]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/wireless/intel/iwlwifi/pcie/rx.c
iwlwifi: pcie: add TPT oriented prints
[linux.git] / drivers / net / wireless / intel / iwlwifi / pcie / rx.c
1 /******************************************************************************
2  *
3  * This file is provided under a dual BSD/GPLv2 license.  When using or
4  * redistributing this file, you may do so under either license.
5  *
6  * GPL LICENSE SUMMARY
7  *
8  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
9  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
10  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
11  * Copyright(c) 2018 Intel Corporation
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of version 2 of the GNU General Public License as
15  * published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope that it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * The full GNU General Public License is included in this distribution in the
23  * file called COPYING.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <linuxwifi@intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  * BSD LICENSE
30  *
31  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
32  * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
33  * Copyright(c) 2016 - 2017 Intel Deutschland GmbH
34  * Copyright(c) 2018 Intel Corporation
35  * All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  *
41  *  * Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  *  * Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in
45  *    the documentation and/or other materials provided with the
46  *    distribution.
47  *  * Neither the name Intel Corporation nor the names of its
48  *    contributors may be used to endorse or promote products derived
49  *    from this software without specific prior written permission.
50  *
51  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
52  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
53  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
54  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
55  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
56  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
57  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
58  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
59  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
60  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
61  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62  *
63  *****************************************************************************/
64 #include <linux/sched.h>
65 #include <linux/wait.h>
66 #include <linux/gfp.h>
67
68 #include "iwl-prph.h"
69 #include "iwl-io.h"
70 #include "internal.h"
71 #include "iwl-op-mode.h"
72 #include "iwl-context-info-gen3.h"
73
74 /******************************************************************************
75  *
76  * RX path functions
77  *
78  ******************************************************************************/
79
80 /*
81  * Rx theory of operation
82  *
83  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
84  * each of which point to Receive Buffers to be filled by the NIC.  These get
85  * used not only for Rx frames, but for any command response or notification
86  * from the NIC.  The driver and NIC manage the Rx buffers by means
87  * of indexes into the circular buffer.
88  *
89  * Rx Queue Indexes
90  * The host/firmware share two index registers for managing the Rx buffers.
91  *
92  * The READ index maps to the first position that the firmware may be writing
93  * to -- the driver can read up to (but not including) this position and get
94  * good data.
95  * The READ index is managed by the firmware once the card is enabled.
96  *
97  * The WRITE index maps to the last position the driver has read from -- the
98  * position preceding WRITE is the last slot the firmware can place a packet.
99  *
100  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
101  * WRITE = READ.
102  *
103  * During initialization, the host sets up the READ queue position to the first
104  * INDEX position, and WRITE to the last (READ - 1 wrapped)
105  *
106  * When the firmware places a packet in a buffer, it will advance the READ index
107  * and fire the RX interrupt.  The driver can then query the READ index and
108  * process as many packets as possible, moving the WRITE index forward as it
109  * resets the Rx queue buffers with new memory.
110  *
111  * The management in the driver is as follows:
112  * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free.
113  *   When the interrupt handler is called, the request is processed.
114  *   The page is either stolen - transferred to the upper layer
115  *   or reused - added immediately to the iwl->rxq->rx_free list.
116  * + When the page is stolen - the driver updates the matching queue's used
117  *   count, detaches the RBD and transfers it to the queue used list.
118  *   When there are two used RBDs - they are transferred to the allocator empty
119  *   list. Work is then scheduled for the allocator to start allocating
120  *   eight buffers.
121  *   When there are another 6 used RBDs - they are transferred to the allocator
122  *   empty list and the driver tries to claim the pre-allocated buffers and
123  *   add them to iwl->rxq->rx_free. If it fails - it continues to claim them
124  *   until ready.
125  *   When there are 8+ buffers in the free list - either from allocation or from
126  *   8 reused unstolen pages - restock is called to update the FW and indexes.
127  * + In order to make sure the allocator always has RBDs to use for allocation
128  *   the allocator has initial pool in the size of num_queues*(8-2) - the
129  *   maximum missing RBDs per allocation request (request posted with 2
130  *    empty RBDs, there is no guarantee when the other 6 RBDs are supplied).
131  *   The queues supplies the recycle of the rest of the RBDs.
132  * + A received packet is processed and handed to the kernel network stack,
133  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
134  * + If there are no allocated buffers in iwl->rxq->rx_free,
135  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
136  *   If there were enough free buffers and RX_STALLED is set it is cleared.
137  *
138  *
139  * Driver sequence:
140  *
141  * iwl_rxq_alloc()            Allocates rx_free
142  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
143  *                            iwl_pcie_rxq_restock.
144  *                            Used only during initialization.
145  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
146  *                            queue, updates firmware pointers, and updates
147  *                            the WRITE index.
148  * iwl_pcie_rx_allocator()     Background work for allocating pages.
149  *
150  * -- enable interrupts --
151  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
152  *                            READ INDEX, detaching the SKB from the pool.
153  *                            Moves the packet buffer from queue to rx_used.
154  *                            Posts and claims requests to the allocator.
155  *                            Calls iwl_pcie_rxq_restock to refill any empty
156  *                            slots.
157  *
158  * RBD life-cycle:
159  *
160  * Init:
161  * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue
162  *
163  * Regular Receive interrupt:
164  * Page Stolen:
165  * rxq.queue -> rxq.rx_used -> allocator.rbd_empty ->
166  * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue
167  * Page not Stolen:
168  * rxq.queue -> rxq.rx_free -> rxq.queue
169  * ...
170  *
171  */
172
173 /*
174  * iwl_rxq_space - Return number of free slots available in queue.
175  */
176 static int iwl_rxq_space(const struct iwl_rxq *rxq)
177 {
178         /* Make sure rx queue size is a power of 2 */
179         WARN_ON(rxq->queue_size & (rxq->queue_size - 1));
180
181         /*
182          * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
183          * between empty and completely full queues.
184          * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
185          * defined for negative dividends.
186          */
187         return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1);
188 }
189
190 /*
191  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
192  */
193 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
194 {
195         return cpu_to_le32((u32)(dma_addr >> 8));
196 }
197
198 /*
199  * iwl_pcie_rx_stop - stops the Rx DMA
200  */
201 int iwl_pcie_rx_stop(struct iwl_trans *trans)
202 {
203         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
204                 /* TODO: remove this for 22560 once fw does it */
205                 iwl_write_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0);
206                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS_GEN3,
207                                          RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
208         } else if (trans->cfg->mq_rx_supported) {
209                 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0);
210                 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS,
211                                            RXF_DMA_IDLE, RXF_DMA_IDLE, 1000);
212         } else {
213                 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
214                 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
215                                            FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE,
216                                            1000);
217         }
218 }
219
220 /*
221  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
222  */
223 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans,
224                                     struct iwl_rxq *rxq)
225 {
226         u32 reg;
227
228         lockdep_assert_held(&rxq->lock);
229
230         /*
231          * explicitly wake up the NIC if:
232          * 1. shadow registers aren't enabled
233          * 2. there is a chance that the NIC is asleep
234          */
235         if (!trans->cfg->base_params->shadow_reg_enable &&
236             test_bit(STATUS_TPOWER_PMI, &trans->status)) {
237                 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
238
239                 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
240                         IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
241                                        reg);
242                         iwl_set_bit(trans, CSR_GP_CNTRL,
243                                     BIT(trans->cfg->csr->flag_mac_access_req));
244                         rxq->need_update = true;
245                         return;
246                 }
247         }
248
249         rxq->write_actual = round_down(rxq->write, 8);
250         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
251                 iwl_write32(trans, HBUS_TARG_WRPTR,
252                             (rxq->write_actual |
253                              ((FIRST_RX_QUEUE + rxq->id) << 16)));
254         else if (trans->cfg->mq_rx_supported)
255                 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id),
256                             rxq->write_actual);
257         else
258                 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
259 }
260
261 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
262 {
263         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
264         int i;
265
266         for (i = 0; i < trans->num_rx_queues; i++) {
267                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
268
269                 if (!rxq->need_update)
270                         continue;
271                 spin_lock(&rxq->lock);
272                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
273                 rxq->need_update = false;
274                 spin_unlock(&rxq->lock);
275         }
276 }
277
278 static void iwl_pcie_restock_bd(struct iwl_trans *trans,
279                                 struct iwl_rxq *rxq,
280                                 struct iwl_rx_mem_buffer *rxb)
281 {
282         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
283                 struct iwl_rx_transfer_desc *bd = rxq->bd;
284
285                 bd[rxq->write].type_n_size =
286                         cpu_to_le32((IWL_RX_TD_TYPE & IWL_RX_TD_TYPE_MSK) |
287                         ((IWL_RX_TD_SIZE_2K >> 8) & IWL_RX_TD_SIZE_MSK));
288                 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma);
289                 bd[rxq->write].rbid = cpu_to_le16(rxb->vid);
290         } else {
291                 __le64 *bd = rxq->bd;
292
293                 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid);
294         }
295
296         IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n",
297                      (u32)rxb->vid, rxq->id, rxq->write);
298 }
299
300 /*
301  * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx
302  */
303 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans,
304                                   struct iwl_rxq *rxq)
305 {
306         struct iwl_rx_mem_buffer *rxb;
307
308         /*
309          * If the device isn't enabled - no need to try to add buffers...
310          * This can happen when we stop the device and still have an interrupt
311          * pending. We stop the APM before we sync the interrupts because we
312          * have to (see comment there). On the other hand, since the APM is
313          * stopped, we cannot access the HW (in particular not prph).
314          * So don't try to restock if the APM has been already stopped.
315          */
316         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
317                 return;
318
319         spin_lock(&rxq->lock);
320         while (rxq->free_count) {
321                 /* Get next free Rx buffer, remove from free list */
322                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
323                                        list);
324                 list_del(&rxb->list);
325                 rxb->invalid = false;
326                 /* 12 first bits are expected to be empty */
327                 WARN_ON(rxb->page_dma & DMA_BIT_MASK(12));
328                 /* Point to Rx buffer via next RBD in circular buffer */
329                 iwl_pcie_restock_bd(trans, rxq, rxb);
330                 rxq->write = (rxq->write + 1) & MQ_RX_TABLE_MASK;
331                 rxq->free_count--;
332         }
333         spin_unlock(&rxq->lock);
334
335         /*
336          * If we've added more space for the firmware to place data, tell it.
337          * Increment device's write pointer in multiples of 8.
338          */
339         if (rxq->write_actual != (rxq->write & ~0x7)) {
340                 spin_lock(&rxq->lock);
341                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
342                 spin_unlock(&rxq->lock);
343         }
344 }
345
346 /*
347  * iwl_pcie_rxsq_restock - restock implementation for single queue rx
348  */
349 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans,
350                                   struct iwl_rxq *rxq)
351 {
352         struct iwl_rx_mem_buffer *rxb;
353
354         /*
355          * If the device isn't enabled - not need to try to add buffers...
356          * This can happen when we stop the device and still have an interrupt
357          * pending. We stop the APM before we sync the interrupts because we
358          * have to (see comment there). On the other hand, since the APM is
359          * stopped, we cannot access the HW (in particular not prph).
360          * So don't try to restock if the APM has been already stopped.
361          */
362         if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
363                 return;
364
365         spin_lock(&rxq->lock);
366         while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
367                 __le32 *bd = (__le32 *)rxq->bd;
368                 /* The overwritten rxb must be a used one */
369                 rxb = rxq->queue[rxq->write];
370                 BUG_ON(rxb && rxb->page);
371
372                 /* Get next free Rx buffer, remove from free list */
373                 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
374                                        list);
375                 list_del(&rxb->list);
376                 rxb->invalid = false;
377
378                 /* Point to Rx buffer via next RBD in circular buffer */
379                 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
380                 rxq->queue[rxq->write] = rxb;
381                 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
382                 rxq->free_count--;
383         }
384         spin_unlock(&rxq->lock);
385
386         /* If we've added more space for the firmware to place data, tell it.
387          * Increment device's write pointer in multiples of 8. */
388         if (rxq->write_actual != (rxq->write & ~0x7)) {
389                 spin_lock(&rxq->lock);
390                 iwl_pcie_rxq_inc_wr_ptr(trans, rxq);
391                 spin_unlock(&rxq->lock);
392         }
393 }
394
395 /*
396  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
397  *
398  * If there are slots in the RX queue that need to be restocked,
399  * and we have free pre-allocated buffers, fill the ranks as much
400  * as we can, pulling from rx_free.
401  *
402  * This moves the 'write' index forward to catch up with 'processed', and
403  * also updates the memory address in the firmware to reference the new
404  * target buffer.
405  */
406 static
407 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq)
408 {
409         if (trans->cfg->mq_rx_supported)
410                 iwl_pcie_rxmq_restock(trans, rxq);
411         else
412                 iwl_pcie_rxsq_restock(trans, rxq);
413 }
414
415 /*
416  * iwl_pcie_rx_alloc_page - allocates and returns a page.
417  *
418  */
419 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans,
420                                            gfp_t priority)
421 {
422         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
423         struct page *page;
424         gfp_t gfp_mask = priority;
425
426         if (trans_pcie->rx_page_order > 0)
427                 gfp_mask |= __GFP_COMP;
428
429         /* Alloc a new receive buffer */
430         page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
431         if (!page) {
432                 if (net_ratelimit())
433                         IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n",
434                                        trans_pcie->rx_page_order);
435                 /*
436                  * Issue an error if we don't have enough pre-allocated
437                   * buffers.
438 `                */
439                 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit())
440                         IWL_CRIT(trans,
441                                  "Failed to alloc_pages\n");
442                 return NULL;
443         }
444         return page;
445 }
446
447 /*
448  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
449  *
450  * A used RBD is an Rx buffer that has been given to the stack. To use it again
451  * a page must be allocated and the RBD must point to the page. This function
452  * doesn't change the HW pointer but handles the list of pages that is used by
453  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
454  * allocated buffers.
455  */
456 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority,
457                             struct iwl_rxq *rxq)
458 {
459         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
460         struct iwl_rx_mem_buffer *rxb;
461         struct page *page;
462
463         while (1) {
464                 spin_lock(&rxq->lock);
465                 if (list_empty(&rxq->rx_used)) {
466                         spin_unlock(&rxq->lock);
467                         return;
468                 }
469                 spin_unlock(&rxq->lock);
470
471                 /* Alloc a new receive buffer */
472                 page = iwl_pcie_rx_alloc_page(trans, priority);
473                 if (!page)
474                         return;
475
476                 spin_lock(&rxq->lock);
477
478                 if (list_empty(&rxq->rx_used)) {
479                         spin_unlock(&rxq->lock);
480                         __free_pages(page, trans_pcie->rx_page_order);
481                         return;
482                 }
483                 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
484                                        list);
485                 list_del(&rxb->list);
486                 spin_unlock(&rxq->lock);
487
488                 BUG_ON(rxb->page);
489                 rxb->page = page;
490                 /* Get physical address of the RB */
491                 rxb->page_dma =
492                         dma_map_page(trans->dev, page, 0,
493                                      PAGE_SIZE << trans_pcie->rx_page_order,
494                                      DMA_FROM_DEVICE);
495                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
496                         rxb->page = NULL;
497                         spin_lock(&rxq->lock);
498                         list_add(&rxb->list, &rxq->rx_used);
499                         spin_unlock(&rxq->lock);
500                         __free_pages(page, trans_pcie->rx_page_order);
501                         return;
502                 }
503
504                 spin_lock(&rxq->lock);
505
506                 list_add_tail(&rxb->list, &rxq->rx_free);
507                 rxq->free_count++;
508
509                 spin_unlock(&rxq->lock);
510         }
511 }
512
513 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans)
514 {
515         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
516         int i;
517
518         for (i = 0; i < RX_POOL_SIZE; i++) {
519                 if (!trans_pcie->rx_pool[i].page)
520                         continue;
521                 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma,
522                                PAGE_SIZE << trans_pcie->rx_page_order,
523                                DMA_FROM_DEVICE);
524                 __free_pages(trans_pcie->rx_pool[i].page,
525                              trans_pcie->rx_page_order);
526                 trans_pcie->rx_pool[i].page = NULL;
527         }
528 }
529
530 /*
531  * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues
532  *
533  * Allocates for each received request 8 pages
534  * Called as a scheduled work item.
535  */
536 static void iwl_pcie_rx_allocator(struct iwl_trans *trans)
537 {
538         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
539         struct iwl_rb_allocator *rba = &trans_pcie->rba;
540         struct list_head local_empty;
541         int pending = atomic_read(&rba->req_pending);
542
543         IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending);
544
545         /* If we were scheduled - there is at least one request */
546         spin_lock(&rba->lock);
547         /* swap out the rba->rbd_empty to a local list */
548         list_replace_init(&rba->rbd_empty, &local_empty);
549         spin_unlock(&rba->lock);
550
551         while (pending) {
552                 int i;
553                 LIST_HEAD(local_allocated);
554                 gfp_t gfp_mask = GFP_KERNEL;
555
556                 /* Do not post a warning if there are only a few requests */
557                 if (pending < RX_PENDING_WATERMARK)
558                         gfp_mask |= __GFP_NOWARN;
559
560                 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) {
561                         struct iwl_rx_mem_buffer *rxb;
562                         struct page *page;
563
564                         /* List should never be empty - each reused RBD is
565                          * returned to the list, and initial pool covers any
566                          * possible gap between the time the page is allocated
567                          * to the time the RBD is added.
568                          */
569                         BUG_ON(list_empty(&local_empty));
570                         /* Get the first rxb from the rbd list */
571                         rxb = list_first_entry(&local_empty,
572                                                struct iwl_rx_mem_buffer, list);
573                         BUG_ON(rxb->page);
574
575                         /* Alloc a new receive buffer */
576                         page = iwl_pcie_rx_alloc_page(trans, gfp_mask);
577                         if (!page)
578                                 continue;
579                         rxb->page = page;
580
581                         /* Get physical address of the RB */
582                         rxb->page_dma = dma_map_page(trans->dev, page, 0,
583                                         PAGE_SIZE << trans_pcie->rx_page_order,
584                                         DMA_FROM_DEVICE);
585                         if (dma_mapping_error(trans->dev, rxb->page_dma)) {
586                                 rxb->page = NULL;
587                                 __free_pages(page, trans_pcie->rx_page_order);
588                                 continue;
589                         }
590
591                         /* move the allocated entry to the out list */
592                         list_move(&rxb->list, &local_allocated);
593                         i++;
594                 }
595
596                 atomic_dec(&rba->req_pending);
597                 pending--;
598
599                 if (!pending) {
600                         pending = atomic_read(&rba->req_pending);
601                         if (pending)
602                                 IWL_DEBUG_TPT(trans,
603                                               "Got more pending allocation requests = %d\n",
604                                               pending);
605                 }
606
607                 spin_lock(&rba->lock);
608                 /* add the allocated rbds to the allocator allocated list */
609                 list_splice_tail(&local_allocated, &rba->rbd_allocated);
610                 /* get more empty RBDs for current pending requests */
611                 list_splice_tail_init(&rba->rbd_empty, &local_empty);
612                 spin_unlock(&rba->lock);
613
614                 atomic_inc(&rba->req_ready);
615
616         }
617
618         spin_lock(&rba->lock);
619         /* return unused rbds to the allocator empty list */
620         list_splice_tail(&local_empty, &rba->rbd_empty);
621         spin_unlock(&rba->lock);
622
623         IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__);
624 }
625
626 /*
627  * iwl_pcie_rx_allocator_get - returns the pre-allocated pages
628 .*
629 .* Called by queue when the queue posted allocation request and
630  * has freed 8 RBDs in order to restock itself.
631  * This function directly moves the allocated RBs to the queue's ownership
632  * and updates the relevant counters.
633  */
634 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans,
635                                       struct iwl_rxq *rxq)
636 {
637         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
638         struct iwl_rb_allocator *rba = &trans_pcie->rba;
639         int i;
640
641         lockdep_assert_held(&rxq->lock);
642
643         /*
644          * atomic_dec_if_positive returns req_ready - 1 for any scenario.
645          * If req_ready is 0 atomic_dec_if_positive will return -1 and this
646          * function will return early, as there are no ready requests.
647          * atomic_dec_if_positive will perofrm the *actual* decrement only if
648          * req_ready > 0, i.e. - there are ready requests and the function
649          * hands one request to the caller.
650          */
651         if (atomic_dec_if_positive(&rba->req_ready) < 0)
652                 return;
653
654         spin_lock(&rba->lock);
655         for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) {
656                 /* Get next free Rx buffer, remove it from free list */
657                 struct iwl_rx_mem_buffer *rxb =
658                         list_first_entry(&rba->rbd_allocated,
659                                          struct iwl_rx_mem_buffer, list);
660
661                 list_move(&rxb->list, &rxq->rx_free);
662         }
663         spin_unlock(&rba->lock);
664
665         rxq->used_count -= RX_CLAIM_REQ_ALLOC;
666         rxq->free_count += RX_CLAIM_REQ_ALLOC;
667 }
668
669 void iwl_pcie_rx_allocator_work(struct work_struct *data)
670 {
671         struct iwl_rb_allocator *rba_p =
672                 container_of(data, struct iwl_rb_allocator, rx_alloc);
673         struct iwl_trans_pcie *trans_pcie =
674                 container_of(rba_p, struct iwl_trans_pcie, rba);
675
676         iwl_pcie_rx_allocator(trans_pcie->trans);
677 }
678
679 static int iwl_pcie_free_bd_size(struct iwl_trans *trans, bool use_rx_td)
680 {
681         struct iwl_rx_transfer_desc *rx_td;
682
683         if (use_rx_td)
684                 return sizeof(*rx_td);
685         else
686                 return trans->cfg->mq_rx_supported ? sizeof(__le64) :
687                         sizeof(__le32);
688 }
689
690 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans,
691                                   struct iwl_rxq *rxq)
692 {
693         struct device *dev = trans->dev;
694         bool use_rx_td = (trans->cfg->device_family >=
695                           IWL_DEVICE_FAMILY_22560);
696         int free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
697
698         if (rxq->bd)
699                 dma_free_coherent(trans->dev,
700                                   free_size * rxq->queue_size,
701                                   rxq->bd, rxq->bd_dma);
702         rxq->bd_dma = 0;
703         rxq->bd = NULL;
704
705         if (rxq->rb_stts)
706                 dma_free_coherent(trans->dev,
707                                   use_rx_td ? sizeof(__le16) :
708                                   sizeof(struct iwl_rb_status),
709                                   rxq->rb_stts, rxq->rb_stts_dma);
710         rxq->rb_stts_dma = 0;
711         rxq->rb_stts = NULL;
712
713         if (rxq->used_bd)
714                 dma_free_coherent(trans->dev,
715                                   (use_rx_td ? sizeof(*rxq->cd) :
716                                    sizeof(__le32)) * rxq->queue_size,
717                                   rxq->used_bd, rxq->used_bd_dma);
718         rxq->used_bd_dma = 0;
719         rxq->used_bd = NULL;
720
721         if (trans->cfg->device_family < IWL_DEVICE_FAMILY_22560)
722                 return;
723
724         if (rxq->tr_tail)
725                 dma_free_coherent(dev, sizeof(__le16),
726                                   rxq->tr_tail, rxq->tr_tail_dma);
727         rxq->tr_tail_dma = 0;
728         rxq->tr_tail = NULL;
729
730         if (rxq->cr_tail)
731                 dma_free_coherent(dev, sizeof(__le16),
732                                   rxq->cr_tail, rxq->cr_tail_dma);
733         rxq->cr_tail_dma = 0;
734         rxq->cr_tail = NULL;
735 }
736
737 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans,
738                                   struct iwl_rxq *rxq)
739 {
740         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
741         struct device *dev = trans->dev;
742         int i;
743         int free_size;
744         bool use_rx_td = (trans->cfg->device_family >=
745                           IWL_DEVICE_FAMILY_22560);
746
747         spin_lock_init(&rxq->lock);
748         if (trans->cfg->mq_rx_supported)
749                 rxq->queue_size = MQ_RX_TABLE_SIZE;
750         else
751                 rxq->queue_size = RX_QUEUE_SIZE;
752
753         free_size = iwl_pcie_free_bd_size(trans, use_rx_td);
754
755         /*
756          * Allocate the circular buffer of Read Buffer Descriptors
757          * (RBDs)
758          */
759         rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size,
760                                      &rxq->bd_dma, GFP_KERNEL);
761         if (!rxq->bd)
762                 goto err;
763
764         if (trans->cfg->mq_rx_supported) {
765                 rxq->used_bd = dma_alloc_coherent(dev,
766                                                   (use_rx_td ? sizeof(*rxq->cd) : sizeof(__le32)) * rxq->queue_size,
767                                                   &rxq->used_bd_dma,
768                                                   GFP_KERNEL);
769                 if (!rxq->used_bd)
770                         goto err;
771         }
772
773         /* Allocate the driver's pointer to receive buffer status */
774         rxq->rb_stts = dma_alloc_coherent(dev,
775                                           use_rx_td ? sizeof(__le16) : sizeof(struct iwl_rb_status),
776                                           &rxq->rb_stts_dma, GFP_KERNEL);
777         if (!rxq->rb_stts)
778                 goto err;
779
780         if (!use_rx_td)
781                 return 0;
782
783         /* Allocate the driver's pointer to TR tail */
784         rxq->tr_tail = dma_alloc_coherent(dev, sizeof(__le16),
785                                           &rxq->tr_tail_dma, GFP_KERNEL);
786         if (!rxq->tr_tail)
787                 goto err;
788
789         /* Allocate the driver's pointer to CR tail */
790         rxq->cr_tail = dma_alloc_coherent(dev, sizeof(__le16),
791                                           &rxq->cr_tail_dma, GFP_KERNEL);
792         if (!rxq->cr_tail)
793                 goto err;
794         /*
795          * W/A 22560 device step Z0 must be non zero bug
796          * TODO: remove this when stop supporting Z0
797          */
798         *rxq->cr_tail = cpu_to_le16(500);
799
800         return 0;
801
802 err:
803         for (i = 0; i < trans->num_rx_queues; i++) {
804                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
805
806                 iwl_pcie_free_rxq_dma(trans, rxq);
807         }
808         kfree(trans_pcie->rxq);
809
810         return -ENOMEM;
811 }
812
813 int iwl_pcie_rx_alloc(struct iwl_trans *trans)
814 {
815         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
816         struct iwl_rb_allocator *rba = &trans_pcie->rba;
817         int i, ret;
818
819         if (WARN_ON(trans_pcie->rxq))
820                 return -EINVAL;
821
822         trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq),
823                                   GFP_KERNEL);
824         if (!trans_pcie->rxq)
825                 return -EINVAL;
826
827         spin_lock_init(&rba->lock);
828
829         for (i = 0; i < trans->num_rx_queues; i++) {
830                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
831
832                 ret = iwl_pcie_alloc_rxq_dma(trans, rxq);
833                 if (ret)
834                         return ret;
835         }
836         return 0;
837 }
838
839 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
840 {
841         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
842         u32 rb_size;
843         unsigned long flags;
844         const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
845
846         switch (trans_pcie->rx_buf_size) {
847         case IWL_AMSDU_4K:
848                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
849                 break;
850         case IWL_AMSDU_8K:
851                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
852                 break;
853         case IWL_AMSDU_12K:
854                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K;
855                 break;
856         default:
857                 WARN_ON(1);
858                 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
859         }
860
861         if (!iwl_trans_grab_nic_access(trans, &flags))
862                 return;
863
864         /* Stop Rx DMA */
865         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
866         /* reset and flush pointers */
867         iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
868         iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
869         iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
870
871         /* Reset driver's Rx queue write index */
872         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
873
874         /* Tell device where to find RBD circular buffer in DRAM */
875         iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
876                     (u32)(rxq->bd_dma >> 8));
877
878         /* Tell device where in DRAM to update its Rx status */
879         iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
880                     rxq->rb_stts_dma >> 4);
881
882         /* Enable Rx DMA
883          * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
884          *      the credit mechanism in 5000 HW RX FIFO
885          * Direct rx interrupts to hosts
886          * Rx buffer size 4 or 8k or 12k
887          * RB timeout 0x10
888          * 256 RBDs
889          */
890         iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
891                     FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
892                     FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
893                     FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
894                     rb_size |
895                     (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
896                     (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
897
898         iwl_trans_release_nic_access(trans, &flags);
899
900         /* Set interrupt coalescing timer to default (2048 usecs) */
901         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
902
903         /* W/A for interrupt coalescing bug in 7260 and 3160 */
904         if (trans->cfg->host_interrupt_operation_mode)
905                 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
906 }
907
908 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans)
909 {
910         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
911         u32 rb_size, enabled = 0;
912         unsigned long flags;
913         int i;
914
915         switch (trans_pcie->rx_buf_size) {
916         case IWL_AMSDU_2K:
917                 rb_size = RFH_RXF_DMA_RB_SIZE_2K;
918                 break;
919         case IWL_AMSDU_4K:
920                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
921                 break;
922         case IWL_AMSDU_8K:
923                 rb_size = RFH_RXF_DMA_RB_SIZE_8K;
924                 break;
925         case IWL_AMSDU_12K:
926                 rb_size = RFH_RXF_DMA_RB_SIZE_12K;
927                 break;
928         default:
929                 WARN_ON(1);
930                 rb_size = RFH_RXF_DMA_RB_SIZE_4K;
931         }
932
933         if (!iwl_trans_grab_nic_access(trans, &flags))
934                 return;
935
936         /* Stop Rx DMA */
937         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0);
938         /* disable free amd used rx queue operation */
939         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0);
940
941         for (i = 0; i < trans->num_rx_queues; i++) {
942                 /* Tell device where to find RBD free table in DRAM */
943                 iwl_write_prph64_no_grab(trans,
944                                          RFH_Q_FRBDCB_BA_LSB(i),
945                                          trans_pcie->rxq[i].bd_dma);
946                 /* Tell device where to find RBD used table in DRAM */
947                 iwl_write_prph64_no_grab(trans,
948                                          RFH_Q_URBDCB_BA_LSB(i),
949                                          trans_pcie->rxq[i].used_bd_dma);
950                 /* Tell device where in DRAM to update its Rx status */
951                 iwl_write_prph64_no_grab(trans,
952                                          RFH_Q_URBD_STTS_WPTR_LSB(i),
953                                          trans_pcie->rxq[i].rb_stts_dma);
954                 /* Reset device indice tables */
955                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0);
956                 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0);
957                 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0);
958
959                 enabled |= BIT(i) | BIT(i + 16);
960         }
961
962         /*
963          * Enable Rx DMA
964          * Rx buffer size 4 or 8k or 12k
965          * Min RB size 4 or 8
966          * Drop frames that exceed RB size
967          * 512 RBDs
968          */
969         iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG,
970                                RFH_DMA_EN_ENABLE_VAL | rb_size |
971                                RFH_RXF_DMA_MIN_RB_4_8 |
972                                RFH_RXF_DMA_DROP_TOO_LARGE_MASK |
973                                RFH_RXF_DMA_RBDCB_SIZE_512);
974
975         /*
976          * Activate DMA snooping.
977          * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe
978          * Default queue is 0
979          */
980         iwl_write_prph_no_grab(trans, RFH_GEN_CFG,
981                                RFH_GEN_CFG_RFH_DMA_SNOOP |
982                                RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) |
983                                RFH_GEN_CFG_SERVICE_DMA_SNOOP |
984                                RFH_GEN_CFG_VAL(RB_CHUNK_SIZE,
985                                                trans->cfg->integrated ?
986                                                RFH_GEN_CFG_RB_CHUNK_SIZE_64 :
987                                                RFH_GEN_CFG_RB_CHUNK_SIZE_128));
988         /* Enable the relevant rx queues */
989         iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled);
990
991         iwl_trans_release_nic_access(trans, &flags);
992
993         /* Set interrupt coalescing timer to default (2048 usecs) */
994         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
995 }
996
997 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
998 {
999         lockdep_assert_held(&rxq->lock);
1000
1001         INIT_LIST_HEAD(&rxq->rx_free);
1002         INIT_LIST_HEAD(&rxq->rx_used);
1003         rxq->free_count = 0;
1004         rxq->used_count = 0;
1005 }
1006
1007 int iwl_pcie_dummy_napi_poll(struct napi_struct *napi, int budget)
1008 {
1009         WARN_ON(1);
1010         return 0;
1011 }
1012
1013 int _iwl_pcie_rx_init(struct iwl_trans *trans)
1014 {
1015         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1016         struct iwl_rxq *def_rxq;
1017         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1018         int i, err, queue_size, allocator_pool_size, num_alloc;
1019
1020         if (!trans_pcie->rxq) {
1021                 err = iwl_pcie_rx_alloc(trans);
1022                 if (err)
1023                         return err;
1024         }
1025         def_rxq = trans_pcie->rxq;
1026
1027         cancel_work_sync(&rba->rx_alloc);
1028
1029         spin_lock(&rba->lock);
1030         atomic_set(&rba->req_pending, 0);
1031         atomic_set(&rba->req_ready, 0);
1032         INIT_LIST_HEAD(&rba->rbd_allocated);
1033         INIT_LIST_HEAD(&rba->rbd_empty);
1034         spin_unlock(&rba->lock);
1035
1036         /* free all first - we might be reconfigured for a different size */
1037         iwl_pcie_free_rbs_pool(trans);
1038
1039         for (i = 0; i < RX_QUEUE_SIZE; i++)
1040                 def_rxq->queue[i] = NULL;
1041
1042         for (i = 0; i < trans->num_rx_queues; i++) {
1043                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1044
1045                 rxq->id = i;
1046
1047                 spin_lock(&rxq->lock);
1048                 /*
1049                  * Set read write pointer to reflect that we have processed
1050                  * and used all buffers, but have not restocked the Rx queue
1051                  * with fresh buffers
1052                  */
1053                 rxq->read = 0;
1054                 rxq->write = 0;
1055                 rxq->write_actual = 0;
1056                 memset(rxq->rb_stts, 0,
1057                        (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) ?
1058                        sizeof(__le16) : sizeof(struct iwl_rb_status));
1059
1060                 iwl_pcie_rx_init_rxb_lists(rxq);
1061
1062                 if (!rxq->napi.poll)
1063                         netif_napi_add(&trans_pcie->napi_dev, &rxq->napi,
1064                                        iwl_pcie_dummy_napi_poll, 64);
1065
1066                 spin_unlock(&rxq->lock);
1067         }
1068
1069         /* move the pool to the default queue and allocator ownerships */
1070         queue_size = trans->cfg->mq_rx_supported ?
1071                      MQ_RX_NUM_RBDS : RX_QUEUE_SIZE;
1072         allocator_pool_size = trans->num_rx_queues *
1073                 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC);
1074         num_alloc = queue_size + allocator_pool_size;
1075         BUILD_BUG_ON(ARRAY_SIZE(trans_pcie->global_table) !=
1076                      ARRAY_SIZE(trans_pcie->rx_pool));
1077         for (i = 0; i < num_alloc; i++) {
1078                 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i];
1079
1080                 if (i < allocator_pool_size)
1081                         list_add(&rxb->list, &rba->rbd_empty);
1082                 else
1083                         list_add(&rxb->list, &def_rxq->rx_used);
1084                 trans_pcie->global_table[i] = rxb;
1085                 rxb->vid = (u16)(i + 1);
1086                 rxb->invalid = true;
1087         }
1088
1089         iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq);
1090
1091         return 0;
1092 }
1093
1094 int iwl_pcie_rx_init(struct iwl_trans *trans)
1095 {
1096         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1097         int ret = _iwl_pcie_rx_init(trans);
1098
1099         if (ret)
1100                 return ret;
1101
1102         if (trans->cfg->mq_rx_supported)
1103                 iwl_pcie_rx_mq_hw_init(trans);
1104         else
1105                 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq);
1106
1107         iwl_pcie_rxq_restock(trans, trans_pcie->rxq);
1108
1109         spin_lock(&trans_pcie->rxq->lock);
1110         iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq);
1111         spin_unlock(&trans_pcie->rxq->lock);
1112
1113         return 0;
1114 }
1115
1116 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans)
1117 {
1118         /* Set interrupt coalescing timer to default (2048 usecs) */
1119         iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
1120
1121         /*
1122          * We don't configure the RFH.
1123          * Restock will be done at alive, after firmware configured the RFH.
1124          */
1125         return _iwl_pcie_rx_init(trans);
1126 }
1127
1128 void iwl_pcie_rx_free(struct iwl_trans *trans)
1129 {
1130         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1131         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1132         int i;
1133
1134         /*
1135          * if rxq is NULL, it means that nothing has been allocated,
1136          * exit now
1137          */
1138         if (!trans_pcie->rxq) {
1139                 IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
1140                 return;
1141         }
1142
1143         cancel_work_sync(&rba->rx_alloc);
1144
1145         iwl_pcie_free_rbs_pool(trans);
1146
1147         for (i = 0; i < trans->num_rx_queues; i++) {
1148                 struct iwl_rxq *rxq = &trans_pcie->rxq[i];
1149
1150                 iwl_pcie_free_rxq_dma(trans, rxq);
1151
1152                 if (rxq->napi.poll)
1153                         netif_napi_del(&rxq->napi);
1154         }
1155         kfree(trans_pcie->rxq);
1156 }
1157
1158 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq,
1159                                           struct iwl_rb_allocator *rba)
1160 {
1161         spin_lock(&rba->lock);
1162         list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty);
1163         spin_unlock(&rba->lock);
1164 }
1165
1166 /*
1167  * iwl_pcie_rx_reuse_rbd - Recycle used RBDs
1168  *
1169  * Called when a RBD can be reused. The RBD is transferred to the allocator.
1170  * When there are 2 empty RBDs - a request for allocation is posted
1171  */
1172 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans,
1173                                   struct iwl_rx_mem_buffer *rxb,
1174                                   struct iwl_rxq *rxq, bool emergency)
1175 {
1176         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1177         struct iwl_rb_allocator *rba = &trans_pcie->rba;
1178
1179         /* Move the RBD to the used list, will be moved to allocator in batches
1180          * before claiming or posting a request*/
1181         list_add_tail(&rxb->list, &rxq->rx_used);
1182
1183         if (unlikely(emergency))
1184                 return;
1185
1186         /* Count the allocator owned RBDs */
1187         rxq->used_count++;
1188
1189         /* If we have RX_POST_REQ_ALLOC new released rx buffers -
1190          * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is
1191          * used for the case we failed to claim RX_CLAIM_REQ_ALLOC,
1192          * after but we still need to post another request.
1193          */
1194         if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) {
1195                 /* Move the 2 RBDs to the allocator ownership.
1196                  Allocator has another 6 from pool for the request completion*/
1197                 iwl_pcie_rx_move_to_allocator(rxq, rba);
1198
1199                 atomic_inc(&rba->req_pending);
1200                 queue_work(rba->alloc_wq, &rba->rx_alloc);
1201         }
1202 }
1203
1204 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
1205                                 struct iwl_rxq *rxq,
1206                                 struct iwl_rx_mem_buffer *rxb,
1207                                 bool emergency,
1208                                 int i)
1209 {
1210         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1211         struct iwl_txq *txq = trans_pcie->txq[trans_pcie->cmd_queue];
1212         bool page_stolen = false;
1213         int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
1214         u32 offset = 0;
1215
1216         if (WARN_ON(!rxb))
1217                 return;
1218
1219         dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
1220
1221         while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
1222                 struct iwl_rx_packet *pkt;
1223                 u16 sequence;
1224                 bool reclaim;
1225                 int index, cmd_index, len;
1226                 struct iwl_rx_cmd_buffer rxcb = {
1227                         ._offset = offset,
1228                         ._rx_page_order = trans_pcie->rx_page_order,
1229                         ._page = rxb->page,
1230                         ._page_stolen = false,
1231                         .truesize = max_len,
1232                 };
1233
1234                 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1235                         rxcb.status = rxq->cd[i].status;
1236
1237                 pkt = rxb_addr(&rxcb);
1238
1239                 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) {
1240                         IWL_DEBUG_RX(trans,
1241                                      "Q %d: RB end marker at offset %d\n",
1242                                      rxq->id, offset);
1243                         break;
1244                 }
1245
1246                 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1247                         FH_RSCSR_RXQ_POS != rxq->id,
1248                      "frame on invalid queue - is on %d and indicates %d\n",
1249                      rxq->id,
1250                      (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >>
1251                         FH_RSCSR_RXQ_POS);
1252
1253                 IWL_DEBUG_RX(trans,
1254                              "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n",
1255                              rxq->id, offset,
1256                              iwl_get_cmd_string(trans,
1257                                                 iwl_cmd_id(pkt->hdr.cmd,
1258                                                            pkt->hdr.group_id,
1259                                                            0)),
1260                              pkt->hdr.group_id, pkt->hdr.cmd,
1261                              le16_to_cpu(pkt->hdr.sequence));
1262
1263                 len = iwl_rx_packet_len(pkt);
1264                 len += sizeof(u32); /* account for status word */
1265                 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
1266                 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
1267
1268                 /* Reclaim a command buffer only if this packet is a response
1269                  *   to a (driver-originated) command.
1270                  * If the packet (e.g. Rx frame) originated from uCode,
1271                  *   there is no command buffer to reclaim.
1272                  * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
1273                  *   but apparently a few don't get set; catch them here. */
1274                 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
1275                 if (reclaim && !pkt->hdr.group_id) {
1276                         int i;
1277
1278                         for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
1279                                 if (trans_pcie->no_reclaim_cmds[i] ==
1280                                                         pkt->hdr.cmd) {
1281                                         reclaim = false;
1282                                         break;
1283                                 }
1284                         }
1285                 }
1286
1287                 sequence = le16_to_cpu(pkt->hdr.sequence);
1288                 index = SEQ_TO_INDEX(sequence);
1289                 cmd_index = iwl_pcie_get_cmd_index(txq, index);
1290
1291                 if (rxq->id == trans_pcie->def_rx_queue)
1292                         iwl_op_mode_rx(trans->op_mode, &rxq->napi,
1293                                        &rxcb);
1294                 else
1295                         iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi,
1296                                            &rxcb, rxq->id);
1297
1298                 if (reclaim) {
1299                         kzfree(txq->entries[cmd_index].free_buf);
1300                         txq->entries[cmd_index].free_buf = NULL;
1301                 }
1302
1303                 /*
1304                  * After here, we should always check rxcb._page_stolen,
1305                  * if it is true then one of the handlers took the page.
1306                  */
1307
1308                 if (reclaim) {
1309                         /* Invoke any callbacks, transfer the buffer to caller,
1310                          * and fire off the (possibly) blocking
1311                          * iwl_trans_send_cmd()
1312                          * as we reclaim the driver command queue */
1313                         if (!rxcb._page_stolen)
1314                                 iwl_pcie_hcmd_complete(trans, &rxcb);
1315                         else
1316                                 IWL_WARN(trans, "Claim null rxb?\n");
1317                 }
1318
1319                 page_stolen |= rxcb._page_stolen;
1320                 if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1321                         break;
1322                 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
1323         }
1324
1325         /* page was stolen from us -- free our reference */
1326         if (page_stolen) {
1327                 __free_pages(rxb->page, trans_pcie->rx_page_order);
1328                 rxb->page = NULL;
1329         }
1330
1331         /* Reuse the page if possible. For notification packets and
1332          * SKBs that fail to Rx correctly, add them back into the
1333          * rx_free list for reuse later. */
1334         if (rxb->page != NULL) {
1335                 rxb->page_dma =
1336                         dma_map_page(trans->dev, rxb->page, 0,
1337                                      PAGE_SIZE << trans_pcie->rx_page_order,
1338                                      DMA_FROM_DEVICE);
1339                 if (dma_mapping_error(trans->dev, rxb->page_dma)) {
1340                         /*
1341                          * free the page(s) as well to not break
1342                          * the invariant that the items on the used
1343                          * list have no page(s)
1344                          */
1345                         __free_pages(rxb->page, trans_pcie->rx_page_order);
1346                         rxb->page = NULL;
1347                         iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1348                 } else {
1349                         list_add_tail(&rxb->list, &rxq->rx_free);
1350                         rxq->free_count++;
1351                 }
1352         } else
1353                 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency);
1354 }
1355
1356 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans,
1357                                                   struct iwl_rxq *rxq, int i)
1358 {
1359         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1360         struct iwl_rx_mem_buffer *rxb;
1361         u16 vid;
1362
1363         if (!trans->cfg->mq_rx_supported) {
1364                 rxb = rxq->queue[i];
1365                 rxq->queue[i] = NULL;
1366                 return rxb;
1367         }
1368
1369         /* used_bd is a 32/16 bit but only 12 are used to retrieve the vid */
1370         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1371                 vid = le16_to_cpu(rxq->cd[i].rbid) & 0x0FFF;
1372         else
1373                 vid = le32_to_cpu(rxq->bd_32[i]) & 0x0FFF;
1374
1375         if (!vid || vid > ARRAY_SIZE(trans_pcie->global_table))
1376                 goto out_err;
1377
1378         rxb = trans_pcie->global_table[vid - 1];
1379         if (rxb->invalid)
1380                 goto out_err;
1381
1382         IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid);
1383
1384         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1385                 rxb->size = le32_to_cpu(rxq->cd[i].size) & IWL_RX_CD_SIZE;
1386
1387         rxb->invalid = true;
1388
1389         return rxb;
1390
1391 out_err:
1392         WARN(1, "Invalid rxb from HW %u\n", (u32)vid);
1393         iwl_force_nmi(trans);
1394         return NULL;
1395 }
1396
1397 /*
1398  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
1399  */
1400 static void iwl_pcie_rx_handle(struct iwl_trans *trans, int queue)
1401 {
1402         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1403         struct iwl_rxq *rxq = &trans_pcie->rxq[queue];
1404         u32 r, i, count = 0;
1405         bool emergency = false;
1406
1407 restart:
1408         spin_lock(&rxq->lock);
1409         /* uCode's read index (stored in shared DRAM) indicates the last Rx
1410          * buffer that the driver may process (last buffer filled by ucode). */
1411         r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF;
1412         i = rxq->read;
1413
1414         /* W/A 9000 device step A0 wrap-around bug */
1415         r &= (rxq->queue_size - 1);
1416
1417         /* Rx interrupt, but nothing sent from uCode */
1418         if (i == r)
1419                 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r);
1420
1421         while (i != r) {
1422                 struct iwl_rb_allocator *rba = &trans_pcie->rba;
1423                 struct iwl_rx_mem_buffer *rxb;
1424                 /* number of RBDs still waiting for page allocation */
1425                 u32 rb_pending_alloc =
1426                         atomic_read(&trans_pcie->rba.req_pending) *
1427                         RX_CLAIM_REQ_ALLOC;
1428
1429                 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 &&
1430                              !emergency)) {
1431                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1432                         emergency = true;
1433                         IWL_DEBUG_TPT(trans,
1434                                       "RX path is in emergency. Pending allocations %d\n",
1435                                       rb_pending_alloc);
1436                 }
1437
1438                 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i);
1439
1440                 rxb = iwl_pcie_get_rxb(trans, rxq, i);
1441                 if (!rxb)
1442                         goto out;
1443
1444                 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i);
1445
1446                 i = (i + 1) & (rxq->queue_size - 1);
1447
1448                 /*
1449                  * If we have RX_CLAIM_REQ_ALLOC released rx buffers -
1450                  * try to claim the pre-allocated buffers from the allocator.
1451                  * If not ready - will try to reclaim next time.
1452                  * There is no need to reschedule work - allocator exits only
1453                  * on success
1454                  */
1455                 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC)
1456                         iwl_pcie_rx_allocator_get(trans, rxq);
1457
1458                 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) {
1459                         /* Add the remaining empty RBDs for allocator use */
1460                         iwl_pcie_rx_move_to_allocator(rxq, rba);
1461                 } else if (emergency) {
1462                         count++;
1463                         if (count == 8) {
1464                                 count = 0;
1465                                 if (rb_pending_alloc < rxq->queue_size / 3) {
1466                                         IWL_DEBUG_TPT(trans,
1467                                                       "RX path exited emergency. Pending allocations %d\n",
1468                                                       rb_pending_alloc);
1469                                         emergency = false;
1470                                 }
1471
1472                                 rxq->read = i;
1473                                 spin_unlock(&rxq->lock);
1474                                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1475                                 iwl_pcie_rxq_restock(trans, rxq);
1476                                 goto restart;
1477                         }
1478                 }
1479         }
1480 out:
1481         /* Backtrack one entry */
1482         rxq->read = i;
1483         /* update cr tail with the rxq read pointer */
1484         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560)
1485                 *rxq->cr_tail = cpu_to_le16(r);
1486         spin_unlock(&rxq->lock);
1487
1488         /*
1489          * handle a case where in emergency there are some unallocated RBDs.
1490          * those RBDs are in the used list, but are not tracked by the queue's
1491          * used_count which counts allocator owned RBDs.
1492          * unallocated emergency RBDs must be allocated on exit, otherwise
1493          * when called again the function may not be in emergency mode and
1494          * they will be handed to the allocator with no tracking in the RBD
1495          * allocator counters, which will lead to them never being claimed back
1496          * by the queue.
1497          * by allocating them here, they are now in the queue free list, and
1498          * will be restocked by the next call of iwl_pcie_rxq_restock.
1499          */
1500         if (unlikely(emergency && count))
1501                 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq);
1502
1503         if (rxq->napi.poll)
1504                 napi_gro_flush(&rxq->napi, false);
1505
1506         iwl_pcie_rxq_restock(trans, rxq);
1507 }
1508
1509 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry)
1510 {
1511         u8 queue = entry->entry;
1512         struct msix_entry *entries = entry - queue;
1513
1514         return container_of(entries, struct iwl_trans_pcie, msix_entries[0]);
1515 }
1516
1517 /*
1518  * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw
1519  * This interrupt handler should be used with RSS queue only.
1520  */
1521 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id)
1522 {
1523         struct msix_entry *entry = dev_id;
1524         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
1525         struct iwl_trans *trans = trans_pcie->trans;
1526
1527         trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0);
1528
1529         if (WARN_ON(entry->entry >= trans->num_rx_queues))
1530                 return IRQ_NONE;
1531
1532         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1533
1534         local_bh_disable();
1535         iwl_pcie_rx_handle(trans, entry->entry);
1536         local_bh_enable();
1537
1538         iwl_pcie_clear_irq(trans, entry);
1539
1540         lock_map_release(&trans->sync_cmd_lockdep_map);
1541
1542         return IRQ_HANDLED;
1543 }
1544
1545 /*
1546  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
1547  */
1548 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
1549 {
1550         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1551         int i;
1552
1553         /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
1554         if (trans->cfg->internal_wimax_coex &&
1555             !trans->cfg->apmg_not_supported &&
1556             (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
1557                              APMS_CLK_VAL_MRB_FUNC_MODE) ||
1558              (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
1559                             APMG_PS_CTRL_VAL_RESET_REQ))) {
1560                 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1561                 iwl_op_mode_wimax_active(trans->op_mode);
1562                 wake_up(&trans_pcie->wait_command_queue);
1563                 return;
1564         }
1565
1566         for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
1567                 if (!trans_pcie->txq[i])
1568                         continue;
1569                 del_timer(&trans_pcie->txq[i]->stuck_timer);
1570         }
1571
1572         /* The STATUS_FW_ERROR bit is set in this function. This must happen
1573          * before we wake up the command caller, to ensure a proper cleanup. */
1574         iwl_trans_fw_error(trans);
1575
1576         clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
1577         wake_up(&trans_pcie->wait_command_queue);
1578 }
1579
1580 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
1581 {
1582         u32 inta;
1583
1584         lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
1585
1586         trace_iwlwifi_dev_irq(trans->dev);
1587
1588         /* Discover which interrupts are active/pending */
1589         inta = iwl_read32(trans, CSR_INT);
1590
1591         /* the thread will service interrupts and re-enable them */
1592         return inta;
1593 }
1594
1595 /* a device (PCI-E) page is 4096 bytes long */
1596 #define ICT_SHIFT       12
1597 #define ICT_SIZE        (1 << ICT_SHIFT)
1598 #define ICT_COUNT       (ICT_SIZE / sizeof(u32))
1599
1600 /* interrupt handler using ict table, with this interrupt driver will
1601  * stop using INTA register to get device's interrupt, reading this register
1602  * is expensive, device will write interrupts in ICT dram table, increment
1603  * index then will fire interrupt to driver, driver will OR all ICT table
1604  * entries from current index up to table entry with 0 value. the result is
1605  * the interrupt we need to service, driver will set the entries back to 0 and
1606  * set index.
1607  */
1608 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
1609 {
1610         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1611         u32 inta;
1612         u32 val = 0;
1613         u32 read;
1614
1615         trace_iwlwifi_dev_irq(trans->dev);
1616
1617         /* Ignore interrupt if there's nothing in NIC to service.
1618          * This may be due to IRQ shared with another device,
1619          * or due to sporadic interrupts thrown from our NIC. */
1620         read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1621         trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
1622         if (!read)
1623                 return 0;
1624
1625         /*
1626          * Collect all entries up to the first 0, starting from ict_index;
1627          * note we already read at ict_index.
1628          */
1629         do {
1630                 val |= read;
1631                 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
1632                                 trans_pcie->ict_index, read);
1633                 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
1634                 trans_pcie->ict_index =
1635                         ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
1636
1637                 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
1638                 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
1639                                            read);
1640         } while (read);
1641
1642         /* We should not get this value, just ignore it. */
1643         if (val == 0xffffffff)
1644                 val = 0;
1645
1646         /*
1647          * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
1648          * (bit 15 before shifting it to 31) to clear when using interrupt
1649          * coalescing. fortunately, bits 18 and 19 stay set when this happens
1650          * so we use them to decide on the real state of the Rx bit.
1651          * In order words, bit 15 is set if bit 18 or bit 19 are set.
1652          */
1653         if (val & 0xC0000)
1654                 val |= 0x8000;
1655
1656         inta = (0xff & val) | ((0xff00 & val) << 16);
1657         return inta;
1658 }
1659
1660 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans)
1661 {
1662         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1663         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1664         bool hw_rfkill, prev, report;
1665
1666         mutex_lock(&trans_pcie->mutex);
1667         prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1668         hw_rfkill = iwl_is_rfkill_set(trans);
1669         if (hw_rfkill) {
1670                 set_bit(STATUS_RFKILL_OPMODE, &trans->status);
1671                 set_bit(STATUS_RFKILL_HW, &trans->status);
1672         }
1673         if (trans_pcie->opmode_down)
1674                 report = hw_rfkill;
1675         else
1676                 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
1677
1678         IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1679                  hw_rfkill ? "disable radio" : "enable radio");
1680
1681         isr_stats->rfkill++;
1682
1683         if (prev != report)
1684                 iwl_trans_pcie_rf_kill(trans, report);
1685         mutex_unlock(&trans_pcie->mutex);
1686
1687         if (hw_rfkill) {
1688                 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1689                                        &trans->status))
1690                         IWL_DEBUG_RF_KILL(trans,
1691                                           "Rfkill while SYNC HCMD in flight\n");
1692                 wake_up(&trans_pcie->wait_command_queue);
1693         } else {
1694                 clear_bit(STATUS_RFKILL_HW, &trans->status);
1695                 if (trans_pcie->opmode_down)
1696                         clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
1697         }
1698 }
1699
1700 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
1701 {
1702         struct iwl_trans *trans = dev_id;
1703         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1704         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
1705         u32 inta = 0;
1706         u32 handled = 0;
1707
1708         lock_map_acquire(&trans->sync_cmd_lockdep_map);
1709
1710         spin_lock(&trans_pcie->irq_lock);
1711
1712         /* dram interrupt table not set yet,
1713          * use legacy interrupt.
1714          */
1715         if (likely(trans_pcie->use_ict))
1716                 inta = iwl_pcie_int_cause_ict(trans);
1717         else
1718                 inta = iwl_pcie_int_cause_non_ict(trans);
1719
1720         if (iwl_have_debug_level(IWL_DL_ISR)) {
1721                 IWL_DEBUG_ISR(trans,
1722                               "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
1723                               inta, trans_pcie->inta_mask,
1724                               iwl_read32(trans, CSR_INT_MASK),
1725                               iwl_read32(trans, CSR_FH_INT_STATUS));
1726                 if (inta & (~trans_pcie->inta_mask))
1727                         IWL_DEBUG_ISR(trans,
1728                                       "We got a masked interrupt (0x%08x)\n",
1729                                       inta & (~trans_pcie->inta_mask));
1730         }
1731
1732         inta &= trans_pcie->inta_mask;
1733
1734         /*
1735          * Ignore interrupt if there's nothing in NIC to service.
1736          * This may be due to IRQ shared with another device,
1737          * or due to sporadic interrupts thrown from our NIC.
1738          */
1739         if (unlikely(!inta)) {
1740                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
1741                 /*
1742                  * Re-enable interrupts here since we don't
1743                  * have anything to service
1744                  */
1745                 if (test_bit(STATUS_INT_ENABLED, &trans->status))
1746                         _iwl_enable_interrupts(trans);
1747                 spin_unlock(&trans_pcie->irq_lock);
1748                 lock_map_release(&trans->sync_cmd_lockdep_map);
1749                 return IRQ_NONE;
1750         }
1751
1752         if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
1753                 /*
1754                  * Hardware disappeared. It might have
1755                  * already raised an interrupt.
1756                  */
1757                 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
1758                 spin_unlock(&trans_pcie->irq_lock);
1759                 goto out;
1760         }
1761
1762         /* Ack/clear/reset pending uCode interrupts.
1763          * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
1764          */
1765         /* There is a hardware bug in the interrupt mask function that some
1766          * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
1767          * they are disabled in the CSR_INT_MASK register. Furthermore the
1768          * ICT interrupt handling mechanism has another bug that might cause
1769          * these unmasked interrupts fail to be detected. We workaround the
1770          * hardware bugs here by ACKing all the possible interrupts so that
1771          * interrupt coalescing can still be achieved.
1772          */
1773         iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
1774
1775         if (iwl_have_debug_level(IWL_DL_ISR))
1776                 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
1777                               inta, iwl_read32(trans, CSR_INT_MASK));
1778
1779         spin_unlock(&trans_pcie->irq_lock);
1780
1781         /* Now service all interrupt bits discovered above. */
1782         if (inta & CSR_INT_BIT_HW_ERR) {
1783                 IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
1784
1785                 /* Tell the device to stop sending interrupts */
1786                 iwl_disable_interrupts(trans);
1787
1788                 isr_stats->hw++;
1789                 iwl_pcie_irq_handle_error(trans);
1790
1791                 handled |= CSR_INT_BIT_HW_ERR;
1792
1793                 goto out;
1794         }
1795
1796         if (iwl_have_debug_level(IWL_DL_ISR)) {
1797                 /* NIC fires this, but we don't use it, redundant with WAKEUP */
1798                 if (inta & CSR_INT_BIT_SCD) {
1799                         IWL_DEBUG_ISR(trans,
1800                                       "Scheduler finished to transmit the frame/frames.\n");
1801                         isr_stats->sch++;
1802                 }
1803
1804                 /* Alive notification via Rx interrupt will do the real work */
1805                 if (inta & CSR_INT_BIT_ALIVE) {
1806                         IWL_DEBUG_ISR(trans, "Alive interrupt\n");
1807                         isr_stats->alive++;
1808                         if (trans->cfg->gen2) {
1809                                 /*
1810                                  * We can restock, since firmware configured
1811                                  * the RFH
1812                                  */
1813                                 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
1814                         }
1815                 }
1816         }
1817
1818         /* Safely ignore these bits for debug checks below */
1819         inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
1820
1821         /* HW RF KILL switch toggled */
1822         if (inta & CSR_INT_BIT_RF_KILL) {
1823                 iwl_pcie_handle_rfkill_irq(trans);
1824                 handled |= CSR_INT_BIT_RF_KILL;
1825         }
1826
1827         /* Chip got too hot and stopped itself */
1828         if (inta & CSR_INT_BIT_CT_KILL) {
1829                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
1830                 isr_stats->ctkill++;
1831                 handled |= CSR_INT_BIT_CT_KILL;
1832         }
1833
1834         /* Error detected by uCode */
1835         if (inta & CSR_INT_BIT_SW_ERR) {
1836                 IWL_ERR(trans, "Microcode SW error detected. "
1837                         " Restarting 0x%X.\n", inta);
1838                 isr_stats->sw++;
1839                 iwl_pcie_irq_handle_error(trans);
1840                 handled |= CSR_INT_BIT_SW_ERR;
1841         }
1842
1843         /* uCode wakes up after power-down sleep */
1844         if (inta & CSR_INT_BIT_WAKEUP) {
1845                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1846                 iwl_pcie_rxq_check_wrptr(trans);
1847                 iwl_pcie_txq_check_wrptrs(trans);
1848
1849                 isr_stats->wakeup++;
1850
1851                 handled |= CSR_INT_BIT_WAKEUP;
1852         }
1853
1854         /* All uCode command responses, including Tx command responses,
1855          * Rx "responses" (frame-received notification), and other
1856          * notifications from uCode come through here*/
1857         if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1858                     CSR_INT_BIT_RX_PERIODIC)) {
1859                 IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1860                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1861                         handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1862                         iwl_write32(trans, CSR_FH_INT_STATUS,
1863                                         CSR_FH_INT_RX_MASK);
1864                 }
1865                 if (inta & CSR_INT_BIT_RX_PERIODIC) {
1866                         handled |= CSR_INT_BIT_RX_PERIODIC;
1867                         iwl_write32(trans,
1868                                 CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1869                 }
1870                 /* Sending RX interrupt require many steps to be done in the
1871                  * the device:
1872                  * 1- write interrupt to current index in ICT table.
1873                  * 2- dma RX frame.
1874                  * 3- update RX shared data to indicate last write index.
1875                  * 4- send interrupt.
1876                  * This could lead to RX race, driver could receive RX interrupt
1877                  * but the shared data changes does not reflect this;
1878                  * periodic interrupt will detect any dangling Rx activity.
1879                  */
1880
1881                 /* Disable periodic interrupt; we use it as just a one-shot. */
1882                 iwl_write8(trans, CSR_INT_PERIODIC_REG,
1883                             CSR_INT_PERIODIC_DIS);
1884
1885                 /*
1886                  * Enable periodic interrupt in 8 msec only if we received
1887                  * real RX interrupt (instead of just periodic int), to catch
1888                  * any dangling Rx interrupt.  If it was just the periodic
1889                  * interrupt, there was no dangling Rx activity, and no need
1890                  * to extend the periodic interrupt; one-shot is enough.
1891                  */
1892                 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1893                         iwl_write8(trans, CSR_INT_PERIODIC_REG,
1894                                    CSR_INT_PERIODIC_ENA);
1895
1896                 isr_stats->rx++;
1897
1898                 local_bh_disable();
1899                 iwl_pcie_rx_handle(trans, 0);
1900                 local_bh_enable();
1901         }
1902
1903         /* This "Tx" DMA channel is used only for loading uCode */
1904         if (inta & CSR_INT_BIT_FH_TX) {
1905                 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1906                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1907                 isr_stats->tx++;
1908                 handled |= CSR_INT_BIT_FH_TX;
1909                 /* Wake up uCode load routine, now that load is complete */
1910                 trans_pcie->ucode_write_complete = true;
1911                 wake_up(&trans_pcie->ucode_write_waitq);
1912         }
1913
1914         if (inta & ~handled) {
1915                 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1916                 isr_stats->unhandled++;
1917         }
1918
1919         if (inta & ~(trans_pcie->inta_mask)) {
1920                 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1921                          inta & ~trans_pcie->inta_mask);
1922         }
1923
1924         spin_lock(&trans_pcie->irq_lock);
1925         /* only Re-enable all interrupt if disabled by irq */
1926         if (test_bit(STATUS_INT_ENABLED, &trans->status))
1927                 _iwl_enable_interrupts(trans);
1928         /* we are loading the firmware, enable FH_TX interrupt only */
1929         else if (handled & CSR_INT_BIT_FH_TX)
1930                 iwl_enable_fw_load_int(trans);
1931         /* Re-enable RF_KILL if it occurred */
1932         else if (handled & CSR_INT_BIT_RF_KILL)
1933                 iwl_enable_rfkill_int(trans);
1934         spin_unlock(&trans_pcie->irq_lock);
1935
1936 out:
1937         lock_map_release(&trans->sync_cmd_lockdep_map);
1938         return IRQ_HANDLED;
1939 }
1940
1941 /******************************************************************************
1942  *
1943  * ICT functions
1944  *
1945  ******************************************************************************/
1946
1947 /* Free dram table */
1948 void iwl_pcie_free_ict(struct iwl_trans *trans)
1949 {
1950         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1951
1952         if (trans_pcie->ict_tbl) {
1953                 dma_free_coherent(trans->dev, ICT_SIZE,
1954                                   trans_pcie->ict_tbl,
1955                                   trans_pcie->ict_tbl_dma);
1956                 trans_pcie->ict_tbl = NULL;
1957                 trans_pcie->ict_tbl_dma = 0;
1958         }
1959 }
1960
1961 /*
1962  * allocate dram shared table, it is an aligned memory
1963  * block of ICT_SIZE.
1964  * also reset all data related to ICT table interrupt.
1965  */
1966 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1967 {
1968         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1969
1970         trans_pcie->ict_tbl =
1971                 dma_alloc_coherent(trans->dev, ICT_SIZE,
1972                                    &trans_pcie->ict_tbl_dma, GFP_KERNEL);
1973         if (!trans_pcie->ict_tbl)
1974                 return -ENOMEM;
1975
1976         /* just an API sanity check ... it is guaranteed to be aligned */
1977         if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1978                 iwl_pcie_free_ict(trans);
1979                 return -EINVAL;
1980         }
1981
1982         return 0;
1983 }
1984
1985 /* Device is going up inform it about using ICT interrupt table,
1986  * also we need to tell the driver to start using ICT interrupt.
1987  */
1988 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1989 {
1990         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1991         u32 val;
1992
1993         if (!trans_pcie->ict_tbl)
1994                 return;
1995
1996         spin_lock(&trans_pcie->irq_lock);
1997         _iwl_disable_interrupts(trans);
1998
1999         memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
2000
2001         val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
2002
2003         val |= CSR_DRAM_INT_TBL_ENABLE |
2004                CSR_DRAM_INIT_TBL_WRAP_CHECK |
2005                CSR_DRAM_INIT_TBL_WRITE_POINTER;
2006
2007         IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
2008
2009         iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
2010         trans_pcie->use_ict = true;
2011         trans_pcie->ict_index = 0;
2012         iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
2013         _iwl_enable_interrupts(trans);
2014         spin_unlock(&trans_pcie->irq_lock);
2015 }
2016
2017 /* Device is going down disable ict interrupt usage */
2018 void iwl_pcie_disable_ict(struct iwl_trans *trans)
2019 {
2020         struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
2021
2022         spin_lock(&trans_pcie->irq_lock);
2023         trans_pcie->use_ict = false;
2024         spin_unlock(&trans_pcie->irq_lock);
2025 }
2026
2027 irqreturn_t iwl_pcie_isr(int irq, void *data)
2028 {
2029         struct iwl_trans *trans = data;
2030
2031         if (!trans)
2032                 return IRQ_NONE;
2033
2034         /* Disable (but don't clear!) interrupts here to avoid
2035          * back-to-back ISRs and sporadic interrupts from our NIC.
2036          * If we have something to service, the tasklet will re-enable ints.
2037          * If we *don't* have something, we'll re-enable before leaving here.
2038          */
2039         iwl_write32(trans, CSR_INT_MASK, 0x00000000);
2040
2041         return IRQ_WAKE_THREAD;
2042 }
2043
2044 irqreturn_t iwl_pcie_msix_isr(int irq, void *data)
2045 {
2046         return IRQ_WAKE_THREAD;
2047 }
2048
2049 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id)
2050 {
2051         struct msix_entry *entry = dev_id;
2052         struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry);
2053         struct iwl_trans *trans = trans_pcie->trans;
2054         struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
2055         u32 inta_fh, inta_hw;
2056
2057         lock_map_acquire(&trans->sync_cmd_lockdep_map);
2058
2059         spin_lock(&trans_pcie->irq_lock);
2060         inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD);
2061         inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD);
2062         /*
2063          * Clear causes registers to avoid being handling the same cause.
2064          */
2065         iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh);
2066         iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw);
2067         spin_unlock(&trans_pcie->irq_lock);
2068
2069         trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw);
2070
2071         if (unlikely(!(inta_fh | inta_hw))) {
2072                 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
2073                 lock_map_release(&trans->sync_cmd_lockdep_map);
2074                 return IRQ_NONE;
2075         }
2076
2077         if (iwl_have_debug_level(IWL_DL_ISR))
2078                 IWL_DEBUG_ISR(trans, "ISR inta_fh 0x%08x, enabled 0x%08x\n",
2079                               inta_fh,
2080                               iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD));
2081
2082         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) &&
2083             inta_fh & MSIX_FH_INT_CAUSES_Q0) {
2084                 local_bh_disable();
2085                 iwl_pcie_rx_handle(trans, 0);
2086                 local_bh_enable();
2087         }
2088
2089         if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) &&
2090             inta_fh & MSIX_FH_INT_CAUSES_Q1) {
2091                 local_bh_disable();
2092                 iwl_pcie_rx_handle(trans, 1);
2093                 local_bh_enable();
2094         }
2095
2096         /* This "Tx" DMA channel is used only for loading uCode */
2097         if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) {
2098                 IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
2099                 isr_stats->tx++;
2100                 /*
2101                  * Wake up uCode load routine,
2102                  * now that load is complete
2103                  */
2104                 trans_pcie->ucode_write_complete = true;
2105                 wake_up(&trans_pcie->ucode_write_waitq);
2106         }
2107
2108         /* Error detected by uCode */
2109         if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) ||
2110             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR) ||
2111             (inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) {
2112                 IWL_ERR(trans,
2113                         "Microcode SW error detected. Restarting 0x%X.\n",
2114                         inta_fh);
2115                 isr_stats->sw++;
2116                 iwl_pcie_irq_handle_error(trans);
2117         }
2118
2119         /* After checking FH register check HW register */
2120         if (iwl_have_debug_level(IWL_DL_ISR))
2121                 IWL_DEBUG_ISR(trans,
2122                               "ISR inta_hw 0x%08x, enabled 0x%08x\n",
2123                               inta_hw,
2124                               iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD));
2125
2126         /* Alive notification via Rx interrupt will do the real work */
2127         if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) {
2128                 IWL_DEBUG_ISR(trans, "Alive interrupt\n");
2129                 isr_stats->alive++;
2130                 if (trans->cfg->gen2) {
2131                         /* We can restock, since firmware configured the RFH */
2132                         iwl_pcie_rxmq_restock(trans, trans_pcie->rxq);
2133                 }
2134         }
2135
2136         if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560 &&
2137             inta_hw & MSIX_HW_INT_CAUSES_REG_IPC) {
2138                 /* Reflect IML transfer status */
2139                 int res = iwl_read32(trans, CSR_IML_RESP_ADDR);
2140
2141                 IWL_DEBUG_ISR(trans, "IML transfer status: %d\n", res);
2142                 if (res == IWL_IMAGE_RESP_FAIL) {
2143                         isr_stats->sw++;
2144                         iwl_pcie_irq_handle_error(trans);
2145                 }
2146         } else if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP) {
2147                 /* uCode wakes up after power-down sleep */
2148                 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
2149                 iwl_pcie_rxq_check_wrptr(trans);
2150                 iwl_pcie_txq_check_wrptrs(trans);
2151
2152                 isr_stats->wakeup++;
2153         }
2154
2155         /* Chip got too hot and stopped itself */
2156         if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) {
2157                 IWL_ERR(trans, "Microcode CT kill error detected.\n");
2158                 isr_stats->ctkill++;
2159         }
2160
2161         /* HW RF KILL switch toggled */
2162         if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL)
2163                 iwl_pcie_handle_rfkill_irq(trans);
2164
2165         if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) {
2166                 IWL_ERR(trans,
2167                         "Hardware error detected. Restarting.\n");
2168
2169                 isr_stats->hw++;
2170                 iwl_pcie_irq_handle_error(trans);
2171         }
2172
2173         iwl_pcie_clear_irq(trans, entry);
2174
2175         lock_map_release(&trans->sync_cmd_lockdep_map);
2176
2177         return IRQ_HANDLED;
2178 }