]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/fc.c
nvme: use a single NVME_AQ_DEPTH and relax it to 32
[linux.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH  \
39         (NVME_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42 enum nvme_fc_queue_flags {
43         NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45
46 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
47
48 struct nvme_fc_queue {
49         struct nvme_fc_ctrl     *ctrl;
50         struct device           *dev;
51         struct blk_mq_hw_ctx    *hctx;
52         void                    *lldd_handle;
53         int                     queue_size;
54         size_t                  cmnd_capsule_len;
55         u32                     qnum;
56         u32                     rqcnt;
57         u32                     seqno;
58
59         u64                     connection_id;
60         atomic_t                csn;
61
62         unsigned long           flags;
63 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
64
65 enum nvme_fcop_flags {
66         FCOP_FLAGS_TERMIO       = (1 << 0),
67         FCOP_FLAGS_RELEASED     = (1 << 1),
68         FCOP_FLAGS_COMPLETE     = (1 << 2),
69         FCOP_FLAGS_AEN          = (1 << 3),
70 };
71
72 struct nvmefc_ls_req_op {
73         struct nvmefc_ls_req    ls_req;
74
75         struct nvme_fc_rport    *rport;
76         struct nvme_fc_queue    *queue;
77         struct request          *rq;
78         u32                     flags;
79
80         int                     ls_error;
81         struct completion       ls_done;
82         struct list_head        lsreq_list;     /* rport->ls_req_list */
83         bool                    req_queued;
84 };
85
86 enum nvme_fcpop_state {
87         FCPOP_STATE_UNINIT      = 0,
88         FCPOP_STATE_IDLE        = 1,
89         FCPOP_STATE_ACTIVE      = 2,
90         FCPOP_STATE_ABORTED     = 3,
91         FCPOP_STATE_COMPLETE    = 4,
92 };
93
94 struct nvme_fc_fcp_op {
95         struct nvme_request     nreq;           /*
96                                                  * nvme/host/core.c
97                                                  * requires this to be
98                                                  * the 1st element in the
99                                                  * private structure
100                                                  * associated with the
101                                                  * request.
102                                                  */
103         struct nvmefc_fcp_req   fcp_req;
104
105         struct nvme_fc_ctrl     *ctrl;
106         struct nvme_fc_queue    *queue;
107         struct request          *rq;
108
109         atomic_t                state;
110         u32                     flags;
111         u32                     rqno;
112         u32                     nents;
113
114         struct nvme_fc_cmd_iu   cmd_iu;
115         struct nvme_fc_ersp_iu  rsp_iu;
116 };
117
118 struct nvme_fc_lport {
119         struct nvme_fc_local_port       localport;
120
121         struct ida                      endp_cnt;
122         struct list_head                port_list;      /* nvme_fc_port_list */
123         struct list_head                endp_list;
124         struct device                   *dev;   /* physical device for dma */
125         struct nvme_fc_port_template    *ops;
126         struct kref                     ref;
127 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
128
129 struct nvme_fc_rport {
130         struct nvme_fc_remote_port      remoteport;
131
132         struct list_head                endp_list; /* for lport->endp_list */
133         struct list_head                ctrl_list;
134         struct list_head                ls_req_list;
135         struct device                   *dev;   /* physical device for dma */
136         struct nvme_fc_lport            *lport;
137         spinlock_t                      lock;
138         struct kref                     ref;
139 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
140
141 enum nvme_fcctrl_flags {
142         FCCTRL_TERMIO           = (1 << 0),
143 };
144
145 struct nvme_fc_ctrl {
146         spinlock_t              lock;
147         struct nvme_fc_queue    *queues;
148         struct device           *dev;
149         struct nvme_fc_lport    *lport;
150         struct nvme_fc_rport    *rport;
151         u32                     queue_count;
152         u32                     cnum;
153
154         u64                     association_id;
155
156         u64                     cap;
157
158         struct list_head        ctrl_list;      /* rport->ctrl_list */
159
160         struct blk_mq_tag_set   admin_tag_set;
161         struct blk_mq_tag_set   tag_set;
162
163         struct work_struct      delete_work;
164         struct delayed_work     connect_work;
165
166         struct kref             ref;
167         u32                     flags;
168         u32                     iocnt;
169
170         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
171
172         struct nvme_ctrl        ctrl;
173 };
174
175 static inline struct nvme_fc_ctrl *
176 to_fc_ctrl(struct nvme_ctrl *ctrl)
177 {
178         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
179 }
180
181 static inline struct nvme_fc_lport *
182 localport_to_lport(struct nvme_fc_local_port *portptr)
183 {
184         return container_of(portptr, struct nvme_fc_lport, localport);
185 }
186
187 static inline struct nvme_fc_rport *
188 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
189 {
190         return container_of(portptr, struct nvme_fc_rport, remoteport);
191 }
192
193 static inline struct nvmefc_ls_req_op *
194 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
195 {
196         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
197 }
198
199 static inline struct nvme_fc_fcp_op *
200 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
201 {
202         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
203 }
204
205
206
207 /* *************************** Globals **************************** */
208
209
210 static DEFINE_SPINLOCK(nvme_fc_lock);
211
212 static LIST_HEAD(nvme_fc_lport_list);
213 static DEFINE_IDA(nvme_fc_local_port_cnt);
214 static DEFINE_IDA(nvme_fc_ctrl_cnt);
215
216
217
218
219 /* *********************** FC-NVME Port Management ************************ */
220
221 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
222 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
223                         struct nvme_fc_queue *, unsigned int);
224
225
226 /**
227  * nvme_fc_register_localport - transport entry point called by an
228  *                              LLDD to register the existence of a NVME
229  *                              host FC port.
230  * @pinfo:     pointer to information about the port to be registered
231  * @template:  LLDD entrypoints and operational parameters for the port
232  * @dev:       physical hardware device node port corresponds to. Will be
233  *             used for DMA mappings
234  * @lport_p:   pointer to a local port pointer. Upon success, the routine
235  *             will allocate a nvme_fc_local_port structure and place its
236  *             address in the local port pointer. Upon failure, local port
237  *             pointer will be set to 0.
238  *
239  * Returns:
240  * a completion status. Must be 0 upon success; a negative errno
241  * (ex: -ENXIO) upon failure.
242  */
243 int
244 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
245                         struct nvme_fc_port_template *template,
246                         struct device *dev,
247                         struct nvme_fc_local_port **portptr)
248 {
249         struct nvme_fc_lport *newrec;
250         unsigned long flags;
251         int ret, idx;
252
253         if (!template->localport_delete || !template->remoteport_delete ||
254             !template->ls_req || !template->fcp_io ||
255             !template->ls_abort || !template->fcp_abort ||
256             !template->max_hw_queues || !template->max_sgl_segments ||
257             !template->max_dif_sgl_segments || !template->dma_boundary) {
258                 ret = -EINVAL;
259                 goto out_reghost_failed;
260         }
261
262         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
263                          GFP_KERNEL);
264         if (!newrec) {
265                 ret = -ENOMEM;
266                 goto out_reghost_failed;
267         }
268
269         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
270         if (idx < 0) {
271                 ret = -ENOSPC;
272                 goto out_fail_kfree;
273         }
274
275         if (!get_device(dev) && dev) {
276                 ret = -ENODEV;
277                 goto out_ida_put;
278         }
279
280         INIT_LIST_HEAD(&newrec->port_list);
281         INIT_LIST_HEAD(&newrec->endp_list);
282         kref_init(&newrec->ref);
283         newrec->ops = template;
284         newrec->dev = dev;
285         ida_init(&newrec->endp_cnt);
286         newrec->localport.private = &newrec[1];
287         newrec->localport.node_name = pinfo->node_name;
288         newrec->localport.port_name = pinfo->port_name;
289         newrec->localport.port_role = pinfo->port_role;
290         newrec->localport.port_id = pinfo->port_id;
291         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
292         newrec->localport.port_num = idx;
293
294         spin_lock_irqsave(&nvme_fc_lock, flags);
295         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
296         spin_unlock_irqrestore(&nvme_fc_lock, flags);
297
298         if (dev)
299                 dma_set_seg_boundary(dev, template->dma_boundary);
300
301         *portptr = &newrec->localport;
302         return 0;
303
304 out_ida_put:
305         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
306 out_fail_kfree:
307         kfree(newrec);
308 out_reghost_failed:
309         *portptr = NULL;
310
311         return ret;
312 }
313 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
314
315 static void
316 nvme_fc_free_lport(struct kref *ref)
317 {
318         struct nvme_fc_lport *lport =
319                 container_of(ref, struct nvme_fc_lport, ref);
320         unsigned long flags;
321
322         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
323         WARN_ON(!list_empty(&lport->endp_list));
324
325         /* remove from transport list */
326         spin_lock_irqsave(&nvme_fc_lock, flags);
327         list_del(&lport->port_list);
328         spin_unlock_irqrestore(&nvme_fc_lock, flags);
329
330         /* let the LLDD know we've finished tearing it down */
331         lport->ops->localport_delete(&lport->localport);
332
333         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
334         ida_destroy(&lport->endp_cnt);
335
336         put_device(lport->dev);
337
338         kfree(lport);
339 }
340
341 static void
342 nvme_fc_lport_put(struct nvme_fc_lport *lport)
343 {
344         kref_put(&lport->ref, nvme_fc_free_lport);
345 }
346
347 static int
348 nvme_fc_lport_get(struct nvme_fc_lport *lport)
349 {
350         return kref_get_unless_zero(&lport->ref);
351 }
352
353 /**
354  * nvme_fc_unregister_localport - transport entry point called by an
355  *                              LLDD to deregister/remove a previously
356  *                              registered a NVME host FC port.
357  * @localport: pointer to the (registered) local port that is to be
358  *             deregistered.
359  *
360  * Returns:
361  * a completion status. Must be 0 upon success; a negative errno
362  * (ex: -ENXIO) upon failure.
363  */
364 int
365 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
366 {
367         struct nvme_fc_lport *lport = localport_to_lport(portptr);
368         unsigned long flags;
369
370         if (!portptr)
371                 return -EINVAL;
372
373         spin_lock_irqsave(&nvme_fc_lock, flags);
374
375         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
376                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
377                 return -EINVAL;
378         }
379         portptr->port_state = FC_OBJSTATE_DELETED;
380
381         spin_unlock_irqrestore(&nvme_fc_lock, flags);
382
383         nvme_fc_lport_put(lport);
384
385         return 0;
386 }
387 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
388
389 /**
390  * nvme_fc_register_remoteport - transport entry point called by an
391  *                              LLDD to register the existence of a NVME
392  *                              subsystem FC port on its fabric.
393  * @localport: pointer to the (registered) local port that the remote
394  *             subsystem port is connected to.
395  * @pinfo:     pointer to information about the port to be registered
396  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
397  *             will allocate a nvme_fc_remote_port structure and place its
398  *             address in the remote port pointer. Upon failure, remote port
399  *             pointer will be set to 0.
400  *
401  * Returns:
402  * a completion status. Must be 0 upon success; a negative errno
403  * (ex: -ENXIO) upon failure.
404  */
405 int
406 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
407                                 struct nvme_fc_port_info *pinfo,
408                                 struct nvme_fc_remote_port **portptr)
409 {
410         struct nvme_fc_lport *lport = localport_to_lport(localport);
411         struct nvme_fc_rport *newrec;
412         unsigned long flags;
413         int ret, idx;
414
415         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
416                          GFP_KERNEL);
417         if (!newrec) {
418                 ret = -ENOMEM;
419                 goto out_reghost_failed;
420         }
421
422         if (!nvme_fc_lport_get(lport)) {
423                 ret = -ESHUTDOWN;
424                 goto out_kfree_rport;
425         }
426
427         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
428         if (idx < 0) {
429                 ret = -ENOSPC;
430                 goto out_lport_put;
431         }
432
433         INIT_LIST_HEAD(&newrec->endp_list);
434         INIT_LIST_HEAD(&newrec->ctrl_list);
435         INIT_LIST_HEAD(&newrec->ls_req_list);
436         kref_init(&newrec->ref);
437         spin_lock_init(&newrec->lock);
438         newrec->remoteport.localport = &lport->localport;
439         newrec->dev = lport->dev;
440         newrec->lport = lport;
441         newrec->remoteport.private = &newrec[1];
442         newrec->remoteport.port_role = pinfo->port_role;
443         newrec->remoteport.node_name = pinfo->node_name;
444         newrec->remoteport.port_name = pinfo->port_name;
445         newrec->remoteport.port_id = pinfo->port_id;
446         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
447         newrec->remoteport.port_num = idx;
448
449         spin_lock_irqsave(&nvme_fc_lock, flags);
450         list_add_tail(&newrec->endp_list, &lport->endp_list);
451         spin_unlock_irqrestore(&nvme_fc_lock, flags);
452
453         *portptr = &newrec->remoteport;
454         return 0;
455
456 out_lport_put:
457         nvme_fc_lport_put(lport);
458 out_kfree_rport:
459         kfree(newrec);
460 out_reghost_failed:
461         *portptr = NULL;
462         return ret;
463 }
464 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
465
466 static void
467 nvme_fc_free_rport(struct kref *ref)
468 {
469         struct nvme_fc_rport *rport =
470                 container_of(ref, struct nvme_fc_rport, ref);
471         struct nvme_fc_lport *lport =
472                         localport_to_lport(rport->remoteport.localport);
473         unsigned long flags;
474
475         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
476         WARN_ON(!list_empty(&rport->ctrl_list));
477
478         /* remove from lport list */
479         spin_lock_irqsave(&nvme_fc_lock, flags);
480         list_del(&rport->endp_list);
481         spin_unlock_irqrestore(&nvme_fc_lock, flags);
482
483         /* let the LLDD know we've finished tearing it down */
484         lport->ops->remoteport_delete(&rport->remoteport);
485
486         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
487
488         kfree(rport);
489
490         nvme_fc_lport_put(lport);
491 }
492
493 static void
494 nvme_fc_rport_put(struct nvme_fc_rport *rport)
495 {
496         kref_put(&rport->ref, nvme_fc_free_rport);
497 }
498
499 static int
500 nvme_fc_rport_get(struct nvme_fc_rport *rport)
501 {
502         return kref_get_unless_zero(&rport->ref);
503 }
504
505 static int
506 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
507 {
508         struct nvmefc_ls_req_op *lsop;
509         unsigned long flags;
510
511 restart:
512         spin_lock_irqsave(&rport->lock, flags);
513
514         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
515                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
516                         lsop->flags |= FCOP_FLAGS_TERMIO;
517                         spin_unlock_irqrestore(&rport->lock, flags);
518                         rport->lport->ops->ls_abort(&rport->lport->localport,
519                                                 &rport->remoteport,
520                                                 &lsop->ls_req);
521                         goto restart;
522                 }
523         }
524         spin_unlock_irqrestore(&rport->lock, flags);
525
526         return 0;
527 }
528
529 /**
530  * nvme_fc_unregister_remoteport - transport entry point called by an
531  *                              LLDD to deregister/remove a previously
532  *                              registered a NVME subsystem FC port.
533  * @remoteport: pointer to the (registered) remote port that is to be
534  *              deregistered.
535  *
536  * Returns:
537  * a completion status. Must be 0 upon success; a negative errno
538  * (ex: -ENXIO) upon failure.
539  */
540 int
541 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
542 {
543         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
544         struct nvme_fc_ctrl *ctrl;
545         unsigned long flags;
546
547         if (!portptr)
548                 return -EINVAL;
549
550         spin_lock_irqsave(&rport->lock, flags);
551
552         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
553                 spin_unlock_irqrestore(&rport->lock, flags);
554                 return -EINVAL;
555         }
556         portptr->port_state = FC_OBJSTATE_DELETED;
557
558         /* tear down all associations to the remote port */
559         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
560                 __nvme_fc_del_ctrl(ctrl);
561
562         spin_unlock_irqrestore(&rport->lock, flags);
563
564         nvme_fc_abort_lsops(rport);
565
566         nvme_fc_rport_put(rport);
567         return 0;
568 }
569 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
570
571
572 /* *********************** FC-NVME DMA Handling **************************** */
573
574 /*
575  * The fcloop device passes in a NULL device pointer. Real LLD's will
576  * pass in a valid device pointer. If NULL is passed to the dma mapping
577  * routines, depending on the platform, it may or may not succeed, and
578  * may crash.
579  *
580  * As such:
581  * Wrapper all the dma routines and check the dev pointer.
582  *
583  * If simple mappings (return just a dma address, we'll noop them,
584  * returning a dma address of 0.
585  *
586  * On more complex mappings (dma_map_sg), a pseudo routine fills
587  * in the scatter list, setting all dma addresses to 0.
588  */
589
590 static inline dma_addr_t
591 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
592                 enum dma_data_direction dir)
593 {
594         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
595 }
596
597 static inline int
598 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
599 {
600         return dev ? dma_mapping_error(dev, dma_addr) : 0;
601 }
602
603 static inline void
604 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
605         enum dma_data_direction dir)
606 {
607         if (dev)
608                 dma_unmap_single(dev, addr, size, dir);
609 }
610
611 static inline void
612 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
613                 enum dma_data_direction dir)
614 {
615         if (dev)
616                 dma_sync_single_for_cpu(dev, addr, size, dir);
617 }
618
619 static inline void
620 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
621                 enum dma_data_direction dir)
622 {
623         if (dev)
624                 dma_sync_single_for_device(dev, addr, size, dir);
625 }
626
627 /* pseudo dma_map_sg call */
628 static int
629 fc_map_sg(struct scatterlist *sg, int nents)
630 {
631         struct scatterlist *s;
632         int i;
633
634         WARN_ON(nents == 0 || sg[0].length == 0);
635
636         for_each_sg(sg, s, nents, i) {
637                 s->dma_address = 0L;
638 #ifdef CONFIG_NEED_SG_DMA_LENGTH
639                 s->dma_length = s->length;
640 #endif
641         }
642         return nents;
643 }
644
645 static inline int
646 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
647                 enum dma_data_direction dir)
648 {
649         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
650 }
651
652 static inline void
653 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
654                 enum dma_data_direction dir)
655 {
656         if (dev)
657                 dma_unmap_sg(dev, sg, nents, dir);
658 }
659
660
661 /* *********************** FC-NVME LS Handling **************************** */
662
663 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
664 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
665
666
667 static void
668 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
669 {
670         struct nvme_fc_rport *rport = lsop->rport;
671         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
672         unsigned long flags;
673
674         spin_lock_irqsave(&rport->lock, flags);
675
676         if (!lsop->req_queued) {
677                 spin_unlock_irqrestore(&rport->lock, flags);
678                 return;
679         }
680
681         list_del(&lsop->lsreq_list);
682
683         lsop->req_queued = false;
684
685         spin_unlock_irqrestore(&rport->lock, flags);
686
687         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
688                                   (lsreq->rqstlen + lsreq->rsplen),
689                                   DMA_BIDIRECTIONAL);
690
691         nvme_fc_rport_put(rport);
692 }
693
694 static int
695 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
696                 struct nvmefc_ls_req_op *lsop,
697                 void (*done)(struct nvmefc_ls_req *req, int status))
698 {
699         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
700         unsigned long flags;
701         int ret = 0;
702
703         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
704                 return -ECONNREFUSED;
705
706         if (!nvme_fc_rport_get(rport))
707                 return -ESHUTDOWN;
708
709         lsreq->done = done;
710         lsop->rport = rport;
711         lsop->req_queued = false;
712         INIT_LIST_HEAD(&lsop->lsreq_list);
713         init_completion(&lsop->ls_done);
714
715         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
716                                   lsreq->rqstlen + lsreq->rsplen,
717                                   DMA_BIDIRECTIONAL);
718         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
719                 ret = -EFAULT;
720                 goto out_putrport;
721         }
722         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
723
724         spin_lock_irqsave(&rport->lock, flags);
725
726         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
727
728         lsop->req_queued = true;
729
730         spin_unlock_irqrestore(&rport->lock, flags);
731
732         ret = rport->lport->ops->ls_req(&rport->lport->localport,
733                                         &rport->remoteport, lsreq);
734         if (ret)
735                 goto out_unlink;
736
737         return 0;
738
739 out_unlink:
740         lsop->ls_error = ret;
741         spin_lock_irqsave(&rport->lock, flags);
742         lsop->req_queued = false;
743         list_del(&lsop->lsreq_list);
744         spin_unlock_irqrestore(&rport->lock, flags);
745         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
746                                   (lsreq->rqstlen + lsreq->rsplen),
747                                   DMA_BIDIRECTIONAL);
748 out_putrport:
749         nvme_fc_rport_put(rport);
750
751         return ret;
752 }
753
754 static void
755 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
756 {
757         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
758
759         lsop->ls_error = status;
760         complete(&lsop->ls_done);
761 }
762
763 static int
764 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
765 {
766         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
767         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
768         int ret;
769
770         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
771
772         if (!ret) {
773                 /*
774                  * No timeout/not interruptible as we need the struct
775                  * to exist until the lldd calls us back. Thus mandate
776                  * wait until driver calls back. lldd responsible for
777                  * the timeout action
778                  */
779                 wait_for_completion(&lsop->ls_done);
780
781                 __nvme_fc_finish_ls_req(lsop);
782
783                 ret = lsop->ls_error;
784         }
785
786         if (ret)
787                 return ret;
788
789         /* ACC or RJT payload ? */
790         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
791                 return -ENXIO;
792
793         return 0;
794 }
795
796 static int
797 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
798                 struct nvmefc_ls_req_op *lsop,
799                 void (*done)(struct nvmefc_ls_req *req, int status))
800 {
801         /* don't wait for completion */
802
803         return __nvme_fc_send_ls_req(rport, lsop, done);
804 }
805
806 /* Validation Error indexes into the string table below */
807 enum {
808         VERR_NO_ERROR           = 0,
809         VERR_LSACC              = 1,
810         VERR_LSDESC_RQST        = 2,
811         VERR_LSDESC_RQST_LEN    = 3,
812         VERR_ASSOC_ID           = 4,
813         VERR_ASSOC_ID_LEN       = 5,
814         VERR_CONN_ID            = 6,
815         VERR_CONN_ID_LEN        = 7,
816         VERR_CR_ASSOC           = 8,
817         VERR_CR_ASSOC_ACC_LEN   = 9,
818         VERR_CR_CONN            = 10,
819         VERR_CR_CONN_ACC_LEN    = 11,
820         VERR_DISCONN            = 12,
821         VERR_DISCONN_ACC_LEN    = 13,
822 };
823
824 static char *validation_errors[] = {
825         "OK",
826         "Not LS_ACC",
827         "Not LSDESC_RQST",
828         "Bad LSDESC_RQST Length",
829         "Not Association ID",
830         "Bad Association ID Length",
831         "Not Connection ID",
832         "Bad Connection ID Length",
833         "Not CR_ASSOC Rqst",
834         "Bad CR_ASSOC ACC Length",
835         "Not CR_CONN Rqst",
836         "Bad CR_CONN ACC Length",
837         "Not Disconnect Rqst",
838         "Bad Disconnect ACC Length",
839 };
840
841 static int
842 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
843         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
844 {
845         struct nvmefc_ls_req_op *lsop;
846         struct nvmefc_ls_req *lsreq;
847         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
848         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
849         int ret, fcret = 0;
850
851         lsop = kzalloc((sizeof(*lsop) +
852                          ctrl->lport->ops->lsrqst_priv_sz +
853                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
854         if (!lsop) {
855                 ret = -ENOMEM;
856                 goto out_no_memory;
857         }
858         lsreq = &lsop->ls_req;
859
860         lsreq->private = (void *)&lsop[1];
861         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
862                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
863         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
864
865         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
866         assoc_rqst->desc_list_len =
867                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
868
869         assoc_rqst->assoc_cmd.desc_tag =
870                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
871         assoc_rqst->assoc_cmd.desc_len =
872                         fcnvme_lsdesc_len(
873                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
874
875         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
876         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
877         /* Linux supports only Dynamic controllers */
878         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
879         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
880         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
881                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
882         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
883                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
884
885         lsop->queue = queue;
886         lsreq->rqstaddr = assoc_rqst;
887         lsreq->rqstlen = sizeof(*assoc_rqst);
888         lsreq->rspaddr = assoc_acc;
889         lsreq->rsplen = sizeof(*assoc_acc);
890         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
891
892         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
893         if (ret)
894                 goto out_free_buffer;
895
896         /* process connect LS completion */
897
898         /* validate the ACC response */
899         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
900                 fcret = VERR_LSACC;
901         else if (assoc_acc->hdr.desc_list_len !=
902                         fcnvme_lsdesc_len(
903                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
904                 fcret = VERR_CR_ASSOC_ACC_LEN;
905         else if (assoc_acc->hdr.rqst.desc_tag !=
906                         cpu_to_be32(FCNVME_LSDESC_RQST))
907                 fcret = VERR_LSDESC_RQST;
908         else if (assoc_acc->hdr.rqst.desc_len !=
909                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
910                 fcret = VERR_LSDESC_RQST_LEN;
911         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
912                 fcret = VERR_CR_ASSOC;
913         else if (assoc_acc->associd.desc_tag !=
914                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
915                 fcret = VERR_ASSOC_ID;
916         else if (assoc_acc->associd.desc_len !=
917                         fcnvme_lsdesc_len(
918                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
919                 fcret = VERR_ASSOC_ID_LEN;
920         else if (assoc_acc->connectid.desc_tag !=
921                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
922                 fcret = VERR_CONN_ID;
923         else if (assoc_acc->connectid.desc_len !=
924                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
925                 fcret = VERR_CONN_ID_LEN;
926
927         if (fcret) {
928                 ret = -EBADF;
929                 dev_err(ctrl->dev,
930                         "q %d connect failed: %s\n",
931                         queue->qnum, validation_errors[fcret]);
932         } else {
933                 ctrl->association_id =
934                         be64_to_cpu(assoc_acc->associd.association_id);
935                 queue->connection_id =
936                         be64_to_cpu(assoc_acc->connectid.connection_id);
937                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
938         }
939
940 out_free_buffer:
941         kfree(lsop);
942 out_no_memory:
943         if (ret)
944                 dev_err(ctrl->dev,
945                         "queue %d connect admin queue failed (%d).\n",
946                         queue->qnum, ret);
947         return ret;
948 }
949
950 static int
951 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
952                         u16 qsize, u16 ersp_ratio)
953 {
954         struct nvmefc_ls_req_op *lsop;
955         struct nvmefc_ls_req *lsreq;
956         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
957         struct fcnvme_ls_cr_conn_acc *conn_acc;
958         int ret, fcret = 0;
959
960         lsop = kzalloc((sizeof(*lsop) +
961                          ctrl->lport->ops->lsrqst_priv_sz +
962                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
963         if (!lsop) {
964                 ret = -ENOMEM;
965                 goto out_no_memory;
966         }
967         lsreq = &lsop->ls_req;
968
969         lsreq->private = (void *)&lsop[1];
970         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
971                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
972         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
973
974         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
975         conn_rqst->desc_list_len = cpu_to_be32(
976                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
977                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
978
979         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
980         conn_rqst->associd.desc_len =
981                         fcnvme_lsdesc_len(
982                                 sizeof(struct fcnvme_lsdesc_assoc_id));
983         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
984         conn_rqst->connect_cmd.desc_tag =
985                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
986         conn_rqst->connect_cmd.desc_len =
987                         fcnvme_lsdesc_len(
988                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
989         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
990         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
991         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
992
993         lsop->queue = queue;
994         lsreq->rqstaddr = conn_rqst;
995         lsreq->rqstlen = sizeof(*conn_rqst);
996         lsreq->rspaddr = conn_acc;
997         lsreq->rsplen = sizeof(*conn_acc);
998         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
999
1000         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1001         if (ret)
1002                 goto out_free_buffer;
1003
1004         /* process connect LS completion */
1005
1006         /* validate the ACC response */
1007         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1008                 fcret = VERR_LSACC;
1009         else if (conn_acc->hdr.desc_list_len !=
1010                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1011                 fcret = VERR_CR_CONN_ACC_LEN;
1012         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1013                 fcret = VERR_LSDESC_RQST;
1014         else if (conn_acc->hdr.rqst.desc_len !=
1015                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1016                 fcret = VERR_LSDESC_RQST_LEN;
1017         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1018                 fcret = VERR_CR_CONN;
1019         else if (conn_acc->connectid.desc_tag !=
1020                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1021                 fcret = VERR_CONN_ID;
1022         else if (conn_acc->connectid.desc_len !=
1023                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1024                 fcret = VERR_CONN_ID_LEN;
1025
1026         if (fcret) {
1027                 ret = -EBADF;
1028                 dev_err(ctrl->dev,
1029                         "q %d connect failed: %s\n",
1030                         queue->qnum, validation_errors[fcret]);
1031         } else {
1032                 queue->connection_id =
1033                         be64_to_cpu(conn_acc->connectid.connection_id);
1034                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1035         }
1036
1037 out_free_buffer:
1038         kfree(lsop);
1039 out_no_memory:
1040         if (ret)
1041                 dev_err(ctrl->dev,
1042                         "queue %d connect command failed (%d).\n",
1043                         queue->qnum, ret);
1044         return ret;
1045 }
1046
1047 static void
1048 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1049 {
1050         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1051
1052         __nvme_fc_finish_ls_req(lsop);
1053
1054         /* fc-nvme iniator doesn't care about success or failure of cmd */
1055
1056         kfree(lsop);
1057 }
1058
1059 /*
1060  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1061  * the FC-NVME Association.  Terminating the association also
1062  * terminates the FC-NVME connections (per queue, both admin and io
1063  * queues) that are part of the association. E.g. things are torn
1064  * down, and the related FC-NVME Association ID and Connection IDs
1065  * become invalid.
1066  *
1067  * The behavior of the fc-nvme initiator is such that it's
1068  * understanding of the association and connections will implicitly
1069  * be torn down. The action is implicit as it may be due to a loss of
1070  * connectivity with the fc-nvme target, so you may never get a
1071  * response even if you tried.  As such, the action of this routine
1072  * is to asynchronously send the LS, ignore any results of the LS, and
1073  * continue on with terminating the association. If the fc-nvme target
1074  * is present and receives the LS, it too can tear down.
1075  */
1076 static void
1077 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1078 {
1079         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1080         struct fcnvme_ls_disconnect_acc *discon_acc;
1081         struct nvmefc_ls_req_op *lsop;
1082         struct nvmefc_ls_req *lsreq;
1083         int ret;
1084
1085         lsop = kzalloc((sizeof(*lsop) +
1086                          ctrl->lport->ops->lsrqst_priv_sz +
1087                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1088                         GFP_KERNEL);
1089         if (!lsop)
1090                 /* couldn't sent it... too bad */
1091                 return;
1092
1093         lsreq = &lsop->ls_req;
1094
1095         lsreq->private = (void *)&lsop[1];
1096         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1097                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1098         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1099
1100         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1101         discon_rqst->desc_list_len = cpu_to_be32(
1102                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1103                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1104
1105         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1106         discon_rqst->associd.desc_len =
1107                         fcnvme_lsdesc_len(
1108                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1109
1110         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1111
1112         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1113                                                 FCNVME_LSDESC_DISCONN_CMD);
1114         discon_rqst->discon_cmd.desc_len =
1115                         fcnvme_lsdesc_len(
1116                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1117         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1118         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1119
1120         lsreq->rqstaddr = discon_rqst;
1121         lsreq->rqstlen = sizeof(*discon_rqst);
1122         lsreq->rspaddr = discon_acc;
1123         lsreq->rsplen = sizeof(*discon_acc);
1124         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1125
1126         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1127                                 nvme_fc_disconnect_assoc_done);
1128         if (ret)
1129                 kfree(lsop);
1130
1131         /* only meaningful part to terminating the association */
1132         ctrl->association_id = 0;
1133 }
1134
1135
1136 /* *********************** NVME Ctrl Routines **************************** */
1137
1138 static void __nvme_fc_final_op_cleanup(struct request *rq);
1139 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1140
1141 static int
1142 nvme_fc_reinit_request(void *data, struct request *rq)
1143 {
1144         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1145         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1146
1147         memset(cmdiu, 0, sizeof(*cmdiu));
1148         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1149         cmdiu->fc_id = NVME_CMD_FC_ID;
1150         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1151         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1152
1153         return 0;
1154 }
1155
1156 static void
1157 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1158                 struct nvme_fc_fcp_op *op)
1159 {
1160         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1161                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1162         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1163                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1164
1165         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1166 }
1167
1168 static void
1169 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1170                 unsigned int hctx_idx)
1171 {
1172         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1173
1174         return __nvme_fc_exit_request(set->driver_data, op);
1175 }
1176
1177 static int
1178 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1179 {
1180         int state;
1181
1182         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1183         if (state != FCPOP_STATE_ACTIVE) {
1184                 atomic_set(&op->state, state);
1185                 return -ECANCELED;
1186         }
1187
1188         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1189                                         &ctrl->rport->remoteport,
1190                                         op->queue->lldd_handle,
1191                                         &op->fcp_req);
1192
1193         return 0;
1194 }
1195
1196 static void
1197 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1198 {
1199         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1200         unsigned long flags;
1201         int i, ret;
1202
1203         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1204                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1205                         continue;
1206
1207                 spin_lock_irqsave(&ctrl->lock, flags);
1208                 if (ctrl->flags & FCCTRL_TERMIO) {
1209                         ctrl->iocnt++;
1210                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1211                 }
1212                 spin_unlock_irqrestore(&ctrl->lock, flags);
1213
1214                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1215                 if (ret) {
1216                         /*
1217                          * if __nvme_fc_abort_op failed the io wasn't
1218                          * active. Thus this call path is running in
1219                          * parallel to the io complete. Treat as non-error.
1220                          */
1221
1222                         /* back out the flags/counters */
1223                         spin_lock_irqsave(&ctrl->lock, flags);
1224                         if (ctrl->flags & FCCTRL_TERMIO)
1225                                 ctrl->iocnt--;
1226                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1227                         spin_unlock_irqrestore(&ctrl->lock, flags);
1228                         return;
1229                 }
1230         }
1231 }
1232
1233 static inline int
1234 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1235                 struct nvme_fc_fcp_op *op)
1236 {
1237         unsigned long flags;
1238         bool complete_rq = false;
1239
1240         spin_lock_irqsave(&ctrl->lock, flags);
1241         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1242                 if (ctrl->flags & FCCTRL_TERMIO)
1243                         ctrl->iocnt--;
1244         }
1245         if (op->flags & FCOP_FLAGS_RELEASED)
1246                 complete_rq = true;
1247         else
1248                 op->flags |= FCOP_FLAGS_COMPLETE;
1249         spin_unlock_irqrestore(&ctrl->lock, flags);
1250
1251         return complete_rq;
1252 }
1253
1254 static void
1255 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1256 {
1257         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1258         struct request *rq = op->rq;
1259         struct nvmefc_fcp_req *freq = &op->fcp_req;
1260         struct nvme_fc_ctrl *ctrl = op->ctrl;
1261         struct nvme_fc_queue *queue = op->queue;
1262         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1263         struct nvme_command *sqe = &op->cmd_iu.sqe;
1264         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1265         union nvme_result result;
1266         bool complete_rq, terminate_assoc = true;
1267
1268         /*
1269          * WARNING:
1270          * The current linux implementation of a nvme controller
1271          * allocates a single tag set for all io queues and sizes
1272          * the io queues to fully hold all possible tags. Thus, the
1273          * implementation does not reference or care about the sqhd
1274          * value as it never needs to use the sqhd/sqtail pointers
1275          * for submission pacing.
1276          *
1277          * This affects the FC-NVME implementation in two ways:
1278          * 1) As the value doesn't matter, we don't need to waste
1279          *    cycles extracting it from ERSPs and stamping it in the
1280          *    cases where the transport fabricates CQEs on successful
1281          *    completions.
1282          * 2) The FC-NVME implementation requires that delivery of
1283          *    ERSP completions are to go back to the nvme layer in order
1284          *    relative to the rsn, such that the sqhd value will always
1285          *    be "in order" for the nvme layer. As the nvme layer in
1286          *    linux doesn't care about sqhd, there's no need to return
1287          *    them in order.
1288          *
1289          * Additionally:
1290          * As the core nvme layer in linux currently does not look at
1291          * every field in the cqe - in cases where the FC transport must
1292          * fabricate a CQE, the following fields will not be set as they
1293          * are not referenced:
1294          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1295          *
1296          * Failure or error of an individual i/o, in a transport
1297          * detected fashion unrelated to the nvme completion status,
1298          * potentially cause the initiator and target sides to get out
1299          * of sync on SQ head/tail (aka outstanding io count allowed).
1300          * Per FC-NVME spec, failure of an individual command requires
1301          * the connection to be terminated, which in turn requires the
1302          * association to be terminated.
1303          */
1304
1305         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1306                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1307
1308         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1309                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1310         else if (freq->status)
1311                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1312
1313         /*
1314          * For the linux implementation, if we have an unsuccesful
1315          * status, they blk-mq layer can typically be called with the
1316          * non-zero status and the content of the cqe isn't important.
1317          */
1318         if (status)
1319                 goto done;
1320
1321         /*
1322          * command completed successfully relative to the wire
1323          * protocol. However, validate anything received and
1324          * extract the status and result from the cqe (create it
1325          * where necessary).
1326          */
1327
1328         switch (freq->rcv_rsplen) {
1329
1330         case 0:
1331         case NVME_FC_SIZEOF_ZEROS_RSP:
1332                 /*
1333                  * No response payload or 12 bytes of payload (which
1334                  * should all be zeros) are considered successful and
1335                  * no payload in the CQE by the transport.
1336                  */
1337                 if (freq->transferred_length !=
1338                         be32_to_cpu(op->cmd_iu.data_len)) {
1339                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1340                         goto done;
1341                 }
1342                 result.u64 = 0;
1343                 break;
1344
1345         case sizeof(struct nvme_fc_ersp_iu):
1346                 /*
1347                  * The ERSP IU contains a full completion with CQE.
1348                  * Validate ERSP IU and look at cqe.
1349                  */
1350                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1351                                         (freq->rcv_rsplen / 4) ||
1352                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1353                                         freq->transferred_length ||
1354                              op->rsp_iu.status_code ||
1355                              sqe->common.command_id != cqe->command_id)) {
1356                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1357                         goto done;
1358                 }
1359                 result = cqe->result;
1360                 status = cqe->status;
1361                 break;
1362
1363         default:
1364                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1365                 goto done;
1366         }
1367
1368         terminate_assoc = false;
1369
1370 done:
1371         if (op->flags & FCOP_FLAGS_AEN) {
1372                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1373                 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1374                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1375                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1376                 nvme_fc_ctrl_put(ctrl);
1377                 goto check_error;
1378         }
1379
1380         complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1381         if (!complete_rq) {
1382                 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1383                         status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1384                         if (blk_queue_dying(rq->q))
1385                                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1386                 }
1387                 nvme_end_request(rq, status, result);
1388         } else
1389                 __nvme_fc_final_op_cleanup(rq);
1390
1391 check_error:
1392         if (terminate_assoc)
1393                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1394 }
1395
1396 static int
1397 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1398                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1399                 struct request *rq, u32 rqno)
1400 {
1401         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1402         int ret = 0;
1403
1404         memset(op, 0, sizeof(*op));
1405         op->fcp_req.cmdaddr = &op->cmd_iu;
1406         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1407         op->fcp_req.rspaddr = &op->rsp_iu;
1408         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1409         op->fcp_req.done = nvme_fc_fcpio_done;
1410         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1411         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1412         op->ctrl = ctrl;
1413         op->queue = queue;
1414         op->rq = rq;
1415         op->rqno = rqno;
1416
1417         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1418         cmdiu->fc_id = NVME_CMD_FC_ID;
1419         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1420
1421         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1422                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1423         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1424                 dev_err(ctrl->dev,
1425                         "FCP Op failed - cmdiu dma mapping failed.\n");
1426                 ret = EFAULT;
1427                 goto out_on_error;
1428         }
1429
1430         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1431                                 &op->rsp_iu, sizeof(op->rsp_iu),
1432                                 DMA_FROM_DEVICE);
1433         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1434                 dev_err(ctrl->dev,
1435                         "FCP Op failed - rspiu dma mapping failed.\n");
1436                 ret = EFAULT;
1437         }
1438
1439         atomic_set(&op->state, FCPOP_STATE_IDLE);
1440 out_on_error:
1441         return ret;
1442 }
1443
1444 static int
1445 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1446                 unsigned int hctx_idx, unsigned int numa_node)
1447 {
1448         struct nvme_fc_ctrl *ctrl = set->driver_data;
1449         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1450         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1451         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1452
1453         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1454 }
1455
1456 static int
1457 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1458 {
1459         struct nvme_fc_fcp_op *aen_op;
1460         struct nvme_fc_cmd_iu *cmdiu;
1461         struct nvme_command *sqe;
1462         void *private;
1463         int i, ret;
1464
1465         aen_op = ctrl->aen_ops;
1466         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1467                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1468                                                 GFP_KERNEL);
1469                 if (!private)
1470                         return -ENOMEM;
1471
1472                 cmdiu = &aen_op->cmd_iu;
1473                 sqe = &cmdiu->sqe;
1474                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1475                                 aen_op, (struct request *)NULL,
1476                                 (AEN_CMDID_BASE + i));
1477                 if (ret) {
1478                         kfree(private);
1479                         return ret;
1480                 }
1481
1482                 aen_op->flags = FCOP_FLAGS_AEN;
1483                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1484                 aen_op->fcp_req.private = private;
1485
1486                 memset(sqe, 0, sizeof(*sqe));
1487                 sqe->common.opcode = nvme_admin_async_event;
1488                 /* Note: core layer may overwrite the sqe.command_id value */
1489                 sqe->common.command_id = AEN_CMDID_BASE + i;
1490         }
1491         return 0;
1492 }
1493
1494 static void
1495 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1496 {
1497         struct nvme_fc_fcp_op *aen_op;
1498         int i;
1499
1500         aen_op = ctrl->aen_ops;
1501         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1502                 if (!aen_op->fcp_req.private)
1503                         continue;
1504
1505                 __nvme_fc_exit_request(ctrl, aen_op);
1506
1507                 kfree(aen_op->fcp_req.private);
1508                 aen_op->fcp_req.private = NULL;
1509         }
1510 }
1511
1512 static inline void
1513 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1514                 unsigned int qidx)
1515 {
1516         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1517
1518         hctx->driver_data = queue;
1519         queue->hctx = hctx;
1520 }
1521
1522 static int
1523 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1524                 unsigned int hctx_idx)
1525 {
1526         struct nvme_fc_ctrl *ctrl = data;
1527
1528         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1529
1530         return 0;
1531 }
1532
1533 static int
1534 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1535                 unsigned int hctx_idx)
1536 {
1537         struct nvme_fc_ctrl *ctrl = data;
1538
1539         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1540
1541         return 0;
1542 }
1543
1544 static void
1545 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1546 {
1547         struct nvme_fc_queue *queue;
1548
1549         queue = &ctrl->queues[idx];
1550         memset(queue, 0, sizeof(*queue));
1551         queue->ctrl = ctrl;
1552         queue->qnum = idx;
1553         atomic_set(&queue->csn, 1);
1554         queue->dev = ctrl->dev;
1555
1556         if (idx > 0)
1557                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1558         else
1559                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1560
1561         queue->queue_size = queue_size;
1562
1563         /*
1564          * Considered whether we should allocate buffers for all SQEs
1565          * and CQEs and dma map them - mapping their respective entries
1566          * into the request structures (kernel vm addr and dma address)
1567          * thus the driver could use the buffers/mappings directly.
1568          * It only makes sense if the LLDD would use them for its
1569          * messaging api. It's very unlikely most adapter api's would use
1570          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1571          * structures were used instead.
1572          */
1573 }
1574
1575 /*
1576  * This routine terminates a queue at the transport level.
1577  * The transport has already ensured that all outstanding ios on
1578  * the queue have been terminated.
1579  * The transport will send a Disconnect LS request to terminate
1580  * the queue's connection. Termination of the admin queue will also
1581  * terminate the association at the target.
1582  */
1583 static void
1584 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1585 {
1586         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1587                 return;
1588
1589         /*
1590          * Current implementation never disconnects a single queue.
1591          * It always terminates a whole association. So there is never
1592          * a disconnect(queue) LS sent to the target.
1593          */
1594
1595         queue->connection_id = 0;
1596         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1597 }
1598
1599 static void
1600 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1601         struct nvme_fc_queue *queue, unsigned int qidx)
1602 {
1603         if (ctrl->lport->ops->delete_queue)
1604                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1605                                 queue->lldd_handle);
1606         queue->lldd_handle = NULL;
1607 }
1608
1609 static void
1610 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1611 {
1612         int i;
1613
1614         for (i = 1; i < ctrl->queue_count; i++)
1615                 nvme_fc_free_queue(&ctrl->queues[i]);
1616 }
1617
1618 static int
1619 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1620         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1621 {
1622         int ret = 0;
1623
1624         queue->lldd_handle = NULL;
1625         if (ctrl->lport->ops->create_queue)
1626                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1627                                 qidx, qsize, &queue->lldd_handle);
1628
1629         return ret;
1630 }
1631
1632 static void
1633 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1634 {
1635         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1636         int i;
1637
1638         for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1639                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1640 }
1641
1642 static int
1643 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1644 {
1645         struct nvme_fc_queue *queue = &ctrl->queues[1];
1646         int i, ret;
1647
1648         for (i = 1; i < ctrl->queue_count; i++, queue++) {
1649                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1650                 if (ret)
1651                         goto delete_queues;
1652         }
1653
1654         return 0;
1655
1656 delete_queues:
1657         for (; i >= 0; i--)
1658                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1659         return ret;
1660 }
1661
1662 static int
1663 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1664 {
1665         int i, ret = 0;
1666
1667         for (i = 1; i < ctrl->queue_count; i++) {
1668                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1669                                         (qsize / 5));
1670                 if (ret)
1671                         break;
1672                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1673                 if (ret)
1674                         break;
1675         }
1676
1677         return ret;
1678 }
1679
1680 static void
1681 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1682 {
1683         int i;
1684
1685         for (i = 1; i < ctrl->queue_count; i++)
1686                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1687 }
1688
1689 static void
1690 nvme_fc_ctrl_free(struct kref *ref)
1691 {
1692         struct nvme_fc_ctrl *ctrl =
1693                 container_of(ref, struct nvme_fc_ctrl, ref);
1694         unsigned long flags;
1695
1696         if (ctrl->ctrl.tagset) {
1697                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1698                 blk_mq_free_tag_set(&ctrl->tag_set);
1699         }
1700
1701         /* remove from rport list */
1702         spin_lock_irqsave(&ctrl->rport->lock, flags);
1703         list_del(&ctrl->ctrl_list);
1704         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1705
1706         blk_cleanup_queue(ctrl->ctrl.admin_q);
1707         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1708
1709         kfree(ctrl->queues);
1710
1711         put_device(ctrl->dev);
1712         nvme_fc_rport_put(ctrl->rport);
1713
1714         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1715         if (ctrl->ctrl.opts)
1716                 nvmf_free_options(ctrl->ctrl.opts);
1717         kfree(ctrl);
1718 }
1719
1720 static void
1721 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1722 {
1723         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1724 }
1725
1726 static int
1727 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1728 {
1729         return kref_get_unless_zero(&ctrl->ref);
1730 }
1731
1732 /*
1733  * All accesses from nvme core layer done - can now free the
1734  * controller. Called after last nvme_put_ctrl() call
1735  */
1736 static void
1737 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1738 {
1739         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1740
1741         WARN_ON(nctrl != &ctrl->ctrl);
1742
1743         nvme_fc_ctrl_put(ctrl);
1744 }
1745
1746 static void
1747 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1748 {
1749         dev_warn(ctrl->ctrl.device,
1750                 "NVME-FC{%d}: transport association error detected: %s\n",
1751                 ctrl->cnum, errmsg);
1752         dev_warn(ctrl->ctrl.device,
1753                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1754
1755         /* stop the queues on error, cleanup is in reset thread */
1756         if (ctrl->queue_count > 1)
1757                 nvme_stop_queues(&ctrl->ctrl);
1758
1759         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1760                 dev_err(ctrl->ctrl.device,
1761                         "NVME-FC{%d}: error_recovery: Couldn't change state "
1762                         "to RECONNECTING\n", ctrl->cnum);
1763                 return;
1764         }
1765
1766         nvme_reset_ctrl(&ctrl->ctrl);
1767 }
1768
1769 static enum blk_eh_timer_return
1770 nvme_fc_timeout(struct request *rq, bool reserved)
1771 {
1772         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1773         struct nvme_fc_ctrl *ctrl = op->ctrl;
1774         int ret;
1775
1776         if (reserved)
1777                 return BLK_EH_RESET_TIMER;
1778
1779         ret = __nvme_fc_abort_op(ctrl, op);
1780         if (ret)
1781                 /* io wasn't active to abort consider it done */
1782                 return BLK_EH_HANDLED;
1783
1784         /*
1785          * we can't individually ABTS an io without affecting the queue,
1786          * thus killing the queue, adn thus the association.
1787          * So resolve by performing a controller reset, which will stop
1788          * the host/io stack, terminate the association on the link,
1789          * and recreate an association on the link.
1790          */
1791         nvme_fc_error_recovery(ctrl, "io timeout error");
1792
1793         return BLK_EH_HANDLED;
1794 }
1795
1796 static int
1797 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1798                 struct nvme_fc_fcp_op *op)
1799 {
1800         struct nvmefc_fcp_req *freq = &op->fcp_req;
1801         enum dma_data_direction dir;
1802         int ret;
1803
1804         freq->sg_cnt = 0;
1805
1806         if (!blk_rq_payload_bytes(rq))
1807                 return 0;
1808
1809         freq->sg_table.sgl = freq->first_sgl;
1810         ret = sg_alloc_table_chained(&freq->sg_table,
1811                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1812         if (ret)
1813                 return -ENOMEM;
1814
1815         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1816         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1817         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1818         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1819                                 op->nents, dir);
1820         if (unlikely(freq->sg_cnt <= 0)) {
1821                 sg_free_table_chained(&freq->sg_table, true);
1822                 freq->sg_cnt = 0;
1823                 return -EFAULT;
1824         }
1825
1826         /*
1827          * TODO: blk_integrity_rq(rq)  for DIF
1828          */
1829         return 0;
1830 }
1831
1832 static void
1833 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1834                 struct nvme_fc_fcp_op *op)
1835 {
1836         struct nvmefc_fcp_req *freq = &op->fcp_req;
1837
1838         if (!freq->sg_cnt)
1839                 return;
1840
1841         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1842                                 ((rq_data_dir(rq) == WRITE) ?
1843                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1844
1845         nvme_cleanup_cmd(rq);
1846
1847         sg_free_table_chained(&freq->sg_table, true);
1848
1849         freq->sg_cnt = 0;
1850 }
1851
1852 /*
1853  * In FC, the queue is a logical thing. At transport connect, the target
1854  * creates its "queue" and returns a handle that is to be given to the
1855  * target whenever it posts something to the corresponding SQ.  When an
1856  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1857  * command contained within the SQE, an io, and assigns a FC exchange
1858  * to it. The SQE and the associated SQ handle are sent in the initial
1859  * CMD IU sents on the exchange. All transfers relative to the io occur
1860  * as part of the exchange.  The CQE is the last thing for the io,
1861  * which is transferred (explicitly or implicitly) with the RSP IU
1862  * sent on the exchange. After the CQE is received, the FC exchange is
1863  * terminaed and the Exchange may be used on a different io.
1864  *
1865  * The transport to LLDD api has the transport making a request for a
1866  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1867  * resource and transfers the command. The LLDD will then process all
1868  * steps to complete the io. Upon completion, the transport done routine
1869  * is called.
1870  *
1871  * So - while the operation is outstanding to the LLDD, there is a link
1872  * level FC exchange resource that is also outstanding. This must be
1873  * considered in all cleanup operations.
1874  */
1875 static blk_status_t
1876 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1877         struct nvme_fc_fcp_op *op, u32 data_len,
1878         enum nvmefc_fcp_datadir io_dir)
1879 {
1880         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1881         struct nvme_command *sqe = &cmdiu->sqe;
1882         u32 csn;
1883         int ret;
1884
1885         /*
1886          * before attempting to send the io, check to see if we believe
1887          * the target device is present
1888          */
1889         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1890                 return BLK_STS_IOERR;
1891
1892         if (!nvme_fc_ctrl_get(ctrl))
1893                 return BLK_STS_IOERR;
1894
1895         /* format the FC-NVME CMD IU and fcp_req */
1896         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1897         csn = atomic_inc_return(&queue->csn);
1898         cmdiu->csn = cpu_to_be32(csn);
1899         cmdiu->data_len = cpu_to_be32(data_len);
1900         switch (io_dir) {
1901         case NVMEFC_FCP_WRITE:
1902                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1903                 break;
1904         case NVMEFC_FCP_READ:
1905                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1906                 break;
1907         case NVMEFC_FCP_NODATA:
1908                 cmdiu->flags = 0;
1909                 break;
1910         }
1911         op->fcp_req.payload_length = data_len;
1912         op->fcp_req.io_dir = io_dir;
1913         op->fcp_req.transferred_length = 0;
1914         op->fcp_req.rcv_rsplen = 0;
1915         op->fcp_req.status = NVME_SC_SUCCESS;
1916         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1917
1918         /*
1919          * validate per fabric rules, set fields mandated by fabric spec
1920          * as well as those by FC-NVME spec.
1921          */
1922         WARN_ON_ONCE(sqe->common.metadata);
1923         WARN_ON_ONCE(sqe->common.dptr.prp1);
1924         WARN_ON_ONCE(sqe->common.dptr.prp2);
1925         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1926
1927         /*
1928          * format SQE DPTR field per FC-NVME rules
1929          *    type=data block descr; subtype=offset;
1930          *    offset is currently 0.
1931          */
1932         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1933         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1934         sqe->rw.dptr.sgl.addr = 0;
1935
1936         if (!(op->flags & FCOP_FLAGS_AEN)) {
1937                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1938                 if (ret < 0) {
1939                         nvme_cleanup_cmd(op->rq);
1940                         nvme_fc_ctrl_put(ctrl);
1941                         if (ret == -ENOMEM || ret == -EAGAIN)
1942                                 return BLK_STS_RESOURCE;
1943                         return BLK_STS_IOERR;
1944                 }
1945         }
1946
1947         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1948                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1949
1950         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1951
1952         if (!(op->flags & FCOP_FLAGS_AEN))
1953                 blk_mq_start_request(op->rq);
1954
1955         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1956                                         &ctrl->rport->remoteport,
1957                                         queue->lldd_handle, &op->fcp_req);
1958
1959         if (ret) {
1960                 if (op->rq) {                   /* normal request */
1961                         nvme_fc_unmap_data(ctrl, op->rq, op);
1962                         nvme_cleanup_cmd(op->rq);
1963                 }
1964                 /* else - aen. no cleanup needed */
1965
1966                 nvme_fc_ctrl_put(ctrl);
1967
1968                 if (ret != -EBUSY)
1969                         return BLK_STS_IOERR;
1970
1971                 if (op->rq) {
1972                         blk_mq_stop_hw_queues(op->rq->q);
1973                         blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1974                 }
1975                 return BLK_STS_RESOURCE;
1976         }
1977
1978         return BLK_STS_OK;
1979 }
1980
1981 static blk_status_t
1982 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1983                         const struct blk_mq_queue_data *bd)
1984 {
1985         struct nvme_ns *ns = hctx->queue->queuedata;
1986         struct nvme_fc_queue *queue = hctx->driver_data;
1987         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1988         struct request *rq = bd->rq;
1989         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1990         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1991         struct nvme_command *sqe = &cmdiu->sqe;
1992         enum nvmefc_fcp_datadir io_dir;
1993         u32 data_len;
1994         blk_status_t ret;
1995
1996         ret = nvme_setup_cmd(ns, rq, sqe);
1997         if (ret)
1998                 return ret;
1999
2000         data_len = blk_rq_payload_bytes(rq);
2001         if (data_len)
2002                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2003                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2004         else
2005                 io_dir = NVMEFC_FCP_NODATA;
2006
2007         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2008 }
2009
2010 static struct blk_mq_tags *
2011 nvme_fc_tagset(struct nvme_fc_queue *queue)
2012 {
2013         if (queue->qnum == 0)
2014                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2015
2016         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2017 }
2018
2019 static int
2020 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2021
2022 {
2023         struct nvme_fc_queue *queue = hctx->driver_data;
2024         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2025         struct request *req;
2026         struct nvme_fc_fcp_op *op;
2027
2028         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2029         if (!req)
2030                 return 0;
2031
2032         op = blk_mq_rq_to_pdu(req);
2033
2034         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2035                  (ctrl->lport->ops->poll_queue))
2036                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2037                                                  queue->lldd_handle);
2038
2039         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2040 }
2041
2042 static void
2043 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2044 {
2045         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2046         struct nvme_fc_fcp_op *aen_op;
2047         unsigned long flags;
2048         bool terminating = false;
2049         blk_status_t ret;
2050
2051         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2052                 return;
2053
2054         spin_lock_irqsave(&ctrl->lock, flags);
2055         if (ctrl->flags & FCCTRL_TERMIO)
2056                 terminating = true;
2057         spin_unlock_irqrestore(&ctrl->lock, flags);
2058
2059         if (terminating)
2060                 return;
2061
2062         aen_op = &ctrl->aen_ops[aer_idx];
2063
2064         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2065                                         NVMEFC_FCP_NODATA);
2066         if (ret)
2067                 dev_err(ctrl->ctrl.device,
2068                         "failed async event work [%d]\n", aer_idx);
2069 }
2070
2071 static void
2072 __nvme_fc_final_op_cleanup(struct request *rq)
2073 {
2074         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2075         struct nvme_fc_ctrl *ctrl = op->ctrl;
2076
2077         atomic_set(&op->state, FCPOP_STATE_IDLE);
2078         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2079                         FCOP_FLAGS_COMPLETE);
2080
2081         nvme_cleanup_cmd(rq);
2082         nvme_fc_unmap_data(ctrl, rq, op);
2083         nvme_complete_rq(rq);
2084         nvme_fc_ctrl_put(ctrl);
2085
2086 }
2087
2088 static void
2089 nvme_fc_complete_rq(struct request *rq)
2090 {
2091         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2092         struct nvme_fc_ctrl *ctrl = op->ctrl;
2093         unsigned long flags;
2094         bool completed = false;
2095
2096         /*
2097          * the core layer, on controller resets after calling
2098          * nvme_shutdown_ctrl(), calls complete_rq without our
2099          * calling blk_mq_complete_request(), thus there may still
2100          * be live i/o outstanding with the LLDD. Means transport has
2101          * to track complete calls vs fcpio_done calls to know what
2102          * path to take on completes and dones.
2103          */
2104         spin_lock_irqsave(&ctrl->lock, flags);
2105         if (op->flags & FCOP_FLAGS_COMPLETE)
2106                 completed = true;
2107         else
2108                 op->flags |= FCOP_FLAGS_RELEASED;
2109         spin_unlock_irqrestore(&ctrl->lock, flags);
2110
2111         if (completed)
2112                 __nvme_fc_final_op_cleanup(rq);
2113 }
2114
2115 /*
2116  * This routine is used by the transport when it needs to find active
2117  * io on a queue that is to be terminated. The transport uses
2118  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2119  * this routine to kill them on a 1 by 1 basis.
2120  *
2121  * As FC allocates FC exchange for each io, the transport must contact
2122  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2123  * After terminating the exchange the LLDD will call the transport's
2124  * normal io done path for the request, but it will have an aborted
2125  * status. The done path will return the io request back to the block
2126  * layer with an error status.
2127  */
2128 static void
2129 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2130 {
2131         struct nvme_ctrl *nctrl = data;
2132         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2133         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2134         unsigned long flags;
2135         int status;
2136
2137         if (!blk_mq_request_started(req))
2138                 return;
2139
2140         spin_lock_irqsave(&ctrl->lock, flags);
2141         if (ctrl->flags & FCCTRL_TERMIO) {
2142                 ctrl->iocnt++;
2143                 op->flags |= FCOP_FLAGS_TERMIO;
2144         }
2145         spin_unlock_irqrestore(&ctrl->lock, flags);
2146
2147         status = __nvme_fc_abort_op(ctrl, op);
2148         if (status) {
2149                 /*
2150                  * if __nvme_fc_abort_op failed the io wasn't
2151                  * active. Thus this call path is running in
2152                  * parallel to the io complete. Treat as non-error.
2153                  */
2154
2155                 /* back out the flags/counters */
2156                 spin_lock_irqsave(&ctrl->lock, flags);
2157                 if (ctrl->flags & FCCTRL_TERMIO)
2158                         ctrl->iocnt--;
2159                 op->flags &= ~FCOP_FLAGS_TERMIO;
2160                 spin_unlock_irqrestore(&ctrl->lock, flags);
2161                 return;
2162         }
2163 }
2164
2165
2166 static const struct blk_mq_ops nvme_fc_mq_ops = {
2167         .queue_rq       = nvme_fc_queue_rq,
2168         .complete       = nvme_fc_complete_rq,
2169         .init_request   = nvme_fc_init_request,
2170         .exit_request   = nvme_fc_exit_request,
2171         .reinit_request = nvme_fc_reinit_request,
2172         .init_hctx      = nvme_fc_init_hctx,
2173         .poll           = nvme_fc_poll,
2174         .timeout        = nvme_fc_timeout,
2175 };
2176
2177 static int
2178 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2179 {
2180         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2181         int ret;
2182
2183         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2184         if (ret) {
2185                 dev_info(ctrl->ctrl.device,
2186                         "set_queue_count failed: %d\n", ret);
2187                 return ret;
2188         }
2189
2190         ctrl->queue_count = opts->nr_io_queues + 1;
2191         if (!opts->nr_io_queues)
2192                 return 0;
2193
2194         nvme_fc_init_io_queues(ctrl);
2195
2196         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2197         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2198         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2199         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2200         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2201         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2202         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2203                                         (SG_CHUNK_SIZE *
2204                                                 sizeof(struct scatterlist)) +
2205                                         ctrl->lport->ops->fcprqst_priv_sz;
2206         ctrl->tag_set.driver_data = ctrl;
2207         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2208         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2209
2210         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2211         if (ret)
2212                 return ret;
2213
2214         ctrl->ctrl.tagset = &ctrl->tag_set;
2215
2216         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2217         if (IS_ERR(ctrl->ctrl.connect_q)) {
2218                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2219                 goto out_free_tag_set;
2220         }
2221
2222         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2223         if (ret)
2224                 goto out_cleanup_blk_queue;
2225
2226         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2227         if (ret)
2228                 goto out_delete_hw_queues;
2229
2230         return 0;
2231
2232 out_delete_hw_queues:
2233         nvme_fc_delete_hw_io_queues(ctrl);
2234 out_cleanup_blk_queue:
2235         nvme_stop_keep_alive(&ctrl->ctrl);
2236         blk_cleanup_queue(ctrl->ctrl.connect_q);
2237 out_free_tag_set:
2238         blk_mq_free_tag_set(&ctrl->tag_set);
2239         nvme_fc_free_io_queues(ctrl);
2240
2241         /* force put free routine to ignore io queues */
2242         ctrl->ctrl.tagset = NULL;
2243
2244         return ret;
2245 }
2246
2247 static int
2248 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2249 {
2250         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2251         int ret;
2252
2253         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2254         if (ret) {
2255                 dev_info(ctrl->ctrl.device,
2256                         "set_queue_count failed: %d\n", ret);
2257                 return ret;
2258         }
2259
2260         /* check for io queues existing */
2261         if (ctrl->queue_count == 1)
2262                 return 0;
2263
2264         nvme_fc_init_io_queues(ctrl);
2265
2266         ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2267         if (ret)
2268                 goto out_free_io_queues;
2269
2270         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2271         if (ret)
2272                 goto out_free_io_queues;
2273
2274         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2275         if (ret)
2276                 goto out_delete_hw_queues;
2277
2278         return 0;
2279
2280 out_delete_hw_queues:
2281         nvme_fc_delete_hw_io_queues(ctrl);
2282 out_free_io_queues:
2283         nvme_fc_free_io_queues(ctrl);
2284         return ret;
2285 }
2286
2287 /*
2288  * This routine restarts the controller on the host side, and
2289  * on the link side, recreates the controller association.
2290  */
2291 static int
2292 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2293 {
2294         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2295         u32 segs;
2296         int ret;
2297         bool changed;
2298
2299         ++ctrl->ctrl.nr_reconnects;
2300
2301         /*
2302          * Create the admin queue
2303          */
2304
2305         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2306
2307         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2308                                 NVME_FC_AQ_BLKMQ_DEPTH);
2309         if (ret)
2310                 goto out_free_queue;
2311
2312         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2313                                 NVME_FC_AQ_BLKMQ_DEPTH,
2314                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2315         if (ret)
2316                 goto out_delete_hw_queue;
2317
2318         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2319                 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2320
2321         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2322         if (ret)
2323                 goto out_disconnect_admin_queue;
2324
2325         /*
2326          * Check controller capabilities
2327          *
2328          * todo:- add code to check if ctrl attributes changed from
2329          * prior connection values
2330          */
2331
2332         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2333         if (ret) {
2334                 dev_err(ctrl->ctrl.device,
2335                         "prop_get NVME_REG_CAP failed\n");
2336                 goto out_disconnect_admin_queue;
2337         }
2338
2339         ctrl->ctrl.sqsize =
2340                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2341
2342         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2343         if (ret)
2344                 goto out_disconnect_admin_queue;
2345
2346         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2347                         ctrl->lport->ops->max_sgl_segments);
2348         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2349
2350         ret = nvme_init_identify(&ctrl->ctrl);
2351         if (ret)
2352                 goto out_disconnect_admin_queue;
2353
2354         /* sanity checks */
2355
2356         /* FC-NVME does not have other data in the capsule */
2357         if (ctrl->ctrl.icdoff) {
2358                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2359                                 ctrl->ctrl.icdoff);
2360                 goto out_disconnect_admin_queue;
2361         }
2362
2363         nvme_start_keep_alive(&ctrl->ctrl);
2364
2365         /* FC-NVME supports normal SGL Data Block Descriptors */
2366
2367         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2368                 /* warn if maxcmd is lower than queue_size */
2369                 dev_warn(ctrl->ctrl.device,
2370                         "queue_size %zu > ctrl maxcmd %u, reducing "
2371                         "to queue_size\n",
2372                         opts->queue_size, ctrl->ctrl.maxcmd);
2373                 opts->queue_size = ctrl->ctrl.maxcmd;
2374         }
2375
2376         ret = nvme_fc_init_aen_ops(ctrl);
2377         if (ret)
2378                 goto out_term_aen_ops;
2379
2380         /*
2381          * Create the io queues
2382          */
2383
2384         if (ctrl->queue_count > 1) {
2385                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2386                         ret = nvme_fc_create_io_queues(ctrl);
2387                 else
2388                         ret = nvme_fc_reinit_io_queues(ctrl);
2389                 if (ret)
2390                         goto out_term_aen_ops;
2391         }
2392
2393         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2394         WARN_ON_ONCE(!changed);
2395
2396         ctrl->ctrl.nr_reconnects = 0;
2397
2398         if (ctrl->queue_count > 1) {
2399                 nvme_start_queues(&ctrl->ctrl);
2400                 nvme_queue_scan(&ctrl->ctrl);
2401                 nvme_queue_async_events(&ctrl->ctrl);
2402         }
2403
2404         return 0;       /* Success */
2405
2406 out_term_aen_ops:
2407         nvme_fc_term_aen_ops(ctrl);
2408         nvme_stop_keep_alive(&ctrl->ctrl);
2409 out_disconnect_admin_queue:
2410         /* send a Disconnect(association) LS to fc-nvme target */
2411         nvme_fc_xmt_disconnect_assoc(ctrl);
2412 out_delete_hw_queue:
2413         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2414 out_free_queue:
2415         nvme_fc_free_queue(&ctrl->queues[0]);
2416
2417         return ret;
2418 }
2419
2420 /*
2421  * This routine stops operation of the controller on the host side.
2422  * On the host os stack side: Admin and IO queues are stopped,
2423  *   outstanding ios on them terminated via FC ABTS.
2424  * On the link side: the association is terminated.
2425  */
2426 static void
2427 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2428 {
2429         unsigned long flags;
2430
2431         nvme_stop_keep_alive(&ctrl->ctrl);
2432
2433         spin_lock_irqsave(&ctrl->lock, flags);
2434         ctrl->flags |= FCCTRL_TERMIO;
2435         ctrl->iocnt = 0;
2436         spin_unlock_irqrestore(&ctrl->lock, flags);
2437
2438         /*
2439          * If io queues are present, stop them and terminate all outstanding
2440          * ios on them. As FC allocates FC exchange for each io, the
2441          * transport must contact the LLDD to terminate the exchange,
2442          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2443          * to tell us what io's are busy and invoke a transport routine
2444          * to kill them with the LLDD.  After terminating the exchange
2445          * the LLDD will call the transport's normal io done path, but it
2446          * will have an aborted status. The done path will return the
2447          * io requests back to the block layer as part of normal completions
2448          * (but with error status).
2449          */
2450         if (ctrl->queue_count > 1) {
2451                 nvme_stop_queues(&ctrl->ctrl);
2452                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2453                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2454         }
2455
2456         /*
2457          * Other transports, which don't have link-level contexts bound
2458          * to sqe's, would try to gracefully shutdown the controller by
2459          * writing the registers for shutdown and polling (call
2460          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2461          * just aborted and we will wait on those contexts, and given
2462          * there was no indication of how live the controlelr is on the
2463          * link, don't send more io to create more contexts for the
2464          * shutdown. Let the controller fail via keepalive failure if
2465          * its still present.
2466          */
2467
2468         /*
2469          * clean up the admin queue. Same thing as above.
2470          * use blk_mq_tagset_busy_itr() and the transport routine to
2471          * terminate the exchanges.
2472          */
2473         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2474         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2475                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2476
2477         /* kill the aens as they are a separate path */
2478         nvme_fc_abort_aen_ops(ctrl);
2479
2480         /* wait for all io that had to be aborted */
2481         spin_lock_irqsave(&ctrl->lock, flags);
2482         while (ctrl->iocnt) {
2483                 spin_unlock_irqrestore(&ctrl->lock, flags);
2484                 msleep(1000);
2485                 spin_lock_irqsave(&ctrl->lock, flags);
2486         }
2487         ctrl->flags &= ~FCCTRL_TERMIO;
2488         spin_unlock_irqrestore(&ctrl->lock, flags);
2489
2490         nvme_fc_term_aen_ops(ctrl);
2491
2492         /*
2493          * send a Disconnect(association) LS to fc-nvme target
2494          * Note: could have been sent at top of process, but
2495          * cleaner on link traffic if after the aborts complete.
2496          * Note: if association doesn't exist, association_id will be 0
2497          */
2498         if (ctrl->association_id)
2499                 nvme_fc_xmt_disconnect_assoc(ctrl);
2500
2501         if (ctrl->ctrl.tagset) {
2502                 nvme_fc_delete_hw_io_queues(ctrl);
2503                 nvme_fc_free_io_queues(ctrl);
2504         }
2505
2506         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2507         nvme_fc_free_queue(&ctrl->queues[0]);
2508 }
2509
2510 static void
2511 nvme_fc_delete_ctrl_work(struct work_struct *work)
2512 {
2513         struct nvme_fc_ctrl *ctrl =
2514                 container_of(work, struct nvme_fc_ctrl, delete_work);
2515
2516         cancel_work_sync(&ctrl->ctrl.reset_work);
2517         cancel_delayed_work_sync(&ctrl->connect_work);
2518
2519         /*
2520          * kill the association on the link side.  this will block
2521          * waiting for io to terminate
2522          */
2523         nvme_fc_delete_association(ctrl);
2524
2525         /*
2526          * tear down the controller
2527          * After the last reference on the nvme ctrl is removed,
2528          * the transport nvme_fc_nvme_ctrl_freed() callback will be
2529          * invoked. From there, the transport will tear down it's
2530          * logical queues and association.
2531          */
2532         nvme_uninit_ctrl(&ctrl->ctrl);
2533
2534         nvme_put_ctrl(&ctrl->ctrl);
2535 }
2536
2537 static bool
2538 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2539 {
2540         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2541                 return true;
2542
2543         if (!queue_work(nvme_wq, &ctrl->delete_work))
2544                 return true;
2545
2546         return false;
2547 }
2548
2549 static int
2550 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2551 {
2552         return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2553 }
2554
2555 /*
2556  * Request from nvme core layer to delete the controller
2557  */
2558 static int
2559 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2560 {
2561         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2562         int ret;
2563
2564         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2565                 return -EBUSY;
2566
2567         ret = __nvme_fc_del_ctrl(ctrl);
2568
2569         if (!ret)
2570                 flush_workqueue(nvme_wq);
2571
2572         nvme_put_ctrl(&ctrl->ctrl);
2573
2574         return ret;
2575 }
2576
2577 static void
2578 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2579 {
2580         /* If we are resetting/deleting then do nothing */
2581         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2582                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2583                         ctrl->ctrl.state == NVME_CTRL_LIVE);
2584                 return;
2585         }
2586
2587         dev_info(ctrl->ctrl.device,
2588                 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2589                 ctrl->cnum, status);
2590
2591         if (nvmf_should_reconnect(&ctrl->ctrl)) {
2592                 dev_info(ctrl->ctrl.device,
2593                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2594                         ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2595                 queue_delayed_work(nvme_wq, &ctrl->connect_work,
2596                                 ctrl->ctrl.opts->reconnect_delay * HZ);
2597         } else {
2598                 dev_warn(ctrl->ctrl.device,
2599                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2600                                 "reached. Removing controller\n",
2601                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2602                 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2603         }
2604 }
2605
2606 static void
2607 nvme_fc_reset_ctrl_work(struct work_struct *work)
2608 {
2609         struct nvme_fc_ctrl *ctrl =
2610                 container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
2611         int ret;
2612
2613         /* will block will waiting for io to terminate */
2614         nvme_fc_delete_association(ctrl);
2615
2616         ret = nvme_fc_create_association(ctrl);
2617         if (ret)
2618                 nvme_fc_reconnect_or_delete(ctrl, ret);
2619         else
2620                 dev_info(ctrl->ctrl.device,
2621                         "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2622 }
2623
2624 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2625         .name                   = "fc",
2626         .module                 = THIS_MODULE,
2627         .flags                  = NVME_F_FABRICS,
2628         .reg_read32             = nvmf_reg_read32,
2629         .reg_read64             = nvmf_reg_read64,
2630         .reg_write32            = nvmf_reg_write32,
2631         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2632         .submit_async_event     = nvme_fc_submit_async_event,
2633         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2634         .get_subsysnqn          = nvmf_get_subsysnqn,
2635         .get_address            = nvmf_get_address,
2636 };
2637
2638 static void
2639 nvme_fc_connect_ctrl_work(struct work_struct *work)
2640 {
2641         int ret;
2642
2643         struct nvme_fc_ctrl *ctrl =
2644                         container_of(to_delayed_work(work),
2645                                 struct nvme_fc_ctrl, connect_work);
2646
2647         ret = nvme_fc_create_association(ctrl);
2648         if (ret)
2649                 nvme_fc_reconnect_or_delete(ctrl, ret);
2650         else
2651                 dev_info(ctrl->ctrl.device,
2652                         "NVME-FC{%d}: controller reconnect complete\n",
2653                         ctrl->cnum);
2654 }
2655
2656
2657 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2658         .queue_rq       = nvme_fc_queue_rq,
2659         .complete       = nvme_fc_complete_rq,
2660         .init_request   = nvme_fc_init_request,
2661         .exit_request   = nvme_fc_exit_request,
2662         .reinit_request = nvme_fc_reinit_request,
2663         .init_hctx      = nvme_fc_init_admin_hctx,
2664         .timeout        = nvme_fc_timeout,
2665 };
2666
2667
2668 static struct nvme_ctrl *
2669 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2670         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2671 {
2672         struct nvme_fc_ctrl *ctrl;
2673         unsigned long flags;
2674         int ret, idx;
2675
2676         if (!(rport->remoteport.port_role &
2677             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2678                 ret = -EBADR;
2679                 goto out_fail;
2680         }
2681
2682         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2683         if (!ctrl) {
2684                 ret = -ENOMEM;
2685                 goto out_fail;
2686         }
2687
2688         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2689         if (idx < 0) {
2690                 ret = -ENOSPC;
2691                 goto out_free_ctrl;
2692         }
2693
2694         ctrl->ctrl.opts = opts;
2695         INIT_LIST_HEAD(&ctrl->ctrl_list);
2696         ctrl->lport = lport;
2697         ctrl->rport = rport;
2698         ctrl->dev = lport->dev;
2699         ctrl->cnum = idx;
2700
2701         get_device(ctrl->dev);
2702         kref_init(&ctrl->ref);
2703
2704         INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2705         INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
2706         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2707         spin_lock_init(&ctrl->lock);
2708
2709         /* io queue count */
2710         ctrl->queue_count = min_t(unsigned int,
2711                                 opts->nr_io_queues,
2712                                 lport->ops->max_hw_queues);
2713         opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2714         ctrl->queue_count++;    /* +1 for admin queue */
2715
2716         ctrl->ctrl.sqsize = opts->queue_size - 1;
2717         ctrl->ctrl.kato = opts->kato;
2718
2719         ret = -ENOMEM;
2720         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2721                                 GFP_KERNEL);
2722         if (!ctrl->queues)
2723                 goto out_free_ida;
2724
2725         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2726         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2727         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2728         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2729         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2730         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2731                                         (SG_CHUNK_SIZE *
2732                                                 sizeof(struct scatterlist)) +
2733                                         ctrl->lport->ops->fcprqst_priv_sz;
2734         ctrl->admin_tag_set.driver_data = ctrl;
2735         ctrl->admin_tag_set.nr_hw_queues = 1;
2736         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2737
2738         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2739         if (ret)
2740                 goto out_free_queues;
2741
2742         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2743         if (IS_ERR(ctrl->ctrl.admin_q)) {
2744                 ret = PTR_ERR(ctrl->ctrl.admin_q);
2745                 goto out_free_admin_tag_set;
2746         }
2747
2748         /*
2749          * Would have been nice to init io queues tag set as well.
2750          * However, we require interaction from the controller
2751          * for max io queue count before we can do so.
2752          * Defer this to the connect path.
2753          */
2754
2755         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2756         if (ret)
2757                 goto out_cleanup_admin_q;
2758
2759         /* at this point, teardown path changes to ref counting on nvme ctrl */
2760
2761         spin_lock_irqsave(&rport->lock, flags);
2762         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2763         spin_unlock_irqrestore(&rport->lock, flags);
2764
2765         ret = nvme_fc_create_association(ctrl);
2766         if (ret) {
2767                 ctrl->ctrl.opts = NULL;
2768                 /* initiate nvme ctrl ref counting teardown */
2769                 nvme_uninit_ctrl(&ctrl->ctrl);
2770                 nvme_put_ctrl(&ctrl->ctrl);
2771
2772                 /* as we're past the point where we transition to the ref
2773                  * counting teardown path, if we return a bad pointer here,
2774                  * the calling routine, thinking it's prior to the
2775                  * transition, will do an rport put. Since the teardown
2776                  * path also does a rport put, we do an extra get here to
2777                  * so proper order/teardown happens.
2778                  */
2779                 nvme_fc_rport_get(rport);
2780
2781                 if (ret > 0)
2782                         ret = -EIO;
2783                 return ERR_PTR(ret);
2784         }
2785
2786         kref_get(&ctrl->ctrl.kref);
2787
2788         dev_info(ctrl->ctrl.device,
2789                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2790                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2791
2792         return &ctrl->ctrl;
2793
2794 out_cleanup_admin_q:
2795         blk_cleanup_queue(ctrl->ctrl.admin_q);
2796 out_free_admin_tag_set:
2797         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2798 out_free_queues:
2799         kfree(ctrl->queues);
2800 out_free_ida:
2801         put_device(ctrl->dev);
2802         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2803 out_free_ctrl:
2804         kfree(ctrl);
2805 out_fail:
2806         /* exit via here doesn't follow ctlr ref points */
2807         return ERR_PTR(ret);
2808 }
2809
2810 enum {
2811         FCT_TRADDR_ERR          = 0,
2812         FCT_TRADDR_WWNN         = 1 << 0,
2813         FCT_TRADDR_WWPN         = 1 << 1,
2814 };
2815
2816 struct nvmet_fc_traddr {
2817         u64     nn;
2818         u64     pn;
2819 };
2820
2821 static const match_table_t traddr_opt_tokens = {
2822         { FCT_TRADDR_WWNN,      "nn-%s"         },
2823         { FCT_TRADDR_WWPN,      "pn-%s"         },
2824         { FCT_TRADDR_ERR,       NULL            }
2825 };
2826
2827 static int
2828 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2829 {
2830         substring_t args[MAX_OPT_ARGS];
2831         char *options, *o, *p;
2832         int token, ret = 0;
2833         u64 token64;
2834
2835         options = o = kstrdup(buf, GFP_KERNEL);
2836         if (!options)
2837                 return -ENOMEM;
2838
2839         while ((p = strsep(&o, ":\n")) != NULL) {
2840                 if (!*p)
2841                         continue;
2842
2843                 token = match_token(p, traddr_opt_tokens, args);
2844                 switch (token) {
2845                 case FCT_TRADDR_WWNN:
2846                         if (match_u64(args, &token64)) {
2847                                 ret = -EINVAL;
2848                                 goto out;
2849                         }
2850                         traddr->nn = token64;
2851                         break;
2852                 case FCT_TRADDR_WWPN:
2853                         if (match_u64(args, &token64)) {
2854                                 ret = -EINVAL;
2855                                 goto out;
2856                         }
2857                         traddr->pn = token64;
2858                         break;
2859                 default:
2860                         pr_warn("unknown traddr token or missing value '%s'\n",
2861                                         p);
2862                         ret = -EINVAL;
2863                         goto out;
2864                 }
2865         }
2866
2867 out:
2868         kfree(options);
2869         return ret;
2870 }
2871
2872 static struct nvme_ctrl *
2873 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2874 {
2875         struct nvme_fc_lport *lport;
2876         struct nvme_fc_rport *rport;
2877         struct nvme_ctrl *ctrl;
2878         struct nvmet_fc_traddr laddr = { 0L, 0L };
2879         struct nvmet_fc_traddr raddr = { 0L, 0L };
2880         unsigned long flags;
2881         int ret;
2882
2883         ret = nvme_fc_parse_address(&raddr, opts->traddr);
2884         if (ret || !raddr.nn || !raddr.pn)
2885                 return ERR_PTR(-EINVAL);
2886
2887         ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2888         if (ret || !laddr.nn || !laddr.pn)
2889                 return ERR_PTR(-EINVAL);
2890
2891         /* find the host and remote ports to connect together */
2892         spin_lock_irqsave(&nvme_fc_lock, flags);
2893         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2894                 if (lport->localport.node_name != laddr.nn ||
2895                     lport->localport.port_name != laddr.pn)
2896                         continue;
2897
2898                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2899                         if (rport->remoteport.node_name != raddr.nn ||
2900                             rport->remoteport.port_name != raddr.pn)
2901                                 continue;
2902
2903                         /* if fail to get reference fall through. Will error */
2904                         if (!nvme_fc_rport_get(rport))
2905                                 break;
2906
2907                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2908
2909                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2910                         if (IS_ERR(ctrl))
2911                                 nvme_fc_rport_put(rport);
2912                         return ctrl;
2913                 }
2914         }
2915         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2916
2917         return ERR_PTR(-ENOENT);
2918 }
2919
2920
2921 static struct nvmf_transport_ops nvme_fc_transport = {
2922         .name           = "fc",
2923         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2924         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2925         .create_ctrl    = nvme_fc_create_ctrl,
2926 };
2927
2928 static int __init nvme_fc_init_module(void)
2929 {
2930         return nvmf_register_transport(&nvme_fc_transport);
2931 }
2932
2933 static void __exit nvme_fc_exit_module(void)
2934 {
2935         /* sanity check - all lports should be removed */
2936         if (!list_empty(&nvme_fc_lport_list))
2937                 pr_warn("%s: localport list not empty\n", __func__);
2938
2939         nvmf_unregister_transport(&nvme_fc_transport);
2940
2941         ida_destroy(&nvme_fc_local_port_cnt);
2942         ida_destroy(&nvme_fc_ctrl_cnt);
2943 }
2944
2945 module_init(nvme_fc_init_module);
2946 module_exit(nvme_fc_exit_module);
2947
2948 MODULE_LICENSE("GPL v2");