]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/net/wireless/realtek/rtw88/main.c
22fc5d6f6b62058dc2c5eb22dab92bd820846264
[linux.git] / drivers / net / wireless / realtek / rtw88 / main.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4
5 #include "main.h"
6 #include "regd.h"
7 #include "fw.h"
8 #include "ps.h"
9 #include "sec.h"
10 #include "mac.h"
11 #include "coex.h"
12 #include "phy.h"
13 #include "reg.h"
14 #include "efuse.h"
15 #include "debug.h"
16
17 static bool rtw_fw_support_lps;
18 unsigned int rtw_debug_mask;
19 EXPORT_SYMBOL(rtw_debug_mask);
20
21 module_param_named(support_lps, rtw_fw_support_lps, bool, 0644);
22 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
23
24 MODULE_PARM_DESC(support_lps, "Set Y to enable Leisure Power Save support, to turn radio off between beacons");
25 MODULE_PARM_DESC(debug_mask, "Debugging mask");
26
27 static struct ieee80211_channel rtw_channeltable_2g[] = {
28         {.center_freq = 2412, .hw_value = 1,},
29         {.center_freq = 2417, .hw_value = 2,},
30         {.center_freq = 2422, .hw_value = 3,},
31         {.center_freq = 2427, .hw_value = 4,},
32         {.center_freq = 2432, .hw_value = 5,},
33         {.center_freq = 2437, .hw_value = 6,},
34         {.center_freq = 2442, .hw_value = 7,},
35         {.center_freq = 2447, .hw_value = 8,},
36         {.center_freq = 2452, .hw_value = 9,},
37         {.center_freq = 2457, .hw_value = 10,},
38         {.center_freq = 2462, .hw_value = 11,},
39         {.center_freq = 2467, .hw_value = 12,},
40         {.center_freq = 2472, .hw_value = 13,},
41         {.center_freq = 2484, .hw_value = 14,},
42 };
43
44 static struct ieee80211_channel rtw_channeltable_5g[] = {
45         {.center_freq = 5180, .hw_value = 36,},
46         {.center_freq = 5200, .hw_value = 40,},
47         {.center_freq = 5220, .hw_value = 44,},
48         {.center_freq = 5240, .hw_value = 48,},
49         {.center_freq = 5260, .hw_value = 52,},
50         {.center_freq = 5280, .hw_value = 56,},
51         {.center_freq = 5300, .hw_value = 60,},
52         {.center_freq = 5320, .hw_value = 64,},
53         {.center_freq = 5500, .hw_value = 100,},
54         {.center_freq = 5520, .hw_value = 104,},
55         {.center_freq = 5540, .hw_value = 108,},
56         {.center_freq = 5560, .hw_value = 112,},
57         {.center_freq = 5580, .hw_value = 116,},
58         {.center_freq = 5600, .hw_value = 120,},
59         {.center_freq = 5620, .hw_value = 124,},
60         {.center_freq = 5640, .hw_value = 128,},
61         {.center_freq = 5660, .hw_value = 132,},
62         {.center_freq = 5680, .hw_value = 136,},
63         {.center_freq = 5700, .hw_value = 140,},
64         {.center_freq = 5745, .hw_value = 149,},
65         {.center_freq = 5765, .hw_value = 153,},
66         {.center_freq = 5785, .hw_value = 157,},
67         {.center_freq = 5805, .hw_value = 161,},
68         {.center_freq = 5825, .hw_value = 165,
69          .flags = IEEE80211_CHAN_NO_HT40MINUS},
70 };
71
72 static struct ieee80211_rate rtw_ratetable[] = {
73         {.bitrate = 10, .hw_value = 0x00,},
74         {.bitrate = 20, .hw_value = 0x01,},
75         {.bitrate = 55, .hw_value = 0x02,},
76         {.bitrate = 110, .hw_value = 0x03,},
77         {.bitrate = 60, .hw_value = 0x04,},
78         {.bitrate = 90, .hw_value = 0x05,},
79         {.bitrate = 120, .hw_value = 0x06,},
80         {.bitrate = 180, .hw_value = 0x07,},
81         {.bitrate = 240, .hw_value = 0x08,},
82         {.bitrate = 360, .hw_value = 0x09,},
83         {.bitrate = 480, .hw_value = 0x0a,},
84         {.bitrate = 540, .hw_value = 0x0b,},
85 };
86
87 static struct ieee80211_supported_band rtw_band_2ghz = {
88         .band = NL80211_BAND_2GHZ,
89
90         .channels = rtw_channeltable_2g,
91         .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
92
93         .bitrates = rtw_ratetable,
94         .n_bitrates = ARRAY_SIZE(rtw_ratetable),
95
96         .ht_cap = {0},
97         .vht_cap = {0},
98 };
99
100 static struct ieee80211_supported_band rtw_band_5ghz = {
101         .band = NL80211_BAND_5GHZ,
102
103         .channels = rtw_channeltable_5g,
104         .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
105
106         /* 5G has no CCK rates */
107         .bitrates = rtw_ratetable + 4,
108         .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
109
110         .ht_cap = {0},
111         .vht_cap = {0},
112 };
113
114 struct rtw_watch_dog_iter_data {
115         struct rtw_vif *rtwvif;
116         bool active;
117         u8 assoc_cnt;
118 };
119
120 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
121                                    struct ieee80211_vif *vif)
122 {
123         struct rtw_watch_dog_iter_data *iter_data = data;
124         struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
125
126         if (vif->type == NL80211_IFTYPE_STATION) {
127                 if (vif->bss_conf.assoc) {
128                         iter_data->assoc_cnt++;
129                         iter_data->rtwvif = rtwvif;
130                 }
131                 if (rtwvif->stats.tx_cnt > RTW_LPS_THRESHOLD ||
132                     rtwvif->stats.rx_cnt > RTW_LPS_THRESHOLD)
133                         iter_data->active = true;
134         } else {
135                 /* only STATION mode can enter lps */
136                 iter_data->active = true;
137         }
138
139         rtwvif->stats.tx_unicast = 0;
140         rtwvif->stats.rx_unicast = 0;
141         rtwvif->stats.tx_cnt = 0;
142         rtwvif->stats.rx_cnt = 0;
143 }
144
145 /* process TX/RX statistics periodically for hardware,
146  * the information helps hardware to enhance performance
147  */
148 static void rtw_watch_dog_work(struct work_struct *work)
149 {
150         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
151                                               watch_dog_work.work);
152         struct rtw_watch_dog_iter_data data = {};
153         bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
154
155         if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
156                 return;
157
158         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
159                                      RTW_WATCH_DOG_DELAY_TIME);
160
161         if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
162                 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
163         else
164                 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
165
166         if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
167                 rtw_coex_wl_status_change_notify(rtwdev);
168
169         /* reset tx/rx statictics */
170         rtwdev->stats.tx_unicast = 0;
171         rtwdev->stats.rx_unicast = 0;
172         rtwdev->stats.tx_cnt = 0;
173         rtwdev->stats.rx_cnt = 0;
174
175         /* use atomic version to avoid taking local->iflist_mtx mutex */
176         rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data);
177
178         /* fw supports only one station associated to enter lps, if there are
179          * more than two stations associated to the AP, then we can not enter
180          * lps, because fw does not handle the overlapped beacon interval
181          */
182         if (rtw_fw_support_lps &&
183             data.rtwvif && !data.active && data.assoc_cnt == 1)
184                 rtw_enter_lps(rtwdev, data.rtwvif);
185         else
186                 rtw_leave_lps(rtwdev, rtwdev->lps_conf.rtwvif);
187
188         if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
189                 return;
190
191         rtw_phy_dynamic_mechanism(rtwdev);
192
193         rtwdev->watch_dog_cnt++;
194 }
195
196 static void rtw_c2h_work(struct work_struct *work)
197 {
198         struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
199         struct sk_buff *skb, *tmp;
200
201         skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
202                 skb_unlink(skb, &rtwdev->c2h_queue);
203                 rtw_fw_c2h_cmd_handle(rtwdev, skb);
204                 dev_kfree_skb_any(skb);
205         }
206 }
207
208 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
209                             struct rtw_channel_params *chan_params)
210 {
211         struct ieee80211_channel *channel = chandef->chan;
212         enum nl80211_chan_width width = chandef->width;
213         u8 *cch_by_bw = chan_params->cch_by_bw;
214         u32 primary_freq, center_freq;
215         u8 center_chan;
216         u8 bandwidth = RTW_CHANNEL_WIDTH_20;
217         u8 primary_chan_idx = 0;
218         u8 i;
219
220         center_chan = channel->hw_value;
221         primary_freq = channel->center_freq;
222         center_freq = chandef->center_freq1;
223
224         /* assign the center channel used while 20M bw is selected */
225         cch_by_bw[RTW_CHANNEL_WIDTH_20] = channel->hw_value;
226
227         switch (width) {
228         case NL80211_CHAN_WIDTH_20_NOHT:
229         case NL80211_CHAN_WIDTH_20:
230                 bandwidth = RTW_CHANNEL_WIDTH_20;
231                 primary_chan_idx = 0;
232                 break;
233         case NL80211_CHAN_WIDTH_40:
234                 bandwidth = RTW_CHANNEL_WIDTH_40;
235                 if (primary_freq > center_freq) {
236                         primary_chan_idx = 1;
237                         center_chan -= 2;
238                 } else {
239                         primary_chan_idx = 2;
240                         center_chan += 2;
241                 }
242                 break;
243         case NL80211_CHAN_WIDTH_80:
244                 bandwidth = RTW_CHANNEL_WIDTH_80;
245                 if (primary_freq > center_freq) {
246                         if (primary_freq - center_freq == 10) {
247                                 primary_chan_idx = 1;
248                                 center_chan -= 2;
249                         } else {
250                                 primary_chan_idx = 3;
251                                 center_chan -= 6;
252                         }
253                         /* assign the center channel used
254                          * while 40M bw is selected
255                          */
256                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan + 4;
257                 } else {
258                         if (center_freq - primary_freq == 10) {
259                                 primary_chan_idx = 2;
260                                 center_chan += 2;
261                         } else {
262                                 primary_chan_idx = 4;
263                                 center_chan += 6;
264                         }
265                         /* assign the center channel used
266                          * while 40M bw is selected
267                          */
268                         cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_chan - 4;
269                 }
270                 break;
271         default:
272                 center_chan = 0;
273                 break;
274         }
275
276         chan_params->center_chan = center_chan;
277         chan_params->bandwidth = bandwidth;
278         chan_params->primary_chan_idx = primary_chan_idx;
279
280         /* assign the center channel used while current bw is selected */
281         cch_by_bw[bandwidth] = center_chan;
282
283         for (i = bandwidth + 1; i <= RTW_MAX_CHANNEL_WIDTH; i++)
284                 cch_by_bw[i] = 0;
285 }
286
287 void rtw_set_channel(struct rtw_dev *rtwdev)
288 {
289         struct ieee80211_hw *hw = rtwdev->hw;
290         struct rtw_hal *hal = &rtwdev->hal;
291         struct rtw_chip_info *chip = rtwdev->chip;
292         struct rtw_channel_params ch_param;
293         u8 center_chan, bandwidth, primary_chan_idx;
294         u8 i;
295
296         rtw_get_channel_params(&hw->conf.chandef, &ch_param);
297         if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
298                 return;
299
300         center_chan = ch_param.center_chan;
301         bandwidth = ch_param.bandwidth;
302         primary_chan_idx = ch_param.primary_chan_idx;
303
304         hal->current_band_width = bandwidth;
305         hal->current_channel = center_chan;
306         hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
307
308         for (i = RTW_CHANNEL_WIDTH_20; i <= RTW_MAX_CHANNEL_WIDTH; i++)
309                 hal->cch_by_bw[i] = ch_param.cch_by_bw[i];
310
311         chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx);
312
313         if (hal->current_band_type == RTW_BAND_5G) {
314                 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
315         } else {
316                 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
317                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
318                 else
319                         rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
320         }
321
322         rtw_phy_set_tx_power_level(rtwdev, center_chan);
323 }
324
325 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
326 {
327         int i;
328
329         for (i = 0; i < ETH_ALEN; i++)
330                 rtw_write8(rtwdev, start + i, addr[i]);
331 }
332
333 void rtw_vif_port_config(struct rtw_dev *rtwdev,
334                          struct rtw_vif *rtwvif,
335                          u32 config)
336 {
337         u32 addr, mask;
338
339         if (config & PORT_SET_MAC_ADDR) {
340                 addr = rtwvif->conf->mac_addr.addr;
341                 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
342         }
343         if (config & PORT_SET_BSSID) {
344                 addr = rtwvif->conf->bssid.addr;
345                 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
346         }
347         if (config & PORT_SET_NET_TYPE) {
348                 addr = rtwvif->conf->net_type.addr;
349                 mask = rtwvif->conf->net_type.mask;
350                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
351         }
352         if (config & PORT_SET_AID) {
353                 addr = rtwvif->conf->aid.addr;
354                 mask = rtwvif->conf->aid.mask;
355                 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
356         }
357         if (config & PORT_SET_BCN_CTRL) {
358                 addr = rtwvif->conf->bcn_ctrl.addr;
359                 mask = rtwvif->conf->bcn_ctrl.mask;
360                 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
361         }
362 }
363
364 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
365 {
366         u8 bw = 0;
367
368         switch (bw_cap) {
369         case EFUSE_HW_CAP_IGNORE:
370         case EFUSE_HW_CAP_SUPP_BW80:
371                 bw |= BIT(RTW_CHANNEL_WIDTH_80);
372                 /* fall through */
373         case EFUSE_HW_CAP_SUPP_BW40:
374                 bw |= BIT(RTW_CHANNEL_WIDTH_40);
375                 /* fall through */
376         default:
377                 bw |= BIT(RTW_CHANNEL_WIDTH_20);
378                 break;
379         }
380
381         return bw;
382 }
383
384 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
385 {
386         struct rtw_hal *hal = &rtwdev->hal;
387
388         if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
389             hw_ant_num >= hal->rf_path_num)
390                 return;
391
392         switch (hw_ant_num) {
393         case 1:
394                 hal->rf_type = RF_1T1R;
395                 hal->rf_path_num = 1;
396                 hal->antenna_tx = BB_PATH_A;
397                 hal->antenna_rx = BB_PATH_A;
398                 break;
399         default:
400                 WARN(1, "invalid hw configuration from efuse\n");
401                 break;
402         }
403 }
404
405 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
406 {
407         u64 ra_mask = 0;
408         u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map);
409         u8 vht_mcs_cap;
410         int i, nss;
411
412         /* 4SS, every two bits for MCS7/8/9 */
413         for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
414                 vht_mcs_cap = mcs_map & 0x3;
415                 switch (vht_mcs_cap) {
416                 case 2: /* MCS9 */
417                         ra_mask |= 0x3ffULL << nss;
418                         break;
419                 case 1: /* MCS8 */
420                         ra_mask |= 0x1ffULL << nss;
421                         break;
422                 case 0: /* MCS7 */
423                         ra_mask |= 0x0ffULL << nss;
424                         break;
425                 default:
426                         break;
427                 }
428         }
429
430         return ra_mask;
431 }
432
433 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
434 {
435         u8 rate_id = 0;
436
437         switch (wireless_set) {
438         case WIRELESS_CCK:
439                 rate_id = RTW_RATEID_B_20M;
440                 break;
441         case WIRELESS_OFDM:
442                 rate_id = RTW_RATEID_G;
443                 break;
444         case WIRELESS_CCK | WIRELESS_OFDM:
445                 rate_id = RTW_RATEID_BG;
446                 break;
447         case WIRELESS_OFDM | WIRELESS_HT:
448                 if (tx_num == 1)
449                         rate_id = RTW_RATEID_GN_N1SS;
450                 else if (tx_num == 2)
451                         rate_id = RTW_RATEID_GN_N2SS;
452                 else if (tx_num == 3)
453                         rate_id = RTW_RATEID_ARFR5_N_3SS;
454                 break;
455         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
456                 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
457                         if (tx_num == 1)
458                                 rate_id = RTW_RATEID_BGN_40M_1SS;
459                         else if (tx_num == 2)
460                                 rate_id = RTW_RATEID_BGN_40M_2SS;
461                         else if (tx_num == 3)
462                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
463                         else if (tx_num == 4)
464                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
465                 } else {
466                         if (tx_num == 1)
467                                 rate_id = RTW_RATEID_BGN_20M_1SS;
468                         else if (tx_num == 2)
469                                 rate_id = RTW_RATEID_BGN_20M_2SS;
470                         else if (tx_num == 3)
471                                 rate_id = RTW_RATEID_ARFR5_N_3SS;
472                         else if (tx_num == 4)
473                                 rate_id = RTW_RATEID_ARFR7_N_4SS;
474                 }
475                 break;
476         case WIRELESS_OFDM | WIRELESS_VHT:
477                 if (tx_num == 1)
478                         rate_id = RTW_RATEID_ARFR1_AC_1SS;
479                 else if (tx_num == 2)
480                         rate_id = RTW_RATEID_ARFR0_AC_2SS;
481                 else if (tx_num == 3)
482                         rate_id = RTW_RATEID_ARFR4_AC_3SS;
483                 else if (tx_num == 4)
484                         rate_id = RTW_RATEID_ARFR6_AC_4SS;
485                 break;
486         case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
487                 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
488                         if (tx_num == 1)
489                                 rate_id = RTW_RATEID_ARFR1_AC_1SS;
490                         else if (tx_num == 2)
491                                 rate_id = RTW_RATEID_ARFR0_AC_2SS;
492                         else if (tx_num == 3)
493                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
494                         else if (tx_num == 4)
495                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
496                 } else {
497                         if (tx_num == 1)
498                                 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
499                         else if (tx_num == 2)
500                                 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
501                         else if (tx_num == 3)
502                                 rate_id = RTW_RATEID_ARFR4_AC_3SS;
503                         else if (tx_num == 4)
504                                 rate_id = RTW_RATEID_ARFR6_AC_4SS;
505                 }
506                 break;
507         default:
508                 break;
509         }
510
511         return rate_id;
512 }
513
514 #define RA_MASK_CCK_RATES       0x0000f
515 #define RA_MASK_OFDM_RATES      0x00ff0
516 #define RA_MASK_HT_RATES_1SS    (0xff000ULL << 0)
517 #define RA_MASK_HT_RATES_2SS    (0xff000ULL << 8)
518 #define RA_MASK_HT_RATES_3SS    (0xff000ULL << 16)
519 #define RA_MASK_HT_RATES        (RA_MASK_HT_RATES_1SS | \
520                                  RA_MASK_HT_RATES_2SS | \
521                                  RA_MASK_HT_RATES_3SS)
522 #define RA_MASK_VHT_RATES_1SS   (0x3ff000ULL << 0)
523 #define RA_MASK_VHT_RATES_2SS   (0x3ff000ULL << 10)
524 #define RA_MASK_VHT_RATES_3SS   (0x3ff000ULL << 20)
525 #define RA_MASK_VHT_RATES       (RA_MASK_VHT_RATES_1SS | \
526                                  RA_MASK_VHT_RATES_2SS | \
527                                  RA_MASK_VHT_RATES_3SS)
528 #define RA_MASK_CCK_IN_HT       0x00005
529 #define RA_MASK_CCK_IN_VHT      0x00005
530 #define RA_MASK_OFDM_IN_VHT     0x00010
531 #define RA_MASK_OFDM_IN_HT_2G   0x00010
532 #define RA_MASK_OFDM_IN_HT_5G   0x00030
533
534 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si)
535 {
536         struct ieee80211_sta *sta = si->sta;
537         struct rtw_efuse *efuse = &rtwdev->efuse;
538         struct rtw_hal *hal = &rtwdev->hal;
539         u8 rssi_level;
540         u8 wireless_set;
541         u8 bw_mode;
542         u8 rate_id;
543         u8 rf_type = RF_1T1R;
544         u8 stbc_en = 0;
545         u8 ldpc_en = 0;
546         u8 tx_num = 1;
547         u64 ra_mask = 0;
548         bool is_vht_enable = false;
549         bool is_support_sgi = false;
550
551         if (sta->vht_cap.vht_supported) {
552                 is_vht_enable = true;
553                 ra_mask |= get_vht_ra_mask(sta);
554                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
555                         stbc_en = VHT_STBC_EN;
556                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
557                         ldpc_en = VHT_LDPC_EN;
558                 if (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80)
559                         is_support_sgi = true;
560         } else if (sta->ht_cap.ht_supported) {
561                 ra_mask |= (sta->ht_cap.mcs.rx_mask[NL80211_BAND_5GHZ] << 20) |
562                            (sta->ht_cap.mcs.rx_mask[NL80211_BAND_2GHZ] << 12);
563                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
564                         stbc_en = HT_STBC_EN;
565                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
566                         ldpc_en = HT_LDPC_EN;
567                 if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20 ||
568                     sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40)
569                         is_support_sgi = true;
570         }
571
572         if (hal->current_band_type == RTW_BAND_5G) {
573                 ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4;
574                 if (sta->vht_cap.vht_supported) {
575                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
576                         wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
577                 } else if (sta->ht_cap.ht_supported) {
578                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
579                         wireless_set = WIRELESS_OFDM | WIRELESS_HT;
580                 } else {
581                         wireless_set = WIRELESS_OFDM;
582                 }
583         } else if (hal->current_band_type == RTW_BAND_2G) {
584                 ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ];
585                 if (sta->vht_cap.vht_supported) {
586                         ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
587                                    RA_MASK_OFDM_IN_VHT;
588                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
589                                        WIRELESS_HT | WIRELESS_VHT;
590                 } else if (sta->ht_cap.ht_supported) {
591                         ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
592                                    RA_MASK_OFDM_IN_HT_2G;
593                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
594                                        WIRELESS_HT;
595                 } else if (sta->supp_rates[0] <= 0xf) {
596                         wireless_set = WIRELESS_CCK;
597                 } else {
598                         wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
599                 }
600         } else {
601                 rtw_err(rtwdev, "Unknown band type\n");
602                 wireless_set = 0;
603         }
604
605         if (efuse->hw_cap.nss == 1) {
606                 ra_mask &= RA_MASK_VHT_RATES_1SS;
607                 ra_mask &= RA_MASK_HT_RATES_1SS;
608         }
609
610         switch (sta->bandwidth) {
611         case IEEE80211_STA_RX_BW_80:
612                 bw_mode = RTW_CHANNEL_WIDTH_80;
613                 break;
614         case IEEE80211_STA_RX_BW_40:
615                 bw_mode = RTW_CHANNEL_WIDTH_40;
616                 break;
617         default:
618                 bw_mode = RTW_CHANNEL_WIDTH_20;
619                 break;
620         }
621
622         if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) {
623                 tx_num = 2;
624                 rf_type = RF_2T2R;
625         } else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) {
626                 tx_num = 2;
627                 rf_type = RF_2T2R;
628         }
629
630         rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
631
632         if (wireless_set != WIRELESS_CCK) {
633                 rssi_level = si->rssi_level;
634                 if (rssi_level == 0)
635                         ra_mask &= 0xffffffffffffffffULL;
636                 else if (rssi_level == 1)
637                         ra_mask &= 0xfffffffffffffff0ULL;
638                 else if (rssi_level == 2)
639                         ra_mask &= 0xffffffffffffefe0ULL;
640                 else if (rssi_level == 3)
641                         ra_mask &= 0xffffffffffffcfc0ULL;
642                 else if (rssi_level == 4)
643                         ra_mask &= 0xffffffffffff8f80ULL;
644                 else if (rssi_level >= 5)
645                         ra_mask &= 0xffffffffffff0f00ULL;
646         }
647
648         si->bw_mode = bw_mode;
649         si->stbc_en = stbc_en;
650         si->ldpc_en = ldpc_en;
651         si->rf_type = rf_type;
652         si->wireless_set = wireless_set;
653         si->sgi_enable = is_support_sgi;
654         si->vht_enable = is_vht_enable;
655         si->ra_mask = ra_mask;
656         si->rate_id = rate_id;
657
658         rtw_fw_send_ra_info(rtwdev, si);
659 }
660
661 static int rtw_power_on(struct rtw_dev *rtwdev)
662 {
663         struct rtw_chip_info *chip = rtwdev->chip;
664         struct rtw_fw_state *fw = &rtwdev->fw;
665         bool wifi_only;
666         int ret;
667
668         ret = rtw_hci_setup(rtwdev);
669         if (ret) {
670                 rtw_err(rtwdev, "failed to setup hci\n");
671                 goto err;
672         }
673
674         /* power on MAC before firmware downloaded */
675         ret = rtw_mac_power_on(rtwdev);
676         if (ret) {
677                 rtw_err(rtwdev, "failed to power on mac\n");
678                 goto err;
679         }
680
681         wait_for_completion(&fw->completion);
682         if (!fw->firmware) {
683                 ret = -EINVAL;
684                 rtw_err(rtwdev, "failed to load firmware\n");
685                 goto err;
686         }
687
688         ret = rtw_download_firmware(rtwdev, fw);
689         if (ret) {
690                 rtw_err(rtwdev, "failed to download firmware\n");
691                 goto err_off;
692         }
693
694         /* config mac after firmware downloaded */
695         ret = rtw_mac_init(rtwdev);
696         if (ret) {
697                 rtw_err(rtwdev, "failed to configure mac\n");
698                 goto err_off;
699         }
700
701         chip->ops->phy_set_param(rtwdev);
702
703         ret = rtw_hci_start(rtwdev);
704         if (ret) {
705                 rtw_err(rtwdev, "failed to start hci\n");
706                 goto err_off;
707         }
708
709         /* send H2C after HCI has started */
710         rtw_fw_send_general_info(rtwdev);
711         rtw_fw_send_phydm_info(rtwdev);
712
713         wifi_only = !rtwdev->efuse.btcoex;
714         rtw_coex_power_on_setting(rtwdev);
715         rtw_coex_init_hw_config(rtwdev, wifi_only);
716
717         return 0;
718
719 err_off:
720         rtw_mac_power_off(rtwdev);
721
722 err:
723         return ret;
724 }
725
726 int rtw_core_start(struct rtw_dev *rtwdev)
727 {
728         int ret;
729
730         ret = rtw_power_on(rtwdev);
731         if (ret)
732                 return ret;
733
734         rtw_sec_enable_sec_engine(rtwdev);
735
736         /* rcr reset after powered on */
737         rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
738
739         ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
740                                      RTW_WATCH_DOG_DELAY_TIME);
741
742         set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
743
744         return 0;
745 }
746
747 static void rtw_power_off(struct rtw_dev *rtwdev)
748 {
749         rtwdev->hci.ops->stop(rtwdev);
750         rtw_mac_power_off(rtwdev);
751 }
752
753 void rtw_core_stop(struct rtw_dev *rtwdev)
754 {
755         struct rtw_coex *coex = &rtwdev->coex;
756
757         clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
758         clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
759
760         cancel_delayed_work_sync(&rtwdev->watch_dog_work);
761         cancel_delayed_work_sync(&coex->bt_relink_work);
762         cancel_delayed_work_sync(&coex->bt_reenable_work);
763         cancel_delayed_work_sync(&coex->defreeze_work);
764
765         rtw_power_off(rtwdev);
766 }
767
768 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
769                             struct ieee80211_sta_ht_cap *ht_cap)
770 {
771         struct rtw_efuse *efuse = &rtwdev->efuse;
772
773         ht_cap->ht_supported = true;
774         ht_cap->cap = 0;
775         ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
776                         IEEE80211_HT_CAP_MAX_AMSDU |
777                         IEEE80211_HT_CAP_LDPC_CODING |
778                         (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
779         if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
780                 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
781                                 IEEE80211_HT_CAP_DSSSCCK40 |
782                                 IEEE80211_HT_CAP_SGI_40;
783         ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
784         ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16;
785         ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
786         if (efuse->hw_cap.nss > 1) {
787                 ht_cap->mcs.rx_mask[0] = 0xFF;
788                 ht_cap->mcs.rx_mask[1] = 0xFF;
789                 ht_cap->mcs.rx_mask[4] = 0x01;
790                 ht_cap->mcs.rx_highest = cpu_to_le16(300);
791         } else {
792                 ht_cap->mcs.rx_mask[0] = 0xFF;
793                 ht_cap->mcs.rx_mask[1] = 0x00;
794                 ht_cap->mcs.rx_mask[4] = 0x01;
795                 ht_cap->mcs.rx_highest = cpu_to_le16(150);
796         }
797 }
798
799 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
800                              struct ieee80211_sta_vht_cap *vht_cap)
801 {
802         struct rtw_efuse *efuse = &rtwdev->efuse;
803         u16 mcs_map;
804         __le16 highest;
805
806         if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
807             efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
808                 return;
809
810         vht_cap->vht_supported = true;
811         vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
812                        IEEE80211_VHT_CAP_RXLDPC |
813                        IEEE80211_VHT_CAP_SHORT_GI_80 |
814                        IEEE80211_VHT_CAP_TXSTBC |
815                        IEEE80211_VHT_CAP_RXSTBC_1 |
816                        IEEE80211_VHT_CAP_HTC_VHT |
817                        IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
818                        0;
819         mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
820                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
821                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
822                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
823                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
824                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
825                   IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
826         if (efuse->hw_cap.nss > 1) {
827                 highest = cpu_to_le16(780);
828                 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
829         } else {
830                 highest = cpu_to_le16(390);
831                 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
832         }
833
834         vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
835         vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
836         vht_cap->vht_mcs.rx_highest = highest;
837         vht_cap->vht_mcs.tx_highest = highest;
838 }
839
840 static void rtw_set_supported_band(struct ieee80211_hw *hw,
841                                    struct rtw_chip_info *chip)
842 {
843         struct rtw_dev *rtwdev = hw->priv;
844         struct ieee80211_supported_band *sband;
845
846         if (chip->band & RTW_BAND_2G) {
847                 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
848                 if (!sband)
849                         goto err_out;
850                 if (chip->ht_supported)
851                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
852                 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
853         }
854
855         if (chip->band & RTW_BAND_5G) {
856                 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
857                 if (!sband)
858                         goto err_out;
859                 if (chip->ht_supported)
860                         rtw_init_ht_cap(rtwdev, &sband->ht_cap);
861                 if (chip->vht_supported)
862                         rtw_init_vht_cap(rtwdev, &sband->vht_cap);
863                 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
864         }
865
866         return;
867
868 err_out:
869         rtw_err(rtwdev, "failed to set supported band\n");
870         kfree(sband);
871 }
872
873 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
874                                      struct rtw_chip_info *chip)
875 {
876         kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
877         kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
878 }
879
880 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
881 {
882         struct rtw_dev *rtwdev = context;
883         struct rtw_fw_state *fw = &rtwdev->fw;
884
885         if (!firmware)
886                 rtw_err(rtwdev, "failed to request firmware\n");
887
888         fw->firmware = firmware;
889         complete_all(&fw->completion);
890 }
891
892 static int rtw_load_firmware(struct rtw_dev *rtwdev, const char *fw_name)
893 {
894         struct rtw_fw_state *fw = &rtwdev->fw;
895         int ret;
896
897         init_completion(&fw->completion);
898
899         ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
900                                       GFP_KERNEL, rtwdev, rtw_load_firmware_cb);
901         if (ret) {
902                 rtw_err(rtwdev, "async firmware request failed\n");
903                 return ret;
904         }
905
906         return 0;
907 }
908
909 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
910 {
911         struct rtw_chip_info *chip = rtwdev->chip;
912         struct rtw_hal *hal = &rtwdev->hal;
913         struct rtw_efuse *efuse = &rtwdev->efuse;
914         int ret = 0;
915
916         switch (rtw_hci_type(rtwdev)) {
917         case RTW_HCI_TYPE_PCIE:
918                 rtwdev->hci.rpwm_addr = 0x03d9;
919                 break;
920         default:
921                 rtw_err(rtwdev, "unsupported hci type\n");
922                 return -EINVAL;
923         }
924
925         hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
926         hal->fab_version = BIT_GET_VENDOR_ID(hal->chip_version) >> 2;
927         hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
928         hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
929         if (hal->chip_version & BIT_RF_TYPE_ID) {
930                 hal->rf_type = RF_2T2R;
931                 hal->rf_path_num = 2;
932                 hal->antenna_tx = BB_PATH_AB;
933                 hal->antenna_rx = BB_PATH_AB;
934         } else {
935                 hal->rf_type = RF_1T1R;
936                 hal->rf_path_num = 1;
937                 hal->antenna_tx = BB_PATH_A;
938                 hal->antenna_rx = BB_PATH_A;
939         }
940
941         if (hal->fab_version == 2)
942                 hal->fab_version = 1;
943         else if (hal->fab_version == 1)
944                 hal->fab_version = 2;
945
946         efuse->physical_size = chip->phy_efuse_size;
947         efuse->logical_size = chip->log_efuse_size;
948         efuse->protect_size = chip->ptct_efuse_size;
949
950         /* default use ack */
951         rtwdev->hal.rcr |= BIT_VHT_DACK;
952
953         return ret;
954 }
955
956 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
957 {
958         struct rtw_fw_state *fw = &rtwdev->fw;
959         int ret;
960
961         ret = rtw_hci_setup(rtwdev);
962         if (ret) {
963                 rtw_err(rtwdev, "failed to setup hci\n");
964                 goto err;
965         }
966
967         ret = rtw_mac_power_on(rtwdev);
968         if (ret) {
969                 rtw_err(rtwdev, "failed to power on mac\n");
970                 goto err;
971         }
972
973         rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
974
975         wait_for_completion(&fw->completion);
976         if (!fw->firmware) {
977                 ret = -EINVAL;
978                 rtw_err(rtwdev, "failed to load firmware\n");
979                 goto err;
980         }
981
982         ret = rtw_download_firmware(rtwdev, fw);
983         if (ret) {
984                 rtw_err(rtwdev, "failed to download firmware\n");
985                 goto err_off;
986         }
987
988         return 0;
989
990 err_off:
991         rtw_mac_power_off(rtwdev);
992
993 err:
994         return ret;
995 }
996
997 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
998 {
999         struct rtw_efuse *efuse = &rtwdev->efuse;
1000         u8 hw_feature[HW_FEATURE_LEN];
1001         u8 id;
1002         u8 bw;
1003         int i;
1004
1005         id = rtw_read8(rtwdev, REG_C2HEVT);
1006         if (id != C2H_HW_FEATURE_REPORT) {
1007                 rtw_err(rtwdev, "failed to read hw feature report\n");
1008                 return -EBUSY;
1009         }
1010
1011         for (i = 0; i < HW_FEATURE_LEN; i++)
1012                 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1013
1014         rtw_write8(rtwdev, REG_C2HEVT, 0);
1015
1016         bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1017         efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1018         efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1019         efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1020         efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1021         efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1022
1023         rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1024
1025         if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE)
1026                 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1027
1028         rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1029                 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1030                 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1031                 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1032
1033         return 0;
1034 }
1035
1036 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1037 {
1038         rtw_hci_stop(rtwdev);
1039         rtw_mac_power_off(rtwdev);
1040 }
1041
1042 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1043 {
1044         struct rtw_efuse *efuse = &rtwdev->efuse;
1045         int ret;
1046
1047         mutex_lock(&rtwdev->mutex);
1048
1049         /* power on mac to read efuse */
1050         ret = rtw_chip_efuse_enable(rtwdev);
1051         if (ret)
1052                 goto out;
1053
1054         ret = rtw_parse_efuse_map(rtwdev);
1055         if (ret)
1056                 goto out;
1057
1058         ret = rtw_dump_hw_feature(rtwdev);
1059         if (ret)
1060                 goto out;
1061
1062         ret = rtw_check_supported_rfe(rtwdev);
1063         if (ret)
1064                 goto out;
1065
1066         if (efuse->crystal_cap == 0xff)
1067                 efuse->crystal_cap = 0;
1068         if (efuse->pa_type_2g == 0xff)
1069                 efuse->pa_type_2g = 0;
1070         if (efuse->pa_type_5g == 0xff)
1071                 efuse->pa_type_5g = 0;
1072         if (efuse->lna_type_2g == 0xff)
1073                 efuse->lna_type_2g = 0;
1074         if (efuse->lna_type_5g == 0xff)
1075                 efuse->lna_type_5g = 0;
1076         if (efuse->channel_plan == 0xff)
1077                 efuse->channel_plan = 0x7f;
1078         if (efuse->rf_board_option == 0xff)
1079                 efuse->rf_board_option = 0;
1080         if (efuse->bt_setting & BIT(0))
1081                 efuse->share_ant = true;
1082         if (efuse->regd == 0xff)
1083                 efuse->regd = 0;
1084
1085         efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
1086         efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
1087         efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
1088         efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
1089         efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
1090
1091         rtw_chip_efuse_disable(rtwdev);
1092
1093 out:
1094         mutex_unlock(&rtwdev->mutex);
1095         return ret;
1096 }
1097
1098 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
1099 {
1100         struct rtw_hal *hal = &rtwdev->hal;
1101         const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
1102
1103         if (!rfe_def)
1104                 return -ENODEV;
1105
1106         rtw_phy_setup_phy_cond(rtwdev, 0);
1107
1108         rtw_phy_init_tx_power(rtwdev);
1109         rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
1110         rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
1111         rtw_phy_tx_power_by_rate_config(hal);
1112         rtw_phy_tx_power_limit_config(hal);
1113
1114         return 0;
1115 }
1116
1117 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
1118 {
1119         int ret;
1120
1121         ret = rtw_chip_parameter_setup(rtwdev);
1122         if (ret) {
1123                 rtw_err(rtwdev, "failed to setup chip parameters\n");
1124                 goto err_out;
1125         }
1126
1127         ret = rtw_chip_efuse_info_setup(rtwdev);
1128         if (ret) {
1129                 rtw_err(rtwdev, "failed to setup chip efuse info\n");
1130                 goto err_out;
1131         }
1132
1133         ret = rtw_chip_board_info_setup(rtwdev);
1134         if (ret) {
1135                 rtw_err(rtwdev, "failed to setup chip board info\n");
1136                 goto err_out;
1137         }
1138
1139         return 0;
1140
1141 err_out:
1142         return ret;
1143 }
1144 EXPORT_SYMBOL(rtw_chip_info_setup);
1145
1146 int rtw_core_init(struct rtw_dev *rtwdev)
1147 {
1148         struct rtw_coex *coex = &rtwdev->coex;
1149         int ret;
1150
1151         INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
1152
1153         timer_setup(&rtwdev->tx_report.purge_timer,
1154                     rtw_tx_report_purge_timer, 0);
1155
1156         INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
1157         INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
1158         INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
1159         INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
1160         INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
1161         skb_queue_head_init(&rtwdev->c2h_queue);
1162         skb_queue_head_init(&rtwdev->coex.queue);
1163         skb_queue_head_init(&rtwdev->tx_report.queue);
1164
1165         spin_lock_init(&rtwdev->dm_lock);
1166         spin_lock_init(&rtwdev->rf_lock);
1167         spin_lock_init(&rtwdev->h2c.lock);
1168         spin_lock_init(&rtwdev->tx_report.q_lock);
1169
1170         mutex_init(&rtwdev->mutex);
1171         mutex_init(&rtwdev->coex.mutex);
1172         mutex_init(&rtwdev->hal.tx_power_mutex);
1173
1174         init_waitqueue_head(&rtwdev->coex.wait);
1175
1176         rtwdev->sec.total_cam_num = 32;
1177         rtwdev->hal.current_channel = 1;
1178         set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
1179
1180         mutex_lock(&rtwdev->mutex);
1181         rtw_add_rsvd_page(rtwdev, RSVD_BEACON, false);
1182         mutex_unlock(&rtwdev->mutex);
1183
1184         /* default rx filter setting */
1185         rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
1186                           BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
1187                           BIT_AB | BIT_AM | BIT_APM;
1188
1189         ret = rtw_load_firmware(rtwdev, rtwdev->chip->fw_name);
1190         if (ret) {
1191                 rtw_warn(rtwdev, "no firmware loaded\n");
1192                 return ret;
1193         }
1194
1195         return 0;
1196 }
1197 EXPORT_SYMBOL(rtw_core_init);
1198
1199 void rtw_core_deinit(struct rtw_dev *rtwdev)
1200 {
1201         struct rtw_fw_state *fw = &rtwdev->fw;
1202         struct rtw_rsvd_page *rsvd_pkt, *tmp;
1203         unsigned long flags;
1204
1205         if (fw->firmware)
1206                 release_firmware(fw->firmware);
1207
1208         spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
1209         skb_queue_purge(&rtwdev->tx_report.queue);
1210         spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
1211
1212         list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, list) {
1213                 list_del(&rsvd_pkt->list);
1214                 kfree(rsvd_pkt);
1215         }
1216
1217         mutex_destroy(&rtwdev->mutex);
1218         mutex_destroy(&rtwdev->coex.mutex);
1219         mutex_destroy(&rtwdev->hal.tx_power_mutex);
1220 }
1221 EXPORT_SYMBOL(rtw_core_deinit);
1222
1223 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1224 {
1225         int max_tx_headroom = 0;
1226         int ret;
1227
1228         /* TODO: USB & SDIO may need extra room? */
1229         max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
1230
1231         hw->extra_tx_headroom = max_tx_headroom;
1232         hw->queues = IEEE80211_NUM_ACS;
1233         hw->sta_data_size = sizeof(struct rtw_sta_info);
1234         hw->vif_data_size = sizeof(struct rtw_vif);
1235
1236         ieee80211_hw_set(hw, SIGNAL_DBM);
1237         ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1238         ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1239         ieee80211_hw_set(hw, MFP_CAPABLE);
1240         ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1241         ieee80211_hw_set(hw, SUPPORTS_PS);
1242         ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
1243         ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
1244         ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
1245
1246         hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
1247                                      BIT(NL80211_IFTYPE_AP) |
1248                                      BIT(NL80211_IFTYPE_ADHOC) |
1249                                      BIT(NL80211_IFTYPE_MESH_POINT);
1250
1251         hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
1252                             WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
1253
1254         hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
1255
1256         rtw_set_supported_band(hw, rtwdev->chip);
1257         SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
1258
1259         rtw_regd_init(rtwdev, rtw_regd_notifier);
1260
1261         ret = ieee80211_register_hw(hw);
1262         if (ret) {
1263                 rtw_err(rtwdev, "failed to register hw\n");
1264                 return ret;
1265         }
1266
1267         if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2))
1268                 rtw_err(rtwdev, "regulatory_hint fail\n");
1269
1270         rtw_debugfs_init(rtwdev);
1271
1272         return 0;
1273 }
1274 EXPORT_SYMBOL(rtw_register_hw);
1275
1276 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
1277 {
1278         struct rtw_chip_info *chip = rtwdev->chip;
1279
1280         ieee80211_unregister_hw(hw);
1281         rtw_unset_supported_band(hw, chip);
1282 }
1283 EXPORT_SYMBOL(rtw_unregister_hw);
1284
1285 MODULE_AUTHOR("Realtek Corporation");
1286 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
1287 MODULE_LICENSE("Dual BSD/GPL");