
4624                                                   priv->bssid);
4625
4626                                         priv->status &=
4627                                             ~(STATUS_DISASSOCIATING |
4628                                               STATUS_ASSOCIATING |
4629                                               STATUS_ASSOCIATED | STATUS_AUTH);
4630                                         if (priv->assoc_network
4631                                             && (priv->assoc_network->
4632                                                 capability &
4633                                                 WLAN_CAPABILITY_IBSS))
4634                                                 ipw_remove_current_network
4635                                                     (priv);
4636
4637                                         schedule_work(&priv->link_down);
4638
4639                                         break;
4640                                 }
4641
4642                         case CMAS_RX_ASSOC_RESP:
4643                                 break;
4644
4645                         default:
4646                                 IPW_ERROR("assoc: unknown (%d)\n",
4647                                           assoc->state);
4648                                 break;
4649                         }
4650
4651                         break;
4652                 }
4653
4654         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4655                         struct notif_authenticate *auth = &notif->u.auth;
4656                         switch (auth->state) {
4657                         case CMAS_AUTHENTICATED:
4658                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4659                                           "authenticated: '%*pE' %pM\n",
4660                                           priv->essid_len, priv->essid,
4661                                           priv->bssid);
4662                                 priv->status |= STATUS_AUTH;
4663                                 break;
4664
4665                         case CMAS_INIT:
4666                                 if (priv->status & STATUS_AUTH) {
4667                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4668                                                   IPW_DL_ASSOC,
4669                                                   "authentication failed (0x%04X): %s\n",
4670                                                   le16_to_cpu(auth->status),
4671                                                   ipw_get_status_code(le16_to_cpu
4672                                                                       (auth->
4673                                                                        status)));
4674                                 }
4675                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4676                                           IPW_DL_ASSOC,
4677                                           "deauthenticated: '%*pE' %pM\n",
4678                                           priv->essid_len, priv->essid,
4679                                           priv->bssid);
4680
4681                                 priv->status &= ~(STATUS_ASSOCIATING |
4682                                                   STATUS_AUTH |
4683                                                   STATUS_ASSOCIATED);
4684
4685                                 schedule_work(&priv->link_down);
4686                                 break;
4687
4688                         case CMAS_TX_AUTH_SEQ_1:
4689                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4690                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4691                                 break;
4692                         case CMAS_RX_AUTH_SEQ_2:
4693                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4694                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4695                                 break;
4696                         case CMAS_AUTH_SEQ_1_PASS:
4697                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4698                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4699                                 break;
4700                         case CMAS_AUTH_SEQ_1_FAIL:
4701                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4702                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4703                                 break;
4704                         case CMAS_TX_AUTH_SEQ_3:
4705                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4706                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4707                                 break;
4708                         case CMAS_RX_AUTH_SEQ_4:
4709                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4710                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4711                                 break;
4712                         case CMAS_AUTH_SEQ_2_PASS:
4713                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4714                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4715                                 break;
4716                         case CMAS_AUTH_SEQ_2_FAIL:
4717                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4718                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4719                                 break;
4720                         case CMAS_TX_ASSOC:
4721                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4722                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4723                                 break;
4724                         case CMAS_RX_ASSOC_RESP:
4725                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4726                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4727
4728                                 break;
4729                         case CMAS_ASSOCIATED:
4730                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4731                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4732                                 break;
4733                         default:
4734                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4735                                                 auth->state);
4736                                 break;
4737                         }
4738                         break;
4739                 }
4740
4741         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4742                         struct notif_channel_result *x =
4743                             &notif->u.channel_result;
4744
4745                         if (size == sizeof(*x)) {
4746                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4747                                                x->channel_num);
4748                         } else {
4749                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4750                                                "(should be %zd)\n",
4751                                                size, sizeof(*x));
4752                         }
4753                         break;
4754                 }
4755
4756         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4757                         struct notif_scan_complete *x = &notif->u.scan_complete;
4758                         if (size == sizeof(*x)) {
4759                                 IPW_DEBUG_SCAN
4760                                     ("Scan completed: type %d, %d channels, "
4761                                      "%d status\n", x->scan_type,
4762                                      x->num_channels, x->status);
4763                         } else {
4764                                 IPW_ERROR("Scan completed of wrong size %d "
4765                                           "(should be %zd)\n",
4766                                           size, sizeof(*x));
4767                         }
4768
4769                         priv->status &=
4770                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4771
4772                         wake_up_interruptible(&priv->wait_state);
4773                         cancel_delayed_work(&priv->scan_check);
4774
4775                         if (priv->status & STATUS_EXIT_PENDING)
4776                                 break;
4777
4778                         priv->ieee->scans++;
4779
4780 #ifdef CONFIG_IPW2200_MONITOR
4781                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4782                                 priv->status |= STATUS_SCAN_FORCED;
4783                                 schedule_delayed_work(&priv->request_scan, 0);
4784                                 break;
4785                         }
4786                         priv->status &= ~STATUS_SCAN_FORCED;
4787 #endif                          /* CONFIG_IPW2200_MONITOR */
4788
4789                         /* Do queued direct scans first */
4790                         if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4791                                 schedule_delayed_work(&priv->request_direct_scan, 0);
4792
4793                         if (!(priv->status & (STATUS_ASSOCIATED |
4794                                               STATUS_ASSOCIATING |
4795                                               STATUS_ROAMING |
4796                                               STATUS_DISASSOCIATING)))
4797                                 schedule_work(&priv->associate);
4798                         else if (priv->status & STATUS_ROAMING) {
4799                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4800                                         /* If a scan completed and we are in roam mode, then
4801                                          * the scan that completed was the one requested as a
4802                                          * result of entering roam... so, schedule the
4803                                          * roam work */
4804                                         schedule_work(&priv->roam);
4805                                 else
4806                                         /* Don't schedule if we aborted the scan */
4807                                         priv->status &= ~STATUS_ROAMING;
4808                         } else if (priv->status & STATUS_SCAN_PENDING)
4809                                 schedule_delayed_work(&priv->request_scan, 0);
4810                         else if (priv->config & CFG_BACKGROUND_SCAN
4811                                  && priv->status & STATUS_ASSOCIATED)
4812                                 schedule_delayed_work(&priv->request_scan,
4813                                                       round_jiffies_relative(HZ));
4814
4815                         /* Send an empty event to user space.
4816                          * We don't send the received data on the event because
4817                          * it would require us to do complex transcoding, and
4818                          * we want to minimise the work done in the irq handler
4819                          * Use a request to extract the data.
4820                          * Also, we generate this even for any scan, regardless
4821                          * on how the scan was initiated. User space can just
4822                          * sync on periodic scan to get fresh data...
4823                          * Jean II */
4824                         if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4825                                 handle_scan_event(priv);
4826                         break;
4827                 }
4828
4829         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4830                         struct notif_frag_length *x = &notif->u.frag_len;
4831
4832                         if (size == sizeof(*x))
4833                                 IPW_ERROR("Frag length: %d\n",
4834                                           le16_to_cpu(x->frag_length));
4835                         else
4836                                 IPW_ERROR("Frag length of wrong size %d "
4837                                           "(should be %zd)\n",
4838                                           size, sizeof(*x));
4839                         break;
4840                 }
4841
4842         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4843                         struct notif_link_deterioration *x =
4844                             &notif->u.link_deterioration;
4845
4846                         if (size == sizeof(*x)) {
4847                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4848                                         "link deterioration: type %d, cnt %d\n",
4849                                         x->silence_notification_type,
4850                                         x->silence_count);
4851                                 memcpy(&priv->last_link_deterioration, x,
4852                                        sizeof(*x));
4853                         } else {
4854                                 IPW_ERROR("Link Deterioration of wrong size %d "
4855                                           "(should be %zd)\n",
4856                                           size, sizeof(*x));
4857                         }
4858                         break;
4859                 }
4860
4861         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4862                         IPW_ERROR("Dino config\n");
4863                         if (priv->hcmd
4864                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4865                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4866
4867                         break;
4868                 }
4869
4870         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4871                         struct notif_beacon_state *x = &notif->u.beacon_state;
4872                         if (size != sizeof(*x)) {
4873                                 IPW_ERROR
4874                                     ("Beacon state of wrong size %d (should "
4875                                      "be %zd)\n", size, sizeof(*x));
4876                                 break;
4877                         }
4878
4879                         if (le32_to_cpu(x->state) ==
4880                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4881                                 ipw_handle_missed_beacon(priv,
4882                                                          le32_to_cpu(x->
4883                                                                      number));
4884
4885                         break;
4886                 }
4887
4888         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4889                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4890                         if (size == sizeof(*x)) {
4891                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4892                                           "0x%02x station %d\n",
4893                                           x->key_state, x->security_type,
4894                                           x->station_index);
4895                                 break;
4896                         }
4897
4898                         IPW_ERROR
4899                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4900                              size, sizeof(*x));
4901                         break;
4902                 }
4903
4904         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4905                         struct notif_calibration *x = &notif->u.calibration;
4906
4907                         if (size == sizeof(*x)) {
4908                                 memcpy(&priv->calib, x, sizeof(*x));
4909                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4910                                 break;
4911                         }
4912
4913                         IPW_ERROR
4914                             ("Calibration of wrong size %d (should be %zd)\n",
4915                              size, sizeof(*x));
4916                         break;
4917                 }
4918
4919         case HOST_NOTIFICATION_NOISE_STATS:{
4920                         if (size == sizeof(u32)) {
4921                                 priv->exp_avg_noise =
4922                                     exponential_average(priv->exp_avg_noise,
4923                                     (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4924                                     DEPTH_NOISE);
4925                                 break;
4926                         }
4927
4928                         IPW_ERROR
4929                             ("Noise stat is wrong size %d (should be %zd)\n",
4930                              size, sizeof(u32));
4931                         break;
4932                 }
4933
4934         default:
4935                 IPW_DEBUG_NOTIF("Unknown notification: "
4936                                 "subtype=%d,flags=0x%2x,size=%d\n",
4937                                 notif->subtype, notif->flags, size);
4938         }
4939 }
4940
4941 /**
4942  * Destroys all DMA structures and initialise them again
4943  *
4944  * @param priv
4945  * @return error code
4946  */
4947 static int ipw_queue_reset(struct ipw_priv *priv)
4948 {
4949         int rc = 0;
4950         /** @todo customize queue sizes */
4951         int nTx = 64, nTxCmd = 8;
4952         ipw_tx_queue_free(priv);
4953         /* Tx CMD queue */
4954         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4955                                IPW_TX_CMD_QUEUE_READ_INDEX,
4956                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4957                                IPW_TX_CMD_QUEUE_BD_BASE,
4958                                IPW_TX_CMD_QUEUE_BD_SIZE);
4959         if (rc) {
4960                 IPW_ERROR("Tx Cmd queue init failed\n");
4961                 goto error;
4962         }
4963         /* Tx queue(s) */
4964         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4965                                IPW_TX_QUEUE_0_READ_INDEX,
4966                                IPW_TX_QUEUE_0_WRITE_INDEX,
4967                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4968         if (rc) {
4969                 IPW_ERROR("Tx 0 queue init failed\n");
4970                 goto error;
4971         }
4972         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4973                                IPW_TX_QUEUE_1_READ_INDEX,
4974                                IPW_TX_QUEUE_1_WRITE_INDEX,
4975                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4976         if (rc) {
4977                 IPW_ERROR("Tx 1 queue init failed\n");
4978                 goto error;
4979         }
4980         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4981                                IPW_TX_QUEUE_2_READ_INDEX,
4982                                IPW_TX_QUEUE_2_WRITE_INDEX,
4983                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4984         if (rc) {
4985                 IPW_ERROR("Tx 2 queue init failed\n");
4986                 goto error;
4987         }
4988         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4989                                IPW_TX_QUEUE_3_READ_INDEX,
4990                                IPW_TX_QUEUE_3_WRITE_INDEX,
4991                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4992         if (rc) {
4993                 IPW_ERROR("Tx 3 queue init failed\n");
4994                 goto error;
4995         }
4996         /* statistics */
4997         priv->rx_bufs_min = 0;
4998         priv->rx_pend_max = 0;
4999         return rc;
5000
5001       error:
5002         ipw_tx_queue_free(priv);
5003         return rc;
5004 }
5005
5006 /**
5007  * Reclaim Tx queue entries no more used by NIC.
5008  *
5009  * When FW advances 'R' index, all entries between old and
5010  * new 'R' index need to be reclaimed. As result, some free space
5011  * forms. If there is enough free space (> low mark), wake Tx queue.
5012  *
5013  * @note Need to protect against garbage in 'R' index
5014  * @param priv
5015  * @param txq
5016  * @param qindex
5017  * @return Number of used entries remains in the queue
5018  */
5019 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5020                                 struct clx2_tx_queue *txq, int qindex)
5021 {
5022         u32 hw_tail;
5023         int used;
5024         struct clx2_queue *q = &txq->q;
5025
5026         hw_tail = ipw_read32(priv, q->reg_r);
5027         if (hw_tail >= q->n_bd) {
5028                 IPW_ERROR
5029                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5030                      hw_tail, q->n_bd);
5031                 goto done;
5032         }
5033         for (; q->last_used != hw_tail;
5034              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5035                 ipw_queue_tx_free_tfd(priv, txq);
5036                 priv->tx_packets++;
5037         }
5038       done:
5039         if ((ipw_tx_queue_space(q) > q->low_mark) &&
5040             (qindex >= 0))
5041                 netif_wake_queue(priv->net_dev);
5042         used = q->first_empty - q->last_used;
5043         if (used < 0)
5044                 used += q->n_bd;
5045
5046         return used;
5047 }
5048
5049 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5050                              int len, int sync)
5051 {
5052         struct clx2_tx_queue *txq = &priv->txq_cmd;
5053         struct clx2_queue *q = &txq->q;
5054         struct tfd_frame *tfd;
5055
5056         if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5057                 IPW_ERROR("No space for Tx\n");
5058                 return -EBUSY;
5059         }
5060
5061         tfd = &txq->bd[q->first_empty];
5062         txq->txb[q->first_empty] = NULL;
5063
5064         memset(tfd, 0, sizeof(*tfd));
5065         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5066         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5067         priv->hcmd_seq++;
5068         tfd->u.cmd.index = hcmd;
5069         tfd->u.cmd.length = len;
5070         memcpy(tfd->u.cmd.payload, buf, len);
5071         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5072         ipw_write32(priv, q->reg_w, q->first_empty);
5073         _ipw_read32(priv, 0x90);
5074
5075         return 0;
5076 }
5077
5078 /*
5079  * Rx theory of operation
5080  *
5081  * The host allocates 32 DMA target addresses and passes the host address
5082  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5083  * 0 to 31
5084  *
5085  * Rx Queue Indexes
5086  * The host/firmware share two index registers for managing the Rx buffers.
5087  *
5088  * The READ index maps to the first position that the firmware may be writing
5089  * to -- the driver can read up to (but not including) this position and get
5090  * good data.
5091  * The READ index is managed by the firmware once the card is enabled.
5092  *
5093  * The WRITE index maps to the last position the driver has read from -- the
5094  * position preceding WRITE is the last slot the firmware can place a packet.
5095  *
5096  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5097  * WRITE = READ.
5098  *
5099  * During initialization the host sets up the READ queue position to the first
5100  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5101  *
5102  * When the firmware places a packet in a buffer it will advance the READ index
5103  * and fire the RX interrupt.  The driver can then query the READ index and
5104  * process as many packets as possible, moving the WRITE index forward as it
5105  * resets the Rx queue buffers with new memory.
5106  *
5107  * The management in the driver is as follows:
5108  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5109  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5110  *   to replensish the ipw->rxq->rx_free.
5111  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5112  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5113  *   'processed' and 'read' driver indexes as well)
5114  * + A received packet is processed and handed to the kernel network stack,
5115  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5116  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5117  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5118  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5119  *   were enough free buffers and RX_STALLED is set it is cleared.
5120  *
5121  *
5122  * Driver sequence:
5123  *
5124  * ipw_rx_queue_alloc()       Allocates rx_free
5125  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5126  *                            ipw_rx_queue_restock
5127  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5128  *                            queue, updates firmware pointers, and updates
5129  *                            the WRITE index.  If insufficient rx_free buffers
5130  *                            are available, schedules ipw_rx_queue_replenish
5131  *
5132  * -- enable interrupts --
5133  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5134  *                            READ INDEX, detaching the SKB from the pool.
5135  *                            Moves the packet buffer from queue to rx_used.
5136  *                            Calls ipw_rx_queue_restock to refill any empty
5137  *                            slots.
5138  * ...
5139  *
5140  */
5141
5142 /*
5143  * If there are slots in the RX queue that  need to be restocked,
5144  * and we have free pre-allocated buffers, fill the ranks as much
5145  * as we can pulling from rx_free.
5146  *
5147  * This moves the 'write' index forward to catch up with 'processed', and
5148  * also updates the memory address in the firmware to reference the new
5149  * target buffer.
5150  */
5151 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5152 {
5153         struct ipw_rx_queue *rxq = priv->rxq;
5154         struct list_head *element;
5155         struct ipw_rx_mem_buffer *rxb;
5156         unsigned long flags;
5157         int write;
5158
5159         spin_lock_irqsave(&rxq->lock, flags);
5160         write = rxq->write;
5161         while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5162                 element = rxq->rx_free.next;
5163                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5164                 list_del(element);
5165
5166                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5167                             rxb->dma_addr);
5168                 rxq->queue[rxq->write] = rxb;
5169                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5170                 rxq->free_count--;
5171         }
5172         spin_unlock_irqrestore(&rxq->lock, flags);
5173
5174         /* If the pre-allocated buffer pool is dropping low, schedule to
5175          * refill it */
5176         if (rxq->free_count <= RX_LOW_WATERMARK)
5177                 schedule_work(&priv->rx_replenish);
5178
5179         /* If we've added more space for the firmware to place data, tell it */
5180         if (write != rxq->write)
5181                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5182 }
5183
5184 /*
5185  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5186  * Also restock the Rx queue via ipw_rx_queue_restock.
5187  *
5188  * This is called as a scheduled work item (except for during initialization)
5189  */
5190 static void ipw_rx_queue_replenish(void *data)
5191 {
5192         struct ipw_priv *priv = data;
5193         struct ipw_rx_queue *rxq = priv->rxq;
5194         struct list_head *element;
5195         struct ipw_rx_mem_buffer *rxb;
5196         unsigned long flags;
5197
5198         spin_lock_irqsave(&rxq->lock, flags);
5199         while (!list_empty(&rxq->rx_used)) {
5200                 element = rxq->rx_used.next;
5201                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5202                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5203                 if (!rxb->skb) {
5204                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5205                                priv->net_dev->name);
5206                         /* We don't reschedule replenish work here -- we will
5207                          * call the restock method and if it still needs
5208                          * more buffers it will schedule replenish */
5209                         break;
5210                 }
5211                 list_del(element);
5212
5213                 rxb->dma_addr =
5214                     pci_map_single(priv->pci_dev, rxb->skb->data,
5215                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5216
5217                 list_add_tail(&rxb->list, &rxq->rx_free);
5218                 rxq->free_count++;
5219         }
5220         spin_unlock_irqrestore(&rxq->lock, flags);
5221
5222         ipw_rx_queue_restock(priv);
5223 }
5224
5225 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5226 {
5227         struct ipw_priv *priv =
5228                 container_of(work, struct ipw_priv, rx_replenish);
5229         mutex_lock(&priv->mutex);
5230         ipw_rx_queue_replenish(priv);
5231         mutex_unlock(&priv->mutex);
5232 }
5233
5234 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5235  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5236  * This free routine walks the list of POOL entries and if SKB is set to
5237  * non NULL it is unmapped and freed
5238  */
5239 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5240 {
5241         int i;
5242
5243         if (!rxq)
5244                 return;
5245
5246         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5247                 if (rxq->pool[i].skb != NULL) {
5248                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5249                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5250                         dev_kfree_skb(rxq->pool[i].skb);
5251                 }
5252         }
5253
5254         kfree(rxq);
5255 }
5256
5257 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5258 {
5259         struct ipw_rx_queue *rxq;
5260         int i;
5261
5262         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5263         if (unlikely(!rxq)) {
5264                 IPW_ERROR("memory allocation failed\n");
5265                 return NULL;
5266         }
5267         spin_lock_init(&rxq->lock);
5268         INIT_LIST_HEAD(&rxq->rx_free);
5269         INIT_LIST_HEAD(&rxq->rx_used);
5270
5271         /* Fill the rx_used queue with _all_ of the Rx buffers */
5272         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5273                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5274
5275         /* Set us so that we have processed and used all buffers, but have
5276          * not restocked the Rx queue with fresh buffers */
5277         rxq->read = rxq->write = 0;
5278         rxq->free_count = 0;
5279
5280         return rxq;
5281 }
5282
5283 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5284 {
5285         rate &= ~LIBIPW_BASIC_RATE_MASK;
5286         if (ieee_mode == IEEE_A) {
5287                 switch (rate) {
5288                 case LIBIPW_OFDM_RATE_6MB:
5289                         return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5290                             1 : 0;
5291                 case LIBIPW_OFDM_RATE_9MB:
5292                         return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5293                             1 : 0;
5294                 case LIBIPW_OFDM_RATE_12MB:
5295                         return priv->
5296                             rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5297                 case LIBIPW_OFDM_RATE_18MB:
5298                         return priv->
5299                             rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5300                 case LIBIPW_OFDM_RATE_24MB:
5301                         return priv->
5302                             rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5303                 case LIBIPW_OFDM_RATE_36MB:
5304                         return priv->
5305                             rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5306                 case LIBIPW_OFDM_RATE_48MB:
5307                         return priv->
5308                             rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5309                 case LIBIPW_OFDM_RATE_54MB:
5310                         return priv->
5311                             rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5312                 default:
5313                         return 0;
5314                 }
5315         }
5316
5317         /* B and G mixed */
5318         switch (rate) {
5319         case LIBIPW_CCK_RATE_1MB:
5320                 return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5321         case LIBIPW_CCK_RATE_2MB:
5322                 return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5323         case LIBIPW_CCK_RATE_5MB:
5324                 return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5325         case LIBIPW_CCK_RATE_11MB:
5326                 return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5327         }
5328
5329         /* If we are limited to B modulations, bail at this point */
5330         if (ieee_mode == IEEE_B)
5331                 return 0;
5332
5333         /* G */
5334         switch (rate) {
5335         case LIBIPW_OFDM_RATE_6MB:
5336                 return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5337         case LIBIPW_OFDM_RATE_9MB:
5338                 return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5339         case LIBIPW_OFDM_RATE_12MB:
5340                 return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5341         case LIBIPW_OFDM_RATE_18MB:
5342                 return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5343         case LIBIPW_OFDM_RATE_24MB:
5344                 return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5345         case LIBIPW_OFDM_RATE_36MB:
5346                 return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5347         case LIBIPW_OFDM_RATE_48MB:
5348                 return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5349         case LIBIPW_OFDM_RATE_54MB:
5350                 return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5351         }
5352
5353         return 0;
5354 }
5355
5356 static int ipw_compatible_rates(struct ipw_priv *priv,
5357                                 const struct libipw_network *network,
5358                                 struct ipw_supported_rates *rates)
5359 {
5360         int num_rates, i;
5361
5362         memset(rates, 0, sizeof(*rates));
5363         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5364         rates->num_rates = 0;
5365         for (i = 0; i < num_rates; i++) {
5366                 if (!ipw_is_rate_in_mask(priv, network->mode,
5367                                          network->rates[i])) {
5368
5369                         if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5370                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5371                                                "rate %02X\n",
5372                                                network->rates[i]);
5373                                 rates->supported_rates[rates->num_rates++] =
5374                                     network->rates[i];
5375                                 continue;
5376                         }
5377
5378                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5379                                        network->rates[i], priv->rates_mask);
5380                         continue;
5381                 }
5382
5383                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5384         }
5385
5386         num_rates = min(network->rates_ex_len,
5387                         (u8) (IPW_MAX_RATES - num_rates));
5388         for (i = 0; i < num_rates; i++) {
5389                 if (!ipw_is_rate_in_mask(priv, network->mode,
5390                                          network->rates_ex[i])) {
5391                         if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5392                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5393                                                "rate %02X\n",
5394                                                network->rates_ex[i]);
5395                                 rates->supported_rates[rates->num_rates++] =
5396                                     network->rates[i];
5397                                 continue;
5398                         }
5399
5400                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5401                                        network->rates_ex[i], priv->rates_mask);
5402                         continue;
5403                 }
5404
5405                 rates->supported_rates[rates->num_rates++] =
5406                     network->rates_ex[i];
5407         }
5408
5409         return 1;
5410 }
5411
5412 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5413                                   const struct ipw_supported_rates *src)
5414 {
5415         u8 i;
5416         for (i = 0; i < src->num_rates; i++)
5417                 dest->supported_rates[i] = src->supported_rates[i];
5418         dest->num_rates = src->num_rates;
5419 }
5420
5421 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5422  * mask should ever be used -- right now all callers to add the scan rates are
5423  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5424 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5425                                    u8 modulation, u32 rate_mask)
5426 {
5427         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5428             LIBIPW_BASIC_RATE_MASK : 0;
5429
5430         if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5431                 rates->supported_rates[rates->num_rates++] =
5432                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5433
5434         if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5435                 rates->supported_rates[rates->num_rates++] =
5436                     LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5437
5438         if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5439                 rates->supported_rates[rates->num_rates++] = basic_mask |
5440                     LIBIPW_CCK_RATE_5MB;
5441
5442         if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5443                 rates->supported_rates[rates->num_rates++] = basic_mask |
5444                     LIBIPW_CCK_RATE_11MB;
5445 }
5446
5447 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5448                                     u8 modulation, u32 rate_mask)
5449 {
5450         u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5451             LIBIPW_BASIC_RATE_MASK : 0;
5452
5453         if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5454                 rates->supported_rates[rates->num_rates++] = basic_mask |
5455                     LIBIPW_OFDM_RATE_6MB;
5456
5457         if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5458                 rates->supported_rates[rates->num_rates++] =
5459                     LIBIPW_OFDM_RATE_9MB;
5460
5461         if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5462                 rates->supported_rates[rates->num_rates++] = basic_mask |
5463                     LIBIPW_OFDM_RATE_12MB;
5464
5465         if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5466                 rates->supported_rates[rates->num_rates++] =
5467                     LIBIPW_OFDM_RATE_18MB;
5468
5469         if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5470                 rates->supported_rates[rates->num_rates++] = basic_mask |
5471                     LIBIPW_OFDM_RATE_24MB;
5472
5473         if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5474                 rates->supported_rates[rates->num_rates++] =
5475                     LIBIPW_OFDM_RATE_36MB;
5476
5477         if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5478                 rates->supported_rates[rates->num_rates++] =
5479                     LIBIPW_OFDM_RATE_48MB;
5480
5481         if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5482                 rates->supported_rates[rates->num_rates++] =
5483                     LIBIPW_OFDM_RATE_54MB;
5484 }
5485
5486 struct ipw_network_match {
5487         struct libipw_network *network;
5488         struct ipw_supported_rates rates;
5489 };
5490
5491 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5492                                   struct ipw_network_match *match,
5493                                   struct libipw_network *network,
5494                                   int roaming)
5495 {
5496         struct ipw_supported_rates rates;
5497
5498         /* Verify that this network's capability is compatible with the
5499          * current mode (AdHoc or Infrastructure) */
5500         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5501              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5502                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5503                                 network->ssid_len, network->ssid,
5504                                 network->bssid);
5505                 return 0;
5506         }
5507
5508         if (unlikely(roaming)) {
5509                 /* If we are roaming, then ensure check if this is a valid
5510                  * network to try and roam to */
5511                 if ((network->ssid_len != match->network->ssid_len) ||
5512                     memcmp(network->ssid, match->network->ssid,
5513                            network->ssid_len)) {
5514                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5515                                         network->ssid_len, network->ssid,
5516                                         network->bssid);
5517                         return 0;
5518                 }
5519         } else {
5520                 /* If an ESSID has been configured then compare the broadcast
5521                  * ESSID to ours */
5522                 if ((priv->config & CFG_STATIC_ESSID) &&
5523                     ((network->ssid_len != priv->essid_len) ||
5524                      memcmp(network->ssid, priv->essid,
5525                             min(network->ssid_len, priv->essid_len)))) {
5526                         IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5527                                         network->ssid_len, network->ssid,
5528                                         network->bssid, priv->essid_len,
5529                                         priv->essid);
5530                         return 0;
5531                 }
5532         }
5533
5534         /* If the old network rate is better than this one, don't bother
5535          * testing everything else. */
5536
5537         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5538                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5539                                 match->network->ssid_len, match->network->ssid);
5540                 return 0;
5541         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5542                 IPW_DEBUG_MERGE("Network '%*pE excluded because newer than current network.\n",
5543                                 match->network->ssid_len, match->network->ssid);
5544                 return 0;
5545         }
5546
5547         /* Now go through and see if the requested network is valid... */
5548         if (priv->ieee->scan_age != 0 &&
5549             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5550                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5551                                 network->ssid_len, network->ssid,
5552                                 network->bssid,
5553                                 jiffies_to_msecs(jiffies -
5554                                                  network->last_scanned));
5555                 return 0;
5556         }
5557
5558         if ((priv->config & CFG_STATIC_CHANNEL) &&
5559             (network->channel != priv->channel)) {
5560                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5561                                 network->ssid_len, network->ssid,
5562                                 network->bssid,
5563                                 network->channel, priv->channel);
5564                 return 0;
5565         }
5566
5567         /* Verify privacy compatibility */
5568         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5569             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5570                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5571                                 network->ssid_len, network->ssid,
5572                                 network->bssid,
5573                                 priv->
5574                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5575                                 network->
5576                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5577                                 "off");
5578                 return 0;
5579         }
5580
5581         if (ether_addr_equal(network->bssid, priv->bssid)) {
5582                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of the same BSSID match: %pM.\n",
5583                                 network->ssid_len, network->ssid,
5584                                 network->bssid, priv->bssid);
5585                 return 0;
5586         }
5587
5588         /* Filter out any incompatible freq / mode combinations */
5589         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5590                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5591                                 network->ssid_len, network->ssid,
5592                                 network->bssid);
5593                 return 0;
5594         }
5595
5596         /* Ensure that the rates supported by the driver are compatible with
5597          * this AP, including verification of basic rates (mandatory) */
5598         if (!ipw_compatible_rates(priv, network, &rates)) {
5599                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5600                                 network->ssid_len, network->ssid,
5601                                 network->bssid);
5602                 return 0;
5603         }
5604
5605         if (rates.num_rates == 0) {
5606                 IPW_DEBUG_MERGE("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5607                                 network->ssid_len, network->ssid,
5608                                 network->bssid);
5609                 return 0;
5610         }
5611
5612         /* TODO: Perform any further minimal comparititive tests.  We do not
5613          * want to put too much policy logic here; intelligent scan selection
5614          * should occur within a generic IEEE 802.11 user space tool.  */
5615
5616         /* Set up 'new' AP to this network */
5617         ipw_copy_rates(&match->rates, &rates);
5618         match->network = network;
5619         IPW_DEBUG_MERGE("Network '%*pE (%pM)' is a viable match.\n",
5620                         network->ssid_len, network->ssid, network->bssid);
5621
5622         return 1;
5623 }
5624
5625 static void ipw_merge_adhoc_network(struct work_struct *work)
5626 {
5627         struct ipw_priv *priv =
5628                 container_of(work, struct ipw_priv, merge_networks);
5629         struct libipw_network *network = NULL;
5630         struct ipw_network_match match = {
5631                 .network = priv->assoc_network
5632         };
5633
5634         if ((priv->status & STATUS_ASSOCIATED) &&
5635             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5636                 /* First pass through ROAM process -- look for a better
5637                  * network */
5638                 unsigned long flags;
5639
5640                 spin_lock_irqsave(&priv->ieee->lock, flags);
5641                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5642                         if (network != priv->assoc_network)
5643                                 ipw_find_adhoc_network(priv, &match, network,
5644                                                        1);
5645                 }
5646                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5647
5648                 if (match.network == priv->assoc_network) {
5649                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5650                                         "merge to.\n");
5651                         return;
5652                 }
5653
5654                 mutex_lock(&priv->mutex);
5655                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5656                         IPW_DEBUG_MERGE("remove network %*pE\n",
5657                                         priv->essid_len, priv->essid);
5658                         ipw_remove_current_network(priv);
5659                 }
5660
5661                 ipw_disassociate(priv);
5662                 priv->assoc_network = match.network;
5663                 mutex_unlock(&priv->mutex);
5664                 return;
5665         }
5666 }
5667
5668 static int ipw_best_network(struct ipw_priv *priv,
5669                             struct ipw_network_match *match,
5670                             struct libipw_network *network, int roaming)
5671 {
5672         struct ipw_supported_rates rates;
5673
5674         /* Verify that this network's capability is compatible with the
5675          * current mode (AdHoc or Infrastructure) */
5676         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5677              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5678             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5679              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5680                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded due to capability mismatch.\n",
5681                                 network->ssid_len, network->ssid,
5682                                 network->bssid);
5683                 return 0;
5684         }
5685
5686         if (unlikely(roaming)) {
5687                 /* If we are roaming, then ensure check if this is a valid
5688                  * network to try and roam to */
5689                 if ((network->ssid_len != match->network->ssid_len) ||
5690                     memcmp(network->ssid, match->network->ssid,
5691                            network->ssid_len)) {
5692                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of non-network ESSID.\n",
5693                                         network->ssid_len, network->ssid,
5694                                         network->bssid);
5695                         return 0;
5696                 }
5697         } else {
5698                 /* If an ESSID has been configured then compare the broadcast
5699                  * ESSID to ours */
5700                 if ((priv->config & CFG_STATIC_ESSID) &&
5701                     ((network->ssid_len != priv->essid_len) ||
5702                      memcmp(network->ssid, priv->essid,
5703                             min(network->ssid_len, priv->essid_len)))) {
5704                         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of ESSID mismatch: '%*pE'.\n",
5705                                         network->ssid_len, network->ssid,
5706                                         network->bssid, priv->essid_len,
5707                                         priv->essid);
5708                         return 0;
5709                 }
5710         }
5711
5712         /* If the old network rate is better than this one, don't bother
5713          * testing everything else. */
5714         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5715                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because '%*pE (%pM)' has a stronger signal.\n",
5716                                 network->ssid_len, network->ssid,
5717                                 network->bssid, match->network->ssid_len,
5718                                 match->network->ssid, match->network->bssid);
5719                 return 0;
5720         }
5721
5722         /* If this network has already had an association attempt within the
5723          * last 3 seconds, do not try and associate again... */
5724         if (network->last_associate &&
5725             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5726                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of storming (%ums since last assoc attempt).\n",
5727                                 network->ssid_len, network->ssid,
5728                                 network->bssid,
5729                                 jiffies_to_msecs(jiffies -
5730                                                  network->last_associate));
5731                 return 0;
5732         }
5733
5734         /* Now go through and see if the requested network is valid... */
5735         if (priv->ieee->scan_age != 0 &&
5736             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5737                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of age: %ums.\n",
5738                                 network->ssid_len, network->ssid,
5739                                 network->bssid,
5740                                 jiffies_to_msecs(jiffies -
5741                                                  network->last_scanned));
5742                 return 0;
5743         }
5744
5745         if ((priv->config & CFG_STATIC_CHANNEL) &&
5746             (network->channel != priv->channel)) {
5747                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of channel mismatch: %d != %d.\n",
5748                                 network->ssid_len, network->ssid,
5749                                 network->bssid,
5750                                 network->channel, priv->channel);
5751                 return 0;
5752         }
5753
5754         /* Verify privacy compatibility */
5755         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5756             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5757                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of privacy mismatch: %s != %s.\n",
5758                                 network->ssid_len, network->ssid,
5759                                 network->bssid,
5760                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5761                                 "off",
5762                                 network->capability &
5763                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5764                 return 0;
5765         }
5766
5767         if ((priv->config & CFG_STATIC_BSSID) &&
5768             !ether_addr_equal(network->bssid, priv->bssid)) {
5769                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of BSSID mismatch: %pM.\n",
5770                                 network->ssid_len, network->ssid,
5771                                 network->bssid, priv->bssid);
5772                 return 0;
5773         }
5774
5775         /* Filter out any incompatible freq / mode combinations */
5776         if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5777                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid frequency/mode combination.\n",
5778                                 network->ssid_len, network->ssid,
5779                                 network->bssid);
5780                 return 0;
5781         }
5782
5783         /* Filter out invalid channel in current GEO */
5784         if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5785                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of invalid channel in current GEO\n",
5786                                 network->ssid_len, network->ssid,
5787                                 network->bssid);
5788                 return 0;
5789         }
5790
5791         /* Ensure that the rates supported by the driver are compatible with
5792          * this AP, including verification of basic rates (mandatory) */
5793         if (!ipw_compatible_rates(priv, network, &rates)) {
5794                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because configured rate mask excludes AP mandatory rate.\n",
5795                                 network->ssid_len, network->ssid,
5796                                 network->bssid);
5797                 return 0;
5798         }
5799
5800         if (rates.num_rates == 0) {
5801                 IPW_DEBUG_ASSOC("Network '%*pE (%pM)' excluded because of no compatible rates.\n",
5802                                 network->ssid_len, network->ssid,
5803                                 network->bssid);
5804                 return 0;
5805         }
5806
5807         /* TODO: Perform any further minimal comparititive tests.  We do not
5808          * want to put too much policy logic here; intelligent scan selection
5809          * should occur within a generic IEEE 802.11 user space tool.  */
5810
5811         /* Set up 'new' AP to this network */
5812         ipw_copy_rates(&match->rates, &rates);
5813         match->network = network;
5814
5815         IPW_DEBUG_ASSOC("Network '%*pE (%pM)' is a viable match.\n",
5816                         network->ssid_len, network->ssid, network->bssid);
5817
5818         return 1;
5819 }
5820
5821 static void ipw_adhoc_create(struct ipw_priv *priv,
5822                              struct libipw_network *network)
5823 {
5824         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5825         int i;
5826
5827         /*
5828          * For the purposes of scanning, we can set our wireless mode
5829          * to trigger scans across combinations of bands, but when it
5830          * comes to creating a new ad-hoc network, we have tell the FW
5831          * exactly which band to use.
5832          *
5833          * We also have the possibility of an invalid channel for the
5834          * chossen band.  Attempting to create a new ad-hoc network
5835          * with an invalid channel for wireless mode will trigger a
5836          * FW fatal error.
5837          *
5838          */
5839         switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5840         case LIBIPW_52GHZ_BAND:
5841                 network->mode = IEEE_A;
5842                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5843                 BUG_ON(i == -1);
5844                 if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5845                         IPW_WARNING("Overriding invalid channel\n");
5846                         priv->channel = geo->a[0].channel;
5847                 }
5848                 break;
5849
5850         case LIBIPW_24GHZ_BAND:
5851                 if (priv->ieee->mode & IEEE_G)
5852                         network->mode = IEEE_G;
5853                 else
5854                         network->mode = IEEE_B;
5855                 i = libipw_channel_to_index(priv->ieee, priv->channel);
5856                 BUG_ON(i == -1);
5857                 if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5858                         IPW_WARNING("Overriding invalid channel\n");
5859                         priv->channel = geo->bg[0].channel;
5860                 }
5861                 break;
5862
5863         default:
5864                 IPW_WARNING("Overriding invalid channel\n");
5865                 if (priv->ieee->mode & IEEE_A) {
5866                         network->mode = IEEE_A;
5867                         priv->channel = geo->a[0].channel;
5868                 } else if (priv->ieee->mode & IEEE_G) {
5869                         network->mode = IEEE_G;
5870                         priv->channel = geo->bg[0].channel;
5871                 } else {
5872                         network->mode = IEEE_B;
5873                         priv->channel = geo->bg[0].channel;
5874                 }
5875                 break;
5876         }
5877
5878         network->channel = priv->channel;
5879         priv->config |= CFG_ADHOC_PERSIST;
5880         ipw_create_bssid(priv, network->bssid);
5881         network->ssid_len = priv->essid_len;
5882         memcpy(network->ssid, priv->essid, priv->essid_len);
5883         memset(&network->stats, 0, sizeof(network->stats));
5884         network->capability = WLAN_CAPABILITY_IBSS;
5885         if (!(priv->config & CFG_PREAMBLE_LONG))
5886                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5887         if (priv->capability & CAP_PRIVACY_ON)
5888                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5889         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5890         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5891         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5892         memcpy(network->rates_ex,
5893                &priv->rates.supported_rates[network->rates_len],
5894                network->rates_ex_len);
5895         network->last_scanned = 0;
5896         network->flags = 0;
5897         network->last_associate = 0;
5898         network->time_stamp[0] = 0;
5899         network->time_stamp[1] = 0;
5900         network->beacon_interval = 100; /* Default */
5901         network->listen_interval = 10;  /* Default */
5902         network->atim_window = 0;       /* Default */
5903         network->wpa_ie_len = 0;
5904         network->rsn_ie_len = 0;
5905 }
5906
5907 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5908 {
5909         struct ipw_tgi_tx_key key;
5910
5911         if (!(priv->ieee->sec.flags & (1 << index)))
5912                 return;
5913
5914         key.key_id = index;
5915         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5916         key.security_type = type;
5917         key.station_index = 0;  /* always 0 for BSS */
5918         key.flags = 0;
5919         /* 0 for new key; previous value of counter (after fatal error) */
5920         key.tx_counter[0] = cpu_to_le32(0);
5921         key.tx_counter[1] = cpu_to_le32(0);
5922
5923         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5924 }
5925
5926 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5927 {
5928         struct ipw_wep_key key;
5929         int i;
5930
5931         key.cmd_id = DINO_CMD_WEP_KEY;
5932         key.seq_num = 0;
5933
5934         /* Note: AES keys cannot be set for multiple times.
5935          * Only set it at the first time. */
5936         for (i = 0; i < 4; i++) {
5937                 key.key_index = i | type;
5938                 if (!(priv->ieee->sec.flags & (1 << i))) {
5939                         key.key_size = 0;
5940                         continue;
5941                 }
5942
5943                 key.key_size = priv->ieee->sec.key_sizes[i];
5944                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5945
5946                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5947         }
5948 }
5949
5950 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5951 {
5952         if (priv->ieee->host_encrypt)
5953                 return;
5954
5955         switch (level) {
5956         case SEC_LEVEL_3:
5957                 priv->sys_config.disable_unicast_decryption = 0;
5958                 priv->ieee->host_decrypt = 0;
5959                 break;
5960         case SEC_LEVEL_2:
5961                 priv->sys_config.disable_unicast_decryption = 1;
5962                 priv->ieee->host_decrypt = 1;
5963                 break;
5964         case SEC_LEVEL_1:
5965                 priv->sys_config.disable_unicast_decryption = 0;
5966                 priv->ieee->host_decrypt = 0;
5967                 break;
5968         case SEC_LEVEL_0:
5969                 priv->sys_config.disable_unicast_decryption = 1;
5970                 break;
5971         default:
5972                 break;
5973         }
5974 }
5975
5976 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5977 {
5978         if (priv->ieee->host_encrypt)
5979                 return;
5980
5981         switch (level) {
5982         case SEC_LEVEL_3:
5983                 priv->sys_config.disable_multicast_decryption = 0;
5984                 break;
5985         case SEC_LEVEL_2:
5986                 priv->sys_config.disable_multicast_decryption = 1;
5987                 break;
5988         case SEC_LEVEL_1:
5989                 priv->sys_config.disable_multicast_decryption = 0;
5990                 break;
5991         case SEC_LEVEL_0:
5992                 priv->sys_config.disable_multicast_decryption = 1;
5993                 break;
5994         default:
5995                 break;
5996         }
5997 }
5998
5999 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6000 {
6001         switch (priv->ieee->sec.level) {
6002         case SEC_LEVEL_3:
6003                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6004                         ipw_send_tgi_tx_key(priv,
6005                                             DCT_FLAG_EXT_SECURITY_CCM,
6006                                             priv->ieee->sec.active_key);
6007
6008                 if (!priv->ieee->host_mc_decrypt)
6009                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6010                 break;
6011         case SEC_LEVEL_2:
6012                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6013                         ipw_send_tgi_tx_key(priv,
6014                                             DCT_FLAG_EXT_SECURITY_TKIP,
6015                                             priv->ieee->sec.active_key);
6016                 break;
6017         case SEC_LEVEL_1:
6018                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6019                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6020                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6021                 break;
6022         case SEC_LEVEL_0:
6023         default:
6024                 break;
6025         }
6026 }
6027
6028 static void ipw_adhoc_check(void *data)
6029 {
6030         struct ipw_priv *priv = data;
6031
6032         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6033             !(priv->config & CFG_ADHOC_PERSIST)) {
6034                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6035                           IPW_DL_STATE | IPW_DL_ASSOC,
6036                           "Missed beacon: %d - disassociate\n",
6037                           priv->missed_adhoc_beacons);
6038                 ipw_remove_current_network(priv);
6039                 ipw_disassociate(priv);
6040                 return;
6041         }
6042
6043         schedule_delayed_work(&priv->adhoc_check,
6044                               le16_to_cpu(priv->assoc_request.beacon_interval));
6045 }
6046
6047 static void ipw_bg_adhoc_check(struct work_struct *work)
6048 {
6049         struct ipw_priv *priv =
6050                 container_of(work, struct ipw_priv, adhoc_check.work);
6051         mutex_lock(&priv->mutex);
6052         ipw_adhoc_check(priv);
6053         mutex_unlock(&priv->mutex);
6054 }
6055
6056 static void ipw_debug_config(struct ipw_priv *priv)
6057 {
6058         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6059                        "[CFG 0x%08X]\n", priv->config);
6060         if (priv->config & CFG_STATIC_CHANNEL)
6061                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6062         else
6063                 IPW_DEBUG_INFO("Channel unlocked.\n");
6064         if (priv->config & CFG_STATIC_ESSID)
6065                 IPW_DEBUG_INFO("ESSID locked to '%*pE'\n",
6066                                priv->essid_len, priv->essid);
6067         else
6068                 IPW_DEBUG_INFO("ESSID unlocked.\n");
6069         if (priv->config & CFG_STATIC_BSSID)
6070                 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6071         else
6072                 IPW_DEBUG_INFO("BSSID unlocked.\n");
6073         if (priv->capability & CAP_PRIVACY_ON)
6074                 IPW_DEBUG_INFO("PRIVACY on\n");
6075         else
6076                 IPW_DEBUG_INFO("PRIVACY off\n");
6077         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6078 }
6079
6080 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6081 {
6082         /* TODO: Verify that this works... */
6083         struct ipw_fixed_rate fr;
6084         u32 reg;
6085         u16 mask = 0;
6086         u16 new_tx_rates = priv->rates_mask;
6087
6088         /* Identify 'current FW band' and match it with the fixed
6089          * Tx rates */
6090
6091         switch (priv->ieee->freq_band) {
6092         case LIBIPW_52GHZ_BAND: /* A only */
6093                 /* IEEE_A */
6094                 if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6095                         /* Invalid fixed rate mask */
6096                         IPW_DEBUG_WX
6097                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6098                         new_tx_rates = 0;
6099                         break;
6100                 }
6101
6102                 new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6103                 break;
6104
6105         default:                /* 2.4Ghz or Mixed */
6106                 /* IEEE_B */
6107                 if (mode == IEEE_B) {
6108                         if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6109                                 /* Invalid fixed rate mask */
6110                                 IPW_DEBUG_WX
6111                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6112                                 new_tx_rates = 0;
6113                         }
6114                         break;
6115                 }
6116
6117                 /* IEEE_G */
6118                 if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6119                                     LIBIPW_OFDM_RATES_MASK)) {
6120                         /* Invalid fixed rate mask */
6121                         IPW_DEBUG_WX
6122                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6123                         new_tx_rates = 0;
6124                         break;
6125                 }
6126
6127                 if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6128                         mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6129                         new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6130                 }
6131
6132                 if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6133                         mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6134                         new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6135                 }
6136
6137                 if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6138                         mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6139                         new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6140                 }
6141
6142                 new_tx_rates |= mask;
6143                 break;
6144         }
6145
6146         fr.tx_rates = cpu_to_le16(new_tx_rates);
6147
6148         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6149         ipw_write_reg32(priv, reg, *(u32 *) & fr);
6150 }
6151
6152 static void ipw_abort_scan(struct ipw_priv *priv)
6153 {
6154         int err;
6155
6156         if (priv->status & STATUS_SCAN_ABORTING) {
6157                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6158                 return;
6159         }
6160         priv->status |= STATUS_SCAN_ABORTING;
6161
6162         err = ipw_send_scan_abort(priv);
6163         if (err)
6164                 IPW_DEBUG_HC("Request to abort scan failed.\n");
6165 }
6166
6167 static void ipw_add_scan_channels(struct ipw_priv *priv,
6168                                   struct ipw_scan_request_ext *scan,
6169                                   int scan_type)
6170 {
6171         int channel_index = 0;
6172         const struct libipw_geo *geo;
6173         int i;
6174
6175         geo = libipw_get_geo(priv->ieee);
6176
6177         if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6178                 int start = channel_index;
6179                 for (i = 0; i < geo->a_channels; i++) {
6180                         if ((priv->status & STATUS_ASSOCIATED) &&
6181                             geo->a[i].channel == priv->channel)
6182                                 continue;
6183                         channel_index++;
6184                         scan->channels_list[channel_index] = geo->a[i].channel;
6185                         ipw_set_scan_type(scan, channel_index,
6186                                           geo->a[i].
6187                                           flags & LIBIPW_CH_PASSIVE_ONLY ?
6188                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6189                                           scan_type);
6190                 }
6191
6192                 if (start != channel_index) {
6193                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6194                             (channel_index - start);
6195                         channel_index++;
6196                 }
6197         }
6198
6199         if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6200                 int start = channel_index;
6201                 if (priv->config & CFG_SPEED_SCAN) {
6202                         int index;
6203                         u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6204                                 /* nop out the list */
6205                                 [0] = 0
6206                         };
6207
6208                         u8 channel;
6209                         while (channel_index < IPW_SCAN_CHANNELS - 1) {
6210                                 channel =
6211                                     priv->speed_scan[priv->speed_scan_pos];
6212                                 if (channel == 0) {
6213                                         priv->speed_scan_pos = 0;
6214                                         channel = priv->speed_scan[0];
6215                                 }
6216                                 if ((priv->status & STATUS_ASSOCIATED) &&
6217                                     channel == priv->channel) {
6218                                         priv->speed_scan_pos++;
6219                                         continue;
6220                                 }
6221
6222                                 /* If this channel has already been
6223                                  * added in scan, break from loop
6224                                  * and this will be the first channel
6225                                  * in the next scan.
6226                                  */
6227                                 if (channels[channel - 1] != 0)
6228                                         break;
6229
6230                                 channels[channel - 1] = 1;
6231                                 priv->speed_scan_pos++;
6232                                 channel_index++;
6233                                 scan->channels_list[channel_index] = channel;
6234                                 index =
6235                                     libipw_channel_to_index(priv->ieee, channel);
6236                                 ipw_set_scan_type(scan, channel_index,
6237                                                   geo->bg[index].
6238                                                   flags &
6239                                                   LIBIPW_CH_PASSIVE_ONLY ?
6240                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6241                                                   : scan_type);
6242                         }
6243                 } else {
6244                         for (i = 0; i < geo->bg_channels; i++) {
6245                                 if ((priv->status & STATUS_ASSOCIATED) &&
6246                                     geo->bg[i].channel == priv->channel)
6247                                         continue;
6248                                 channel_index++;
6249                                 scan->channels_list[channel_index] =
6250                                     geo->bg[i].channel;
6251                                 ipw_set_scan_type(scan, channel_index,
6252                                                   geo->bg[i].
6253                                                   flags &
6254                                                   LIBIPW_CH_PASSIVE_ONLY ?
6255                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6256                                                   : scan_type);
6257                         }
6258                 }
6259
6260                 if (start != channel_index) {
6261                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6262                             (channel_index - start);
6263                 }
6264         }
6265 }
6266
6267 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6268 {
6269         /* staying on passive channels longer than the DTIM interval during a
6270          * scan, while associated, causes the firmware to cancel the scan
6271          * without notification. Hence, don't stay on passive channels longer
6272          * than the beacon interval.
6273          */
6274         if (priv->status & STATUS_ASSOCIATED
6275             && priv->assoc_network->beacon_interval > 10)
6276                 return priv->assoc_network->beacon_interval - 10;
6277         else
6278                 return 120;
6279 }
6280
6281 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6282 {
6283         struct ipw_scan_request_ext scan;
6284         int err = 0, scan_type;
6285
6286         if (!(priv->status & STATUS_INIT) ||
6287             (priv->status & STATUS_EXIT_PENDING))
6288                 return 0;
6289
6290         mutex_lock(&priv->mutex);
6291
6292         if (direct && (priv->direct_scan_ssid_len == 0)) {
6293                 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6294                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6295                 goto done;
6296         }
6297
6298         if (priv->status & STATUS_SCANNING) {
6299                 IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6300                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6301                                         STATUS_SCAN_PENDING;
6302                 goto done;
6303         }
6304
6305         if (!(priv->status & STATUS_SCAN_FORCED) &&
6306             priv->status & STATUS_SCAN_ABORTING) {
6307                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6308                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6309                                         STATUS_SCAN_PENDING;
6310                 goto done;
6311         }
6312
6313         if (priv->status & STATUS_RF_KILL_MASK) {
6314                 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6315                 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6316                                         STATUS_SCAN_PENDING;
6317                 goto done;
6318         }
6319
6320         memset(&scan, 0, sizeof(scan));
6321         scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6322
6323         if (type == IW_SCAN_TYPE_PASSIVE) {
6324                 IPW_DEBUG_WX("use passive scanning\n");
6325                 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6326                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6327                         cpu_to_le16(ipw_passive_dwell_time(priv));
6328                 ipw_add_scan_channels(priv, &scan, scan_type);
6329                 goto send_request;
6330         }
6331
6332         /* Use active scan by default. */
6333         if (priv->config & CFG_SPEED_SCAN)
6334                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6335                         cpu_to_le16(30);
6336         else
6337                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6338                         cpu_to_le16(20);
6339
6340         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6341                 cpu_to_le16(20);
6342
6343         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6344                 cpu_to_le16(ipw_passive_dwell_time(priv));
6345         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6346
6347 #ifdef CONFIG_IPW2200_MONITOR
6348         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6349                 u8 channel;
6350                 u8 band = 0;
6351
6352                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6353                 case LIBIPW_52GHZ_BAND:
6354                         band = (u8) (IPW_A_MODE << 6) | 1;
6355                         channel = priv->channel;
6356                         break;
6357
6358                 case LIBIPW_24GHZ_BAND:
6359                         band = (u8) (IPW_B_MODE << 6) | 1;
6360                         channel = priv->channel;
6361                         break;
6362
6363                 default:
6364                         band = (u8) (IPW_B_MODE << 6) | 1;
6365                         channel = 9;
6366                         break;
6367                 }
6368
6369                 scan.channels_list[0] = band;
6370                 scan.channels_list[1] = channel;
6371                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6372
6373                 /* NOTE:  The card will sit on this channel for this time
6374                  * period.  Scan aborts are timing sensitive and frequently
6375                  * result in firmware restarts.  As such, it is best to
6376                  * set a small dwell_time here and just keep re-issuing
6377                  * scans.  Otherwise fast channel hopping will not actually
6378                  * hop channels.
6379                  *
6380                  * TODO: Move SPEED SCAN support to all modes and bands */
6381                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6382                         cpu_to_le16(2000);
6383         } else {
6384 #endif                          /* CONFIG_IPW2200_MONITOR */
6385                 /* Honor direct scans first, otherwise if we are roaming make
6386                  * this a direct scan for the current network.  Finally,
6387                  * ensure that every other scan is a fast channel hop scan */
6388                 if (direct) {
6389                         err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6390                                             priv->direct_scan_ssid_len);
6391                         if (err) {
6392                                 IPW_DEBUG_HC("Attempt to send SSID command  "
6393                                              "failed\n");
6394                                 goto done;
6395                         }
6396
6397                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6398                 } else if ((priv->status & STATUS_ROAMING)
6399                            || (!(priv->status & STATUS_ASSOCIATED)
6400                                && (priv->config & CFG_STATIC_ESSID)
6401                                && (le32_to_cpu(scan.full_scan_index) % 2))) {
6402                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6403                         if (err) {
6404                                 IPW_DEBUG_HC("Attempt to send SSID command "
6405                                              "failed.\n");
6406                                 goto done;
6407                         }
6408
6409                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6410                 } else
6411                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6412
6413                 ipw_add_scan_channels(priv, &scan, scan_type);
6414 #ifdef CONFIG_IPW2200_MONITOR
6415         }
6416 #endif
6417
6418 send_request:
6419         err = ipw_send_scan_request_ext(priv, &scan);
6420         if (err) {
6421                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6422                 goto done;
6423         }
6424
6425         priv->status |= STATUS_SCANNING;
6426         if (direct) {
6427                 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6428                 priv->direct_scan_ssid_len = 0;
6429         } else
6430                 priv->status &= ~STATUS_SCAN_PENDING;
6431
6432         schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6433 done:
6434         mutex_unlock(&priv->mutex);
6435         return err;
6436 }
6437
6438 static void ipw_request_passive_scan(struct work_struct *work)
6439 {
6440         struct ipw_priv *priv =
6441                 container_of(work, struct ipw_priv, request_passive_scan.work);
6442         ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6443 }
6444
6445 static void ipw_request_scan(struct work_struct *work)
6446 {
6447         struct ipw_priv *priv =
6448                 container_of(work, struct ipw_priv, request_scan.work);
6449         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6450 }
6451
6452 static void ipw_request_direct_scan(struct work_struct *work)
6453 {
6454         struct ipw_priv *priv =
6455                 container_of(work, struct ipw_priv, request_direct_scan.work);
6456         ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6457 }
6458
6459 static void ipw_bg_abort_scan(struct work_struct *work)
6460 {
6461         struct ipw_priv *priv =
6462                 container_of(work, struct ipw_priv, abort_scan);
6463         mutex_lock(&priv->mutex);
6464         ipw_abort_scan(priv);
6465         mutex_unlock(&priv->mutex);
6466 }
6467
6468 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6469 {
6470         /* This is called when wpa_supplicant loads and closes the driver
6471          * interface. */
6472         priv->ieee->wpa_enabled = value;
6473         return 0;
6474 }
6475
6476 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6477 {
6478         struct libipw_device *ieee = priv->ieee;
6479         struct libipw_security sec = {
6480                 .flags = SEC_AUTH_MODE,
6481         };
6482         int ret = 0;
6483
6484         if (value & IW_AUTH_ALG_SHARED_KEY) {
6485                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6486                 ieee->open_wep = 0;
6487         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6488                 sec.auth_mode = WLAN_AUTH_OPEN;
6489                 ieee->open_wep = 1;
6490         } else if (value & IW_AUTH_ALG_LEAP) {
6491                 sec.auth_mode = WLAN_AUTH_LEAP;
6492                 ieee->open_wep = 1;
6493         } else
6494                 return -EINVAL;
6495
6496         if (ieee->set_security)
6497                 ieee->set_security(ieee->dev, &sec);
6498         else
6499                 ret = -EOPNOTSUPP;
6500
6501         return ret;
6502 }
6503
6504 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6505                                 int wpa_ie_len)
6506 {
6507         /* make sure WPA is enabled */
6508         ipw_wpa_enable(priv, 1);
6509 }
6510
6511 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6512                             char *capabilities, int length)
6513 {
6514         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6515
6516         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6517                                 capabilities);
6518 }
6519
6520 /*
6521  * WE-18 support
6522  */
6523
6524 /* SIOCSIWGENIE */
6525 static int ipw_wx_set_genie(struct net_device *dev,
6526                             struct iw_request_info *info,
6527                             union iwreq_data *wrqu, char *extra)
6528 {
6529         struct ipw_priv *priv = libipw_priv(dev);
6530         struct libipw_device *ieee = priv->ieee;
6531         u8 *buf;
6532         int err = 0;
6533
6534         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6535             (wrqu->data.length && extra == NULL))
6536                 return -EINVAL;
6537
6538         if (wrqu->data.length) {
6539                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6540                 if (buf == NULL) {
6541                         err = -ENOMEM;
6542                         goto out;
6543                 }
6544
6545                 kfree(ieee->wpa_ie);
6546                 ieee->wpa_ie = buf;
6547                 ieee->wpa_ie_len = wrqu->data.length;
6548         } else {
6549                 kfree(ieee->wpa_ie);
6550                 ieee->wpa_ie = NULL;
6551                 ieee->wpa_ie_len = 0;
6552         }
6553
6554         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6555       out:
6556         return err;
6557 }
6558
6559 /* SIOCGIWGENIE */
6560 static int ipw_wx_get_genie(struct net_device *dev,
6561                             struct iw_request_info *info,
6562                             union iwreq_data *wrqu, char *extra)
6563 {
6564         struct ipw_priv *priv = libipw_priv(dev);
6565         struct libipw_device *ieee = priv->ieee;
6566         int err = 0;
6567
6568         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6569                 wrqu->data.length = 0;
6570                 goto out;
6571         }
6572
6573         if (wrqu->data.length < ieee->wpa_ie_len) {
6574                 err = -E2BIG;
6575                 goto out;
6576         }
6577
6578         wrqu->data.length = ieee->wpa_ie_len;
6579         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6580
6581       out:
6582         return err;
6583 }
6584
6585 static int wext_cipher2level(int cipher)
6586 {
6587         switch (cipher) {
6588         case IW_AUTH_CIPHER_NONE:
6589                 return SEC_LEVEL_0;
6590         case IW_AUTH_CIPHER_WEP40:
6591         case IW_AUTH_CIPHER_WEP104:
6592                 return SEC_LEVEL_1;
6593         case IW_AUTH_CIPHER_TKIP:
6594                 return SEC_LEVEL_2;
6595         case IW_AUTH_CIPHER_CCMP:
6596                 return SEC_LEVEL_3;
6597         default:
6598                 return -1;
6599         }
6600 }
6601
6602 /* SIOCSIWAUTH */
6603 static int ipw_wx_set_auth(struct net_device *dev,
6604                            struct iw_request_info *info,
6605                            union iwreq_data *wrqu, char *extra)
6606 {
6607         struct ipw_priv *priv = libipw_priv(dev);
6608         struct libipw_device *ieee = priv->ieee;
6609         struct iw_param *param = &wrqu->param;
6610         struct lib80211_crypt_data *crypt;
6611         unsigned long flags;
6612         int ret = 0;
6613
6614         switch (param->flags & IW_AUTH_INDEX) {
6615         case IW_AUTH_WPA_VERSION:
6616                 break;
6617         case IW_AUTH_CIPHER_PAIRWISE:
6618                 ipw_set_hw_decrypt_unicast(priv,
6619                                            wext_cipher2level(param->value));
6620                 break;
6621         case IW_AUTH_CIPHER_GROUP:
6622                 ipw_set_hw_decrypt_multicast(priv,
6623                                              wext_cipher2level(param->value));
6624                 break;
6625         case IW_AUTH_KEY_MGMT:
6626                 /*
6627                  * ipw2200 does not use these parameters
6628                  */
6629                 break;
6630
6631         case IW_AUTH_TKIP_COUNTERMEASURES:
6632                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6633                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6634                         break;
6635
6636                 flags = crypt->ops->get_flags(crypt->priv);
6637
6638                 if (param->value)
6639                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6640                 else
6641                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6642
6643                 crypt->ops->set_flags(flags, crypt->priv);
6644
6645                 break;
6646
6647         case IW_AUTH_DROP_UNENCRYPTED:{
6648                         /* HACK:
6649                          *
6650                          * wpa_supplicant calls set_wpa_enabled when the driver
6651                          * is loaded and unloaded, regardless of if WPA is being
6652                          * used.  No other calls are made which can be used to
6653                          * determine if encryption will be used or not prior to
6654                          * association being expected.  If encryption is not being
6655                          * used, drop_unencrypted is set to false, else true -- we
6656                          * can use this to determine if the CAP_PRIVACY_ON bit should
6657                          * be set.
6658                          */
6659                         struct libipw_security sec = {
6660                                 .flags = SEC_ENABLED,
6661                                 .enabled = param->value,
6662                         };
6663                         priv->ieee->drop_unencrypted = param->value;
6664                         /* We only change SEC_LEVEL for open mode. Others
6665                          * are set by ipw_wpa_set_encryption.
6666                          */
6667                         if (!param->value) {
6668                                 sec.flags |= SEC_LEVEL;
6669                                 sec.level = SEC_LEVEL_0;
6670                         } else {
6671                                 sec.flags |= SEC_LEVEL;
6672                                 sec.level = SEC_LEVEL_1;
6673                         }
6674                         if (priv->ieee->set_security)
6675                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6676                         break;
6677                 }
6678
6679         case IW_AUTH_80211_AUTH_ALG:
6680                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6681                 break;
6682
6683         case IW_AUTH_WPA_ENABLED:
6684                 ret = ipw_wpa_enable(priv, param->value);
6685                 ipw_disassociate(priv);
6686                 break;
6687
6688         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6689                 ieee->ieee802_1x = param->value;
6690                 break;
6691
6692         case IW_AUTH_PRIVACY_INVOKED:
6693                 ieee->privacy_invoked = param->value;
6694                 break;
6695
6696         default:
6697                 return -EOPNOTSUPP;
6698         }
6699         return ret;
6700 }
6701
6702 /* SIOCGIWAUTH */
6703 static int ipw_wx_get_auth(struct net_device *dev,
6704                            struct iw_request_info *info,
6705                            union iwreq_data *wrqu, char *extra)
6706 {
6707         struct ipw_priv *priv = libipw_priv(dev);
6708         struct libipw_device *ieee = priv->ieee;
6709         struct lib80211_crypt_data *crypt;
6710         struct iw_param *param = &wrqu->param;
6711
6712         switch (param->flags & IW_AUTH_INDEX) {
6713         case IW_AUTH_WPA_VERSION:
6714         case IW_AUTH_CIPHER_PAIRWISE:
6715         case IW_AUTH_CIPHER_GROUP:
6716         case IW_AUTH_KEY_MGMT:
6717                 /*
6718                  * wpa_supplicant will control these internally
6719                  */
6720                 return -EOPNOTSUPP;
6721
6722         case IW_AUTH_TKIP_COUNTERMEASURES:
6723                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6724                 if (!crypt || !crypt->ops->get_flags)
6725                         break;
6726
6727                 param->value = (crypt->ops->get_flags(crypt->priv) &
6728                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6729
6730                 break;
6731
6732         case IW_AUTH_DROP_UNENCRYPTED:
6733                 param->value = ieee->drop_unencrypted;
6734                 break;
6735
6736         case IW_AUTH_80211_AUTH_ALG:
6737                 param->value = ieee->sec.auth_mode;
6738                 break;
6739
6740         case IW_AUTH_WPA_ENABLED:
6741                 param->value = ieee->wpa_enabled;
6742                 break;
6743
6744         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6745                 param->value = ieee->ieee802_1x;
6746                 break;
6747
6748         case IW_AUTH_ROAMING_CONTROL:
6749         case IW_AUTH_PRIVACY_INVOKED:
6750                 param->value = ieee->privacy_invoked;
6751                 break;
6752
6753         default:
6754                 return -EOPNOTSUPP;
6755         }
6756         return 0;
6757 }
6758
6759 /* SIOCSIWENCODEEXT */
6760 static int ipw_wx_set_encodeext(struct net_device *dev,
6761                                 struct iw_request_info *info,
6762                                 union iwreq_data *wrqu, char *extra)
6763 {
6764         struct ipw_priv *priv = libipw_priv(dev);
6765         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6766
6767         if (hwcrypto) {
6768                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6769                         /* IPW HW can't build TKIP MIC,
6770                            host decryption still needed */
6771                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6772                                 priv->ieee->host_mc_decrypt = 1;
6773                         else {
6774                                 priv->ieee->host_encrypt = 0;
6775                                 priv->ieee->host_encrypt_msdu = 1;
6776                                 priv->ieee->host_decrypt = 1;
6777                         }
6778                 } else {
6779                         priv->ieee->host_encrypt = 0;
6780                         priv->ieee->host_encrypt_msdu = 0;
6781                         priv->ieee->host_decrypt = 0;
6782                         priv->ieee->host_mc_decrypt = 0;
6783                 }
6784         }
6785
6786         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6787 }
6788
6789 /* SIOCGIWENCODEEXT */
6790 static int ipw_wx_get_encodeext(struct net_device *dev,
6791                                 struct iw_request_info *info,
6792                                 union iwreq_data *wrqu, char *extra)
6793 {
6794         struct ipw_priv *priv = libipw_priv(dev);
6795         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6796 }
6797
6798 /* SIOCSIWMLME */
6799 static int ipw_wx_set_mlme(struct net_device *dev,
6800                            struct iw_request_info *info,
6801                            union iwreq_data *wrqu, char *extra)
6802 {
6803         struct ipw_priv *priv = libipw_priv(dev);
6804         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6805         __le16 reason;
6806
6807         reason = cpu_to_le16(mlme->reason_code);
6808
6809         switch (mlme->cmd) {
6810         case IW_MLME_DEAUTH:
6811                 /* silently ignore */
6812                 break;
6813
6814         case IW_MLME_DISASSOC:
6815                 ipw_disassociate(priv);
6816                 break;
6817
6818         default:
6819                 return -EOPNOTSUPP;
6820         }
6821         return 0;
6822 }
6823
6824 #ifdef CONFIG_IPW2200_QOS
6825
6826 /* QoS */
6827 /*
6828 * get the modulation type of the current network or
6829 * the card current mode
6830 */
6831 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6832 {
6833         u8 mode = 0;
6834
6835         if (priv->status & STATUS_ASSOCIATED) {
6836                 unsigned long flags;
6837
6838                 spin_lock_irqsave(&priv->ieee->lock, flags);
6839                 mode = priv->assoc_network->mode;
6840                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6841         } else {
6842                 mode = priv->ieee->mode;
6843         }
6844         IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6845         return mode;
6846 }
6847
6848 /*
6849 * Handle management frame beacon and probe response
6850 */
6851 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6852                                          int active_network,
6853                                          struct libipw_network *network)
6854 {
6855         u32 size = sizeof(struct libipw_qos_parameters);
6856
6857         if (network->capability & WLAN_CAPABILITY_IBSS)
6858                 network->qos_data.active = network->qos_data.supported;
6859
6860         if (network->flags & NETWORK_HAS_QOS_MASK) {
6861                 if (active_network &&
6862                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6863                         network->qos_data.active = network->qos_data.supported;
6864
6865                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6866                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6867                     (network->qos_data.old_param_count !=
6868                      network->qos_data.param_count)) {
6869                         network->qos_data.old_param_count =
6870                             network->qos_data.param_count;
6871                         schedule_work(&priv->qos_activate);
6872                         IPW_DEBUG_QOS("QoS parameters change call "
6873                                       "qos_activate\n");
6874                 }
6875         } else {
6876                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6877                         memcpy(&network->qos_data.parameters,
6878                                &def_parameters_CCK, size);
6879                 else
6880                         memcpy(&network->qos_data.parameters,
6881                                &def_parameters_OFDM, size);
6882
6883                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6884                         IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6885                         schedule_work(&priv->qos_activate);
6886                 }
6887
6888                 network->qos_data.active = 0;
6889                 network->qos_data.supported = 0;
6890         }
6891         if ((priv->status & STATUS_ASSOCIATED) &&
6892             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6893                 if (!ether_addr_equal(network->bssid, priv->bssid))
6894                         if (network->capability & WLAN_CAPABILITY_IBSS)
6895                                 if ((network->ssid_len ==
6896                                      priv->assoc_network->ssid_len) &&
6897                                     !memcmp(network->ssid,
6898                                             priv->assoc_network->ssid,
6899                                             network->ssid_len)) {
6900                                         schedule_work(&priv->merge_networks);
6901                                 }
6902         }
6903
6904         return 0;
6905 }
6906
6907 /*
6908 * This function set up the firmware to support QoS. It sends
6909 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6910 */
6911 static int ipw_qos_activate(struct ipw_priv *priv,
6912                             struct libipw_qos_data *qos_network_data)
6913 {
6914         int err;
6915         struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
6916         struct libipw_qos_parameters *active_one = NULL;
6917         u32 size = sizeof(struct libipw_qos_parameters);
6918         u32 burst_duration;
6919         int i;
6920         u8 type;
6921
6922         type = ipw_qos_current_mode(priv);
6923
6924         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6925         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6926         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6927         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6928
6929         if (qos_network_data == NULL) {
6930                 if (type == IEEE_B) {
6931                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6932                         active_one = &def_parameters_CCK;
6933                 } else
6934                         active_one = &def_parameters_OFDM;
6935
6936                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6937                 burst_duration = ipw_qos_get_burst_duration(priv);
6938                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6939                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6940                             cpu_to_le16(burst_duration);
6941         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6942                 if (type == IEEE_B) {
6943                         IPW_DEBUG_QOS("QoS activate IBSS network mode %d\n",
6944                                       type);
6945                         if (priv->qos_data.qos_enable == 0)
6946                                 active_one = &def_parameters_CCK;
6947                         else
6948                                 active_one = priv->qos_data.def_qos_parm_CCK;
6949                 } else {
6950                         if (priv->qos_data.qos_enable == 0)
6951                                 active_one = &def_parameters_OFDM;
6952                         else
6953                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6954                 }
6955                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6956         } else {
6957                 unsigned long flags;
6958                 int active;
6959
6960                 spin_lock_irqsave(&priv->ieee->lock, flags);
6961                 active_one = &(qos_network_data->parameters);
6962                 qos_network_data->old_param_count =
6963                     qos_network_data->param_count;
6964                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6965                 active = qos_network_data->supported;
6966                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6967
6968                 if (active == 0) {
6969                         burst_duration = ipw_qos_get_burst_duration(priv);
6970                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6971                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6972                                     tx_op_limit[i] = cpu_to_le16(burst_duration);
6973                 }
6974         }
6975
6976         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6977         err = ipw_send_qos_params_command(priv, &qos_parameters[0]);
6978         if (err)
6979                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6980
6981         return err;
6982 }
6983
6984 /*
6985 * send IPW_CMD_WME_INFO to the firmware
6986 */
6987 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6988 {
6989         int ret = 0;
6990         struct libipw_qos_information_element qos_info;
6991
6992         if (priv == NULL)
6993                 return -1;
6994
6995         qos_info.elementID = QOS_ELEMENT_ID;
6996         qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
6997
6998         qos_info.version = QOS_VERSION_1;
6999         qos_info.ac_info = 0;
7000
7001         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7002         qos_info.qui_type = QOS_OUI_TYPE;
7003         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7004
7005         ret = ipw_send_qos_info_command(priv, &qos_info);
7006         if (ret != 0) {
7007                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7008         }
7009         return ret;
7010 }
7011
7012 /*
7013 * Set the QoS parameter with the association request structure
7014 */
7015 static int ipw_qos_association(struct ipw_priv *priv,
7016                                struct libipw_network *network)
7017 {
7018         int err = 0;
7019         struct libipw_qos_data *qos_data = NULL;
7020         struct libipw_qos_data ibss_data = {
7021                 .supported = 1,
7022                 .active = 1,
7023         };
7024
7025         switch (priv->ieee->iw_mode) {
7026         case IW_MODE_ADHOC:
7027                 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7028
7029                 qos_data = &ibss_data;
7030                 break;
7031
7032         case IW_MODE_INFRA:
7033                 qos_data = &network->qos_data;
7034                 break;
7035
7036         default:
7037                 BUG();
7038                 break;
7039         }
7040
7041         err = ipw_qos_activate(priv, qos_data);
7042         if (err) {
7043                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7044                 return err;
7045         }
7046
7047         if (priv->qos_data.qos_enable && qos_data->supported) {
7048                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7049                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7050                 return ipw_qos_set_info_element(priv);
7051         }
7052
7053         return 0;
7054 }
7055
7056 /*
7057 * handling the beaconing responses. if we get different QoS setting
7058 * off the network from the associated setting, adjust the QoS
7059 * setting
7060 */
7061 static int ipw_qos_association_resp(struct ipw_priv *priv,
7062                                     struct libipw_network *network)
7063 {
7064         int ret = 0;
7065         unsigned long flags;
7066         u32 size = sizeof(struct libipw_qos_parameters);
7067         int set_qos_param = 0;
7068
7069         if ((priv == NULL) || (network == NULL) ||
7070             (priv->assoc_network == NULL))
7071                 return ret;
7072
7073         if (!(priv->status & STATUS_ASSOCIATED))
7074                 return ret;
7075
7076         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7077                 return ret;
7078
7079         spin_lock_irqsave(&priv->ieee->lock, flags);
7080         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7081                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7082                        sizeof(struct libipw_qos_data));
7083                 priv->assoc_network->qos_data.active = 1;
7084                 if ((network->qos_data.old_param_count !=
7085                      network->qos_data.param_count)) {
7086                         set_qos_param = 1;
7087                         network->qos_data.old_param_count =
7088                             network->qos_data.param_count;
7089                 }
7090
7091         } else {
7092                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7093                         memcpy(&priv->assoc_network->qos_data.parameters,
7094                                &def_parameters_CCK, size);
7095                 else
7096                         memcpy(&priv->assoc_network->qos_data.parameters,
7097                                &def_parameters_OFDM, size);
7098                 priv->assoc_network->qos_data.active = 0;
7099                 priv->assoc_network->qos_data.supported = 0;
7100                 set_qos_param = 1;
7101         }
7102
7103         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7104
7105         if (set_qos_param == 1)
7106                 schedule_work(&priv->qos_activate);
7107
7108         return ret;
7109 }
7110
7111 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7112 {
7113         u32 ret = 0;
7114
7115         if ((priv == NULL))
7116                 return 0;
7117
7118         if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7119                 ret = priv->qos_data.burst_duration_CCK;
7120         else
7121                 ret = priv->qos_data.burst_duration_OFDM;
7122
7123         return ret;
7124 }
7125
7126 /*
7127 * Initialize the setting of QoS global
7128 */
7129 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7130                          int burst_enable, u32 burst_duration_CCK,
7131                          u32 burst_duration_OFDM)
7132 {
7133         priv->qos_data.qos_enable = enable;
7134
7135         if (priv->qos_data.qos_enable) {
7136                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7137                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7138                 IPW_DEBUG_QOS("QoS is enabled\n");
7139         } else {
7140                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7141                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7142                 IPW_DEBUG_QOS("QoS is not enabled\n");
7143         }
7144
7145         priv->qos_data.burst_enable = burst_enable;
7146
7147         if (burst_enable) {
7148                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7149                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7150         } else {
7151                 priv->qos_data.burst_duration_CCK = 0;
7152                 priv->qos_data.burst_duration_OFDM = 0;
7153         }
7154 }
7155
7156 /*
7157 * map the packet priority to the right TX Queue
7158 */
7159 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7160 {
7161         if (priority > 7 || !priv->qos_data.qos_enable)
7162                 priority = 0;
7163
7164         return from_priority_to_tx_queue[priority] - 1;
7165 }
7166
7167 static int ipw_is_qos_active(struct net_device *dev,
7168                              struct sk_buff *skb)
7169 {
7170         struct ipw_priv *priv = libipw_priv(dev);
7171         struct libipw_qos_data *qos_data = NULL;
7172         int active, supported;
7173         u8 *daddr = skb->data + ETH_ALEN;
7174         int unicast = !is_multicast_ether_addr(daddr);
7175
7176         if (!(priv->status & STATUS_ASSOCIATED))
7177                 return 0;
7178
7179         qos_data = &priv->assoc_network->qos_data;
7180
7181         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7182                 if (unicast == 0)
7183                         qos_data->active = 0;
7184                 else
7185                         qos_data->active = qos_data->supported;
7186         }
7187         active = qos_data->active;
7188         supported = qos_data->supported;
7189         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7190                       "unicast %d\n",
7191                       priv->qos_data.qos_enable, active, supported, unicast);
7192         if (active && priv->qos_data.qos_enable)
7193                 return 1;
7194
7195         return 0;
7196
7197 }
7198 /*
7199 * add QoS parameter to the TX command
7200 */
7201 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7202                                         u16 priority,
7203                                         struct tfd_data *tfd)
7204 {
7205         int tx_queue_id = 0;
7206
7207
7208         tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7209         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7210
7211         if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7212                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7213                 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7214         }
7215         return 0;
7216 }
7217
7218 /*
7219 * background support to run QoS activate functionality
7220 */
7221 static void ipw_bg_qos_activate(struct work_struct *work)
7222 {
7223         struct ipw_priv *priv =
7224                 container_of(work, struct ipw_priv, qos_activate);
7225
7226         mutex_lock(&priv->mutex);
7227
7228         if (priv->status & STATUS_ASSOCIATED)
7229                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7230
7231         mutex_unlock(&priv->mutex);
7232 }
7233
7234 static int ipw_handle_probe_response(struct net_device *dev,
7235                                      struct libipw_probe_response *resp,
7236                                      struct libipw_network *network)
7237 {
7238         struct ipw_priv *priv = libipw_priv(dev);
7239         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7240                               (network == priv->assoc_network));
7241
7242         ipw_qos_handle_probe_response(priv, active_network, network);
7243
7244         return 0;
7245 }
7246
7247 static int ipw_handle_beacon(struct net_device *dev,
7248                              struct libipw_beacon *resp,
7249                              struct libipw_network *network)
7250 {
7251         struct ipw_priv *priv = libipw_priv(dev);
7252         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7253                               (network == priv->assoc_network));
7254
7255         ipw_qos_handle_probe_response(priv, active_network, network);
7256
7257         return 0;
7258 }
7259
7260 static int ipw_handle_assoc_response(struct net_device *dev,
7261                                      struct libipw_assoc_response *resp,
7262                                      struct libipw_network *network)
7263 {
7264         struct ipw_priv *priv = libipw_priv(dev);
7265         ipw_qos_association_resp(priv, network);
7266         return 0;
7267 }
7268
7269 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7270                                        *qos_param)
7271 {
7272         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7273                                 sizeof(*qos_param) * 3, qos_param);
7274 }
7275
7276 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7277                                      *qos_param)
7278 {
7279         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7280                                 qos_param);
7281 }
7282
7283 #endif                          /* CONFIG_IPW2200_QOS */
7284
7285 static int ipw_associate_network(struct ipw_priv *priv,
7286                                  struct libipw_network *network,
7287                                  struct ipw_supported_rates *rates, int roaming)
7288 {
7289         int err;
7290
7291         if (priv->config & CFG_FIXED_RATE)
7292                 ipw_set_fixed_rate(priv, network->mode);
7293
7294         if (!(priv->config & CFG_STATIC_ESSID)) {
7295                 priv->essid_len = min(network->ssid_len,
7296                                       (u8) IW_ESSID_MAX_SIZE);
7297                 memcpy(priv->essid, network->ssid, priv->essid_len);
7298         }
7299
7300         network->last_associate = jiffies;
7301
7302         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7303         priv->assoc_request.channel = network->channel;
7304         priv->assoc_request.auth_key = 0;
7305
7306         if ((priv->capability & CAP_PRIVACY_ON) &&
7307             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7308                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7309                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7310
7311                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7312                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7313
7314         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7315                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7316                 priv->assoc_request.auth_type = AUTH_LEAP;
7317         else
7318                 priv->assoc_request.auth_type = AUTH_OPEN;
7319
7320         if (priv->ieee->wpa_ie_len) {
7321                 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7322                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7323                                  priv->ieee->wpa_ie_len);
7324         }
7325
7326         /*
7327          * It is valid for our ieee device to support multiple modes, but
7328          * when it comes to associating to a given network we have to choose
7329          * just one mode.
7330          */
7331         if (network->mode & priv->ieee->mode & IEEE_A)
7332                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7333         else if (network->mode & priv->ieee->mode & IEEE_G)
7334                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7335         else if (network->mode & priv->ieee->mode & IEEE_B)
7336                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7337
7338         priv->assoc_request.capability = cpu_to_le16(network->capability);
7339         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7340             && !(priv->config & CFG_PREAMBLE_LONG)) {
7341                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7342         } else {
7343                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7344
7345                 /* Clear the short preamble if we won't be supporting it */
7346                 priv->assoc_request.capability &=
7347                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7348         }
7349
7350         /* Clear capability bits that aren't used in Ad Hoc */
7351         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7352                 priv->assoc_request.capability &=
7353                     ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7354
7355         IPW_DEBUG_ASSOC("%ssociation attempt: '%*pE', channel %d, 802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7356                         roaming ? "Rea" : "A",
7357                         priv->essid_len, priv->essid,
7358                         network->channel,
7359                         ipw_modes[priv->assoc_request.ieee_mode],
7360                         rates->num_rates,
7361                         (priv->assoc_request.preamble_length ==
7362                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7363                         network->capability &
7364                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7365                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7366                         priv->capability & CAP_PRIVACY_ON ?
7367                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7368                          "(open)") : "",
7369                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7370                         priv->capability & CAP_PRIVACY_ON ?
7371                         '1' + priv->ieee->sec.active_key : '.',
7372                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7373
7374         priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7375         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7376             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7377                 priv->assoc_request.assoc_type = HC_IBSS_START;
7378                 priv->assoc_request.assoc_tsf_msw = 0;
7379                 priv->assoc_request.assoc_tsf_lsw = 0;
7380         } else {
7381                 if (unlikely(roaming))
7382                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7383                 else
7384                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7385                 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7386                 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7387         }
7388
7389         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7390
7391         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7392                 eth_broadcast_addr(priv->assoc_request.dest);
7393                 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7394         } else {
7395                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7396                 priv->assoc_request.atim_window = 0;
7397         }
7398
7399         priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7400
7401         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7402         if (err) {
7403                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7404                 return err;
7405         }
7406
7407         rates->ieee_mode = priv->assoc_request.ieee_mode;
7408         rates->purpose = IPW_RATE_CONNECT;
7409         ipw_send_supported_rates(priv, rates);
7410
7411         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7412                 priv->sys_config.dot11g_auto_detection = 1;
7413         else
7414                 priv->sys_config.dot11g_auto_detection = 0;
7415
7416         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7417                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7418         else
7419                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7420
7421         err = ipw_send_system_config(priv);
7422         if (err) {
7423                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7424                 return err;
7425         }
7426
7427         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7428         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7429         if (err) {
7430                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7431                 return err;
7432         }
7433
7434         /*
7435          * If preemption is enabled, it is possible for the association
7436          * to complete before we return from ipw_send_associate.  Therefore
7437          * we have to be sure and update our priviate data first.
7438          */
7439         priv->channel = network->channel;
7440         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7441         priv->status |= STATUS_ASSOCIATING;
7442         priv->status &= ~STATUS_SECURITY_UPDATED;
7443
7444         priv->assoc_network = network;
7445
7446 #ifdef CONFIG_IPW2200_QOS
7447         ipw_qos_association(priv, network);
7448 #endif
7449
7450         err = ipw_send_associate(priv, &priv->assoc_request);
7451         if (err) {
7452                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7453                 return err;
7454         }
7455
7456         IPW_DEBUG(IPW_DL_STATE, "associating: '%*pE' %pM\n",
7457                   priv->essid_len, priv->essid, priv->bssid);
7458
7459         return 0;
7460 }
7461
7462 static void ipw_roam(void *data)
7463 {
7464         struct ipw_priv *priv = data;
7465         struct libipw_network *network = NULL;
7466         struct ipw_network_match match = {
7467                 .network = priv->assoc_network
7468         };
7469
7470         /* The roaming process is as follows:
7471          *
7472          * 1.  Missed beacon threshold triggers the roaming process by
7473          *     setting the status ROAM bit and requesting a scan.
7474          * 2.  When the scan completes, it schedules the ROAM work
7475          * 3.  The ROAM work looks at all of the known networks for one that
7476          *     is a better network than the currently associated.  If none
7477          *     found, the ROAM process is over (ROAM bit cleared)
7478          * 4.  If a better network is found, a disassociation request is
7479          *     sent.
7480          * 5.  When the disassociation completes, the roam work is again
7481          *     scheduled.  The second time through, the driver is no longer
7482          *     associated, and the newly selected network is sent an
7483          *     association request.
7484          * 6.  At this point ,the roaming process is complete and the ROAM
7485          *     status bit is cleared.
7486          */
7487
7488         /* If we are no longer associated, and the roaming bit is no longer
7489          * set, then we are not actively roaming, so just return */
7490         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7491                 return;
7492
7493         if (priv->status & STATUS_ASSOCIATED) {
7494                 /* First pass through ROAM process -- look for a better
7495                  * network */
7496                 unsigned long flags;
7497                 u8 rssi = priv->assoc_network->stats.rssi;
7498                 priv->assoc_network->stats.rssi = -128;
7499                 spin_lock_irqsave(&priv->ieee->lock, flags);
7500                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7501                         if (network != priv->assoc_network)
7502                                 ipw_best_network(priv, &match, network, 1);
7503                 }
7504                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7505                 priv->assoc_network->stats.rssi = rssi;
7506
7507                 if (match.network == priv->assoc_network) {
7508                         IPW_DEBUG_ASSOC("No better APs in this network to "
7509                                         "roam to.\n");
7510                         priv->status &= ~STATUS_ROAMING;
7511                         ipw_debug_config(priv);
7512                         return;
7513                 }
7514
7515                 ipw_send_disassociate(priv, 1);
7516                 priv->assoc_network = match.network;
7517
7518                 return;
7519         }
7520
7521         /* Second pass through ROAM process -- request association */
7522         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7523         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7524         priv->status &= ~STATUS_ROAMING;
7525 }
7526
7527 static void ipw_bg_roam(struct work_struct *work)
7528 {
7529         struct ipw_priv *priv =
7530                 container_of(work, struct ipw_priv, roam);
7531         mutex_lock(&priv->mutex);
7532         ipw_roam(priv);
7533         mutex_unlock(&priv->mutex);
7534 }
7535
7536 static int ipw_associate(void *data)
7537 {
7538         struct ipw_priv *priv = data;
7539
7540         struct libipw_network *network = NULL;
7541         struct ipw_network_match match = {
7542                 .network = NULL
7543         };
7544         struct ipw_supported_rates *rates;
7545         struct list_head *element;
7546         unsigned long flags;
7547
7548         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7549                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7550                 return 0;
7551         }
7552
7553         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7554                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7555                                 "progress)\n");
7556                 return 0;
7557         }
7558
7559         if (priv->status & STATUS_DISASSOCIATING) {
7560                 IPW_DEBUG_ASSOC("Not attempting association (in "
7561                                 "disassociating)\n ");
7562                 schedule_work(&priv->associate);
7563                 return 0;
7564         }
7565
7566         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7567                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7568                                 "initialized)\n");
7569                 return 0;
7570         }
7571
7572         if (!(priv->config & CFG_ASSOCIATE) &&
7573             !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7574                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7575                 return 0;
7576         }
7577
7578         /* Protect our use of the network_list */
7579         spin_lock_irqsave(&priv->ieee->lock, flags);
7580         list_for_each_entry(network, &priv->ieee->network_list, list)
7581             ipw_best_network(priv, &match, network, 0);
7582
7583         network = match.network;
7584         rates = &match.rates;
7585
7586         if (network == NULL &&
7587             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7588             priv->config & CFG_ADHOC_CREATE &&
7589             priv->config & CFG_STATIC_ESSID &&
7590             priv->config & CFG_STATIC_CHANNEL) {
7591                 /* Use oldest network if the free list is empty */
7592                 if (list_empty(&priv->ieee->network_free_list)) {
7593                         struct libipw_network *oldest = NULL;
7594                         struct libipw_network *target;
7595
7596                         list_for_each_entry(target, &priv->ieee->network_list, list) {
7597                                 if ((oldest == NULL) ||
7598                                     (target->last_scanned < oldest->last_scanned))
7599                                         oldest = target;
7600                         }
7601
7602                         /* If there are no more slots, expire the oldest */
7603                         list_del(&oldest->list);
7604                         target = oldest;
7605                         IPW_DEBUG_ASSOC("Expired '%*pE' (%pM) from network list.\n",
7606                                         target->ssid_len, target->ssid,
7607                                         target->bssid);
7608                         list_add_tail(&target->list,
7609                                       &priv->ieee->network_free_list);
7610                 }
7611
7612                 element = priv->ieee->network_free_list.next;
7613                 network = list_entry(element, struct libipw_network, list);
7614                 ipw_adhoc_create(priv, network);
7615                 rates = &priv->rates;
7616                 list_del(element);
7617                 list_add_tail(&network->list, &priv->ieee->network_list);
7618         }
7619         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7620
7621         /* If we reached the end of the list, then we don't have any valid
7622          * matching APs */
7623         if (!network) {
7624                 ipw_debug_config(priv);
7625
7626                 if (!(priv->status & STATUS_SCANNING)) {
7627                         if (!(priv->config & CFG_SPEED_SCAN))
7628                                 schedule_delayed_work(&priv->request_scan,
7629                                                       SCAN_INTERVAL);
7630                         else
7631                                 schedule_delayed_work(&priv->request_scan, 0);
7632                 }
7633
7634                 return 0;
7635         }
7636
7637         ipw_associate_network(priv, network, rates, 0);
7638
7639         return 1;
7640 }
7641
7642 static void ipw_bg_associate(struct work_struct *work)
7643 {
7644         struct ipw_priv *priv =
7645                 container_of(work, struct ipw_priv, associate);
7646         mutex_lock(&priv->mutex);
7647         ipw_associate(priv);
7648         mutex_unlock(&priv->mutex);
7649 }
7650
7651 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7652                                       struct sk_buff *skb)
7653 {
7654         struct ieee80211_hdr *hdr;
7655         u16 fc;
7656
7657         hdr = (struct ieee80211_hdr *)skb->data;
7658         fc = le16_to_cpu(hdr->frame_control);
7659         if (!(fc & IEEE80211_FCTL_PROTECTED))
7660                 return;
7661
7662         fc &= ~IEEE80211_FCTL_PROTECTED;
7663         hdr->frame_control = cpu_to_le16(fc);
7664         switch (priv->ieee->sec.level) {
7665         case SEC_LEVEL_3:
7666                 /* Remove CCMP HDR */
7667                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7668                         skb->data + LIBIPW_3ADDR_LEN + 8,
7669                         skb->len - LIBIPW_3ADDR_LEN - 8);
7670                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7671                 break;
7672         case SEC_LEVEL_2:
7673                 break;
7674         case SEC_LEVEL_1:
7675                 /* Remove IV */
7676                 memmove(skb->data + LIBIPW_3ADDR_LEN,
7677                         skb->data + LIBIPW_3ADDR_LEN + 4,
7678                         skb->len - LIBIPW_3ADDR_LEN - 4);
7679                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7680                 break;
7681         case SEC_LEVEL_0:
7682                 break;
7683         default:
7684                 printk(KERN_ERR "Unknown security level %d\n",
7685                        priv->ieee->sec.level);
7686                 break;
7687         }
7688 }
7689
7690 static void ipw_handle_data_packet(struct ipw_priv *priv,
7691                                    struct ipw_rx_mem_buffer *rxb,
7692                                    struct libipw_rx_stats *stats)
7693 {
7694         struct net_device *dev = priv->net_dev;
7695         struct libipw_hdr_4addr *hdr;
7696         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7697
7698         /* We received data from the HW, so stop the watchdog */
7699         netif_trans_update(dev);
7700
7701         /* We only process data packets if the
7702          * interface is open */
7703         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7704                      skb_tailroom(rxb->skb))) {
7705                 dev->stats.rx_errors++;
7706                 priv->wstats.discard.misc++;
7707                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7708                 return;
7709         } else if (unlikely(!netif_running(priv->net_dev))) {
7710                 dev->stats.rx_dropped++;
7711                 priv->wstats.discard.misc++;
7712                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7713                 return;
7714         }
7715
7716         /* Advance skb->data to the start of the actual payload */
7717         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7718
7719         /* Set the size of the skb to the size of the frame */
7720         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7721
7722         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7723
7724         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7725         hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7726         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7727             (is_multicast_ether_addr(hdr->addr1) ?
7728              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7729                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7730
7731         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7732                 dev->stats.rx_errors++;
7733         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7734                 rxb->skb = NULL;
7735                 __ipw_led_activity_on(priv);
7736         }
7737 }
7738
7739 #ifdef CONFIG_IPW2200_RADIOTAP
7740 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7741                                            struct ipw_rx_mem_buffer *rxb,
7742                                            struct libipw_rx_stats *stats)
7743 {
7744         struct net_device *dev = priv->net_dev;
7745         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7746         struct ipw_rx_frame *frame = &pkt->u.frame;
7747
7748         /* initial pull of some data */
7749         u16 received_channel = frame->received_channel;
7750         u8 antennaAndPhy = frame->antennaAndPhy;
7751         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7752         u16 pktrate = frame->rate;
7753
7754         /* Magic struct that slots into the radiotap header -- no reason
7755          * to build this manually element by element, we can write it much
7756          * more efficiently than we can parse it. ORDER MATTERS HERE */
7757         struct ipw_rt_hdr *ipw_rt;
7758
7759         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7760
7761         /* We received data from the HW, so stop the watchdog */
7762         netif_trans_update(dev);
7763
7764         /* We only process data packets if the
7765          * interface is open */
7766         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7767                      skb_tailroom(rxb->skb))) {
7768                 dev->stats.rx_errors++;
7769                 priv->wstats.discard.misc++;
7770                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7771                 return;
7772         } else if (unlikely(!netif_running(priv->net_dev))) {
7773                 dev->stats.rx_dropped++;
7774                 priv->wstats.discard.misc++;
7775                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7776                 return;
7777         }
7778
7779         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7780          * that now */
7781         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7782                 /* FIXME: Should alloc bigger skb instead */
7783                 dev->stats.rx_dropped++;
7784                 priv->wstats.discard.misc++;
7785                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7786                 return;
7787         }
7788
7789         /* copy the frame itself */
7790         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7791                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7792
7793         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7794
7795         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7796         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7797         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7798
7799         /* Big bitfield of all the fields we provide in radiotap */
7800         ipw_rt->rt_hdr.it_present = cpu_to_le32(
7801              (1 << IEEE80211_RADIOTAP_TSFT) |
7802              (1 << IEEE80211_RADIOTAP_FLAGS) |
7803              (1 << IEEE80211_RADIOTAP_RATE) |
7804              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7805              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7806              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7807              (1 << IEEE80211_RADIOTAP_ANTENNA));
7808
7809         /* Zero the flags, we'll add to them as we go */
7810         ipw_rt->rt_flags = 0;
7811         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7812                                frame->parent_tsf[2] << 16 |
7813                                frame->parent_tsf[1] << 8  |
7814                                frame->parent_tsf[0]);
7815
7816         /* Convert signal to DBM */
7817         ipw_rt->rt_dbmsignal = antsignal;
7818         ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7819
7820         /* Convert the channel data and set the flags */
7821         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7822         if (received_channel > 14) {    /* 802.11a */
7823                 ipw_rt->rt_chbitmask =
7824                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7825         } else if (antennaAndPhy & 32) {        /* 802.11b */
7826                 ipw_rt->rt_chbitmask =
7827                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7828         } else {                /* 802.11g */
7829                 ipw_rt->rt_chbitmask =
7830                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7831         }
7832
7833         /* set the rate in multiples of 500k/s */
7834         switch (pktrate) {
7835         case IPW_TX_RATE_1MB:
7836                 ipw_rt->rt_rate = 2;
7837                 break;
7838         case IPW_TX_RATE_2MB:
7839                 ipw_rt->rt_rate = 4;
7840                 break;
7841         case IPW_TX_RATE_5MB:
7842                 ipw_rt->rt_rate = 10;
7843                 break;
7844         case IPW_TX_RATE_6MB:
7845                 ipw_rt->rt_rate = 12;
7846                 break;
7847         case IPW_TX_RATE_9MB:
7848                 ipw_rt->rt_rate = 18;
7849                 break;
7850         case IPW_TX_RATE_11MB:
7851                 ipw_rt->rt_rate = 22;
7852                 break;
7853         case IPW_TX_RATE_12MB:
7854                 ipw_rt->rt_rate = 24;
7855                 break;
7856         case IPW_TX_RATE_18MB:
7857                 ipw_rt->rt_rate = 36;
7858                 break;
7859         case IPW_TX_RATE_24MB:
7860                 ipw_rt->rt_rate = 48;
7861                 break;
7862         case IPW_TX_RATE_36MB:
7863                 ipw_rt->rt_rate = 72;
7864                 break;
7865         case IPW_TX_RATE_48MB:
7866                 ipw_rt->rt_rate = 96;
7867                 break;
7868         case IPW_TX_RATE_54MB:
7869                 ipw_rt->rt_rate = 108;
7870                 break;
7871         default:
7872                 ipw_rt->rt_rate = 0;
7873                 break;
7874         }
7875
7876         /* antenna number */
7877         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7878
7879         /* set the preamble flag if we have it */
7880         if ((antennaAndPhy & 64))
7881                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7882
7883         /* Set the size of the skb to the size of the frame */
7884         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7885
7886         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7887
7888         if (!libipw_rx(priv->ieee, rxb->skb, stats))
7889                 dev->stats.rx_errors++;
7890         else {                  /* libipw_rx succeeded, so it now owns the SKB */
7891                 rxb->skb = NULL;
7892                 /* no LED during capture */
7893         }
7894 }
7895 #endif
7896
7897 #ifdef CONFIG_IPW2200_PROMISCUOUS
7898 #define libipw_is_probe_response(fc) \
7899    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7900     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7901
7902 #define libipw_is_management(fc) \
7903    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7904
7905 #define libipw_is_control(fc) \
7906    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7907
7908 #define libipw_is_data(fc) \
7909    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7910
7911 #define libipw_is_assoc_request(fc) \
7912    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7913
7914 #define libipw_is_reassoc_request(fc) \
7915    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7916
7917 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7918                                       struct ipw_rx_mem_buffer *rxb,
7919                                       struct libipw_rx_stats *stats)
7920 {
7921         struct net_device *dev = priv->prom_net_dev;
7922         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7923         struct ipw_rx_frame *frame = &pkt->u.frame;
7924         struct ipw_rt_hdr *ipw_rt;
7925
7926         /* First cache any information we need before we overwrite
7927          * the information provided in the skb from the hardware */
7928         struct ieee80211_hdr *hdr;
7929         u16 channel = frame->received_channel;
7930         u8 phy_flags = frame->antennaAndPhy;
7931         s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7932         s8 noise = (s8) le16_to_cpu(frame->noise);
7933         u8 rate = frame->rate;
7934         unsigned short len = le16_to_cpu(pkt->u.frame.length);
7935         struct sk_buff *skb;
7936         int hdr_only = 0;
7937         u16 filter = priv->prom_priv->filter;
7938
7939         /* If the filter is set to not include Rx frames then return */
7940         if (filter & IPW_PROM_NO_RX)
7941                 return;
7942
7943         /* We received data from the HW, so stop the watchdog */
7944         netif_trans_update(dev);
7945
7946         if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7947                 dev->stats.rx_errors++;
7948                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7949                 return;
7950         }
7951
7952         /* We only process data packets if the interface is open */
7953         if (unlikely(!netif_running(dev))) {
7954                 dev->stats.rx_dropped++;
7955                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7956                 return;
7957         }
7958
7959         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7960          * that now */
7961         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7962                 /* FIXME: Should alloc bigger skb instead */
7963                 dev->stats.rx_dropped++;
7964                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7965                 return;
7966         }
7967
7968         hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7969         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
7970                 if (filter & IPW_PROM_NO_MGMT)
7971                         return;
7972                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7973                         hdr_only = 1;
7974         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
7975                 if (filter & IPW_PROM_NO_CTL)
7976                         return;
7977                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
7978                         hdr_only = 1;
7979         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
7980                 if (filter & IPW_PROM_NO_DATA)
7981                         return;
7982                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
7983                         hdr_only = 1;
7984         }
7985
7986         /* Copy the SKB since this is for the promiscuous side */
7987         skb = skb_copy(rxb->skb, GFP_ATOMIC);
7988         if (skb == NULL) {
7989                 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
7990                 return;
7991         }
7992
7993         /* copy the frame data to write after where the radiotap header goes */
7994         ipw_rt = (void *)skb->data;
7995
7996         if (hdr_only)
7997                 len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
7998
7999         memcpy(ipw_rt->payload, hdr, len);
8000
8001         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8002         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
8003         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));   /* total header+data */
8004
8005         /* Set the size of the skb to the size of the frame */
8006         skb_put(skb, sizeof(*ipw_rt) + len);
8007
8008         /* Big bitfield of all the fields we provide in radiotap */
8009         ipw_rt->rt_hdr.it_present = cpu_to_le32(
8010              (1 << IEEE80211_RADIOTAP_TSFT) |
8011              (1 << IEEE80211_RADIOTAP_FLAGS) |
8012              (1 << IEEE80211_RADIOTAP_RATE) |
8013              (1 << IEEE80211_RADIOTAP_CHANNEL) |
8014              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8015              (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8016              (1 << IEEE80211_RADIOTAP_ANTENNA));
8017
8018         /* Zero the flags, we'll add to them as we go */
8019         ipw_rt->rt_flags = 0;
8020         ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8021                                frame->parent_tsf[2] << 16 |
8022                                frame->parent_tsf[1] << 8  |
8023                                frame->parent_tsf[0]);
8024
8025         /* Convert to DBM */
8026         ipw_rt->rt_dbmsignal = signal;
8027         ipw_rt->rt_dbmnoise = noise;
8028
8029         /* Convert the channel data and set the flags */
8030         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8031         if (channel > 14) {     /* 802.11a */
8032                 ipw_rt->rt_chbitmask =
8033                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8034         } else if (phy_flags & (1 << 5)) {      /* 802.11b */
8035                 ipw_rt->rt_chbitmask =
8036                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8037         } else {                /* 802.11g */
8038                 ipw_rt->rt_chbitmask =
8039                     cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8040         }
8041
8042         /* set the rate in multiples of 500k/s */
8043         switch (rate) {
8044         case IPW_TX_RATE_1MB:
8045                 ipw_rt->rt_rate = 2;
8046                 break;
8047         case IPW_TX_RATE_2MB:
8048                 ipw_rt->rt_rate = 4;
8049                 break;
8050         case IPW_TX_RATE_5MB:
8051                 ipw_rt->rt_rate = 10;
8052                 break;
8053         case IPW_TX_RATE_6MB:
8054                 ipw_rt->rt_rate = 12;
8055                 break;
8056         case IPW_TX_RATE_9MB:
8057                 ipw_rt->rt_rate = 18;
8058                 break;
8059         case IPW_TX_RATE_11MB:
8060                 ipw_rt->rt_rate = 22;
8061                 break;
8062         case IPW_TX_RATE_12MB:
8063                 ipw_rt->rt_rate = 24;
8064                 break;
8065         case IPW_TX_RATE_18MB:
8066                 ipw_rt->rt_rate = 36;
8067                 break;
8068         case IPW_TX_RATE_24MB:
8069                 ipw_rt->rt_rate = 48;
8070                 break;
8071         case IPW_TX_RATE_36MB:
8072                 ipw_rt->rt_rate = 72;
8073                 break;
8074         case IPW_TX_RATE_48MB:
8075                 ipw_rt->rt_rate = 96;
8076                 break;
8077         case IPW_TX_RATE_54MB:
8078                 ipw_rt->rt_rate = 108;
8079                 break;
8080         default:
8081                 ipw_rt->rt_rate = 0;
8082                 break;
8083         }
8084
8085         /* antenna number */
8086         ipw_rt->rt_antenna = (phy_flags & 3);
8087
8088         /* set the preamble flag if we have it */
8089         if (phy_flags & (1 << 6))
8090                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8091
8092         IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8093
8094         if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8095                 dev->stats.rx_errors++;
8096                 dev_kfree_skb_any(skb);
8097         }
8098 }
8099 #endif
8100
8101 static int is_network_packet(struct ipw_priv *priv,
8102                                     struct libipw_hdr_4addr *header)
8103 {
8104         /* Filter incoming packets to determine if they are targeted toward
8105          * this network, discarding packets coming from ourselves */
8106         switch (priv->ieee->iw_mode) {
8107         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
8108                 /* packets from our adapter are dropped (echo) */
8109                 if (ether_addr_equal(header->addr2, priv->net_dev->dev_addr))
8110                         return 0;
8111
8112                 /* {broad,multi}cast packets to our BSSID go through */
8113                 if (is_multicast_ether_addr(header->addr1))
8114                         return ether_addr_equal(header->addr3, priv->bssid);
8115
8116                 /* packets to our adapter go through */
8117                 return ether_addr_equal(header->addr1,
8118                                         priv->net_dev->dev_addr);
8119
8120         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
8121                 /* packets from our adapter are dropped (echo) */
8122                 if (ether_addr_equal(header->addr3, priv->net_dev->dev_addr))
8123                         return 0;
8124
8125                 /* {broad,multi}cast packets to our BSS go through */
8126                 if (is_multicast_ether_addr(header->addr1))
8127                         return ether_addr_equal(header->addr2, priv->bssid);
8128
8129                 /* packets to our adapter go through */
8130                 return ether_addr_equal(header->addr1,
8131                                         priv->net_dev->dev_addr);
8132         }
8133
8134         return 1;
8135 }
8136
8137 #define IPW_PACKET_RETRY_TIME HZ
8138
8139 static  int is_duplicate_packet(struct ipw_priv *priv,
8140                                       struct libipw_hdr_4addr *header)
8141 {
8142         u16 sc = le16_to_cpu(header->seq_ctl);
8143         u16 seq = WLAN_GET_SEQ_SEQ(sc);
8144         u16 frag = WLAN_GET_SEQ_FRAG(sc);
8145         u16 *last_seq, *last_frag;
8146         unsigned long *last_time;
8147
8148         switch (priv->ieee->iw_mode) {
8149         case IW_MODE_ADHOC:
8150                 {
8151                         struct list_head *p;
8152                         struct ipw_ibss_seq *entry = NULL;
8153                         u8 *mac = header->addr2;
8154                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8155
8156                         list_for_each(p, &priv->ibss_mac_hash[index]) {
8157                                 entry =
8158                                     list_entry(p, struct ipw_ibss_seq, list);
8159                                 if (ether_addr_equal(entry->mac, mac))
8160                                         break;
8161                         }
8162                         if (p == &priv->ibss_mac_hash[index]) {
8163                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8164                                 if (!entry) {
8165                                         IPW_ERROR
8166                                             ("Cannot malloc new mac entry\n");
8167                                         return 0;
8168                                 }
8169                                 memcpy(entry->mac, mac, ETH_ALEN);
8170                                 entry->seq_num = seq;
8171                                 entry->frag_num = frag;
8172                                 entry->packet_time = jiffies;
8173                                 list_add(&entry->list,
8174                                          &priv->ibss_mac_hash[index]);
8175                                 return 0;
8176                         }
8177                         last_seq = &entry->seq_num;
8178                         last_frag = &entry->frag_num;
8179                         last_time = &entry->packet_time;
8180                         break;
8181                 }
8182         case IW_MODE_INFRA:
8183                 last_seq = &priv->last_seq_num;
8184                 last_frag = &priv->last_frag_num;
8185                 last_time = &priv->last_packet_time;
8186                 break;
8187         default:
8188                 return 0;
8189         }
8190         if ((*last_seq == seq) &&
8191             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8192                 if (*last_frag == frag)
8193                         goto drop;
8194                 if (*last_frag + 1 != frag)
8195                         /* out-of-order fragment */
8196                         goto drop;
8197         } else
8198                 *last_seq = seq;
8199
8200         *last_frag = frag;
8201         *last_time = jiffies;
8202         return 0;
8203
8204       drop:
8205         /* Comment this line now since we observed the card receives
8206          * duplicate packets but the FCTL_RETRY bit is not set in the
8207          * IBSS mode with fragmentation enabled.
8208          BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8209         return 1;
8210 }
8211
8212 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8213                                    struct ipw_rx_mem_buffer *rxb,
8214                                    struct libipw_rx_stats *stats)
8215 {
8216         struct sk_buff *skb = rxb->skb;
8217         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8218         struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8219             (skb->data + IPW_RX_FRAME_SIZE);
8220
8221         libipw_rx_mgt(priv->ieee, header, stats);
8222
8223         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8224             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8225               IEEE80211_STYPE_PROBE_RESP) ||
8226              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8227               IEEE80211_STYPE_BEACON))) {
8228                 if (ether_addr_equal(header->addr3, priv->bssid))
8229                         ipw_add_station(priv, header->addr2);
8230         }
8231
8232         if (priv->config & CFG_NET_STATS) {
8233                 IPW_DEBUG_HC("sending stat packet\n");
8234
8235                 /* Set the size of the skb to the size of the full
8236                  * ipw header and 802.11 frame */
8237                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8238                         IPW_RX_FRAME_SIZE);
8239
8240                 /* Advance past the ipw packet header to the 802.11 frame */
8241                 skb_pull(skb, IPW_RX_FRAME_SIZE);
8242
8243                 /* Push the libipw_rx_stats before the 802.11 frame */
8244                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8245
8246                 skb->dev = priv->ieee->dev;
8247
8248                 /* Point raw at the libipw_stats */
8249                 skb_reset_mac_header(skb);
8250
8251                 skb->pkt_type = PACKET_OTHERHOST;
8252                 skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8253                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8254                 netif_rx(skb);
8255                 rxb->skb = NULL;
8256         }
8257 }
8258
8259 /*
8260  * Main entry function for receiving a packet with 80211 headers.  This
8261  * should be called when ever the FW has notified us that there is a new
8262  * skb in the receive queue.
8263  */
8264 static void ipw_rx(struct ipw_priv *priv)
8265 {
8266         struct ipw_rx_mem_buffer *rxb;
8267         struct ipw_rx_packet *pkt;
8268         struct libipw_hdr_4addr *header;
8269         u32 r, w, i;
8270         u8 network_packet;
8271         u8 fill_rx = 0;
8272
8273         r = ipw_read32(priv, IPW_RX_READ_INDEX);
8274         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8275         i = priv->rxq->read;
8276
8277         if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8278                 fill_rx = 1;
8279
8280         while (i != r) {
8281                 rxb = priv->rxq->queue[i];
8282                 if (unlikely(rxb == NULL)) {
8283                         printk(KERN_CRIT "Queue not allocated!\n");
8284                         break;
8285                 }
8286                 priv->rxq->queue[i] = NULL;
8287
8288                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8289                                             IPW_RX_BUF_SIZE,
8290                                             PCI_DMA_FROMDEVICE);
8291
8292                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8293                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8294                              pkt->header.message_type,
8295                              pkt->header.rx_seq_num, pkt->header.control_bits);
8296
8297                 switch (pkt->header.message_type) {
8298                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
8299                                 struct libipw_rx_stats stats = {
8300                                         .rssi = pkt->u.frame.rssi_dbm -
8301                                             IPW_RSSI_TO_DBM,
8302                                         .signal =
8303                                             pkt->u.frame.rssi_dbm -
8304                                             IPW_RSSI_TO_DBM + 0x100,
8305                                         .noise =
8306                                             le16_to_cpu(pkt->u.frame.noise),
8307                                         .rate = pkt->u.frame.rate,
8308                                         .mac_time = jiffies,
8309                                         .received_channel =
8310                                             pkt->u.frame.received_channel,
8311                                         .freq =
8312                                             (pkt->u.frame.
8313                                              control & (1 << 0)) ?
8314                                             LIBIPW_24GHZ_BAND :
8315                                             LIBIPW_52GHZ_BAND,
8316                                         .len = le16_to_cpu(pkt->u.frame.length),
8317                                 };
8318
8319                                 if (stats.rssi != 0)
8320                                         stats.mask |= LIBIPW_STATMASK_RSSI;
8321                                 if (stats.signal != 0)
8322                                         stats.mask |= LIBIPW_STATMASK_SIGNAL;
8323                                 if (stats.noise != 0)
8324                                         stats.mask |= LIBIPW_STATMASK_NOISE;
8325                                 if (stats.rate != 0)
8326                                         stats.mask |= LIBIPW_STATMASK_RATE;
8327
8328                                 priv->rx_packets++;
8329
8330 #ifdef CONFIG_IPW2200_PROMISCUOUS
8331         if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8332                 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8333 #endif
8334
8335 #ifdef CONFIG_IPW2200_MONITOR
8336                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8337 #ifdef CONFIG_IPW2200_RADIOTAP
8338
8339                 ipw_handle_data_packet_monitor(priv,
8340                                                rxb,
8341                                                &stats);
8342 #else
8343                 ipw_handle_data_packet(priv, rxb,
8344                                        &stats);
8345 #endif
8346                                         break;
8347                                 }
8348 #endif
8349
8350                                 header =
8351                                     (struct libipw_hdr_4addr *)(rxb->skb->
8352                                                                    data +
8353                                                                    IPW_RX_FRAME_SIZE);
8354                                 /* TODO: Check Ad-Hoc dest/source and make sure
8355                                  * that we are actually parsing these packets
8356                                  * correctly -- we should probably use the
8357                                  * frame control of the packet and disregard
8358                                  * the current iw_mode */
8359
8360                                 network_packet =
8361                                     is_network_packet(priv, header);
8362                                 if (network_packet && priv->assoc_network) {
8363                                         priv->assoc_network->stats.rssi =
8364                                             stats.rssi;
8365                                         priv->exp_avg_rssi =
8366                                             exponential_average(priv->exp_avg_rssi,
8367                                             stats.rssi, DEPTH_RSSI);
8368                                 }
8369
8370                                 IPW_DEBUG_RX("Frame: len=%u\n",
8371                                              le16_to_cpu(pkt->u.frame.length));
8372
8373                                 if (le16_to_cpu(pkt->u.frame.length) <
8374                                     libipw_get_hdrlen(le16_to_cpu(
8375                                                     header->frame_ctl))) {
8376                                         IPW_DEBUG_DROP
8377                                             ("Received packet is too small. "
8378                                              "Dropping.\n");
8379                                         priv->net_dev->stats.rx_errors++;
8380                                         priv->wstats.discard.misc++;
8381                                         break;
8382                                 }
8383
8384                                 switch (WLAN_FC_GET_TYPE
8385                                         (le16_to_cpu(header->frame_ctl))) {
8386
8387                                 case IEEE80211_FTYPE_MGMT:
8388                                         ipw_handle_mgmt_packet(priv, rxb,
8389                                                                &stats);
8390                                         break;
8391
8392                                 case IEEE80211_FTYPE_CTL:
8393                                         break;
8394
8395                                 case IEEE80211_FTYPE_DATA:
8396                                         if (unlikely(!network_packet ||
8397                                                      is_duplicate_packet(priv,
8398                                                                          header)))
8399                                         {
8400                                                 IPW_DEBUG_DROP("Dropping: "
8401                                                                "%pM, "
8402                                                                "%pM, "
8403                                                                "%pM\n",
8404                                                                header->addr1,
8405                                                                header->addr2,
8406                                                                header->addr3);
8407                                                 break;
8408                                         }
8409
8410                                         ipw_handle_data_packet(priv, rxb,
8411                                                                &stats);
8412
8413                                         break;
8414                                 }
8415                                 break;
8416                         }
8417
8418                 case RX_HOST_NOTIFICATION_TYPE:{
8419                                 IPW_DEBUG_RX
8420                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
8421                                      pkt->u.notification.subtype,
8422                                      pkt->u.notification.flags,
8423                                      le16_to_cpu(pkt->u.notification.size));
8424                                 ipw_rx_notification(priv, &pkt->u.notification);
8425                                 break;
8426                         }
8427
8428                 default:
8429                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8430                                      pkt->header.message_type);
8431                         break;
8432                 }
8433
8434                 /* For now we just don't re-use anything.  We can tweak this
8435                  * later to try and re-use notification packets and SKBs that
8436                  * fail to Rx correctly */
8437                 if (rxb->skb != NULL) {
8438                         dev_kfree_skb_any(rxb->skb);
8439                         rxb->skb = NULL;
8440                 }
8441
8442                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8443                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8444                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8445
8446                 i = (i + 1) % RX_QUEUE_SIZE;
8447
8448                 /* If there are a lot of unsued frames, restock the Rx queue
8449                  * so the ucode won't assert */
8450                 if (fill_rx) {
8451                         priv->rxq->read = i;
8452                         ipw_rx_queue_replenish(priv);
8453                 }
8454         }
8455
8456         /* Backtrack one entry */
8457         priv->rxq->read = i;
8458         ipw_rx_queue_restock(priv);
8459 }
8460
8461 #define DEFAULT_RTS_THRESHOLD     2304U
8462 #define MIN_RTS_THRESHOLD         1U
8463 #define MAX_RTS_THRESHOLD         2304U
8464 #define DEFAULT_BEACON_INTERVAL   100U
8465 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8466 #define DEFAULT_LONG_RETRY_LIMIT  4U
8467
8468 /**
8469  * ipw_sw_reset
8470  * @option: options to control different reset behaviour
8471  *          0 = reset everything except the 'disable' module_param
8472  *          1 = reset everything and print out driver info (for probe only)
8473  *          2 = reset everything
8474  */
8475 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8476 {
8477         int band, modulation;
8478         int old_mode = priv->ieee->iw_mode;
8479
8480         /* Initialize module parameter values here */
8481         priv->config = 0;
8482
8483         /* We default to disabling the LED code as right now it causes
8484          * too many systems to lock up... */
8485         if (!led_support)
8486                 priv->config |= CFG_NO_LED;
8487
8488         if (associate)
8489                 priv->config |= CFG_ASSOCIATE;
8490         else
8491                 IPW_DEBUG_INFO("Auto associate disabled.\n");
8492
8493         if (auto_create)
8494                 priv->config |= CFG_ADHOC_CREATE;
8495         else
8496                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8497
8498         priv->config &= ~CFG_STATIC_ESSID;
8499         priv->essid_len = 0;
8500         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8501
8502         if (disable && option) {
8503                 priv->status |= STATUS_RF_KILL_SW;
8504                 IPW_DEBUG_INFO("Radio disabled.\n");
8505         }
8506
8507         if (default_channel != 0) {
8508                 priv->config |= CFG_STATIC_CHANNEL;
8509                 priv->channel = default_channel;
8510                 IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8511                 /* TODO: Validate that provided channel is in range */
8512         }
8513 #ifdef CONFIG_IPW2200_QOS
8514         ipw_qos_init(priv, qos_enable, qos_burst_enable,
8515                      burst_duration_CCK, burst_duration_OFDM);
8516 #endif                          /* CONFIG_IPW2200_QOS */
8517
8518         switch (network_mode) {
8519         case 1:
8520                 priv->ieee->iw_mode = IW_MODE_ADHOC;
8521                 priv->net_dev->type = ARPHRD_ETHER;
8522
8523                 break;
8524 #ifdef CONFIG_IPW2200_MONITOR
8525         case 2:
8526                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8527 #ifdef CONFIG_IPW2200_RADIOTAP
8528                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8529 #else
8530                 priv->net_dev->type = ARPHRD_IEEE80211;
8531 #endif
8532                 break;
8533 #endif
8534         default:
8535         case 0:
8536                 priv->net_dev->type = ARPHRD_ETHER;
8537                 priv->ieee->iw_mode = IW_MODE_INFRA;
8538                 break;
8539         }
8540
8541         if (hwcrypto) {
8542                 priv->ieee->host_encrypt = 0;
8543                 priv->ieee->host_encrypt_msdu = 0;
8544                 priv->ieee->host_decrypt = 0;
8545                 priv->ieee->host_mc_decrypt = 0;
8546         }
8547         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8548
8549         /* IPW2200/2915 is abled to do hardware fragmentation. */
8550         priv->ieee->host_open_frag = 0;
8551
8552         if ((priv->pci_dev->device == 0x4223) ||
8553             (priv->pci_dev->device == 0x4224)) {
8554                 if (option == 1)
8555                         printk(KERN_INFO DRV_NAME
8556                                ": Detected Intel PRO/Wireless 2915ABG Network "
8557                                "Connection\n");
8558                 priv->ieee->abg_true = 1;
8559                 band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8560                 modulation = LIBIPW_OFDM_MODULATION |
8561                     LIBIPW_CCK_MODULATION;
8562                 priv->adapter = IPW_2915ABG;
8563                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8564         } else {
8565                 if (option == 1)
8566                         printk(KERN_INFO DRV_NAME
8567                                ": Detected Intel PRO/Wireless 2200BG Network "
8568                                "Connection\n");
8569
8570                 priv->ieee->abg_true = 0;
8571                 band = LIBIPW_24GHZ_BAND;
8572                 modulation = LIBIPW_OFDM_MODULATION |
8573                     LIBIPW_CCK_MODULATION;
8574                 priv->adapter = IPW_2200BG;
8575                 priv->ieee->mode = IEEE_G | IEEE_B;
8576         }
8577
8578         priv->ieee->freq_band = band;
8579         priv->ieee->modulation = modulation;
8580
8581         priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8582
8583         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8584         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8585
8586         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8587         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8588         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8589
8590         /* If power management is turned on, default to AC mode */
8591         priv->power_mode = IPW_POWER_AC;
8592         priv->tx_power = IPW_TX_POWER_DEFAULT;
8593
8594         return old_mode == priv->ieee->iw_mode;
8595 }
8596
8597 /*
8598  * This file defines the Wireless Extension handlers.  It does not
8599  * define any methods of hardware manipulation and relies on the
8600  * functions defined in ipw_main to provide the HW interaction.
8601  *
8602  * The exception to this is the use of the ipw_get_ordinal()
8603  * function used to poll the hardware vs. making unnecessary calls.
8604  *
8605  */
8606
8607 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8608 {
8609         if (channel == 0) {
8610                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8611                 priv->config &= ~CFG_STATIC_CHANNEL;
8612                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8613                                 "parameters.\n");
8614                 ipw_associate(priv);
8615                 return 0;
8616         }
8617
8618         priv->config |= CFG_STATIC_CHANNEL;
8619
8620         if (priv->channel == channel) {
8621                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8622                                channel);
8623                 return 0;
8624         }
8625
8626         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8627         priv->channel = channel;
8628
8629 #ifdef CONFIG_IPW2200_MONITOR
8630         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8631                 int i;
8632                 if (priv->status & STATUS_SCANNING) {
8633                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8634                                        "channel change.\n");
8635                         ipw_abort_scan(priv);
8636                 }
8637
8638                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8639                         udelay(10);
8640
8641                 if (priv->status & STATUS_SCANNING)
8642                         IPW_DEBUG_SCAN("Still scanning...\n");
8643                 else
8644                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8645                                        1000 - i);
8646
8647                 return 0;
8648         }
8649 #endif                          /* CONFIG_IPW2200_MONITOR */
8650
8651         /* Network configuration changed -- force [re]association */
8652         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8653         if (!ipw_disassociate(priv))
8654                 ipw_associate(priv);
8655
8656         return 0;
8657 }
8658
8659 static int ipw_wx_set_freq(struct net_device *dev,
8660                            struct iw_request_info *info,
8661                            union iwreq_data *wrqu, char *extra)
8662 {
8663         struct ipw_priv *priv = libipw_priv(dev);
8664         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8665         struct iw_freq *fwrq = &wrqu->freq;
8666         int ret = 0, i;
8667         u8 channel, flags;
8668         int band;
8669
8670         if (fwrq->m == 0) {
8671                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8672                 mutex_lock(&priv->mutex);
8673                 ret = ipw_set_channel(priv, 0);
8674                 mutex_unlock(&priv->mutex);
8675                 return ret;
8676         }
8677         /* if setting by freq convert to channel */
8678         if (fwrq->e == 1) {
8679                 channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8680                 if (channel == 0)
8681                         return -EINVAL;
8682         } else
8683                 channel = fwrq->m;
8684
8685         if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8686                 return -EINVAL;
8687
8688         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8689                 i = libipw_channel_to_index(priv->ieee, channel);
8690                 if (i == -1)
8691                         return -EINVAL;
8692
8693                 flags = (band == LIBIPW_24GHZ_BAND) ?
8694                     geo->bg[i].flags : geo->a[i].flags;
8695                 if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8696                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8697                         return -EINVAL;
8698                 }
8699         }
8700
8701         IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8702         mutex_lock(&priv->mutex);
8703         ret = ipw_set_channel(priv, channel);
8704         mutex_unlock(&priv->mutex);
8705         return ret;
8706 }
8707
8708 static int ipw_wx_get_freq(struct net_device *dev,
8709                            struct iw_request_info *info,
8710                            union iwreq_data *wrqu, char *extra)
8711 {
8712         struct ipw_priv *priv = libipw_priv(dev);
8713
8714         wrqu->freq.e = 0;
8715
8716         /* If we are associated, trying to associate, or have a statically
8717          * configured CHANNEL then return that; otherwise return ANY */
8718         mutex_lock(&priv->mutex);
8719         if (priv->config & CFG_STATIC_CHANNEL ||
8720             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8721                 int i;
8722
8723                 i = libipw_channel_to_index(priv->ieee, priv->channel);
8724                 BUG_ON(i == -1);
8725                 wrqu->freq.e = 1;
8726
8727                 switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8728                 case LIBIPW_52GHZ_BAND:
8729                         wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8730                         break;
8731
8732                 case LIBIPW_24GHZ_BAND:
8733                         wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8734                         break;
8735
8736                 default:
8737                         BUG();
8738                 }
8739         } else
8740                 wrqu->freq.m = 0;
8741
8742         mutex_unlock(&priv->mutex);
8743         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8744         return 0;
8745 }
8746
8747 static int ipw_wx_set_mode(struct net_device *dev,
8748                            struct iw_request_info *info,
8749                            union iwreq_data *wrqu, char *extra)
8750 {
8751         struct ipw_priv *priv = libipw_priv(dev);
8752         int err = 0;
8753
8754         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8755
8756         switch (wrqu->mode) {
8757 #ifdef CONFIG_IPW2200_MONITOR
8758         case IW_MODE_MONITOR:
8759 #endif
8760         case IW_MODE_ADHOC:
8761         case IW_MODE_INFRA:
8762                 break;
8763         case IW_MODE_AUTO:
8764                 wrqu->mode = IW_MODE_INFRA;
8765                 break;
8766         default:
8767                 return -EINVAL;
8768         }
8769         if (wrqu->mode == priv->ieee->iw_mode)
8770                 return 0;
8771
8772         mutex_lock(&priv->mutex);
8773
8774         ipw_sw_reset(priv, 0);
8775
8776 #ifdef CONFIG_IPW2200_MONITOR
8777         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8778                 priv->net_dev->type = ARPHRD_ETHER;
8779
8780         if (wrqu->mode == IW_MODE_MONITOR)
8781 #ifdef CONFIG_IPW2200_RADIOTAP
8782                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8783 #else
8784                 priv->net_dev->type = ARPHRD_IEEE80211;
8785 #endif
8786 #endif                          /* CONFIG_IPW2200_MONITOR */
8787
8788         /* Free the existing firmware and reset the fw_loaded
8789          * flag so ipw_load() will bring in the new firmware */
8790         free_firmware();
8791
8792         priv->ieee->iw_mode = wrqu->mode;
8793
8794         schedule_work(&priv->adapter_restart);
8795         mutex_unlock(&priv->mutex);
8796         return err;
8797 }
8798
8799 static int ipw_wx_get_mode(struct net_device *dev,
8800                            struct iw_request_info *info,
8801                            union iwreq_data *wrqu, char *extra)
8802 {
8803         struct ipw_priv *priv = libipw_priv(dev);
8804         mutex_lock(&priv->mutex);
8805         wrqu->mode = priv->ieee->iw_mode;
8806         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8807         mutex_unlock(&priv->mutex);
8808         return 0;
8809 }
8810
8811 /* Values are in microsecond */
8812 static const s32 timeout_duration[] = {
8813         350000,
8814         250000,
8815         75000,
8816         37000,
8817         25000,
8818 };
8819
8820 static const s32 period_duration[] = {
8821         400000,
8822         700000,
8823         1000000,
8824         1000000,
8825         1000000
8826 };
8827
8828 static int ipw_wx_get_range(struct net_device *dev,
8829                             struct iw_request_info *info,
8830                             union iwreq_data *wrqu, char *extra)
8831 {
8832         struct ipw_priv *priv = libipw_priv(dev);
8833         struct iw_range *range = (struct iw_range *)extra;
8834         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8835         int i = 0, j;
8836
8837         wrqu->data.length = sizeof(*range);
8838         memset(range, 0, sizeof(*range));
8839
8840         /* 54Mbs == ~27 Mb/s real (802.11g) */
8841         range->throughput = 27 * 1000 * 1000;
8842
8843         range->max_qual.qual = 100;
8844         /* TODO: Find real max RSSI and stick here */
8845         range->max_qual.level = 0;
8846         range->max_qual.noise = 0;
8847         range->max_qual.updated = 7;    /* Updated all three */
8848
8849         range->avg_qual.qual = 70;
8850         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8851         range->avg_qual.level = 0;      /* FIXME to real average level */
8852         range->avg_qual.noise = 0;
8853         range->avg_qual.updated = 7;    /* Updated all three */
8854         mutex_lock(&priv->mutex);
8855         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8856
8857         for (i = 0; i < range->num_bitrates; i++)
8858                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8859                     500000;
8860
8861         range->max_rts = DEFAULT_RTS_THRESHOLD;
8862         range->min_frag = MIN_FRAG_THRESHOLD;
8863         range->max_frag = MAX_FRAG_THRESHOLD;
8864
8865         range->encoding_size[0] = 5;
8866         range->encoding_size[1] = 13;
8867         range->num_encoding_sizes = 2;
8868         range->max_encoding_tokens = WEP_KEYS;
8869
8870         /* Set the Wireless Extension versions */
8871         range->we_version_compiled = WIRELESS_EXT;
8872         range->we_version_source = 18;
8873
8874         i = 0;
8875         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8876                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8877                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8878                             (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8879                                 continue;
8880
8881                         range->freq[i].i = geo->bg[j].channel;
8882                         range->freq[i].m = geo->bg[j].freq * 100000;
8883                         range->freq[i].e = 1;
8884                         i++;
8885                 }
8886         }
8887
8888         if (priv->ieee->mode & IEEE_A) {
8889                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8890                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8891                             (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8892                                 continue;
8893
8894                         range->freq[i].i = geo->a[j].channel;
8895                         range->freq[i].m = geo->a[j].freq * 100000;
8896                         range->freq[i].e = 1;
8897                         i++;
8898                 }
8899         }
8900
8901         range->num_channels = i;
8902         range->num_frequency = i;
8903
8904         mutex_unlock(&priv->mutex);
8905
8906         /* Event capability (kernel + driver) */
8907         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8908                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8909                                 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8910                                 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8911         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8912
8913         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8914                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8915
8916         range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8917
8918         IPW_DEBUG_WX("GET Range\n");
8919         return 0;
8920 }
8921
8922 static int ipw_wx_set_wap(struct net_device *dev,
8923                           struct iw_request_info *info,
8924                           union iwreq_data *wrqu, char *extra)
8925 {
8926         struct ipw_priv *priv = libipw_priv(dev);
8927
8928         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8929                 return -EINVAL;
8930         mutex_lock(&priv->mutex);
8931         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
8932             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
8933                 /* we disable mandatory BSSID association */
8934                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8935                 priv->config &= ~CFG_STATIC_BSSID;
8936                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8937                                 "parameters.\n");
8938                 ipw_associate(priv);
8939                 mutex_unlock(&priv->mutex);
8940                 return 0;
8941         }
8942
8943         priv->config |= CFG_STATIC_BSSID;
8944         if (ether_addr_equal(priv->bssid, wrqu->ap_addr.sa_data)) {
8945                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8946                 mutex_unlock(&priv->mutex);
8947                 return 0;
8948         }
8949
8950         IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8951                      wrqu->ap_addr.sa_data);
8952
8953         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8954
8955         /* Network configuration changed -- force [re]association */
8956         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8957         if (!ipw_disassociate(priv))
8958                 ipw_associate(priv);
8959
8960         mutex_unlock(&priv->mutex);
8961         return 0;
8962 }
8963
8964 static int ipw_wx_get_wap(struct net_device *dev,
8965                           struct iw_request_info *info,
8966                           union iwreq_data *wrqu, char *extra)
8967 {
8968         struct ipw_priv *priv = libipw_priv(dev);
8969
8970         /* If we are associated, trying to associate, or have a statically
8971          * configured BSSID then return that; otherwise return ANY */
8972         mutex_lock(&priv->mutex);
8973         if (priv->config & CFG_STATIC_BSSID ||
8974             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8975                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8976                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8977         } else
8978                 eth_zero_addr(wrqu->ap_addr.sa_data);
8979
8980         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
8981                      wrqu->ap_addr.sa_data);
8982         mutex_unlock(&priv->mutex);
8983         return 0;
8984 }
8985
8986 static int ipw_wx_set_essid(struct net_device *dev,
8987                             struct iw_request_info *info,
8988                             union iwreq_data *wrqu, char *extra)
8989 {
8990         struct ipw_priv *priv = libipw_priv(dev);
8991         int length;
8992
8993         mutex_lock(&priv->mutex);
8994
8995         if (!wrqu->essid.flags)
8996         {
8997                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8998                 ipw_disassociate(priv);
8999                 priv->config &= ~CFG_STATIC_ESSID;
9000                 ipw_associate(priv);
9001                 mutex_unlock(&priv->mutex);
9002                 return 0;
9003         }
9004
9005         length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9006
9007         priv->config |= CFG_STATIC_ESSID;
9008
9009         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9010             && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9011                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9012                 mutex_unlock(&priv->mutex);
9013                 return 0;
9014         }
9015
9016         IPW_DEBUG_WX("Setting ESSID: '%*pE' (%d)\n", length, extra, length);
9017
9018         priv->essid_len = length;
9019         memcpy(priv->essid, extra, priv->essid_len);
9020
9021         /* Network configuration changed -- force [re]association */
9022         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9023         if (!ipw_disassociate(priv))
9024                 ipw_associate(priv);
9025
9026         mutex_unlock(&priv->mutex);
9027         return 0;
9028 }
9029
9030 static int ipw_wx_get_essid(struct net_device *dev,
9031                             struct iw_request_info *info,
9032                             union iwreq_data *wrqu, char *extra)
9033 {
9034         struct ipw_priv *priv = libipw_priv(dev);
9035
9036         /* If we are associated, trying to associate, or have a statically
9037          * configured ESSID then return that; otherwise return ANY */
9038         mutex_lock(&priv->mutex);
9039         if (priv->config & CFG_STATIC_ESSID ||
9040             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9041                 IPW_DEBUG_WX("Getting essid: '%*pE'\n",
9042                              priv->essid_len, priv->essid);
9043                 memcpy(extra, priv->essid, priv->essid_len);
9044                 wrqu->essid.length = priv->essid_len;
9045                 wrqu->essid.flags = 1;  /* active */
9046         } else {
9047                 IPW_DEBUG_WX("Getting essid: ANY\n");
9048                 wrqu->essid.length = 0;
9049                 wrqu->essid.flags = 0;  /* active */
9050         }
9051         mutex_unlock(&priv->mutex);
9052         return 0;
9053 }
9054
9055 static int ipw_wx_set_nick(struct net_device *dev,
9056                            struct iw_request_info *info,
9057                            union iwreq_data *wrqu, char *extra)
9058 {
9059         struct ipw_priv *priv = libipw_priv(dev);
9060
9061         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9062         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9063                 return -E2BIG;
9064         mutex_lock(&priv->mutex);
9065         wrqu->data.length = min_t(size_t, wrqu->data.length, sizeof(priv->nick));
9066         memset(priv->nick, 0, sizeof(priv->nick));
9067         memcpy(priv->nick, extra, wrqu->data.length);
9068         IPW_DEBUG_TRACE("<<\n");
9069         mutex_unlock(&priv->mutex);
9070         return 0;
9071
9072 }
9073
9074 static int ipw_wx_get_nick(struct net_device *dev,
9075                            struct iw_request_info *info,
9076                            union iwreq_data *wrqu, char *extra)
9077 {
9078         struct ipw_priv *priv = libipw_priv(dev);
9079         IPW_DEBUG_WX("Getting nick\n");
9080         mutex_lock(&priv->mutex);
9081         wrqu->data.length = strlen(priv->nick);
9082         memcpy(extra, priv->nick, wrqu->data.length);
9083         wrqu->data.flags = 1;   /* active */
9084         mutex_unlock(&priv->mutex);
9085         return 0;
9086 }
9087
9088 static int ipw_wx_set_sens(struct net_device *dev,
9089                             struct iw_request_info *info,
9090                             union iwreq_data *wrqu, char *extra)
9091 {
9092         struct ipw_priv *priv = libipw_priv(dev);
9093         int err = 0;
9094
9095         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9096         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9097         mutex_lock(&priv->mutex);
9098
9099         if (wrqu->sens.fixed == 0)
9100         {
9101                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9102                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9103                 goto out;
9104         }
9105         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9106             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9107                 err = -EINVAL;
9108                 goto out;
9109         }
9110
9111         priv->roaming_threshold = wrqu->sens.value;
9112         priv->disassociate_threshold = 3*wrqu->sens.value;
9113       out:
9114         mutex_unlock(&priv->mutex);
9115         return err;
9116 }
9117
9118 static int ipw_wx_get_sens(struct net_device *dev,
9119                             struct iw_request_info *info,
9120                             union iwreq_data *wrqu, char *extra)
9121 {
9122         struct ipw_priv *priv = libipw_priv(dev);
9123         mutex_lock(&priv->mutex);
9124         wrqu->sens.fixed = 1;
9125         wrqu->sens.value = priv->roaming_threshold;
9126         mutex_unlock(&priv->mutex);
9127
9128         IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9129                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9130
9131         return 0;
9132 }
9133
9134 static int ipw_wx_set_rate(struct net_device *dev,
9135                            struct iw_request_info *info,
9136                            union iwreq_data *wrqu, char *extra)
9137 {
9138         /* TODO: We should use semaphores or locks for access to priv */
9139         struct ipw_priv *priv = libipw_priv(dev);
9140         u32 target_rate = wrqu->bitrate.value;
9141         u32 fixed, mask;
9142
9143         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9144         /* value = X, fixed = 1 means only rate X */
9145         /* value = X, fixed = 0 means all rates lower equal X */
9146
9147         if (target_rate == -1) {
9148                 fixed = 0;
9149                 mask = LIBIPW_DEFAULT_RATES_MASK;
9150                 /* Now we should reassociate */
9151                 goto apply;
9152         }
9153
9154         mask = 0;
9155         fixed = wrqu->bitrate.fixed;
9156
9157         if (target_rate == 1000000 || !fixed)
9158                 mask |= LIBIPW_CCK_RATE_1MB_MASK;
9159         if (target_rate == 1000000)
9160                 goto apply;
9161
9162         if (target_rate == 2000000 || !fixed)
9163                 mask |= LIBIPW_CCK_RATE_2MB_MASK;
9164         if (target_rate == 2000000)
9165                 goto apply;
9166
9167         if (target_rate == 5500000 || !fixed)
9168                 mask |= LIBIPW_CCK_RATE_5MB_MASK;
9169         if (target_rate == 5500000)
9170                 goto apply;
9171
9172         if (target_rate == 6000000 || !fixed)
9173                 mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9174         if (target_rate == 6000000)
9175                 goto apply;
9176
9177         if (target_rate == 9000000 || !fixed)
9178                 mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9179         if (target_rate == 9000000)
9180                 goto apply;
9181
9182         if (target_rate == 11000000 || !fixed)
9183                 mask |= LIBIPW_CCK_RATE_11MB_MASK;
9184         if (target_rate == 11000000)
9185                 goto apply;
9186
9187         if (target_rate == 12000000 || !fixed)
9188                 mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9189         if (target_rate == 12000000)
9190                 goto apply;
9191
9192         if (target_rate == 18000000 || !fixed)
9193                 mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9194         if (target_rate == 18000000)
9195                 goto apply;
9196
9197         if (target_rate == 24000000 || !fixed)
9198                 mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9199         if (target_rate == 24000000)
9200                 goto apply;
9201
9202         if (target_rate == 36000000 || !fixed)
9203                 mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9204         if (target_rate == 36000000)
9205                 goto apply;
9206
9207         if (target_rate == 48000000 || !fixed)
9208                 mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9209         if (target_rate == 48000000)
9210                 goto apply;
9211
9212         if (target_rate == 54000000 || !fixed)
9213                 mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9214         if (target_rate == 54000000)
9215                 goto apply;
9216
9217         IPW_DEBUG_WX("invalid rate specified, returning error\n");
9218         return -EINVAL;
9219
9220       apply:
9221         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9222                      mask, fixed ? "fixed" : "sub-rates");
9223         mutex_lock(&priv->mutex);
9224         if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9225                 priv->config &= ~CFG_FIXED_RATE;
9226                 ipw_set_fixed_rate(priv, priv->ieee->mode);
9227         } else
9228                 priv->config |= CFG_FIXED_RATE;
9229
9230         if (priv->rates_mask == mask) {
9231                 IPW_DEBUG_WX("Mask set to current mask.\n");
9232                 mutex_unlock(&priv->mutex);
9233                 return 0;
9234         }
9235
9236         priv->rates_mask = mask;
9237
9238         /* Network configuration changed -- force [re]association */
9239         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9240         if (!ipw_disassociate(priv))
9241                 ipw_associate(priv);
9242
9243         mutex_unlock(&priv->mutex);
9244         return 0;
9245 }
9246
9247 static int ipw_wx_get_rate(struct net_device *dev,
9248                            struct iw_request_info *info,
9249                            union iwreq_data *wrqu, char *extra)
9250 {
9251         struct ipw_priv *priv = libipw_priv(dev);
9252         mutex_lock(&priv->mutex);
9253         wrqu->bitrate.value = priv->last_rate;
9254         wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9255         mutex_unlock(&priv->mutex);
9256         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9257         return 0;
9258 }
9259
9260 static int ipw_wx_set_rts(struct net_device *dev,
9261                           struct iw_request_info *info,
9262                           union iwreq_data *wrqu, char *extra)
9263 {
9264         struct ipw_priv *priv = libipw_priv(dev);
9265         mutex_lock(&priv->mutex);
9266         if (wrqu->rts.disabled || !wrqu->rts.fixed)
9267                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9268         else {
9269                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9270                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
9271                         mutex_unlock(&priv->mutex);
9272                         return -EINVAL;
9273                 }
9274                 priv->rts_threshold = wrqu->rts.value;
9275         }
9276
9277         ipw_send_rts_threshold(priv, priv->rts_threshold);
9278         mutex_unlock(&priv->mutex);
9279         IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9280         return 0;
9281 }
9282
9283 static int ipw_wx_get_rts(struct net_device *dev,
9284                           struct iw_request_info *info,
9285                           union iwreq_data *wrqu, char *extra)
9286 {
9287         struct ipw_priv *priv = libipw_priv(dev);
9288         mutex_lock(&priv->mutex);
9289         wrqu->rts.value = priv->rts_threshold;
9290         wrqu->rts.fixed = 0;    /* no auto select */
9291         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9292         mutex_unlock(&priv->mutex);
9293         IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9294         return 0;
9295 }
9296
9297 static int ipw_wx_set_txpow(struct net_device *dev,
9298                             struct iw_request_info *info,
9299                             union iwreq_data *wrqu, char *extra)
9300 {
9301         struct ipw_priv *priv = libipw_priv(dev);
9302         int err = 0;
9303
9304         mutex_lock(&priv->mutex);
9305         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9306                 err = -EINPROGRESS;
9307                 goto out;
9308         }
9309
9310         if (!wrqu->power.fixed)
9311                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9312
9313         if (wrqu->power.flags != IW_TXPOW_DBM) {
9314                 err = -EINVAL;
9315                 goto out;
9316         }
9317
9318         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9319             (wrqu->power.value < IPW_TX_POWER_MIN)) {
9320                 err = -EINVAL;
9321                 goto out;
9322         }
9323
9324         priv->tx_power = wrqu->power.value;
9325         err = ipw_set_tx_power(priv);
9326       out:
9327         mutex_unlock(&priv->mutex);
9328         return err;
9329 }
9330
9331 static int ipw_wx_get_txpow(struct net_device *dev,
9332                             struct iw_request_info *info,
9333                             union iwreq_data *wrqu, char *extra)
9334 {
9335         struct ipw_priv *priv = libipw_priv(dev);
9336         mutex_lock(&priv->mutex);
9337         wrqu->power.value = priv->tx_power;
9338         wrqu->power.fixed = 1;
9339         wrqu->power.flags = IW_TXPOW_DBM;
9340         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9341         mutex_unlock(&priv->mutex);
9342
9343         IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9344                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9345
9346         return 0;
9347 }
9348
9349 static int ipw_wx_set_frag(struct net_device *dev,
9350                            struct iw_request_info *info,
9351                            union iwreq_data *wrqu, char *extra)
9352 {
9353         struct ipw_priv *priv = libipw_priv(dev);
9354         mutex_lock(&priv->mutex);
9355         if (wrqu->frag.disabled || !wrqu->frag.fixed)
9356                 priv->ieee->fts = DEFAULT_FTS;
9357         else {
9358                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9359                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9360                         mutex_unlock(&priv->mutex);
9361                         return -EINVAL;
9362                 }
9363
9364                 priv->ieee->fts = wrqu->frag.value & ~0x1;
9365         }
9366
9367         ipw_send_frag_threshold(priv, wrqu->frag.value);
9368         mutex_unlock(&priv->mutex);
9369         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9370         return 0;
9371 }
9372
9373 static int ipw_wx_get_frag(struct net_device *dev,
9374                            struct iw_request_info *info,
9375                            union iwreq_data *wrqu, char *extra)
9376 {
9377         struct ipw_priv *priv = libipw_priv(dev);
9378         mutex_lock(&priv->mutex);
9379         wrqu->frag.value = priv->ieee->fts;
9380         wrqu->frag.fixed = 0;   /* no auto select */
9381         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9382         mutex_unlock(&priv->mutex);
9383         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9384
9385         return 0;
9386 }
9387
9388 static int ipw_wx_set_retry(struct net_device *dev,
9389                             struct iw_request_info *info,
9390                             union iwreq_data *wrqu, char *extra)
9391 {
9392         struct ipw_priv *priv = libipw_priv(dev);
9393
9394         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9395                 return -EINVAL;
9396
9397         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9398                 return 0;
9399
9400         if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9401                 return -EINVAL;
9402
9403         mutex_lock(&priv->mutex);
9404         if (wrqu->retry.flags & IW_RETRY_SHORT)
9405                 priv->short_retry_limit = (u8) wrqu->retry.value;
9406         else if (wrqu->retry.flags & IW_RETRY_LONG)
9407                 priv->long_retry_limit = (u8) wrqu->retry.value;
9408         else {
9409                 priv->short_retry_limit = (u8) wrqu->retry.value;
9410                 priv->long_retry_limit = (u8) wrqu->retry.value;
9411         }
9412
9413         ipw_send_retry_limit(priv, priv->short_retry_limit,
9414                              priv->long_retry_limit);
9415         mutex_unlock(&priv->mutex);
9416         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9417                      priv->short_retry_limit, priv->long_retry_limit);
9418         return 0;
9419 }
9420
9421 static int ipw_wx_get_retry(struct net_device *dev,
9422                             struct iw_request_info *info,
9423                             union iwreq_data *wrqu, char *extra)
9424 {
9425         struct ipw_priv *priv = libipw_priv(dev);
9426
9427         mutex_lock(&priv->mutex);
9428         wrqu->retry.disabled = 0;
9429
9430         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9431                 mutex_unlock(&priv->mutex);
9432                 return -EINVAL;
9433         }
9434
9435         if (wrqu->retry.flags & IW_RETRY_LONG) {
9436                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9437                 wrqu->retry.value = priv->long_retry_limit;
9438         } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9439                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9440                 wrqu->retry.value = priv->short_retry_limit;
9441         } else {
9442                 wrqu->retry.flags = IW_RETRY_LIMIT;
9443                 wrqu->retry.value = priv->short_retry_limit;
9444         }
9445         mutex_unlock(&priv->mutex);
9446
9447         IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9448
9449         return 0;
9450 }
9451
9452 static int ipw_wx_set_scan(struct net_device *dev,
9453                            struct iw_request_info *info,
9454                            union iwreq_data *wrqu, char *extra)
9455 {
9456         struct ipw_priv *priv = libipw_priv(dev);
9457         struct iw_scan_req *req = (struct iw_scan_req *)extra;
9458         struct delayed_work *work = NULL;
9459
9460         mutex_lock(&priv->mutex);
9461
9462         priv->user_requested_scan = 1;
9463
9464         if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9465                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9466                         int len = min((int)req->essid_len,
9467                                       (int)sizeof(priv->direct_scan_ssid));
9468                         memcpy(priv->direct_scan_ssid, req->essid, len);
9469                         priv->direct_scan_ssid_len = len;
9470                         work = &priv->request_direct_scan;
9471                 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9472                         work = &priv->request_passive_scan;
9473                 }
9474         } else {
9475                 /* Normal active broadcast scan */
9476                 work = &priv->request_scan;
9477         }
9478
9479         mutex_unlock(&priv->mutex);
9480
9481         IPW_DEBUG_WX("Start scan\n");
9482
9483         schedule_delayed_work(work, 0);
9484
9485         return 0;
9486 }
9487
9488 static int ipw_wx_get_scan(struct net_device *dev,
9489                            struct iw_request_info *info,
9490                            union iwreq_data *wrqu, char *extra)
9491 {
9492         struct ipw_priv *priv = libipw_priv(dev);
9493         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9494 }
9495
9496 static int ipw_wx_set_encode(struct net_device *dev,
9497                              struct iw_request_info *info,
9498                              union iwreq_data *wrqu, char *key)
9499 {
9500         struct ipw_priv *priv = libipw_priv(dev);
9501         int ret;
9502         u32 cap = priv->capability;
9503
9504         mutex_lock(&priv->mutex);
9505         ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9506
9507         /* In IBSS mode, we need to notify the firmware to update
9508          * the beacon info after we changed the capability. */
9509         if (cap != priv->capability &&
9510             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9511             priv->status & STATUS_ASSOCIATED)
9512                 ipw_disassociate(priv);
9513
9514         mutex_unlock(&priv->mutex);
9515         return ret;
9516 }
9517
9518 static int ipw_wx_get_encode(struct net_device *dev,
9519                              struct iw_request_info *info,
9520                              union iwreq_data *wrqu, char *key)
9521 {
9522         struct ipw_priv *priv = libipw_priv(dev);
9523         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9524 }
9525
9526 static int ipw_wx_set_power(struct net_device *dev,
9527                             struct iw_request_info *info,
9528                             union iwreq_data *wrqu, char *extra)
9529 {
9530         struct ipw_priv *priv = libipw_priv(dev);
9531         int err;
9532         mutex_lock(&priv->mutex);
9533         if (wrqu->power.disabled) {
9534                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9535                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9536                 if (err) {
9537                         IPW_DEBUG_WX("failed setting power mode.\n");
9538                         mutex_unlock(&priv->mutex);
9539                         return err;
9540                 }
9541                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9542                 mutex_unlock(&priv->mutex);
9543                 return 0;
9544         }
9545
9546         switch (wrqu->power.flags & IW_POWER_MODE) {
9547         case IW_POWER_ON:       /* If not specified */
9548         case IW_POWER_MODE:     /* If set all mask */
9549         case IW_POWER_ALL_R:    /* If explicitly state all */
9550                 break;
9551         default:                /* Otherwise we don't support it */
9552                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9553                              wrqu->power.flags);
9554                 mutex_unlock(&priv->mutex);
9555                 return -EOPNOTSUPP;
9556         }
9557
9558         /* If the user hasn't specified a power management mode yet, default
9559          * to BATTERY */
9560         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9561                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9562         else
9563                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9564
9565         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9566         if (err) {
9567                 IPW_DEBUG_WX("failed setting power mode.\n");
9568                 mutex_unlock(&priv->mutex);
9569                 return err;
9570         }
9571
9572         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9573         mutex_unlock(&priv->mutex);
9574         return 0;
9575 }
9576
9577 static int ipw_wx_get_power(struct net_device *dev,
9578                             struct iw_request_info *info,
9579                             union iwreq_data *wrqu, char *extra)
9580 {
9581         struct ipw_priv *priv = libipw_priv(dev);
9582         mutex_lock(&priv->mutex);
9583         if (!(priv->power_mode & IPW_POWER_ENABLED))
9584                 wrqu->power.disabled = 1;
9585         else
9586                 wrqu->power.disabled = 0;
9587
9588         mutex_unlock(&priv->mutex);
9589         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9590
9591         return 0;
9592 }
9593
9594 static int ipw_wx_set_powermode(struct net_device *dev,
9595                                 struct iw_request_info *info,
9596                                 union iwreq_data *wrqu, char *extra)
9597 {
9598         struct ipw_priv *priv = libipw_priv(dev);
9599         int mode = *(int *)extra;
9600         int err;
9601
9602         mutex_lock(&priv->mutex);
9603         if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9604                 mode = IPW_POWER_AC;
9605
9606         if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9607                 err = ipw_send_power_mode(priv, mode);
9608                 if (err) {
9609                         IPW_DEBUG_WX("failed setting power mode.\n");
9610                         mutex_unlock(&priv->mutex);
9611                         return err;
9612                 }
9613                 priv->power_mode = IPW_POWER_ENABLED | mode;
9614         }
9615         mutex_unlock(&priv->mutex);
9616         return 0;
9617 }
9618
9619 #define MAX_WX_STRING 80
9620 static int ipw_wx_get_powermode(struct net_device *dev,
9621                                 struct iw_request_info *info,
9622                                 union iwreq_data *wrqu, char *extra)
9623 {
9624         struct ipw_priv *priv = libipw_priv(dev);
9625         int level = IPW_POWER_LEVEL(priv->power_mode);
9626         char *p = extra;
9627
9628         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9629
9630         switch (level) {
9631         case IPW_POWER_AC:
9632                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9633                 break;
9634         case IPW_POWER_BATTERY:
9635                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9636                 break;
9637         default:
9638                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9639                               "(Timeout %dms, Period %dms)",
9640                               timeout_duration[level - 1] / 1000,
9641                               period_duration[level - 1] / 1000);
9642         }
9643
9644         if (!(priv->power_mode & IPW_POWER_ENABLED))
9645                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9646
9647         wrqu->data.length = p - extra + 1;
9648
9649         return 0;
9650 }
9651
9652 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9653                                     struct iw_request_info *info,
9654                                     union iwreq_data *wrqu, char *extra)
9655 {
9656         struct ipw_priv *priv = libipw_priv(dev);
9657         int mode = *(int *)extra;
9658         u8 band = 0, modulation = 0;
9659
9660         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9661                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9662                 return -EINVAL;
9663         }
9664         mutex_lock(&priv->mutex);
9665         if (priv->adapter == IPW_2915ABG) {
9666                 priv->ieee->abg_true = 1;
9667                 if (mode & IEEE_A) {
9668                         band |= LIBIPW_52GHZ_BAND;
9669                         modulation |= LIBIPW_OFDM_MODULATION;
9670                 } else
9671                         priv->ieee->abg_true = 0;
9672         } else {
9673                 if (mode & IEEE_A) {
9674                         IPW_WARNING("Attempt to set 2200BG into "
9675                                     "802.11a mode\n");
9676                         mutex_unlock(&priv->mutex);
9677                         return -EINVAL;
9678                 }
9679
9680                 priv->ieee->abg_true = 0;
9681         }
9682
9683         if (mode & IEEE_B) {
9684                 band |= LIBIPW_24GHZ_BAND;
9685                 modulation |= LIBIPW_CCK_MODULATION;
9686         } else
9687                 priv->ieee->abg_true = 0;
9688
9689         if (mode & IEEE_G) {
9690                 band |= LIBIPW_24GHZ_BAND;
9691                 modulation |= LIBIPW_OFDM_MODULATION;
9692         } else
9693                 priv->ieee->abg_true = 0;
9694
9695         priv->ieee->mode = mode;
9696         priv->ieee->freq_band = band;
9697         priv->ieee->modulation = modulation;
9698         init_supported_rates(priv, &priv->rates);
9699
9700         /* Network configuration changed -- force [re]association */
9701         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9702         if (!ipw_disassociate(priv)) {
9703                 ipw_send_supported_rates(priv, &priv->rates);
9704                 ipw_associate(priv);
9705         }
9706
9707         /* Update the band LEDs */
9708         ipw_led_band_on(priv);
9709
9710         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9711                      mode & IEEE_A ? 'a' : '.',
9712                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9713         mutex_unlock(&priv->mutex);
9714         return 0;
9715 }
9716
9717 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9718                                     struct iw_request_info *info,
9719                                     union iwreq_data *wrqu, char *extra)
9720 {
9721         struct ipw_priv *priv = libipw_priv(dev);
9722         mutex_lock(&priv->mutex);
9723         switch (priv->ieee->mode) {
9724         case IEEE_A:
9725                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9726                 break;
9727         case IEEE_B:
9728                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9729                 break;
9730         case IEEE_A | IEEE_B:
9731                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9732                 break;
9733         case IEEE_G:
9734                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9735                 break;
9736         case IEEE_A | IEEE_G:
9737                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9738                 break;
9739         case IEEE_B | IEEE_G:
9740                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9741                 break;
9742         case IEEE_A | IEEE_B | IEEE_G:
9743                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9744                 break;
9745         default:
9746                 strncpy(extra, "unknown", MAX_WX_STRING);
9747                 break;
9748         }
9749         extra[MAX_WX_STRING - 1] = '\0';
9750
9751         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9752
9753         wrqu->data.length = strlen(extra) + 1;
9754         mutex_unlock(&priv->mutex);
9755
9756         return 0;
9757 }
9758
9759 static int ipw_wx_set_preamble(struct net_device *dev,
9760                                struct iw_request_info *info,
9761                                union iwreq_data *wrqu, char *extra)
9762 {
9763         struct ipw_priv *priv = libipw_priv(dev);
9764         int mode = *(int *)extra;
9765         mutex_lock(&priv->mutex);
9766         /* Switching from SHORT -> LONG requires a disassociation */
9767         if (mode == 1) {
9768                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9769                         priv->config |= CFG_PREAMBLE_LONG;
9770
9771                         /* Network configuration changed -- force [re]association */
9772                         IPW_DEBUG_ASSOC
9773                             ("[re]association triggered due to preamble change.\n");
9774                         if (!ipw_disassociate(priv))
9775                                 ipw_associate(priv);
9776                 }
9777                 goto done;
9778         }
9779
9780         if (mode == 0) {
9781                 priv->config &= ~CFG_PREAMBLE_LONG;
9782                 goto done;
9783         }
9784         mutex_unlock(&priv->mutex);
9785         return -EINVAL;
9786
9787       done:
9788         mutex_unlock(&priv->mutex);
9789         return 0;
9790 }
9791
9792 static int ipw_wx_get_preamble(struct net_device *dev,
9793                                struct iw_request_info *info,
9794                                union iwreq_data *wrqu, char *extra)
9795 {
9796         struct ipw_priv *priv = libipw_priv(dev);
9797         mutex_lock(&priv->mutex);
9798         if (priv->config & CFG_PREAMBLE_LONG)
9799                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9800         else
9801                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9802         mutex_unlock(&priv->mutex);
9803         return 0;
9804 }
9805
9806 #ifdef CONFIG_IPW2200_MONITOR
9807 static int ipw_wx_set_monitor(struct net_device *dev,
9808                               struct iw_request_info *info,
9809                               union iwreq_data *wrqu, char *extra)
9810 {
9811         struct ipw_priv *priv = libipw_priv(dev);
9812         int *parms = (int *)extra;
9813         int enable = (parms[0] > 0);
9814         mutex_lock(&priv->mutex);
9815         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9816         if (enable) {
9817                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9818 #ifdef CONFIG_IPW2200_RADIOTAP
9819                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9820 #else
9821                         priv->net_dev->type = ARPHRD_IEEE80211;
9822 #endif
9823                         schedule_work(&priv->adapter_restart);
9824                 }
9825
9826                 ipw_set_channel(priv, parms[1]);
9827         } else {
9828                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9829                         mutex_unlock(&priv->mutex);
9830                         return 0;
9831                 }
9832                 priv->net_dev->type = ARPHRD_ETHER;
9833                 schedule_work(&priv->adapter_restart);
9834         }
9835         mutex_unlock(&priv->mutex);
9836         return 0;
9837 }
9838
9839 #endif                          /* CONFIG_IPW2200_MONITOR */
9840
9841 static int ipw_wx_reset(struct net_device *dev,
9842                         struct iw_request_info *info,
9843                         union iwreq_data *wrqu, char *extra)
9844 {
9845         struct ipw_priv *priv = libipw_priv(dev);
9846         IPW_DEBUG_WX("RESET\n");
9847         schedule_work(&priv->adapter_restart);
9848         return 0;
9849 }
9850
9851 static int ipw_wx_sw_reset(struct net_device *dev,
9852                            struct iw_request_info *info,
9853                            union iwreq_data *wrqu, char *extra)
9854 {
9855         struct ipw_priv *priv = libipw_priv(dev);
9856         union iwreq_data wrqu_sec = {
9857                 .encoding = {
9858                              .flags = IW_ENCODE_DISABLED,
9859                              },
9860         };
9861         int ret;
9862
9863         IPW_DEBUG_WX("SW_RESET\n");
9864
9865         mutex_lock(&priv->mutex);
9866
9867         ret = ipw_sw_reset(priv, 2);
9868         if (!ret) {
9869                 free_firmware();
9870                 ipw_adapter_restart(priv);
9871         }
9872
9873         /* The SW reset bit might have been toggled on by the 'disable'
9874          * module parameter, so take appropriate action */
9875         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9876
9877         mutex_unlock(&priv->mutex);
9878         libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9879         mutex_lock(&priv->mutex);
9880
9881         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9882                 /* Configuration likely changed -- force [re]association */
9883                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9884                                 "reset.\n");
9885                 if (!ipw_disassociate(priv))
9886                         ipw_associate(priv);
9887         }
9888
9889         mutex_unlock(&priv->mutex);
9890
9891         return 0;
9892 }
9893
9894 /* Rebase the WE IOCTLs to zero for the handler array */
9895 static iw_handler ipw_wx_handlers[] = {
9896         IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
9897         IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
9898         IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
9899         IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
9900         IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
9901         IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
9902         IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
9903         IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
9904         IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
9905         IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
9906         IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
9907         IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
9908         IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
9909         IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
9910         IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
9911         IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
9912         IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
9913         IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
9914         IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
9915         IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
9916         IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
9917         IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
9918         IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
9919         IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
9920         IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
9921         IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
9922         IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
9923         IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
9924         IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
9925         IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
9926         IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
9927         IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
9928         IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
9929         IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
9930         IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
9931         IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
9932         IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
9933         IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
9934         IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
9935         IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
9936         IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
9937 };
9938
9939 enum {
9940         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9941         IPW_PRIV_GET_POWER,
9942         IPW_PRIV_SET_MODE,
9943         IPW_PRIV_GET_MODE,
9944         IPW_PRIV_SET_PREAMBLE,
9945         IPW_PRIV_GET_PREAMBLE,
9946         IPW_PRIV_RESET,
9947         IPW_PRIV_SW_RESET,
9948 #ifdef CONFIG_IPW2200_MONITOR
9949         IPW_PRIV_SET_MONITOR,
9950 #endif
9951 };
9952
9953 static struct iw_priv_args ipw_priv_args[] = {
9954         {
9955          .cmd = IPW_PRIV_SET_POWER,
9956          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9957          .name = "set_power"},
9958         {
9959          .cmd = IPW_PRIV_GET_POWER,
9960          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9961          .name = "get_power"},
9962         {
9963          .cmd = IPW_PRIV_SET_MODE,
9964          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9965          .name = "set_mode"},
9966         {
9967          .cmd = IPW_PRIV_GET_MODE,
9968          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9969          .name = "get_mode"},
9970         {
9971          .cmd = IPW_PRIV_SET_PREAMBLE,
9972          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9973          .name = "set_preamble"},
9974         {
9975          .cmd = IPW_PRIV_GET_PREAMBLE,
9976          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9977          .name = "get_preamble"},
9978         {
9979          IPW_PRIV_RESET,
9980          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9981         {
9982          IPW_PRIV_SW_RESET,
9983          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9984 #ifdef CONFIG_IPW2200_MONITOR
9985         {
9986          IPW_PRIV_SET_MONITOR,
9987          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9988 #endif                          /* CONFIG_IPW2200_MONITOR */
9989 };
9990
9991 static iw_handler ipw_priv_handler[] = {
9992         ipw_wx_set_powermode,
9993         ipw_wx_get_powermode,
9994         ipw_wx_set_wireless_mode,
9995         ipw_wx_get_wireless_mode,
9996         ipw_wx_set_preamble,
9997         ipw_wx_get_preamble,
9998         ipw_wx_reset,
9999         ipw_wx_sw_reset,
10000 #ifdef CONFIG_IPW2200_MONITOR
10001         ipw_wx_set_monitor,
10002 #endif
10003 };
10004
10005 static const struct iw_handler_def ipw_wx_handler_def = {
10006         .standard = ipw_wx_handlers,
10007         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10008         .num_private = ARRAY_SIZE(ipw_priv_handler),
10009         .num_private_args = ARRAY_SIZE(ipw_priv_args),
10010         .private = ipw_priv_handler,
10011         .private_args = ipw_priv_args,
10012         .get_wireless_stats = ipw_get_wireless_stats,
10013 };
10014
10015 /*
10016  * Get wireless statistics.
10017  * Called by /proc/net/wireless
10018  * Also called by SIOCGIWSTATS
10019  */
10020 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10021 {
10022         struct ipw_priv *priv = libipw_priv(dev);
10023         struct iw_statistics *wstats;
10024
10025         wstats = &priv->wstats;
10026
10027         /* if hw is disabled, then ipw_get_ordinal() can't be called.
10028          * netdev->get_wireless_stats seems to be called before fw is
10029          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10030          * and associated; if not associcated, the values are all meaningless
10031          * anyway, so set them all to NULL and INVALID */
10032         if (!(priv->status & STATUS_ASSOCIATED)) {
10033                 wstats->miss.beacon = 0;
10034                 wstats->discard.retries = 0;
10035                 wstats->qual.qual = 0;
10036                 wstats->qual.level = 0;
10037                 wstats->qual.noise = 0;
10038                 wstats->qual.updated = 7;
10039                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10040                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10041                 return wstats;
10042         }
10043
10044         wstats->qual.qual = priv->quality;
10045         wstats->qual.level = priv->exp_avg_rssi;
10046         wstats->qual.noise = priv->exp_avg_noise;
10047         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10048             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10049
10050         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10051         wstats->discard.retries = priv->last_tx_failures;
10052         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10053
10054 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10055         goto fail_get_ordinal;
10056         wstats->discard.retries += tx_retry; */
10057
10058         return wstats;
10059 }
10060
10061 /* net device stuff */
10062
10063 static  void init_sys_config(struct ipw_sys_config *sys_config)
10064 {
10065         memset(sys_config, 0, sizeof(struct ipw_sys_config));
10066         sys_config->bt_coexistence = 0;
10067         sys_config->answer_broadcast_ssid_probe = 0;
10068         sys_config->accept_all_data_frames = 0;
10069         sys_config->accept_non_directed_frames = 1;
10070         sys_config->exclude_unicast_unencrypted = 0;
10071         sys_config->disable_unicast_decryption = 1;
10072         sys_config->exclude_multicast_unencrypted = 0;
10073         sys_config->disable_multicast_decryption = 1;
10074         if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10075                 antenna = CFG_SYS_ANTENNA_BOTH;
10076         sys_config->antenna_diversity = antenna;
10077         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
10078         sys_config->dot11g_auto_detection = 0;
10079         sys_config->enable_cts_to_self = 0;
10080         sys_config->bt_coexist_collision_thr = 0;
10081         sys_config->pass_noise_stats_to_host = 1;       /* 1 -- fix for 256 */
10082         sys_config->silence_threshold = 0x1e;
10083 }
10084
10085 static int ipw_net_open(struct net_device *dev)
10086 {
10087         IPW_DEBUG_INFO("dev->open\n");
10088         netif_start_queue(dev);
10089         return 0;
10090 }
10091
10092 static int ipw_net_stop(struct net_device *dev)
10093 {
10094         IPW_DEBUG_INFO("dev->close\n");
10095         netif_stop_queue(dev);
10096         return 0;
10097 }
10098
10099 /*
10100 todo:
10101
10102 modify to send one tfd per fragment instead of using chunking.  otherwise
10103 we need to heavily modify the libipw_skb_to_txb.
10104 */
10105
10106 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10107                              int pri)
10108 {
10109         struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10110             txb->fragments[0]->data;
10111         int i = 0;
10112         struct tfd_frame *tfd;
10113 #ifdef CONFIG_IPW2200_QOS
10114         int tx_id = ipw_get_tx_queue_number(priv, pri);
10115         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10116 #else
10117         struct clx2_tx_queue *txq = &priv->txq[0];
10118 #endif
10119         struct clx2_queue *q = &txq->q;
10120         u8 id, hdr_len, unicast;
10121         int fc;
10122
10123         if (!(priv->status & STATUS_ASSOCIATED))
10124                 goto drop;
10125
10126         hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10127         switch (priv->ieee->iw_mode) {
10128         case IW_MODE_ADHOC:
10129                 unicast = !is_multicast_ether_addr(hdr->addr1);
10130                 id = ipw_find_station(priv, hdr->addr1);
10131                 if (id == IPW_INVALID_STATION) {
10132                         id = ipw_add_station(priv, hdr->addr1);
10133                         if (id == IPW_INVALID_STATION) {
10134                                 IPW_WARNING("Attempt to send data to "
10135                                             "invalid cell: %pM\n",
10136                                             hdr->addr1);
10137                                 goto drop;
10138                         }
10139                 }
10140                 break;
10141
10142         case IW_MODE_INFRA:
10143         default:
10144                 unicast = !is_multicast_ether_addr(hdr->addr3);
10145                 id = 0;
10146                 break;
10147         }
10148
10149         tfd = &txq->bd[q->first_empty];
10150         txq->txb[q->first_empty] = txb;
10151         memset(tfd, 0, sizeof(*tfd));
10152         tfd->u.data.station_number = id;
10153
10154         tfd->control_flags.message_type = TX_FRAME_TYPE;
10155         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10156
10157         tfd->u.data.cmd_id = DINO_CMD_TX;
10158         tfd->u.data.len = cpu_to_le16(txb->payload_size);
10159
10160         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10161                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10162         else
10163                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10164
10165         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10166                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10167
10168         fc = le16_to_cpu(hdr->frame_ctl);
10169         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10170
10171         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10172
10173         if (likely(unicast))
10174                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10175
10176         if (txb->encrypted && !priv->ieee->host_encrypt) {
10177                 switch (priv->ieee->sec.level) {
10178                 case SEC_LEVEL_3:
10179                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10180                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10181                         /* XXX: ACK flag must be set for CCMP even if it
10182                          * is a multicast/broadcast packet, because CCMP
10183                          * group communication encrypted by GTK is
10184                          * actually done by the AP. */
10185                         if (!unicast)
10186                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10187
10188                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10189                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10190                         tfd->u.data.key_index = 0;
10191                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10192                         break;
10193                 case SEC_LEVEL_2:
10194                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10195                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10196                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10197                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10198                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10199                         break;
10200                 case SEC_LEVEL_1:
10201                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10202                             cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10203                         tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10204                         if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10205                             40)
10206                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10207                         else
10208                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10209                         break;
10210                 case SEC_LEVEL_0:
10211                         break;
10212                 default:
10213                         printk(KERN_ERR "Unknown security level %d\n",
10214                                priv->ieee->sec.level);
10215                         break;
10216                 }
10217         } else
10218                 /* No hardware encryption */
10219                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10220
10221 #ifdef CONFIG_IPW2200_QOS
10222         if (fc & IEEE80211_STYPE_QOS_DATA)
10223                 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10224 #endif                          /* CONFIG_IPW2200_QOS */
10225
10226         /* payload */
10227         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10228                                                  txb->nr_frags));
10229         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10230                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10231         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10232                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10233                                i, le32_to_cpu(tfd->u.data.num_chunks),
10234                                txb->fragments[i]->len - hdr_len);
10235                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10236                              i, tfd->u.data.num_chunks,
10237                              txb->fragments[i]->len - hdr_len);
10238                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10239                            txb->fragments[i]->len - hdr_len);
10240
10241                 tfd->u.data.chunk_ptr[i] =
10242                     cpu_to_le32(pci_map_single
10243                                 (priv->pci_dev,
10244                                  txb->fragments[i]->data + hdr_len,
10245                                  txb->fragments[i]->len - hdr_len,
10246                                  PCI_DMA_TODEVICE));
10247                 tfd->u.data.chunk_len[i] =
10248                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
10249         }
10250
10251         if (i != txb->nr_frags) {
10252                 struct sk_buff *skb;
10253                 u16 remaining_bytes = 0;
10254                 int j;
10255
10256                 for (j = i; j < txb->nr_frags; j++)
10257                         remaining_bytes += txb->fragments[j]->len - hdr_len;
10258
10259                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10260                        remaining_bytes);
10261                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10262                 if (skb != NULL) {
10263                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10264                         for (j = i; j < txb->nr_frags; j++) {
10265                                 int size = txb->fragments[j]->len - hdr_len;
10266
10267                                 printk(KERN_INFO "Adding frag %d %d...\n",
10268                                        j, size);
10269                                 skb_put_data(skb,
10270                                              txb->fragments[j]->data + hdr_len,
10271                                              size);
10272                         }
10273                         dev_kfree_skb_any(txb->fragments[i]);
10274                         txb->fragments[i] = skb;
10275                         tfd->u.data.chunk_ptr[i] =
10276                             cpu_to_le32(pci_map_single
10277                                         (priv->pci_dev, skb->data,
10278                                          remaining_bytes,
10279                                          PCI_DMA_TODEVICE));
10280
10281                         le32_add_cpu(&tfd->u.data.num_chunks, 1);
10282                 }
10283         }
10284
10285         /* kick DMA */
10286         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10287         ipw_write32(priv, q->reg_w, q->first_empty);
10288
10289         if (ipw_tx_queue_space(q) < q->high_mark)
10290                 netif_stop_queue(priv->net_dev);
10291
10292         return NETDEV_TX_OK;
10293
10294       drop:
10295         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10296         libipw_txb_free(txb);
10297         return NETDEV_TX_OK;
10298 }
10299
10300 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10301 {
10302         struct ipw_priv *priv = libipw_priv(dev);
10303 #ifdef CONFIG_IPW2200_QOS
10304         int tx_id = ipw_get_tx_queue_number(priv, pri);
10305         struct clx2_tx_queue *txq = &priv->txq[tx_id];
10306 #else
10307         struct clx2_tx_queue *txq = &priv->txq[0];
10308 #endif                          /* CONFIG_IPW2200_QOS */
10309
10310         if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10311                 return 1;
10312
10313         return 0;
10314 }
10315
10316 #ifdef CONFIG_IPW2200_PROMISCUOUS
10317 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10318                                       struct libipw_txb *txb)
10319 {
10320         struct libipw_rx_stats dummystats;
10321         struct ieee80211_hdr *hdr;
10322         u8 n;
10323         u16 filter = priv->prom_priv->filter;
10324         int hdr_only = 0;
10325
10326         if (filter & IPW_PROM_NO_TX)
10327                 return;
10328
10329         memset(&dummystats, 0, sizeof(dummystats));
10330
10331         /* Filtering of fragment chains is done against the first fragment */
10332         hdr = (void *)txb->fragments[0]->data;
10333         if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10334                 if (filter & IPW_PROM_NO_MGMT)
10335                         return;
10336                 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10337                         hdr_only = 1;
10338         } else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10339                 if (filter & IPW_PROM_NO_CTL)
10340                         return;
10341                 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10342                         hdr_only = 1;
10343         } else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10344                 if (filter & IPW_PROM_NO_DATA)
10345                         return;
10346                 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10347                         hdr_only = 1;
10348         }
10349
10350         for(n=0; n<txb->nr_frags; ++n) {
10351                 struct sk_buff *src = txb->fragments[n];
10352                 struct sk_buff *dst;
10353                 struct ieee80211_radiotap_header *rt_hdr;
10354                 int len;
10355
10356                 if (hdr_only) {
10357                         hdr = (void *)src->data;
10358                         len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10359                 } else
10360                         len = src->len;
10361
10362                 dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10363                 if (!dst)
10364                         continue;
10365
10366                 rt_hdr = skb_put(dst, sizeof(*rt_hdr));
10367
10368                 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10369                 rt_hdr->it_pad = 0;
10370                 rt_hdr->it_present = 0; /* after all, it's just an idea */
10371                 rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10372
10373                 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10374                         ieee80211chan2mhz(priv->channel));
10375                 if (priv->channel > 14)         /* 802.11a */
10376                         *(__le16*)skb_put(dst, sizeof(u16)) =
10377                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10378                                              IEEE80211_CHAN_5GHZ);
10379                 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10380                         *(__le16*)skb_put(dst, sizeof(u16)) =
10381                                 cpu_to_le16(IEEE80211_CHAN_CCK |
10382                                              IEEE80211_CHAN_2GHZ);
10383                 else            /* 802.11g */
10384                         *(__le16*)skb_put(dst, sizeof(u16)) =
10385                                 cpu_to_le16(IEEE80211_CHAN_OFDM |
10386                                  IEEE80211_CHAN_2GHZ);
10387
10388                 rt_hdr->it_len = cpu_to_le16(dst->len);
10389
10390                 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10391
10392                 if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10393                         dev_kfree_skb_any(dst);
10394         }
10395 }
10396 #endif
10397
10398 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10399                                            struct net_device *dev, int pri)
10400 {
10401         struct ipw_priv *priv = libipw_priv(dev);
10402         unsigned long flags;
10403         netdev_tx_t ret;
10404
10405         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10406         spin_lock_irqsave(&priv->lock, flags);
10407
10408 #ifdef CONFIG_IPW2200_PROMISCUOUS
10409         if (rtap_iface && netif_running(priv->prom_net_dev))
10410                 ipw_handle_promiscuous_tx(priv, txb);
10411 #endif
10412
10413         ret = ipw_tx_skb(priv, txb, pri);
10414         if (ret == NETDEV_TX_OK)
10415                 __ipw_led_activity_on(priv);
10416         spin_unlock_irqrestore(&priv->lock, flags);
10417
10418         return ret;
10419 }
10420
10421 static void ipw_net_set_multicast_list(struct net_device *dev)
10422 {
10423
10424 }
10425
10426 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10427 {
10428         struct ipw_priv *priv = libipw_priv(dev);
10429         struct sockaddr *addr = p;
10430
10431         if (!is_valid_ether_addr(addr->sa_data))
10432                 return -EADDRNOTAVAIL;
10433         mutex_lock(&priv->mutex);
10434         priv->config |= CFG_CUSTOM_MAC;
10435         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10436         printk(KERN_INFO "%s: Setting MAC to %pM\n",
10437                priv->net_dev->name, priv->mac_addr);
10438         schedule_work(&priv->adapter_restart);
10439         mutex_unlock(&priv->mutex);
10440         return 0;
10441 }
10442
10443 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10444                                     struct ethtool_drvinfo *info)
10445 {
10446         struct ipw_priv *p = libipw_priv(dev);
10447         char vers[64];
10448         char date[32];
10449         u32 len;
10450
10451         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10452         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10453
10454         len = sizeof(vers);
10455         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10456         len = sizeof(date);
10457         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10458
10459         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10460                  vers, date);
10461         strlcpy(info->bus_info, pci_name(p->pci_dev),
10462                 sizeof(info->bus_info));
10463 }
10464
10465 static u32 ipw_ethtool_get_link(struct net_device *dev)
10466 {
10467         struct ipw_priv *priv = libipw_priv(dev);
10468         return (priv->status & STATUS_ASSOCIATED) != 0;
10469 }
10470
10471 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10472 {
10473         return IPW_EEPROM_IMAGE_SIZE;
10474 }
10475
10476 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10477                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10478 {
10479         struct ipw_priv *p = libipw_priv(dev);
10480
10481         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10482                 return -EINVAL;
10483         mutex_lock(&p->mutex);
10484         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10485         mutex_unlock(&p->mutex);
10486         return 0;
10487 }
10488
10489 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10490                                   struct ethtool_eeprom *eeprom, u8 * bytes)
10491 {
10492         struct ipw_priv *p = libipw_priv(dev);
10493         int i;
10494
10495         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10496                 return -EINVAL;
10497         mutex_lock(&p->mutex);
10498         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10499         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10500                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10501         mutex_unlock(&p->mutex);
10502         return 0;
10503 }
10504
10505 static const struct ethtool_ops ipw_ethtool_ops = {
10506         .get_link = ipw_ethtool_get_link,
10507         .get_drvinfo = ipw_ethtool_get_drvinfo,
10508         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10509         .get_eeprom = ipw_ethtool_get_eeprom,
10510         .set_eeprom = ipw_ethtool_set_eeprom,
10511 };
10512
10513 static irqreturn_t ipw_isr(int irq, void *data)
10514 {
10515         struct ipw_priv *priv = data;
10516         u32 inta, inta_mask;
10517
10518         if (!priv)
10519                 return IRQ_NONE;
10520
10521         spin_lock(&priv->irq_lock);
10522
10523         if (!(priv->status & STATUS_INT_ENABLED)) {
10524                 /* IRQ is disabled */
10525                 goto none;
10526         }
10527
10528         inta = ipw_read32(priv, IPW_INTA_RW);
10529         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10530
10531         if (inta == 0xFFFFFFFF) {
10532                 /* Hardware disappeared */
10533                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10534                 goto none;
10535         }
10536
10537         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10538                 /* Shared interrupt */
10539                 goto none;
10540         }
10541
10542         /* tell the device to stop sending interrupts */
10543         __ipw_disable_interrupts(priv);
10544
10545         /* ack current interrupts */
10546         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10547         ipw_write32(priv, IPW_INTA_RW, inta);
10548
10549         /* Cache INTA value for our tasklet */
10550         priv->isr_inta = inta;
10551
10552         tasklet_schedule(&priv->irq_tasklet);
10553
10554         spin_unlock(&priv->irq_lock);
10555
10556         return IRQ_HANDLED;
10557       none:
10558         spin_unlock(&priv->irq_lock);
10559         return IRQ_NONE;
10560 }
10561
10562 static void ipw_rf_kill(void *adapter)
10563 {
10564         struct ipw_priv *priv = adapter;
10565         unsigned long flags;
10566
10567         spin_lock_irqsave(&priv->lock, flags);
10568
10569         if (rf_kill_active(priv)) {
10570                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10571                 schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10572                 goto exit_unlock;
10573         }
10574
10575         /* RF Kill is now disabled, so bring the device back up */
10576
10577         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10578                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10579                                   "device\n");
10580
10581                 /* we can not do an adapter restart while inside an irq lock */
10582                 schedule_work(&priv->adapter_restart);
10583         } else
10584                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10585                                   "enabled\n");
10586
10587       exit_unlock:
10588         spin_unlock_irqrestore(&priv->lock, flags);
10589 }
10590
10591 static void ipw_bg_rf_kill(struct work_struct *work)
10592 {
10593         struct ipw_priv *priv =
10594                 container_of(work, struct ipw_priv, rf_kill.work);
10595         mutex_lock(&priv->mutex);
10596         ipw_rf_kill(priv);
10597         mutex_unlock(&priv->mutex);
10598 }
10599
10600 static void ipw_link_up(struct ipw_priv *priv)
10601 {
10602         priv->last_seq_num = -1;
10603         priv->last_frag_num = -1;
10604         priv->last_packet_time = 0;
10605
10606         netif_carrier_on(priv->net_dev);
10607
10608         cancel_delayed_work(&priv->request_scan);
10609         cancel_delayed_work(&priv->request_direct_scan);
10610         cancel_delayed_work(&priv->request_passive_scan);
10611         cancel_delayed_work(&priv->scan_event);
10612         ipw_reset_stats(priv);
10613         /* Ensure the rate is updated immediately */
10614         priv->last_rate = ipw_get_current_rate(priv);
10615         ipw_gather_stats(priv);
10616         ipw_led_link_up(priv);
10617         notify_wx_assoc_event(priv);
10618
10619         if (priv->config & CFG_BACKGROUND_SCAN)
10620                 schedule_delayed_work(&priv->request_scan, HZ);
10621 }
10622
10623 static void ipw_bg_link_up(struct work_struct *work)
10624 {
10625         struct ipw_priv *priv =
10626                 container_of(work, struct ipw_priv, link_up);
10627         mutex_lock(&priv->mutex);
10628         ipw_link_up(priv);
10629         mutex_unlock(&priv->mutex);
10630 }
10631
10632 static void ipw_link_down(struct ipw_priv *priv)
10633 {
10634         ipw_led_link_down(priv);
10635         netif_carrier_off(priv->net_dev);
10636         notify_wx_assoc_event(priv);
10637
10638         /* Cancel any queued work ... */
10639         cancel_delayed_work(&priv->request_scan);
10640         cancel_delayed_work(&priv->request_direct_scan);
10641         cancel_delayed_work(&priv->request_passive_scan);
10642         cancel_delayed_work(&priv->adhoc_check);
10643         cancel_delayed_work(&priv->gather_stats);
10644
10645         ipw_reset_stats(priv);
10646
10647         if (!(priv->status & STATUS_EXIT_PENDING)) {
10648                 /* Queue up another scan... */
10649                 schedule_delayed_work(&priv->request_scan, 0);
10650         } else
10651                 cancel_delayed_work(&priv->scan_event);
10652 }
10653
10654 static void ipw_bg_link_down(struct work_struct *work)
10655 {
10656         struct ipw_priv *priv =
10657                 container_of(work, struct ipw_priv, link_down);
10658         mutex_lock(&priv->mutex);
10659         ipw_link_down(priv);
10660         mutex_unlock(&priv->mutex);
10661 }
10662
10663 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10664 {
10665         int ret = 0;
10666
10667         init_waitqueue_head(&priv->wait_command_queue);
10668         init_waitqueue_head(&priv->wait_state);
10669
10670         INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10671         INIT_WORK(&priv->associate, ipw_bg_associate);
10672         INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10673         INIT_WORK(&priv->system_config, ipw_system_config);
10674         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10675         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10676         INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10677         INIT_WORK(&priv->up, ipw_bg_up);
10678         INIT_WORK(&priv->down, ipw_bg_down);
10679         INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10680         INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10681         INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10682         INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10683         INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10684         INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10685         INIT_WORK(&priv->roam, ipw_bg_roam);
10686         INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10687         INIT_WORK(&priv->link_up, ipw_bg_link_up);
10688         INIT_WORK(&priv->link_down, ipw_bg_link_down);
10689         INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10690         INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10691         INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10692         INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10693
10694 #ifdef CONFIG_IPW2200_QOS
10695         INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10696 #endif                          /* CONFIG_IPW2200_QOS */
10697
10698         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10699                      ipw_irq_tasklet, (unsigned long)priv);
10700
10701         return ret;
10702 }
10703
10704 static void shim__set_security(struct net_device *dev,
10705                                struct libipw_security *sec)
10706 {
10707         struct ipw_priv *priv = libipw_priv(dev);
10708         int i;
10709         for (i = 0; i < 4; i++) {
10710                 if (sec->flags & (1 << i)) {
10711                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10712                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10713                         if (sec->key_sizes[i] == 0)
10714                                 priv->ieee->sec.flags &= ~(1 << i);
10715                         else {
10716                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10717                                        sec->key_sizes[i]);
10718                                 priv->ieee->sec.flags |= (1 << i);
10719                         }
10720                         priv->status |= STATUS_SECURITY_UPDATED;
10721                 } else if (sec->level != SEC_LEVEL_1)
10722                         priv->ieee->sec.flags &= ~(1 << i);
10723         }
10724
10725         if (sec->flags & SEC_ACTIVE_KEY) {
10726                 if (sec->active_key <= 3) {
10727                         priv->ieee->sec.active_key = sec->active_key;
10728                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10729                 } else
10730                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10731                 priv->status |= STATUS_SECURITY_UPDATED;
10732         } else
10733                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10734
10735         if ((sec->flags & SEC_AUTH_MODE) &&
10736             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10737                 priv->ieee->sec.auth_mode = sec->auth_mode;
10738                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10739                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10740                         priv->capability |= CAP_SHARED_KEY;
10741                 else
10742                         priv->capability &= ~CAP_SHARED_KEY;
10743                 priv->status |= STATUS_SECURITY_UPDATED;
10744         }
10745
10746         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10747                 priv->ieee->sec.flags |= SEC_ENABLED;
10748                 priv->ieee->sec.enabled = sec->enabled;
10749                 priv->status |= STATUS_SECURITY_UPDATED;
10750                 if (sec->enabled)
10751                         priv->capability |= CAP_PRIVACY_ON;
10752                 else
10753                         priv->capability &= ~CAP_PRIVACY_ON;
10754         }
10755
10756         if (sec->flags & SEC_ENCRYPT)
10757                 priv->ieee->sec.encrypt = sec->encrypt;
10758
10759         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10760                 priv->ieee->sec.level = sec->level;
10761                 priv->ieee->sec.flags |= SEC_LEVEL;
10762                 priv->status |= STATUS_SECURITY_UPDATED;
10763         }
10764
10765         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10766                 ipw_set_hwcrypto_keys(priv);
10767
10768         /* To match current functionality of ipw2100 (which works well w/
10769          * various supplicants, we don't force a disassociate if the
10770          * privacy capability changes ... */
10771 #if 0
10772         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10773             (((priv->assoc_request.capability &
10774                cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10775              (!(priv->assoc_request.capability &
10776                 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10777                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10778                                 "change.\n");
10779                 ipw_disassociate(priv);
10780         }
10781 #endif
10782 }
10783
10784 static int init_supported_rates(struct ipw_priv *priv,
10785                                 struct ipw_supported_rates *rates)
10786 {
10787         /* TODO: Mask out rates based on priv->rates_mask */
10788
10789         memset(rates, 0, sizeof(*rates));
10790         /* configure supported rates */
10791         switch (priv->ieee->freq_band) {
10792         case LIBIPW_52GHZ_BAND:
10793                 rates->ieee_mode = IPW_A_MODE;
10794                 rates->purpose = IPW_RATE_CAPABILITIES;
10795                 ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10796                                         LIBIPW_OFDM_DEFAULT_RATES_MASK);
10797                 break;
10798
10799         default:                /* Mixed or 2.4Ghz */
10800                 rates->ieee_mode = IPW_G_MODE;
10801                 rates->purpose = IPW_RATE_CAPABILITIES;
10802                 ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10803                                        LIBIPW_CCK_DEFAULT_RATES_MASK);
10804                 if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10805                         ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10806                                                 LIBIPW_OFDM_DEFAULT_RATES_MASK);
10807                 }
10808                 break;
10809         }
10810
10811         return 0;
10812 }
10813
10814 static int ipw_config(struct ipw_priv *priv)
10815 {
10816         /* This is only called from ipw_up, which resets/reloads the firmware
10817            so, we don't need to first disable the card before we configure
10818            it */
10819         if (ipw_set_tx_power(priv))
10820                 goto error;
10821
10822         /* initialize adapter address */
10823         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10824                 goto error;
10825
10826         /* set basic system config settings */
10827         init_sys_config(&priv->sys_config);
10828
10829         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10830          * Does not support BT priority yet (don't abort or defer our Tx) */
10831         if (bt_coexist) {
10832                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10833
10834                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10835                         priv->sys_config.bt_coexistence
10836                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10837                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10838                         priv->sys_config.bt_coexistence
10839                             |= CFG_BT_COEXISTENCE_OOB;
10840         }
10841
10842 #ifdef CONFIG_IPW2200_PROMISCUOUS
10843         if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10844                 priv->sys_config.accept_all_data_frames = 1;
10845                 priv->sys_config.accept_non_directed_frames = 1;
10846                 priv->sys_config.accept_all_mgmt_bcpr = 1;
10847                 priv->sys_config.accept_all_mgmt_frames = 1;
10848         }
10849 #endif
10850
10851         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10852                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10853         else
10854                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10855
10856         if (ipw_send_system_config(priv))
10857                 goto error;
10858
10859         init_supported_rates(priv, &priv->rates);
10860         if (ipw_send_supported_rates(priv, &priv->rates))
10861                 goto error;
10862
10863         /* Set request-to-send threshold */
10864         if (priv->rts_threshold) {
10865                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10866                         goto error;
10867         }
10868 #ifdef CONFIG_IPW2200_QOS
10869         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10870         ipw_qos_activate(priv, NULL);
10871 #endif                          /* CONFIG_IPW2200_QOS */
10872
10873         if (ipw_set_random_seed(priv))
10874                 goto error;
10875
10876         /* final state transition to the RUN state */
10877         if (ipw_send_host_complete(priv))
10878                 goto error;
10879
10880         priv->status |= STATUS_INIT;
10881
10882         ipw_led_init(priv);
10883         ipw_led_radio_on(priv);
10884         priv->notif_missed_beacons = 0;
10885
10886         /* Set hardware WEP key if it is configured. */
10887         if ((priv->capability & CAP_PRIVACY_ON) &&
10888             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10889             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10890                 ipw_set_hwcrypto_keys(priv);
10891
10892         return 0;
10893
10894       error:
10895         return -EIO;
10896 }
10897
10898 /*
10899  * NOTE:
10900  *
10901  * These tables have been tested in conjunction with the
10902  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10903  *
10904  * Altering this values, using it on other hardware, or in geographies
10905  * not intended for resale of the above mentioned Intel adapters has
10906  * not been tested.
10907  *
10908  * Remember to update the table in README.ipw2200 when changing this
10909  * table.
10910  *
10911  */
10912 static const struct libipw_geo ipw_geos[] = {
10913         {                       /* Restricted */
10914          "---",
10915          .bg_channels = 11,
10916          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10917                 {2427, 4}, {2432, 5}, {2437, 6},
10918                 {2442, 7}, {2447, 8}, {2452, 9},
10919                 {2457, 10}, {2462, 11}},
10920          },
10921
10922         {                       /* Custom US/Canada */
10923          "ZZF",
10924          .bg_channels = 11,
10925          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10926                 {2427, 4}, {2432, 5}, {2437, 6},
10927                 {2442, 7}, {2447, 8}, {2452, 9},
10928                 {2457, 10}, {2462, 11}},
10929          .a_channels = 8,
10930          .a = {{5180, 36},
10931                {5200, 40},
10932                {5220, 44},
10933                {5240, 48},
10934                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10935                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10936                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10937                {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
10938          },
10939
10940         {                       /* Rest of World */
10941          "ZZD",
10942          .bg_channels = 13,
10943          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10944                 {2427, 4}, {2432, 5}, {2437, 6},
10945                 {2442, 7}, {2447, 8}, {2452, 9},
10946                 {2457, 10}, {2462, 11}, {2467, 12},
10947                 {2472, 13}},
10948          },
10949
10950         {                       /* Custom USA & Europe & High */
10951          "ZZA",
10952          .bg_channels = 11,
10953          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10954                 {2427, 4}, {2432, 5}, {2437, 6},
10955                 {2442, 7}, {2447, 8}, {2452, 9},
10956                 {2457, 10}, {2462, 11}},
10957          .a_channels = 13,
10958          .a = {{5180, 36},
10959                {5200, 40},
10960                {5220, 44},
10961                {5240, 48},
10962                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10963                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10964                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10965                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10966                {5745, 149},
10967                {5765, 153},
10968                {5785, 157},
10969                {5805, 161},
10970                {5825, 165}},
10971          },
10972
10973         {                       /* Custom NA & Europe */
10974          "ZZB",
10975          .bg_channels = 11,
10976          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10977                 {2427, 4}, {2432, 5}, {2437, 6},
10978                 {2442, 7}, {2447, 8}, {2452, 9},
10979                 {2457, 10}, {2462, 11}},
10980          .a_channels = 13,
10981          .a = {{5180, 36},
10982                {5200, 40},
10983                {5220, 44},
10984                {5240, 48},
10985                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
10986                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
10987                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
10988                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
10989                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
10990                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
10991                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
10992                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
10993                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
10994          },
10995
10996         {                       /* Custom Japan */
10997          "ZZC",
10998          .bg_channels = 11,
10999          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11000                 {2427, 4}, {2432, 5}, {2437, 6},
11001                 {2442, 7}, {2447, 8}, {2452, 9},
11002                 {2457, 10}, {2462, 11}},
11003          .a_channels = 4,
11004          .a = {{5170, 34}, {5190, 38},
11005                {5210, 42}, {5230, 46}},
11006          },
11007
11008         {                       /* Custom */
11009          "ZZM",
11010          .bg_channels = 11,
11011          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11012                 {2427, 4}, {2432, 5}, {2437, 6},
11013                 {2442, 7}, {2447, 8}, {2452, 9},
11014                 {2457, 10}, {2462, 11}},
11015          },
11016
11017         {                       /* Europe */
11018          "ZZE",
11019          .bg_channels = 13,
11020          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11021                 {2427, 4}, {2432, 5}, {2437, 6},
11022                 {2442, 7}, {2447, 8}, {2452, 9},
11023                 {2457, 10}, {2462, 11}, {2467, 12},
11024                 {2472, 13}},
11025          .a_channels = 19,
11026          .a = {{5180, 36},
11027                {5200, 40},
11028                {5220, 44},
11029                {5240, 48},
11030                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11031                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11032                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11033                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11034                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11035                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11036                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11037                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11038                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11039                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11040                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11041                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11042                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11043                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11044                {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11045          },
11046
11047         {                       /* Custom Japan */
11048          "ZZJ",
11049          .bg_channels = 14,
11050          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11051                 {2427, 4}, {2432, 5}, {2437, 6},
11052                 {2442, 7}, {2447, 8}, {2452, 9},
11053                 {2457, 10}, {2462, 11}, {2467, 12},
11054                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11055          .a_channels = 4,
11056          .a = {{5170, 34}, {5190, 38},
11057                {5210, 42}, {5230, 46}},
11058          },
11059
11060         {                       /* Rest of World */
11061          "ZZR",
11062          .bg_channels = 14,
11063          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11064                 {2427, 4}, {2432, 5}, {2437, 6},
11065                 {2442, 7}, {2447, 8}, {2452, 9},
11066                 {2457, 10}, {2462, 11}, {2467, 12},
11067                 {2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11068                              LIBIPW_CH_PASSIVE_ONLY}},
11069          },
11070
11071         {                       /* High Band */
11072          "ZZH",
11073          .bg_channels = 13,
11074          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11075                 {2427, 4}, {2432, 5}, {2437, 6},
11076                 {2442, 7}, {2447, 8}, {2452, 9},
11077                 {2457, 10}, {2462, 11},
11078                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11079                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11080          .a_channels = 4,
11081          .a = {{5745, 149}, {5765, 153},
11082                {5785, 157}, {5805, 161}},
11083          },
11084
11085         {                       /* Custom Europe */
11086          "ZZG",
11087          .bg_channels = 13,
11088          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11089                 {2427, 4}, {2432, 5}, {2437, 6},
11090                 {2442, 7}, {2447, 8}, {2452, 9},
11091                 {2457, 10}, {2462, 11},
11092                 {2467, 12}, {2472, 13}},
11093          .a_channels = 4,
11094          .a = {{5180, 36}, {5200, 40},
11095                {5220, 44}, {5240, 48}},
11096          },
11097
11098         {                       /* Europe */
11099          "ZZK",
11100          .bg_channels = 13,
11101          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11102                 {2427, 4}, {2432, 5}, {2437, 6},
11103                 {2442, 7}, {2447, 8}, {2452, 9},
11104                 {2457, 10}, {2462, 11},
11105                 {2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11106                 {2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11107          .a_channels = 24,
11108          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11109                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11110                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11111                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11112                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11113                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11114                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11115                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11116                {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11117                {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11118                {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11119                {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11120                {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11121                {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11122                {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11123                {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11124                {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11125                {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11126                {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11127                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11128                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11129                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11130                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11131                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11132          },
11133
11134         {                       /* Europe */
11135          "ZZL",
11136          .bg_channels = 11,
11137          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11138                 {2427, 4}, {2432, 5}, {2437, 6},
11139                 {2442, 7}, {2447, 8}, {2452, 9},
11140                 {2457, 10}, {2462, 11}},
11141          .a_channels = 13,
11142          .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11143                {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11144                {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11145                {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11146                {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11147                {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11148                {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11149                {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11150                {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11151                {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11152                {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11153                {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11154                {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11155          }
11156 };
11157
11158 static void ipw_set_geo(struct ipw_priv *priv)
11159 {
11160         int j;
11161
11162         for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11163                 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11164                             ipw_geos[j].name, 3))
11165                         break;
11166         }
11167
11168         if (j == ARRAY_SIZE(ipw_geos)) {
11169                 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11170                             priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11171                             priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11172                             priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11173                 j = 0;
11174         }
11175
11176         libipw_set_geo(priv->ieee, &ipw_geos[j]);
11177 }
11178
11179 #define MAX_HW_RESTARTS 5
11180 static int ipw_up(struct ipw_priv *priv)
11181 {
11182         int rc, i;
11183
11184         /* Age scan list entries found before suspend */
11185         if (priv->suspend_time) {
11186                 libipw_networks_age(priv->ieee, priv->suspend_time);
11187                 priv->suspend_time = 0;
11188         }
11189
11190         if (priv->status & STATUS_EXIT_PENDING)
11191                 return -EIO;
11192
11193         if (cmdlog && !priv->cmdlog) {
11194                 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11195                                        GFP_KERNEL);
11196                 if (priv->cmdlog == NULL) {
11197                         IPW_ERROR("Error allocating %d command log entries.\n",
11198                                   cmdlog);
11199                         return -ENOMEM;
11200                 } else {
11201                         priv->cmdlog_len = cmdlog;
11202                 }
11203         }
11204
11205         for (i = 0; i < MAX_HW_RESTARTS; i++) {
11206                 /* Load the microcode, firmware, and eeprom.
11207                  * Also start the clocks. */
11208                 rc = ipw_load(priv);
11209                 if (rc) {
11210                         IPW_ERROR("Unable to load firmware: %d\n", rc);
11211                         return rc;
11212                 }
11213
11214                 ipw_init_ordinals(priv);
11215                 if (!(priv->config & CFG_CUSTOM_MAC))
11216                         eeprom_parse_mac(priv, priv->mac_addr);
11217                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11218
11219                 ipw_set_geo(priv);
11220
11221                 if (priv->status & STATUS_RF_KILL_SW) {
11222                         IPW_WARNING("Radio disabled by module parameter.\n");
11223                         return 0;
11224                 } else if (rf_kill_active(priv)) {
11225                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11226                                     "Kill switch must be turned off for "
11227                                     "wireless networking to work.\n");
11228                         schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11229                         return 0;
11230                 }
11231
11232                 rc = ipw_config(priv);
11233                 if (!rc) {
11234                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
11235
11236                         /* If configure to try and auto-associate, kick
11237                          * off a scan. */
11238                         schedule_delayed_work(&priv->request_scan, 0);
11239
11240                         return 0;
11241                 }
11242
11243                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11244                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11245                                i, MAX_HW_RESTARTS);
11246
11247                 /* We had an error bringing up the hardware, so take it
11248                  * all the way back down so we can try again */
11249                 ipw_down(priv);
11250         }
11251
11252         /* tried to restart and config the device for as long as our
11253          * patience could withstand */
11254         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11255
11256         return -EIO;
11257 }
11258
11259 static void ipw_bg_up(struct work_struct *work)
11260 {
11261         struct ipw_priv *priv =
11262                 container_of(work, struct ipw_priv, up);
11263         mutex_lock(&priv->mutex);
11264         ipw_up(priv);
11265         mutex_unlock(&priv->mutex);
11266 }
11267
11268 static void ipw_deinit(struct ipw_priv *priv)
11269 {
11270         int i;
11271
11272         if (priv->status & STATUS_SCANNING) {
11273                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11274                 ipw_abort_scan(priv);
11275         }
11276
11277         if (priv->status & STATUS_ASSOCIATED) {
11278                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11279                 ipw_disassociate(priv);
11280         }
11281
11282         ipw_led_shutdown(priv);
11283
11284         /* Wait up to 1s for status to change to not scanning and not
11285          * associated (disassociation can take a while for a ful 802.11
11286          * exchange */
11287         for (i = 1000; i && (priv->status &
11288                              (STATUS_DISASSOCIATING |
11289                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11290                 udelay(10);
11291
11292         if (priv->status & (STATUS_DISASSOCIATING |
11293                             STATUS_ASSOCIATED | STATUS_SCANNING))
11294                 IPW_DEBUG_INFO("Still associated or scanning...\n");
11295         else
11296                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11297
11298         /* Attempt to disable the card */
11299         ipw_send_card_disable(priv, 0);
11300
11301         priv->status &= ~STATUS_INIT;
11302 }
11303
11304 static void ipw_down(struct ipw_priv *priv)
11305 {
11306         int exit_pending = priv->status & STATUS_EXIT_PENDING;
11307
11308         priv->status |= STATUS_EXIT_PENDING;
11309
11310         if (ipw_is_init(priv))
11311                 ipw_deinit(priv);
11312
11313         /* Wipe out the EXIT_PENDING status bit if we are not actually
11314          * exiting the module */
11315         if (!exit_pending)
11316                 priv->status &= ~STATUS_EXIT_PENDING;
11317
11318         /* tell the device to stop sending interrupts */
11319         ipw_disable_interrupts(priv);
11320
11321         /* Clear all bits but the RF Kill */
11322         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11323         netif_carrier_off(priv->net_dev);
11324
11325         ipw_stop_nic(priv);
11326
11327         ipw_led_radio_off(priv);
11328 }
11329
11330 static void ipw_bg_down(struct work_struct *work)
11331 {
11332         struct ipw_priv *priv =
11333                 container_of(work, struct ipw_priv, down);
11334         mutex_lock(&priv->mutex);
11335         ipw_down(priv);
11336         mutex_unlock(&priv->mutex);
11337 }
11338
11339 static int ipw_wdev_init(struct net_device *dev)
11340 {
11341         int i, rc = 0;
11342         struct ipw_priv *priv = libipw_priv(dev);
11343         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11344         struct wireless_dev *wdev = &priv->ieee->wdev;
11345
11346         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11347
11348         /* fill-out priv->ieee->bg_band */
11349         if (geo->bg_channels) {
11350                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11351
11352                 bg_band->band = NL80211_BAND_2GHZ;
11353                 bg_band->n_channels = geo->bg_channels;
11354                 bg_band->channels = kcalloc(geo->bg_channels,
11355                                             sizeof(struct ieee80211_channel),
11356                                             GFP_KERNEL);
11357                 if (!bg_band->channels) {
11358                         rc = -ENOMEM;
11359                         goto out;
11360                 }
11361                 /* translate geo->bg to bg_band.channels */
11362                 for (i = 0; i < geo->bg_channels; i++) {
11363                         bg_band->channels[i].band = NL80211_BAND_2GHZ;
11364                         bg_band->channels[i].center_freq = geo->bg[i].freq;
11365                         bg_band->channels[i].hw_value = geo->bg[i].channel;
11366                         bg_band->channels[i].max_power = geo->bg[i].max_power;
11367                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11368                                 bg_band->channels[i].flags |=
11369                                         IEEE80211_CHAN_NO_IR;
11370                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11371                                 bg_band->channels[i].flags |=
11372                                         IEEE80211_CHAN_NO_IR;
11373                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11374                                 bg_band->channels[i].flags |=
11375                                         IEEE80211_CHAN_RADAR;
11376                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11377                            LIBIPW_CH_UNIFORM_SPREADING, or
11378                            LIBIPW_CH_B_ONLY... */
11379                 }
11380                 /* point at bitrate info */
11381                 bg_band->bitrates = ipw2200_bg_rates;
11382                 bg_band->n_bitrates = ipw2200_num_bg_rates;
11383
11384                 wdev->wiphy->bands[NL80211_BAND_2GHZ] = bg_band;
11385         }
11386
11387         /* fill-out priv->ieee->a_band */
11388         if (geo->a_channels) {
11389                 struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11390
11391                 a_band->band = NL80211_BAND_5GHZ;
11392                 a_band->n_channels = geo->a_channels;
11393                 a_band->channels = kcalloc(geo->a_channels,
11394                                            sizeof(struct ieee80211_channel),
11395                                            GFP_KERNEL);
11396                 if (!a_band->channels) {
11397                         rc = -ENOMEM;
11398                         goto out;
11399                 }
11400                 /* translate geo->a to a_band.channels */
11401                 for (i = 0; i < geo->a_channels; i++) {
11402                         a_band->channels[i].band = NL80211_BAND_5GHZ;
11403                         a_band->channels[i].center_freq = geo->a[i].freq;
11404                         a_band->channels[i].hw_value = geo->a[i].channel;
11405                         a_band->channels[i].max_power = geo->a[i].max_power;
11406                         if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11407                                 a_band->channels[i].flags |=
11408                                         IEEE80211_CHAN_NO_IR;
11409                         if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11410                                 a_band->channels[i].flags |=
11411                                         IEEE80211_CHAN_NO_IR;
11412                         if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11413                                 a_band->channels[i].flags |=
11414                                         IEEE80211_CHAN_RADAR;
11415                         /* No equivalent for LIBIPW_CH_80211H_RULES,
11416                            LIBIPW_CH_UNIFORM_SPREADING, or
11417                            LIBIPW_CH_B_ONLY... */
11418                 }
11419                 /* point at bitrate info */
11420                 a_band->bitrates = ipw2200_a_rates;
11421                 a_band->n_bitrates = ipw2200_num_a_rates;
11422
11423                 wdev->wiphy->bands[NL80211_BAND_5GHZ] = a_band;
11424         }
11425
11426         wdev->wiphy->cipher_suites = ipw_cipher_suites;
11427         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11428
11429         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11430
11431         /* With that information in place, we can now register the wiphy... */
11432         if (wiphy_register(wdev->wiphy))
11433                 rc = -EIO;
11434 out:
11435         return rc;
11436 }
11437
11438 /* PCI driver stuff */
11439 static const struct pci_device_id card_ids[] = {
11440         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11441         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11442         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11443         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11444         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11445         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11446         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11447         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11448         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11449         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11450         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11451         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11452         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11453         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11454         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11455         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11456         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11457         {PCI_VDEVICE(INTEL, 0x104f), 0},
11458         {PCI_VDEVICE(INTEL, 0x4220), 0},        /* BG */
11459         {PCI_VDEVICE(INTEL, 0x4221), 0},        /* BG */
11460         {PCI_VDEVICE(INTEL, 0x4223), 0},        /* ABG */
11461         {PCI_VDEVICE(INTEL, 0x4224), 0},        /* ABG */
11462
11463         /* required last entry */
11464         {0,}
11465 };
11466
11467 MODULE_DEVICE_TABLE(pci, card_ids);
11468
11469 static struct attribute *ipw_sysfs_entries[] = {
11470         &dev_attr_rf_kill.attr,
11471         &dev_attr_direct_dword.attr,
11472         &dev_attr_indirect_byte.attr,
11473         &dev_attr_indirect_dword.attr,
11474         &dev_attr_mem_gpio_reg.attr,
11475         &dev_attr_command_event_reg.attr,
11476         &dev_attr_nic_type.attr,
11477         &dev_attr_status.attr,
11478         &dev_attr_cfg.attr,
11479         &dev_attr_error.attr,
11480         &dev_attr_event_log.attr,
11481         &dev_attr_cmd_log.attr,
11482         &dev_attr_eeprom_delay.attr,
11483         &dev_attr_ucode_version.attr,
11484         &dev_attr_rtc.attr,
11485         &dev_attr_scan_age.attr,
11486         &dev_attr_led.attr,
11487         &dev_attr_speed_scan.attr,
11488         &dev_attr_net_stats.attr,
11489         &dev_attr_channels.attr,
11490 #ifdef CONFIG_IPW2200_PROMISCUOUS
11491         &dev_attr_rtap_iface.attr,
11492         &dev_attr_rtap_filter.attr,
11493 #endif
11494         NULL
11495 };
11496
11497 static const struct attribute_group ipw_attribute_group = {
11498         .name = NULL,           /* put in device directory */
11499         .attrs = ipw_sysfs_entries,
11500 };
11501
11502 #ifdef CONFIG_IPW2200_PROMISCUOUS
11503 static int ipw_prom_open(struct net_device *dev)
11504 {
11505         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11506         struct ipw_priv *priv = prom_priv->priv;
11507
11508         IPW_DEBUG_INFO("prom dev->open\n");
11509         netif_carrier_off(dev);
11510
11511         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11512                 priv->sys_config.accept_all_data_frames = 1;
11513                 priv->sys_config.accept_non_directed_frames = 1;
11514                 priv->sys_config.accept_all_mgmt_bcpr = 1;
11515                 priv->sys_config.accept_all_mgmt_frames = 1;
11516
11517                 ipw_send_system_config(priv);
11518         }
11519
11520         return 0;
11521 }
11522
11523 static int ipw_prom_stop(struct net_device *dev)
11524 {
11525         struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11526         struct ipw_priv *priv = prom_priv->priv;
11527
11528         IPW_DEBUG_INFO("prom dev->stop\n");
11529
11530         if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11531                 priv->sys_config.accept_all_data_frames = 0;
11532                 priv->sys_config.accept_non_directed_frames = 0;
11533                 priv->sys_config.accept_all_mgmt_bcpr = 0;
11534                 priv->sys_config.accept_all_mgmt_frames = 0;
11535
11536                 ipw_send_system_config(priv);
11537         }
11538
11539         return 0;
11540 }
11541
11542 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11543                                             struct net_device *dev)
11544 {
11545         IPW_DEBUG_INFO("prom dev->xmit\n");
11546         dev_kfree_skb(skb);
11547         return NETDEV_TX_OK;
11548 }
11549
11550 static const struct net_device_ops ipw_prom_netdev_ops = {
11551         .ndo_open               = ipw_prom_open,
11552         .ndo_stop               = ipw_prom_stop,
11553         .ndo_start_xmit         = ipw_prom_hard_start_xmit,
11554         .ndo_set_mac_address    = eth_mac_addr,
11555         .ndo_validate_addr      = eth_validate_addr,
11556 };
11557
11558 static int ipw_prom_alloc(struct ipw_priv *priv)
11559 {
11560         int rc = 0;
11561
11562         if (priv->prom_net_dev)
11563                 return -EPERM;
11564
11565         priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11566         if (priv->prom_net_dev == NULL)
11567                 return -ENOMEM;
11568
11569         priv->prom_priv = libipw_priv(priv->prom_net_dev);
11570         priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11571         priv->prom_priv->priv = priv;
11572
11573         strcpy(priv->prom_net_dev->name, "rtap%d");
11574         memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11575
11576         priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11577         priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11578
11579         priv->prom_net_dev->min_mtu = 68;
11580         priv->prom_net_dev->max_mtu = LIBIPW_DATA_LEN;
11581
11582         priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11583         SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11584
11585         rc = register_netdev(priv->prom_net_dev);
11586         if (rc) {
11587                 free_libipw(priv->prom_net_dev, 1);
11588                 priv->prom_net_dev = NULL;
11589                 return rc;
11590         }
11591
11592         return 0;
11593 }
11594
11595 static void ipw_prom_free(struct ipw_priv *priv)
11596 {
11597         if (!priv->prom_net_dev)
11598                 return;
11599
11600         unregister_netdev(priv->prom_net_dev);
11601         free_libipw(priv->prom_net_dev, 1);
11602
11603         priv->prom_net_dev = NULL;
11604 }
11605
11606 #endif
11607
11608 static const struct net_device_ops ipw_netdev_ops = {
11609         .ndo_open               = ipw_net_open,
11610         .ndo_stop               = ipw_net_stop,
11611         .ndo_set_rx_mode        = ipw_net_set_multicast_list,
11612         .ndo_set_mac_address    = ipw_net_set_mac_address,
11613         .ndo_start_xmit         = libipw_xmit,
11614         .ndo_validate_addr      = eth_validate_addr,
11615 };
11616
11617 static int ipw_pci_probe(struct pci_dev *pdev,
11618                                    const struct pci_device_id *ent)
11619 {
11620         int err = 0;
11621         struct net_device *net_dev;
11622         void __iomem *base;
11623         u32 length, val;
11624         struct ipw_priv *priv;
11625         int i;
11626
11627         net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11628         if (net_dev == NULL) {
11629                 err = -ENOMEM;
11630                 goto out;
11631         }
11632
11633         priv = libipw_priv(net_dev);
11634         priv->ieee = netdev_priv(net_dev);
11635
11636         priv->net_dev = net_dev;
11637         priv->pci_dev = pdev;
11638         ipw_debug_level = debug;
11639         spin_lock_init(&priv->irq_lock);
11640         spin_lock_init(&priv->lock);
11641         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11642                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11643
11644         mutex_init(&priv->mutex);
11645         if (pci_enable_device(pdev)) {
11646                 err = -ENODEV;
11647                 goto out_free_libipw;
11648         }
11649
11650         pci_set_master(pdev);
11651
11652         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11653         if (!err)
11654                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11655         if (err) {
11656                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11657                 goto out_pci_disable_device;
11658         }
11659
11660         pci_set_drvdata(pdev, priv);
11661
11662         err = pci_request_regions(pdev, DRV_NAME);
11663         if (err)
11664                 goto out_pci_disable_device;
11665
11666         /* We disable the RETRY_TIMEOUT register (0x41) to keep
11667          * PCI Tx retries from interfering with C3 CPU state */
11668         pci_read_config_dword(pdev, 0x40, &val);
11669         if ((val & 0x0000ff00) != 0)
11670                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11671
11672         length = pci_resource_len(pdev, 0);
11673         priv->hw_len = length;
11674
11675         base = pci_ioremap_bar(pdev, 0);
11676         if (!base) {
11677                 err = -ENODEV;
11678                 goto out_pci_release_regions;
11679         }
11680
11681         priv->hw_base = base;
11682         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11683         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11684
11685         err = ipw_setup_deferred_work(priv);
11686         if (err) {
11687                 IPW_ERROR("Unable to setup deferred work\n");
11688                 goto out_iounmap;
11689         }
11690
11691         ipw_sw_reset(priv, 1);
11692
11693         err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11694         if (err) {
11695                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11696                 goto out_iounmap;
11697         }
11698
11699         SET_NETDEV_DEV(net_dev, &pdev->dev);
11700
11701         mutex_lock(&priv->mutex);
11702
11703         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11704         priv->ieee->set_security = shim__set_security;
11705         priv->ieee->is_queue_full = ipw_net_is_queue_full;
11706
11707 #ifdef CONFIG_IPW2200_QOS
11708         priv->ieee->is_qos_active = ipw_is_qos_active;
11709         priv->ieee->handle_probe_response = ipw_handle_beacon;
11710         priv->ieee->handle_beacon = ipw_handle_probe_response;
11711         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11712 #endif                          /* CONFIG_IPW2200_QOS */
11713
11714         priv->ieee->perfect_rssi = -20;
11715         priv->ieee->worst_rssi = -85;
11716
11717         net_dev->netdev_ops = &ipw_netdev_ops;
11718         priv->wireless_data.spy_data = &priv->ieee->spy_data;
11719         net_dev->wireless_data = &priv->wireless_data;
11720         net_dev->wireless_handlers = &ipw_wx_handler_def;
11721         net_dev->ethtool_ops = &ipw_ethtool_ops;
11722
11723         net_dev->min_mtu = 68;
11724         net_dev->max_mtu = LIBIPW_DATA_LEN;
11725
11726         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11727         if (err) {
11728                 IPW_ERROR("failed to create sysfs device attributes\n");
11729                 mutex_unlock(&priv->mutex);
11730                 goto out_release_irq;
11731         }
11732
11733         if (ipw_up(priv)) {
11734                 mutex_unlock(&priv->mutex);
11735                 err = -EIO;
11736                 goto out_remove_sysfs;
11737         }
11738
11739         mutex_unlock(&priv->mutex);
11740
11741         err = ipw_wdev_init(net_dev);
11742         if (err) {
11743                 IPW_ERROR("failed to register wireless device\n");
11744                 goto out_remove_sysfs;
11745         }
11746
11747         err = register_netdev(net_dev);
11748         if (err) {
11749                 IPW_ERROR("failed to register network device\n");
11750                 goto out_unregister_wiphy;
11751         }
11752
11753 #ifdef CONFIG_IPW2200_PROMISCUOUS
11754         if (rtap_iface) {
11755                 err = ipw_prom_alloc(priv);
11756                 if (err) {
11757                         IPW_ERROR("Failed to register promiscuous network "
11758                                   "device (error %d).\n", err);
11759                         unregister_netdev(priv->net_dev);
11760                         goto out_unregister_wiphy;
11761                 }
11762         }
11763 #endif
11764
11765         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11766                "channels, %d 802.11a channels)\n",
11767                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11768                priv->ieee->geo.a_channels);
11769
11770         return 0;
11771
11772       out_unregister_wiphy:
11773         wiphy_unregister(priv->ieee->wdev.wiphy);
11774         kfree(priv->ieee->a_band.channels);
11775         kfree(priv->ieee->bg_band.channels);
11776       out_remove_sysfs:
11777         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11778       out_release_irq:
11779         free_irq(pdev->irq, priv);
11780       out_iounmap:
11781         iounmap(priv->hw_base);
11782       out_pci_release_regions:
11783         pci_release_regions(pdev);
11784       out_pci_disable_device:
11785         pci_disable_device(pdev);
11786       out_free_libipw:
11787         free_libipw(priv->net_dev, 0);
11788       out:
11789         return err;
11790 }
11791
11792 static void ipw_pci_remove(struct pci_dev *pdev)
11793 {
11794         struct ipw_priv *priv = pci_get_drvdata(pdev);
11795         struct list_head *p, *q;
11796         int i;
11797
11798         if (!priv)
11799                 return;
11800
11801         mutex_lock(&priv->mutex);
11802
11803         priv->status |= STATUS_EXIT_PENDING;
11804         ipw_down(priv);
11805         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11806
11807         mutex_unlock(&priv->mutex);
11808
11809         unregister_netdev(priv->net_dev);
11810
11811         if (priv->rxq) {
11812                 ipw_rx_queue_free(priv, priv->rxq);
11813                 priv->rxq = NULL;
11814         }
11815         ipw_tx_queue_free(priv);
11816
11817         if (priv->cmdlog) {
11818                 kfree(priv->cmdlog);
11819                 priv->cmdlog = NULL;
11820         }
11821
11822         /* make sure all works are inactive */
11823         cancel_delayed_work_sync(&priv->adhoc_check);
11824         cancel_work_sync(&priv->associate);
11825         cancel_work_sync(&priv->disassociate);
11826         cancel_work_sync(&priv->system_config);
11827         cancel_work_sync(&priv->rx_replenish);
11828         cancel_work_sync(&priv->adapter_restart);
11829         cancel_delayed_work_sync(&priv->rf_kill);
11830         cancel_work_sync(&priv->up);
11831         cancel_work_sync(&priv->down);
11832         cancel_delayed_work_sync(&priv->request_scan);
11833         cancel_delayed_work_sync(&priv->request_direct_scan);
11834         cancel_delayed_work_sync(&priv->request_passive_scan);
11835         cancel_delayed_work_sync(&priv->scan_event);
11836         cancel_delayed_work_sync(&priv->gather_stats);
11837         cancel_work_sync(&priv->abort_scan);
11838         cancel_work_sync(&priv->roam);
11839         cancel_delayed_work_sync(&priv->scan_check);
11840         cancel_work_sync(&priv->link_up);
11841         cancel_work_sync(&priv->link_down);
11842         cancel_delayed_work_sync(&priv->led_link_on);
11843         cancel_delayed_work_sync(&priv->led_link_off);
11844         cancel_delayed_work_sync(&priv->led_act_off);
11845         cancel_work_sync(&priv->merge_networks);
11846
11847         /* Free MAC hash list for ADHOC */
11848         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11849                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11850                         list_del(p);
11851                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11852                 }
11853         }
11854
11855         kfree(priv->error);
11856         priv->error = NULL;
11857
11858 #ifdef CONFIG_IPW2200_PROMISCUOUS
11859         ipw_prom_free(priv);
11860 #endif
11861
11862         free_irq(pdev->irq, priv);
11863         iounmap(priv->hw_base);
11864         pci_release_regions(pdev);
11865         pci_disable_device(pdev);
11866         /* wiphy_unregister needs to be here, before free_libipw */
11867         wiphy_unregister(priv->ieee->wdev.wiphy);
11868         kfree(priv->ieee->a_band.channels);
11869         kfree(priv->ieee->bg_band.channels);
11870         free_libipw(priv->net_dev, 0);
11871         free_firmware();
11872 }
11873
11874 #ifdef CONFIG_PM
11875 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11876 {
11877         struct ipw_priv *priv = pci_get_drvdata(pdev);
11878         struct net_device *dev = priv->net_dev;
11879
11880         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11881
11882         /* Take down the device; powers it off, etc. */
11883         ipw_down(priv);
11884
11885         /* Remove the PRESENT state of the device */
11886         netif_device_detach(dev);
11887
11888         pci_save_state(pdev);
11889         pci_disable_device(pdev);
11890         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11891
11892         priv->suspend_at = get_seconds();
11893
11894         return 0;
11895 }
11896
11897 static int ipw_pci_resume(struct pci_dev *pdev)
11898 {
11899         struct ipw_priv *priv = pci_get_drvdata(pdev);
11900         struct net_device *dev = priv->net_dev;
11901         int err;
11902         u32 val;
11903
11904         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11905
11906         pci_set_power_state(pdev, PCI_D0);
11907         err = pci_enable_device(pdev);
11908         if (err) {
11909                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11910                        dev->name);
11911                 return err;
11912         }
11913         pci_restore_state(pdev);
11914
11915         /*
11916          * Suspend/Resume resets the PCI configuration space, so we have to
11917          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11918          * from interfering with C3 CPU state. pci_restore_state won't help
11919          * here since it only restores the first 64 bytes pci config header.
11920          */
11921         pci_read_config_dword(pdev, 0x40, &val);
11922         if ((val & 0x0000ff00) != 0)
11923                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11924
11925         /* Set the device back into the PRESENT state; this will also wake
11926          * the queue of needed */
11927         netif_device_attach(dev);
11928
11929         priv->suspend_time = get_seconds() - priv->suspend_at;
11930
11931         /* Bring the device back up */
11932         schedule_work(&priv->up);
11933
11934         return 0;
11935 }
11936 #endif
11937
11938 static void ipw_pci_shutdown(struct pci_dev *pdev)
11939 {
11940         struct ipw_priv *priv = pci_get_drvdata(pdev);
11941
11942         /* Take down the device; powers it off, etc. */
11943         ipw_down(priv);
11944
11945         pci_disable_device(pdev);
11946 }
11947
11948 /* driver initialization stuff */
11949 static struct pci_driver ipw_driver = {
11950         .name = DRV_NAME,
11951         .id_table = card_ids,
11952         .probe = ipw_pci_probe,
11953         .remove = ipw_pci_remove,
11954 #ifdef CONFIG_PM
11955         .suspend = ipw_pci_suspend,
11956         .resume = ipw_pci_resume,
11957 #endif
11958         .shutdown = ipw_pci_shutdown,
11959 };
11960
11961 static int __init ipw_init(void)
11962 {
11963         int ret;
11964
11965         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11966         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11967
11968         ret = pci_register_driver(&ipw_driver);
11969         if (ret) {
11970                 IPW_ERROR("Unable to initialize PCI module\n");
11971                 return ret;
11972         }
11973
11974         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11975         if (ret) {
11976                 IPW_ERROR("Unable to create driver sysfs file\n");
11977                 pci_unregister_driver(&ipw_driver);
11978                 return ret;
11979         }
11980
11981         return ret;
11982 }
11983
11984 static void __exit ipw_exit(void)
11985 {
11986         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11987         pci_unregister_driver(&ipw_driver);
11988 }
11989
11990 module_param(disable, int, 0444);
11991 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11992
11993 module_param(associate, int, 0444);
11994 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11995
11996 module_param(auto_create, int, 0444);
11997 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11998
11999 module_param_named(led, led_support, int, 0444);
12000 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12001
12002 module_param(debug, int, 0444);
12003 MODULE_PARM_DESC(debug, "debug output mask");
12004
12005 module_param_named(channel, default_channel, int, 0444);
12006 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12007
12008 #ifdef CONFIG_IPW2200_PROMISCUOUS
12009 module_param(rtap_iface, int, 0444);
12010 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12011 #endif
12012
12013 #ifdef CONFIG_IPW2200_QOS
12014 module_param(qos_enable, int, 0444);
12015 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12016
12017 module_param(qos_burst_enable, int, 0444);
12018 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12019
12020 module_param(qos_no_ack_mask, int, 0444);
12021 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12022
12023 module_param(burst_duration_CCK, int, 0444);
12024 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12025
12026 module_param(burst_duration_OFDM, int, 0444);
12027 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12028 #endif                          /* CONFIG_IPW2200_QOS */
12029
12030 #ifdef CONFIG_IPW2200_MONITOR
12031 module_param_named(mode, network_mode, int, 0444);
12032 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12033 #else
12034 module_param_named(mode, network_mode, int, 0444);
12035 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12036 #endif
12037
12038 module_param(bt_coexist, int, 0444);
12039 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12040
12041 module_param(hwcrypto, int, 0444);
12042 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12043
12044 module_param(cmdlog, int, 0444);
12045 MODULE_PARM_DESC(cmdlog,
12046                  "allocate a ring buffer for logging firmware commands");
12047
12048 module_param(roaming, int, 0444);
12049 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12050
12051 module_param(antenna, int, 0444);
12052 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12053
12054 module_exit(ipw_exit);
12055 module_init(ipw_init);