]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/core.c
Merge tag 'selinux-pr-20191007' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static int nvme_revalidate_disk(struct gendisk *disk);
93 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
94 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
95                                            unsigned nsid);
96
97 static void nvme_set_queue_dying(struct nvme_ns *ns)
98 {
99         /*
100          * Revalidating a dead namespace sets capacity to 0. This will end
101          * buffered writers dirtying pages that can't be synced.
102          */
103         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
104                 return;
105         blk_set_queue_dying(ns->queue);
106         /* Forcibly unquiesce queues to avoid blocking dispatch */
107         blk_mq_unquiesce_queue(ns->queue);
108         /*
109          * Revalidate after unblocking dispatchers that may be holding bd_butex
110          */
111         revalidate_disk(ns->disk);
112 }
113
114 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
115 {
116         /*
117          * Only new queue scan work when admin and IO queues are both alive
118          */
119         if (ctrl->state == NVME_CTRL_LIVE)
120                 queue_work(nvme_wq, &ctrl->scan_work);
121 }
122
123 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
124 {
125         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
126                 return -EBUSY;
127         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
128                 return -EBUSY;
129         return 0;
130 }
131 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
132
133 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
134 {
135         int ret;
136
137         ret = nvme_reset_ctrl(ctrl);
138         if (!ret) {
139                 flush_work(&ctrl->reset_work);
140                 if (ctrl->state != NVME_CTRL_LIVE &&
141                     ctrl->state != NVME_CTRL_ADMIN_ONLY)
142                         ret = -ENETRESET;
143         }
144
145         return ret;
146 }
147 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
148
149 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
150 {
151         dev_info(ctrl->device,
152                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
153
154         flush_work(&ctrl->reset_work);
155         nvme_stop_ctrl(ctrl);
156         nvme_remove_namespaces(ctrl);
157         ctrl->ops->delete_ctrl(ctrl);
158         nvme_uninit_ctrl(ctrl);
159         nvme_put_ctrl(ctrl);
160 }
161
162 static void nvme_delete_ctrl_work(struct work_struct *work)
163 {
164         struct nvme_ctrl *ctrl =
165                 container_of(work, struct nvme_ctrl, delete_work);
166
167         nvme_do_delete_ctrl(ctrl);
168 }
169
170 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
171 {
172         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
173                 return -EBUSY;
174         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
175                 return -EBUSY;
176         return 0;
177 }
178 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
179
180 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
181 {
182         int ret = 0;
183
184         /*
185          * Keep a reference until nvme_do_delete_ctrl() complete,
186          * since ->delete_ctrl can free the controller.
187          */
188         nvme_get_ctrl(ctrl);
189         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
190                 ret = -EBUSY;
191         if (!ret)
192                 nvme_do_delete_ctrl(ctrl);
193         nvme_put_ctrl(ctrl);
194         return ret;
195 }
196
197 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
198 {
199         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
200 }
201
202 static blk_status_t nvme_error_status(u16 status)
203 {
204         switch (status & 0x7ff) {
205         case NVME_SC_SUCCESS:
206                 return BLK_STS_OK;
207         case NVME_SC_CAP_EXCEEDED:
208                 return BLK_STS_NOSPC;
209         case NVME_SC_LBA_RANGE:
210                 return BLK_STS_TARGET;
211         case NVME_SC_BAD_ATTRIBUTES:
212         case NVME_SC_ONCS_NOT_SUPPORTED:
213         case NVME_SC_INVALID_OPCODE:
214         case NVME_SC_INVALID_FIELD:
215         case NVME_SC_INVALID_NS:
216                 return BLK_STS_NOTSUPP;
217         case NVME_SC_WRITE_FAULT:
218         case NVME_SC_READ_ERROR:
219         case NVME_SC_UNWRITTEN_BLOCK:
220         case NVME_SC_ACCESS_DENIED:
221         case NVME_SC_READ_ONLY:
222         case NVME_SC_COMPARE_FAILED:
223                 return BLK_STS_MEDIUM;
224         case NVME_SC_GUARD_CHECK:
225         case NVME_SC_APPTAG_CHECK:
226         case NVME_SC_REFTAG_CHECK:
227         case NVME_SC_INVALID_PI:
228                 return BLK_STS_PROTECTION;
229         case NVME_SC_RESERVATION_CONFLICT:
230                 return BLK_STS_NEXUS;
231         case NVME_SC_HOST_PATH_ERROR:
232                 return BLK_STS_TRANSPORT;
233         default:
234                 return BLK_STS_IOERR;
235         }
236 }
237
238 static inline bool nvme_req_needs_retry(struct request *req)
239 {
240         if (blk_noretry_request(req))
241                 return false;
242         if (nvme_req(req)->status & NVME_SC_DNR)
243                 return false;
244         if (nvme_req(req)->retries >= nvme_max_retries)
245                 return false;
246         return true;
247 }
248
249 static void nvme_retry_req(struct request *req)
250 {
251         struct nvme_ns *ns = req->q->queuedata;
252         unsigned long delay = 0;
253         u16 crd;
254
255         /* The mask and shift result must be <= 3 */
256         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
257         if (ns && crd)
258                 delay = ns->ctrl->crdt[crd - 1] * 100;
259
260         nvme_req(req)->retries++;
261         blk_mq_requeue_request(req, false);
262         blk_mq_delay_kick_requeue_list(req->q, delay);
263 }
264
265 void nvme_complete_rq(struct request *req)
266 {
267         blk_status_t status = nvme_error_status(nvme_req(req)->status);
268
269         trace_nvme_complete_rq(req);
270
271         if (nvme_req(req)->ctrl->kas)
272                 nvme_req(req)->ctrl->comp_seen = true;
273
274         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
275                 if ((req->cmd_flags & REQ_NVME_MPATH) &&
276                     blk_path_error(status)) {
277                         nvme_failover_req(req);
278                         return;
279                 }
280
281                 if (!blk_queue_dying(req->q)) {
282                         nvme_retry_req(req);
283                         return;
284                 }
285         }
286
287         nvme_trace_bio_complete(req, status);
288         blk_mq_end_request(req, status);
289 }
290 EXPORT_SYMBOL_GPL(nvme_complete_rq);
291
292 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
293 {
294         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
295                                 "Cancelling I/O %d", req->tag);
296
297         /* don't abort one completed request */
298         if (blk_mq_request_completed(req))
299                 return true;
300
301         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
302         blk_mq_complete_request(req);
303         return true;
304 }
305 EXPORT_SYMBOL_GPL(nvme_cancel_request);
306
307 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
308                 enum nvme_ctrl_state new_state)
309 {
310         enum nvme_ctrl_state old_state;
311         unsigned long flags;
312         bool changed = false;
313
314         spin_lock_irqsave(&ctrl->lock, flags);
315
316         old_state = ctrl->state;
317         switch (new_state) {
318         case NVME_CTRL_ADMIN_ONLY:
319                 switch (old_state) {
320                 case NVME_CTRL_CONNECTING:
321                         changed = true;
322                         /* FALLTHRU */
323                 default:
324                         break;
325                 }
326                 break;
327         case NVME_CTRL_LIVE:
328                 switch (old_state) {
329                 case NVME_CTRL_NEW:
330                 case NVME_CTRL_RESETTING:
331                 case NVME_CTRL_CONNECTING:
332                         changed = true;
333                         /* FALLTHRU */
334                 default:
335                         break;
336                 }
337                 break;
338         case NVME_CTRL_RESETTING:
339                 switch (old_state) {
340                 case NVME_CTRL_NEW:
341                 case NVME_CTRL_LIVE:
342                 case NVME_CTRL_ADMIN_ONLY:
343                         changed = true;
344                         /* FALLTHRU */
345                 default:
346                         break;
347                 }
348                 break;
349         case NVME_CTRL_CONNECTING:
350                 switch (old_state) {
351                 case NVME_CTRL_NEW:
352                 case NVME_CTRL_RESETTING:
353                         changed = true;
354                         /* FALLTHRU */
355                 default:
356                         break;
357                 }
358                 break;
359         case NVME_CTRL_DELETING:
360                 switch (old_state) {
361                 case NVME_CTRL_LIVE:
362                 case NVME_CTRL_ADMIN_ONLY:
363                 case NVME_CTRL_RESETTING:
364                 case NVME_CTRL_CONNECTING:
365                         changed = true;
366                         /* FALLTHRU */
367                 default:
368                         break;
369                 }
370                 break;
371         case NVME_CTRL_DEAD:
372                 switch (old_state) {
373                 case NVME_CTRL_DELETING:
374                         changed = true;
375                         /* FALLTHRU */
376                 default:
377                         break;
378                 }
379                 break;
380         default:
381                 break;
382         }
383
384         if (changed)
385                 ctrl->state = new_state;
386
387         spin_unlock_irqrestore(&ctrl->lock, flags);
388         if (changed && ctrl->state == NVME_CTRL_LIVE)
389                 nvme_kick_requeue_lists(ctrl);
390         return changed;
391 }
392 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
393
394 static void nvme_free_ns_head(struct kref *ref)
395 {
396         struct nvme_ns_head *head =
397                 container_of(ref, struct nvme_ns_head, ref);
398
399         nvme_mpath_remove_disk(head);
400         ida_simple_remove(&head->subsys->ns_ida, head->instance);
401         list_del_init(&head->entry);
402         cleanup_srcu_struct(&head->srcu);
403         nvme_put_subsystem(head->subsys);
404         kfree(head);
405 }
406
407 static void nvme_put_ns_head(struct nvme_ns_head *head)
408 {
409         kref_put(&head->ref, nvme_free_ns_head);
410 }
411
412 static void nvme_free_ns(struct kref *kref)
413 {
414         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
415
416         if (ns->ndev)
417                 nvme_nvm_unregister(ns);
418
419         put_disk(ns->disk);
420         nvme_put_ns_head(ns->head);
421         nvme_put_ctrl(ns->ctrl);
422         kfree(ns);
423 }
424
425 static void nvme_put_ns(struct nvme_ns *ns)
426 {
427         kref_put(&ns->kref, nvme_free_ns);
428 }
429
430 static inline void nvme_clear_nvme_request(struct request *req)
431 {
432         if (!(req->rq_flags & RQF_DONTPREP)) {
433                 nvme_req(req)->retries = 0;
434                 nvme_req(req)->flags = 0;
435                 req->rq_flags |= RQF_DONTPREP;
436         }
437 }
438
439 struct request *nvme_alloc_request(struct request_queue *q,
440                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
441 {
442         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
443         struct request *req;
444
445         if (qid == NVME_QID_ANY) {
446                 req = blk_mq_alloc_request(q, op, flags);
447         } else {
448                 req = blk_mq_alloc_request_hctx(q, op, flags,
449                                 qid ? qid - 1 : 0);
450         }
451         if (IS_ERR(req))
452                 return req;
453
454         req->cmd_flags |= REQ_FAILFAST_DRIVER;
455         nvme_clear_nvme_request(req);
456         nvme_req(req)->cmd = cmd;
457
458         return req;
459 }
460 EXPORT_SYMBOL_GPL(nvme_alloc_request);
461
462 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
463 {
464         struct nvme_command c;
465
466         memset(&c, 0, sizeof(c));
467
468         c.directive.opcode = nvme_admin_directive_send;
469         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
470         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
471         c.directive.dtype = NVME_DIR_IDENTIFY;
472         c.directive.tdtype = NVME_DIR_STREAMS;
473         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
474
475         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
476 }
477
478 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
479 {
480         return nvme_toggle_streams(ctrl, false);
481 }
482
483 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
484 {
485         return nvme_toggle_streams(ctrl, true);
486 }
487
488 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
489                                   struct streams_directive_params *s, u32 nsid)
490 {
491         struct nvme_command c;
492
493         memset(&c, 0, sizeof(c));
494         memset(s, 0, sizeof(*s));
495
496         c.directive.opcode = nvme_admin_directive_recv;
497         c.directive.nsid = cpu_to_le32(nsid);
498         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
499         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
500         c.directive.dtype = NVME_DIR_STREAMS;
501
502         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
503 }
504
505 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
506 {
507         struct streams_directive_params s;
508         int ret;
509
510         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
511                 return 0;
512         if (!streams)
513                 return 0;
514
515         ret = nvme_enable_streams(ctrl);
516         if (ret)
517                 return ret;
518
519         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
520         if (ret)
521                 return ret;
522
523         ctrl->nssa = le16_to_cpu(s.nssa);
524         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
525                 dev_info(ctrl->device, "too few streams (%u) available\n",
526                                         ctrl->nssa);
527                 nvme_disable_streams(ctrl);
528                 return 0;
529         }
530
531         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
532         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
533         return 0;
534 }
535
536 /*
537  * Check if 'req' has a write hint associated with it. If it does, assign
538  * a valid namespace stream to the write.
539  */
540 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
541                                      struct request *req, u16 *control,
542                                      u32 *dsmgmt)
543 {
544         enum rw_hint streamid = req->write_hint;
545
546         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
547                 streamid = 0;
548         else {
549                 streamid--;
550                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
551                         return;
552
553                 *control |= NVME_RW_DTYPE_STREAMS;
554                 *dsmgmt |= streamid << 16;
555         }
556
557         if (streamid < ARRAY_SIZE(req->q->write_hints))
558                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
559 }
560
561 static inline void nvme_setup_flush(struct nvme_ns *ns,
562                 struct nvme_command *cmnd)
563 {
564         cmnd->common.opcode = nvme_cmd_flush;
565         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
566 }
567
568 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
569                 struct nvme_command *cmnd)
570 {
571         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
572         struct nvme_dsm_range *range;
573         struct bio *bio;
574
575         range = kmalloc_array(segments, sizeof(*range),
576                                 GFP_ATOMIC | __GFP_NOWARN);
577         if (!range) {
578                 /*
579                  * If we fail allocation our range, fallback to the controller
580                  * discard page. If that's also busy, it's safe to return
581                  * busy, as we know we can make progress once that's freed.
582                  */
583                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
584                         return BLK_STS_RESOURCE;
585
586                 range = page_address(ns->ctrl->discard_page);
587         }
588
589         __rq_for_each_bio(bio, req) {
590                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
591                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
592
593                 if (n < segments) {
594                         range[n].cattr = cpu_to_le32(0);
595                         range[n].nlb = cpu_to_le32(nlb);
596                         range[n].slba = cpu_to_le64(slba);
597                 }
598                 n++;
599         }
600
601         if (WARN_ON_ONCE(n != segments)) {
602                 if (virt_to_page(range) == ns->ctrl->discard_page)
603                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
604                 else
605                         kfree(range);
606                 return BLK_STS_IOERR;
607         }
608
609         cmnd->dsm.opcode = nvme_cmd_dsm;
610         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
611         cmnd->dsm.nr = cpu_to_le32(segments - 1);
612         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
613
614         req->special_vec.bv_page = virt_to_page(range);
615         req->special_vec.bv_offset = offset_in_page(range);
616         req->special_vec.bv_len = sizeof(*range) * segments;
617         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
618
619         return BLK_STS_OK;
620 }
621
622 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
623                 struct request *req, struct nvme_command *cmnd)
624 {
625         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
626                 return nvme_setup_discard(ns, req, cmnd);
627
628         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
629         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
630         cmnd->write_zeroes.slba =
631                 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
632         cmnd->write_zeroes.length =
633                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
634         cmnd->write_zeroes.control = 0;
635         return BLK_STS_OK;
636 }
637
638 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
639                 struct request *req, struct nvme_command *cmnd)
640 {
641         struct nvme_ctrl *ctrl = ns->ctrl;
642         u16 control = 0;
643         u32 dsmgmt = 0;
644
645         if (req->cmd_flags & REQ_FUA)
646                 control |= NVME_RW_FUA;
647         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
648                 control |= NVME_RW_LR;
649
650         if (req->cmd_flags & REQ_RAHEAD)
651                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
652
653         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
654         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
655         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
656         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
657
658         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
659                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
660
661         if (ns->ms) {
662                 /*
663                  * If formated with metadata, the block layer always provides a
664                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
665                  * we enable the PRACT bit for protection information or set the
666                  * namespace capacity to zero to prevent any I/O.
667                  */
668                 if (!blk_integrity_rq(req)) {
669                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
670                                 return BLK_STS_NOTSUPP;
671                         control |= NVME_RW_PRINFO_PRACT;
672                 }
673
674                 switch (ns->pi_type) {
675                 case NVME_NS_DPS_PI_TYPE3:
676                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
677                         break;
678                 case NVME_NS_DPS_PI_TYPE1:
679                 case NVME_NS_DPS_PI_TYPE2:
680                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
681                                         NVME_RW_PRINFO_PRCHK_REF;
682                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
683                         break;
684                 }
685         }
686
687         cmnd->rw.control = cpu_to_le16(control);
688         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
689         return 0;
690 }
691
692 void nvme_cleanup_cmd(struct request *req)
693 {
694         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
695                 struct nvme_ns *ns = req->rq_disk->private_data;
696                 struct page *page = req->special_vec.bv_page;
697
698                 if (page == ns->ctrl->discard_page)
699                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
700                 else
701                         kfree(page_address(page) + req->special_vec.bv_offset);
702         }
703 }
704 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
705
706 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
707                 struct nvme_command *cmd)
708 {
709         blk_status_t ret = BLK_STS_OK;
710
711         nvme_clear_nvme_request(req);
712
713         memset(cmd, 0, sizeof(*cmd));
714         switch (req_op(req)) {
715         case REQ_OP_DRV_IN:
716         case REQ_OP_DRV_OUT:
717                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
718                 break;
719         case REQ_OP_FLUSH:
720                 nvme_setup_flush(ns, cmd);
721                 break;
722         case REQ_OP_WRITE_ZEROES:
723                 ret = nvme_setup_write_zeroes(ns, req, cmd);
724                 break;
725         case REQ_OP_DISCARD:
726                 ret = nvme_setup_discard(ns, req, cmd);
727                 break;
728         case REQ_OP_READ:
729         case REQ_OP_WRITE:
730                 ret = nvme_setup_rw(ns, req, cmd);
731                 break;
732         default:
733                 WARN_ON_ONCE(1);
734                 return BLK_STS_IOERR;
735         }
736
737         cmd->common.command_id = req->tag;
738         trace_nvme_setup_cmd(req, cmd);
739         return ret;
740 }
741 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
742
743 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
744 {
745         struct completion *waiting = rq->end_io_data;
746
747         rq->end_io_data = NULL;
748         complete(waiting);
749 }
750
751 static void nvme_execute_rq_polled(struct request_queue *q,
752                 struct gendisk *bd_disk, struct request *rq, int at_head)
753 {
754         DECLARE_COMPLETION_ONSTACK(wait);
755
756         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
757
758         rq->cmd_flags |= REQ_HIPRI;
759         rq->end_io_data = &wait;
760         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
761
762         while (!completion_done(&wait)) {
763                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
764                 cond_resched();
765         }
766 }
767
768 /*
769  * Returns 0 on success.  If the result is negative, it's a Linux error code;
770  * if the result is positive, it's an NVM Express status code
771  */
772 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
773                 union nvme_result *result, void *buffer, unsigned bufflen,
774                 unsigned timeout, int qid, int at_head,
775                 blk_mq_req_flags_t flags, bool poll)
776 {
777         struct request *req;
778         int ret;
779
780         req = nvme_alloc_request(q, cmd, flags, qid);
781         if (IS_ERR(req))
782                 return PTR_ERR(req);
783
784         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
785
786         if (buffer && bufflen) {
787                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
788                 if (ret)
789                         goto out;
790         }
791
792         if (poll)
793                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
794         else
795                 blk_execute_rq(req->q, NULL, req, at_head);
796         if (result)
797                 *result = nvme_req(req)->result;
798         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
799                 ret = -EINTR;
800         else
801                 ret = nvme_req(req)->status;
802  out:
803         blk_mq_free_request(req);
804         return ret;
805 }
806 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
807
808 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
809                 void *buffer, unsigned bufflen)
810 {
811         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
812                         NVME_QID_ANY, 0, 0, false);
813 }
814 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
815
816 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
817                 unsigned len, u32 seed, bool write)
818 {
819         struct bio_integrity_payload *bip;
820         int ret = -ENOMEM;
821         void *buf;
822
823         buf = kmalloc(len, GFP_KERNEL);
824         if (!buf)
825                 goto out;
826
827         ret = -EFAULT;
828         if (write && copy_from_user(buf, ubuf, len))
829                 goto out_free_meta;
830
831         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
832         if (IS_ERR(bip)) {
833                 ret = PTR_ERR(bip);
834                 goto out_free_meta;
835         }
836
837         bip->bip_iter.bi_size = len;
838         bip->bip_iter.bi_sector = seed;
839         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
840                         offset_in_page(buf));
841         if (ret == len)
842                 return buf;
843         ret = -ENOMEM;
844 out_free_meta:
845         kfree(buf);
846 out:
847         return ERR_PTR(ret);
848 }
849
850 static int nvme_submit_user_cmd(struct request_queue *q,
851                 struct nvme_command *cmd, void __user *ubuffer,
852                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
853                 u32 meta_seed, u64 *result, unsigned timeout)
854 {
855         bool write = nvme_is_write(cmd);
856         struct nvme_ns *ns = q->queuedata;
857         struct gendisk *disk = ns ? ns->disk : NULL;
858         struct request *req;
859         struct bio *bio = NULL;
860         void *meta = NULL;
861         int ret;
862
863         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
864         if (IS_ERR(req))
865                 return PTR_ERR(req);
866
867         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
868         nvme_req(req)->flags |= NVME_REQ_USERCMD;
869
870         if (ubuffer && bufflen) {
871                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
872                                 GFP_KERNEL);
873                 if (ret)
874                         goto out;
875                 bio = req->bio;
876                 bio->bi_disk = disk;
877                 if (disk && meta_buffer && meta_len) {
878                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
879                                         meta_seed, write);
880                         if (IS_ERR(meta)) {
881                                 ret = PTR_ERR(meta);
882                                 goto out_unmap;
883                         }
884                         req->cmd_flags |= REQ_INTEGRITY;
885                 }
886         }
887
888         blk_execute_rq(req->q, disk, req, 0);
889         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
890                 ret = -EINTR;
891         else
892                 ret = nvme_req(req)->status;
893         if (result)
894                 *result = le64_to_cpu(nvme_req(req)->result.u64);
895         if (meta && !ret && !write) {
896                 if (copy_to_user(meta_buffer, meta, meta_len))
897                         ret = -EFAULT;
898         }
899         kfree(meta);
900  out_unmap:
901         if (bio)
902                 blk_rq_unmap_user(bio);
903  out:
904         blk_mq_free_request(req);
905         return ret;
906 }
907
908 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
909 {
910         struct nvme_ctrl *ctrl = rq->end_io_data;
911         unsigned long flags;
912         bool startka = false;
913
914         blk_mq_free_request(rq);
915
916         if (status) {
917                 dev_err(ctrl->device,
918                         "failed nvme_keep_alive_end_io error=%d\n",
919                                 status);
920                 return;
921         }
922
923         ctrl->comp_seen = false;
924         spin_lock_irqsave(&ctrl->lock, flags);
925         if (ctrl->state == NVME_CTRL_LIVE ||
926             ctrl->state == NVME_CTRL_CONNECTING)
927                 startka = true;
928         spin_unlock_irqrestore(&ctrl->lock, flags);
929         if (startka)
930                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
931 }
932
933 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
934 {
935         struct request *rq;
936
937         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
938                         NVME_QID_ANY);
939         if (IS_ERR(rq))
940                 return PTR_ERR(rq);
941
942         rq->timeout = ctrl->kato * HZ;
943         rq->end_io_data = ctrl;
944
945         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
946
947         return 0;
948 }
949
950 static void nvme_keep_alive_work(struct work_struct *work)
951 {
952         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
953                         struct nvme_ctrl, ka_work);
954         bool comp_seen = ctrl->comp_seen;
955
956         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
957                 dev_dbg(ctrl->device,
958                         "reschedule traffic based keep-alive timer\n");
959                 ctrl->comp_seen = false;
960                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
961                 return;
962         }
963
964         if (nvme_keep_alive(ctrl)) {
965                 /* allocation failure, reset the controller */
966                 dev_err(ctrl->device, "keep-alive failed\n");
967                 nvme_reset_ctrl(ctrl);
968                 return;
969         }
970 }
971
972 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
973 {
974         if (unlikely(ctrl->kato == 0))
975                 return;
976
977         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
978 }
979
980 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
981 {
982         if (unlikely(ctrl->kato == 0))
983                 return;
984
985         cancel_delayed_work_sync(&ctrl->ka_work);
986 }
987 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
988
989 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
990 {
991         struct nvme_command c = { };
992         int error;
993
994         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
995         c.identify.opcode = nvme_admin_identify;
996         c.identify.cns = NVME_ID_CNS_CTRL;
997
998         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
999         if (!*id)
1000                 return -ENOMEM;
1001
1002         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1003                         sizeof(struct nvme_id_ctrl));
1004         if (error)
1005                 kfree(*id);
1006         return error;
1007 }
1008
1009 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1010                 struct nvme_ns_ids *ids)
1011 {
1012         struct nvme_command c = { };
1013         int status;
1014         void *data;
1015         int pos;
1016         int len;
1017
1018         c.identify.opcode = nvme_admin_identify;
1019         c.identify.nsid = cpu_to_le32(nsid);
1020         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1021
1022         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1023         if (!data)
1024                 return -ENOMEM;
1025
1026         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1027                                       NVME_IDENTIFY_DATA_SIZE);
1028         if (status)
1029                 goto free_data;
1030
1031         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1032                 struct nvme_ns_id_desc *cur = data + pos;
1033
1034                 if (cur->nidl == 0)
1035                         break;
1036
1037                 switch (cur->nidt) {
1038                 case NVME_NIDT_EUI64:
1039                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1040                                 dev_warn(ctrl->device,
1041                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1042                                          cur->nidl);
1043                                 goto free_data;
1044                         }
1045                         len = NVME_NIDT_EUI64_LEN;
1046                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1047                         break;
1048                 case NVME_NIDT_NGUID:
1049                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1050                                 dev_warn(ctrl->device,
1051                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1052                                          cur->nidl);
1053                                 goto free_data;
1054                         }
1055                         len = NVME_NIDT_NGUID_LEN;
1056                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1057                         break;
1058                 case NVME_NIDT_UUID:
1059                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
1060                                 dev_warn(ctrl->device,
1061                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1062                                          cur->nidl);
1063                                 goto free_data;
1064                         }
1065                         len = NVME_NIDT_UUID_LEN;
1066                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1067                         break;
1068                 default:
1069                         /* Skip unknown types */
1070                         len = cur->nidl;
1071                         break;
1072                 }
1073
1074                 len += sizeof(*cur);
1075         }
1076 free_data:
1077         kfree(data);
1078         return status;
1079 }
1080
1081 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1082 {
1083         struct nvme_command c = { };
1084
1085         c.identify.opcode = nvme_admin_identify;
1086         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1087         c.identify.nsid = cpu_to_le32(nsid);
1088         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1089                                     NVME_IDENTIFY_DATA_SIZE);
1090 }
1091
1092 static int nvme_identify_ns(struct nvme_ctrl *ctrl,
1093                 unsigned nsid, struct nvme_id_ns **id)
1094 {
1095         struct nvme_command c = { };
1096         int error;
1097
1098         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1099         c.identify.opcode = nvme_admin_identify;
1100         c.identify.nsid = cpu_to_le32(nsid);
1101         c.identify.cns = NVME_ID_CNS_NS;
1102
1103         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1104         if (!*id)
1105                 return -ENOMEM;
1106
1107         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1108         if (error) {
1109                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1110                 kfree(*id);
1111         }
1112
1113         return error;
1114 }
1115
1116 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1117                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1118 {
1119         struct nvme_command c;
1120         union nvme_result res;
1121         int ret;
1122
1123         memset(&c, 0, sizeof(c));
1124         c.features.opcode = op;
1125         c.features.fid = cpu_to_le32(fid);
1126         c.features.dword11 = cpu_to_le32(dword11);
1127
1128         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1129                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1130         if (ret >= 0 && result)
1131                 *result = le32_to_cpu(res.u32);
1132         return ret;
1133 }
1134
1135 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1136                       unsigned int dword11, void *buffer, size_t buflen,
1137                       u32 *result)
1138 {
1139         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1140                              buflen, result);
1141 }
1142 EXPORT_SYMBOL_GPL(nvme_set_features);
1143
1144 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1145                       unsigned int dword11, void *buffer, size_t buflen,
1146                       u32 *result)
1147 {
1148         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1149                              buflen, result);
1150 }
1151 EXPORT_SYMBOL_GPL(nvme_get_features);
1152
1153 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1154 {
1155         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1156         u32 result;
1157         int status, nr_io_queues;
1158
1159         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1160                         &result);
1161         if (status < 0)
1162                 return status;
1163
1164         /*
1165          * Degraded controllers might return an error when setting the queue
1166          * count.  We still want to be able to bring them online and offer
1167          * access to the admin queue, as that might be only way to fix them up.
1168          */
1169         if (status > 0) {
1170                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1171                 *count = 0;
1172         } else {
1173                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1174                 *count = min(*count, nr_io_queues);
1175         }
1176
1177         return 0;
1178 }
1179 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1180
1181 #define NVME_AEN_SUPPORTED \
1182         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1183          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1184
1185 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1186 {
1187         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1188         int status;
1189
1190         if (!supported_aens)
1191                 return;
1192
1193         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1194                         NULL, 0, &result);
1195         if (status)
1196                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1197                          supported_aens);
1198
1199         queue_work(nvme_wq, &ctrl->async_event_work);
1200 }
1201
1202 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1203 {
1204         struct nvme_user_io io;
1205         struct nvme_command c;
1206         unsigned length, meta_len;
1207         void __user *metadata;
1208
1209         if (copy_from_user(&io, uio, sizeof(io)))
1210                 return -EFAULT;
1211         if (io.flags)
1212                 return -EINVAL;
1213
1214         switch (io.opcode) {
1215         case nvme_cmd_write:
1216         case nvme_cmd_read:
1217         case nvme_cmd_compare:
1218                 break;
1219         default:
1220                 return -EINVAL;
1221         }
1222
1223         length = (io.nblocks + 1) << ns->lba_shift;
1224         meta_len = (io.nblocks + 1) * ns->ms;
1225         metadata = (void __user *)(uintptr_t)io.metadata;
1226
1227         if (ns->ext) {
1228                 length += meta_len;
1229                 meta_len = 0;
1230         } else if (meta_len) {
1231                 if ((io.metadata & 3) || !io.metadata)
1232                         return -EINVAL;
1233         }
1234
1235         memset(&c, 0, sizeof(c));
1236         c.rw.opcode = io.opcode;
1237         c.rw.flags = io.flags;
1238         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1239         c.rw.slba = cpu_to_le64(io.slba);
1240         c.rw.length = cpu_to_le16(io.nblocks);
1241         c.rw.control = cpu_to_le16(io.control);
1242         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1243         c.rw.reftag = cpu_to_le32(io.reftag);
1244         c.rw.apptag = cpu_to_le16(io.apptag);
1245         c.rw.appmask = cpu_to_le16(io.appmask);
1246
1247         return nvme_submit_user_cmd(ns->queue, &c,
1248                         (void __user *)(uintptr_t)io.addr, length,
1249                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1250 }
1251
1252 static u32 nvme_known_admin_effects(u8 opcode)
1253 {
1254         switch (opcode) {
1255         case nvme_admin_format_nvm:
1256                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1257                                         NVME_CMD_EFFECTS_CSE_MASK;
1258         case nvme_admin_sanitize_nvm:
1259                 return NVME_CMD_EFFECTS_CSE_MASK;
1260         default:
1261                 break;
1262         }
1263         return 0;
1264 }
1265
1266 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1267                                                                 u8 opcode)
1268 {
1269         u32 effects = 0;
1270
1271         if (ns) {
1272                 if (ctrl->effects)
1273                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1274                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1275                         dev_warn(ctrl->device,
1276                                  "IO command:%02x has unhandled effects:%08x\n",
1277                                  opcode, effects);
1278                 return 0;
1279         }
1280
1281         if (ctrl->effects)
1282                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1283         effects |= nvme_known_admin_effects(opcode);
1284
1285         /*
1286          * For simplicity, IO to all namespaces is quiesced even if the command
1287          * effects say only one namespace is affected.
1288          */
1289         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1290                 mutex_lock(&ctrl->scan_lock);
1291                 mutex_lock(&ctrl->subsys->lock);
1292                 nvme_mpath_start_freeze(ctrl->subsys);
1293                 nvme_mpath_wait_freeze(ctrl->subsys);
1294                 nvme_start_freeze(ctrl);
1295                 nvme_wait_freeze(ctrl);
1296         }
1297         return effects;
1298 }
1299
1300 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1301 {
1302         struct nvme_ns *ns;
1303
1304         down_read(&ctrl->namespaces_rwsem);
1305         list_for_each_entry(ns, &ctrl->namespaces, list)
1306                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1307                         nvme_set_queue_dying(ns);
1308         up_read(&ctrl->namespaces_rwsem);
1309
1310         nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1311 }
1312
1313 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1314 {
1315         /*
1316          * Revalidate LBA changes prior to unfreezing. This is necessary to
1317          * prevent memory corruption if a logical block size was changed by
1318          * this command.
1319          */
1320         if (effects & NVME_CMD_EFFECTS_LBCC)
1321                 nvme_update_formats(ctrl);
1322         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1323                 nvme_unfreeze(ctrl);
1324                 nvme_mpath_unfreeze(ctrl->subsys);
1325                 mutex_unlock(&ctrl->subsys->lock);
1326                 mutex_unlock(&ctrl->scan_lock);
1327         }
1328         if (effects & NVME_CMD_EFFECTS_CCC)
1329                 nvme_init_identify(ctrl);
1330         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1331                 nvme_queue_scan(ctrl);
1332 }
1333
1334 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1335                         struct nvme_passthru_cmd __user *ucmd)
1336 {
1337         struct nvme_passthru_cmd cmd;
1338         struct nvme_command c;
1339         unsigned timeout = 0;
1340         u32 effects;
1341         u64 result;
1342         int status;
1343
1344         if (!capable(CAP_SYS_ADMIN))
1345                 return -EACCES;
1346         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1347                 return -EFAULT;
1348         if (cmd.flags)
1349                 return -EINVAL;
1350
1351         memset(&c, 0, sizeof(c));
1352         c.common.opcode = cmd.opcode;
1353         c.common.flags = cmd.flags;
1354         c.common.nsid = cpu_to_le32(cmd.nsid);
1355         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1356         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1357         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1358         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1359         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1360         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1361         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1362         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1363
1364         if (cmd.timeout_ms)
1365                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1366
1367         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1368         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1369                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1370                         (void __user *)(uintptr_t)cmd.metadata,
1371                         cmd.metadata_len, 0, &result, timeout);
1372         nvme_passthru_end(ctrl, effects);
1373
1374         if (status >= 0) {
1375                 if (put_user(result, &ucmd->result))
1376                         return -EFAULT;
1377         }
1378
1379         return status;
1380 }
1381
1382 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1383                         struct nvme_passthru_cmd64 __user *ucmd)
1384 {
1385         struct nvme_passthru_cmd64 cmd;
1386         struct nvme_command c;
1387         unsigned timeout = 0;
1388         u32 effects;
1389         int status;
1390
1391         if (!capable(CAP_SYS_ADMIN))
1392                 return -EACCES;
1393         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1394                 return -EFAULT;
1395         if (cmd.flags)
1396                 return -EINVAL;
1397
1398         memset(&c, 0, sizeof(c));
1399         c.common.opcode = cmd.opcode;
1400         c.common.flags = cmd.flags;
1401         c.common.nsid = cpu_to_le32(cmd.nsid);
1402         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1403         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1404         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1405         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1406         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1407         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1408         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1409         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1410
1411         if (cmd.timeout_ms)
1412                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1413
1414         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1415         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1416                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1417                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1418                         0, &cmd.result, timeout);
1419         nvme_passthru_end(ctrl, effects);
1420
1421         if (status >= 0) {
1422                 if (put_user(cmd.result, &ucmd->result))
1423                         return -EFAULT;
1424         }
1425
1426         return status;
1427 }
1428
1429 /*
1430  * Issue ioctl requests on the first available path.  Note that unlike normal
1431  * block layer requests we will not retry failed request on another controller.
1432  */
1433 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1434                 struct nvme_ns_head **head, int *srcu_idx)
1435 {
1436 #ifdef CONFIG_NVME_MULTIPATH
1437         if (disk->fops == &nvme_ns_head_ops) {
1438                 struct nvme_ns *ns;
1439
1440                 *head = disk->private_data;
1441                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1442                 ns = nvme_find_path(*head);
1443                 if (!ns)
1444                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1445                 return ns;
1446         }
1447 #endif
1448         *head = NULL;
1449         *srcu_idx = -1;
1450         return disk->private_data;
1451 }
1452
1453 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1454 {
1455         if (head)
1456                 srcu_read_unlock(&head->srcu, idx);
1457 }
1458
1459 static bool is_ctrl_ioctl(unsigned int cmd)
1460 {
1461         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1462                 return true;
1463         if (is_sed_ioctl(cmd))
1464                 return true;
1465         return false;
1466 }
1467
1468 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1469                                   void __user *argp,
1470                                   struct nvme_ns_head *head,
1471                                   int srcu_idx)
1472 {
1473         struct nvme_ctrl *ctrl = ns->ctrl;
1474         int ret;
1475
1476         nvme_get_ctrl(ns->ctrl);
1477         nvme_put_ns_from_disk(head, srcu_idx);
1478
1479         switch (cmd) {
1480         case NVME_IOCTL_ADMIN_CMD:
1481                 ret = nvme_user_cmd(ctrl, NULL, argp);
1482                 break;
1483         case NVME_IOCTL_ADMIN64_CMD:
1484                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1485                 break;
1486         default:
1487                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1488                 break;
1489         }
1490         nvme_put_ctrl(ctrl);
1491         return ret;
1492 }
1493
1494 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1495                 unsigned int cmd, unsigned long arg)
1496 {
1497         struct nvme_ns_head *head = NULL;
1498         void __user *argp = (void __user *)arg;
1499         struct nvme_ns *ns;
1500         int srcu_idx, ret;
1501
1502         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1503         if (unlikely(!ns))
1504                 return -EWOULDBLOCK;
1505
1506         /*
1507          * Handle ioctls that apply to the controller instead of the namespace
1508          * seperately and drop the ns SRCU reference early.  This avoids a
1509          * deadlock when deleting namespaces using the passthrough interface.
1510          */
1511         if (is_ctrl_ioctl(cmd))
1512                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1513
1514         switch (cmd) {
1515         case NVME_IOCTL_ID:
1516                 force_successful_syscall_return();
1517                 ret = ns->head->ns_id;
1518                 break;
1519         case NVME_IOCTL_IO_CMD:
1520                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1521                 break;
1522         case NVME_IOCTL_SUBMIT_IO:
1523                 ret = nvme_submit_io(ns, argp);
1524                 break;
1525         case NVME_IOCTL_IO64_CMD:
1526                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1527                 break;
1528         default:
1529                 if (ns->ndev)
1530                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1531                 else
1532                         ret = -ENOTTY;
1533         }
1534
1535         nvme_put_ns_from_disk(head, srcu_idx);
1536         return ret;
1537 }
1538
1539 static int nvme_open(struct block_device *bdev, fmode_t mode)
1540 {
1541         struct nvme_ns *ns = bdev->bd_disk->private_data;
1542
1543 #ifdef CONFIG_NVME_MULTIPATH
1544         /* should never be called due to GENHD_FL_HIDDEN */
1545         if (WARN_ON_ONCE(ns->head->disk))
1546                 goto fail;
1547 #endif
1548         if (!kref_get_unless_zero(&ns->kref))
1549                 goto fail;
1550         if (!try_module_get(ns->ctrl->ops->module))
1551                 goto fail_put_ns;
1552
1553         return 0;
1554
1555 fail_put_ns:
1556         nvme_put_ns(ns);
1557 fail:
1558         return -ENXIO;
1559 }
1560
1561 static void nvme_release(struct gendisk *disk, fmode_t mode)
1562 {
1563         struct nvme_ns *ns = disk->private_data;
1564
1565         module_put(ns->ctrl->ops->module);
1566         nvme_put_ns(ns);
1567 }
1568
1569 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1570 {
1571         /* some standard values */
1572         geo->heads = 1 << 6;
1573         geo->sectors = 1 << 5;
1574         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1575         return 0;
1576 }
1577
1578 #ifdef CONFIG_BLK_DEV_INTEGRITY
1579 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1580 {
1581         struct blk_integrity integrity;
1582
1583         memset(&integrity, 0, sizeof(integrity));
1584         switch (pi_type) {
1585         case NVME_NS_DPS_PI_TYPE3:
1586                 integrity.profile = &t10_pi_type3_crc;
1587                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1588                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1589                 break;
1590         case NVME_NS_DPS_PI_TYPE1:
1591         case NVME_NS_DPS_PI_TYPE2:
1592                 integrity.profile = &t10_pi_type1_crc;
1593                 integrity.tag_size = sizeof(u16);
1594                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1595                 break;
1596         default:
1597                 integrity.profile = NULL;
1598                 break;
1599         }
1600         integrity.tuple_size = ms;
1601         blk_integrity_register(disk, &integrity);
1602         blk_queue_max_integrity_segments(disk->queue, 1);
1603 }
1604 #else
1605 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1606 {
1607 }
1608 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1609
1610 static void nvme_set_chunk_size(struct nvme_ns *ns)
1611 {
1612         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1613         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1614 }
1615
1616 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1617 {
1618         struct nvme_ctrl *ctrl = ns->ctrl;
1619         struct request_queue *queue = disk->queue;
1620         u32 size = queue_logical_block_size(queue);
1621
1622         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1623                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1624                 return;
1625         }
1626
1627         if (ctrl->nr_streams && ns->sws && ns->sgs)
1628                 size *= ns->sws * ns->sgs;
1629
1630         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1631                         NVME_DSM_MAX_RANGES);
1632
1633         queue->limits.discard_alignment = 0;
1634         queue->limits.discard_granularity = size;
1635
1636         /* If discard is already enabled, don't reset queue limits */
1637         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1638                 return;
1639
1640         blk_queue_max_discard_sectors(queue, UINT_MAX);
1641         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1642
1643         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1644                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1645 }
1646
1647 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1648 {
1649         u32 max_sectors;
1650         unsigned short bs = 1 << ns->lba_shift;
1651
1652         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1653             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1654                 return;
1655         /*
1656          * Even though NVMe spec explicitly states that MDTS is not
1657          * applicable to the write-zeroes:- "The restriction does not apply to
1658          * commands that do not transfer data between the host and the
1659          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1660          * In order to be more cautious use controller's max_hw_sectors value
1661          * to configure the maximum sectors for the write-zeroes which is
1662          * configured based on the controller's MDTS field in the
1663          * nvme_init_identify() if available.
1664          */
1665         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1666                 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1667         else
1668                 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1669
1670         blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1671 }
1672
1673 static int nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1674                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1675 {
1676         int ret = 0;
1677
1678         memset(ids, 0, sizeof(*ids));
1679
1680         if (ctrl->vs >= NVME_VS(1, 1, 0))
1681                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1682         if (ctrl->vs >= NVME_VS(1, 2, 0))
1683                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1684         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1685                  /* Don't treat error as fatal we potentially
1686                   * already have a NGUID or EUI-64
1687                   */
1688                 ret = nvme_identify_ns_descs(ctrl, nsid, ids);
1689                 if (ret)
1690                         dev_warn(ctrl->device,
1691                                  "Identify Descriptors failed (%d)\n", ret);
1692         }
1693         return ret;
1694 }
1695
1696 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1697 {
1698         return !uuid_is_null(&ids->uuid) ||
1699                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1700                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1701 }
1702
1703 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1704 {
1705         return uuid_equal(&a->uuid, &b->uuid) &&
1706                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1707                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1708 }
1709
1710 static void nvme_update_disk_info(struct gendisk *disk,
1711                 struct nvme_ns *ns, struct nvme_id_ns *id)
1712 {
1713         sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1714         unsigned short bs = 1 << ns->lba_shift;
1715         u32 atomic_bs, phys_bs, io_opt;
1716
1717         if (ns->lba_shift > PAGE_SHIFT) {
1718                 /* unsupported block size, set capacity to 0 later */
1719                 bs = (1 << 9);
1720         }
1721         blk_mq_freeze_queue(disk->queue);
1722         blk_integrity_unregister(disk);
1723
1724         if (id->nabo == 0) {
1725                 /*
1726                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1727                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1728                  * 0 then AWUPF must be used instead.
1729                  */
1730                 if (id->nsfeat & (1 << 1) && id->nawupf)
1731                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1732                 else
1733                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1734         } else {
1735                 atomic_bs = bs;
1736         }
1737         phys_bs = bs;
1738         io_opt = bs;
1739         if (id->nsfeat & (1 << 4)) {
1740                 /* NPWG = Namespace Preferred Write Granularity */
1741                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1742                 /* NOWS = Namespace Optimal Write Size */
1743                 io_opt *= 1 + le16_to_cpu(id->nows);
1744         }
1745
1746         blk_queue_logical_block_size(disk->queue, bs);
1747         /*
1748          * Linux filesystems assume writing a single physical block is
1749          * an atomic operation. Hence limit the physical block size to the
1750          * value of the Atomic Write Unit Power Fail parameter.
1751          */
1752         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1753         blk_queue_io_min(disk->queue, phys_bs);
1754         blk_queue_io_opt(disk->queue, io_opt);
1755
1756         if (ns->ms && !ns->ext &&
1757             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1758                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1759         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1760             ns->lba_shift > PAGE_SHIFT)
1761                 capacity = 0;
1762
1763         set_capacity(disk, capacity);
1764
1765         nvme_config_discard(disk, ns);
1766         nvme_config_write_zeroes(disk, ns);
1767
1768         if (id->nsattr & (1 << 0))
1769                 set_disk_ro(disk, true);
1770         else
1771                 set_disk_ro(disk, false);
1772
1773         blk_mq_unfreeze_queue(disk->queue);
1774 }
1775
1776 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1777 {
1778         struct nvme_ns *ns = disk->private_data;
1779
1780         /*
1781          * If identify namespace failed, use default 512 byte block size so
1782          * block layer can use before failing read/write for 0 capacity.
1783          */
1784         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1785         if (ns->lba_shift == 0)
1786                 ns->lba_shift = 9;
1787         ns->noiob = le16_to_cpu(id->noiob);
1788         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1789         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1790         /* the PI implementation requires metadata equal t10 pi tuple size */
1791         if (ns->ms == sizeof(struct t10_pi_tuple))
1792                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1793         else
1794                 ns->pi_type = 0;
1795
1796         if (ns->noiob)
1797                 nvme_set_chunk_size(ns);
1798         nvme_update_disk_info(disk, ns, id);
1799 #ifdef CONFIG_NVME_MULTIPATH
1800         if (ns->head->disk) {
1801                 nvme_update_disk_info(ns->head->disk, ns, id);
1802                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1803                 revalidate_disk(ns->head->disk);
1804         }
1805 #endif
1806 }
1807
1808 static int nvme_revalidate_disk(struct gendisk *disk)
1809 {
1810         struct nvme_ns *ns = disk->private_data;
1811         struct nvme_ctrl *ctrl = ns->ctrl;
1812         struct nvme_id_ns *id;
1813         struct nvme_ns_ids ids;
1814         int ret = 0;
1815
1816         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1817                 set_capacity(disk, 0);
1818                 return -ENODEV;
1819         }
1820
1821         ret = nvme_identify_ns(ctrl, ns->head->ns_id, &id);
1822         if (ret)
1823                 goto out;
1824
1825         if (id->ncap == 0) {
1826                 ret = -ENODEV;
1827                 goto free_id;
1828         }
1829
1830         __nvme_revalidate_disk(disk, id);
1831         ret = nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1832         if (ret)
1833                 goto free_id;
1834
1835         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1836                 dev_err(ctrl->device,
1837                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1838                 ret = -ENODEV;
1839         }
1840
1841 free_id:
1842         kfree(id);
1843 out:
1844         /*
1845          * Only fail the function if we got a fatal error back from the
1846          * device, otherwise ignore the error and just move on.
1847          */
1848         if (ret == -ENOMEM || (ret > 0 && !(ret & NVME_SC_DNR)))
1849                 ret = 0;
1850         else if (ret > 0)
1851                 ret = blk_status_to_errno(nvme_error_status(ret));
1852         return ret;
1853 }
1854
1855 static char nvme_pr_type(enum pr_type type)
1856 {
1857         switch (type) {
1858         case PR_WRITE_EXCLUSIVE:
1859                 return 1;
1860         case PR_EXCLUSIVE_ACCESS:
1861                 return 2;
1862         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1863                 return 3;
1864         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1865                 return 4;
1866         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1867                 return 5;
1868         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1869                 return 6;
1870         default:
1871                 return 0;
1872         }
1873 };
1874
1875 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1876                                 u64 key, u64 sa_key, u8 op)
1877 {
1878         struct nvme_ns_head *head = NULL;
1879         struct nvme_ns *ns;
1880         struct nvme_command c;
1881         int srcu_idx, ret;
1882         u8 data[16] = { 0, };
1883
1884         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1885         if (unlikely(!ns))
1886                 return -EWOULDBLOCK;
1887
1888         put_unaligned_le64(key, &data[0]);
1889         put_unaligned_le64(sa_key, &data[8]);
1890
1891         memset(&c, 0, sizeof(c));
1892         c.common.opcode = op;
1893         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1894         c.common.cdw10 = cpu_to_le32(cdw10);
1895
1896         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1897         nvme_put_ns_from_disk(head, srcu_idx);
1898         return ret;
1899 }
1900
1901 static int nvme_pr_register(struct block_device *bdev, u64 old,
1902                 u64 new, unsigned flags)
1903 {
1904         u32 cdw10;
1905
1906         if (flags & ~PR_FL_IGNORE_KEY)
1907                 return -EOPNOTSUPP;
1908
1909         cdw10 = old ? 2 : 0;
1910         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1911         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1912         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1913 }
1914
1915 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1916                 enum pr_type type, unsigned flags)
1917 {
1918         u32 cdw10;
1919
1920         if (flags & ~PR_FL_IGNORE_KEY)
1921                 return -EOPNOTSUPP;
1922
1923         cdw10 = nvme_pr_type(type) << 8;
1924         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1925         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1926 }
1927
1928 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1929                 enum pr_type type, bool abort)
1930 {
1931         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1932         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1933 }
1934
1935 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1936 {
1937         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1938         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1939 }
1940
1941 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1942 {
1943         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1944         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1945 }
1946
1947 static const struct pr_ops nvme_pr_ops = {
1948         .pr_register    = nvme_pr_register,
1949         .pr_reserve     = nvme_pr_reserve,
1950         .pr_release     = nvme_pr_release,
1951         .pr_preempt     = nvme_pr_preempt,
1952         .pr_clear       = nvme_pr_clear,
1953 };
1954
1955 #ifdef CONFIG_BLK_SED_OPAL
1956 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1957                 bool send)
1958 {
1959         struct nvme_ctrl *ctrl = data;
1960         struct nvme_command cmd;
1961
1962         memset(&cmd, 0, sizeof(cmd));
1963         if (send)
1964                 cmd.common.opcode = nvme_admin_security_send;
1965         else
1966                 cmd.common.opcode = nvme_admin_security_recv;
1967         cmd.common.nsid = 0;
1968         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1969         cmd.common.cdw11 = cpu_to_le32(len);
1970
1971         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1972                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1973 }
1974 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1975 #endif /* CONFIG_BLK_SED_OPAL */
1976
1977 static const struct block_device_operations nvme_fops = {
1978         .owner          = THIS_MODULE,
1979         .ioctl          = nvme_ioctl,
1980         .compat_ioctl   = nvme_ioctl,
1981         .open           = nvme_open,
1982         .release        = nvme_release,
1983         .getgeo         = nvme_getgeo,
1984         .revalidate_disk= nvme_revalidate_disk,
1985         .pr_ops         = &nvme_pr_ops,
1986 };
1987
1988 #ifdef CONFIG_NVME_MULTIPATH
1989 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1990 {
1991         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1992
1993         if (!kref_get_unless_zero(&head->ref))
1994                 return -ENXIO;
1995         return 0;
1996 }
1997
1998 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1999 {
2000         nvme_put_ns_head(disk->private_data);
2001 }
2002
2003 const struct block_device_operations nvme_ns_head_ops = {
2004         .owner          = THIS_MODULE,
2005         .open           = nvme_ns_head_open,
2006         .release        = nvme_ns_head_release,
2007         .ioctl          = nvme_ioctl,
2008         .compat_ioctl   = nvme_ioctl,
2009         .getgeo         = nvme_getgeo,
2010         .pr_ops         = &nvme_pr_ops,
2011 };
2012 #endif /* CONFIG_NVME_MULTIPATH */
2013
2014 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2015 {
2016         unsigned long timeout =
2017                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2018         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2019         int ret;
2020
2021         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2022                 if (csts == ~0)
2023                         return -ENODEV;
2024                 if ((csts & NVME_CSTS_RDY) == bit)
2025                         break;
2026
2027                 msleep(100);
2028                 if (fatal_signal_pending(current))
2029                         return -EINTR;
2030                 if (time_after(jiffies, timeout)) {
2031                         dev_err(ctrl->device,
2032                                 "Device not ready; aborting %s\n", enabled ?
2033                                                 "initialisation" : "reset");
2034                         return -ENODEV;
2035                 }
2036         }
2037
2038         return ret;
2039 }
2040
2041 /*
2042  * If the device has been passed off to us in an enabled state, just clear
2043  * the enabled bit.  The spec says we should set the 'shutdown notification
2044  * bits', but doing so may cause the device to complete commands to the
2045  * admin queue ... and we don't know what memory that might be pointing at!
2046  */
2047 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2048 {
2049         int ret;
2050
2051         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2052         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2053
2054         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2055         if (ret)
2056                 return ret;
2057
2058         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2059                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2060
2061         return nvme_wait_ready(ctrl, ctrl->cap, false);
2062 }
2063 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2064
2065 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2066 {
2067         /*
2068          * Default to a 4K page size, with the intention to update this
2069          * path in the future to accomodate architectures with differing
2070          * kernel and IO page sizes.
2071          */
2072         unsigned dev_page_min, page_shift = 12;
2073         int ret;
2074
2075         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2076         if (ret) {
2077                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2078                 return ret;
2079         }
2080         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2081
2082         if (page_shift < dev_page_min) {
2083                 dev_err(ctrl->device,
2084                         "Minimum device page size %u too large for host (%u)\n",
2085                         1 << dev_page_min, 1 << page_shift);
2086                 return -ENODEV;
2087         }
2088
2089         ctrl->page_size = 1 << page_shift;
2090
2091         ctrl->ctrl_config = NVME_CC_CSS_NVM;
2092         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
2093         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2094         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2095         ctrl->ctrl_config |= NVME_CC_ENABLE;
2096
2097         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2098         if (ret)
2099                 return ret;
2100         return nvme_wait_ready(ctrl, ctrl->cap, true);
2101 }
2102 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2103
2104 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2105 {
2106         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2107         u32 csts;
2108         int ret;
2109
2110         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2111         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2112
2113         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2114         if (ret)
2115                 return ret;
2116
2117         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2118                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2119                         break;
2120
2121                 msleep(100);
2122                 if (fatal_signal_pending(current))
2123                         return -EINTR;
2124                 if (time_after(jiffies, timeout)) {
2125                         dev_err(ctrl->device,
2126                                 "Device shutdown incomplete; abort shutdown\n");
2127                         return -ENODEV;
2128                 }
2129         }
2130
2131         return ret;
2132 }
2133 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2134
2135 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2136                 struct request_queue *q)
2137 {
2138         bool vwc = false;
2139
2140         if (ctrl->max_hw_sectors) {
2141                 u32 max_segments =
2142                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2143
2144                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2145                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2146                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2147         }
2148         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2149             is_power_of_2(ctrl->max_hw_sectors))
2150                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2151         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2152         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2153                 vwc = true;
2154         blk_queue_write_cache(q, vwc, vwc);
2155 }
2156
2157 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2158 {
2159         __le64 ts;
2160         int ret;
2161
2162         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2163                 return 0;
2164
2165         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2166         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2167                         NULL);
2168         if (ret)
2169                 dev_warn_once(ctrl->device,
2170                         "could not set timestamp (%d)\n", ret);
2171         return ret;
2172 }
2173
2174 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2175 {
2176         struct nvme_feat_host_behavior *host;
2177         int ret;
2178
2179         /* Don't bother enabling the feature if retry delay is not reported */
2180         if (!ctrl->crdt[0])
2181                 return 0;
2182
2183         host = kzalloc(sizeof(*host), GFP_KERNEL);
2184         if (!host)
2185                 return 0;
2186
2187         host->acre = NVME_ENABLE_ACRE;
2188         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2189                                 host, sizeof(*host), NULL);
2190         kfree(host);
2191         return ret;
2192 }
2193
2194 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2195 {
2196         /*
2197          * APST (Autonomous Power State Transition) lets us program a
2198          * table of power state transitions that the controller will
2199          * perform automatically.  We configure it with a simple
2200          * heuristic: we are willing to spend at most 2% of the time
2201          * transitioning between power states.  Therefore, when running
2202          * in any given state, we will enter the next lower-power
2203          * non-operational state after waiting 50 * (enlat + exlat)
2204          * microseconds, as long as that state's exit latency is under
2205          * the requested maximum latency.
2206          *
2207          * We will not autonomously enter any non-operational state for
2208          * which the total latency exceeds ps_max_latency_us.  Users
2209          * can set ps_max_latency_us to zero to turn off APST.
2210          */
2211
2212         unsigned apste;
2213         struct nvme_feat_auto_pst *table;
2214         u64 max_lat_us = 0;
2215         int max_ps = -1;
2216         int ret;
2217
2218         /*
2219          * If APST isn't supported or if we haven't been initialized yet,
2220          * then don't do anything.
2221          */
2222         if (!ctrl->apsta)
2223                 return 0;
2224
2225         if (ctrl->npss > 31) {
2226                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2227                 return 0;
2228         }
2229
2230         table = kzalloc(sizeof(*table), GFP_KERNEL);
2231         if (!table)
2232                 return 0;
2233
2234         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2235                 /* Turn off APST. */
2236                 apste = 0;
2237                 dev_dbg(ctrl->device, "APST disabled\n");
2238         } else {
2239                 __le64 target = cpu_to_le64(0);
2240                 int state;
2241
2242                 /*
2243                  * Walk through all states from lowest- to highest-power.
2244                  * According to the spec, lower-numbered states use more
2245                  * power.  NPSS, despite the name, is the index of the
2246                  * lowest-power state, not the number of states.
2247                  */
2248                 for (state = (int)ctrl->npss; state >= 0; state--) {
2249                         u64 total_latency_us, exit_latency_us, transition_ms;
2250
2251                         if (target)
2252                                 table->entries[state] = target;
2253
2254                         /*
2255                          * Don't allow transitions to the deepest state
2256                          * if it's quirked off.
2257                          */
2258                         if (state == ctrl->npss &&
2259                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2260                                 continue;
2261
2262                         /*
2263                          * Is this state a useful non-operational state for
2264                          * higher-power states to autonomously transition to?
2265                          */
2266                         if (!(ctrl->psd[state].flags &
2267                               NVME_PS_FLAGS_NON_OP_STATE))
2268                                 continue;
2269
2270                         exit_latency_us =
2271                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2272                         if (exit_latency_us > ctrl->ps_max_latency_us)
2273                                 continue;
2274
2275                         total_latency_us =
2276                                 exit_latency_us +
2277                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2278
2279                         /*
2280                          * This state is good.  Use it as the APST idle
2281                          * target for higher power states.
2282                          */
2283                         transition_ms = total_latency_us + 19;
2284                         do_div(transition_ms, 20);
2285                         if (transition_ms > (1 << 24) - 1)
2286                                 transition_ms = (1 << 24) - 1;
2287
2288                         target = cpu_to_le64((state << 3) |
2289                                              (transition_ms << 8));
2290
2291                         if (max_ps == -1)
2292                                 max_ps = state;
2293
2294                         if (total_latency_us > max_lat_us)
2295                                 max_lat_us = total_latency_us;
2296                 }
2297
2298                 apste = 1;
2299
2300                 if (max_ps == -1) {
2301                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2302                 } else {
2303                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2304                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2305                 }
2306         }
2307
2308         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2309                                 table, sizeof(*table), NULL);
2310         if (ret)
2311                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2312
2313         kfree(table);
2314         return ret;
2315 }
2316
2317 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2318 {
2319         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2320         u64 latency;
2321
2322         switch (val) {
2323         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2324         case PM_QOS_LATENCY_ANY:
2325                 latency = U64_MAX;
2326                 break;
2327
2328         default:
2329                 latency = val;
2330         }
2331
2332         if (ctrl->ps_max_latency_us != latency) {
2333                 ctrl->ps_max_latency_us = latency;
2334                 nvme_configure_apst(ctrl);
2335         }
2336 }
2337
2338 struct nvme_core_quirk_entry {
2339         /*
2340          * NVMe model and firmware strings are padded with spaces.  For
2341          * simplicity, strings in the quirk table are padded with NULLs
2342          * instead.
2343          */
2344         u16 vid;
2345         const char *mn;
2346         const char *fr;
2347         unsigned long quirks;
2348 };
2349
2350 static const struct nvme_core_quirk_entry core_quirks[] = {
2351         {
2352                 /*
2353                  * This Toshiba device seems to die using any APST states.  See:
2354                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2355                  */
2356                 .vid = 0x1179,
2357                 .mn = "THNSF5256GPUK TOSHIBA",
2358                 .quirks = NVME_QUIRK_NO_APST,
2359         },
2360         {
2361                 /*
2362                  * This LiteON CL1-3D*-Q11 firmware version has a race
2363                  * condition associated with actions related to suspend to idle
2364                  * LiteON has resolved the problem in future firmware
2365                  */
2366                 .vid = 0x14a4,
2367                 .fr = "22301111",
2368                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2369         },
2370         {
2371                 /*
2372                  * This Kingston E8FK11.T firmware version has no interrupt
2373                  * after resume with actions related to suspend to idle
2374                  * https://bugzilla.kernel.org/show_bug.cgi?id=204887
2375                  */
2376                 .vid = 0x2646,
2377                 .fr = "E8FK11.T",
2378                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2379         }
2380 };
2381
2382 /* match is null-terminated but idstr is space-padded. */
2383 static bool string_matches(const char *idstr, const char *match, size_t len)
2384 {
2385         size_t matchlen;
2386
2387         if (!match)
2388                 return true;
2389
2390         matchlen = strlen(match);
2391         WARN_ON_ONCE(matchlen > len);
2392
2393         if (memcmp(idstr, match, matchlen))
2394                 return false;
2395
2396         for (; matchlen < len; matchlen++)
2397                 if (idstr[matchlen] != ' ')
2398                         return false;
2399
2400         return true;
2401 }
2402
2403 static bool quirk_matches(const struct nvme_id_ctrl *id,
2404                           const struct nvme_core_quirk_entry *q)
2405 {
2406         return q->vid == le16_to_cpu(id->vid) &&
2407                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2408                 string_matches(id->fr, q->fr, sizeof(id->fr));
2409 }
2410
2411 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2412                 struct nvme_id_ctrl *id)
2413 {
2414         size_t nqnlen;
2415         int off;
2416
2417         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2418                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2419                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2420                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2421                         return;
2422                 }
2423
2424                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2425                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2426         }
2427
2428         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2429         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2430                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2431                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2432         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2433         off += sizeof(id->sn);
2434         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2435         off += sizeof(id->mn);
2436         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2437 }
2438
2439 static void nvme_release_subsystem(struct device *dev)
2440 {
2441         struct nvme_subsystem *subsys =
2442                 container_of(dev, struct nvme_subsystem, dev);
2443
2444         if (subsys->instance >= 0)
2445                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2446         kfree(subsys);
2447 }
2448
2449 static void nvme_destroy_subsystem(struct kref *ref)
2450 {
2451         struct nvme_subsystem *subsys =
2452                         container_of(ref, struct nvme_subsystem, ref);
2453
2454         mutex_lock(&nvme_subsystems_lock);
2455         list_del(&subsys->entry);
2456         mutex_unlock(&nvme_subsystems_lock);
2457
2458         ida_destroy(&subsys->ns_ida);
2459         device_del(&subsys->dev);
2460         put_device(&subsys->dev);
2461 }
2462
2463 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2464 {
2465         kref_put(&subsys->ref, nvme_destroy_subsystem);
2466 }
2467
2468 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2469 {
2470         struct nvme_subsystem *subsys;
2471
2472         lockdep_assert_held(&nvme_subsystems_lock);
2473
2474         /*
2475          * Fail matches for discovery subsystems. This results
2476          * in each discovery controller bound to a unique subsystem.
2477          * This avoids issues with validating controller values
2478          * that can only be true when there is a single unique subsystem.
2479          * There may be multiple and completely independent entities
2480          * that provide discovery controllers.
2481          */
2482         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2483                 return NULL;
2484
2485         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2486                 if (strcmp(subsys->subnqn, subsysnqn))
2487                         continue;
2488                 if (!kref_get_unless_zero(&subsys->ref))
2489                         continue;
2490                 return subsys;
2491         }
2492
2493         return NULL;
2494 }
2495
2496 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2497         struct device_attribute subsys_attr_##_name = \
2498                 __ATTR(_name, _mode, _show, NULL)
2499
2500 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2501                                     struct device_attribute *attr,
2502                                     char *buf)
2503 {
2504         struct nvme_subsystem *subsys =
2505                 container_of(dev, struct nvme_subsystem, dev);
2506
2507         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2508 }
2509 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2510
2511 #define nvme_subsys_show_str_function(field)                            \
2512 static ssize_t subsys_##field##_show(struct device *dev,                \
2513                             struct device_attribute *attr, char *buf)   \
2514 {                                                                       \
2515         struct nvme_subsystem *subsys =                                 \
2516                 container_of(dev, struct nvme_subsystem, dev);          \
2517         return sprintf(buf, "%.*s\n",                                   \
2518                        (int)sizeof(subsys->field), subsys->field);      \
2519 }                                                                       \
2520 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2521
2522 nvme_subsys_show_str_function(model);
2523 nvme_subsys_show_str_function(serial);
2524 nvme_subsys_show_str_function(firmware_rev);
2525
2526 static struct attribute *nvme_subsys_attrs[] = {
2527         &subsys_attr_model.attr,
2528         &subsys_attr_serial.attr,
2529         &subsys_attr_firmware_rev.attr,
2530         &subsys_attr_subsysnqn.attr,
2531 #ifdef CONFIG_NVME_MULTIPATH
2532         &subsys_attr_iopolicy.attr,
2533 #endif
2534         NULL,
2535 };
2536
2537 static struct attribute_group nvme_subsys_attrs_group = {
2538         .attrs = nvme_subsys_attrs,
2539 };
2540
2541 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2542         &nvme_subsys_attrs_group,
2543         NULL,
2544 };
2545
2546 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2547                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2548 {
2549         struct nvme_ctrl *tmp;
2550
2551         lockdep_assert_held(&nvme_subsystems_lock);
2552
2553         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2554                 if (tmp->state == NVME_CTRL_DELETING ||
2555                     tmp->state == NVME_CTRL_DEAD)
2556                         continue;
2557
2558                 if (tmp->cntlid == ctrl->cntlid) {
2559                         dev_err(ctrl->device,
2560                                 "Duplicate cntlid %u with %s, rejecting\n",
2561                                 ctrl->cntlid, dev_name(tmp->device));
2562                         return false;
2563                 }
2564
2565                 if ((id->cmic & (1 << 1)) ||
2566                     (ctrl->opts && ctrl->opts->discovery_nqn))
2567                         continue;
2568
2569                 dev_err(ctrl->device,
2570                         "Subsystem does not support multiple controllers\n");
2571                 return false;
2572         }
2573
2574         return true;
2575 }
2576
2577 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2578 {
2579         struct nvme_subsystem *subsys, *found;
2580         int ret;
2581
2582         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2583         if (!subsys)
2584                 return -ENOMEM;
2585
2586         subsys->instance = -1;
2587         mutex_init(&subsys->lock);
2588         kref_init(&subsys->ref);
2589         INIT_LIST_HEAD(&subsys->ctrls);
2590         INIT_LIST_HEAD(&subsys->nsheads);
2591         nvme_init_subnqn(subsys, ctrl, id);
2592         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2593         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2594         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2595         subsys->vendor_id = le16_to_cpu(id->vid);
2596         subsys->cmic = id->cmic;
2597         subsys->awupf = le16_to_cpu(id->awupf);
2598 #ifdef CONFIG_NVME_MULTIPATH
2599         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2600 #endif
2601
2602         subsys->dev.class = nvme_subsys_class;
2603         subsys->dev.release = nvme_release_subsystem;
2604         subsys->dev.groups = nvme_subsys_attrs_groups;
2605         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2606         device_initialize(&subsys->dev);
2607
2608         mutex_lock(&nvme_subsystems_lock);
2609         found = __nvme_find_get_subsystem(subsys->subnqn);
2610         if (found) {
2611                 put_device(&subsys->dev);
2612                 subsys = found;
2613
2614                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2615                         ret = -EINVAL;
2616                         goto out_put_subsystem;
2617                 }
2618         } else {
2619                 ret = device_add(&subsys->dev);
2620                 if (ret) {
2621                         dev_err(ctrl->device,
2622                                 "failed to register subsystem device.\n");
2623                         put_device(&subsys->dev);
2624                         goto out_unlock;
2625                 }
2626                 ida_init(&subsys->ns_ida);
2627                 list_add_tail(&subsys->entry, &nvme_subsystems);
2628         }
2629
2630         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2631                                 dev_name(ctrl->device));
2632         if (ret) {
2633                 dev_err(ctrl->device,
2634                         "failed to create sysfs link from subsystem.\n");
2635                 goto out_put_subsystem;
2636         }
2637
2638         if (!found)
2639                 subsys->instance = ctrl->instance;
2640         ctrl->subsys = subsys;
2641         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2642         mutex_unlock(&nvme_subsystems_lock);
2643         return 0;
2644
2645 out_put_subsystem:
2646         nvme_put_subsystem(subsys);
2647 out_unlock:
2648         mutex_unlock(&nvme_subsystems_lock);
2649         return ret;
2650 }
2651
2652 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2653                 void *log, size_t size, u64 offset)
2654 {
2655         struct nvme_command c = { };
2656         unsigned long dwlen = size / 4 - 1;
2657
2658         c.get_log_page.opcode = nvme_admin_get_log_page;
2659         c.get_log_page.nsid = cpu_to_le32(nsid);
2660         c.get_log_page.lid = log_page;
2661         c.get_log_page.lsp = lsp;
2662         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2663         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2664         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2665         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2666
2667         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2668 }
2669
2670 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2671 {
2672         int ret;
2673
2674         if (!ctrl->effects)
2675                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2676
2677         if (!ctrl->effects)
2678                 return 0;
2679
2680         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2681                         ctrl->effects, sizeof(*ctrl->effects), 0);
2682         if (ret) {
2683                 kfree(ctrl->effects);
2684                 ctrl->effects = NULL;
2685         }
2686         return ret;
2687 }
2688
2689 /*
2690  * Initialize the cached copies of the Identify data and various controller
2691  * register in our nvme_ctrl structure.  This should be called as soon as
2692  * the admin queue is fully up and running.
2693  */
2694 int nvme_init_identify(struct nvme_ctrl *ctrl)
2695 {
2696         struct nvme_id_ctrl *id;
2697         int ret, page_shift;
2698         u32 max_hw_sectors;
2699         bool prev_apst_enabled;
2700
2701         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2702         if (ret) {
2703                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2704                 return ret;
2705         }
2706         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2707         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2708
2709         if (ctrl->vs >= NVME_VS(1, 1, 0))
2710                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2711
2712         ret = nvme_identify_ctrl(ctrl, &id);
2713         if (ret) {
2714                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2715                 return -EIO;
2716         }
2717
2718         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2719                 ret = nvme_get_effects_log(ctrl);
2720                 if (ret < 0)
2721                         goto out_free;
2722         }
2723
2724         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2725                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2726
2727         if (!ctrl->identified) {
2728                 int i;
2729
2730                 ret = nvme_init_subsystem(ctrl, id);
2731                 if (ret)
2732                         goto out_free;
2733
2734                 /*
2735                  * Check for quirks.  Quirk can depend on firmware version,
2736                  * so, in principle, the set of quirks present can change
2737                  * across a reset.  As a possible future enhancement, we
2738                  * could re-scan for quirks every time we reinitialize
2739                  * the device, but we'd have to make sure that the driver
2740                  * behaves intelligently if the quirks change.
2741                  */
2742                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2743                         if (quirk_matches(id, &core_quirks[i]))
2744                                 ctrl->quirks |= core_quirks[i].quirks;
2745                 }
2746         }
2747
2748         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2749                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2750                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2751         }
2752
2753         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2754         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2755         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2756
2757         ctrl->oacs = le16_to_cpu(id->oacs);
2758         ctrl->oncs = le16_to_cpu(id->oncs);
2759         ctrl->mtfa = le16_to_cpu(id->mtfa);
2760         ctrl->oaes = le32_to_cpu(id->oaes);
2761         atomic_set(&ctrl->abort_limit, id->acl + 1);
2762         ctrl->vwc = id->vwc;
2763         if (id->mdts)
2764                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2765         else
2766                 max_hw_sectors = UINT_MAX;
2767         ctrl->max_hw_sectors =
2768                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2769
2770         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2771         ctrl->sgls = le32_to_cpu(id->sgls);
2772         ctrl->kas = le16_to_cpu(id->kas);
2773         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2774         ctrl->ctratt = le32_to_cpu(id->ctratt);
2775
2776         if (id->rtd3e) {
2777                 /* us -> s */
2778                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2779
2780                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2781                                                  shutdown_timeout, 60);
2782
2783                 if (ctrl->shutdown_timeout != shutdown_timeout)
2784                         dev_info(ctrl->device,
2785                                  "Shutdown timeout set to %u seconds\n",
2786                                  ctrl->shutdown_timeout);
2787         } else
2788                 ctrl->shutdown_timeout = shutdown_timeout;
2789
2790         ctrl->npss = id->npss;
2791         ctrl->apsta = id->apsta;
2792         prev_apst_enabled = ctrl->apst_enabled;
2793         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2794                 if (force_apst && id->apsta) {
2795                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2796                         ctrl->apst_enabled = true;
2797                 } else {
2798                         ctrl->apst_enabled = false;
2799                 }
2800         } else {
2801                 ctrl->apst_enabled = id->apsta;
2802         }
2803         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2804
2805         if (ctrl->ops->flags & NVME_F_FABRICS) {
2806                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2807                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2808                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2809                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2810
2811                 /*
2812                  * In fabrics we need to verify the cntlid matches the
2813                  * admin connect
2814                  */
2815                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2816                         ret = -EINVAL;
2817                         goto out_free;
2818                 }
2819
2820                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2821                         dev_err(ctrl->device,
2822                                 "keep-alive support is mandatory for fabrics\n");
2823                         ret = -EINVAL;
2824                         goto out_free;
2825                 }
2826         } else {
2827                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2828                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2829                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2830                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2831         }
2832
2833         ret = nvme_mpath_init(ctrl, id);
2834         kfree(id);
2835
2836         if (ret < 0)
2837                 return ret;
2838
2839         if (ctrl->apst_enabled && !prev_apst_enabled)
2840                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2841         else if (!ctrl->apst_enabled && prev_apst_enabled)
2842                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2843
2844         ret = nvme_configure_apst(ctrl);
2845         if (ret < 0)
2846                 return ret;
2847         
2848         ret = nvme_configure_timestamp(ctrl);
2849         if (ret < 0)
2850                 return ret;
2851
2852         ret = nvme_configure_directives(ctrl);
2853         if (ret < 0)
2854                 return ret;
2855
2856         ret = nvme_configure_acre(ctrl);
2857         if (ret < 0)
2858                 return ret;
2859
2860         ctrl->identified = true;
2861
2862         return 0;
2863
2864 out_free:
2865         kfree(id);
2866         return ret;
2867 }
2868 EXPORT_SYMBOL_GPL(nvme_init_identify);
2869
2870 static int nvme_dev_open(struct inode *inode, struct file *file)
2871 {
2872         struct nvme_ctrl *ctrl =
2873                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2874
2875         switch (ctrl->state) {
2876         case NVME_CTRL_LIVE:
2877         case NVME_CTRL_ADMIN_ONLY:
2878                 break;
2879         default:
2880                 return -EWOULDBLOCK;
2881         }
2882
2883         file->private_data = ctrl;
2884         return 0;
2885 }
2886
2887 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2888 {
2889         struct nvme_ns *ns;
2890         int ret;
2891
2892         down_read(&ctrl->namespaces_rwsem);
2893         if (list_empty(&ctrl->namespaces)) {
2894                 ret = -ENOTTY;
2895                 goto out_unlock;
2896         }
2897
2898         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2899         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2900                 dev_warn(ctrl->device,
2901                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2902                 ret = -EINVAL;
2903                 goto out_unlock;
2904         }
2905
2906         dev_warn(ctrl->device,
2907                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2908         kref_get(&ns->kref);
2909         up_read(&ctrl->namespaces_rwsem);
2910
2911         ret = nvme_user_cmd(ctrl, ns, argp);
2912         nvme_put_ns(ns);
2913         return ret;
2914
2915 out_unlock:
2916         up_read(&ctrl->namespaces_rwsem);
2917         return ret;
2918 }
2919
2920 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2921                 unsigned long arg)
2922 {
2923         struct nvme_ctrl *ctrl = file->private_data;
2924         void __user *argp = (void __user *)arg;
2925
2926         switch (cmd) {
2927         case NVME_IOCTL_ADMIN_CMD:
2928                 return nvme_user_cmd(ctrl, NULL, argp);
2929         case NVME_IOCTL_ADMIN64_CMD:
2930                 return nvme_user_cmd64(ctrl, NULL, argp);
2931         case NVME_IOCTL_IO_CMD:
2932                 return nvme_dev_user_cmd(ctrl, argp);
2933         case NVME_IOCTL_RESET:
2934                 dev_warn(ctrl->device, "resetting controller\n");
2935                 return nvme_reset_ctrl_sync(ctrl);
2936         case NVME_IOCTL_SUBSYS_RESET:
2937                 return nvme_reset_subsystem(ctrl);
2938         case NVME_IOCTL_RESCAN:
2939                 nvme_queue_scan(ctrl);
2940                 return 0;
2941         default:
2942                 return -ENOTTY;
2943         }
2944 }
2945
2946 static const struct file_operations nvme_dev_fops = {
2947         .owner          = THIS_MODULE,
2948         .open           = nvme_dev_open,
2949         .unlocked_ioctl = nvme_dev_ioctl,
2950         .compat_ioctl   = nvme_dev_ioctl,
2951 };
2952
2953 static ssize_t nvme_sysfs_reset(struct device *dev,
2954                                 struct device_attribute *attr, const char *buf,
2955                                 size_t count)
2956 {
2957         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2958         int ret;
2959
2960         ret = nvme_reset_ctrl_sync(ctrl);
2961         if (ret < 0)
2962                 return ret;
2963         return count;
2964 }
2965 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2966
2967 static ssize_t nvme_sysfs_rescan(struct device *dev,
2968                                 struct device_attribute *attr, const char *buf,
2969                                 size_t count)
2970 {
2971         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2972
2973         nvme_queue_scan(ctrl);
2974         return count;
2975 }
2976 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2977
2978 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2979 {
2980         struct gendisk *disk = dev_to_disk(dev);
2981
2982         if (disk->fops == &nvme_fops)
2983                 return nvme_get_ns_from_dev(dev)->head;
2984         else
2985                 return disk->private_data;
2986 }
2987
2988 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2989                 char *buf)
2990 {
2991         struct nvme_ns_head *head = dev_to_ns_head(dev);
2992         struct nvme_ns_ids *ids = &head->ids;
2993         struct nvme_subsystem *subsys = head->subsys;
2994         int serial_len = sizeof(subsys->serial);
2995         int model_len = sizeof(subsys->model);
2996
2997         if (!uuid_is_null(&ids->uuid))
2998                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2999
3000         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3001                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3002
3003         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3004                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3005
3006         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3007                                   subsys->serial[serial_len - 1] == '\0'))
3008                 serial_len--;
3009         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3010                                  subsys->model[model_len - 1] == '\0'))
3011                 model_len--;
3012
3013         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3014                 serial_len, subsys->serial, model_len, subsys->model,
3015                 head->ns_id);
3016 }
3017 static DEVICE_ATTR_RO(wwid);
3018
3019 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3020                 char *buf)
3021 {
3022         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3023 }
3024 static DEVICE_ATTR_RO(nguid);
3025
3026 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3027                 char *buf)
3028 {
3029         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3030
3031         /* For backward compatibility expose the NGUID to userspace if
3032          * we have no UUID set
3033          */
3034         if (uuid_is_null(&ids->uuid)) {
3035                 printk_ratelimited(KERN_WARNING
3036                                    "No UUID available providing old NGUID\n");
3037                 return sprintf(buf, "%pU\n", ids->nguid);
3038         }
3039         return sprintf(buf, "%pU\n", &ids->uuid);
3040 }
3041 static DEVICE_ATTR_RO(uuid);
3042
3043 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3044                 char *buf)
3045 {
3046         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3047 }
3048 static DEVICE_ATTR_RO(eui);
3049
3050 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3051                 char *buf)
3052 {
3053         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3054 }
3055 static DEVICE_ATTR_RO(nsid);
3056
3057 static struct attribute *nvme_ns_id_attrs[] = {
3058         &dev_attr_wwid.attr,
3059         &dev_attr_uuid.attr,
3060         &dev_attr_nguid.attr,
3061         &dev_attr_eui.attr,
3062         &dev_attr_nsid.attr,
3063 #ifdef CONFIG_NVME_MULTIPATH
3064         &dev_attr_ana_grpid.attr,
3065         &dev_attr_ana_state.attr,
3066 #endif
3067         NULL,
3068 };
3069
3070 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3071                 struct attribute *a, int n)
3072 {
3073         struct device *dev = container_of(kobj, struct device, kobj);
3074         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3075
3076         if (a == &dev_attr_uuid.attr) {
3077                 if (uuid_is_null(&ids->uuid) &&
3078                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3079                         return 0;
3080         }
3081         if (a == &dev_attr_nguid.attr) {
3082                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3083                         return 0;
3084         }
3085         if (a == &dev_attr_eui.attr) {
3086                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3087                         return 0;
3088         }
3089 #ifdef CONFIG_NVME_MULTIPATH
3090         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3091                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3092                         return 0;
3093                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3094                         return 0;
3095         }
3096 #endif
3097         return a->mode;
3098 }
3099
3100 static const struct attribute_group nvme_ns_id_attr_group = {
3101         .attrs          = nvme_ns_id_attrs,
3102         .is_visible     = nvme_ns_id_attrs_are_visible,
3103 };
3104
3105 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3106         &nvme_ns_id_attr_group,
3107 #ifdef CONFIG_NVM
3108         &nvme_nvm_attr_group,
3109 #endif
3110         NULL,
3111 };
3112
3113 #define nvme_show_str_function(field)                                           \
3114 static ssize_t  field##_show(struct device *dev,                                \
3115                             struct device_attribute *attr, char *buf)           \
3116 {                                                                               \
3117         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3118         return sprintf(buf, "%.*s\n",                                           \
3119                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3120 }                                                                               \
3121 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3122
3123 nvme_show_str_function(model);
3124 nvme_show_str_function(serial);
3125 nvme_show_str_function(firmware_rev);
3126
3127 #define nvme_show_int_function(field)                                           \
3128 static ssize_t  field##_show(struct device *dev,                                \
3129                             struct device_attribute *attr, char *buf)           \
3130 {                                                                               \
3131         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3132         return sprintf(buf, "%d\n", ctrl->field);       \
3133 }                                                                               \
3134 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3135
3136 nvme_show_int_function(cntlid);
3137 nvme_show_int_function(numa_node);
3138 nvme_show_int_function(queue_count);
3139 nvme_show_int_function(sqsize);
3140
3141 static ssize_t nvme_sysfs_delete(struct device *dev,
3142                                 struct device_attribute *attr, const char *buf,
3143                                 size_t count)
3144 {
3145         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3146
3147         if (device_remove_file_self(dev, attr))
3148                 nvme_delete_ctrl_sync(ctrl);
3149         return count;
3150 }
3151 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3152
3153 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3154                                          struct device_attribute *attr,
3155                                          char *buf)
3156 {
3157         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3158
3159         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3160 }
3161 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3162
3163 static ssize_t nvme_sysfs_show_state(struct device *dev,
3164                                      struct device_attribute *attr,
3165                                      char *buf)
3166 {
3167         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3168         static const char *const state_name[] = {
3169                 [NVME_CTRL_NEW]         = "new",
3170                 [NVME_CTRL_LIVE]        = "live",
3171                 [NVME_CTRL_ADMIN_ONLY]  = "only-admin",
3172                 [NVME_CTRL_RESETTING]   = "resetting",
3173                 [NVME_CTRL_CONNECTING]  = "connecting",
3174                 [NVME_CTRL_DELETING]    = "deleting",
3175                 [NVME_CTRL_DEAD]        = "dead",
3176         };
3177
3178         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3179             state_name[ctrl->state])
3180                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3181
3182         return sprintf(buf, "unknown state\n");
3183 }
3184
3185 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3186
3187 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3188                                          struct device_attribute *attr,
3189                                          char *buf)
3190 {
3191         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3192
3193         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3194 }
3195 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3196
3197 static ssize_t nvme_sysfs_show_address(struct device *dev,
3198                                          struct device_attribute *attr,
3199                                          char *buf)
3200 {
3201         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3202
3203         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3204 }
3205 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3206
3207 static struct attribute *nvme_dev_attrs[] = {
3208         &dev_attr_reset_controller.attr,
3209         &dev_attr_rescan_controller.attr,
3210         &dev_attr_model.attr,
3211         &dev_attr_serial.attr,
3212         &dev_attr_firmware_rev.attr,
3213         &dev_attr_cntlid.attr,
3214         &dev_attr_delete_controller.attr,
3215         &dev_attr_transport.attr,
3216         &dev_attr_subsysnqn.attr,
3217         &dev_attr_address.attr,
3218         &dev_attr_state.attr,
3219         &dev_attr_numa_node.attr,
3220         &dev_attr_queue_count.attr,
3221         &dev_attr_sqsize.attr,
3222         NULL
3223 };
3224
3225 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3226                 struct attribute *a, int n)
3227 {
3228         struct device *dev = container_of(kobj, struct device, kobj);
3229         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3230
3231         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3232                 return 0;
3233         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3234                 return 0;
3235
3236         return a->mode;
3237 }
3238
3239 static struct attribute_group nvme_dev_attrs_group = {
3240         .attrs          = nvme_dev_attrs,
3241         .is_visible     = nvme_dev_attrs_are_visible,
3242 };
3243
3244 static const struct attribute_group *nvme_dev_attr_groups[] = {
3245         &nvme_dev_attrs_group,
3246         NULL,
3247 };
3248
3249 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3250                 unsigned nsid)
3251 {
3252         struct nvme_ns_head *h;
3253
3254         lockdep_assert_held(&subsys->lock);
3255
3256         list_for_each_entry(h, &subsys->nsheads, entry) {
3257                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3258                         return h;
3259         }
3260
3261         return NULL;
3262 }
3263
3264 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3265                 struct nvme_ns_head *new)
3266 {
3267         struct nvme_ns_head *h;
3268
3269         lockdep_assert_held(&subsys->lock);
3270
3271         list_for_each_entry(h, &subsys->nsheads, entry) {
3272                 if (nvme_ns_ids_valid(&new->ids) &&
3273                     !list_empty(&h->list) &&
3274                     nvme_ns_ids_equal(&new->ids, &h->ids))
3275                         return -EINVAL;
3276         }
3277
3278         return 0;
3279 }
3280
3281 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3282                 unsigned nsid, struct nvme_id_ns *id)
3283 {
3284         struct nvme_ns_head *head;
3285         size_t size = sizeof(*head);
3286         int ret = -ENOMEM;
3287
3288 #ifdef CONFIG_NVME_MULTIPATH
3289         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3290 #endif
3291
3292         head = kzalloc(size, GFP_KERNEL);
3293         if (!head)
3294                 goto out;
3295         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3296         if (ret < 0)
3297                 goto out_free_head;
3298         head->instance = ret;
3299         INIT_LIST_HEAD(&head->list);
3300         ret = init_srcu_struct(&head->srcu);
3301         if (ret)
3302                 goto out_ida_remove;
3303         head->subsys = ctrl->subsys;
3304         head->ns_id = nsid;
3305         kref_init(&head->ref);
3306
3307         ret = nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3308         if (ret)
3309                 goto out_cleanup_srcu;
3310
3311         ret = __nvme_check_ids(ctrl->subsys, head);
3312         if (ret) {
3313                 dev_err(ctrl->device,
3314                         "duplicate IDs for nsid %d\n", nsid);
3315                 goto out_cleanup_srcu;
3316         }
3317
3318         ret = nvme_mpath_alloc_disk(ctrl, head);
3319         if (ret)
3320                 goto out_cleanup_srcu;
3321
3322         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3323
3324         kref_get(&ctrl->subsys->ref);
3325
3326         return head;
3327 out_cleanup_srcu:
3328         cleanup_srcu_struct(&head->srcu);
3329 out_ida_remove:
3330         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3331 out_free_head:
3332         kfree(head);
3333 out:
3334         if (ret > 0)
3335                 ret = blk_status_to_errno(nvme_error_status(ret));
3336         return ERR_PTR(ret);
3337 }
3338
3339 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3340                 struct nvme_id_ns *id)
3341 {
3342         struct nvme_ctrl *ctrl = ns->ctrl;
3343         bool is_shared = id->nmic & (1 << 0);
3344         struct nvme_ns_head *head = NULL;
3345         int ret = 0;
3346
3347         mutex_lock(&ctrl->subsys->lock);
3348         if (is_shared)
3349                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3350         if (!head) {
3351                 head = nvme_alloc_ns_head(ctrl, nsid, id);
3352                 if (IS_ERR(head)) {
3353                         ret = PTR_ERR(head);
3354                         goto out_unlock;
3355                 }
3356         } else {
3357                 struct nvme_ns_ids ids;
3358
3359                 ret = nvme_report_ns_ids(ctrl, nsid, id, &ids);
3360                 if (ret)
3361                         goto out_unlock;
3362
3363                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3364                         dev_err(ctrl->device,
3365                                 "IDs don't match for shared namespace %d\n",
3366                                         nsid);
3367                         ret = -EINVAL;
3368                         goto out_unlock;
3369                 }
3370         }
3371
3372         list_add_tail(&ns->siblings, &head->list);
3373         ns->head = head;
3374
3375 out_unlock:
3376         mutex_unlock(&ctrl->subsys->lock);
3377         if (ret > 0)
3378                 ret = blk_status_to_errno(nvme_error_status(ret));
3379         return ret;
3380 }
3381
3382 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3383 {
3384         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3385         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3386
3387         return nsa->head->ns_id - nsb->head->ns_id;
3388 }
3389
3390 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3391 {
3392         struct nvme_ns *ns, *ret = NULL;
3393
3394         down_read(&ctrl->namespaces_rwsem);
3395         list_for_each_entry(ns, &ctrl->namespaces, list) {
3396                 if (ns->head->ns_id == nsid) {
3397                         if (!kref_get_unless_zero(&ns->kref))
3398                                 continue;
3399                         ret = ns;
3400                         break;
3401                 }
3402                 if (ns->head->ns_id > nsid)
3403                         break;
3404         }
3405         up_read(&ctrl->namespaces_rwsem);
3406         return ret;
3407 }
3408
3409 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3410 {
3411         struct streams_directive_params s;
3412         int ret;
3413
3414         if (!ctrl->nr_streams)
3415                 return 0;
3416
3417         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3418         if (ret)
3419                 return ret;
3420
3421         ns->sws = le32_to_cpu(s.sws);
3422         ns->sgs = le16_to_cpu(s.sgs);
3423
3424         if (ns->sws) {
3425                 unsigned int bs = 1 << ns->lba_shift;
3426
3427                 blk_queue_io_min(ns->queue, bs * ns->sws);
3428                 if (ns->sgs)
3429                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3430         }
3431
3432         return 0;
3433 }
3434
3435 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3436 {
3437         struct nvme_ns *ns;
3438         struct gendisk *disk;
3439         struct nvme_id_ns *id;
3440         char disk_name[DISK_NAME_LEN];
3441         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3442
3443         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3444         if (!ns)
3445                 return -ENOMEM;
3446
3447         ns->queue = blk_mq_init_queue(ctrl->tagset);
3448         if (IS_ERR(ns->queue)) {
3449                 ret = PTR_ERR(ns->queue);
3450                 goto out_free_ns;
3451         }
3452
3453         if (ctrl->opts && ctrl->opts->data_digest)
3454                 ns->queue->backing_dev_info->capabilities
3455                         |= BDI_CAP_STABLE_WRITES;
3456
3457         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3458         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3459                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3460
3461         ns->queue->queuedata = ns;
3462         ns->ctrl = ctrl;
3463
3464         kref_init(&ns->kref);
3465         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3466
3467         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3468         nvme_set_queue_limits(ctrl, ns->queue);
3469
3470         ret = nvme_identify_ns(ctrl, nsid, &id);
3471         if (ret)
3472                 goto out_free_queue;
3473
3474         if (id->ncap == 0) {
3475                 ret = -EINVAL;
3476                 goto out_free_id;
3477         }
3478
3479         ret = nvme_init_ns_head(ns, nsid, id);
3480         if (ret)
3481                 goto out_free_id;
3482         nvme_setup_streams_ns(ctrl, ns);
3483         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3484
3485         disk = alloc_disk_node(0, node);
3486         if (!disk) {
3487                 ret = -ENOMEM;
3488                 goto out_unlink_ns;
3489         }
3490
3491         disk->fops = &nvme_fops;
3492         disk->private_data = ns;
3493         disk->queue = ns->queue;
3494         disk->flags = flags;
3495         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3496         ns->disk = disk;
3497
3498         __nvme_revalidate_disk(disk, id);
3499
3500         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3501                 ret = nvme_nvm_register(ns, disk_name, node);
3502                 if (ret) {
3503                         dev_warn(ctrl->device, "LightNVM init failure\n");
3504                         goto out_put_disk;
3505                 }
3506         }
3507
3508         down_write(&ctrl->namespaces_rwsem);
3509         list_add_tail(&ns->list, &ctrl->namespaces);
3510         up_write(&ctrl->namespaces_rwsem);
3511
3512         nvme_get_ctrl(ctrl);
3513
3514         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3515
3516         nvme_mpath_add_disk(ns, id);
3517         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3518         kfree(id);
3519
3520         return 0;
3521  out_put_disk:
3522         put_disk(ns->disk);
3523  out_unlink_ns:
3524         mutex_lock(&ctrl->subsys->lock);
3525         list_del_rcu(&ns->siblings);
3526         mutex_unlock(&ctrl->subsys->lock);
3527         nvme_put_ns_head(ns->head);
3528  out_free_id:
3529         kfree(id);
3530  out_free_queue:
3531         blk_cleanup_queue(ns->queue);
3532  out_free_ns:
3533         kfree(ns);
3534         if (ret > 0)
3535                 ret = blk_status_to_errno(nvme_error_status(ret));
3536         return ret;
3537 }
3538
3539 static void nvme_ns_remove(struct nvme_ns *ns)
3540 {
3541         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3542                 return;
3543
3544         nvme_fault_inject_fini(&ns->fault_inject);
3545
3546         mutex_lock(&ns->ctrl->subsys->lock);
3547         list_del_rcu(&ns->siblings);
3548         mutex_unlock(&ns->ctrl->subsys->lock);
3549         synchronize_rcu(); /* guarantee not available in head->list */
3550         nvme_mpath_clear_current_path(ns);
3551         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3552
3553         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3554                 del_gendisk(ns->disk);
3555                 blk_cleanup_queue(ns->queue);
3556                 if (blk_get_integrity(ns->disk))
3557                         blk_integrity_unregister(ns->disk);
3558         }
3559
3560         down_write(&ns->ctrl->namespaces_rwsem);
3561         list_del_init(&ns->list);
3562         up_write(&ns->ctrl->namespaces_rwsem);
3563
3564         nvme_mpath_check_last_path(ns);
3565         nvme_put_ns(ns);
3566 }
3567
3568 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3569 {
3570         struct nvme_ns *ns;
3571
3572         ns = nvme_find_get_ns(ctrl, nsid);
3573         if (ns) {
3574                 if (ns->disk && revalidate_disk(ns->disk))
3575                         nvme_ns_remove(ns);
3576                 nvme_put_ns(ns);
3577         } else
3578                 nvme_alloc_ns(ctrl, nsid);
3579 }
3580
3581 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3582                                         unsigned nsid)
3583 {
3584         struct nvme_ns *ns, *next;
3585         LIST_HEAD(rm_list);
3586
3587         down_write(&ctrl->namespaces_rwsem);
3588         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3589                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3590                         list_move_tail(&ns->list, &rm_list);
3591         }
3592         up_write(&ctrl->namespaces_rwsem);
3593
3594         list_for_each_entry_safe(ns, next, &rm_list, list)
3595                 nvme_ns_remove(ns);
3596
3597 }
3598
3599 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3600 {
3601         struct nvme_ns *ns;
3602         __le32 *ns_list;
3603         unsigned i, j, nsid, prev = 0;
3604         unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3605         int ret = 0;
3606
3607         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3608         if (!ns_list)
3609                 return -ENOMEM;
3610
3611         for (i = 0; i < num_lists; i++) {
3612                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3613                 if (ret)
3614                         goto free;
3615
3616                 for (j = 0; j < min(nn, 1024U); j++) {
3617                         nsid = le32_to_cpu(ns_list[j]);
3618                         if (!nsid)
3619                                 goto out;
3620
3621                         nvme_validate_ns(ctrl, nsid);
3622
3623                         while (++prev < nsid) {
3624                                 ns = nvme_find_get_ns(ctrl, prev);
3625                                 if (ns) {
3626                                         nvme_ns_remove(ns);
3627                                         nvme_put_ns(ns);
3628                                 }
3629                         }
3630                 }
3631                 nn -= j;
3632         }
3633  out:
3634         nvme_remove_invalid_namespaces(ctrl, prev);
3635  free:
3636         kfree(ns_list);
3637         return ret;
3638 }
3639
3640 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3641 {
3642         unsigned i;
3643
3644         for (i = 1; i <= nn; i++)
3645                 nvme_validate_ns(ctrl, i);
3646
3647         nvme_remove_invalid_namespaces(ctrl, nn);
3648 }
3649
3650 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3651 {
3652         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3653         __le32 *log;
3654         int error;
3655
3656         log = kzalloc(log_size, GFP_KERNEL);
3657         if (!log)
3658                 return;
3659
3660         /*
3661          * We need to read the log to clear the AEN, but we don't want to rely
3662          * on it for the changed namespace information as userspace could have
3663          * raced with us in reading the log page, which could cause us to miss
3664          * updates.
3665          */
3666         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3667                         log_size, 0);
3668         if (error)
3669                 dev_warn(ctrl->device,
3670                         "reading changed ns log failed: %d\n", error);
3671
3672         kfree(log);
3673 }
3674
3675 static void nvme_scan_work(struct work_struct *work)
3676 {
3677         struct nvme_ctrl *ctrl =
3678                 container_of(work, struct nvme_ctrl, scan_work);
3679         struct nvme_id_ctrl *id;
3680         unsigned nn;
3681
3682         if (ctrl->state != NVME_CTRL_LIVE)
3683                 return;
3684
3685         WARN_ON_ONCE(!ctrl->tagset);
3686
3687         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3688                 dev_info(ctrl->device, "rescanning namespaces.\n");
3689                 nvme_clear_changed_ns_log(ctrl);
3690         }
3691
3692         if (nvme_identify_ctrl(ctrl, &id))
3693                 return;
3694
3695         mutex_lock(&ctrl->scan_lock);
3696         nn = le32_to_cpu(id->nn);
3697         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3698             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3699                 if (!nvme_scan_ns_list(ctrl, nn))
3700                         goto out_free_id;
3701         }
3702         nvme_scan_ns_sequential(ctrl, nn);
3703 out_free_id:
3704         mutex_unlock(&ctrl->scan_lock);
3705         kfree(id);
3706         down_write(&ctrl->namespaces_rwsem);
3707         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3708         up_write(&ctrl->namespaces_rwsem);
3709 }
3710
3711 /*
3712  * This function iterates the namespace list unlocked to allow recovery from
3713  * controller failure. It is up to the caller to ensure the namespace list is
3714  * not modified by scan work while this function is executing.
3715  */
3716 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3717 {
3718         struct nvme_ns *ns, *next;
3719         LIST_HEAD(ns_list);
3720
3721         /*
3722          * make sure to requeue I/O to all namespaces as these
3723          * might result from the scan itself and must complete
3724          * for the scan_work to make progress
3725          */
3726         nvme_mpath_clear_ctrl_paths(ctrl);
3727
3728         /* prevent racing with ns scanning */
3729         flush_work(&ctrl->scan_work);
3730
3731         /*
3732          * The dead states indicates the controller was not gracefully
3733          * disconnected. In that case, we won't be able to flush any data while
3734          * removing the namespaces' disks; fail all the queues now to avoid
3735          * potentially having to clean up the failed sync later.
3736          */
3737         if (ctrl->state == NVME_CTRL_DEAD)
3738                 nvme_kill_queues(ctrl);
3739
3740         down_write(&ctrl->namespaces_rwsem);
3741         list_splice_init(&ctrl->namespaces, &ns_list);
3742         up_write(&ctrl->namespaces_rwsem);
3743
3744         list_for_each_entry_safe(ns, next, &ns_list, list)
3745                 nvme_ns_remove(ns);
3746 }
3747 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3748
3749 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
3750 {
3751         struct nvme_ctrl *ctrl =
3752                 container_of(dev, struct nvme_ctrl, ctrl_device);
3753         struct nvmf_ctrl_options *opts = ctrl->opts;
3754         int ret;
3755
3756         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3757         if (ret)
3758                 return ret;
3759
3760         if (opts) {
3761                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3762                 if (ret)
3763                         return ret;
3764
3765                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3766                                 opts->trsvcid ?: "none");
3767                 if (ret)
3768                         return ret;
3769
3770                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3771                                 opts->host_traddr ?: "none");
3772         }
3773         return ret;
3774 }
3775
3776 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3777 {
3778         char *envp[2] = { NULL, NULL };
3779         u32 aen_result = ctrl->aen_result;
3780
3781         ctrl->aen_result = 0;
3782         if (!aen_result)
3783                 return;
3784
3785         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3786         if (!envp[0])
3787                 return;
3788         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3789         kfree(envp[0]);
3790 }
3791
3792 static void nvme_async_event_work(struct work_struct *work)
3793 {
3794         struct nvme_ctrl *ctrl =
3795                 container_of(work, struct nvme_ctrl, async_event_work);
3796
3797         nvme_aen_uevent(ctrl);
3798         ctrl->ops->submit_async_event(ctrl);
3799 }
3800
3801 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3802 {
3803
3804         u32 csts;
3805
3806         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3807                 return false;
3808
3809         if (csts == ~0)
3810                 return false;
3811
3812         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3813 }
3814
3815 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3816 {
3817         struct nvme_fw_slot_info_log *log;
3818
3819         log = kmalloc(sizeof(*log), GFP_KERNEL);
3820         if (!log)
3821                 return;
3822
3823         if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3824                         sizeof(*log), 0))
3825                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3826         kfree(log);
3827 }
3828
3829 static void nvme_fw_act_work(struct work_struct *work)
3830 {
3831         struct nvme_ctrl *ctrl = container_of(work,
3832                                 struct nvme_ctrl, fw_act_work);
3833         unsigned long fw_act_timeout;
3834
3835         if (ctrl->mtfa)
3836                 fw_act_timeout = jiffies +
3837                                 msecs_to_jiffies(ctrl->mtfa * 100);
3838         else
3839                 fw_act_timeout = jiffies +
3840                                 msecs_to_jiffies(admin_timeout * 1000);
3841
3842         nvme_stop_queues(ctrl);
3843         while (nvme_ctrl_pp_status(ctrl)) {
3844                 if (time_after(jiffies, fw_act_timeout)) {
3845                         dev_warn(ctrl->device,
3846                                 "Fw activation timeout, reset controller\n");
3847                         nvme_reset_ctrl(ctrl);
3848                         break;
3849                 }
3850                 msleep(100);
3851         }
3852
3853         if (ctrl->state != NVME_CTRL_LIVE)
3854                 return;
3855
3856         nvme_start_queues(ctrl);
3857         /* read FW slot information to clear the AER */
3858         nvme_get_fw_slot_info(ctrl);
3859 }
3860
3861 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3862 {
3863         u32 aer_notice_type = (result & 0xff00) >> 8;
3864
3865         trace_nvme_async_event(ctrl, aer_notice_type);
3866
3867         switch (aer_notice_type) {
3868         case NVME_AER_NOTICE_NS_CHANGED:
3869                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3870                 nvme_queue_scan(ctrl);
3871                 break;
3872         case NVME_AER_NOTICE_FW_ACT_STARTING:
3873                 queue_work(nvme_wq, &ctrl->fw_act_work);
3874                 break;
3875 #ifdef CONFIG_NVME_MULTIPATH
3876         case NVME_AER_NOTICE_ANA:
3877                 if (!ctrl->ana_log_buf)
3878                         break;
3879                 queue_work(nvme_wq, &ctrl->ana_work);
3880                 break;
3881 #endif
3882         case NVME_AER_NOTICE_DISC_CHANGED:
3883                 ctrl->aen_result = result;
3884                 break;
3885         default:
3886                 dev_warn(ctrl->device, "async event result %08x\n", result);
3887         }
3888 }
3889
3890 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3891                 volatile union nvme_result *res)
3892 {
3893         u32 result = le32_to_cpu(res->u32);
3894         u32 aer_type = result & 0x07;
3895
3896         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3897                 return;
3898
3899         switch (aer_type) {
3900         case NVME_AER_NOTICE:
3901                 nvme_handle_aen_notice(ctrl, result);
3902                 break;
3903         case NVME_AER_ERROR:
3904         case NVME_AER_SMART:
3905         case NVME_AER_CSS:
3906         case NVME_AER_VS:
3907                 trace_nvme_async_event(ctrl, aer_type);
3908                 ctrl->aen_result = result;
3909                 break;
3910         default:
3911                 break;
3912         }
3913         queue_work(nvme_wq, &ctrl->async_event_work);
3914 }
3915 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3916
3917 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3918 {
3919         nvme_mpath_stop(ctrl);
3920         nvme_stop_keep_alive(ctrl);
3921         flush_work(&ctrl->async_event_work);
3922         cancel_work_sync(&ctrl->fw_act_work);
3923 }
3924 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3925
3926 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3927 {
3928         if (ctrl->kato)
3929                 nvme_start_keep_alive(ctrl);
3930
3931         nvme_enable_aen(ctrl);
3932
3933         if (ctrl->queue_count > 1) {
3934                 nvme_queue_scan(ctrl);
3935                 nvme_start_queues(ctrl);
3936         }
3937 }
3938 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3939
3940 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3941 {
3942         nvme_fault_inject_fini(&ctrl->fault_inject);
3943         dev_pm_qos_hide_latency_tolerance(ctrl->device);
3944         cdev_device_del(&ctrl->cdev, ctrl->device);
3945 }
3946 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3947
3948 static void nvme_free_ctrl(struct device *dev)
3949 {
3950         struct nvme_ctrl *ctrl =
3951                 container_of(dev, struct nvme_ctrl, ctrl_device);
3952         struct nvme_subsystem *subsys = ctrl->subsys;
3953
3954         if (subsys && ctrl->instance != subsys->instance)
3955                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3956
3957         kfree(ctrl->effects);
3958         nvme_mpath_uninit(ctrl);
3959         __free_page(ctrl->discard_page);
3960
3961         if (subsys) {
3962                 mutex_lock(&nvme_subsystems_lock);
3963                 list_del(&ctrl->subsys_entry);
3964                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3965                 mutex_unlock(&nvme_subsystems_lock);
3966         }
3967
3968         ctrl->ops->free_ctrl(ctrl);
3969
3970         if (subsys)
3971                 nvme_put_subsystem(subsys);
3972 }
3973
3974 /*
3975  * Initialize a NVMe controller structures.  This needs to be called during
3976  * earliest initialization so that we have the initialized structured around
3977  * during probing.
3978  */
3979 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3980                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3981 {
3982         int ret;
3983
3984         ctrl->state = NVME_CTRL_NEW;
3985         spin_lock_init(&ctrl->lock);
3986         mutex_init(&ctrl->scan_lock);
3987         INIT_LIST_HEAD(&ctrl->namespaces);
3988         init_rwsem(&ctrl->namespaces_rwsem);
3989         ctrl->dev = dev;
3990         ctrl->ops = ops;
3991         ctrl->quirks = quirks;
3992         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3993         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3994         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3995         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3996
3997         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3998         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3999         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4000
4001         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4002                         PAGE_SIZE);
4003         ctrl->discard_page = alloc_page(GFP_KERNEL);
4004         if (!ctrl->discard_page) {
4005                 ret = -ENOMEM;
4006                 goto out;
4007         }
4008
4009         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4010         if (ret < 0)
4011                 goto out;
4012         ctrl->instance = ret;
4013
4014         device_initialize(&ctrl->ctrl_device);
4015         ctrl->device = &ctrl->ctrl_device;
4016         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4017         ctrl->device->class = nvme_class;
4018         ctrl->device->parent = ctrl->dev;
4019         ctrl->device->groups = nvme_dev_attr_groups;
4020         ctrl->device->release = nvme_free_ctrl;
4021         dev_set_drvdata(ctrl->device, ctrl);
4022         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4023         if (ret)
4024                 goto out_release_instance;
4025
4026         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4027         ctrl->cdev.owner = ops->module;
4028         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4029         if (ret)
4030                 goto out_free_name;
4031
4032         /*
4033          * Initialize latency tolerance controls.  The sysfs files won't
4034          * be visible to userspace unless the device actually supports APST.
4035          */
4036         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4037         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4038                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4039
4040         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4041
4042         return 0;
4043 out_free_name:
4044         kfree_const(ctrl->device->kobj.name);
4045 out_release_instance:
4046         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4047 out:
4048         if (ctrl->discard_page)
4049                 __free_page(ctrl->discard_page);
4050         return ret;
4051 }
4052 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4053
4054 /**
4055  * nvme_kill_queues(): Ends all namespace queues
4056  * @ctrl: the dead controller that needs to end
4057  *
4058  * Call this function when the driver determines it is unable to get the
4059  * controller in a state capable of servicing IO.
4060  */
4061 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4062 {
4063         struct nvme_ns *ns;
4064
4065         down_read(&ctrl->namespaces_rwsem);
4066
4067         /* Forcibly unquiesce queues to avoid blocking dispatch */
4068         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4069                 blk_mq_unquiesce_queue(ctrl->admin_q);
4070
4071         list_for_each_entry(ns, &ctrl->namespaces, list)
4072                 nvme_set_queue_dying(ns);
4073
4074         up_read(&ctrl->namespaces_rwsem);
4075 }
4076 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4077
4078 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4079 {
4080         struct nvme_ns *ns;
4081
4082         down_read(&ctrl->namespaces_rwsem);
4083         list_for_each_entry(ns, &ctrl->namespaces, list)
4084                 blk_mq_unfreeze_queue(ns->queue);
4085         up_read(&ctrl->namespaces_rwsem);
4086 }
4087 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4088
4089 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4090 {
4091         struct nvme_ns *ns;
4092
4093         down_read(&ctrl->namespaces_rwsem);
4094         list_for_each_entry(ns, &ctrl->namespaces, list) {
4095                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4096                 if (timeout <= 0)
4097                         break;
4098         }
4099         up_read(&ctrl->namespaces_rwsem);
4100 }
4101 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4102
4103 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4104 {
4105         struct nvme_ns *ns;
4106
4107         down_read(&ctrl->namespaces_rwsem);
4108         list_for_each_entry(ns, &ctrl->namespaces, list)
4109                 blk_mq_freeze_queue_wait(ns->queue);
4110         up_read(&ctrl->namespaces_rwsem);
4111 }
4112 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4113
4114 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4115 {
4116         struct nvme_ns *ns;
4117
4118         down_read(&ctrl->namespaces_rwsem);
4119         list_for_each_entry(ns, &ctrl->namespaces, list)
4120                 blk_freeze_queue_start(ns->queue);
4121         up_read(&ctrl->namespaces_rwsem);
4122 }
4123 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4124
4125 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4126 {
4127         struct nvme_ns *ns;
4128
4129         down_read(&ctrl->namespaces_rwsem);
4130         list_for_each_entry(ns, &ctrl->namespaces, list)
4131                 blk_mq_quiesce_queue(ns->queue);
4132         up_read(&ctrl->namespaces_rwsem);
4133 }
4134 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4135
4136 void nvme_start_queues(struct nvme_ctrl *ctrl)
4137 {
4138         struct nvme_ns *ns;
4139
4140         down_read(&ctrl->namespaces_rwsem);
4141         list_for_each_entry(ns, &ctrl->namespaces, list)
4142                 blk_mq_unquiesce_queue(ns->queue);
4143         up_read(&ctrl->namespaces_rwsem);
4144 }
4145 EXPORT_SYMBOL_GPL(nvme_start_queues);
4146
4147
4148 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4149 {
4150         struct nvme_ns *ns;
4151
4152         down_read(&ctrl->namespaces_rwsem);
4153         list_for_each_entry(ns, &ctrl->namespaces, list)
4154                 blk_sync_queue(ns->queue);
4155         up_read(&ctrl->namespaces_rwsem);
4156
4157         if (ctrl->admin_q)
4158                 blk_sync_queue(ctrl->admin_q);
4159 }
4160 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4161
4162 /*
4163  * Check we didn't inadvertently grow the command structure sizes:
4164  */
4165 static inline void _nvme_check_size(void)
4166 {
4167         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4168         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4169         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4170         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4171         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4172         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4173         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4174         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4175         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4176         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4177         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4178         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4179         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4180         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4181         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4182         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4183         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4184 }
4185
4186
4187 static int __init nvme_core_init(void)
4188 {
4189         int result = -ENOMEM;
4190
4191         _nvme_check_size();
4192
4193         nvme_wq = alloc_workqueue("nvme-wq",
4194                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4195         if (!nvme_wq)
4196                 goto out;
4197
4198         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4199                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4200         if (!nvme_reset_wq)
4201                 goto destroy_wq;
4202
4203         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4204                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4205         if (!nvme_delete_wq)
4206                 goto destroy_reset_wq;
4207
4208         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4209         if (result < 0)
4210                 goto destroy_delete_wq;
4211
4212         nvme_class = class_create(THIS_MODULE, "nvme");
4213         if (IS_ERR(nvme_class)) {
4214                 result = PTR_ERR(nvme_class);
4215                 goto unregister_chrdev;
4216         }
4217         nvme_class->dev_uevent = nvme_class_uevent;
4218
4219         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4220         if (IS_ERR(nvme_subsys_class)) {
4221                 result = PTR_ERR(nvme_subsys_class);
4222                 goto destroy_class;
4223         }
4224         return 0;
4225
4226 destroy_class:
4227         class_destroy(nvme_class);
4228 unregister_chrdev:
4229         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4230 destroy_delete_wq:
4231         destroy_workqueue(nvme_delete_wq);
4232 destroy_reset_wq:
4233         destroy_workqueue(nvme_reset_wq);
4234 destroy_wq:
4235         destroy_workqueue(nvme_wq);
4236 out:
4237         return result;
4238 }
4239
4240 static void __exit nvme_core_exit(void)
4241 {
4242         class_destroy(nvme_subsys_class);
4243         class_destroy(nvme_class);
4244         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4245         destroy_workqueue(nvme_delete_wq);
4246         destroy_workqueue(nvme_reset_wq);
4247         destroy_workqueue(nvme_wq);
4248 }
4249
4250 MODULE_LICENSE("GPL");
4251 MODULE_VERSION("1.0");
4252 module_init(nvme_core_init);
4253 module_exit(nvme_core_exit);