]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/core.c
Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[linux.git] / drivers / nvme / host / core.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
31
32 #include "nvme.h"
33 #include "fabrics.h"
34
35 #define NVME_MINORS             (1U << MINORBITS)
36
37 unsigned char admin_timeout = 60;
38 module_param(admin_timeout, byte, 0644);
39 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
40 EXPORT_SYMBOL_GPL(admin_timeout);
41
42 unsigned char nvme_io_timeout = 30;
43 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
44 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
45 EXPORT_SYMBOL_GPL(nvme_io_timeout);
46
47 static unsigned char shutdown_timeout = 5;
48 module_param(shutdown_timeout, byte, 0644);
49 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
50
51 static u8 nvme_max_retries = 5;
52 module_param_named(max_retries, nvme_max_retries, byte, 0644);
53 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
54
55 static int nvme_char_major;
56 module_param(nvme_char_major, int, 0);
57
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61                  "max power saving latency for new devices; use PM QOS to change per device");
62
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
66
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
70
71 struct workqueue_struct *nvme_wq;
72 EXPORT_SYMBOL_GPL(nvme_wq);
73
74 static LIST_HEAD(nvme_ctrl_list);
75 static DEFINE_SPINLOCK(dev_list_lock);
76
77 static struct class *nvme_class;
78
79 static __le32 nvme_get_log_dw10(u8 lid, size_t size)
80 {
81         return cpu_to_le32((((size / 4) - 1) << 16) | lid);
82 }
83
84 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
85 {
86         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
87                 return -EBUSY;
88         if (!queue_work(nvme_wq, &ctrl->reset_work))
89                 return -EBUSY;
90         return 0;
91 }
92 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
93
94 static int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
95 {
96         int ret;
97
98         ret = nvme_reset_ctrl(ctrl);
99         if (!ret)
100                 flush_work(&ctrl->reset_work);
101         return ret;
102 }
103
104 static blk_status_t nvme_error_status(struct request *req)
105 {
106         switch (nvme_req(req)->status & 0x7ff) {
107         case NVME_SC_SUCCESS:
108                 return BLK_STS_OK;
109         case NVME_SC_CAP_EXCEEDED:
110                 return BLK_STS_NOSPC;
111         case NVME_SC_ONCS_NOT_SUPPORTED:
112                 return BLK_STS_NOTSUPP;
113         case NVME_SC_WRITE_FAULT:
114         case NVME_SC_READ_ERROR:
115         case NVME_SC_UNWRITTEN_BLOCK:
116         case NVME_SC_ACCESS_DENIED:
117         case NVME_SC_READ_ONLY:
118                 return BLK_STS_MEDIUM;
119         case NVME_SC_GUARD_CHECK:
120         case NVME_SC_APPTAG_CHECK:
121         case NVME_SC_REFTAG_CHECK:
122         case NVME_SC_INVALID_PI:
123                 return BLK_STS_PROTECTION;
124         case NVME_SC_RESERVATION_CONFLICT:
125                 return BLK_STS_NEXUS;
126         default:
127                 return BLK_STS_IOERR;
128         }
129 }
130
131 static inline bool nvme_req_needs_retry(struct request *req)
132 {
133         if (blk_noretry_request(req))
134                 return false;
135         if (nvme_req(req)->status & NVME_SC_DNR)
136                 return false;
137         if (jiffies - req->start_time >= req->timeout)
138                 return false;
139         if (nvme_req(req)->retries >= nvme_max_retries)
140                 return false;
141         return true;
142 }
143
144 void nvme_complete_rq(struct request *req)
145 {
146         if (unlikely(nvme_req(req)->status && nvme_req_needs_retry(req))) {
147                 nvme_req(req)->retries++;
148                 blk_mq_requeue_request(req, true);
149                 return;
150         }
151
152         blk_mq_end_request(req, nvme_error_status(req));
153 }
154 EXPORT_SYMBOL_GPL(nvme_complete_rq);
155
156 void nvme_cancel_request(struct request *req, void *data, bool reserved)
157 {
158         int status;
159
160         if (!blk_mq_request_started(req))
161                 return;
162
163         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
164                                 "Cancelling I/O %d", req->tag);
165
166         status = NVME_SC_ABORT_REQ;
167         if (blk_queue_dying(req->q))
168                 status |= NVME_SC_DNR;
169         nvme_req(req)->status = status;
170         blk_mq_complete_request(req);
171
172 }
173 EXPORT_SYMBOL_GPL(nvme_cancel_request);
174
175 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
176                 enum nvme_ctrl_state new_state)
177 {
178         enum nvme_ctrl_state old_state;
179         unsigned long flags;
180         bool changed = false;
181
182         spin_lock_irqsave(&ctrl->lock, flags);
183
184         old_state = ctrl->state;
185         switch (new_state) {
186         case NVME_CTRL_LIVE:
187                 switch (old_state) {
188                 case NVME_CTRL_NEW:
189                 case NVME_CTRL_RESETTING:
190                 case NVME_CTRL_RECONNECTING:
191                         changed = true;
192                         /* FALLTHRU */
193                 default:
194                         break;
195                 }
196                 break;
197         case NVME_CTRL_RESETTING:
198                 switch (old_state) {
199                 case NVME_CTRL_NEW:
200                 case NVME_CTRL_LIVE:
201                         changed = true;
202                         /* FALLTHRU */
203                 default:
204                         break;
205                 }
206                 break;
207         case NVME_CTRL_RECONNECTING:
208                 switch (old_state) {
209                 case NVME_CTRL_LIVE:
210                         changed = true;
211                         /* FALLTHRU */
212                 default:
213                         break;
214                 }
215                 break;
216         case NVME_CTRL_DELETING:
217                 switch (old_state) {
218                 case NVME_CTRL_LIVE:
219                 case NVME_CTRL_RESETTING:
220                 case NVME_CTRL_RECONNECTING:
221                         changed = true;
222                         /* FALLTHRU */
223                 default:
224                         break;
225                 }
226                 break;
227         case NVME_CTRL_DEAD:
228                 switch (old_state) {
229                 case NVME_CTRL_DELETING:
230                         changed = true;
231                         /* FALLTHRU */
232                 default:
233                         break;
234                 }
235                 break;
236         default:
237                 break;
238         }
239
240         if (changed)
241                 ctrl->state = new_state;
242
243         spin_unlock_irqrestore(&ctrl->lock, flags);
244
245         return changed;
246 }
247 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
248
249 static void nvme_free_ns(struct kref *kref)
250 {
251         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
252
253         if (ns->ndev)
254                 nvme_nvm_unregister(ns);
255
256         if (ns->disk) {
257                 spin_lock(&dev_list_lock);
258                 ns->disk->private_data = NULL;
259                 spin_unlock(&dev_list_lock);
260         }
261
262         put_disk(ns->disk);
263         ida_simple_remove(&ns->ctrl->ns_ida, ns->instance);
264         nvme_put_ctrl(ns->ctrl);
265         kfree(ns);
266 }
267
268 static void nvme_put_ns(struct nvme_ns *ns)
269 {
270         kref_put(&ns->kref, nvme_free_ns);
271 }
272
273 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk)
274 {
275         struct nvme_ns *ns;
276
277         spin_lock(&dev_list_lock);
278         ns = disk->private_data;
279         if (ns) {
280                 if (!kref_get_unless_zero(&ns->kref))
281                         goto fail;
282                 if (!try_module_get(ns->ctrl->ops->module))
283                         goto fail_put_ns;
284         }
285         spin_unlock(&dev_list_lock);
286
287         return ns;
288
289 fail_put_ns:
290         kref_put(&ns->kref, nvme_free_ns);
291 fail:
292         spin_unlock(&dev_list_lock);
293         return NULL;
294 }
295
296 struct request *nvme_alloc_request(struct request_queue *q,
297                 struct nvme_command *cmd, unsigned int flags, int qid)
298 {
299         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
300         struct request *req;
301
302         if (qid == NVME_QID_ANY) {
303                 req = blk_mq_alloc_request(q, op, flags);
304         } else {
305                 req = blk_mq_alloc_request_hctx(q, op, flags,
306                                 qid ? qid - 1 : 0);
307         }
308         if (IS_ERR(req))
309                 return req;
310
311         req->cmd_flags |= REQ_FAILFAST_DRIVER;
312         nvme_req(req)->cmd = cmd;
313
314         return req;
315 }
316 EXPORT_SYMBOL_GPL(nvme_alloc_request);
317
318 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
319 {
320         struct nvme_command c;
321
322         memset(&c, 0, sizeof(c));
323
324         c.directive.opcode = nvme_admin_directive_send;
325         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
326         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
327         c.directive.dtype = NVME_DIR_IDENTIFY;
328         c.directive.tdtype = NVME_DIR_STREAMS;
329         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
330
331         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
332 }
333
334 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
335 {
336         return nvme_toggle_streams(ctrl, false);
337 }
338
339 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
340 {
341         return nvme_toggle_streams(ctrl, true);
342 }
343
344 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
345                                   struct streams_directive_params *s, u32 nsid)
346 {
347         struct nvme_command c;
348
349         memset(&c, 0, sizeof(c));
350         memset(s, 0, sizeof(*s));
351
352         c.directive.opcode = nvme_admin_directive_recv;
353         c.directive.nsid = cpu_to_le32(nsid);
354         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
355         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
356         c.directive.dtype = NVME_DIR_STREAMS;
357
358         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
359 }
360
361 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
362 {
363         struct streams_directive_params s;
364         int ret;
365
366         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
367                 return 0;
368         if (!streams)
369                 return 0;
370
371         ret = nvme_enable_streams(ctrl);
372         if (ret)
373                 return ret;
374
375         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
376         if (ret)
377                 return ret;
378
379         ctrl->nssa = le16_to_cpu(s.nssa);
380         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
381                 dev_info(ctrl->device, "too few streams (%u) available\n",
382                                         ctrl->nssa);
383                 nvme_disable_streams(ctrl);
384                 return 0;
385         }
386
387         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
388         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
389         return 0;
390 }
391
392 /*
393  * Check if 'req' has a write hint associated with it. If it does, assign
394  * a valid namespace stream to the write.
395  */
396 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
397                                      struct request *req, u16 *control,
398                                      u32 *dsmgmt)
399 {
400         enum rw_hint streamid = req->write_hint;
401
402         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
403                 streamid = 0;
404         else {
405                 streamid--;
406                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
407                         return;
408
409                 *control |= NVME_RW_DTYPE_STREAMS;
410                 *dsmgmt |= streamid << 16;
411         }
412
413         if (streamid < ARRAY_SIZE(req->q->write_hints))
414                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
415 }
416
417 static inline void nvme_setup_flush(struct nvme_ns *ns,
418                 struct nvme_command *cmnd)
419 {
420         memset(cmnd, 0, sizeof(*cmnd));
421         cmnd->common.opcode = nvme_cmd_flush;
422         cmnd->common.nsid = cpu_to_le32(ns->ns_id);
423 }
424
425 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
426                 struct nvme_command *cmnd)
427 {
428         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
429         struct nvme_dsm_range *range;
430         struct bio *bio;
431
432         range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
433         if (!range)
434                 return BLK_STS_RESOURCE;
435
436         __rq_for_each_bio(bio, req) {
437                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
438                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
439
440                 range[n].cattr = cpu_to_le32(0);
441                 range[n].nlb = cpu_to_le32(nlb);
442                 range[n].slba = cpu_to_le64(slba);
443                 n++;
444         }
445
446         if (WARN_ON_ONCE(n != segments)) {
447                 kfree(range);
448                 return BLK_STS_IOERR;
449         }
450
451         memset(cmnd, 0, sizeof(*cmnd));
452         cmnd->dsm.opcode = nvme_cmd_dsm;
453         cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
454         cmnd->dsm.nr = cpu_to_le32(segments - 1);
455         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
456
457         req->special_vec.bv_page = virt_to_page(range);
458         req->special_vec.bv_offset = offset_in_page(range);
459         req->special_vec.bv_len = sizeof(*range) * segments;
460         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
461
462         return BLK_STS_OK;
463 }
464
465 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
466                 struct request *req, struct nvme_command *cmnd)
467 {
468         struct nvme_ctrl *ctrl = ns->ctrl;
469         u16 control = 0;
470         u32 dsmgmt = 0;
471
472         /*
473          * If formated with metadata, require the block layer provide a buffer
474          * unless this namespace is formated such that the metadata can be
475          * stripped/generated by the controller with PRACT=1.
476          */
477         if (ns && ns->ms &&
478             (!ns->pi_type || ns->ms != sizeof(struct t10_pi_tuple)) &&
479             !blk_integrity_rq(req) && !blk_rq_is_passthrough(req))
480                 return BLK_STS_NOTSUPP;
481
482         if (req->cmd_flags & REQ_FUA)
483                 control |= NVME_RW_FUA;
484         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
485                 control |= NVME_RW_LR;
486
487         if (req->cmd_flags & REQ_RAHEAD)
488                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
489
490         memset(cmnd, 0, sizeof(*cmnd));
491         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
492         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
493         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
494         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
495
496         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
497                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
498
499         if (ns->ms) {
500                 switch (ns->pi_type) {
501                 case NVME_NS_DPS_PI_TYPE3:
502                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
503                         break;
504                 case NVME_NS_DPS_PI_TYPE1:
505                 case NVME_NS_DPS_PI_TYPE2:
506                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
507                                         NVME_RW_PRINFO_PRCHK_REF;
508                         cmnd->rw.reftag = cpu_to_le32(
509                                         nvme_block_nr(ns, blk_rq_pos(req)));
510                         break;
511                 }
512                 if (!blk_integrity_rq(req))
513                         control |= NVME_RW_PRINFO_PRACT;
514         }
515
516         cmnd->rw.control = cpu_to_le16(control);
517         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
518         return 0;
519 }
520
521 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
522                 struct nvme_command *cmd)
523 {
524         blk_status_t ret = BLK_STS_OK;
525
526         if (!(req->rq_flags & RQF_DONTPREP)) {
527                 nvme_req(req)->retries = 0;
528                 nvme_req(req)->flags = 0;
529                 req->rq_flags |= RQF_DONTPREP;
530         }
531
532         switch (req_op(req)) {
533         case REQ_OP_DRV_IN:
534         case REQ_OP_DRV_OUT:
535                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
536                 break;
537         case REQ_OP_FLUSH:
538                 nvme_setup_flush(ns, cmd);
539                 break;
540         case REQ_OP_WRITE_ZEROES:
541                 /* currently only aliased to deallocate for a few ctrls: */
542         case REQ_OP_DISCARD:
543                 ret = nvme_setup_discard(ns, req, cmd);
544                 break;
545         case REQ_OP_READ:
546         case REQ_OP_WRITE:
547                 ret = nvme_setup_rw(ns, req, cmd);
548                 break;
549         default:
550                 WARN_ON_ONCE(1);
551                 return BLK_STS_IOERR;
552         }
553
554         cmd->common.command_id = req->tag;
555         return ret;
556 }
557 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
558
559 /*
560  * Returns 0 on success.  If the result is negative, it's a Linux error code;
561  * if the result is positive, it's an NVM Express status code
562  */
563 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
564                 union nvme_result *result, void *buffer, unsigned bufflen,
565                 unsigned timeout, int qid, int at_head, int flags)
566 {
567         struct request *req;
568         int ret;
569
570         req = nvme_alloc_request(q, cmd, flags, qid);
571         if (IS_ERR(req))
572                 return PTR_ERR(req);
573
574         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
575
576         if (buffer && bufflen) {
577                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
578                 if (ret)
579                         goto out;
580         }
581
582         blk_execute_rq(req->q, NULL, req, at_head);
583         if (result)
584                 *result = nvme_req(req)->result;
585         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
586                 ret = -EINTR;
587         else
588                 ret = nvme_req(req)->status;
589  out:
590         blk_mq_free_request(req);
591         return ret;
592 }
593 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
594
595 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
596                 void *buffer, unsigned bufflen)
597 {
598         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
599                         NVME_QID_ANY, 0, 0);
600 }
601 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
602
603 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
604                 unsigned len, u32 seed, bool write)
605 {
606         struct bio_integrity_payload *bip;
607         int ret = -ENOMEM;
608         void *buf;
609
610         buf = kmalloc(len, GFP_KERNEL);
611         if (!buf)
612                 goto out;
613
614         ret = -EFAULT;
615         if (write && copy_from_user(buf, ubuf, len))
616                 goto out_free_meta;
617
618         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
619         if (IS_ERR(bip)) {
620                 ret = PTR_ERR(bip);
621                 goto out_free_meta;
622         }
623
624         bip->bip_iter.bi_size = len;
625         bip->bip_iter.bi_sector = seed;
626         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
627                         offset_in_page(buf));
628         if (ret == len)
629                 return buf;
630         ret = -ENOMEM;
631 out_free_meta:
632         kfree(buf);
633 out:
634         return ERR_PTR(ret);
635 }
636
637 static int nvme_submit_user_cmd(struct request_queue *q,
638                 struct nvme_command *cmd, void __user *ubuffer,
639                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
640                 u32 meta_seed, u32 *result, unsigned timeout)
641 {
642         bool write = nvme_is_write(cmd);
643         struct nvme_ns *ns = q->queuedata;
644         struct gendisk *disk = ns ? ns->disk : NULL;
645         struct request *req;
646         struct bio *bio = NULL;
647         void *meta = NULL;
648         int ret;
649
650         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
651         if (IS_ERR(req))
652                 return PTR_ERR(req);
653
654         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
655
656         if (ubuffer && bufflen) {
657                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
658                                 GFP_KERNEL);
659                 if (ret)
660                         goto out;
661                 bio = req->bio;
662                 bio->bi_disk = disk;
663                 if (disk && meta_buffer && meta_len) {
664                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
665                                         meta_seed, write);
666                         if (IS_ERR(meta)) {
667                                 ret = PTR_ERR(meta);
668                                 goto out_unmap;
669                         }
670                 }
671         }
672
673         blk_execute_rq(req->q, disk, req, 0);
674         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
675                 ret = -EINTR;
676         else
677                 ret = nvme_req(req)->status;
678         if (result)
679                 *result = le32_to_cpu(nvme_req(req)->result.u32);
680         if (meta && !ret && !write) {
681                 if (copy_to_user(meta_buffer, meta, meta_len))
682                         ret = -EFAULT;
683         }
684         kfree(meta);
685  out_unmap:
686         if (bio)
687                 blk_rq_unmap_user(bio);
688  out:
689         blk_mq_free_request(req);
690         return ret;
691 }
692
693 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
694 {
695         struct nvme_ctrl *ctrl = rq->end_io_data;
696
697         blk_mq_free_request(rq);
698
699         if (status) {
700                 dev_err(ctrl->device,
701                         "failed nvme_keep_alive_end_io error=%d\n",
702                                 status);
703                 return;
704         }
705
706         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
707 }
708
709 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
710 {
711         struct nvme_command c;
712         struct request *rq;
713
714         memset(&c, 0, sizeof(c));
715         c.common.opcode = nvme_admin_keep_alive;
716
717         rq = nvme_alloc_request(ctrl->admin_q, &c, BLK_MQ_REQ_RESERVED,
718                         NVME_QID_ANY);
719         if (IS_ERR(rq))
720                 return PTR_ERR(rq);
721
722         rq->timeout = ctrl->kato * HZ;
723         rq->end_io_data = ctrl;
724
725         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
726
727         return 0;
728 }
729
730 static void nvme_keep_alive_work(struct work_struct *work)
731 {
732         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
733                         struct nvme_ctrl, ka_work);
734
735         if (nvme_keep_alive(ctrl)) {
736                 /* allocation failure, reset the controller */
737                 dev_err(ctrl->device, "keep-alive failed\n");
738                 nvme_reset_ctrl(ctrl);
739                 return;
740         }
741 }
742
743 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
744 {
745         if (unlikely(ctrl->kato == 0))
746                 return;
747
748         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
749         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
750 }
751 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
752
753 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
754 {
755         if (unlikely(ctrl->kato == 0))
756                 return;
757
758         cancel_delayed_work_sync(&ctrl->ka_work);
759 }
760 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
761
762 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
763 {
764         struct nvme_command c = { };
765         int error;
766
767         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
768         c.identify.opcode = nvme_admin_identify;
769         c.identify.cns = NVME_ID_CNS_CTRL;
770
771         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
772         if (!*id)
773                 return -ENOMEM;
774
775         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
776                         sizeof(struct nvme_id_ctrl));
777         if (error)
778                 kfree(*id);
779         return error;
780 }
781
782 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
783                 u8 *eui64, u8 *nguid, uuid_t *uuid)
784 {
785         struct nvme_command c = { };
786         int status;
787         void *data;
788         int pos;
789         int len;
790
791         c.identify.opcode = nvme_admin_identify;
792         c.identify.nsid = cpu_to_le32(nsid);
793         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
794
795         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
796         if (!data)
797                 return -ENOMEM;
798
799         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
800                                       NVME_IDENTIFY_DATA_SIZE);
801         if (status)
802                 goto free_data;
803
804         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
805                 struct nvme_ns_id_desc *cur = data + pos;
806
807                 if (cur->nidl == 0)
808                         break;
809
810                 switch (cur->nidt) {
811                 case NVME_NIDT_EUI64:
812                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
813                                 dev_warn(ctrl->device,
814                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
815                                          cur->nidl);
816                                 goto free_data;
817                         }
818                         len = NVME_NIDT_EUI64_LEN;
819                         memcpy(eui64, data + pos + sizeof(*cur), len);
820                         break;
821                 case NVME_NIDT_NGUID:
822                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
823                                 dev_warn(ctrl->device,
824                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
825                                          cur->nidl);
826                                 goto free_data;
827                         }
828                         len = NVME_NIDT_NGUID_LEN;
829                         memcpy(nguid, data + pos + sizeof(*cur), len);
830                         break;
831                 case NVME_NIDT_UUID:
832                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
833                                 dev_warn(ctrl->device,
834                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
835                                          cur->nidl);
836                                 goto free_data;
837                         }
838                         len = NVME_NIDT_UUID_LEN;
839                         uuid_copy(uuid, data + pos + sizeof(*cur));
840                         break;
841                 default:
842                         /* Skip unnkown types */
843                         len = cur->nidl;
844                         break;
845                 }
846
847                 len += sizeof(*cur);
848         }
849 free_data:
850         kfree(data);
851         return status;
852 }
853
854 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
855 {
856         struct nvme_command c = { };
857
858         c.identify.opcode = nvme_admin_identify;
859         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
860         c.identify.nsid = cpu_to_le32(nsid);
861         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list, 0x1000);
862 }
863
864 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
865                 unsigned nsid)
866 {
867         struct nvme_id_ns *id;
868         struct nvme_command c = { };
869         int error;
870
871         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
872         c.identify.opcode = nvme_admin_identify;
873         c.identify.nsid = cpu_to_le32(nsid);
874         c.identify.cns = NVME_ID_CNS_NS;
875
876         id = kmalloc(sizeof(*id), GFP_KERNEL);
877         if (!id)
878                 return NULL;
879
880         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
881         if (error) {
882                 dev_warn(ctrl->device, "Identify namespace failed\n");
883                 kfree(id);
884                 return NULL;
885         }
886
887         return id;
888 }
889
890 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
891                       void *buffer, size_t buflen, u32 *result)
892 {
893         struct nvme_command c;
894         union nvme_result res;
895         int ret;
896
897         memset(&c, 0, sizeof(c));
898         c.features.opcode = nvme_admin_set_features;
899         c.features.fid = cpu_to_le32(fid);
900         c.features.dword11 = cpu_to_le32(dword11);
901
902         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
903                         buffer, buflen, 0, NVME_QID_ANY, 0, 0);
904         if (ret >= 0 && result)
905                 *result = le32_to_cpu(res.u32);
906         return ret;
907 }
908
909 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
910 {
911         u32 q_count = (*count - 1) | ((*count - 1) << 16);
912         u32 result;
913         int status, nr_io_queues;
914
915         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
916                         &result);
917         if (status < 0)
918                 return status;
919
920         /*
921          * Degraded controllers might return an error when setting the queue
922          * count.  We still want to be able to bring them online and offer
923          * access to the admin queue, as that might be only way to fix them up.
924          */
925         if (status > 0) {
926                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
927                 *count = 0;
928         } else {
929                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
930                 *count = min(*count, nr_io_queues);
931         }
932
933         return 0;
934 }
935 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
936
937 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
938 {
939         struct nvme_user_io io;
940         struct nvme_command c;
941         unsigned length, meta_len;
942         void __user *metadata;
943
944         if (copy_from_user(&io, uio, sizeof(io)))
945                 return -EFAULT;
946         if (io.flags)
947                 return -EINVAL;
948
949         switch (io.opcode) {
950         case nvme_cmd_write:
951         case nvme_cmd_read:
952         case nvme_cmd_compare:
953                 break;
954         default:
955                 return -EINVAL;
956         }
957
958         length = (io.nblocks + 1) << ns->lba_shift;
959         meta_len = (io.nblocks + 1) * ns->ms;
960         metadata = (void __user *)(uintptr_t)io.metadata;
961
962         if (ns->ext) {
963                 length += meta_len;
964                 meta_len = 0;
965         } else if (meta_len) {
966                 if ((io.metadata & 3) || !io.metadata)
967                         return -EINVAL;
968         }
969
970         memset(&c, 0, sizeof(c));
971         c.rw.opcode = io.opcode;
972         c.rw.flags = io.flags;
973         c.rw.nsid = cpu_to_le32(ns->ns_id);
974         c.rw.slba = cpu_to_le64(io.slba);
975         c.rw.length = cpu_to_le16(io.nblocks);
976         c.rw.control = cpu_to_le16(io.control);
977         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
978         c.rw.reftag = cpu_to_le32(io.reftag);
979         c.rw.apptag = cpu_to_le16(io.apptag);
980         c.rw.appmask = cpu_to_le16(io.appmask);
981
982         return nvme_submit_user_cmd(ns->queue, &c,
983                         (void __user *)(uintptr_t)io.addr, length,
984                         metadata, meta_len, io.slba, NULL, 0);
985 }
986
987 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
988                         struct nvme_passthru_cmd __user *ucmd)
989 {
990         struct nvme_passthru_cmd cmd;
991         struct nvme_command c;
992         unsigned timeout = 0;
993         int status;
994
995         if (!capable(CAP_SYS_ADMIN))
996                 return -EACCES;
997         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
998                 return -EFAULT;
999         if (cmd.flags)
1000                 return -EINVAL;
1001
1002         memset(&c, 0, sizeof(c));
1003         c.common.opcode = cmd.opcode;
1004         c.common.flags = cmd.flags;
1005         c.common.nsid = cpu_to_le32(cmd.nsid);
1006         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1007         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1008         c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1009         c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1010         c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1011         c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1012         c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1013         c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1014
1015         if (cmd.timeout_ms)
1016                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1017
1018         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1019                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1020                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1021                         0, &cmd.result, timeout);
1022         if (status >= 0) {
1023                 if (put_user(cmd.result, &ucmd->result))
1024                         return -EFAULT;
1025         }
1026
1027         return status;
1028 }
1029
1030 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1031                 unsigned int cmd, unsigned long arg)
1032 {
1033         struct nvme_ns *ns = bdev->bd_disk->private_data;
1034
1035         switch (cmd) {
1036         case NVME_IOCTL_ID:
1037                 force_successful_syscall_return();
1038                 return ns->ns_id;
1039         case NVME_IOCTL_ADMIN_CMD:
1040                 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1041         case NVME_IOCTL_IO_CMD:
1042                 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1043         case NVME_IOCTL_SUBMIT_IO:
1044                 return nvme_submit_io(ns, (void __user *)arg);
1045         default:
1046 #ifdef CONFIG_NVM
1047                 if (ns->ndev)
1048                         return nvme_nvm_ioctl(ns, cmd, arg);
1049 #endif
1050                 if (is_sed_ioctl(cmd))
1051                         return sed_ioctl(ns->ctrl->opal_dev, cmd,
1052                                          (void __user *) arg);
1053                 return -ENOTTY;
1054         }
1055 }
1056
1057 #ifdef CONFIG_COMPAT
1058 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1059                         unsigned int cmd, unsigned long arg)
1060 {
1061         return nvme_ioctl(bdev, mode, cmd, arg);
1062 }
1063 #else
1064 #define nvme_compat_ioctl       NULL
1065 #endif
1066
1067 static int nvme_open(struct block_device *bdev, fmode_t mode)
1068 {
1069         return nvme_get_ns_from_disk(bdev->bd_disk) ? 0 : -ENXIO;
1070 }
1071
1072 static void nvme_release(struct gendisk *disk, fmode_t mode)
1073 {
1074         struct nvme_ns *ns = disk->private_data;
1075
1076         module_put(ns->ctrl->ops->module);
1077         nvme_put_ns(ns);
1078 }
1079
1080 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1081 {
1082         /* some standard values */
1083         geo->heads = 1 << 6;
1084         geo->sectors = 1 << 5;
1085         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1086         return 0;
1087 }
1088
1089 #ifdef CONFIG_BLK_DEV_INTEGRITY
1090 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1091                 u16 bs)
1092 {
1093         struct nvme_ns *ns = disk->private_data;
1094         u16 old_ms = ns->ms;
1095         u8 pi_type = 0;
1096
1097         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1098         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1099
1100         /* PI implementation requires metadata equal t10 pi tuple size */
1101         if (ns->ms == sizeof(struct t10_pi_tuple))
1102                 pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1103
1104         if (blk_get_integrity(disk) &&
1105             (ns->pi_type != pi_type || ns->ms != old_ms ||
1106              bs != queue_logical_block_size(disk->queue) ||
1107              (ns->ms && ns->ext)))
1108                 blk_integrity_unregister(disk);
1109
1110         ns->pi_type = pi_type;
1111 }
1112
1113 static void nvme_init_integrity(struct nvme_ns *ns)
1114 {
1115         struct blk_integrity integrity;
1116
1117         memset(&integrity, 0, sizeof(integrity));
1118         switch (ns->pi_type) {
1119         case NVME_NS_DPS_PI_TYPE3:
1120                 integrity.profile = &t10_pi_type3_crc;
1121                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1122                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1123                 break;
1124         case NVME_NS_DPS_PI_TYPE1:
1125         case NVME_NS_DPS_PI_TYPE2:
1126                 integrity.profile = &t10_pi_type1_crc;
1127                 integrity.tag_size = sizeof(u16);
1128                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1129                 break;
1130         default:
1131                 integrity.profile = NULL;
1132                 break;
1133         }
1134         integrity.tuple_size = ns->ms;
1135         blk_integrity_register(ns->disk, &integrity);
1136         blk_queue_max_integrity_segments(ns->queue, 1);
1137 }
1138 #else
1139 static void nvme_prep_integrity(struct gendisk *disk, struct nvme_id_ns *id,
1140                 u16 bs)
1141 {
1142 }
1143 static void nvme_init_integrity(struct nvme_ns *ns)
1144 {
1145 }
1146 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1147
1148 static void nvme_set_chunk_size(struct nvme_ns *ns)
1149 {
1150         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1151         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1152 }
1153
1154 static void nvme_config_discard(struct nvme_ns *ns)
1155 {
1156         struct nvme_ctrl *ctrl = ns->ctrl;
1157         u32 logical_block_size = queue_logical_block_size(ns->queue);
1158
1159         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1160                         NVME_DSM_MAX_RANGES);
1161
1162         if (ctrl->nr_streams && ns->sws && ns->sgs) {
1163                 unsigned int sz = logical_block_size * ns->sws * ns->sgs;
1164
1165                 ns->queue->limits.discard_alignment = sz;
1166                 ns->queue->limits.discard_granularity = sz;
1167         } else {
1168                 ns->queue->limits.discard_alignment = logical_block_size;
1169                 ns->queue->limits.discard_granularity = logical_block_size;
1170         }
1171         blk_queue_max_discard_sectors(ns->queue, UINT_MAX);
1172         blk_queue_max_discard_segments(ns->queue, NVME_DSM_MAX_RANGES);
1173         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1174
1175         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1176                 blk_queue_max_write_zeroes_sectors(ns->queue, UINT_MAX);
1177 }
1178
1179 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1180                 struct nvme_id_ns *id, u8 *eui64, u8 *nguid, uuid_t *uuid)
1181 {
1182         if (ctrl->vs >= NVME_VS(1, 1, 0))
1183                 memcpy(eui64, id->eui64, sizeof(id->eui64));
1184         if (ctrl->vs >= NVME_VS(1, 2, 0))
1185                 memcpy(nguid, id->nguid, sizeof(id->nguid));
1186         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1187                  /* Don't treat error as fatal we potentially
1188                   * already have a NGUID or EUI-64
1189                   */
1190                 if (nvme_identify_ns_descs(ctrl, nsid, eui64, nguid, uuid))
1191                         dev_warn(ctrl->device,
1192                                  "%s: Identify Descriptors failed\n", __func__);
1193         }
1194 }
1195
1196 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1197 {
1198         struct nvme_ns *ns = disk->private_data;
1199         struct nvme_ctrl *ctrl = ns->ctrl;
1200         u16 bs;
1201
1202         /*
1203          * If identify namespace failed, use default 512 byte block size so
1204          * block layer can use before failing read/write for 0 capacity.
1205          */
1206         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1207         if (ns->lba_shift == 0)
1208                 ns->lba_shift = 9;
1209         bs = 1 << ns->lba_shift;
1210         ns->noiob = le16_to_cpu(id->noiob);
1211
1212         blk_mq_freeze_queue(disk->queue);
1213
1214         if (ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)
1215                 nvme_prep_integrity(disk, id, bs);
1216         blk_queue_logical_block_size(ns->queue, bs);
1217         if (ns->noiob)
1218                 nvme_set_chunk_size(ns);
1219         if (ns->ms && !blk_get_integrity(disk) && !ns->ext)
1220                 nvme_init_integrity(ns);
1221         if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
1222                 set_capacity(disk, 0);
1223         else
1224                 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1225
1226         if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1227                 nvme_config_discard(ns);
1228         blk_mq_unfreeze_queue(disk->queue);
1229 }
1230
1231 static int nvme_revalidate_disk(struct gendisk *disk)
1232 {
1233         struct nvme_ns *ns = disk->private_data;
1234         struct nvme_ctrl *ctrl = ns->ctrl;
1235         struct nvme_id_ns *id;
1236         u8 eui64[8] = { 0 }, nguid[16] = { 0 };
1237         uuid_t uuid = uuid_null;
1238         int ret = 0;
1239
1240         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1241                 set_capacity(disk, 0);
1242                 return -ENODEV;
1243         }
1244
1245         id = nvme_identify_ns(ctrl, ns->ns_id);
1246         if (!id)
1247                 return -ENODEV;
1248
1249         if (id->ncap == 0) {
1250                 ret = -ENODEV;
1251                 goto out;
1252         }
1253
1254         nvme_report_ns_ids(ctrl, ns->ns_id, id, eui64, nguid, &uuid);
1255         if (!uuid_equal(&ns->uuid, &uuid) ||
1256             memcmp(&ns->nguid, &nguid, sizeof(ns->nguid)) ||
1257             memcmp(&ns->eui, &eui64, sizeof(ns->eui))) {
1258                 dev_err(ctrl->device,
1259                         "identifiers changed for nsid %d\n", ns->ns_id);
1260                 ret = -ENODEV;
1261         }
1262
1263 out:
1264         kfree(id);
1265         return ret;
1266 }
1267
1268 static char nvme_pr_type(enum pr_type type)
1269 {
1270         switch (type) {
1271         case PR_WRITE_EXCLUSIVE:
1272                 return 1;
1273         case PR_EXCLUSIVE_ACCESS:
1274                 return 2;
1275         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1276                 return 3;
1277         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1278                 return 4;
1279         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1280                 return 5;
1281         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1282                 return 6;
1283         default:
1284                 return 0;
1285         }
1286 };
1287
1288 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1289                                 u64 key, u64 sa_key, u8 op)
1290 {
1291         struct nvme_ns *ns = bdev->bd_disk->private_data;
1292         struct nvme_command c;
1293         u8 data[16] = { 0, };
1294
1295         put_unaligned_le64(key, &data[0]);
1296         put_unaligned_le64(sa_key, &data[8]);
1297
1298         memset(&c, 0, sizeof(c));
1299         c.common.opcode = op;
1300         c.common.nsid = cpu_to_le32(ns->ns_id);
1301         c.common.cdw10[0] = cpu_to_le32(cdw10);
1302
1303         return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1304 }
1305
1306 static int nvme_pr_register(struct block_device *bdev, u64 old,
1307                 u64 new, unsigned flags)
1308 {
1309         u32 cdw10;
1310
1311         if (flags & ~PR_FL_IGNORE_KEY)
1312                 return -EOPNOTSUPP;
1313
1314         cdw10 = old ? 2 : 0;
1315         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1316         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1317         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1318 }
1319
1320 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1321                 enum pr_type type, unsigned flags)
1322 {
1323         u32 cdw10;
1324
1325         if (flags & ~PR_FL_IGNORE_KEY)
1326                 return -EOPNOTSUPP;
1327
1328         cdw10 = nvme_pr_type(type) << 8;
1329         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1330         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1331 }
1332
1333 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1334                 enum pr_type type, bool abort)
1335 {
1336         u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1337         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1338 }
1339
1340 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1341 {
1342         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1343         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1344 }
1345
1346 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1347 {
1348         u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1349         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1350 }
1351
1352 static const struct pr_ops nvme_pr_ops = {
1353         .pr_register    = nvme_pr_register,
1354         .pr_reserve     = nvme_pr_reserve,
1355         .pr_release     = nvme_pr_release,
1356         .pr_preempt     = nvme_pr_preempt,
1357         .pr_clear       = nvme_pr_clear,
1358 };
1359
1360 #ifdef CONFIG_BLK_SED_OPAL
1361 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1362                 bool send)
1363 {
1364         struct nvme_ctrl *ctrl = data;
1365         struct nvme_command cmd;
1366
1367         memset(&cmd, 0, sizeof(cmd));
1368         if (send)
1369                 cmd.common.opcode = nvme_admin_security_send;
1370         else
1371                 cmd.common.opcode = nvme_admin_security_recv;
1372         cmd.common.nsid = 0;
1373         cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1374         cmd.common.cdw10[1] = cpu_to_le32(len);
1375
1376         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1377                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1378 }
1379 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1380 #endif /* CONFIG_BLK_SED_OPAL */
1381
1382 static const struct block_device_operations nvme_fops = {
1383         .owner          = THIS_MODULE,
1384         .ioctl          = nvme_ioctl,
1385         .compat_ioctl   = nvme_compat_ioctl,
1386         .open           = nvme_open,
1387         .release        = nvme_release,
1388         .getgeo         = nvme_getgeo,
1389         .revalidate_disk= nvme_revalidate_disk,
1390         .pr_ops         = &nvme_pr_ops,
1391 };
1392
1393 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1394 {
1395         unsigned long timeout =
1396                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1397         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1398         int ret;
1399
1400         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1401                 if (csts == ~0)
1402                         return -ENODEV;
1403                 if ((csts & NVME_CSTS_RDY) == bit)
1404                         break;
1405
1406                 msleep(100);
1407                 if (fatal_signal_pending(current))
1408                         return -EINTR;
1409                 if (time_after(jiffies, timeout)) {
1410                         dev_err(ctrl->device,
1411                                 "Device not ready; aborting %s\n", enabled ?
1412                                                 "initialisation" : "reset");
1413                         return -ENODEV;
1414                 }
1415         }
1416
1417         return ret;
1418 }
1419
1420 /*
1421  * If the device has been passed off to us in an enabled state, just clear
1422  * the enabled bit.  The spec says we should set the 'shutdown notification
1423  * bits', but doing so may cause the device to complete commands to the
1424  * admin queue ... and we don't know what memory that might be pointing at!
1425  */
1426 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1427 {
1428         int ret;
1429
1430         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1431         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1432
1433         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1434         if (ret)
1435                 return ret;
1436
1437         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1438                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1439
1440         return nvme_wait_ready(ctrl, cap, false);
1441 }
1442 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1443
1444 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1445 {
1446         /*
1447          * Default to a 4K page size, with the intention to update this
1448          * path in the future to accomodate architectures with differing
1449          * kernel and IO page sizes.
1450          */
1451         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1452         int ret;
1453
1454         if (page_shift < dev_page_min) {
1455                 dev_err(ctrl->device,
1456                         "Minimum device page size %u too large for host (%u)\n",
1457                         1 << dev_page_min, 1 << page_shift);
1458                 return -ENODEV;
1459         }
1460
1461         ctrl->page_size = 1 << page_shift;
1462
1463         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1464         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1465         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1466         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1467         ctrl->ctrl_config |= NVME_CC_ENABLE;
1468
1469         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1470         if (ret)
1471                 return ret;
1472         return nvme_wait_ready(ctrl, cap, true);
1473 }
1474 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1475
1476 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1477 {
1478         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1479         u32 csts;
1480         int ret;
1481
1482         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1483         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1484
1485         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1486         if (ret)
1487                 return ret;
1488
1489         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1490                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1491                         break;
1492
1493                 msleep(100);
1494                 if (fatal_signal_pending(current))
1495                         return -EINTR;
1496                 if (time_after(jiffies, timeout)) {
1497                         dev_err(ctrl->device,
1498                                 "Device shutdown incomplete; abort shutdown\n");
1499                         return -ENODEV;
1500                 }
1501         }
1502
1503         return ret;
1504 }
1505 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1506
1507 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1508                 struct request_queue *q)
1509 {
1510         bool vwc = false;
1511
1512         if (ctrl->max_hw_sectors) {
1513                 u32 max_segments =
1514                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1515
1516                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1517                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1518         }
1519         if (ctrl->quirks & NVME_QUIRK_STRIPE_SIZE)
1520                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1521         blk_queue_virt_boundary(q, ctrl->page_size - 1);
1522         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1523                 vwc = true;
1524         blk_queue_write_cache(q, vwc, vwc);
1525 }
1526
1527 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1528 {
1529         __le64 ts;
1530         int ret;
1531
1532         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1533                 return 0;
1534
1535         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1536         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1537                         NULL);
1538         if (ret)
1539                 dev_warn_once(ctrl->device,
1540                         "could not set timestamp (%d)\n", ret);
1541         return ret;
1542 }
1543
1544 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1545 {
1546         /*
1547          * APST (Autonomous Power State Transition) lets us program a
1548          * table of power state transitions that the controller will
1549          * perform automatically.  We configure it with a simple
1550          * heuristic: we are willing to spend at most 2% of the time
1551          * transitioning between power states.  Therefore, when running
1552          * in any given state, we will enter the next lower-power
1553          * non-operational state after waiting 50 * (enlat + exlat)
1554          * microseconds, as long as that state's exit latency is under
1555          * the requested maximum latency.
1556          *
1557          * We will not autonomously enter any non-operational state for
1558          * which the total latency exceeds ps_max_latency_us.  Users
1559          * can set ps_max_latency_us to zero to turn off APST.
1560          */
1561
1562         unsigned apste;
1563         struct nvme_feat_auto_pst *table;
1564         u64 max_lat_us = 0;
1565         int max_ps = -1;
1566         int ret;
1567
1568         /*
1569          * If APST isn't supported or if we haven't been initialized yet,
1570          * then don't do anything.
1571          */
1572         if (!ctrl->apsta)
1573                 return 0;
1574
1575         if (ctrl->npss > 31) {
1576                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1577                 return 0;
1578         }
1579
1580         table = kzalloc(sizeof(*table), GFP_KERNEL);
1581         if (!table)
1582                 return 0;
1583
1584         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1585                 /* Turn off APST. */
1586                 apste = 0;
1587                 dev_dbg(ctrl->device, "APST disabled\n");
1588         } else {
1589                 __le64 target = cpu_to_le64(0);
1590                 int state;
1591
1592                 /*
1593                  * Walk through all states from lowest- to highest-power.
1594                  * According to the spec, lower-numbered states use more
1595                  * power.  NPSS, despite the name, is the index of the
1596                  * lowest-power state, not the number of states.
1597                  */
1598                 for (state = (int)ctrl->npss; state >= 0; state--) {
1599                         u64 total_latency_us, exit_latency_us, transition_ms;
1600
1601                         if (target)
1602                                 table->entries[state] = target;
1603
1604                         /*
1605                          * Don't allow transitions to the deepest state
1606                          * if it's quirked off.
1607                          */
1608                         if (state == ctrl->npss &&
1609                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1610                                 continue;
1611
1612                         /*
1613                          * Is this state a useful non-operational state for
1614                          * higher-power states to autonomously transition to?
1615                          */
1616                         if (!(ctrl->psd[state].flags &
1617                               NVME_PS_FLAGS_NON_OP_STATE))
1618                                 continue;
1619
1620                         exit_latency_us =
1621                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1622                         if (exit_latency_us > ctrl->ps_max_latency_us)
1623                                 continue;
1624
1625                         total_latency_us =
1626                                 exit_latency_us +
1627                                 le32_to_cpu(ctrl->psd[state].entry_lat);
1628
1629                         /*
1630                          * This state is good.  Use it as the APST idle
1631                          * target for higher power states.
1632                          */
1633                         transition_ms = total_latency_us + 19;
1634                         do_div(transition_ms, 20);
1635                         if (transition_ms > (1 << 24) - 1)
1636                                 transition_ms = (1 << 24) - 1;
1637
1638                         target = cpu_to_le64((state << 3) |
1639                                              (transition_ms << 8));
1640
1641                         if (max_ps == -1)
1642                                 max_ps = state;
1643
1644                         if (total_latency_us > max_lat_us)
1645                                 max_lat_us = total_latency_us;
1646                 }
1647
1648                 apste = 1;
1649
1650                 if (max_ps == -1) {
1651                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1652                 } else {
1653                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1654                                 max_ps, max_lat_us, (int)sizeof(*table), table);
1655                 }
1656         }
1657
1658         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1659                                 table, sizeof(*table), NULL);
1660         if (ret)
1661                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1662
1663         kfree(table);
1664         return ret;
1665 }
1666
1667 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1668 {
1669         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1670         u64 latency;
1671
1672         switch (val) {
1673         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1674         case PM_QOS_LATENCY_ANY:
1675                 latency = U64_MAX;
1676                 break;
1677
1678         default:
1679                 latency = val;
1680         }
1681
1682         if (ctrl->ps_max_latency_us != latency) {
1683                 ctrl->ps_max_latency_us = latency;
1684                 nvme_configure_apst(ctrl);
1685         }
1686 }
1687
1688 struct nvme_core_quirk_entry {
1689         /*
1690          * NVMe model and firmware strings are padded with spaces.  For
1691          * simplicity, strings in the quirk table are padded with NULLs
1692          * instead.
1693          */
1694         u16 vid;
1695         const char *mn;
1696         const char *fr;
1697         unsigned long quirks;
1698 };
1699
1700 static const struct nvme_core_quirk_entry core_quirks[] = {
1701         {
1702                 /*
1703                  * This Toshiba device seems to die using any APST states.  See:
1704                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1705                  */
1706                 .vid = 0x1179,
1707                 .mn = "THNSF5256GPUK TOSHIBA",
1708                 .quirks = NVME_QUIRK_NO_APST,
1709         }
1710 };
1711
1712 /* match is null-terminated but idstr is space-padded. */
1713 static bool string_matches(const char *idstr, const char *match, size_t len)
1714 {
1715         size_t matchlen;
1716
1717         if (!match)
1718                 return true;
1719
1720         matchlen = strlen(match);
1721         WARN_ON_ONCE(matchlen > len);
1722
1723         if (memcmp(idstr, match, matchlen))
1724                 return false;
1725
1726         for (; matchlen < len; matchlen++)
1727                 if (idstr[matchlen] != ' ')
1728                         return false;
1729
1730         return true;
1731 }
1732
1733 static bool quirk_matches(const struct nvme_id_ctrl *id,
1734                           const struct nvme_core_quirk_entry *q)
1735 {
1736         return q->vid == le16_to_cpu(id->vid) &&
1737                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1738                 string_matches(id->fr, q->fr, sizeof(id->fr));
1739 }
1740
1741 static void nvme_init_subnqn(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1742 {
1743         size_t nqnlen;
1744         int off;
1745
1746         nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
1747         if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
1748                 strcpy(ctrl->subnqn, id->subnqn);
1749                 return;
1750         }
1751
1752         if (ctrl->vs >= NVME_VS(1, 2, 1))
1753                 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
1754
1755         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
1756         off = snprintf(ctrl->subnqn, NVMF_NQN_SIZE,
1757                         "nqn.2014.08.org.nvmexpress:%4x%4x",
1758                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
1759         memcpy(ctrl->subnqn + off, id->sn, sizeof(id->sn));
1760         off += sizeof(id->sn);
1761         memcpy(ctrl->subnqn + off, id->mn, sizeof(id->mn));
1762         off += sizeof(id->mn);
1763         memset(ctrl->subnqn + off, 0, sizeof(ctrl->subnqn) - off);
1764 }
1765
1766 /*
1767  * Initialize the cached copies of the Identify data and various controller
1768  * register in our nvme_ctrl structure.  This should be called as soon as
1769  * the admin queue is fully up and running.
1770  */
1771 int nvme_init_identify(struct nvme_ctrl *ctrl)
1772 {
1773         struct nvme_id_ctrl *id;
1774         u64 cap;
1775         int ret, page_shift;
1776         u32 max_hw_sectors;
1777         bool prev_apst_enabled;
1778
1779         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
1780         if (ret) {
1781                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
1782                 return ret;
1783         }
1784
1785         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
1786         if (ret) {
1787                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
1788                 return ret;
1789         }
1790         page_shift = NVME_CAP_MPSMIN(cap) + 12;
1791
1792         if (ctrl->vs >= NVME_VS(1, 1, 0))
1793                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
1794
1795         ret = nvme_identify_ctrl(ctrl, &id);
1796         if (ret) {
1797                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
1798                 return -EIO;
1799         }
1800
1801         nvme_init_subnqn(ctrl, id);
1802
1803         if (!ctrl->identified) {
1804                 /*
1805                  * Check for quirks.  Quirk can depend on firmware version,
1806                  * so, in principle, the set of quirks present can change
1807                  * across a reset.  As a possible future enhancement, we
1808                  * could re-scan for quirks every time we reinitialize
1809                  * the device, but we'd have to make sure that the driver
1810                  * behaves intelligently if the quirks change.
1811                  */
1812
1813                 int i;
1814
1815                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
1816                         if (quirk_matches(id, &core_quirks[i]))
1817                                 ctrl->quirks |= core_quirks[i].quirks;
1818                 }
1819         }
1820
1821         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
1822                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
1823                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
1824         }
1825
1826         ctrl->oacs = le16_to_cpu(id->oacs);
1827         ctrl->vid = le16_to_cpu(id->vid);
1828         ctrl->oncs = le16_to_cpup(&id->oncs);
1829         atomic_set(&ctrl->abort_limit, id->acl + 1);
1830         ctrl->vwc = id->vwc;
1831         ctrl->cntlid = le16_to_cpup(&id->cntlid);
1832         memcpy(ctrl->serial, id->sn, sizeof(id->sn));
1833         memcpy(ctrl->model, id->mn, sizeof(id->mn));
1834         memcpy(ctrl->firmware_rev, id->fr, sizeof(id->fr));
1835         if (id->mdts)
1836                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
1837         else
1838                 max_hw_sectors = UINT_MAX;
1839         ctrl->max_hw_sectors =
1840                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
1841
1842         nvme_set_queue_limits(ctrl, ctrl->admin_q);
1843         ctrl->sgls = le32_to_cpu(id->sgls);
1844         ctrl->kas = le16_to_cpu(id->kas);
1845
1846         if (id->rtd3e) {
1847                 /* us -> s */
1848                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
1849
1850                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
1851                                                  shutdown_timeout, 60);
1852
1853                 if (ctrl->shutdown_timeout != shutdown_timeout)
1854                         dev_warn(ctrl->device,
1855                                  "Shutdown timeout set to %u seconds\n",
1856                                  ctrl->shutdown_timeout);
1857         } else
1858                 ctrl->shutdown_timeout = shutdown_timeout;
1859
1860         ctrl->npss = id->npss;
1861         ctrl->apsta = id->apsta;
1862         prev_apst_enabled = ctrl->apst_enabled;
1863         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
1864                 if (force_apst && id->apsta) {
1865                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
1866                         ctrl->apst_enabled = true;
1867                 } else {
1868                         ctrl->apst_enabled = false;
1869                 }
1870         } else {
1871                 ctrl->apst_enabled = id->apsta;
1872         }
1873         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
1874
1875         if (ctrl->ops->flags & NVME_F_FABRICS) {
1876                 ctrl->icdoff = le16_to_cpu(id->icdoff);
1877                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
1878                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
1879                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
1880
1881                 /*
1882                  * In fabrics we need to verify the cntlid matches the
1883                  * admin connect
1884                  */
1885                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
1886                         ret = -EINVAL;
1887                         goto out_free;
1888                 }
1889
1890                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
1891                         dev_err(ctrl->device,
1892                                 "keep-alive support is mandatory for fabrics\n");
1893                         ret = -EINVAL;
1894                         goto out_free;
1895                 }
1896         } else {
1897                 ctrl->cntlid = le16_to_cpu(id->cntlid);
1898                 ctrl->hmpre = le32_to_cpu(id->hmpre);
1899                 ctrl->hmmin = le32_to_cpu(id->hmmin);
1900         }
1901
1902         kfree(id);
1903
1904         if (ctrl->apst_enabled && !prev_apst_enabled)
1905                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
1906         else if (!ctrl->apst_enabled && prev_apst_enabled)
1907                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
1908
1909         ret = nvme_configure_apst(ctrl);
1910         if (ret < 0)
1911                 return ret;
1912         
1913         ret = nvme_configure_timestamp(ctrl);
1914         if (ret < 0)
1915                 return ret;
1916
1917         ret = nvme_configure_directives(ctrl);
1918         if (ret < 0)
1919                 return ret;
1920
1921         ctrl->identified = true;
1922
1923         return 0;
1924
1925 out_free:
1926         kfree(id);
1927         return ret;
1928 }
1929 EXPORT_SYMBOL_GPL(nvme_init_identify);
1930
1931 static int nvme_dev_open(struct inode *inode, struct file *file)
1932 {
1933         struct nvme_ctrl *ctrl;
1934         int instance = iminor(inode);
1935         int ret = -ENODEV;
1936
1937         spin_lock(&dev_list_lock);
1938         list_for_each_entry(ctrl, &nvme_ctrl_list, node) {
1939                 if (ctrl->instance != instance)
1940                         continue;
1941
1942                 if (!ctrl->admin_q) {
1943                         ret = -EWOULDBLOCK;
1944                         break;
1945                 }
1946                 if (!kref_get_unless_zero(&ctrl->kref))
1947                         break;
1948                 file->private_data = ctrl;
1949                 ret = 0;
1950                 break;
1951         }
1952         spin_unlock(&dev_list_lock);
1953
1954         return ret;
1955 }
1956
1957 static int nvme_dev_release(struct inode *inode, struct file *file)
1958 {
1959         nvme_put_ctrl(file->private_data);
1960         return 0;
1961 }
1962
1963 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
1964 {
1965         struct nvme_ns *ns;
1966         int ret;
1967
1968         mutex_lock(&ctrl->namespaces_mutex);
1969         if (list_empty(&ctrl->namespaces)) {
1970                 ret = -ENOTTY;
1971                 goto out_unlock;
1972         }
1973
1974         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
1975         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
1976                 dev_warn(ctrl->device,
1977                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
1978                 ret = -EINVAL;
1979                 goto out_unlock;
1980         }
1981
1982         dev_warn(ctrl->device,
1983                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
1984         kref_get(&ns->kref);
1985         mutex_unlock(&ctrl->namespaces_mutex);
1986
1987         ret = nvme_user_cmd(ctrl, ns, argp);
1988         nvme_put_ns(ns);
1989         return ret;
1990
1991 out_unlock:
1992         mutex_unlock(&ctrl->namespaces_mutex);
1993         return ret;
1994 }
1995
1996 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
1997                 unsigned long arg)
1998 {
1999         struct nvme_ctrl *ctrl = file->private_data;
2000         void __user *argp = (void __user *)arg;
2001
2002         switch (cmd) {
2003         case NVME_IOCTL_ADMIN_CMD:
2004                 return nvme_user_cmd(ctrl, NULL, argp);
2005         case NVME_IOCTL_IO_CMD:
2006                 return nvme_dev_user_cmd(ctrl, argp);
2007         case NVME_IOCTL_RESET:
2008                 dev_warn(ctrl->device, "resetting controller\n");
2009                 return nvme_reset_ctrl_sync(ctrl);
2010         case NVME_IOCTL_SUBSYS_RESET:
2011                 return nvme_reset_subsystem(ctrl);
2012         case NVME_IOCTL_RESCAN:
2013                 nvme_queue_scan(ctrl);
2014                 return 0;
2015         default:
2016                 return -ENOTTY;
2017         }
2018 }
2019
2020 static const struct file_operations nvme_dev_fops = {
2021         .owner          = THIS_MODULE,
2022         .open           = nvme_dev_open,
2023         .release        = nvme_dev_release,
2024         .unlocked_ioctl = nvme_dev_ioctl,
2025         .compat_ioctl   = nvme_dev_ioctl,
2026 };
2027
2028 static ssize_t nvme_sysfs_reset(struct device *dev,
2029                                 struct device_attribute *attr, const char *buf,
2030                                 size_t count)
2031 {
2032         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2033         int ret;
2034
2035         ret = nvme_reset_ctrl_sync(ctrl);
2036         if (ret < 0)
2037                 return ret;
2038         return count;
2039 }
2040 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2041
2042 static ssize_t nvme_sysfs_rescan(struct device *dev,
2043                                 struct device_attribute *attr, const char *buf,
2044                                 size_t count)
2045 {
2046         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2047
2048         nvme_queue_scan(ctrl);
2049         return count;
2050 }
2051 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2052
2053 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2054                                                                 char *buf)
2055 {
2056         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2057         struct nvme_ctrl *ctrl = ns->ctrl;
2058         int serial_len = sizeof(ctrl->serial);
2059         int model_len = sizeof(ctrl->model);
2060
2061         if (!uuid_is_null(&ns->uuid))
2062                 return sprintf(buf, "uuid.%pU\n", &ns->uuid);
2063
2064         if (memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2065                 return sprintf(buf, "eui.%16phN\n", ns->nguid);
2066
2067         if (memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2068                 return sprintf(buf, "eui.%8phN\n", ns->eui);
2069
2070         while (serial_len > 0 && (ctrl->serial[serial_len - 1] == ' ' ||
2071                                   ctrl->serial[serial_len - 1] == '\0'))
2072                 serial_len--;
2073         while (model_len > 0 && (ctrl->model[model_len - 1] == ' ' ||
2074                                  ctrl->model[model_len - 1] == '\0'))
2075                 model_len--;
2076
2077         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", ctrl->vid,
2078                 serial_len, ctrl->serial, model_len, ctrl->model, ns->ns_id);
2079 }
2080 static DEVICE_ATTR(wwid, S_IRUGO, wwid_show, NULL);
2081
2082 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2083                           char *buf)
2084 {
2085         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2086         return sprintf(buf, "%pU\n", ns->nguid);
2087 }
2088 static DEVICE_ATTR(nguid, S_IRUGO, nguid_show, NULL);
2089
2090 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2091                                                                 char *buf)
2092 {
2093         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2094
2095         /* For backward compatibility expose the NGUID to userspace if
2096          * we have no UUID set
2097          */
2098         if (uuid_is_null(&ns->uuid)) {
2099                 printk_ratelimited(KERN_WARNING
2100                                    "No UUID available providing old NGUID\n");
2101                 return sprintf(buf, "%pU\n", ns->nguid);
2102         }
2103         return sprintf(buf, "%pU\n", &ns->uuid);
2104 }
2105 static DEVICE_ATTR(uuid, S_IRUGO, uuid_show, NULL);
2106
2107 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2108                                                                 char *buf)
2109 {
2110         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2111         return sprintf(buf, "%8phd\n", ns->eui);
2112 }
2113 static DEVICE_ATTR(eui, S_IRUGO, eui_show, NULL);
2114
2115 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2116                                                                 char *buf)
2117 {
2118         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2119         return sprintf(buf, "%d\n", ns->ns_id);
2120 }
2121 static DEVICE_ATTR(nsid, S_IRUGO, nsid_show, NULL);
2122
2123 static struct attribute *nvme_ns_attrs[] = {
2124         &dev_attr_wwid.attr,
2125         &dev_attr_uuid.attr,
2126         &dev_attr_nguid.attr,
2127         &dev_attr_eui.attr,
2128         &dev_attr_nsid.attr,
2129         NULL,
2130 };
2131
2132 static umode_t nvme_ns_attrs_are_visible(struct kobject *kobj,
2133                 struct attribute *a, int n)
2134 {
2135         struct device *dev = container_of(kobj, struct device, kobj);
2136         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
2137
2138         if (a == &dev_attr_uuid.attr) {
2139                 if (uuid_is_null(&ns->uuid) ||
2140                     !memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2141                         return 0;
2142         }
2143         if (a == &dev_attr_nguid.attr) {
2144                 if (!memchr_inv(ns->nguid, 0, sizeof(ns->nguid)))
2145                         return 0;
2146         }
2147         if (a == &dev_attr_eui.attr) {
2148                 if (!memchr_inv(ns->eui, 0, sizeof(ns->eui)))
2149                         return 0;
2150         }
2151         return a->mode;
2152 }
2153
2154 static const struct attribute_group nvme_ns_attr_group = {
2155         .attrs          = nvme_ns_attrs,
2156         .is_visible     = nvme_ns_attrs_are_visible,
2157 };
2158
2159 #define nvme_show_str_function(field)                                           \
2160 static ssize_t  field##_show(struct device *dev,                                \
2161                             struct device_attribute *attr, char *buf)           \
2162 {                                                                               \
2163         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2164         return sprintf(buf, "%.*s\n", (int)sizeof(ctrl->field), ctrl->field);   \
2165 }                                                                               \
2166 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2167
2168 #define nvme_show_int_function(field)                                           \
2169 static ssize_t  field##_show(struct device *dev,                                \
2170                             struct device_attribute *attr, char *buf)           \
2171 {                                                                               \
2172         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2173         return sprintf(buf, "%d\n", ctrl->field);       \
2174 }                                                                               \
2175 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2176
2177 nvme_show_str_function(model);
2178 nvme_show_str_function(serial);
2179 nvme_show_str_function(firmware_rev);
2180 nvme_show_int_function(cntlid);
2181
2182 static ssize_t nvme_sysfs_delete(struct device *dev,
2183                                 struct device_attribute *attr, const char *buf,
2184                                 size_t count)
2185 {
2186         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2187
2188         if (device_remove_file_self(dev, attr))
2189                 ctrl->ops->delete_ctrl(ctrl);
2190         return count;
2191 }
2192 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2193
2194 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2195                                          struct device_attribute *attr,
2196                                          char *buf)
2197 {
2198         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2199
2200         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2201 }
2202 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2203
2204 static ssize_t nvme_sysfs_show_state(struct device *dev,
2205                                      struct device_attribute *attr,
2206                                      char *buf)
2207 {
2208         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2209         static const char *const state_name[] = {
2210                 [NVME_CTRL_NEW]         = "new",
2211                 [NVME_CTRL_LIVE]        = "live",
2212                 [NVME_CTRL_RESETTING]   = "resetting",
2213                 [NVME_CTRL_RECONNECTING]= "reconnecting",
2214                 [NVME_CTRL_DELETING]    = "deleting",
2215                 [NVME_CTRL_DEAD]        = "dead",
2216         };
2217
2218         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2219             state_name[ctrl->state])
2220                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2221
2222         return sprintf(buf, "unknown state\n");
2223 }
2224
2225 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2226
2227 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2228                                          struct device_attribute *attr,
2229                                          char *buf)
2230 {
2231         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2232
2233         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subnqn);
2234 }
2235 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2236
2237 static ssize_t nvme_sysfs_show_address(struct device *dev,
2238                                          struct device_attribute *attr,
2239                                          char *buf)
2240 {
2241         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2242
2243         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2244 }
2245 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2246
2247 static struct attribute *nvme_dev_attrs[] = {
2248         &dev_attr_reset_controller.attr,
2249         &dev_attr_rescan_controller.attr,
2250         &dev_attr_model.attr,
2251         &dev_attr_serial.attr,
2252         &dev_attr_firmware_rev.attr,
2253         &dev_attr_cntlid.attr,
2254         &dev_attr_delete_controller.attr,
2255         &dev_attr_transport.attr,
2256         &dev_attr_subsysnqn.attr,
2257         &dev_attr_address.attr,
2258         &dev_attr_state.attr,
2259         NULL
2260 };
2261
2262 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2263                 struct attribute *a, int n)
2264 {
2265         struct device *dev = container_of(kobj, struct device, kobj);
2266         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2267
2268         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2269                 return 0;
2270         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2271                 return 0;
2272
2273         return a->mode;
2274 }
2275
2276 static struct attribute_group nvme_dev_attrs_group = {
2277         .attrs          = nvme_dev_attrs,
2278         .is_visible     = nvme_dev_attrs_are_visible,
2279 };
2280
2281 static const struct attribute_group *nvme_dev_attr_groups[] = {
2282         &nvme_dev_attrs_group,
2283         NULL,
2284 };
2285
2286 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2287 {
2288         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2289         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2290
2291         return nsa->ns_id - nsb->ns_id;
2292 }
2293
2294 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2295 {
2296         struct nvme_ns *ns, *ret = NULL;
2297
2298         mutex_lock(&ctrl->namespaces_mutex);
2299         list_for_each_entry(ns, &ctrl->namespaces, list) {
2300                 if (ns->ns_id == nsid) {
2301                         kref_get(&ns->kref);
2302                         ret = ns;
2303                         break;
2304                 }
2305                 if (ns->ns_id > nsid)
2306                         break;
2307         }
2308         mutex_unlock(&ctrl->namespaces_mutex);
2309         return ret;
2310 }
2311
2312 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2313 {
2314         struct streams_directive_params s;
2315         int ret;
2316
2317         if (!ctrl->nr_streams)
2318                 return 0;
2319
2320         ret = nvme_get_stream_params(ctrl, &s, ns->ns_id);
2321         if (ret)
2322                 return ret;
2323
2324         ns->sws = le32_to_cpu(s.sws);
2325         ns->sgs = le16_to_cpu(s.sgs);
2326
2327         if (ns->sws) {
2328                 unsigned int bs = 1 << ns->lba_shift;
2329
2330                 blk_queue_io_min(ns->queue, bs * ns->sws);
2331                 if (ns->sgs)
2332                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2333         }
2334
2335         return 0;
2336 }
2337
2338 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2339 {
2340         struct nvme_ns *ns;
2341         struct gendisk *disk;
2342         struct nvme_id_ns *id;
2343         char disk_name[DISK_NAME_LEN];
2344         int node = dev_to_node(ctrl->dev);
2345
2346         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2347         if (!ns)
2348                 return;
2349
2350         ns->instance = ida_simple_get(&ctrl->ns_ida, 1, 0, GFP_KERNEL);
2351         if (ns->instance < 0)
2352                 goto out_free_ns;
2353
2354         ns->queue = blk_mq_init_queue(ctrl->tagset);
2355         if (IS_ERR(ns->queue))
2356                 goto out_release_instance;
2357         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
2358         ns->queue->queuedata = ns;
2359         ns->ctrl = ctrl;
2360
2361         kref_init(&ns->kref);
2362         ns->ns_id = nsid;
2363         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2364
2365         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2366         nvme_set_queue_limits(ctrl, ns->queue);
2367         nvme_setup_streams_ns(ctrl, ns);
2368
2369         sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->instance);
2370
2371         id = nvme_identify_ns(ctrl, nsid);
2372         if (!id)
2373                 goto out_free_queue;
2374
2375         if (id->ncap == 0)
2376                 goto out_free_id;
2377
2378         nvme_report_ns_ids(ctrl, ns->ns_id, id, ns->eui, ns->nguid, &ns->uuid);
2379
2380         if (nvme_nvm_ns_supported(ns, id) &&
2381                                 nvme_nvm_register(ns, disk_name, node)) {
2382                 dev_warn(ctrl->device, "%s: LightNVM init failure\n", __func__);
2383                 goto out_free_id;
2384         }
2385
2386         disk = alloc_disk_node(0, node);
2387         if (!disk)
2388                 goto out_free_id;
2389
2390         disk->fops = &nvme_fops;
2391         disk->private_data = ns;
2392         disk->queue = ns->queue;
2393         disk->flags = GENHD_FL_EXT_DEVT;
2394         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
2395         ns->disk = disk;
2396
2397         __nvme_revalidate_disk(disk, id);
2398
2399         mutex_lock(&ctrl->namespaces_mutex);
2400         list_add_tail(&ns->list, &ctrl->namespaces);
2401         mutex_unlock(&ctrl->namespaces_mutex);
2402
2403         kref_get(&ctrl->kref);
2404
2405         kfree(id);
2406
2407         device_add_disk(ctrl->device, ns->disk);
2408         if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
2409                                         &nvme_ns_attr_group))
2410                 pr_warn("%s: failed to create sysfs group for identification\n",
2411                         ns->disk->disk_name);
2412         if (ns->ndev && nvme_nvm_register_sysfs(ns))
2413                 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
2414                         ns->disk->disk_name);
2415         return;
2416  out_free_id:
2417         kfree(id);
2418  out_free_queue:
2419         blk_cleanup_queue(ns->queue);
2420  out_release_instance:
2421         ida_simple_remove(&ctrl->ns_ida, ns->instance);
2422  out_free_ns:
2423         kfree(ns);
2424 }
2425
2426 static void nvme_ns_remove(struct nvme_ns *ns)
2427 {
2428         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
2429                 return;
2430
2431         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
2432                 if (blk_get_integrity(ns->disk))
2433                         blk_integrity_unregister(ns->disk);
2434                 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
2435                                         &nvme_ns_attr_group);
2436                 if (ns->ndev)
2437                         nvme_nvm_unregister_sysfs(ns);
2438                 del_gendisk(ns->disk);
2439                 blk_cleanup_queue(ns->queue);
2440         }
2441
2442         mutex_lock(&ns->ctrl->namespaces_mutex);
2443         list_del_init(&ns->list);
2444         mutex_unlock(&ns->ctrl->namespaces_mutex);
2445
2446         nvme_put_ns(ns);
2447 }
2448
2449 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2450 {
2451         struct nvme_ns *ns;
2452
2453         ns = nvme_find_get_ns(ctrl, nsid);
2454         if (ns) {
2455                 if (ns->disk && revalidate_disk(ns->disk))
2456                         nvme_ns_remove(ns);
2457                 nvme_put_ns(ns);
2458         } else
2459                 nvme_alloc_ns(ctrl, nsid);
2460 }
2461
2462 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
2463                                         unsigned nsid)
2464 {
2465         struct nvme_ns *ns, *next;
2466
2467         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
2468                 if (ns->ns_id > nsid)
2469                         nvme_ns_remove(ns);
2470         }
2471 }
2472
2473 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
2474 {
2475         struct nvme_ns *ns;
2476         __le32 *ns_list;
2477         unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
2478         int ret = 0;
2479
2480         ns_list = kzalloc(0x1000, GFP_KERNEL);
2481         if (!ns_list)
2482                 return -ENOMEM;
2483
2484         for (i = 0; i < num_lists; i++) {
2485                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
2486                 if (ret)
2487                         goto free;
2488
2489                 for (j = 0; j < min(nn, 1024U); j++) {
2490                         nsid = le32_to_cpu(ns_list[j]);
2491                         if (!nsid)
2492                                 goto out;
2493
2494                         nvme_validate_ns(ctrl, nsid);
2495
2496                         while (++prev < nsid) {
2497                                 ns = nvme_find_get_ns(ctrl, prev);
2498                                 if (ns) {
2499                                         nvme_ns_remove(ns);
2500                                         nvme_put_ns(ns);
2501                                 }
2502                         }
2503                 }
2504                 nn -= j;
2505         }
2506  out:
2507         nvme_remove_invalid_namespaces(ctrl, prev);
2508  free:
2509         kfree(ns_list);
2510         return ret;
2511 }
2512
2513 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
2514 {
2515         unsigned i;
2516
2517         for (i = 1; i <= nn; i++)
2518                 nvme_validate_ns(ctrl, i);
2519
2520         nvme_remove_invalid_namespaces(ctrl, nn);
2521 }
2522
2523 static void nvme_scan_work(struct work_struct *work)
2524 {
2525         struct nvme_ctrl *ctrl =
2526                 container_of(work, struct nvme_ctrl, scan_work);
2527         struct nvme_id_ctrl *id;
2528         unsigned nn;
2529
2530         if (ctrl->state != NVME_CTRL_LIVE)
2531                 return;
2532
2533         if (nvme_identify_ctrl(ctrl, &id))
2534                 return;
2535
2536         nn = le32_to_cpu(id->nn);
2537         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
2538             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
2539                 if (!nvme_scan_ns_list(ctrl, nn))
2540                         goto done;
2541         }
2542         nvme_scan_ns_sequential(ctrl, nn);
2543  done:
2544         mutex_lock(&ctrl->namespaces_mutex);
2545         list_sort(NULL, &ctrl->namespaces, ns_cmp);
2546         mutex_unlock(&ctrl->namespaces_mutex);
2547         kfree(id);
2548 }
2549
2550 void nvme_queue_scan(struct nvme_ctrl *ctrl)
2551 {
2552         /*
2553          * Do not queue new scan work when a controller is reset during
2554          * removal.
2555          */
2556         if (ctrl->state == NVME_CTRL_LIVE)
2557                 queue_work(nvme_wq, &ctrl->scan_work);
2558 }
2559 EXPORT_SYMBOL_GPL(nvme_queue_scan);
2560
2561 /*
2562  * This function iterates the namespace list unlocked to allow recovery from
2563  * controller failure. It is up to the caller to ensure the namespace list is
2564  * not modified by scan work while this function is executing.
2565  */
2566 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
2567 {
2568         struct nvme_ns *ns, *next;
2569
2570         /*
2571          * The dead states indicates the controller was not gracefully
2572          * disconnected. In that case, we won't be able to flush any data while
2573          * removing the namespaces' disks; fail all the queues now to avoid
2574          * potentially having to clean up the failed sync later.
2575          */
2576         if (ctrl->state == NVME_CTRL_DEAD)
2577                 nvme_kill_queues(ctrl);
2578
2579         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list)
2580                 nvme_ns_remove(ns);
2581 }
2582 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
2583
2584 static void nvme_async_event_work(struct work_struct *work)
2585 {
2586         struct nvme_ctrl *ctrl =
2587                 container_of(work, struct nvme_ctrl, async_event_work);
2588
2589         spin_lock_irq(&ctrl->lock);
2590         while (ctrl->event_limit > 0) {
2591                 int aer_idx = --ctrl->event_limit;
2592
2593                 spin_unlock_irq(&ctrl->lock);
2594                 ctrl->ops->submit_async_event(ctrl, aer_idx);
2595                 spin_lock_irq(&ctrl->lock);
2596         }
2597         spin_unlock_irq(&ctrl->lock);
2598 }
2599
2600 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
2601 {
2602
2603         u32 csts;
2604
2605         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
2606                 return false;
2607
2608         if (csts == ~0)
2609                 return false;
2610
2611         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
2612 }
2613
2614 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
2615 {
2616         struct nvme_command c = { };
2617         struct nvme_fw_slot_info_log *log;
2618
2619         log = kmalloc(sizeof(*log), GFP_KERNEL);
2620         if (!log)
2621                 return;
2622
2623         c.common.opcode = nvme_admin_get_log_page;
2624         c.common.nsid = cpu_to_le32(NVME_NSID_ALL);
2625         c.common.cdw10[0] = nvme_get_log_dw10(NVME_LOG_FW_SLOT, sizeof(*log));
2626
2627         if (!nvme_submit_sync_cmd(ctrl->admin_q, &c, log, sizeof(*log)))
2628                 dev_warn(ctrl->device,
2629                                 "Get FW SLOT INFO log error\n");
2630         kfree(log);
2631 }
2632
2633 static void nvme_fw_act_work(struct work_struct *work)
2634 {
2635         struct nvme_ctrl *ctrl = container_of(work,
2636                                 struct nvme_ctrl, fw_act_work);
2637         unsigned long fw_act_timeout;
2638
2639         if (ctrl->mtfa)
2640                 fw_act_timeout = jiffies +
2641                                 msecs_to_jiffies(ctrl->mtfa * 100);
2642         else
2643                 fw_act_timeout = jiffies +
2644                                 msecs_to_jiffies(admin_timeout * 1000);
2645
2646         nvme_stop_queues(ctrl);
2647         while (nvme_ctrl_pp_status(ctrl)) {
2648                 if (time_after(jiffies, fw_act_timeout)) {
2649                         dev_warn(ctrl->device,
2650                                 "Fw activation timeout, reset controller\n");
2651                         nvme_reset_ctrl(ctrl);
2652                         break;
2653                 }
2654                 msleep(100);
2655         }
2656
2657         if (ctrl->state != NVME_CTRL_LIVE)
2658                 return;
2659
2660         nvme_start_queues(ctrl);
2661         /* read FW slot informationi to clear the AER*/
2662         nvme_get_fw_slot_info(ctrl);
2663 }
2664
2665 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
2666                 union nvme_result *res)
2667 {
2668         u32 result = le32_to_cpu(res->u32);
2669         bool done = true;
2670
2671         switch (le16_to_cpu(status) >> 1) {
2672         case NVME_SC_SUCCESS:
2673                 done = false;
2674                 /*FALLTHRU*/
2675         case NVME_SC_ABORT_REQ:
2676                 ++ctrl->event_limit;
2677                 queue_work(nvme_wq, &ctrl->async_event_work);
2678                 break;
2679         default:
2680                 break;
2681         }
2682
2683         if (done)
2684                 return;
2685
2686         switch (result & 0xff07) {
2687         case NVME_AER_NOTICE_NS_CHANGED:
2688                 dev_info(ctrl->device, "rescanning\n");
2689                 nvme_queue_scan(ctrl);
2690                 break;
2691         case NVME_AER_NOTICE_FW_ACT_STARTING:
2692                 schedule_work(&ctrl->fw_act_work);
2693                 break;
2694         default:
2695                 dev_warn(ctrl->device, "async event result %08x\n", result);
2696         }
2697 }
2698 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
2699
2700 void nvme_queue_async_events(struct nvme_ctrl *ctrl)
2701 {
2702         ctrl->event_limit = NVME_NR_AERS;
2703         queue_work(nvme_wq, &ctrl->async_event_work);
2704 }
2705 EXPORT_SYMBOL_GPL(nvme_queue_async_events);
2706
2707 static DEFINE_IDA(nvme_instance_ida);
2708
2709 static int nvme_set_instance(struct nvme_ctrl *ctrl)
2710 {
2711         int instance, error;
2712
2713         do {
2714                 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2715                         return -ENODEV;
2716
2717                 spin_lock(&dev_list_lock);
2718                 error = ida_get_new(&nvme_instance_ida, &instance);
2719                 spin_unlock(&dev_list_lock);
2720         } while (error == -EAGAIN);
2721
2722         if (error)
2723                 return -ENODEV;
2724
2725         ctrl->instance = instance;
2726         return 0;
2727 }
2728
2729 static void nvme_release_instance(struct nvme_ctrl *ctrl)
2730 {
2731         spin_lock(&dev_list_lock);
2732         ida_remove(&nvme_instance_ida, ctrl->instance);
2733         spin_unlock(&dev_list_lock);
2734 }
2735
2736 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
2737 {
2738         nvme_stop_keep_alive(ctrl);
2739         flush_work(&ctrl->async_event_work);
2740         flush_work(&ctrl->scan_work);
2741         cancel_work_sync(&ctrl->fw_act_work);
2742 }
2743 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
2744
2745 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
2746 {
2747         if (ctrl->kato)
2748                 nvme_start_keep_alive(ctrl);
2749
2750         if (ctrl->queue_count > 1) {
2751                 nvme_queue_scan(ctrl);
2752                 nvme_queue_async_events(ctrl);
2753                 nvme_start_queues(ctrl);
2754         }
2755 }
2756 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
2757
2758 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
2759 {
2760         device_destroy(nvme_class, MKDEV(nvme_char_major, ctrl->instance));
2761
2762         spin_lock(&dev_list_lock);
2763         list_del(&ctrl->node);
2764         spin_unlock(&dev_list_lock);
2765 }
2766 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
2767
2768 static void nvme_free_ctrl(struct kref *kref)
2769 {
2770         struct nvme_ctrl *ctrl = container_of(kref, struct nvme_ctrl, kref);
2771
2772         put_device(ctrl->device);
2773         nvme_release_instance(ctrl);
2774         ida_destroy(&ctrl->ns_ida);
2775
2776         ctrl->ops->free_ctrl(ctrl);
2777 }
2778
2779 void nvme_put_ctrl(struct nvme_ctrl *ctrl)
2780 {
2781         kref_put(&ctrl->kref, nvme_free_ctrl);
2782 }
2783 EXPORT_SYMBOL_GPL(nvme_put_ctrl);
2784
2785 /*
2786  * Initialize a NVMe controller structures.  This needs to be called during
2787  * earliest initialization so that we have the initialized structured around
2788  * during probing.
2789  */
2790 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
2791                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
2792 {
2793         int ret;
2794
2795         ctrl->state = NVME_CTRL_NEW;
2796         spin_lock_init(&ctrl->lock);
2797         INIT_LIST_HEAD(&ctrl->namespaces);
2798         mutex_init(&ctrl->namespaces_mutex);
2799         kref_init(&ctrl->kref);
2800         ctrl->dev = dev;
2801         ctrl->ops = ops;
2802         ctrl->quirks = quirks;
2803         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
2804         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
2805         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
2806
2807         ret = nvme_set_instance(ctrl);
2808         if (ret)
2809                 goto out;
2810
2811         ctrl->device = device_create_with_groups(nvme_class, ctrl->dev,
2812                                 MKDEV(nvme_char_major, ctrl->instance),
2813                                 ctrl, nvme_dev_attr_groups,
2814                                 "nvme%d", ctrl->instance);
2815         if (IS_ERR(ctrl->device)) {
2816                 ret = PTR_ERR(ctrl->device);
2817                 goto out_release_instance;
2818         }
2819         get_device(ctrl->device);
2820         ida_init(&ctrl->ns_ida);
2821
2822         spin_lock(&dev_list_lock);
2823         list_add_tail(&ctrl->node, &nvme_ctrl_list);
2824         spin_unlock(&dev_list_lock);
2825
2826         /*
2827          * Initialize latency tolerance controls.  The sysfs files won't
2828          * be visible to userspace unless the device actually supports APST.
2829          */
2830         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
2831         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
2832                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
2833
2834         return 0;
2835 out_release_instance:
2836         nvme_release_instance(ctrl);
2837 out:
2838         return ret;
2839 }
2840 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
2841
2842 /**
2843  * nvme_kill_queues(): Ends all namespace queues
2844  * @ctrl: the dead controller that needs to end
2845  *
2846  * Call this function when the driver determines it is unable to get the
2847  * controller in a state capable of servicing IO.
2848  */
2849 void nvme_kill_queues(struct nvme_ctrl *ctrl)
2850 {
2851         struct nvme_ns *ns;
2852
2853         mutex_lock(&ctrl->namespaces_mutex);
2854
2855         /* Forcibly unquiesce queues to avoid blocking dispatch */
2856         if (ctrl->admin_q)
2857                 blk_mq_unquiesce_queue(ctrl->admin_q);
2858
2859         list_for_each_entry(ns, &ctrl->namespaces, list) {
2860                 /*
2861                  * Revalidating a dead namespace sets capacity to 0. This will
2862                  * end buffered writers dirtying pages that can't be synced.
2863                  */
2864                 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
2865                         continue;
2866                 revalidate_disk(ns->disk);
2867                 blk_set_queue_dying(ns->queue);
2868
2869                 /* Forcibly unquiesce queues to avoid blocking dispatch */
2870                 blk_mq_unquiesce_queue(ns->queue);
2871         }
2872         mutex_unlock(&ctrl->namespaces_mutex);
2873 }
2874 EXPORT_SYMBOL_GPL(nvme_kill_queues);
2875
2876 void nvme_unfreeze(struct nvme_ctrl *ctrl)
2877 {
2878         struct nvme_ns *ns;
2879
2880         mutex_lock(&ctrl->namespaces_mutex);
2881         list_for_each_entry(ns, &ctrl->namespaces, list)
2882                 blk_mq_unfreeze_queue(ns->queue);
2883         mutex_unlock(&ctrl->namespaces_mutex);
2884 }
2885 EXPORT_SYMBOL_GPL(nvme_unfreeze);
2886
2887 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
2888 {
2889         struct nvme_ns *ns;
2890
2891         mutex_lock(&ctrl->namespaces_mutex);
2892         list_for_each_entry(ns, &ctrl->namespaces, list) {
2893                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
2894                 if (timeout <= 0)
2895                         break;
2896         }
2897         mutex_unlock(&ctrl->namespaces_mutex);
2898 }
2899 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
2900
2901 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
2902 {
2903         struct nvme_ns *ns;
2904
2905         mutex_lock(&ctrl->namespaces_mutex);
2906         list_for_each_entry(ns, &ctrl->namespaces, list)
2907                 blk_mq_freeze_queue_wait(ns->queue);
2908         mutex_unlock(&ctrl->namespaces_mutex);
2909 }
2910 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
2911
2912 void nvme_start_freeze(struct nvme_ctrl *ctrl)
2913 {
2914         struct nvme_ns *ns;
2915
2916         mutex_lock(&ctrl->namespaces_mutex);
2917         list_for_each_entry(ns, &ctrl->namespaces, list)
2918                 blk_freeze_queue_start(ns->queue);
2919         mutex_unlock(&ctrl->namespaces_mutex);
2920 }
2921 EXPORT_SYMBOL_GPL(nvme_start_freeze);
2922
2923 void nvme_stop_queues(struct nvme_ctrl *ctrl)
2924 {
2925         struct nvme_ns *ns;
2926
2927         mutex_lock(&ctrl->namespaces_mutex);
2928         list_for_each_entry(ns, &ctrl->namespaces, list)
2929                 blk_mq_quiesce_queue(ns->queue);
2930         mutex_unlock(&ctrl->namespaces_mutex);
2931 }
2932 EXPORT_SYMBOL_GPL(nvme_stop_queues);
2933
2934 void nvme_start_queues(struct nvme_ctrl *ctrl)
2935 {
2936         struct nvme_ns *ns;
2937
2938         mutex_lock(&ctrl->namespaces_mutex);
2939         list_for_each_entry(ns, &ctrl->namespaces, list)
2940                 blk_mq_unquiesce_queue(ns->queue);
2941         mutex_unlock(&ctrl->namespaces_mutex);
2942 }
2943 EXPORT_SYMBOL_GPL(nvme_start_queues);
2944
2945 int __init nvme_core_init(void)
2946 {
2947         int result;
2948
2949         nvme_wq = alloc_workqueue("nvme-wq",
2950                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
2951         if (!nvme_wq)
2952                 return -ENOMEM;
2953
2954         result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
2955                                                         &nvme_dev_fops);
2956         if (result < 0)
2957                 goto destroy_wq;
2958         else if (result > 0)
2959                 nvme_char_major = result;
2960
2961         nvme_class = class_create(THIS_MODULE, "nvme");
2962         if (IS_ERR(nvme_class)) {
2963                 result = PTR_ERR(nvme_class);
2964                 goto unregister_chrdev;
2965         }
2966
2967         return 0;
2968
2969 unregister_chrdev:
2970         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2971 destroy_wq:
2972         destroy_workqueue(nvme_wq);
2973         return result;
2974 }
2975
2976 void nvme_core_exit(void)
2977 {
2978         class_destroy(nvme_class);
2979         __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
2980         destroy_workqueue(nvme_wq);
2981 }
2982
2983 MODULE_LICENSE("GPL");
2984 MODULE_VERSION("1.0");
2985 module_init(nvme_core_init);
2986 module_exit(nvme_core_exit);