]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/core.c
9e832694f9d0eb28ae7206d5ab1056fa7921fc14
[linux.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27
28 #include "nvme.h"
29 #include "fabrics.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static DEFINE_IDA(nvme_subsystems_ida);
85 static LIST_HEAD(nvme_subsystems);
86 static DEFINE_MUTEX(nvme_subsystems_lock);
87
88 static DEFINE_IDA(nvme_instance_ida);
89 static dev_t nvme_chr_devt;
90 static struct class *nvme_class;
91 static struct class *nvme_subsys_class;
92
93 static int nvme_revalidate_disk(struct gendisk *disk);
94 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
96                                            unsigned nsid);
97
98 static void nvme_set_queue_dying(struct nvme_ns *ns)
99 {
100         /*
101          * Revalidating a dead namespace sets capacity to 0. This will end
102          * buffered writers dirtying pages that can't be synced.
103          */
104         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
105                 return;
106         revalidate_disk(ns->disk);
107         blk_set_queue_dying(ns->queue);
108         /* Forcibly unquiesce queues to avoid blocking dispatch */
109         blk_mq_unquiesce_queue(ns->queue);
110 }
111
112 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
113 {
114         /*
115          * Only new queue scan work when admin and IO queues are both alive
116          */
117         if (ctrl->state == NVME_CTRL_LIVE)
118                 queue_work(nvme_wq, &ctrl->scan_work);
119 }
120
121 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
122 {
123         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
124                 return -EBUSY;
125         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
126                 return -EBUSY;
127         return 0;
128 }
129 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
130
131 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
132 {
133         int ret;
134
135         ret = nvme_reset_ctrl(ctrl);
136         if (!ret) {
137                 flush_work(&ctrl->reset_work);
138                 if (ctrl->state != NVME_CTRL_LIVE &&
139                     ctrl->state != NVME_CTRL_ADMIN_ONLY)
140                         ret = -ENETRESET;
141         }
142
143         return ret;
144 }
145 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
146
147 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
148 {
149         dev_info(ctrl->device,
150                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
151
152         flush_work(&ctrl->reset_work);
153         nvme_stop_ctrl(ctrl);
154         nvme_remove_namespaces(ctrl);
155         ctrl->ops->delete_ctrl(ctrl);
156         nvme_uninit_ctrl(ctrl);
157         nvme_put_ctrl(ctrl);
158 }
159
160 static void nvme_delete_ctrl_work(struct work_struct *work)
161 {
162         struct nvme_ctrl *ctrl =
163                 container_of(work, struct nvme_ctrl, delete_work);
164
165         nvme_do_delete_ctrl(ctrl);
166 }
167
168 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
169 {
170         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
171                 return -EBUSY;
172         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
173                 return -EBUSY;
174         return 0;
175 }
176 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
177
178 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
179 {
180         int ret = 0;
181
182         /*
183          * Keep a reference until nvme_do_delete_ctrl() complete,
184          * since ->delete_ctrl can free the controller.
185          */
186         nvme_get_ctrl(ctrl);
187         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188                 ret = -EBUSY;
189         if (!ret)
190                 nvme_do_delete_ctrl(ctrl);
191         nvme_put_ctrl(ctrl);
192         return ret;
193 }
194
195 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
196 {
197         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
198 }
199
200 static blk_status_t nvme_error_status(struct request *req)
201 {
202         switch (nvme_req(req)->status & 0x7ff) {
203         case NVME_SC_SUCCESS:
204                 return BLK_STS_OK;
205         case NVME_SC_CAP_EXCEEDED:
206                 return BLK_STS_NOSPC;
207         case NVME_SC_LBA_RANGE:
208                 return BLK_STS_TARGET;
209         case NVME_SC_BAD_ATTRIBUTES:
210         case NVME_SC_ONCS_NOT_SUPPORTED:
211         case NVME_SC_INVALID_OPCODE:
212         case NVME_SC_INVALID_FIELD:
213         case NVME_SC_INVALID_NS:
214                 return BLK_STS_NOTSUPP;
215         case NVME_SC_WRITE_FAULT:
216         case NVME_SC_READ_ERROR:
217         case NVME_SC_UNWRITTEN_BLOCK:
218         case NVME_SC_ACCESS_DENIED:
219         case NVME_SC_READ_ONLY:
220         case NVME_SC_COMPARE_FAILED:
221                 return BLK_STS_MEDIUM;
222         case NVME_SC_GUARD_CHECK:
223         case NVME_SC_APPTAG_CHECK:
224         case NVME_SC_REFTAG_CHECK:
225         case NVME_SC_INVALID_PI:
226                 return BLK_STS_PROTECTION;
227         case NVME_SC_RESERVATION_CONFLICT:
228                 return BLK_STS_NEXUS;
229         default:
230                 return BLK_STS_IOERR;
231         }
232 }
233
234 static inline bool nvme_req_needs_retry(struct request *req)
235 {
236         if (blk_noretry_request(req))
237                 return false;
238         if (nvme_req(req)->status & NVME_SC_DNR)
239                 return false;
240         if (nvme_req(req)->retries >= nvme_max_retries)
241                 return false;
242         return true;
243 }
244
245 static void nvme_retry_req(struct request *req)
246 {
247         struct nvme_ns *ns = req->q->queuedata;
248         unsigned long delay = 0;
249         u16 crd;
250
251         /* The mask and shift result must be <= 3 */
252         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
253         if (ns && crd)
254                 delay = ns->ctrl->crdt[crd - 1] * 100;
255
256         nvme_req(req)->retries++;
257         blk_mq_requeue_request(req, false);
258         blk_mq_delay_kick_requeue_list(req->q, delay);
259 }
260
261 void nvme_complete_rq(struct request *req)
262 {
263         blk_status_t status = nvme_error_status(req);
264
265         trace_nvme_complete_rq(req);
266
267         if (nvme_req(req)->ctrl->kas)
268                 nvme_req(req)->ctrl->comp_seen = true;
269
270         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
271                 if ((req->cmd_flags & REQ_NVME_MPATH) &&
272                     blk_path_error(status)) {
273                         nvme_failover_req(req);
274                         return;
275                 }
276
277                 if (!blk_queue_dying(req->q)) {
278                         nvme_retry_req(req);
279                         return;
280                 }
281         }
282         blk_mq_end_request(req, status);
283 }
284 EXPORT_SYMBOL_GPL(nvme_complete_rq);
285
286 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
287 {
288         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
289                                 "Cancelling I/O %d", req->tag);
290
291         /* don't abort one completed request */
292         if (blk_mq_request_completed(req))
293                 return true;
294
295         nvme_req(req)->status = NVME_SC_ABORT_REQ;
296         blk_mq_complete_request(req);
297         return true;
298 }
299 EXPORT_SYMBOL_GPL(nvme_cancel_request);
300
301 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
302                 enum nvme_ctrl_state new_state)
303 {
304         enum nvme_ctrl_state old_state;
305         unsigned long flags;
306         bool changed = false;
307
308         spin_lock_irqsave(&ctrl->lock, flags);
309
310         old_state = ctrl->state;
311         switch (new_state) {
312         case NVME_CTRL_ADMIN_ONLY:
313                 switch (old_state) {
314                 case NVME_CTRL_CONNECTING:
315                         changed = true;
316                         /* FALLTHRU */
317                 default:
318                         break;
319                 }
320                 break;
321         case NVME_CTRL_LIVE:
322                 switch (old_state) {
323                 case NVME_CTRL_NEW:
324                 case NVME_CTRL_RESETTING:
325                 case NVME_CTRL_CONNECTING:
326                         changed = true;
327                         /* FALLTHRU */
328                 default:
329                         break;
330                 }
331                 break;
332         case NVME_CTRL_RESETTING:
333                 switch (old_state) {
334                 case NVME_CTRL_NEW:
335                 case NVME_CTRL_LIVE:
336                 case NVME_CTRL_ADMIN_ONLY:
337                         changed = true;
338                         /* FALLTHRU */
339                 default:
340                         break;
341                 }
342                 break;
343         case NVME_CTRL_CONNECTING:
344                 switch (old_state) {
345                 case NVME_CTRL_NEW:
346                 case NVME_CTRL_RESETTING:
347                         changed = true;
348                         /* FALLTHRU */
349                 default:
350                         break;
351                 }
352                 break;
353         case NVME_CTRL_DELETING:
354                 switch (old_state) {
355                 case NVME_CTRL_LIVE:
356                 case NVME_CTRL_ADMIN_ONLY:
357                 case NVME_CTRL_RESETTING:
358                 case NVME_CTRL_CONNECTING:
359                         changed = true;
360                         /* FALLTHRU */
361                 default:
362                         break;
363                 }
364                 break;
365         case NVME_CTRL_DEAD:
366                 switch (old_state) {
367                 case NVME_CTRL_DELETING:
368                         changed = true;
369                         /* FALLTHRU */
370                 default:
371                         break;
372                 }
373                 break;
374         default:
375                 break;
376         }
377
378         if (changed)
379                 ctrl->state = new_state;
380
381         spin_unlock_irqrestore(&ctrl->lock, flags);
382         if (changed && ctrl->state == NVME_CTRL_LIVE)
383                 nvme_kick_requeue_lists(ctrl);
384         return changed;
385 }
386 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
387
388 static void nvme_free_ns_head(struct kref *ref)
389 {
390         struct nvme_ns_head *head =
391                 container_of(ref, struct nvme_ns_head, ref);
392
393         nvme_mpath_remove_disk(head);
394         ida_simple_remove(&head->subsys->ns_ida, head->instance);
395         list_del_init(&head->entry);
396         cleanup_srcu_struct(&head->srcu);
397         nvme_put_subsystem(head->subsys);
398         kfree(head);
399 }
400
401 static void nvme_put_ns_head(struct nvme_ns_head *head)
402 {
403         kref_put(&head->ref, nvme_free_ns_head);
404 }
405
406 static void nvme_free_ns(struct kref *kref)
407 {
408         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
409
410         if (ns->ndev)
411                 nvme_nvm_unregister(ns);
412
413         put_disk(ns->disk);
414         nvme_put_ns_head(ns->head);
415         nvme_put_ctrl(ns->ctrl);
416         kfree(ns);
417 }
418
419 static void nvme_put_ns(struct nvme_ns *ns)
420 {
421         kref_put(&ns->kref, nvme_free_ns);
422 }
423
424 static inline void nvme_clear_nvme_request(struct request *req)
425 {
426         if (!(req->rq_flags & RQF_DONTPREP)) {
427                 nvme_req(req)->retries = 0;
428                 nvme_req(req)->flags = 0;
429                 req->rq_flags |= RQF_DONTPREP;
430         }
431 }
432
433 struct request *nvme_alloc_request(struct request_queue *q,
434                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
435 {
436         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
437         struct request *req;
438
439         if (qid == NVME_QID_ANY) {
440                 req = blk_mq_alloc_request(q, op, flags);
441         } else {
442                 req = blk_mq_alloc_request_hctx(q, op, flags,
443                                 qid ? qid - 1 : 0);
444         }
445         if (IS_ERR(req))
446                 return req;
447
448         req->cmd_flags |= REQ_FAILFAST_DRIVER;
449         nvme_clear_nvme_request(req);
450         nvme_req(req)->cmd = cmd;
451
452         return req;
453 }
454 EXPORT_SYMBOL_GPL(nvme_alloc_request);
455
456 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
457 {
458         struct nvme_command c;
459
460         memset(&c, 0, sizeof(c));
461
462         c.directive.opcode = nvme_admin_directive_send;
463         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
464         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
465         c.directive.dtype = NVME_DIR_IDENTIFY;
466         c.directive.tdtype = NVME_DIR_STREAMS;
467         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
468
469         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
470 }
471
472 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
473 {
474         return nvme_toggle_streams(ctrl, false);
475 }
476
477 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
478 {
479         return nvme_toggle_streams(ctrl, true);
480 }
481
482 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
483                                   struct streams_directive_params *s, u32 nsid)
484 {
485         struct nvme_command c;
486
487         memset(&c, 0, sizeof(c));
488         memset(s, 0, sizeof(*s));
489
490         c.directive.opcode = nvme_admin_directive_recv;
491         c.directive.nsid = cpu_to_le32(nsid);
492         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
493         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
494         c.directive.dtype = NVME_DIR_STREAMS;
495
496         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
497 }
498
499 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
500 {
501         struct streams_directive_params s;
502         int ret;
503
504         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
505                 return 0;
506         if (!streams)
507                 return 0;
508
509         ret = nvme_enable_streams(ctrl);
510         if (ret)
511                 return ret;
512
513         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
514         if (ret)
515                 return ret;
516
517         ctrl->nssa = le16_to_cpu(s.nssa);
518         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
519                 dev_info(ctrl->device, "too few streams (%u) available\n",
520                                         ctrl->nssa);
521                 nvme_disable_streams(ctrl);
522                 return 0;
523         }
524
525         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
526         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
527         return 0;
528 }
529
530 /*
531  * Check if 'req' has a write hint associated with it. If it does, assign
532  * a valid namespace stream to the write.
533  */
534 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
535                                      struct request *req, u16 *control,
536                                      u32 *dsmgmt)
537 {
538         enum rw_hint streamid = req->write_hint;
539
540         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
541                 streamid = 0;
542         else {
543                 streamid--;
544                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
545                         return;
546
547                 *control |= NVME_RW_DTYPE_STREAMS;
548                 *dsmgmt |= streamid << 16;
549         }
550
551         if (streamid < ARRAY_SIZE(req->q->write_hints))
552                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
553 }
554
555 static inline void nvme_setup_flush(struct nvme_ns *ns,
556                 struct nvme_command *cmnd)
557 {
558         cmnd->common.opcode = nvme_cmd_flush;
559         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
560 }
561
562 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
563                 struct nvme_command *cmnd)
564 {
565         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
566         struct nvme_dsm_range *range;
567         struct bio *bio;
568
569         range = kmalloc_array(segments, sizeof(*range),
570                                 GFP_ATOMIC | __GFP_NOWARN);
571         if (!range) {
572                 /*
573                  * If we fail allocation our range, fallback to the controller
574                  * discard page. If that's also busy, it's safe to return
575                  * busy, as we know we can make progress once that's freed.
576                  */
577                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
578                         return BLK_STS_RESOURCE;
579
580                 range = page_address(ns->ctrl->discard_page);
581         }
582
583         __rq_for_each_bio(bio, req) {
584                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
585                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
586
587                 if (n < segments) {
588                         range[n].cattr = cpu_to_le32(0);
589                         range[n].nlb = cpu_to_le32(nlb);
590                         range[n].slba = cpu_to_le64(slba);
591                 }
592                 n++;
593         }
594
595         if (WARN_ON_ONCE(n != segments)) {
596                 if (virt_to_page(range) == ns->ctrl->discard_page)
597                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
598                 else
599                         kfree(range);
600                 return BLK_STS_IOERR;
601         }
602
603         cmnd->dsm.opcode = nvme_cmd_dsm;
604         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
605         cmnd->dsm.nr = cpu_to_le32(segments - 1);
606         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
607
608         req->special_vec.bv_page = virt_to_page(range);
609         req->special_vec.bv_offset = offset_in_page(range);
610         req->special_vec.bv_len = sizeof(*range) * segments;
611         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
612
613         return BLK_STS_OK;
614 }
615
616 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
617                 struct request *req, struct nvme_command *cmnd)
618 {
619         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
620                 return nvme_setup_discard(ns, req, cmnd);
621
622         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
623         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
624         cmnd->write_zeroes.slba =
625                 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
626         cmnd->write_zeroes.length =
627                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
628         cmnd->write_zeroes.control = 0;
629         return BLK_STS_OK;
630 }
631
632 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
633                 struct request *req, struct nvme_command *cmnd)
634 {
635         struct nvme_ctrl *ctrl = ns->ctrl;
636         u16 control = 0;
637         u32 dsmgmt = 0;
638
639         if (req->cmd_flags & REQ_FUA)
640                 control |= NVME_RW_FUA;
641         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
642                 control |= NVME_RW_LR;
643
644         if (req->cmd_flags & REQ_RAHEAD)
645                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
646
647         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
648         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
649         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
650         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
651
652         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
653                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
654
655         if (ns->ms) {
656                 /*
657                  * If formated with metadata, the block layer always provides a
658                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
659                  * we enable the PRACT bit for protection information or set the
660                  * namespace capacity to zero to prevent any I/O.
661                  */
662                 if (!blk_integrity_rq(req)) {
663                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
664                                 return BLK_STS_NOTSUPP;
665                         control |= NVME_RW_PRINFO_PRACT;
666                 } else if (req_op(req) == REQ_OP_WRITE) {
667                         t10_pi_prepare(req, ns->pi_type);
668                 }
669
670                 switch (ns->pi_type) {
671                 case NVME_NS_DPS_PI_TYPE3:
672                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
673                         break;
674                 case NVME_NS_DPS_PI_TYPE1:
675                 case NVME_NS_DPS_PI_TYPE2:
676                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
677                                         NVME_RW_PRINFO_PRCHK_REF;
678                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
679                         break;
680                 }
681         }
682
683         cmnd->rw.control = cpu_to_le16(control);
684         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
685         return 0;
686 }
687
688 void nvme_cleanup_cmd(struct request *req)
689 {
690         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
691             nvme_req(req)->status == 0) {
692                 struct nvme_ns *ns = req->rq_disk->private_data;
693
694                 t10_pi_complete(req, ns->pi_type,
695                                 blk_rq_bytes(req) >> ns->lba_shift);
696         }
697         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
698                 struct nvme_ns *ns = req->rq_disk->private_data;
699                 struct page *page = req->special_vec.bv_page;
700
701                 if (page == ns->ctrl->discard_page)
702                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
703                 else
704                         kfree(page_address(page) + req->special_vec.bv_offset);
705         }
706 }
707 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
708
709 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
710                 struct nvme_command *cmd)
711 {
712         blk_status_t ret = BLK_STS_OK;
713
714         nvme_clear_nvme_request(req);
715
716         memset(cmd, 0, sizeof(*cmd));
717         switch (req_op(req)) {
718         case REQ_OP_DRV_IN:
719         case REQ_OP_DRV_OUT:
720                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
721                 break;
722         case REQ_OP_FLUSH:
723                 nvme_setup_flush(ns, cmd);
724                 break;
725         case REQ_OP_WRITE_ZEROES:
726                 ret = nvme_setup_write_zeroes(ns, req, cmd);
727                 break;
728         case REQ_OP_DISCARD:
729                 ret = nvme_setup_discard(ns, req, cmd);
730                 break;
731         case REQ_OP_READ:
732         case REQ_OP_WRITE:
733                 ret = nvme_setup_rw(ns, req, cmd);
734                 break;
735         default:
736                 WARN_ON_ONCE(1);
737                 return BLK_STS_IOERR;
738         }
739
740         cmd->common.command_id = req->tag;
741         trace_nvme_setup_cmd(req, cmd);
742         return ret;
743 }
744 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
745
746 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
747 {
748         struct completion *waiting = rq->end_io_data;
749
750         rq->end_io_data = NULL;
751         complete(waiting);
752 }
753
754 static void nvme_execute_rq_polled(struct request_queue *q,
755                 struct gendisk *bd_disk, struct request *rq, int at_head)
756 {
757         DECLARE_COMPLETION_ONSTACK(wait);
758
759         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
760
761         rq->cmd_flags |= REQ_HIPRI;
762         rq->end_io_data = &wait;
763         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
764
765         while (!completion_done(&wait)) {
766                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
767                 cond_resched();
768         }
769 }
770
771 /*
772  * Returns 0 on success.  If the result is negative, it's a Linux error code;
773  * if the result is positive, it's an NVM Express status code
774  */
775 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
776                 union nvme_result *result, void *buffer, unsigned bufflen,
777                 unsigned timeout, int qid, int at_head,
778                 blk_mq_req_flags_t flags, bool poll)
779 {
780         struct request *req;
781         int ret;
782
783         req = nvme_alloc_request(q, cmd, flags, qid);
784         if (IS_ERR(req))
785                 return PTR_ERR(req);
786
787         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
788
789         if (buffer && bufflen) {
790                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
791                 if (ret)
792                         goto out;
793         }
794
795         if (poll)
796                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
797         else
798                 blk_execute_rq(req->q, NULL, req, at_head);
799         if (result)
800                 *result = nvme_req(req)->result;
801         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
802                 ret = -EINTR;
803         else
804                 ret = nvme_req(req)->status;
805  out:
806         blk_mq_free_request(req);
807         return ret;
808 }
809 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
810
811 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
812                 void *buffer, unsigned bufflen)
813 {
814         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
815                         NVME_QID_ANY, 0, 0, false);
816 }
817 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
818
819 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
820                 unsigned len, u32 seed, bool write)
821 {
822         struct bio_integrity_payload *bip;
823         int ret = -ENOMEM;
824         void *buf;
825
826         buf = kmalloc(len, GFP_KERNEL);
827         if (!buf)
828                 goto out;
829
830         ret = -EFAULT;
831         if (write && copy_from_user(buf, ubuf, len))
832                 goto out_free_meta;
833
834         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
835         if (IS_ERR(bip)) {
836                 ret = PTR_ERR(bip);
837                 goto out_free_meta;
838         }
839
840         bip->bip_iter.bi_size = len;
841         bip->bip_iter.bi_sector = seed;
842         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
843                         offset_in_page(buf));
844         if (ret == len)
845                 return buf;
846         ret = -ENOMEM;
847 out_free_meta:
848         kfree(buf);
849 out:
850         return ERR_PTR(ret);
851 }
852
853 static int nvme_submit_user_cmd(struct request_queue *q,
854                 struct nvme_command *cmd, void __user *ubuffer,
855                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
856                 u32 meta_seed, u32 *result, unsigned timeout)
857 {
858         bool write = nvme_is_write(cmd);
859         struct nvme_ns *ns = q->queuedata;
860         struct gendisk *disk = ns ? ns->disk : NULL;
861         struct request *req;
862         struct bio *bio = NULL;
863         void *meta = NULL;
864         int ret;
865
866         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
867         if (IS_ERR(req))
868                 return PTR_ERR(req);
869
870         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
871         nvme_req(req)->flags |= NVME_REQ_USERCMD;
872
873         if (ubuffer && bufflen) {
874                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
875                                 GFP_KERNEL);
876                 if (ret)
877                         goto out;
878                 bio = req->bio;
879                 bio->bi_disk = disk;
880                 if (disk && meta_buffer && meta_len) {
881                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
882                                         meta_seed, write);
883                         if (IS_ERR(meta)) {
884                                 ret = PTR_ERR(meta);
885                                 goto out_unmap;
886                         }
887                         req->cmd_flags |= REQ_INTEGRITY;
888                 }
889         }
890
891         blk_execute_rq(req->q, disk, req, 0);
892         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
893                 ret = -EINTR;
894         else
895                 ret = nvme_req(req)->status;
896         if (result)
897                 *result = le32_to_cpu(nvme_req(req)->result.u32);
898         if (meta && !ret && !write) {
899                 if (copy_to_user(meta_buffer, meta, meta_len))
900                         ret = -EFAULT;
901         }
902         kfree(meta);
903  out_unmap:
904         if (bio)
905                 blk_rq_unmap_user(bio);
906  out:
907         blk_mq_free_request(req);
908         return ret;
909 }
910
911 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
912 {
913         struct nvme_ctrl *ctrl = rq->end_io_data;
914         unsigned long flags;
915         bool startka = false;
916
917         blk_mq_free_request(rq);
918
919         if (status) {
920                 dev_err(ctrl->device,
921                         "failed nvme_keep_alive_end_io error=%d\n",
922                                 status);
923                 return;
924         }
925
926         ctrl->comp_seen = false;
927         spin_lock_irqsave(&ctrl->lock, flags);
928         if (ctrl->state == NVME_CTRL_LIVE ||
929             ctrl->state == NVME_CTRL_CONNECTING)
930                 startka = true;
931         spin_unlock_irqrestore(&ctrl->lock, flags);
932         if (startka)
933                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
934 }
935
936 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
937 {
938         struct request *rq;
939
940         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
941                         NVME_QID_ANY);
942         if (IS_ERR(rq))
943                 return PTR_ERR(rq);
944
945         rq->timeout = ctrl->kato * HZ;
946         rq->end_io_data = ctrl;
947
948         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
949
950         return 0;
951 }
952
953 static void nvme_keep_alive_work(struct work_struct *work)
954 {
955         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
956                         struct nvme_ctrl, ka_work);
957         bool comp_seen = ctrl->comp_seen;
958
959         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
960                 dev_dbg(ctrl->device,
961                         "reschedule traffic based keep-alive timer\n");
962                 ctrl->comp_seen = false;
963                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
964                 return;
965         }
966
967         if (nvme_keep_alive(ctrl)) {
968                 /* allocation failure, reset the controller */
969                 dev_err(ctrl->device, "keep-alive failed\n");
970                 nvme_reset_ctrl(ctrl);
971                 return;
972         }
973 }
974
975 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
976 {
977         if (unlikely(ctrl->kato == 0))
978                 return;
979
980         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
981 }
982
983 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
984 {
985         if (unlikely(ctrl->kato == 0))
986                 return;
987
988         cancel_delayed_work_sync(&ctrl->ka_work);
989 }
990 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
991
992 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
993 {
994         struct nvme_command c = { };
995         int error;
996
997         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
998         c.identify.opcode = nvme_admin_identify;
999         c.identify.cns = NVME_ID_CNS_CTRL;
1000
1001         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1002         if (!*id)
1003                 return -ENOMEM;
1004
1005         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1006                         sizeof(struct nvme_id_ctrl));
1007         if (error)
1008                 kfree(*id);
1009         return error;
1010 }
1011
1012 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1013                 struct nvme_ns_ids *ids)
1014 {
1015         struct nvme_command c = { };
1016         int status;
1017         void *data;
1018         int pos;
1019         int len;
1020
1021         c.identify.opcode = nvme_admin_identify;
1022         c.identify.nsid = cpu_to_le32(nsid);
1023         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1024
1025         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1026         if (!data)
1027                 return -ENOMEM;
1028
1029         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1030                                       NVME_IDENTIFY_DATA_SIZE);
1031         if (status)
1032                 goto free_data;
1033
1034         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1035                 struct nvme_ns_id_desc *cur = data + pos;
1036
1037                 if (cur->nidl == 0)
1038                         break;
1039
1040                 switch (cur->nidt) {
1041                 case NVME_NIDT_EUI64:
1042                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1043                                 dev_warn(ctrl->device,
1044                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1045                                          cur->nidl);
1046                                 goto free_data;
1047                         }
1048                         len = NVME_NIDT_EUI64_LEN;
1049                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1050                         break;
1051                 case NVME_NIDT_NGUID:
1052                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1053                                 dev_warn(ctrl->device,
1054                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1055                                          cur->nidl);
1056                                 goto free_data;
1057                         }
1058                         len = NVME_NIDT_NGUID_LEN;
1059                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1060                         break;
1061                 case NVME_NIDT_UUID:
1062                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
1063                                 dev_warn(ctrl->device,
1064                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1065                                          cur->nidl);
1066                                 goto free_data;
1067                         }
1068                         len = NVME_NIDT_UUID_LEN;
1069                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1070                         break;
1071                 default:
1072                         /* Skip unknown types */
1073                         len = cur->nidl;
1074                         break;
1075                 }
1076
1077                 len += sizeof(*cur);
1078         }
1079 free_data:
1080         kfree(data);
1081         return status;
1082 }
1083
1084 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1085 {
1086         struct nvme_command c = { };
1087
1088         c.identify.opcode = nvme_admin_identify;
1089         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1090         c.identify.nsid = cpu_to_le32(nsid);
1091         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1092                                     NVME_IDENTIFY_DATA_SIZE);
1093 }
1094
1095 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1096                 unsigned nsid)
1097 {
1098         struct nvme_id_ns *id;
1099         struct nvme_command c = { };
1100         int error;
1101
1102         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1103         c.identify.opcode = nvme_admin_identify;
1104         c.identify.nsid = cpu_to_le32(nsid);
1105         c.identify.cns = NVME_ID_CNS_NS;
1106
1107         id = kmalloc(sizeof(*id), GFP_KERNEL);
1108         if (!id)
1109                 return NULL;
1110
1111         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1112         if (error) {
1113                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1114                 kfree(id);
1115                 return NULL;
1116         }
1117
1118         return id;
1119 }
1120
1121 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1122                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1123 {
1124         struct nvme_command c;
1125         union nvme_result res;
1126         int ret;
1127
1128         memset(&c, 0, sizeof(c));
1129         c.features.opcode = op;
1130         c.features.fid = cpu_to_le32(fid);
1131         c.features.dword11 = cpu_to_le32(dword11);
1132
1133         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1134                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1135         if (ret >= 0 && result)
1136                 *result = le32_to_cpu(res.u32);
1137         return ret;
1138 }
1139
1140 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1141                       unsigned int dword11, void *buffer, size_t buflen,
1142                       u32 *result)
1143 {
1144         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1145                              buflen, result);
1146 }
1147 EXPORT_SYMBOL_GPL(nvme_set_features);
1148
1149 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1150                       unsigned int dword11, void *buffer, size_t buflen,
1151                       u32 *result)
1152 {
1153         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1154                              buflen, result);
1155 }
1156 EXPORT_SYMBOL_GPL(nvme_get_features);
1157
1158 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1159 {
1160         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1161         u32 result;
1162         int status, nr_io_queues;
1163
1164         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1165                         &result);
1166         if (status < 0)
1167                 return status;
1168
1169         /*
1170          * Degraded controllers might return an error when setting the queue
1171          * count.  We still want to be able to bring them online and offer
1172          * access to the admin queue, as that might be only way to fix them up.
1173          */
1174         if (status > 0) {
1175                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1176                 *count = 0;
1177         } else {
1178                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1179                 *count = min(*count, nr_io_queues);
1180         }
1181
1182         return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1185
1186 #define NVME_AEN_SUPPORTED \
1187         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1188
1189 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1190 {
1191         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1192         int status;
1193
1194         if (!supported_aens)
1195                 return;
1196
1197         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1198                         NULL, 0, &result);
1199         if (status)
1200                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1201                          supported_aens);
1202 }
1203
1204 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1205 {
1206         struct nvme_user_io io;
1207         struct nvme_command c;
1208         unsigned length, meta_len;
1209         void __user *metadata;
1210
1211         if (copy_from_user(&io, uio, sizeof(io)))
1212                 return -EFAULT;
1213         if (io.flags)
1214                 return -EINVAL;
1215
1216         switch (io.opcode) {
1217         case nvme_cmd_write:
1218         case nvme_cmd_read:
1219         case nvme_cmd_compare:
1220                 break;
1221         default:
1222                 return -EINVAL;
1223         }
1224
1225         length = (io.nblocks + 1) << ns->lba_shift;
1226         meta_len = (io.nblocks + 1) * ns->ms;
1227         metadata = (void __user *)(uintptr_t)io.metadata;
1228
1229         if (ns->ext) {
1230                 length += meta_len;
1231                 meta_len = 0;
1232         } else if (meta_len) {
1233                 if ((io.metadata & 3) || !io.metadata)
1234                         return -EINVAL;
1235         }
1236
1237         memset(&c, 0, sizeof(c));
1238         c.rw.opcode = io.opcode;
1239         c.rw.flags = io.flags;
1240         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1241         c.rw.slba = cpu_to_le64(io.slba);
1242         c.rw.length = cpu_to_le16(io.nblocks);
1243         c.rw.control = cpu_to_le16(io.control);
1244         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1245         c.rw.reftag = cpu_to_le32(io.reftag);
1246         c.rw.apptag = cpu_to_le16(io.apptag);
1247         c.rw.appmask = cpu_to_le16(io.appmask);
1248
1249         return nvme_submit_user_cmd(ns->queue, &c,
1250                         (void __user *)(uintptr_t)io.addr, length,
1251                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1252 }
1253
1254 static u32 nvme_known_admin_effects(u8 opcode)
1255 {
1256         switch (opcode) {
1257         case nvme_admin_format_nvm:
1258                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1259                                         NVME_CMD_EFFECTS_CSE_MASK;
1260         case nvme_admin_sanitize_nvm:
1261                 return NVME_CMD_EFFECTS_CSE_MASK;
1262         default:
1263                 break;
1264         }
1265         return 0;
1266 }
1267
1268 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1269                                                                 u8 opcode)
1270 {
1271         u32 effects = 0;
1272
1273         if (ns) {
1274                 if (ctrl->effects)
1275                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1276                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1277                         dev_warn(ctrl->device,
1278                                  "IO command:%02x has unhandled effects:%08x\n",
1279                                  opcode, effects);
1280                 return 0;
1281         }
1282
1283         if (ctrl->effects)
1284                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1285         effects |= nvme_known_admin_effects(opcode);
1286
1287         /*
1288          * For simplicity, IO to all namespaces is quiesced even if the command
1289          * effects say only one namespace is affected.
1290          */
1291         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1292                 mutex_lock(&ctrl->scan_lock);
1293                 nvme_start_freeze(ctrl);
1294                 nvme_wait_freeze(ctrl);
1295         }
1296         return effects;
1297 }
1298
1299 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1300 {
1301         struct nvme_ns *ns;
1302
1303         down_read(&ctrl->namespaces_rwsem);
1304         list_for_each_entry(ns, &ctrl->namespaces, list)
1305                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1306                         nvme_set_queue_dying(ns);
1307         up_read(&ctrl->namespaces_rwsem);
1308
1309         nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1310 }
1311
1312 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1313 {
1314         /*
1315          * Revalidate LBA changes prior to unfreezing. This is necessary to
1316          * prevent memory corruption if a logical block size was changed by
1317          * this command.
1318          */
1319         if (effects & NVME_CMD_EFFECTS_LBCC)
1320                 nvme_update_formats(ctrl);
1321         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1322                 nvme_unfreeze(ctrl);
1323                 mutex_unlock(&ctrl->scan_lock);
1324         }
1325         if (effects & NVME_CMD_EFFECTS_CCC)
1326                 nvme_init_identify(ctrl);
1327         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1328                 nvme_queue_scan(ctrl);
1329 }
1330
1331 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1332                         struct nvme_passthru_cmd __user *ucmd)
1333 {
1334         struct nvme_passthru_cmd cmd;
1335         struct nvme_command c;
1336         unsigned timeout = 0;
1337         u32 effects;
1338         int status;
1339
1340         if (!capable(CAP_SYS_ADMIN))
1341                 return -EACCES;
1342         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1343                 return -EFAULT;
1344         if (cmd.flags)
1345                 return -EINVAL;
1346
1347         memset(&c, 0, sizeof(c));
1348         c.common.opcode = cmd.opcode;
1349         c.common.flags = cmd.flags;
1350         c.common.nsid = cpu_to_le32(cmd.nsid);
1351         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1352         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1353         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1354         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1355         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1356         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1357         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1358         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1359
1360         if (cmd.timeout_ms)
1361                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1362
1363         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1364         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1365                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1366                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1367                         0, &cmd.result, timeout);
1368         nvme_passthru_end(ctrl, effects);
1369
1370         if (status >= 0) {
1371                 if (put_user(cmd.result, &ucmd->result))
1372                         return -EFAULT;
1373         }
1374
1375         return status;
1376 }
1377
1378 /*
1379  * Issue ioctl requests on the first available path.  Note that unlike normal
1380  * block layer requests we will not retry failed request on another controller.
1381  */
1382 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1383                 struct nvme_ns_head **head, int *srcu_idx)
1384 {
1385 #ifdef CONFIG_NVME_MULTIPATH
1386         if (disk->fops == &nvme_ns_head_ops) {
1387                 struct nvme_ns *ns;
1388
1389                 *head = disk->private_data;
1390                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1391                 ns = nvme_find_path(*head);
1392                 if (!ns)
1393                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1394                 return ns;
1395         }
1396 #endif
1397         *head = NULL;
1398         *srcu_idx = -1;
1399         return disk->private_data;
1400 }
1401
1402 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1403 {
1404         if (head)
1405                 srcu_read_unlock(&head->srcu, idx);
1406 }
1407
1408 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1409                 unsigned int cmd, unsigned long arg)
1410 {
1411         struct nvme_ns_head *head = NULL;
1412         void __user *argp = (void __user *)arg;
1413         struct nvme_ns *ns;
1414         int srcu_idx, ret;
1415
1416         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1417         if (unlikely(!ns))
1418                 return -EWOULDBLOCK;
1419
1420         /*
1421          * Handle ioctls that apply to the controller instead of the namespace
1422          * seperately and drop the ns SRCU reference early.  This avoids a
1423          * deadlock when deleting namespaces using the passthrough interface.
1424          */
1425         if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) {
1426                 struct nvme_ctrl *ctrl = ns->ctrl;
1427
1428                 nvme_get_ctrl(ns->ctrl);
1429                 nvme_put_ns_from_disk(head, srcu_idx);
1430
1431                 if (cmd == NVME_IOCTL_ADMIN_CMD)
1432                         ret = nvme_user_cmd(ctrl, NULL, argp);
1433                 else
1434                         ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1435
1436                 nvme_put_ctrl(ctrl);
1437                 return ret;
1438         }
1439
1440         switch (cmd) {
1441         case NVME_IOCTL_ID:
1442                 force_successful_syscall_return();
1443                 ret = ns->head->ns_id;
1444                 break;
1445         case NVME_IOCTL_IO_CMD:
1446                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1447                 break;
1448         case NVME_IOCTL_SUBMIT_IO:
1449                 ret = nvme_submit_io(ns, argp);
1450                 break;
1451         default:
1452                 if (ns->ndev)
1453                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1454                 else
1455                         ret = -ENOTTY;
1456         }
1457
1458         nvme_put_ns_from_disk(head, srcu_idx);
1459         return ret;
1460 }
1461
1462 static int nvme_open(struct block_device *bdev, fmode_t mode)
1463 {
1464         struct nvme_ns *ns = bdev->bd_disk->private_data;
1465
1466 #ifdef CONFIG_NVME_MULTIPATH
1467         /* should never be called due to GENHD_FL_HIDDEN */
1468         if (WARN_ON_ONCE(ns->head->disk))
1469                 goto fail;
1470 #endif
1471         if (!kref_get_unless_zero(&ns->kref))
1472                 goto fail;
1473         if (!try_module_get(ns->ctrl->ops->module))
1474                 goto fail_put_ns;
1475
1476         return 0;
1477
1478 fail_put_ns:
1479         nvme_put_ns(ns);
1480 fail:
1481         return -ENXIO;
1482 }
1483
1484 static void nvme_release(struct gendisk *disk, fmode_t mode)
1485 {
1486         struct nvme_ns *ns = disk->private_data;
1487
1488         module_put(ns->ctrl->ops->module);
1489         nvme_put_ns(ns);
1490 }
1491
1492 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1493 {
1494         /* some standard values */
1495         geo->heads = 1 << 6;
1496         geo->sectors = 1 << 5;
1497         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1498         return 0;
1499 }
1500
1501 #ifdef CONFIG_BLK_DEV_INTEGRITY
1502 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1503 {
1504         struct blk_integrity integrity;
1505
1506         memset(&integrity, 0, sizeof(integrity));
1507         switch (pi_type) {
1508         case NVME_NS_DPS_PI_TYPE3:
1509                 integrity.profile = &t10_pi_type3_crc;
1510                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1511                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1512                 break;
1513         case NVME_NS_DPS_PI_TYPE1:
1514         case NVME_NS_DPS_PI_TYPE2:
1515                 integrity.profile = &t10_pi_type1_crc;
1516                 integrity.tag_size = sizeof(u16);
1517                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1518                 break;
1519         default:
1520                 integrity.profile = NULL;
1521                 break;
1522         }
1523         integrity.tuple_size = ms;
1524         blk_integrity_register(disk, &integrity);
1525         blk_queue_max_integrity_segments(disk->queue, 1);
1526 }
1527 #else
1528 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1529 {
1530 }
1531 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1532
1533 static void nvme_set_chunk_size(struct nvme_ns *ns)
1534 {
1535         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1536         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1537 }
1538
1539 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1540 {
1541         struct nvme_ctrl *ctrl = ns->ctrl;
1542         struct request_queue *queue = disk->queue;
1543         u32 size = queue_logical_block_size(queue);
1544
1545         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1546                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1547                 return;
1548         }
1549
1550         if (ctrl->nr_streams && ns->sws && ns->sgs)
1551                 size *= ns->sws * ns->sgs;
1552
1553         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1554                         NVME_DSM_MAX_RANGES);
1555
1556         queue->limits.discard_alignment = 0;
1557         queue->limits.discard_granularity = size;
1558
1559         /* If discard is already enabled, don't reset queue limits */
1560         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1561                 return;
1562
1563         blk_queue_max_discard_sectors(queue, UINT_MAX);
1564         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1565
1566         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1567                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1568 }
1569
1570 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1571 {
1572         u32 max_sectors;
1573         unsigned short bs = 1 << ns->lba_shift;
1574
1575         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1576             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1577                 return;
1578         /*
1579          * Even though NVMe spec explicitly states that MDTS is not
1580          * applicable to the write-zeroes:- "The restriction does not apply to
1581          * commands that do not transfer data between the host and the
1582          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1583          * In order to be more cautious use controller's max_hw_sectors value
1584          * to configure the maximum sectors for the write-zeroes which is
1585          * configured based on the controller's MDTS field in the
1586          * nvme_init_identify() if available.
1587          */
1588         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1589                 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1590         else
1591                 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1592
1593         blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1594 }
1595
1596 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1597                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1598 {
1599         memset(ids, 0, sizeof(*ids));
1600
1601         if (ctrl->vs >= NVME_VS(1, 1, 0))
1602                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1603         if (ctrl->vs >= NVME_VS(1, 2, 0))
1604                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1605         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1606                  /* Don't treat error as fatal we potentially
1607                   * already have a NGUID or EUI-64
1608                   */
1609                 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1610                         dev_warn(ctrl->device,
1611                                  "%s: Identify Descriptors failed\n", __func__);
1612         }
1613 }
1614
1615 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1616 {
1617         return !uuid_is_null(&ids->uuid) ||
1618                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1619                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1620 }
1621
1622 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1623 {
1624         return uuid_equal(&a->uuid, &b->uuid) &&
1625                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1626                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1627 }
1628
1629 static void nvme_update_disk_info(struct gendisk *disk,
1630                 struct nvme_ns *ns, struct nvme_id_ns *id)
1631 {
1632         sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1633         unsigned short bs = 1 << ns->lba_shift;
1634         u32 atomic_bs, phys_bs, io_opt;
1635
1636         if (ns->lba_shift > PAGE_SHIFT) {
1637                 /* unsupported block size, set capacity to 0 later */
1638                 bs = (1 << 9);
1639         }
1640         blk_mq_freeze_queue(disk->queue);
1641         blk_integrity_unregister(disk);
1642
1643         if (id->nabo == 0) {
1644                 /*
1645                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1646                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1647                  * 0 then AWUPF must be used instead.
1648                  */
1649                 if (id->nsfeat & (1 << 1) && id->nawupf)
1650                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1651                 else
1652                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1653         } else {
1654                 atomic_bs = bs;
1655         }
1656         phys_bs = bs;
1657         io_opt = bs;
1658         if (id->nsfeat & (1 << 4)) {
1659                 /* NPWG = Namespace Preferred Write Granularity */
1660                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1661                 /* NOWS = Namespace Optimal Write Size */
1662                 io_opt *= 1 + le16_to_cpu(id->nows);
1663         }
1664
1665         blk_queue_logical_block_size(disk->queue, bs);
1666         /*
1667          * Linux filesystems assume writing a single physical block is
1668          * an atomic operation. Hence limit the physical block size to the
1669          * value of the Atomic Write Unit Power Fail parameter.
1670          */
1671         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1672         blk_queue_io_min(disk->queue, phys_bs);
1673         blk_queue_io_opt(disk->queue, io_opt);
1674
1675         if (ns->ms && !ns->ext &&
1676             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1677                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1678         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1679             ns->lba_shift > PAGE_SHIFT)
1680                 capacity = 0;
1681
1682         set_capacity(disk, capacity);
1683
1684         nvme_config_discard(disk, ns);
1685         nvme_config_write_zeroes(disk, ns);
1686
1687         if (id->nsattr & (1 << 0))
1688                 set_disk_ro(disk, true);
1689         else
1690                 set_disk_ro(disk, false);
1691
1692         blk_mq_unfreeze_queue(disk->queue);
1693 }
1694
1695 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1696 {
1697         struct nvme_ns *ns = disk->private_data;
1698
1699         /*
1700          * If identify namespace failed, use default 512 byte block size so
1701          * block layer can use before failing read/write for 0 capacity.
1702          */
1703         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1704         if (ns->lba_shift == 0)
1705                 ns->lba_shift = 9;
1706         ns->noiob = le16_to_cpu(id->noiob);
1707         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1708         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1709         /* the PI implementation requires metadata equal t10 pi tuple size */
1710         if (ns->ms == sizeof(struct t10_pi_tuple))
1711                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1712         else
1713                 ns->pi_type = 0;
1714
1715         if (ns->noiob)
1716                 nvme_set_chunk_size(ns);
1717         nvme_update_disk_info(disk, ns, id);
1718 #ifdef CONFIG_NVME_MULTIPATH
1719         if (ns->head->disk) {
1720                 nvme_update_disk_info(ns->head->disk, ns, id);
1721                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1722         }
1723 #endif
1724 }
1725
1726 static int nvme_revalidate_disk(struct gendisk *disk)
1727 {
1728         struct nvme_ns *ns = disk->private_data;
1729         struct nvme_ctrl *ctrl = ns->ctrl;
1730         struct nvme_id_ns *id;
1731         struct nvme_ns_ids ids;
1732         int ret = 0;
1733
1734         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1735                 set_capacity(disk, 0);
1736                 return -ENODEV;
1737         }
1738
1739         id = nvme_identify_ns(ctrl, ns->head->ns_id);
1740         if (!id)
1741                 return -ENODEV;
1742
1743         if (id->ncap == 0) {
1744                 ret = -ENODEV;
1745                 goto out;
1746         }
1747
1748         __nvme_revalidate_disk(disk, id);
1749         nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1750         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1751                 dev_err(ctrl->device,
1752                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1753                 ret = -ENODEV;
1754         }
1755
1756 out:
1757         kfree(id);
1758         return ret;
1759 }
1760
1761 static char nvme_pr_type(enum pr_type type)
1762 {
1763         switch (type) {
1764         case PR_WRITE_EXCLUSIVE:
1765                 return 1;
1766         case PR_EXCLUSIVE_ACCESS:
1767                 return 2;
1768         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1769                 return 3;
1770         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1771                 return 4;
1772         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1773                 return 5;
1774         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1775                 return 6;
1776         default:
1777                 return 0;
1778         }
1779 };
1780
1781 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1782                                 u64 key, u64 sa_key, u8 op)
1783 {
1784         struct nvme_ns_head *head = NULL;
1785         struct nvme_ns *ns;
1786         struct nvme_command c;
1787         int srcu_idx, ret;
1788         u8 data[16] = { 0, };
1789
1790         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1791         if (unlikely(!ns))
1792                 return -EWOULDBLOCK;
1793
1794         put_unaligned_le64(key, &data[0]);
1795         put_unaligned_le64(sa_key, &data[8]);
1796
1797         memset(&c, 0, sizeof(c));
1798         c.common.opcode = op;
1799         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1800         c.common.cdw10 = cpu_to_le32(cdw10);
1801
1802         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1803         nvme_put_ns_from_disk(head, srcu_idx);
1804         return ret;
1805 }
1806
1807 static int nvme_pr_register(struct block_device *bdev, u64 old,
1808                 u64 new, unsigned flags)
1809 {
1810         u32 cdw10;
1811
1812         if (flags & ~PR_FL_IGNORE_KEY)
1813                 return -EOPNOTSUPP;
1814
1815         cdw10 = old ? 2 : 0;
1816         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1817         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1818         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1819 }
1820
1821 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1822                 enum pr_type type, unsigned flags)
1823 {
1824         u32 cdw10;
1825
1826         if (flags & ~PR_FL_IGNORE_KEY)
1827                 return -EOPNOTSUPP;
1828
1829         cdw10 = nvme_pr_type(type) << 8;
1830         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1831         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1832 }
1833
1834 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1835                 enum pr_type type, bool abort)
1836 {
1837         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1838         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1839 }
1840
1841 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1842 {
1843         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1844         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1845 }
1846
1847 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1848 {
1849         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1850         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1851 }
1852
1853 static const struct pr_ops nvme_pr_ops = {
1854         .pr_register    = nvme_pr_register,
1855         .pr_reserve     = nvme_pr_reserve,
1856         .pr_release     = nvme_pr_release,
1857         .pr_preempt     = nvme_pr_preempt,
1858         .pr_clear       = nvme_pr_clear,
1859 };
1860
1861 #ifdef CONFIG_BLK_SED_OPAL
1862 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1863                 bool send)
1864 {
1865         struct nvme_ctrl *ctrl = data;
1866         struct nvme_command cmd;
1867
1868         memset(&cmd, 0, sizeof(cmd));
1869         if (send)
1870                 cmd.common.opcode = nvme_admin_security_send;
1871         else
1872                 cmd.common.opcode = nvme_admin_security_recv;
1873         cmd.common.nsid = 0;
1874         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1875         cmd.common.cdw11 = cpu_to_le32(len);
1876
1877         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1878                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1879 }
1880 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1881 #endif /* CONFIG_BLK_SED_OPAL */
1882
1883 static const struct block_device_operations nvme_fops = {
1884         .owner          = THIS_MODULE,
1885         .ioctl          = nvme_ioctl,
1886         .compat_ioctl   = nvme_ioctl,
1887         .open           = nvme_open,
1888         .release        = nvme_release,
1889         .getgeo         = nvme_getgeo,
1890         .revalidate_disk= nvme_revalidate_disk,
1891         .pr_ops         = &nvme_pr_ops,
1892 };
1893
1894 #ifdef CONFIG_NVME_MULTIPATH
1895 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1896 {
1897         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1898
1899         if (!kref_get_unless_zero(&head->ref))
1900                 return -ENXIO;
1901         return 0;
1902 }
1903
1904 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1905 {
1906         nvme_put_ns_head(disk->private_data);
1907 }
1908
1909 const struct block_device_operations nvme_ns_head_ops = {
1910         .owner          = THIS_MODULE,
1911         .open           = nvme_ns_head_open,
1912         .release        = nvme_ns_head_release,
1913         .ioctl          = nvme_ioctl,
1914         .compat_ioctl   = nvme_ioctl,
1915         .getgeo         = nvme_getgeo,
1916         .pr_ops         = &nvme_pr_ops,
1917 };
1918 #endif /* CONFIG_NVME_MULTIPATH */
1919
1920 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1921 {
1922         unsigned long timeout =
1923                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1924         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1925         int ret;
1926
1927         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1928                 if (csts == ~0)
1929                         return -ENODEV;
1930                 if ((csts & NVME_CSTS_RDY) == bit)
1931                         break;
1932
1933                 msleep(100);
1934                 if (fatal_signal_pending(current))
1935                         return -EINTR;
1936                 if (time_after(jiffies, timeout)) {
1937                         dev_err(ctrl->device,
1938                                 "Device not ready; aborting %s\n", enabled ?
1939                                                 "initialisation" : "reset");
1940                         return -ENODEV;
1941                 }
1942         }
1943
1944         return ret;
1945 }
1946
1947 /*
1948  * If the device has been passed off to us in an enabled state, just clear
1949  * the enabled bit.  The spec says we should set the 'shutdown notification
1950  * bits', but doing so may cause the device to complete commands to the
1951  * admin queue ... and we don't know what memory that might be pointing at!
1952  */
1953 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1954 {
1955         int ret;
1956
1957         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1958         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1959
1960         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1961         if (ret)
1962                 return ret;
1963
1964         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1965                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1966
1967         return nvme_wait_ready(ctrl, cap, false);
1968 }
1969 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1970
1971 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
1972 {
1973         /*
1974          * Default to a 4K page size, with the intention to update this
1975          * path in the future to accomodate architectures with differing
1976          * kernel and IO page sizes.
1977          */
1978         unsigned dev_page_min, page_shift = 12;
1979         int ret;
1980
1981         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
1982         if (ret) {
1983                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1984                 return ret;
1985         }
1986         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
1987
1988         if (page_shift < dev_page_min) {
1989                 dev_err(ctrl->device,
1990                         "Minimum device page size %u too large for host (%u)\n",
1991                         1 << dev_page_min, 1 << page_shift);
1992                 return -ENODEV;
1993         }
1994
1995         ctrl->page_size = 1 << page_shift;
1996
1997         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1998         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1999         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2000         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2001         ctrl->ctrl_config |= NVME_CC_ENABLE;
2002
2003         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2004         if (ret)
2005                 return ret;
2006         return nvme_wait_ready(ctrl, ctrl->cap, true);
2007 }
2008 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2009
2010 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2011 {
2012         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2013         u32 csts;
2014         int ret;
2015
2016         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2017         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2018
2019         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2020         if (ret)
2021                 return ret;
2022
2023         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2024                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2025                         break;
2026
2027                 msleep(100);
2028                 if (fatal_signal_pending(current))
2029                         return -EINTR;
2030                 if (time_after(jiffies, timeout)) {
2031                         dev_err(ctrl->device,
2032                                 "Device shutdown incomplete; abort shutdown\n");
2033                         return -ENODEV;
2034                 }
2035         }
2036
2037         return ret;
2038 }
2039 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2040
2041 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2042                 struct request_queue *q)
2043 {
2044         bool vwc = false;
2045
2046         if (ctrl->max_hw_sectors) {
2047                 u32 max_segments =
2048                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2049
2050                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2051                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2052                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2053         }
2054         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2055             is_power_of_2(ctrl->max_hw_sectors))
2056                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2057         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2058         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2059                 vwc = true;
2060         blk_queue_write_cache(q, vwc, vwc);
2061 }
2062
2063 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2064 {
2065         __le64 ts;
2066         int ret;
2067
2068         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2069                 return 0;
2070
2071         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2072         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2073                         NULL);
2074         if (ret)
2075                 dev_warn_once(ctrl->device,
2076                         "could not set timestamp (%d)\n", ret);
2077         return ret;
2078 }
2079
2080 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2081 {
2082         struct nvme_feat_host_behavior *host;
2083         int ret;
2084
2085         /* Don't bother enabling the feature if retry delay is not reported */
2086         if (!ctrl->crdt[0])
2087                 return 0;
2088
2089         host = kzalloc(sizeof(*host), GFP_KERNEL);
2090         if (!host)
2091                 return 0;
2092
2093         host->acre = NVME_ENABLE_ACRE;
2094         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2095                                 host, sizeof(*host), NULL);
2096         kfree(host);
2097         return ret;
2098 }
2099
2100 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2101 {
2102         /*
2103          * APST (Autonomous Power State Transition) lets us program a
2104          * table of power state transitions that the controller will
2105          * perform automatically.  We configure it with a simple
2106          * heuristic: we are willing to spend at most 2% of the time
2107          * transitioning between power states.  Therefore, when running
2108          * in any given state, we will enter the next lower-power
2109          * non-operational state after waiting 50 * (enlat + exlat)
2110          * microseconds, as long as that state's exit latency is under
2111          * the requested maximum latency.
2112          *
2113          * We will not autonomously enter any non-operational state for
2114          * which the total latency exceeds ps_max_latency_us.  Users
2115          * can set ps_max_latency_us to zero to turn off APST.
2116          */
2117
2118         unsigned apste;
2119         struct nvme_feat_auto_pst *table;
2120         u64 max_lat_us = 0;
2121         int max_ps = -1;
2122         int ret;
2123
2124         /*
2125          * If APST isn't supported or if we haven't been initialized yet,
2126          * then don't do anything.
2127          */
2128         if (!ctrl->apsta)
2129                 return 0;
2130
2131         if (ctrl->npss > 31) {
2132                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2133                 return 0;
2134         }
2135
2136         table = kzalloc(sizeof(*table), GFP_KERNEL);
2137         if (!table)
2138                 return 0;
2139
2140         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2141                 /* Turn off APST. */
2142                 apste = 0;
2143                 dev_dbg(ctrl->device, "APST disabled\n");
2144         } else {
2145                 __le64 target = cpu_to_le64(0);
2146                 int state;
2147
2148                 /*
2149                  * Walk through all states from lowest- to highest-power.
2150                  * According to the spec, lower-numbered states use more
2151                  * power.  NPSS, despite the name, is the index of the
2152                  * lowest-power state, not the number of states.
2153                  */
2154                 for (state = (int)ctrl->npss; state >= 0; state--) {
2155                         u64 total_latency_us, exit_latency_us, transition_ms;
2156
2157                         if (target)
2158                                 table->entries[state] = target;
2159
2160                         /*
2161                          * Don't allow transitions to the deepest state
2162                          * if it's quirked off.
2163                          */
2164                         if (state == ctrl->npss &&
2165                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2166                                 continue;
2167
2168                         /*
2169                          * Is this state a useful non-operational state for
2170                          * higher-power states to autonomously transition to?
2171                          */
2172                         if (!(ctrl->psd[state].flags &
2173                               NVME_PS_FLAGS_NON_OP_STATE))
2174                                 continue;
2175
2176                         exit_latency_us =
2177                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2178                         if (exit_latency_us > ctrl->ps_max_latency_us)
2179                                 continue;
2180
2181                         total_latency_us =
2182                                 exit_latency_us +
2183                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2184
2185                         /*
2186                          * This state is good.  Use it as the APST idle
2187                          * target for higher power states.
2188                          */
2189                         transition_ms = total_latency_us + 19;
2190                         do_div(transition_ms, 20);
2191                         if (transition_ms > (1 << 24) - 1)
2192                                 transition_ms = (1 << 24) - 1;
2193
2194                         target = cpu_to_le64((state << 3) |
2195                                              (transition_ms << 8));
2196
2197                         if (max_ps == -1)
2198                                 max_ps = state;
2199
2200                         if (total_latency_us > max_lat_us)
2201                                 max_lat_us = total_latency_us;
2202                 }
2203
2204                 apste = 1;
2205
2206                 if (max_ps == -1) {
2207                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2208                 } else {
2209                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2210                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2211                 }
2212         }
2213
2214         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2215                                 table, sizeof(*table), NULL);
2216         if (ret)
2217                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2218
2219         kfree(table);
2220         return ret;
2221 }
2222
2223 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2224 {
2225         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2226         u64 latency;
2227
2228         switch (val) {
2229         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2230         case PM_QOS_LATENCY_ANY:
2231                 latency = U64_MAX;
2232                 break;
2233
2234         default:
2235                 latency = val;
2236         }
2237
2238         if (ctrl->ps_max_latency_us != latency) {
2239                 ctrl->ps_max_latency_us = latency;
2240                 nvme_configure_apst(ctrl);
2241         }
2242 }
2243
2244 struct nvme_core_quirk_entry {
2245         /*
2246          * NVMe model and firmware strings are padded with spaces.  For
2247          * simplicity, strings in the quirk table are padded with NULLs
2248          * instead.
2249          */
2250         u16 vid;
2251         const char *mn;
2252         const char *fr;
2253         unsigned long quirks;
2254 };
2255
2256 static const struct nvme_core_quirk_entry core_quirks[] = {
2257         {
2258                 /*
2259                  * This Toshiba device seems to die using any APST states.  See:
2260                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2261                  */
2262                 .vid = 0x1179,
2263                 .mn = "THNSF5256GPUK TOSHIBA",
2264                 .quirks = NVME_QUIRK_NO_APST,
2265         }
2266 };
2267
2268 /* match is null-terminated but idstr is space-padded. */
2269 static bool string_matches(const char *idstr, const char *match, size_t len)
2270 {
2271         size_t matchlen;
2272
2273         if (!match)
2274                 return true;
2275
2276         matchlen = strlen(match);
2277         WARN_ON_ONCE(matchlen > len);
2278
2279         if (memcmp(idstr, match, matchlen))
2280                 return false;
2281
2282         for (; matchlen < len; matchlen++)
2283                 if (idstr[matchlen] != ' ')
2284                         return false;
2285
2286         return true;
2287 }
2288
2289 static bool quirk_matches(const struct nvme_id_ctrl *id,
2290                           const struct nvme_core_quirk_entry *q)
2291 {
2292         return q->vid == le16_to_cpu(id->vid) &&
2293                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2294                 string_matches(id->fr, q->fr, sizeof(id->fr));
2295 }
2296
2297 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2298                 struct nvme_id_ctrl *id)
2299 {
2300         size_t nqnlen;
2301         int off;
2302
2303         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2304                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2305                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2306                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2307                         return;
2308                 }
2309
2310                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2311                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2312         }
2313
2314         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2315         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2316                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2317                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2318         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2319         off += sizeof(id->sn);
2320         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2321         off += sizeof(id->mn);
2322         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2323 }
2324
2325 static void nvme_release_subsystem(struct device *dev)
2326 {
2327         struct nvme_subsystem *subsys =
2328                 container_of(dev, struct nvme_subsystem, dev);
2329
2330         ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2331         kfree(subsys);
2332 }
2333
2334 static void nvme_destroy_subsystem(struct kref *ref)
2335 {
2336         struct nvme_subsystem *subsys =
2337                         container_of(ref, struct nvme_subsystem, ref);
2338
2339         mutex_lock(&nvme_subsystems_lock);
2340         list_del(&subsys->entry);
2341         mutex_unlock(&nvme_subsystems_lock);
2342
2343         ida_destroy(&subsys->ns_ida);
2344         device_del(&subsys->dev);
2345         put_device(&subsys->dev);
2346 }
2347
2348 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2349 {
2350         kref_put(&subsys->ref, nvme_destroy_subsystem);
2351 }
2352
2353 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2354 {
2355         struct nvme_subsystem *subsys;
2356
2357         lockdep_assert_held(&nvme_subsystems_lock);
2358
2359         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2360                 if (strcmp(subsys->subnqn, subsysnqn))
2361                         continue;
2362                 if (!kref_get_unless_zero(&subsys->ref))
2363                         continue;
2364                 return subsys;
2365         }
2366
2367         return NULL;
2368 }
2369
2370 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2371         struct device_attribute subsys_attr_##_name = \
2372                 __ATTR(_name, _mode, _show, NULL)
2373
2374 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2375                                     struct device_attribute *attr,
2376                                     char *buf)
2377 {
2378         struct nvme_subsystem *subsys =
2379                 container_of(dev, struct nvme_subsystem, dev);
2380
2381         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2382 }
2383 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2384
2385 #define nvme_subsys_show_str_function(field)                            \
2386 static ssize_t subsys_##field##_show(struct device *dev,                \
2387                             struct device_attribute *attr, char *buf)   \
2388 {                                                                       \
2389         struct nvme_subsystem *subsys =                                 \
2390                 container_of(dev, struct nvme_subsystem, dev);          \
2391         return sprintf(buf, "%.*s\n",                                   \
2392                        (int)sizeof(subsys->field), subsys->field);      \
2393 }                                                                       \
2394 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2395
2396 nvme_subsys_show_str_function(model);
2397 nvme_subsys_show_str_function(serial);
2398 nvme_subsys_show_str_function(firmware_rev);
2399
2400 static struct attribute *nvme_subsys_attrs[] = {
2401         &subsys_attr_model.attr,
2402         &subsys_attr_serial.attr,
2403         &subsys_attr_firmware_rev.attr,
2404         &subsys_attr_subsysnqn.attr,
2405 #ifdef CONFIG_NVME_MULTIPATH
2406         &subsys_attr_iopolicy.attr,
2407 #endif
2408         NULL,
2409 };
2410
2411 static struct attribute_group nvme_subsys_attrs_group = {
2412         .attrs = nvme_subsys_attrs,
2413 };
2414
2415 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2416         &nvme_subsys_attrs_group,
2417         NULL,
2418 };
2419
2420 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2421                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2422 {
2423         struct nvme_ctrl *tmp;
2424
2425         lockdep_assert_held(&nvme_subsystems_lock);
2426
2427         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2428                 if (tmp->state == NVME_CTRL_DELETING ||
2429                     tmp->state == NVME_CTRL_DEAD)
2430                         continue;
2431
2432                 if (tmp->cntlid == ctrl->cntlid) {
2433                         dev_err(ctrl->device,
2434                                 "Duplicate cntlid %u with %s, rejecting\n",
2435                                 ctrl->cntlid, dev_name(tmp->device));
2436                         return false;
2437                 }
2438
2439                 if ((id->cmic & (1 << 1)) ||
2440                     (ctrl->opts && ctrl->opts->discovery_nqn))
2441                         continue;
2442
2443                 dev_err(ctrl->device,
2444                         "Subsystem does not support multiple controllers\n");
2445                 return false;
2446         }
2447
2448         return true;
2449 }
2450
2451 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2452 {
2453         struct nvme_subsystem *subsys, *found;
2454         int ret;
2455
2456         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2457         if (!subsys)
2458                 return -ENOMEM;
2459         ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2460         if (ret < 0) {
2461                 kfree(subsys);
2462                 return ret;
2463         }
2464         subsys->instance = ret;
2465         mutex_init(&subsys->lock);
2466         kref_init(&subsys->ref);
2467         INIT_LIST_HEAD(&subsys->ctrls);
2468         INIT_LIST_HEAD(&subsys->nsheads);
2469         nvme_init_subnqn(subsys, ctrl, id);
2470         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2471         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2472         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2473         subsys->vendor_id = le16_to_cpu(id->vid);
2474         subsys->cmic = id->cmic;
2475         subsys->awupf = le16_to_cpu(id->awupf);
2476 #ifdef CONFIG_NVME_MULTIPATH
2477         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2478 #endif
2479
2480         subsys->dev.class = nvme_subsys_class;
2481         subsys->dev.release = nvme_release_subsystem;
2482         subsys->dev.groups = nvme_subsys_attrs_groups;
2483         dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2484         device_initialize(&subsys->dev);
2485
2486         mutex_lock(&nvme_subsystems_lock);
2487         found = __nvme_find_get_subsystem(subsys->subnqn);
2488         if (found) {
2489                 put_device(&subsys->dev);
2490                 subsys = found;
2491
2492                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2493                         ret = -EINVAL;
2494                         goto out_put_subsystem;
2495                 }
2496         } else {
2497                 ret = device_add(&subsys->dev);
2498                 if (ret) {
2499                         dev_err(ctrl->device,
2500                                 "failed to register subsystem device.\n");
2501                         goto out_unlock;
2502                 }
2503                 ida_init(&subsys->ns_ida);
2504                 list_add_tail(&subsys->entry, &nvme_subsystems);
2505         }
2506
2507         if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2508                         dev_name(ctrl->device))) {
2509                 dev_err(ctrl->device,
2510                         "failed to create sysfs link from subsystem.\n");
2511                 goto out_put_subsystem;
2512         }
2513
2514         ctrl->subsys = subsys;
2515         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2516         mutex_unlock(&nvme_subsystems_lock);
2517         return 0;
2518
2519 out_put_subsystem:
2520         nvme_put_subsystem(subsys);
2521 out_unlock:
2522         mutex_unlock(&nvme_subsystems_lock);
2523         put_device(&subsys->dev);
2524         return ret;
2525 }
2526
2527 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2528                 void *log, size_t size, u64 offset)
2529 {
2530         struct nvme_command c = { };
2531         unsigned long dwlen = size / 4 - 1;
2532
2533         c.get_log_page.opcode = nvme_admin_get_log_page;
2534         c.get_log_page.nsid = cpu_to_le32(nsid);
2535         c.get_log_page.lid = log_page;
2536         c.get_log_page.lsp = lsp;
2537         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2538         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2539         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2540         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2541
2542         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2543 }
2544
2545 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2546 {
2547         int ret;
2548
2549         if (!ctrl->effects)
2550                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2551
2552         if (!ctrl->effects)
2553                 return 0;
2554
2555         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2556                         ctrl->effects, sizeof(*ctrl->effects), 0);
2557         if (ret) {
2558                 kfree(ctrl->effects);
2559                 ctrl->effects = NULL;
2560         }
2561         return ret;
2562 }
2563
2564 /*
2565  * Initialize the cached copies of the Identify data and various controller
2566  * register in our nvme_ctrl structure.  This should be called as soon as
2567  * the admin queue is fully up and running.
2568  */
2569 int nvme_init_identify(struct nvme_ctrl *ctrl)
2570 {
2571         struct nvme_id_ctrl *id;
2572         int ret, page_shift;
2573         u32 max_hw_sectors;
2574         bool prev_apst_enabled;
2575
2576         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2577         if (ret) {
2578                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2579                 return ret;
2580         }
2581         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2582         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2583
2584         if (ctrl->vs >= NVME_VS(1, 1, 0))
2585                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2586
2587         ret = nvme_identify_ctrl(ctrl, &id);
2588         if (ret) {
2589                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2590                 return -EIO;
2591         }
2592
2593         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2594                 ret = nvme_get_effects_log(ctrl);
2595                 if (ret < 0)
2596                         goto out_free;
2597         }
2598
2599         if (!ctrl->identified) {
2600                 int i;
2601
2602                 ret = nvme_init_subsystem(ctrl, id);
2603                 if (ret)
2604                         goto out_free;
2605
2606                 /*
2607                  * Check for quirks.  Quirk can depend on firmware version,
2608                  * so, in principle, the set of quirks present can change
2609                  * across a reset.  As a possible future enhancement, we
2610                  * could re-scan for quirks every time we reinitialize
2611                  * the device, but we'd have to make sure that the driver
2612                  * behaves intelligently if the quirks change.
2613                  */
2614                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2615                         if (quirk_matches(id, &core_quirks[i]))
2616                                 ctrl->quirks |= core_quirks[i].quirks;
2617                 }
2618         }
2619
2620         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2621                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2622                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2623         }
2624
2625         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2626         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2627         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2628
2629         ctrl->oacs = le16_to_cpu(id->oacs);
2630         ctrl->oncs = le16_to_cpu(id->oncs);
2631         ctrl->mtfa = le16_to_cpu(id->mtfa);
2632         ctrl->oaes = le32_to_cpu(id->oaes);
2633         atomic_set(&ctrl->abort_limit, id->acl + 1);
2634         ctrl->vwc = id->vwc;
2635         if (id->mdts)
2636                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2637         else
2638                 max_hw_sectors = UINT_MAX;
2639         ctrl->max_hw_sectors =
2640                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2641
2642         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2643         ctrl->sgls = le32_to_cpu(id->sgls);
2644         ctrl->kas = le16_to_cpu(id->kas);
2645         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2646         ctrl->ctratt = le32_to_cpu(id->ctratt);
2647
2648         if (id->rtd3e) {
2649                 /* us -> s */
2650                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2651
2652                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2653                                                  shutdown_timeout, 60);
2654
2655                 if (ctrl->shutdown_timeout != shutdown_timeout)
2656                         dev_info(ctrl->device,
2657                                  "Shutdown timeout set to %u seconds\n",
2658                                  ctrl->shutdown_timeout);
2659         } else
2660                 ctrl->shutdown_timeout = shutdown_timeout;
2661
2662         ctrl->npss = id->npss;
2663         ctrl->apsta = id->apsta;
2664         prev_apst_enabled = ctrl->apst_enabled;
2665         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2666                 if (force_apst && id->apsta) {
2667                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2668                         ctrl->apst_enabled = true;
2669                 } else {
2670                         ctrl->apst_enabled = false;
2671                 }
2672         } else {
2673                 ctrl->apst_enabled = id->apsta;
2674         }
2675         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2676
2677         if (ctrl->ops->flags & NVME_F_FABRICS) {
2678                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2679                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2680                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2681                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2682
2683                 /*
2684                  * In fabrics we need to verify the cntlid matches the
2685                  * admin connect
2686                  */
2687                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2688                         ret = -EINVAL;
2689                         goto out_free;
2690                 }
2691
2692                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2693                         dev_err(ctrl->device,
2694                                 "keep-alive support is mandatory for fabrics\n");
2695                         ret = -EINVAL;
2696                         goto out_free;
2697                 }
2698         } else {
2699                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2700                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2701                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2702                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2703                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2704         }
2705
2706         ret = nvme_mpath_init(ctrl, id);
2707         kfree(id);
2708
2709         if (ret < 0)
2710                 return ret;
2711
2712         if (ctrl->apst_enabled && !prev_apst_enabled)
2713                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2714         else if (!ctrl->apst_enabled && prev_apst_enabled)
2715                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2716
2717         ret = nvme_configure_apst(ctrl);
2718         if (ret < 0)
2719                 return ret;
2720         
2721         ret = nvme_configure_timestamp(ctrl);
2722         if (ret < 0)
2723                 return ret;
2724
2725         ret = nvme_configure_directives(ctrl);
2726         if (ret < 0)
2727                 return ret;
2728
2729         ret = nvme_configure_acre(ctrl);
2730         if (ret < 0)
2731                 return ret;
2732
2733         ctrl->identified = true;
2734
2735         return 0;
2736
2737 out_free:
2738         kfree(id);
2739         return ret;
2740 }
2741 EXPORT_SYMBOL_GPL(nvme_init_identify);
2742
2743 static int nvme_dev_open(struct inode *inode, struct file *file)
2744 {
2745         struct nvme_ctrl *ctrl =
2746                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2747
2748         switch (ctrl->state) {
2749         case NVME_CTRL_LIVE:
2750         case NVME_CTRL_ADMIN_ONLY:
2751                 break;
2752         default:
2753                 return -EWOULDBLOCK;
2754         }
2755
2756         file->private_data = ctrl;
2757         return 0;
2758 }
2759
2760 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2761 {
2762         struct nvme_ns *ns;
2763         int ret;
2764
2765         down_read(&ctrl->namespaces_rwsem);
2766         if (list_empty(&ctrl->namespaces)) {
2767                 ret = -ENOTTY;
2768                 goto out_unlock;
2769         }
2770
2771         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2772         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2773                 dev_warn(ctrl->device,
2774                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2775                 ret = -EINVAL;
2776                 goto out_unlock;
2777         }
2778
2779         dev_warn(ctrl->device,
2780                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2781         kref_get(&ns->kref);
2782         up_read(&ctrl->namespaces_rwsem);
2783
2784         ret = nvme_user_cmd(ctrl, ns, argp);
2785         nvme_put_ns(ns);
2786         return ret;
2787
2788 out_unlock:
2789         up_read(&ctrl->namespaces_rwsem);
2790         return ret;
2791 }
2792
2793 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2794                 unsigned long arg)
2795 {
2796         struct nvme_ctrl *ctrl = file->private_data;
2797         void __user *argp = (void __user *)arg;
2798
2799         switch (cmd) {
2800         case NVME_IOCTL_ADMIN_CMD:
2801                 return nvme_user_cmd(ctrl, NULL, argp);
2802         case NVME_IOCTL_IO_CMD:
2803                 return nvme_dev_user_cmd(ctrl, argp);
2804         case NVME_IOCTL_RESET:
2805                 dev_warn(ctrl->device, "resetting controller\n");
2806                 return nvme_reset_ctrl_sync(ctrl);
2807         case NVME_IOCTL_SUBSYS_RESET:
2808                 return nvme_reset_subsystem(ctrl);
2809         case NVME_IOCTL_RESCAN:
2810                 nvme_queue_scan(ctrl);
2811                 return 0;
2812         default:
2813                 return -ENOTTY;
2814         }
2815 }
2816
2817 static const struct file_operations nvme_dev_fops = {
2818         .owner          = THIS_MODULE,
2819         .open           = nvme_dev_open,
2820         .unlocked_ioctl = nvme_dev_ioctl,
2821         .compat_ioctl   = nvme_dev_ioctl,
2822 };
2823
2824 static ssize_t nvme_sysfs_reset(struct device *dev,
2825                                 struct device_attribute *attr, const char *buf,
2826                                 size_t count)
2827 {
2828         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2829         int ret;
2830
2831         ret = nvme_reset_ctrl_sync(ctrl);
2832         if (ret < 0)
2833                 return ret;
2834         return count;
2835 }
2836 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2837
2838 static ssize_t nvme_sysfs_rescan(struct device *dev,
2839                                 struct device_attribute *attr, const char *buf,
2840                                 size_t count)
2841 {
2842         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2843
2844         nvme_queue_scan(ctrl);
2845         return count;
2846 }
2847 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2848
2849 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2850 {
2851         struct gendisk *disk = dev_to_disk(dev);
2852
2853         if (disk->fops == &nvme_fops)
2854                 return nvme_get_ns_from_dev(dev)->head;
2855         else
2856                 return disk->private_data;
2857 }
2858
2859 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2860                 char *buf)
2861 {
2862         struct nvme_ns_head *head = dev_to_ns_head(dev);
2863         struct nvme_ns_ids *ids = &head->ids;
2864         struct nvme_subsystem *subsys = head->subsys;
2865         int serial_len = sizeof(subsys->serial);
2866         int model_len = sizeof(subsys->model);
2867
2868         if (!uuid_is_null(&ids->uuid))
2869                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2870
2871         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2872                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2873
2874         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2875                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2876
2877         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2878                                   subsys->serial[serial_len - 1] == '\0'))
2879                 serial_len--;
2880         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2881                                  subsys->model[model_len - 1] == '\0'))
2882                 model_len--;
2883
2884         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2885                 serial_len, subsys->serial, model_len, subsys->model,
2886                 head->ns_id);
2887 }
2888 static DEVICE_ATTR_RO(wwid);
2889
2890 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2891                 char *buf)
2892 {
2893         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2894 }
2895 static DEVICE_ATTR_RO(nguid);
2896
2897 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2898                 char *buf)
2899 {
2900         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2901
2902         /* For backward compatibility expose the NGUID to userspace if
2903          * we have no UUID set
2904          */
2905         if (uuid_is_null(&ids->uuid)) {
2906                 printk_ratelimited(KERN_WARNING
2907                                    "No UUID available providing old NGUID\n");
2908                 return sprintf(buf, "%pU\n", ids->nguid);
2909         }
2910         return sprintf(buf, "%pU\n", &ids->uuid);
2911 }
2912 static DEVICE_ATTR_RO(uuid);
2913
2914 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2915                 char *buf)
2916 {
2917         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2918 }
2919 static DEVICE_ATTR_RO(eui);
2920
2921 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2922                 char *buf)
2923 {
2924         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2925 }
2926 static DEVICE_ATTR_RO(nsid);
2927
2928 static struct attribute *nvme_ns_id_attrs[] = {
2929         &dev_attr_wwid.attr,
2930         &dev_attr_uuid.attr,
2931         &dev_attr_nguid.attr,
2932         &dev_attr_eui.attr,
2933         &dev_attr_nsid.attr,
2934 #ifdef CONFIG_NVME_MULTIPATH
2935         &dev_attr_ana_grpid.attr,
2936         &dev_attr_ana_state.attr,
2937 #endif
2938         NULL,
2939 };
2940
2941 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2942                 struct attribute *a, int n)
2943 {
2944         struct device *dev = container_of(kobj, struct device, kobj);
2945         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2946
2947         if (a == &dev_attr_uuid.attr) {
2948                 if (uuid_is_null(&ids->uuid) &&
2949                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2950                         return 0;
2951         }
2952         if (a == &dev_attr_nguid.attr) {
2953                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2954                         return 0;
2955         }
2956         if (a == &dev_attr_eui.attr) {
2957                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2958                         return 0;
2959         }
2960 #ifdef CONFIG_NVME_MULTIPATH
2961         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2962                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2963                         return 0;
2964                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2965                         return 0;
2966         }
2967 #endif
2968         return a->mode;
2969 }
2970
2971 static const struct attribute_group nvme_ns_id_attr_group = {
2972         .attrs          = nvme_ns_id_attrs,
2973         .is_visible     = nvme_ns_id_attrs_are_visible,
2974 };
2975
2976 const struct attribute_group *nvme_ns_id_attr_groups[] = {
2977         &nvme_ns_id_attr_group,
2978 #ifdef CONFIG_NVM
2979         &nvme_nvm_attr_group,
2980 #endif
2981         NULL,
2982 };
2983
2984 #define nvme_show_str_function(field)                                           \
2985 static ssize_t  field##_show(struct device *dev,                                \
2986                             struct device_attribute *attr, char *buf)           \
2987 {                                                                               \
2988         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2989         return sprintf(buf, "%.*s\n",                                           \
2990                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
2991 }                                                                               \
2992 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2993
2994 nvme_show_str_function(model);
2995 nvme_show_str_function(serial);
2996 nvme_show_str_function(firmware_rev);
2997
2998 #define nvme_show_int_function(field)                                           \
2999 static ssize_t  field##_show(struct device *dev,                                \
3000                             struct device_attribute *attr, char *buf)           \
3001 {                                                                               \
3002         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3003         return sprintf(buf, "%d\n", ctrl->field);       \
3004 }                                                                               \
3005 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3006
3007 nvme_show_int_function(cntlid);
3008 nvme_show_int_function(numa_node);
3009
3010 static ssize_t nvme_sysfs_delete(struct device *dev,
3011                                 struct device_attribute *attr, const char *buf,
3012                                 size_t count)
3013 {
3014         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3015
3016         if (device_remove_file_self(dev, attr))
3017                 nvme_delete_ctrl_sync(ctrl);
3018         return count;
3019 }
3020 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3021
3022 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3023                                          struct device_attribute *attr,
3024                                          char *buf)
3025 {
3026         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3027
3028         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3029 }
3030 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3031
3032 static ssize_t nvme_sysfs_show_state(struct device *dev,
3033                                      struct device_attribute *attr,
3034                                      char *buf)
3035 {
3036         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3037         static const char *const state_name[] = {
3038                 [NVME_CTRL_NEW]         = "new",
3039                 [NVME_CTRL_LIVE]        = "live",
3040                 [NVME_CTRL_ADMIN_ONLY]  = "only-admin",
3041                 [NVME_CTRL_RESETTING]   = "resetting",
3042                 [NVME_CTRL_CONNECTING]  = "connecting",
3043                 [NVME_CTRL_DELETING]    = "deleting",
3044                 [NVME_CTRL_DEAD]        = "dead",
3045         };
3046
3047         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3048             state_name[ctrl->state])
3049                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3050
3051         return sprintf(buf, "unknown state\n");
3052 }
3053
3054 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3055
3056 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3057                                          struct device_attribute *attr,
3058                                          char *buf)
3059 {
3060         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3061
3062         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3063 }
3064 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3065
3066 static ssize_t nvme_sysfs_show_address(struct device *dev,
3067                                          struct device_attribute *attr,
3068                                          char *buf)
3069 {
3070         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3071
3072         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3073 }
3074 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3075
3076 static struct attribute *nvme_dev_attrs[] = {
3077         &dev_attr_reset_controller.attr,
3078         &dev_attr_rescan_controller.attr,
3079         &dev_attr_model.attr,
3080         &dev_attr_serial.attr,
3081         &dev_attr_firmware_rev.attr,
3082         &dev_attr_cntlid.attr,
3083         &dev_attr_delete_controller.attr,
3084         &dev_attr_transport.attr,
3085         &dev_attr_subsysnqn.attr,
3086         &dev_attr_address.attr,
3087         &dev_attr_state.attr,
3088         &dev_attr_numa_node.attr,
3089         NULL
3090 };
3091
3092 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3093                 struct attribute *a, int n)
3094 {
3095         struct device *dev = container_of(kobj, struct device, kobj);
3096         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3097
3098         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3099                 return 0;
3100         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3101                 return 0;
3102
3103         return a->mode;
3104 }
3105
3106 static struct attribute_group nvme_dev_attrs_group = {
3107         .attrs          = nvme_dev_attrs,
3108         .is_visible     = nvme_dev_attrs_are_visible,
3109 };
3110
3111 static const struct attribute_group *nvme_dev_attr_groups[] = {
3112         &nvme_dev_attrs_group,
3113         NULL,
3114 };
3115
3116 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3117                 unsigned nsid)
3118 {
3119         struct nvme_ns_head *h;
3120
3121         lockdep_assert_held(&subsys->lock);
3122
3123         list_for_each_entry(h, &subsys->nsheads, entry) {
3124                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3125                         return h;
3126         }
3127
3128         return NULL;
3129 }
3130
3131 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3132                 struct nvme_ns_head *new)
3133 {
3134         struct nvme_ns_head *h;
3135
3136         lockdep_assert_held(&subsys->lock);
3137
3138         list_for_each_entry(h, &subsys->nsheads, entry) {
3139                 if (nvme_ns_ids_valid(&new->ids) &&
3140                     !list_empty(&h->list) &&
3141                     nvme_ns_ids_equal(&new->ids, &h->ids))
3142                         return -EINVAL;
3143         }
3144
3145         return 0;
3146 }
3147
3148 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3149                 unsigned nsid, struct nvme_id_ns *id)
3150 {
3151         struct nvme_ns_head *head;
3152         size_t size = sizeof(*head);
3153         int ret = -ENOMEM;
3154
3155 #ifdef CONFIG_NVME_MULTIPATH
3156         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3157 #endif
3158
3159         head = kzalloc(size, GFP_KERNEL);
3160         if (!head)
3161                 goto out;
3162         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3163         if (ret < 0)
3164                 goto out_free_head;
3165         head->instance = ret;
3166         INIT_LIST_HEAD(&head->list);
3167         ret = init_srcu_struct(&head->srcu);
3168         if (ret)
3169                 goto out_ida_remove;
3170         head->subsys = ctrl->subsys;
3171         head->ns_id = nsid;
3172         kref_init(&head->ref);
3173
3174         nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3175
3176         ret = __nvme_check_ids(ctrl->subsys, head);
3177         if (ret) {
3178                 dev_err(ctrl->device,
3179                         "duplicate IDs for nsid %d\n", nsid);
3180                 goto out_cleanup_srcu;
3181         }
3182
3183         ret = nvme_mpath_alloc_disk(ctrl, head);
3184         if (ret)
3185                 goto out_cleanup_srcu;
3186
3187         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3188
3189         kref_get(&ctrl->subsys->ref);
3190
3191         return head;
3192 out_cleanup_srcu:
3193         cleanup_srcu_struct(&head->srcu);
3194 out_ida_remove:
3195         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3196 out_free_head:
3197         kfree(head);
3198 out:
3199         return ERR_PTR(ret);
3200 }
3201
3202 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3203                 struct nvme_id_ns *id)
3204 {
3205         struct nvme_ctrl *ctrl = ns->ctrl;
3206         bool is_shared = id->nmic & (1 << 0);
3207         struct nvme_ns_head *head = NULL;
3208         int ret = 0;
3209
3210         mutex_lock(&ctrl->subsys->lock);
3211         if (is_shared)
3212                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3213         if (!head) {
3214                 head = nvme_alloc_ns_head(ctrl, nsid, id);
3215                 if (IS_ERR(head)) {
3216                         ret = PTR_ERR(head);
3217                         goto out_unlock;
3218                 }
3219         } else {
3220                 struct nvme_ns_ids ids;
3221
3222                 nvme_report_ns_ids(ctrl, nsid, id, &ids);
3223                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3224                         dev_err(ctrl->device,
3225                                 "IDs don't match for shared namespace %d\n",
3226                                         nsid);
3227                         ret = -EINVAL;
3228                         goto out_unlock;
3229                 }
3230         }
3231
3232         list_add_tail(&ns->siblings, &head->list);
3233         ns->head = head;
3234
3235 out_unlock:
3236         mutex_unlock(&ctrl->subsys->lock);
3237         return ret;
3238 }
3239
3240 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3241 {
3242         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3243         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3244
3245         return nsa->head->ns_id - nsb->head->ns_id;
3246 }
3247
3248 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3249 {
3250         struct nvme_ns *ns, *ret = NULL;
3251
3252         down_read(&ctrl->namespaces_rwsem);
3253         list_for_each_entry(ns, &ctrl->namespaces, list) {
3254                 if (ns->head->ns_id == nsid) {
3255                         if (!kref_get_unless_zero(&ns->kref))
3256                                 continue;
3257                         ret = ns;
3258                         break;
3259                 }
3260                 if (ns->head->ns_id > nsid)
3261                         break;
3262         }
3263         up_read(&ctrl->namespaces_rwsem);
3264         return ret;
3265 }
3266
3267 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3268 {
3269         struct streams_directive_params s;
3270         int ret;
3271
3272         if (!ctrl->nr_streams)
3273                 return 0;
3274
3275         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3276         if (ret)
3277                 return ret;
3278
3279         ns->sws = le32_to_cpu(s.sws);
3280         ns->sgs = le16_to_cpu(s.sgs);
3281
3282         if (ns->sws) {
3283                 unsigned int bs = 1 << ns->lba_shift;
3284
3285                 blk_queue_io_min(ns->queue, bs * ns->sws);
3286                 if (ns->sgs)
3287                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3288         }
3289
3290         return 0;
3291 }
3292
3293 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3294 {
3295         struct nvme_ns *ns;
3296         struct gendisk *disk;
3297         struct nvme_id_ns *id;
3298         char disk_name[DISK_NAME_LEN];
3299         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3300
3301         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3302         if (!ns)
3303                 return -ENOMEM;
3304
3305         ns->queue = blk_mq_init_queue(ctrl->tagset);
3306         if (IS_ERR(ns->queue)) {
3307                 ret = PTR_ERR(ns->queue);
3308                 goto out_free_ns;
3309         }
3310
3311         if (ctrl->opts && ctrl->opts->data_digest)
3312                 ns->queue->backing_dev_info->capabilities
3313                         |= BDI_CAP_STABLE_WRITES;
3314
3315         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3316         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3317                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3318
3319         ns->queue->queuedata = ns;
3320         ns->ctrl = ctrl;
3321
3322         kref_init(&ns->kref);
3323         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3324
3325         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3326         nvme_set_queue_limits(ctrl, ns->queue);
3327
3328         id = nvme_identify_ns(ctrl, nsid);
3329         if (!id) {
3330                 ret = -EIO;
3331                 goto out_free_queue;
3332         }
3333
3334         if (id->ncap == 0) {
3335                 ret = -EINVAL;
3336                 goto out_free_id;
3337         }
3338
3339         ret = nvme_init_ns_head(ns, nsid, id);
3340         if (ret)
3341                 goto out_free_id;
3342         nvme_setup_streams_ns(ctrl, ns);
3343         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3344
3345         disk = alloc_disk_node(0, node);
3346         if (!disk) {
3347                 ret = -ENOMEM;
3348                 goto out_unlink_ns;
3349         }
3350
3351         disk->fops = &nvme_fops;
3352         disk->private_data = ns;
3353         disk->queue = ns->queue;
3354         disk->flags = flags;
3355         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3356         ns->disk = disk;
3357
3358         __nvme_revalidate_disk(disk, id);
3359
3360         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3361                 ret = nvme_nvm_register(ns, disk_name, node);
3362                 if (ret) {
3363                         dev_warn(ctrl->device, "LightNVM init failure\n");
3364                         goto out_put_disk;
3365                 }
3366         }
3367
3368         down_write(&ctrl->namespaces_rwsem);
3369         list_add_tail(&ns->list, &ctrl->namespaces);
3370         up_write(&ctrl->namespaces_rwsem);
3371
3372         nvme_get_ctrl(ctrl);
3373
3374         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3375
3376         nvme_mpath_add_disk(ns, id);
3377         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3378         kfree(id);
3379
3380         return 0;
3381  out_put_disk:
3382         put_disk(ns->disk);
3383  out_unlink_ns:
3384         mutex_lock(&ctrl->subsys->lock);
3385         list_del_rcu(&ns->siblings);
3386         mutex_unlock(&ctrl->subsys->lock);
3387         nvme_put_ns_head(ns->head);
3388  out_free_id:
3389         kfree(id);
3390  out_free_queue:
3391         blk_cleanup_queue(ns->queue);
3392  out_free_ns:
3393         kfree(ns);
3394         return ret;
3395 }
3396
3397 static void nvme_ns_remove(struct nvme_ns *ns)
3398 {
3399         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3400                 return;
3401
3402         nvme_fault_inject_fini(&ns->fault_inject);
3403
3404         mutex_lock(&ns->ctrl->subsys->lock);
3405         list_del_rcu(&ns->siblings);
3406         mutex_unlock(&ns->ctrl->subsys->lock);
3407         synchronize_rcu(); /* guarantee not available in head->list */
3408         nvme_mpath_clear_current_path(ns);
3409         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3410
3411         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3412                 del_gendisk(ns->disk);
3413                 blk_cleanup_queue(ns->queue);
3414                 if (blk_get_integrity(ns->disk))
3415                         blk_integrity_unregister(ns->disk);
3416         }
3417
3418         down_write(&ns->ctrl->namespaces_rwsem);
3419         list_del_init(&ns->list);
3420         up_write(&ns->ctrl->namespaces_rwsem);
3421
3422         nvme_mpath_check_last_path(ns);
3423         nvme_put_ns(ns);
3424 }
3425
3426 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3427 {
3428         struct nvme_ns *ns;
3429
3430         ns = nvme_find_get_ns(ctrl, nsid);
3431         if (ns) {
3432                 if (ns->disk && revalidate_disk(ns->disk))
3433                         nvme_ns_remove(ns);
3434                 nvme_put_ns(ns);
3435         } else
3436                 nvme_alloc_ns(ctrl, nsid);
3437 }
3438
3439 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3440                                         unsigned nsid)
3441 {
3442         struct nvme_ns *ns, *next;
3443         LIST_HEAD(rm_list);
3444
3445         down_write(&ctrl->namespaces_rwsem);
3446         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3447                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3448                         list_move_tail(&ns->list, &rm_list);
3449         }
3450         up_write(&ctrl->namespaces_rwsem);
3451
3452         list_for_each_entry_safe(ns, next, &rm_list, list)
3453                 nvme_ns_remove(ns);
3454
3455 }
3456
3457 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3458 {
3459         struct nvme_ns *ns;
3460         __le32 *ns_list;
3461         unsigned i, j, nsid, prev = 0;
3462         unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3463         int ret = 0;
3464
3465         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3466         if (!ns_list)
3467                 return -ENOMEM;
3468
3469         for (i = 0; i < num_lists; i++) {
3470                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3471                 if (ret)
3472                         goto free;
3473
3474                 for (j = 0; j < min(nn, 1024U); j++) {
3475                         nsid = le32_to_cpu(ns_list[j]);
3476                         if (!nsid)
3477                                 goto out;
3478
3479                         nvme_validate_ns(ctrl, nsid);
3480
3481                         while (++prev < nsid) {
3482                                 ns = nvme_find_get_ns(ctrl, prev);
3483                                 if (ns) {
3484                                         nvme_ns_remove(ns);
3485                                         nvme_put_ns(ns);
3486                                 }
3487                         }
3488                 }
3489                 nn -= j;
3490         }
3491  out:
3492         nvme_remove_invalid_namespaces(ctrl, prev);
3493  free:
3494         kfree(ns_list);
3495         return ret;
3496 }
3497
3498 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3499 {
3500         unsigned i;
3501
3502         for (i = 1; i <= nn; i++)
3503                 nvme_validate_ns(ctrl, i);
3504
3505         nvme_remove_invalid_namespaces(ctrl, nn);
3506 }
3507
3508 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3509 {
3510         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3511         __le32 *log;
3512         int error;
3513
3514         log = kzalloc(log_size, GFP_KERNEL);
3515         if (!log)
3516                 return;
3517
3518         /*
3519          * We need to read the log to clear the AEN, but we don't want to rely
3520          * on it for the changed namespace information as userspace could have
3521          * raced with us in reading the log page, which could cause us to miss
3522          * updates.
3523          */
3524         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3525                         log_size, 0);
3526         if (error)
3527                 dev_warn(ctrl->device,
3528                         "reading changed ns log failed: %d\n", error);
3529
3530         kfree(log);
3531 }
3532
3533 static void nvme_scan_work(struct work_struct *work)
3534 {
3535         struct nvme_ctrl *ctrl =
3536                 container_of(work, struct nvme_ctrl, scan_work);
3537         struct nvme_id_ctrl *id;
3538         unsigned nn;
3539
3540         if (ctrl->state != NVME_CTRL_LIVE)
3541                 return;
3542
3543         WARN_ON_ONCE(!ctrl->tagset);
3544
3545         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3546                 dev_info(ctrl->device, "rescanning namespaces.\n");
3547                 nvme_clear_changed_ns_log(ctrl);
3548         }
3549
3550         if (nvme_identify_ctrl(ctrl, &id))
3551                 return;
3552
3553         mutex_lock(&ctrl->scan_lock);
3554         nn = le32_to_cpu(id->nn);
3555         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3556             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3557                 if (!nvme_scan_ns_list(ctrl, nn))
3558                         goto out_free_id;
3559         }
3560         nvme_scan_ns_sequential(ctrl, nn);
3561 out_free_id:
3562         mutex_unlock(&ctrl->scan_lock);
3563         kfree(id);
3564         down_write(&ctrl->namespaces_rwsem);
3565         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3566         up_write(&ctrl->namespaces_rwsem);
3567 }
3568
3569 /*
3570  * This function iterates the namespace list unlocked to allow recovery from
3571  * controller failure. It is up to the caller to ensure the namespace list is
3572  * not modified by scan work while this function is executing.
3573  */
3574 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3575 {
3576         struct nvme_ns *ns, *next;
3577         LIST_HEAD(ns_list);
3578
3579         /* prevent racing with ns scanning */
3580         flush_work(&ctrl->scan_work);
3581
3582         /*
3583          * The dead states indicates the controller was not gracefully
3584          * disconnected. In that case, we won't be able to flush any data while
3585          * removing the namespaces' disks; fail all the queues now to avoid
3586          * potentially having to clean up the failed sync later.
3587          */
3588         if (ctrl->state == NVME_CTRL_DEAD)
3589                 nvme_kill_queues(ctrl);
3590
3591         down_write(&ctrl->namespaces_rwsem);
3592         list_splice_init(&ctrl->namespaces, &ns_list);
3593         up_write(&ctrl->namespaces_rwsem);
3594
3595         list_for_each_entry_safe(ns, next, &ns_list, list)
3596                 nvme_ns_remove(ns);
3597 }
3598 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3599
3600 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3601 {
3602         char *envp[2] = { NULL, NULL };
3603         u32 aen_result = ctrl->aen_result;
3604
3605         ctrl->aen_result = 0;
3606         if (!aen_result)
3607                 return;
3608
3609         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3610         if (!envp[0])
3611                 return;
3612         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3613         kfree(envp[0]);
3614 }
3615
3616 static void nvme_async_event_work(struct work_struct *work)
3617 {
3618         struct nvme_ctrl *ctrl =
3619                 container_of(work, struct nvme_ctrl, async_event_work);
3620
3621         nvme_aen_uevent(ctrl);
3622         ctrl->ops->submit_async_event(ctrl);
3623 }
3624
3625 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3626 {
3627
3628         u32 csts;
3629
3630         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3631                 return false;
3632
3633         if (csts == ~0)
3634                 return false;
3635
3636         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3637 }
3638
3639 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3640 {
3641         struct nvme_fw_slot_info_log *log;
3642
3643         log = kmalloc(sizeof(*log), GFP_KERNEL);
3644         if (!log)
3645                 return;
3646
3647         if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3648                         sizeof(*log), 0))
3649                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3650         kfree(log);
3651 }
3652
3653 static void nvme_fw_act_work(struct work_struct *work)
3654 {
3655         struct nvme_ctrl *ctrl = container_of(work,
3656                                 struct nvme_ctrl, fw_act_work);
3657         unsigned long fw_act_timeout;
3658
3659         if (ctrl->mtfa)
3660                 fw_act_timeout = jiffies +
3661                                 msecs_to_jiffies(ctrl->mtfa * 100);
3662         else
3663                 fw_act_timeout = jiffies +
3664                                 msecs_to_jiffies(admin_timeout * 1000);
3665
3666         nvme_stop_queues(ctrl);
3667         while (nvme_ctrl_pp_status(ctrl)) {
3668                 if (time_after(jiffies, fw_act_timeout)) {
3669                         dev_warn(ctrl->device,
3670                                 "Fw activation timeout, reset controller\n");
3671                         nvme_reset_ctrl(ctrl);
3672                         break;
3673                 }
3674                 msleep(100);
3675         }
3676
3677         if (ctrl->state != NVME_CTRL_LIVE)
3678                 return;
3679
3680         nvme_start_queues(ctrl);
3681         /* read FW slot information to clear the AER */
3682         nvme_get_fw_slot_info(ctrl);
3683 }
3684
3685 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3686 {
3687         u32 aer_notice_type = (result & 0xff00) >> 8;
3688
3689         trace_nvme_async_event(ctrl, aer_notice_type);
3690
3691         switch (aer_notice_type) {
3692         case NVME_AER_NOTICE_NS_CHANGED:
3693                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3694                 nvme_queue_scan(ctrl);
3695                 break;
3696         case NVME_AER_NOTICE_FW_ACT_STARTING:
3697                 queue_work(nvme_wq, &ctrl->fw_act_work);
3698                 break;
3699 #ifdef CONFIG_NVME_MULTIPATH
3700         case NVME_AER_NOTICE_ANA:
3701                 if (!ctrl->ana_log_buf)
3702                         break;
3703                 queue_work(nvme_wq, &ctrl->ana_work);
3704                 break;
3705 #endif
3706         default:
3707                 dev_warn(ctrl->device, "async event result %08x\n", result);
3708         }
3709 }
3710
3711 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3712                 volatile union nvme_result *res)
3713 {
3714         u32 result = le32_to_cpu(res->u32);
3715         u32 aer_type = result & 0x07;
3716
3717         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3718                 return;
3719
3720         switch (aer_type) {
3721         case NVME_AER_NOTICE:
3722                 nvme_handle_aen_notice(ctrl, result);
3723                 break;
3724         case NVME_AER_ERROR:
3725         case NVME_AER_SMART:
3726         case NVME_AER_CSS:
3727         case NVME_AER_VS:
3728                 trace_nvme_async_event(ctrl, aer_type);
3729                 ctrl->aen_result = result;
3730                 break;
3731         default:
3732                 break;
3733         }
3734         queue_work(nvme_wq, &ctrl->async_event_work);
3735 }
3736 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3737
3738 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3739 {
3740         nvme_mpath_stop(ctrl);
3741         nvme_stop_keep_alive(ctrl);
3742         flush_work(&ctrl->async_event_work);
3743         cancel_work_sync(&ctrl->fw_act_work);
3744 }
3745 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3746
3747 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3748 {
3749         if (ctrl->kato)
3750                 nvme_start_keep_alive(ctrl);
3751
3752         if (ctrl->queue_count > 1) {
3753                 nvme_queue_scan(ctrl);
3754                 nvme_enable_aen(ctrl);
3755                 queue_work(nvme_wq, &ctrl->async_event_work);
3756                 nvme_start_queues(ctrl);
3757         }
3758 }
3759 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3760
3761 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3762 {
3763         nvme_fault_inject_fini(&ctrl->fault_inject);
3764         dev_pm_qos_hide_latency_tolerance(ctrl->device);
3765         cdev_device_del(&ctrl->cdev, ctrl->device);
3766 }
3767 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3768
3769 static void nvme_free_ctrl(struct device *dev)
3770 {
3771         struct nvme_ctrl *ctrl =
3772                 container_of(dev, struct nvme_ctrl, ctrl_device);
3773         struct nvme_subsystem *subsys = ctrl->subsys;
3774
3775         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3776         kfree(ctrl->effects);
3777         nvme_mpath_uninit(ctrl);
3778         __free_page(ctrl->discard_page);
3779
3780         if (subsys) {
3781                 mutex_lock(&nvme_subsystems_lock);
3782                 list_del(&ctrl->subsys_entry);
3783                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3784                 mutex_unlock(&nvme_subsystems_lock);
3785         }
3786
3787         ctrl->ops->free_ctrl(ctrl);
3788
3789         if (subsys)
3790                 nvme_put_subsystem(subsys);
3791 }
3792
3793 /*
3794  * Initialize a NVMe controller structures.  This needs to be called during
3795  * earliest initialization so that we have the initialized structured around
3796  * during probing.
3797  */
3798 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3799                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3800 {
3801         int ret;
3802
3803         ctrl->state = NVME_CTRL_NEW;
3804         spin_lock_init(&ctrl->lock);
3805         mutex_init(&ctrl->scan_lock);
3806         INIT_LIST_HEAD(&ctrl->namespaces);
3807         init_rwsem(&ctrl->namespaces_rwsem);
3808         ctrl->dev = dev;
3809         ctrl->ops = ops;
3810         ctrl->quirks = quirks;
3811         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3812         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3813         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3814         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3815
3816         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3817         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3818         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3819
3820         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3821                         PAGE_SIZE);
3822         ctrl->discard_page = alloc_page(GFP_KERNEL);
3823         if (!ctrl->discard_page) {
3824                 ret = -ENOMEM;
3825                 goto out;
3826         }
3827
3828         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3829         if (ret < 0)
3830                 goto out;
3831         ctrl->instance = ret;
3832
3833         device_initialize(&ctrl->ctrl_device);
3834         ctrl->device = &ctrl->ctrl_device;
3835         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3836         ctrl->device->class = nvme_class;
3837         ctrl->device->parent = ctrl->dev;
3838         ctrl->device->groups = nvme_dev_attr_groups;
3839         ctrl->device->release = nvme_free_ctrl;
3840         dev_set_drvdata(ctrl->device, ctrl);
3841         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3842         if (ret)
3843                 goto out_release_instance;
3844
3845         cdev_init(&ctrl->cdev, &nvme_dev_fops);
3846         ctrl->cdev.owner = ops->module;
3847         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3848         if (ret)
3849                 goto out_free_name;
3850
3851         /*
3852          * Initialize latency tolerance controls.  The sysfs files won't
3853          * be visible to userspace unless the device actually supports APST.
3854          */
3855         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3856         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3857                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3858
3859         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
3860
3861         return 0;
3862 out_free_name:
3863         kfree_const(ctrl->device->kobj.name);
3864 out_release_instance:
3865         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3866 out:
3867         if (ctrl->discard_page)
3868                 __free_page(ctrl->discard_page);
3869         return ret;
3870 }
3871 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3872
3873 /**
3874  * nvme_kill_queues(): Ends all namespace queues
3875  * @ctrl: the dead controller that needs to end
3876  *
3877  * Call this function when the driver determines it is unable to get the
3878  * controller in a state capable of servicing IO.
3879  */
3880 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3881 {
3882         struct nvme_ns *ns;
3883
3884         down_read(&ctrl->namespaces_rwsem);
3885
3886         /* Forcibly unquiesce queues to avoid blocking dispatch */
3887         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3888                 blk_mq_unquiesce_queue(ctrl->admin_q);
3889
3890         list_for_each_entry(ns, &ctrl->namespaces, list)
3891                 nvme_set_queue_dying(ns);
3892
3893         up_read(&ctrl->namespaces_rwsem);
3894 }
3895 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3896
3897 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3898 {
3899         struct nvme_ns *ns;
3900
3901         down_read(&ctrl->namespaces_rwsem);
3902         list_for_each_entry(ns, &ctrl->namespaces, list)
3903                 blk_mq_unfreeze_queue(ns->queue);
3904         up_read(&ctrl->namespaces_rwsem);
3905 }
3906 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3907
3908 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3909 {
3910         struct nvme_ns *ns;
3911
3912         down_read(&ctrl->namespaces_rwsem);
3913         list_for_each_entry(ns, &ctrl->namespaces, list) {
3914                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3915                 if (timeout <= 0)
3916                         break;
3917         }
3918         up_read(&ctrl->namespaces_rwsem);
3919 }
3920 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3921
3922 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3923 {
3924         struct nvme_ns *ns;
3925
3926         down_read(&ctrl->namespaces_rwsem);
3927         list_for_each_entry(ns, &ctrl->namespaces, list)
3928                 blk_mq_freeze_queue_wait(ns->queue);
3929         up_read(&ctrl->namespaces_rwsem);
3930 }
3931 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3932
3933 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3934 {
3935         struct nvme_ns *ns;
3936
3937         down_read(&ctrl->namespaces_rwsem);
3938         list_for_each_entry(ns, &ctrl->namespaces, list)
3939                 blk_freeze_queue_start(ns->queue);
3940         up_read(&ctrl->namespaces_rwsem);
3941 }
3942 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3943
3944 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3945 {
3946         struct nvme_ns *ns;
3947
3948         down_read(&ctrl->namespaces_rwsem);
3949         list_for_each_entry(ns, &ctrl->namespaces, list)
3950                 blk_mq_quiesce_queue(ns->queue);
3951         up_read(&ctrl->namespaces_rwsem);
3952 }
3953 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3954
3955 void nvme_start_queues(struct nvme_ctrl *ctrl)
3956 {
3957         struct nvme_ns *ns;
3958
3959         down_read(&ctrl->namespaces_rwsem);
3960         list_for_each_entry(ns, &ctrl->namespaces, list)
3961                 blk_mq_unquiesce_queue(ns->queue);
3962         up_read(&ctrl->namespaces_rwsem);
3963 }
3964 EXPORT_SYMBOL_GPL(nvme_start_queues);
3965
3966
3967 void nvme_sync_queues(struct nvme_ctrl *ctrl)
3968 {
3969         struct nvme_ns *ns;
3970
3971         down_read(&ctrl->namespaces_rwsem);
3972         list_for_each_entry(ns, &ctrl->namespaces, list)
3973                 blk_sync_queue(ns->queue);
3974         up_read(&ctrl->namespaces_rwsem);
3975 }
3976 EXPORT_SYMBOL_GPL(nvme_sync_queues);
3977
3978 /*
3979  * Check we didn't inadvertently grow the command structure sizes:
3980  */
3981 static inline void _nvme_check_size(void)
3982 {
3983         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
3984         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
3985         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
3986         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
3987         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
3988         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
3989         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
3990         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
3991         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
3992         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
3993         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
3994         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
3995         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
3996         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
3997         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
3998         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
3999         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4000 }
4001
4002
4003 static int __init nvme_core_init(void)
4004 {
4005         int result = -ENOMEM;
4006
4007         _nvme_check_size();
4008
4009         nvme_wq = alloc_workqueue("nvme-wq",
4010                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4011         if (!nvme_wq)
4012                 goto out;
4013
4014         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4015                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4016         if (!nvme_reset_wq)
4017                 goto destroy_wq;
4018
4019         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4020                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4021         if (!nvme_delete_wq)
4022                 goto destroy_reset_wq;
4023
4024         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4025         if (result < 0)
4026                 goto destroy_delete_wq;
4027
4028         nvme_class = class_create(THIS_MODULE, "nvme");
4029         if (IS_ERR(nvme_class)) {
4030                 result = PTR_ERR(nvme_class);
4031                 goto unregister_chrdev;
4032         }
4033
4034         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4035         if (IS_ERR(nvme_subsys_class)) {
4036                 result = PTR_ERR(nvme_subsys_class);
4037                 goto destroy_class;
4038         }
4039         return 0;
4040
4041 destroy_class:
4042         class_destroy(nvme_class);
4043 unregister_chrdev:
4044         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4045 destroy_delete_wq:
4046         destroy_workqueue(nvme_delete_wq);
4047 destroy_reset_wq:
4048         destroy_workqueue(nvme_reset_wq);
4049 destroy_wq:
4050         destroy_workqueue(nvme_wq);
4051 out:
4052         return result;
4053 }
4054
4055 static void __exit nvme_core_exit(void)
4056 {
4057         ida_destroy(&nvme_subsystems_ida);
4058         class_destroy(nvme_subsys_class);
4059         class_destroy(nvme_class);
4060         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4061         destroy_workqueue(nvme_delete_wq);
4062         destroy_workqueue(nvme_reset_wq);
4063         destroy_workqueue(nvme_wq);
4064 }
4065
4066 MODULE_LICENSE("GPL");
4067 MODULE_VERSION("1.0");
4068 module_init(nvme_core_init);
4069 module_exit(nvme_core_exit);