]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/fc.c
nvme-fc: merge init_request methods
[linux.git] / drivers / nvme / host / fc.c
1 /*
2  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful.
9  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13  * See the GNU General Public License for more details, a copy of which
14  * can be found in the file COPYING included with this package
15  *
16  */
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/parser.h>
20 #include <uapi/scsi/fc/fc_fs.h>
21 #include <uapi/scsi/fc/fc_els.h>
22 #include <linux/delay.h>
23
24 #include "nvme.h"
25 #include "fabrics.h"
26 #include <linux/nvme-fc-driver.h>
27 #include <linux/nvme-fc.h>
28
29
30 /* *************************** Data Structures/Defines ****************** */
31
32
33 /*
34  * We handle AEN commands ourselves and don't even let the
35  * block layer know about them.
36  */
37 #define NVME_FC_NR_AEN_COMMANDS 1
38 #define NVME_FC_AQ_BLKMQ_DEPTH  \
39         (NVMF_AQ_DEPTH - NVME_FC_NR_AEN_COMMANDS)
40 #define AEN_CMDID_BASE          (NVME_FC_AQ_BLKMQ_DEPTH + 1)
41
42 enum nvme_fc_queue_flags {
43         NVME_FC_Q_CONNECTED = (1 << 0),
44 };
45
46 #define NVMEFC_QUEUE_DELAY      3               /* ms units */
47
48 struct nvme_fc_queue {
49         struct nvme_fc_ctrl     *ctrl;
50         struct device           *dev;
51         struct blk_mq_hw_ctx    *hctx;
52         void                    *lldd_handle;
53         int                     queue_size;
54         size_t                  cmnd_capsule_len;
55         u32                     qnum;
56         u32                     rqcnt;
57         u32                     seqno;
58
59         u64                     connection_id;
60         atomic_t                csn;
61
62         unsigned long           flags;
63 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
64
65 enum nvme_fcop_flags {
66         FCOP_FLAGS_TERMIO       = (1 << 0),
67         FCOP_FLAGS_RELEASED     = (1 << 1),
68         FCOP_FLAGS_COMPLETE     = (1 << 2),
69         FCOP_FLAGS_AEN          = (1 << 3),
70 };
71
72 struct nvmefc_ls_req_op {
73         struct nvmefc_ls_req    ls_req;
74
75         struct nvme_fc_rport    *rport;
76         struct nvme_fc_queue    *queue;
77         struct request          *rq;
78         u32                     flags;
79
80         int                     ls_error;
81         struct completion       ls_done;
82         struct list_head        lsreq_list;     /* rport->ls_req_list */
83         bool                    req_queued;
84 };
85
86 enum nvme_fcpop_state {
87         FCPOP_STATE_UNINIT      = 0,
88         FCPOP_STATE_IDLE        = 1,
89         FCPOP_STATE_ACTIVE      = 2,
90         FCPOP_STATE_ABORTED     = 3,
91         FCPOP_STATE_COMPLETE    = 4,
92 };
93
94 struct nvme_fc_fcp_op {
95         struct nvme_request     nreq;           /*
96                                                  * nvme/host/core.c
97                                                  * requires this to be
98                                                  * the 1st element in the
99                                                  * private structure
100                                                  * associated with the
101                                                  * request.
102                                                  */
103         struct nvmefc_fcp_req   fcp_req;
104
105         struct nvme_fc_ctrl     *ctrl;
106         struct nvme_fc_queue    *queue;
107         struct request          *rq;
108
109         atomic_t                state;
110         u32                     flags;
111         u32                     rqno;
112         u32                     nents;
113
114         struct nvme_fc_cmd_iu   cmd_iu;
115         struct nvme_fc_ersp_iu  rsp_iu;
116 };
117
118 struct nvme_fc_lport {
119         struct nvme_fc_local_port       localport;
120
121         struct ida                      endp_cnt;
122         struct list_head                port_list;      /* nvme_fc_port_list */
123         struct list_head                endp_list;
124         struct device                   *dev;   /* physical device for dma */
125         struct nvme_fc_port_template    *ops;
126         struct kref                     ref;
127 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
128
129 struct nvme_fc_rport {
130         struct nvme_fc_remote_port      remoteport;
131
132         struct list_head                endp_list; /* for lport->endp_list */
133         struct list_head                ctrl_list;
134         struct list_head                ls_req_list;
135         struct device                   *dev;   /* physical device for dma */
136         struct nvme_fc_lport            *lport;
137         spinlock_t                      lock;
138         struct kref                     ref;
139 } __aligned(sizeof(u64));       /* alignment for other things alloc'd with */
140
141 enum nvme_fcctrl_flags {
142         FCCTRL_TERMIO           = (1 << 0),
143 };
144
145 struct nvme_fc_ctrl {
146         spinlock_t              lock;
147         struct nvme_fc_queue    *queues;
148         struct device           *dev;
149         struct nvme_fc_lport    *lport;
150         struct nvme_fc_rport    *rport;
151         u32                     queue_count;
152         u32                     cnum;
153
154         u64                     association_id;
155
156         u64                     cap;
157
158         struct list_head        ctrl_list;      /* rport->ctrl_list */
159
160         struct blk_mq_tag_set   admin_tag_set;
161         struct blk_mq_tag_set   tag_set;
162
163         struct work_struct      delete_work;
164         struct work_struct      reset_work;
165         struct delayed_work     connect_work;
166
167         struct kref             ref;
168         u32                     flags;
169         u32                     iocnt;
170
171         struct nvme_fc_fcp_op   aen_ops[NVME_FC_NR_AEN_COMMANDS];
172
173         struct nvme_ctrl        ctrl;
174 };
175
176 static inline struct nvme_fc_ctrl *
177 to_fc_ctrl(struct nvme_ctrl *ctrl)
178 {
179         return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
180 }
181
182 static inline struct nvme_fc_lport *
183 localport_to_lport(struct nvme_fc_local_port *portptr)
184 {
185         return container_of(portptr, struct nvme_fc_lport, localport);
186 }
187
188 static inline struct nvme_fc_rport *
189 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
190 {
191         return container_of(portptr, struct nvme_fc_rport, remoteport);
192 }
193
194 static inline struct nvmefc_ls_req_op *
195 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
196 {
197         return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
198 }
199
200 static inline struct nvme_fc_fcp_op *
201 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
202 {
203         return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
204 }
205
206
207
208 /* *************************** Globals **************************** */
209
210
211 static DEFINE_SPINLOCK(nvme_fc_lock);
212
213 static LIST_HEAD(nvme_fc_lport_list);
214 static DEFINE_IDA(nvme_fc_local_port_cnt);
215 static DEFINE_IDA(nvme_fc_ctrl_cnt);
216
217
218
219
220 /* *********************** FC-NVME Port Management ************************ */
221
222 static int __nvme_fc_del_ctrl(struct nvme_fc_ctrl *);
223 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
224                         struct nvme_fc_queue *, unsigned int);
225
226
227 /**
228  * nvme_fc_register_localport - transport entry point called by an
229  *                              LLDD to register the existence of a NVME
230  *                              host FC port.
231  * @pinfo:     pointer to information about the port to be registered
232  * @template:  LLDD entrypoints and operational parameters for the port
233  * @dev:       physical hardware device node port corresponds to. Will be
234  *             used for DMA mappings
235  * @lport_p:   pointer to a local port pointer. Upon success, the routine
236  *             will allocate a nvme_fc_local_port structure and place its
237  *             address in the local port pointer. Upon failure, local port
238  *             pointer will be set to 0.
239  *
240  * Returns:
241  * a completion status. Must be 0 upon success; a negative errno
242  * (ex: -ENXIO) upon failure.
243  */
244 int
245 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
246                         struct nvme_fc_port_template *template,
247                         struct device *dev,
248                         struct nvme_fc_local_port **portptr)
249 {
250         struct nvme_fc_lport *newrec;
251         unsigned long flags;
252         int ret, idx;
253
254         if (!template->localport_delete || !template->remoteport_delete ||
255             !template->ls_req || !template->fcp_io ||
256             !template->ls_abort || !template->fcp_abort ||
257             !template->max_hw_queues || !template->max_sgl_segments ||
258             !template->max_dif_sgl_segments || !template->dma_boundary) {
259                 ret = -EINVAL;
260                 goto out_reghost_failed;
261         }
262
263         newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
264                          GFP_KERNEL);
265         if (!newrec) {
266                 ret = -ENOMEM;
267                 goto out_reghost_failed;
268         }
269
270         idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
271         if (idx < 0) {
272                 ret = -ENOSPC;
273                 goto out_fail_kfree;
274         }
275
276         if (!get_device(dev) && dev) {
277                 ret = -ENODEV;
278                 goto out_ida_put;
279         }
280
281         INIT_LIST_HEAD(&newrec->port_list);
282         INIT_LIST_HEAD(&newrec->endp_list);
283         kref_init(&newrec->ref);
284         newrec->ops = template;
285         newrec->dev = dev;
286         ida_init(&newrec->endp_cnt);
287         newrec->localport.private = &newrec[1];
288         newrec->localport.node_name = pinfo->node_name;
289         newrec->localport.port_name = pinfo->port_name;
290         newrec->localport.port_role = pinfo->port_role;
291         newrec->localport.port_id = pinfo->port_id;
292         newrec->localport.port_state = FC_OBJSTATE_ONLINE;
293         newrec->localport.port_num = idx;
294
295         spin_lock_irqsave(&nvme_fc_lock, flags);
296         list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
297         spin_unlock_irqrestore(&nvme_fc_lock, flags);
298
299         if (dev)
300                 dma_set_seg_boundary(dev, template->dma_boundary);
301
302         *portptr = &newrec->localport;
303         return 0;
304
305 out_ida_put:
306         ida_simple_remove(&nvme_fc_local_port_cnt, idx);
307 out_fail_kfree:
308         kfree(newrec);
309 out_reghost_failed:
310         *portptr = NULL;
311
312         return ret;
313 }
314 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
315
316 static void
317 nvme_fc_free_lport(struct kref *ref)
318 {
319         struct nvme_fc_lport *lport =
320                 container_of(ref, struct nvme_fc_lport, ref);
321         unsigned long flags;
322
323         WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
324         WARN_ON(!list_empty(&lport->endp_list));
325
326         /* remove from transport list */
327         spin_lock_irqsave(&nvme_fc_lock, flags);
328         list_del(&lport->port_list);
329         spin_unlock_irqrestore(&nvme_fc_lock, flags);
330
331         /* let the LLDD know we've finished tearing it down */
332         lport->ops->localport_delete(&lport->localport);
333
334         ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
335         ida_destroy(&lport->endp_cnt);
336
337         put_device(lport->dev);
338
339         kfree(lport);
340 }
341
342 static void
343 nvme_fc_lport_put(struct nvme_fc_lport *lport)
344 {
345         kref_put(&lport->ref, nvme_fc_free_lport);
346 }
347
348 static int
349 nvme_fc_lport_get(struct nvme_fc_lport *lport)
350 {
351         return kref_get_unless_zero(&lport->ref);
352 }
353
354 /**
355  * nvme_fc_unregister_localport - transport entry point called by an
356  *                              LLDD to deregister/remove a previously
357  *                              registered a NVME host FC port.
358  * @localport: pointer to the (registered) local port that is to be
359  *             deregistered.
360  *
361  * Returns:
362  * a completion status. Must be 0 upon success; a negative errno
363  * (ex: -ENXIO) upon failure.
364  */
365 int
366 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
367 {
368         struct nvme_fc_lport *lport = localport_to_lport(portptr);
369         unsigned long flags;
370
371         if (!portptr)
372                 return -EINVAL;
373
374         spin_lock_irqsave(&nvme_fc_lock, flags);
375
376         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
377                 spin_unlock_irqrestore(&nvme_fc_lock, flags);
378                 return -EINVAL;
379         }
380         portptr->port_state = FC_OBJSTATE_DELETED;
381
382         spin_unlock_irqrestore(&nvme_fc_lock, flags);
383
384         nvme_fc_lport_put(lport);
385
386         return 0;
387 }
388 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
389
390 /**
391  * nvme_fc_register_remoteport - transport entry point called by an
392  *                              LLDD to register the existence of a NVME
393  *                              subsystem FC port on its fabric.
394  * @localport: pointer to the (registered) local port that the remote
395  *             subsystem port is connected to.
396  * @pinfo:     pointer to information about the port to be registered
397  * @rport_p:   pointer to a remote port pointer. Upon success, the routine
398  *             will allocate a nvme_fc_remote_port structure and place its
399  *             address in the remote port pointer. Upon failure, remote port
400  *             pointer will be set to 0.
401  *
402  * Returns:
403  * a completion status. Must be 0 upon success; a negative errno
404  * (ex: -ENXIO) upon failure.
405  */
406 int
407 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
408                                 struct nvme_fc_port_info *pinfo,
409                                 struct nvme_fc_remote_port **portptr)
410 {
411         struct nvme_fc_lport *lport = localport_to_lport(localport);
412         struct nvme_fc_rport *newrec;
413         unsigned long flags;
414         int ret, idx;
415
416         newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
417                          GFP_KERNEL);
418         if (!newrec) {
419                 ret = -ENOMEM;
420                 goto out_reghost_failed;
421         }
422
423         if (!nvme_fc_lport_get(lport)) {
424                 ret = -ESHUTDOWN;
425                 goto out_kfree_rport;
426         }
427
428         idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
429         if (idx < 0) {
430                 ret = -ENOSPC;
431                 goto out_lport_put;
432         }
433
434         INIT_LIST_HEAD(&newrec->endp_list);
435         INIT_LIST_HEAD(&newrec->ctrl_list);
436         INIT_LIST_HEAD(&newrec->ls_req_list);
437         kref_init(&newrec->ref);
438         spin_lock_init(&newrec->lock);
439         newrec->remoteport.localport = &lport->localport;
440         newrec->dev = lport->dev;
441         newrec->lport = lport;
442         newrec->remoteport.private = &newrec[1];
443         newrec->remoteport.port_role = pinfo->port_role;
444         newrec->remoteport.node_name = pinfo->node_name;
445         newrec->remoteport.port_name = pinfo->port_name;
446         newrec->remoteport.port_id = pinfo->port_id;
447         newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
448         newrec->remoteport.port_num = idx;
449
450         spin_lock_irqsave(&nvme_fc_lock, flags);
451         list_add_tail(&newrec->endp_list, &lport->endp_list);
452         spin_unlock_irqrestore(&nvme_fc_lock, flags);
453
454         *portptr = &newrec->remoteport;
455         return 0;
456
457 out_lport_put:
458         nvme_fc_lport_put(lport);
459 out_kfree_rport:
460         kfree(newrec);
461 out_reghost_failed:
462         *portptr = NULL;
463         return ret;
464 }
465 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
466
467 static void
468 nvme_fc_free_rport(struct kref *ref)
469 {
470         struct nvme_fc_rport *rport =
471                 container_of(ref, struct nvme_fc_rport, ref);
472         struct nvme_fc_lport *lport =
473                         localport_to_lport(rport->remoteport.localport);
474         unsigned long flags;
475
476         WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
477         WARN_ON(!list_empty(&rport->ctrl_list));
478
479         /* remove from lport list */
480         spin_lock_irqsave(&nvme_fc_lock, flags);
481         list_del(&rport->endp_list);
482         spin_unlock_irqrestore(&nvme_fc_lock, flags);
483
484         /* let the LLDD know we've finished tearing it down */
485         lport->ops->remoteport_delete(&rport->remoteport);
486
487         ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
488
489         kfree(rport);
490
491         nvme_fc_lport_put(lport);
492 }
493
494 static void
495 nvme_fc_rport_put(struct nvme_fc_rport *rport)
496 {
497         kref_put(&rport->ref, nvme_fc_free_rport);
498 }
499
500 static int
501 nvme_fc_rport_get(struct nvme_fc_rport *rport)
502 {
503         return kref_get_unless_zero(&rport->ref);
504 }
505
506 static int
507 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
508 {
509         struct nvmefc_ls_req_op *lsop;
510         unsigned long flags;
511
512 restart:
513         spin_lock_irqsave(&rport->lock, flags);
514
515         list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
516                 if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
517                         lsop->flags |= FCOP_FLAGS_TERMIO;
518                         spin_unlock_irqrestore(&rport->lock, flags);
519                         rport->lport->ops->ls_abort(&rport->lport->localport,
520                                                 &rport->remoteport,
521                                                 &lsop->ls_req);
522                         goto restart;
523                 }
524         }
525         spin_unlock_irqrestore(&rport->lock, flags);
526
527         return 0;
528 }
529
530 /**
531  * nvme_fc_unregister_remoteport - transport entry point called by an
532  *                              LLDD to deregister/remove a previously
533  *                              registered a NVME subsystem FC port.
534  * @remoteport: pointer to the (registered) remote port that is to be
535  *              deregistered.
536  *
537  * Returns:
538  * a completion status. Must be 0 upon success; a negative errno
539  * (ex: -ENXIO) upon failure.
540  */
541 int
542 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
543 {
544         struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
545         struct nvme_fc_ctrl *ctrl;
546         unsigned long flags;
547
548         if (!portptr)
549                 return -EINVAL;
550
551         spin_lock_irqsave(&rport->lock, flags);
552
553         if (portptr->port_state != FC_OBJSTATE_ONLINE) {
554                 spin_unlock_irqrestore(&rport->lock, flags);
555                 return -EINVAL;
556         }
557         portptr->port_state = FC_OBJSTATE_DELETED;
558
559         /* tear down all associations to the remote port */
560         list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
561                 __nvme_fc_del_ctrl(ctrl);
562
563         spin_unlock_irqrestore(&rport->lock, flags);
564
565         nvme_fc_abort_lsops(rport);
566
567         nvme_fc_rport_put(rport);
568         return 0;
569 }
570 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
571
572
573 /* *********************** FC-NVME DMA Handling **************************** */
574
575 /*
576  * The fcloop device passes in a NULL device pointer. Real LLD's will
577  * pass in a valid device pointer. If NULL is passed to the dma mapping
578  * routines, depending on the platform, it may or may not succeed, and
579  * may crash.
580  *
581  * As such:
582  * Wrapper all the dma routines and check the dev pointer.
583  *
584  * If simple mappings (return just a dma address, we'll noop them,
585  * returning a dma address of 0.
586  *
587  * On more complex mappings (dma_map_sg), a pseudo routine fills
588  * in the scatter list, setting all dma addresses to 0.
589  */
590
591 static inline dma_addr_t
592 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
593                 enum dma_data_direction dir)
594 {
595         return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
596 }
597
598 static inline int
599 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
600 {
601         return dev ? dma_mapping_error(dev, dma_addr) : 0;
602 }
603
604 static inline void
605 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
606         enum dma_data_direction dir)
607 {
608         if (dev)
609                 dma_unmap_single(dev, addr, size, dir);
610 }
611
612 static inline void
613 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
614                 enum dma_data_direction dir)
615 {
616         if (dev)
617                 dma_sync_single_for_cpu(dev, addr, size, dir);
618 }
619
620 static inline void
621 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
622                 enum dma_data_direction dir)
623 {
624         if (dev)
625                 dma_sync_single_for_device(dev, addr, size, dir);
626 }
627
628 /* pseudo dma_map_sg call */
629 static int
630 fc_map_sg(struct scatterlist *sg, int nents)
631 {
632         struct scatterlist *s;
633         int i;
634
635         WARN_ON(nents == 0 || sg[0].length == 0);
636
637         for_each_sg(sg, s, nents, i) {
638                 s->dma_address = 0L;
639 #ifdef CONFIG_NEED_SG_DMA_LENGTH
640                 s->dma_length = s->length;
641 #endif
642         }
643         return nents;
644 }
645
646 static inline int
647 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
648                 enum dma_data_direction dir)
649 {
650         return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
651 }
652
653 static inline void
654 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
655                 enum dma_data_direction dir)
656 {
657         if (dev)
658                 dma_unmap_sg(dev, sg, nents, dir);
659 }
660
661
662 /* *********************** FC-NVME LS Handling **************************** */
663
664 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
665 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
666
667
668 static void
669 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
670 {
671         struct nvme_fc_rport *rport = lsop->rport;
672         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
673         unsigned long flags;
674
675         spin_lock_irqsave(&rport->lock, flags);
676
677         if (!lsop->req_queued) {
678                 spin_unlock_irqrestore(&rport->lock, flags);
679                 return;
680         }
681
682         list_del(&lsop->lsreq_list);
683
684         lsop->req_queued = false;
685
686         spin_unlock_irqrestore(&rport->lock, flags);
687
688         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
689                                   (lsreq->rqstlen + lsreq->rsplen),
690                                   DMA_BIDIRECTIONAL);
691
692         nvme_fc_rport_put(rport);
693 }
694
695 static int
696 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
697                 struct nvmefc_ls_req_op *lsop,
698                 void (*done)(struct nvmefc_ls_req *req, int status))
699 {
700         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
701         unsigned long flags;
702         int ret = 0;
703
704         if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
705                 return -ECONNREFUSED;
706
707         if (!nvme_fc_rport_get(rport))
708                 return -ESHUTDOWN;
709
710         lsreq->done = done;
711         lsop->rport = rport;
712         lsop->req_queued = false;
713         INIT_LIST_HEAD(&lsop->lsreq_list);
714         init_completion(&lsop->ls_done);
715
716         lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
717                                   lsreq->rqstlen + lsreq->rsplen,
718                                   DMA_BIDIRECTIONAL);
719         if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
720                 ret = -EFAULT;
721                 goto out_putrport;
722         }
723         lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
724
725         spin_lock_irqsave(&rport->lock, flags);
726
727         list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
728
729         lsop->req_queued = true;
730
731         spin_unlock_irqrestore(&rport->lock, flags);
732
733         ret = rport->lport->ops->ls_req(&rport->lport->localport,
734                                         &rport->remoteport, lsreq);
735         if (ret)
736                 goto out_unlink;
737
738         return 0;
739
740 out_unlink:
741         lsop->ls_error = ret;
742         spin_lock_irqsave(&rport->lock, flags);
743         lsop->req_queued = false;
744         list_del(&lsop->lsreq_list);
745         spin_unlock_irqrestore(&rport->lock, flags);
746         fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
747                                   (lsreq->rqstlen + lsreq->rsplen),
748                                   DMA_BIDIRECTIONAL);
749 out_putrport:
750         nvme_fc_rport_put(rport);
751
752         return ret;
753 }
754
755 static void
756 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
757 {
758         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
759
760         lsop->ls_error = status;
761         complete(&lsop->ls_done);
762 }
763
764 static int
765 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
766 {
767         struct nvmefc_ls_req *lsreq = &lsop->ls_req;
768         struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
769         int ret;
770
771         ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
772
773         if (!ret) {
774                 /*
775                  * No timeout/not interruptible as we need the struct
776                  * to exist until the lldd calls us back. Thus mandate
777                  * wait until driver calls back. lldd responsible for
778                  * the timeout action
779                  */
780                 wait_for_completion(&lsop->ls_done);
781
782                 __nvme_fc_finish_ls_req(lsop);
783
784                 ret = lsop->ls_error;
785         }
786
787         if (ret)
788                 return ret;
789
790         /* ACC or RJT payload ? */
791         if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
792                 return -ENXIO;
793
794         return 0;
795 }
796
797 static int
798 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
799                 struct nvmefc_ls_req_op *lsop,
800                 void (*done)(struct nvmefc_ls_req *req, int status))
801 {
802         /* don't wait for completion */
803
804         return __nvme_fc_send_ls_req(rport, lsop, done);
805 }
806
807 /* Validation Error indexes into the string table below */
808 enum {
809         VERR_NO_ERROR           = 0,
810         VERR_LSACC              = 1,
811         VERR_LSDESC_RQST        = 2,
812         VERR_LSDESC_RQST_LEN    = 3,
813         VERR_ASSOC_ID           = 4,
814         VERR_ASSOC_ID_LEN       = 5,
815         VERR_CONN_ID            = 6,
816         VERR_CONN_ID_LEN        = 7,
817         VERR_CR_ASSOC           = 8,
818         VERR_CR_ASSOC_ACC_LEN   = 9,
819         VERR_CR_CONN            = 10,
820         VERR_CR_CONN_ACC_LEN    = 11,
821         VERR_DISCONN            = 12,
822         VERR_DISCONN_ACC_LEN    = 13,
823 };
824
825 static char *validation_errors[] = {
826         "OK",
827         "Not LS_ACC",
828         "Not LSDESC_RQST",
829         "Bad LSDESC_RQST Length",
830         "Not Association ID",
831         "Bad Association ID Length",
832         "Not Connection ID",
833         "Bad Connection ID Length",
834         "Not CR_ASSOC Rqst",
835         "Bad CR_ASSOC ACC Length",
836         "Not CR_CONN Rqst",
837         "Bad CR_CONN ACC Length",
838         "Not Disconnect Rqst",
839         "Bad Disconnect ACC Length",
840 };
841
842 static int
843 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
844         struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
845 {
846         struct nvmefc_ls_req_op *lsop;
847         struct nvmefc_ls_req *lsreq;
848         struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
849         struct fcnvme_ls_cr_assoc_acc *assoc_acc;
850         int ret, fcret = 0;
851
852         lsop = kzalloc((sizeof(*lsop) +
853                          ctrl->lport->ops->lsrqst_priv_sz +
854                          sizeof(*assoc_rqst) + sizeof(*assoc_acc)), GFP_KERNEL);
855         if (!lsop) {
856                 ret = -ENOMEM;
857                 goto out_no_memory;
858         }
859         lsreq = &lsop->ls_req;
860
861         lsreq->private = (void *)&lsop[1];
862         assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)
863                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
864         assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
865
866         assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
867         assoc_rqst->desc_list_len =
868                         cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
869
870         assoc_rqst->assoc_cmd.desc_tag =
871                         cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
872         assoc_rqst->assoc_cmd.desc_len =
873                         fcnvme_lsdesc_len(
874                                 sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
875
876         assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
877         assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize);
878         /* Linux supports only Dynamic controllers */
879         assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
880         uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
881         strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
882                 min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
883         strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
884                 min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
885
886         lsop->queue = queue;
887         lsreq->rqstaddr = assoc_rqst;
888         lsreq->rqstlen = sizeof(*assoc_rqst);
889         lsreq->rspaddr = assoc_acc;
890         lsreq->rsplen = sizeof(*assoc_acc);
891         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
892
893         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
894         if (ret)
895                 goto out_free_buffer;
896
897         /* process connect LS completion */
898
899         /* validate the ACC response */
900         if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
901                 fcret = VERR_LSACC;
902         else if (assoc_acc->hdr.desc_list_len !=
903                         fcnvme_lsdesc_len(
904                                 sizeof(struct fcnvme_ls_cr_assoc_acc)))
905                 fcret = VERR_CR_ASSOC_ACC_LEN;
906         else if (assoc_acc->hdr.rqst.desc_tag !=
907                         cpu_to_be32(FCNVME_LSDESC_RQST))
908                 fcret = VERR_LSDESC_RQST;
909         else if (assoc_acc->hdr.rqst.desc_len !=
910                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
911                 fcret = VERR_LSDESC_RQST_LEN;
912         else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
913                 fcret = VERR_CR_ASSOC;
914         else if (assoc_acc->associd.desc_tag !=
915                         cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
916                 fcret = VERR_ASSOC_ID;
917         else if (assoc_acc->associd.desc_len !=
918                         fcnvme_lsdesc_len(
919                                 sizeof(struct fcnvme_lsdesc_assoc_id)))
920                 fcret = VERR_ASSOC_ID_LEN;
921         else if (assoc_acc->connectid.desc_tag !=
922                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
923                 fcret = VERR_CONN_ID;
924         else if (assoc_acc->connectid.desc_len !=
925                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
926                 fcret = VERR_CONN_ID_LEN;
927
928         if (fcret) {
929                 ret = -EBADF;
930                 dev_err(ctrl->dev,
931                         "q %d connect failed: %s\n",
932                         queue->qnum, validation_errors[fcret]);
933         } else {
934                 ctrl->association_id =
935                         be64_to_cpu(assoc_acc->associd.association_id);
936                 queue->connection_id =
937                         be64_to_cpu(assoc_acc->connectid.connection_id);
938                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
939         }
940
941 out_free_buffer:
942         kfree(lsop);
943 out_no_memory:
944         if (ret)
945                 dev_err(ctrl->dev,
946                         "queue %d connect admin queue failed (%d).\n",
947                         queue->qnum, ret);
948         return ret;
949 }
950
951 static int
952 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
953                         u16 qsize, u16 ersp_ratio)
954 {
955         struct nvmefc_ls_req_op *lsop;
956         struct nvmefc_ls_req *lsreq;
957         struct fcnvme_ls_cr_conn_rqst *conn_rqst;
958         struct fcnvme_ls_cr_conn_acc *conn_acc;
959         int ret, fcret = 0;
960
961         lsop = kzalloc((sizeof(*lsop) +
962                          ctrl->lport->ops->lsrqst_priv_sz +
963                          sizeof(*conn_rqst) + sizeof(*conn_acc)), GFP_KERNEL);
964         if (!lsop) {
965                 ret = -ENOMEM;
966                 goto out_no_memory;
967         }
968         lsreq = &lsop->ls_req;
969
970         lsreq->private = (void *)&lsop[1];
971         conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)
972                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
973         conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
974
975         conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
976         conn_rqst->desc_list_len = cpu_to_be32(
977                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
978                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
979
980         conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
981         conn_rqst->associd.desc_len =
982                         fcnvme_lsdesc_len(
983                                 sizeof(struct fcnvme_lsdesc_assoc_id));
984         conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
985         conn_rqst->connect_cmd.desc_tag =
986                         cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
987         conn_rqst->connect_cmd.desc_len =
988                         fcnvme_lsdesc_len(
989                                 sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
990         conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
991         conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
992         conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize);
993
994         lsop->queue = queue;
995         lsreq->rqstaddr = conn_rqst;
996         lsreq->rqstlen = sizeof(*conn_rqst);
997         lsreq->rspaddr = conn_acc;
998         lsreq->rsplen = sizeof(*conn_acc);
999         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1000
1001         ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1002         if (ret)
1003                 goto out_free_buffer;
1004
1005         /* process connect LS completion */
1006
1007         /* validate the ACC response */
1008         if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1009                 fcret = VERR_LSACC;
1010         else if (conn_acc->hdr.desc_list_len !=
1011                         fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1012                 fcret = VERR_CR_CONN_ACC_LEN;
1013         else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1014                 fcret = VERR_LSDESC_RQST;
1015         else if (conn_acc->hdr.rqst.desc_len !=
1016                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1017                 fcret = VERR_LSDESC_RQST_LEN;
1018         else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1019                 fcret = VERR_CR_CONN;
1020         else if (conn_acc->connectid.desc_tag !=
1021                         cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1022                 fcret = VERR_CONN_ID;
1023         else if (conn_acc->connectid.desc_len !=
1024                         fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1025                 fcret = VERR_CONN_ID_LEN;
1026
1027         if (fcret) {
1028                 ret = -EBADF;
1029                 dev_err(ctrl->dev,
1030                         "q %d connect failed: %s\n",
1031                         queue->qnum, validation_errors[fcret]);
1032         } else {
1033                 queue->connection_id =
1034                         be64_to_cpu(conn_acc->connectid.connection_id);
1035                 set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1036         }
1037
1038 out_free_buffer:
1039         kfree(lsop);
1040 out_no_memory:
1041         if (ret)
1042                 dev_err(ctrl->dev,
1043                         "queue %d connect command failed (%d).\n",
1044                         queue->qnum, ret);
1045         return ret;
1046 }
1047
1048 static void
1049 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1050 {
1051         struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1052
1053         __nvme_fc_finish_ls_req(lsop);
1054
1055         /* fc-nvme iniator doesn't care about success or failure of cmd */
1056
1057         kfree(lsop);
1058 }
1059
1060 /*
1061  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1062  * the FC-NVME Association.  Terminating the association also
1063  * terminates the FC-NVME connections (per queue, both admin and io
1064  * queues) that are part of the association. E.g. things are torn
1065  * down, and the related FC-NVME Association ID and Connection IDs
1066  * become invalid.
1067  *
1068  * The behavior of the fc-nvme initiator is such that it's
1069  * understanding of the association and connections will implicitly
1070  * be torn down. The action is implicit as it may be due to a loss of
1071  * connectivity with the fc-nvme target, so you may never get a
1072  * response even if you tried.  As such, the action of this routine
1073  * is to asynchronously send the LS, ignore any results of the LS, and
1074  * continue on with terminating the association. If the fc-nvme target
1075  * is present and receives the LS, it too can tear down.
1076  */
1077 static void
1078 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1079 {
1080         struct fcnvme_ls_disconnect_rqst *discon_rqst;
1081         struct fcnvme_ls_disconnect_acc *discon_acc;
1082         struct nvmefc_ls_req_op *lsop;
1083         struct nvmefc_ls_req *lsreq;
1084         int ret;
1085
1086         lsop = kzalloc((sizeof(*lsop) +
1087                          ctrl->lport->ops->lsrqst_priv_sz +
1088                          sizeof(*discon_rqst) + sizeof(*discon_acc)),
1089                         GFP_KERNEL);
1090         if (!lsop)
1091                 /* couldn't sent it... too bad */
1092                 return;
1093
1094         lsreq = &lsop->ls_req;
1095
1096         lsreq->private = (void *)&lsop[1];
1097         discon_rqst = (struct fcnvme_ls_disconnect_rqst *)
1098                         (lsreq->private + ctrl->lport->ops->lsrqst_priv_sz);
1099         discon_acc = (struct fcnvme_ls_disconnect_acc *)&discon_rqst[1];
1100
1101         discon_rqst->w0.ls_cmd = FCNVME_LS_DISCONNECT;
1102         discon_rqst->desc_list_len = cpu_to_be32(
1103                                 sizeof(struct fcnvme_lsdesc_assoc_id) +
1104                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1105
1106         discon_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1107         discon_rqst->associd.desc_len =
1108                         fcnvme_lsdesc_len(
1109                                 sizeof(struct fcnvme_lsdesc_assoc_id));
1110
1111         discon_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1112
1113         discon_rqst->discon_cmd.desc_tag = cpu_to_be32(
1114                                                 FCNVME_LSDESC_DISCONN_CMD);
1115         discon_rqst->discon_cmd.desc_len =
1116                         fcnvme_lsdesc_len(
1117                                 sizeof(struct fcnvme_lsdesc_disconn_cmd));
1118         discon_rqst->discon_cmd.scope = FCNVME_DISCONN_ASSOCIATION;
1119         discon_rqst->discon_cmd.id = cpu_to_be64(ctrl->association_id);
1120
1121         lsreq->rqstaddr = discon_rqst;
1122         lsreq->rqstlen = sizeof(*discon_rqst);
1123         lsreq->rspaddr = discon_acc;
1124         lsreq->rsplen = sizeof(*discon_acc);
1125         lsreq->timeout = NVME_FC_CONNECT_TIMEOUT_SEC;
1126
1127         ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1128                                 nvme_fc_disconnect_assoc_done);
1129         if (ret)
1130                 kfree(lsop);
1131
1132         /* only meaningful part to terminating the association */
1133         ctrl->association_id = 0;
1134 }
1135
1136
1137 /* *********************** NVME Ctrl Routines **************************** */
1138
1139 static void __nvme_fc_final_op_cleanup(struct request *rq);
1140 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1141
1142 static int
1143 nvme_fc_reinit_request(void *data, struct request *rq)
1144 {
1145         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1146         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1147
1148         memset(cmdiu, 0, sizeof(*cmdiu));
1149         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1150         cmdiu->fc_id = NVME_CMD_FC_ID;
1151         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1152         memset(&op->rsp_iu, 0, sizeof(op->rsp_iu));
1153
1154         return 0;
1155 }
1156
1157 static void
1158 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1159                 struct nvme_fc_fcp_op *op)
1160 {
1161         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1162                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1163         fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1164                                 sizeof(op->cmd_iu), DMA_TO_DEVICE);
1165
1166         atomic_set(&op->state, FCPOP_STATE_UNINIT);
1167 }
1168
1169 static void
1170 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1171                 unsigned int hctx_idx)
1172 {
1173         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1174
1175         return __nvme_fc_exit_request(set->driver_data, op);
1176 }
1177
1178 static int
1179 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1180 {
1181         int state;
1182
1183         state = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1184         if (state != FCPOP_STATE_ACTIVE) {
1185                 atomic_set(&op->state, state);
1186                 return -ECANCELED;
1187         }
1188
1189         ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1190                                         &ctrl->rport->remoteport,
1191                                         op->queue->lldd_handle,
1192                                         &op->fcp_req);
1193
1194         return 0;
1195 }
1196
1197 static void
1198 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1199 {
1200         struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1201         unsigned long flags;
1202         int i, ret;
1203
1204         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1205                 if (atomic_read(&aen_op->state) != FCPOP_STATE_ACTIVE)
1206                         continue;
1207
1208                 spin_lock_irqsave(&ctrl->lock, flags);
1209                 if (ctrl->flags & FCCTRL_TERMIO) {
1210                         ctrl->iocnt++;
1211                         aen_op->flags |= FCOP_FLAGS_TERMIO;
1212                 }
1213                 spin_unlock_irqrestore(&ctrl->lock, flags);
1214
1215                 ret = __nvme_fc_abort_op(ctrl, aen_op);
1216                 if (ret) {
1217                         /*
1218                          * if __nvme_fc_abort_op failed the io wasn't
1219                          * active. Thus this call path is running in
1220                          * parallel to the io complete. Treat as non-error.
1221                          */
1222
1223                         /* back out the flags/counters */
1224                         spin_lock_irqsave(&ctrl->lock, flags);
1225                         if (ctrl->flags & FCCTRL_TERMIO)
1226                                 ctrl->iocnt--;
1227                         aen_op->flags &= ~FCOP_FLAGS_TERMIO;
1228                         spin_unlock_irqrestore(&ctrl->lock, flags);
1229                         return;
1230                 }
1231         }
1232 }
1233
1234 static inline int
1235 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1236                 struct nvme_fc_fcp_op *op)
1237 {
1238         unsigned long flags;
1239         bool complete_rq = false;
1240
1241         spin_lock_irqsave(&ctrl->lock, flags);
1242         if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1243                 if (ctrl->flags & FCCTRL_TERMIO)
1244                         ctrl->iocnt--;
1245         }
1246         if (op->flags & FCOP_FLAGS_RELEASED)
1247                 complete_rq = true;
1248         else
1249                 op->flags |= FCOP_FLAGS_COMPLETE;
1250         spin_unlock_irqrestore(&ctrl->lock, flags);
1251
1252         return complete_rq;
1253 }
1254
1255 static void
1256 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1257 {
1258         struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1259         struct request *rq = op->rq;
1260         struct nvmefc_fcp_req *freq = &op->fcp_req;
1261         struct nvme_fc_ctrl *ctrl = op->ctrl;
1262         struct nvme_fc_queue *queue = op->queue;
1263         struct nvme_completion *cqe = &op->rsp_iu.cqe;
1264         struct nvme_command *sqe = &op->cmd_iu.sqe;
1265         __le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1266         union nvme_result result;
1267         bool complete_rq, terminate_assoc = true;
1268
1269         /*
1270          * WARNING:
1271          * The current linux implementation of a nvme controller
1272          * allocates a single tag set for all io queues and sizes
1273          * the io queues to fully hold all possible tags. Thus, the
1274          * implementation does not reference or care about the sqhd
1275          * value as it never needs to use the sqhd/sqtail pointers
1276          * for submission pacing.
1277          *
1278          * This affects the FC-NVME implementation in two ways:
1279          * 1) As the value doesn't matter, we don't need to waste
1280          *    cycles extracting it from ERSPs and stamping it in the
1281          *    cases where the transport fabricates CQEs on successful
1282          *    completions.
1283          * 2) The FC-NVME implementation requires that delivery of
1284          *    ERSP completions are to go back to the nvme layer in order
1285          *    relative to the rsn, such that the sqhd value will always
1286          *    be "in order" for the nvme layer. As the nvme layer in
1287          *    linux doesn't care about sqhd, there's no need to return
1288          *    them in order.
1289          *
1290          * Additionally:
1291          * As the core nvme layer in linux currently does not look at
1292          * every field in the cqe - in cases where the FC transport must
1293          * fabricate a CQE, the following fields will not be set as they
1294          * are not referenced:
1295          *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1296          *
1297          * Failure or error of an individual i/o, in a transport
1298          * detected fashion unrelated to the nvme completion status,
1299          * potentially cause the initiator and target sides to get out
1300          * of sync on SQ head/tail (aka outstanding io count allowed).
1301          * Per FC-NVME spec, failure of an individual command requires
1302          * the connection to be terminated, which in turn requires the
1303          * association to be terminated.
1304          */
1305
1306         fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1307                                 sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1308
1309         if (atomic_read(&op->state) == FCPOP_STATE_ABORTED)
1310                 status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1311         else if (freq->status)
1312                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1313
1314         /*
1315          * For the linux implementation, if we have an unsuccesful
1316          * status, they blk-mq layer can typically be called with the
1317          * non-zero status and the content of the cqe isn't important.
1318          */
1319         if (status)
1320                 goto done;
1321
1322         /*
1323          * command completed successfully relative to the wire
1324          * protocol. However, validate anything received and
1325          * extract the status and result from the cqe (create it
1326          * where necessary).
1327          */
1328
1329         switch (freq->rcv_rsplen) {
1330
1331         case 0:
1332         case NVME_FC_SIZEOF_ZEROS_RSP:
1333                 /*
1334                  * No response payload or 12 bytes of payload (which
1335                  * should all be zeros) are considered successful and
1336                  * no payload in the CQE by the transport.
1337                  */
1338                 if (freq->transferred_length !=
1339                         be32_to_cpu(op->cmd_iu.data_len)) {
1340                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1341                         goto done;
1342                 }
1343                 result.u64 = 0;
1344                 break;
1345
1346         case sizeof(struct nvme_fc_ersp_iu):
1347                 /*
1348                  * The ERSP IU contains a full completion with CQE.
1349                  * Validate ERSP IU and look at cqe.
1350                  */
1351                 if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1352                                         (freq->rcv_rsplen / 4) ||
1353                              be32_to_cpu(op->rsp_iu.xfrd_len) !=
1354                                         freq->transferred_length ||
1355                              op->rsp_iu.status_code ||
1356                              sqe->common.command_id != cqe->command_id)) {
1357                         status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1358                         goto done;
1359                 }
1360                 result = cqe->result;
1361                 status = cqe->status;
1362                 break;
1363
1364         default:
1365                 status = cpu_to_le16(NVME_SC_FC_TRANSPORT_ERROR << 1);
1366                 goto done;
1367         }
1368
1369         terminate_assoc = false;
1370
1371 done:
1372         if (op->flags & FCOP_FLAGS_AEN) {
1373                 nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
1374                 complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1375                 atomic_set(&op->state, FCPOP_STATE_IDLE);
1376                 op->flags = FCOP_FLAGS_AEN;     /* clear other flags */
1377                 nvme_fc_ctrl_put(ctrl);
1378                 goto check_error;
1379         }
1380
1381         complete_rq = __nvme_fc_fcpop_chk_teardowns(ctrl, op);
1382         if (!complete_rq) {
1383                 if (unlikely(op->flags & FCOP_FLAGS_TERMIO)) {
1384                         status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1385                         if (blk_queue_dying(rq->q))
1386                                 status |= cpu_to_le16(NVME_SC_DNR << 1);
1387                 }
1388                 nvme_end_request(rq, status, result);
1389         } else
1390                 __nvme_fc_final_op_cleanup(rq);
1391
1392 check_error:
1393         if (terminate_assoc)
1394                 nvme_fc_error_recovery(ctrl, "transport detected io error");
1395 }
1396
1397 static int
1398 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
1399                 struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
1400                 struct request *rq, u32 rqno)
1401 {
1402         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1403         int ret = 0;
1404
1405         memset(op, 0, sizeof(*op));
1406         op->fcp_req.cmdaddr = &op->cmd_iu;
1407         op->fcp_req.cmdlen = sizeof(op->cmd_iu);
1408         op->fcp_req.rspaddr = &op->rsp_iu;
1409         op->fcp_req.rsplen = sizeof(op->rsp_iu);
1410         op->fcp_req.done = nvme_fc_fcpio_done;
1411         op->fcp_req.first_sgl = (struct scatterlist *)&op[1];
1412         op->fcp_req.private = &op->fcp_req.first_sgl[SG_CHUNK_SIZE];
1413         op->ctrl = ctrl;
1414         op->queue = queue;
1415         op->rq = rq;
1416         op->rqno = rqno;
1417
1418         cmdiu->scsi_id = NVME_CMD_SCSI_ID;
1419         cmdiu->fc_id = NVME_CMD_FC_ID;
1420         cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
1421
1422         op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
1423                                 &op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
1424         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
1425                 dev_err(ctrl->dev,
1426                         "FCP Op failed - cmdiu dma mapping failed.\n");
1427                 ret = EFAULT;
1428                 goto out_on_error;
1429         }
1430
1431         op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
1432                                 &op->rsp_iu, sizeof(op->rsp_iu),
1433                                 DMA_FROM_DEVICE);
1434         if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
1435                 dev_err(ctrl->dev,
1436                         "FCP Op failed - rspiu dma mapping failed.\n");
1437                 ret = EFAULT;
1438         }
1439
1440         atomic_set(&op->state, FCPOP_STATE_IDLE);
1441 out_on_error:
1442         return ret;
1443 }
1444
1445 static int
1446 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
1447                 unsigned int hctx_idx, unsigned int numa_node)
1448 {
1449         struct nvme_fc_ctrl *ctrl = set->driver_data;
1450         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1451         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
1452         struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
1453
1454         return __nvme_fc_init_request(ctrl, queue, op, rq, queue->rqcnt++);
1455 }
1456
1457 static int
1458 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
1459 {
1460         struct nvme_fc_fcp_op *aen_op;
1461         struct nvme_fc_cmd_iu *cmdiu;
1462         struct nvme_command *sqe;
1463         void *private;
1464         int i, ret;
1465
1466         aen_op = ctrl->aen_ops;
1467         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1468                 private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
1469                                                 GFP_KERNEL);
1470                 if (!private)
1471                         return -ENOMEM;
1472
1473                 cmdiu = &aen_op->cmd_iu;
1474                 sqe = &cmdiu->sqe;
1475                 ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
1476                                 aen_op, (struct request *)NULL,
1477                                 (AEN_CMDID_BASE + i));
1478                 if (ret) {
1479                         kfree(private);
1480                         return ret;
1481                 }
1482
1483                 aen_op->flags = FCOP_FLAGS_AEN;
1484                 aen_op->fcp_req.first_sgl = NULL; /* no sg list */
1485                 aen_op->fcp_req.private = private;
1486
1487                 memset(sqe, 0, sizeof(*sqe));
1488                 sqe->common.opcode = nvme_admin_async_event;
1489                 /* Note: core layer may overwrite the sqe.command_id value */
1490                 sqe->common.command_id = AEN_CMDID_BASE + i;
1491         }
1492         return 0;
1493 }
1494
1495 static void
1496 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
1497 {
1498         struct nvme_fc_fcp_op *aen_op;
1499         int i;
1500
1501         aen_op = ctrl->aen_ops;
1502         for (i = 0; i < NVME_FC_NR_AEN_COMMANDS; i++, aen_op++) {
1503                 if (!aen_op->fcp_req.private)
1504                         continue;
1505
1506                 __nvme_fc_exit_request(ctrl, aen_op);
1507
1508                 kfree(aen_op->fcp_req.private);
1509                 aen_op->fcp_req.private = NULL;
1510         }
1511 }
1512
1513 static inline void
1514 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
1515                 unsigned int qidx)
1516 {
1517         struct nvme_fc_queue *queue = &ctrl->queues[qidx];
1518
1519         hctx->driver_data = queue;
1520         queue->hctx = hctx;
1521 }
1522
1523 static int
1524 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1525                 unsigned int hctx_idx)
1526 {
1527         struct nvme_fc_ctrl *ctrl = data;
1528
1529         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
1530
1531         return 0;
1532 }
1533
1534 static int
1535 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1536                 unsigned int hctx_idx)
1537 {
1538         struct nvme_fc_ctrl *ctrl = data;
1539
1540         __nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
1541
1542         return 0;
1543 }
1544
1545 static void
1546 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx, size_t queue_size)
1547 {
1548         struct nvme_fc_queue *queue;
1549
1550         queue = &ctrl->queues[idx];
1551         memset(queue, 0, sizeof(*queue));
1552         queue->ctrl = ctrl;
1553         queue->qnum = idx;
1554         atomic_set(&queue->csn, 1);
1555         queue->dev = ctrl->dev;
1556
1557         if (idx > 0)
1558                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1559         else
1560                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
1561
1562         queue->queue_size = queue_size;
1563
1564         /*
1565          * Considered whether we should allocate buffers for all SQEs
1566          * and CQEs and dma map them - mapping their respective entries
1567          * into the request structures (kernel vm addr and dma address)
1568          * thus the driver could use the buffers/mappings directly.
1569          * It only makes sense if the LLDD would use them for its
1570          * messaging api. It's very unlikely most adapter api's would use
1571          * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
1572          * structures were used instead.
1573          */
1574 }
1575
1576 /*
1577  * This routine terminates a queue at the transport level.
1578  * The transport has already ensured that all outstanding ios on
1579  * the queue have been terminated.
1580  * The transport will send a Disconnect LS request to terminate
1581  * the queue's connection. Termination of the admin queue will also
1582  * terminate the association at the target.
1583  */
1584 static void
1585 nvme_fc_free_queue(struct nvme_fc_queue *queue)
1586 {
1587         if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
1588                 return;
1589
1590         /*
1591          * Current implementation never disconnects a single queue.
1592          * It always terminates a whole association. So there is never
1593          * a disconnect(queue) LS sent to the target.
1594          */
1595
1596         queue->connection_id = 0;
1597         clear_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1598 }
1599
1600 static void
1601 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
1602         struct nvme_fc_queue *queue, unsigned int qidx)
1603 {
1604         if (ctrl->lport->ops->delete_queue)
1605                 ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
1606                                 queue->lldd_handle);
1607         queue->lldd_handle = NULL;
1608 }
1609
1610 static void
1611 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
1612 {
1613         int i;
1614
1615         for (i = 1; i < ctrl->queue_count; i++)
1616                 nvme_fc_free_queue(&ctrl->queues[i]);
1617 }
1618
1619 static int
1620 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
1621         struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
1622 {
1623         int ret = 0;
1624
1625         queue->lldd_handle = NULL;
1626         if (ctrl->lport->ops->create_queue)
1627                 ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
1628                                 qidx, qsize, &queue->lldd_handle);
1629
1630         return ret;
1631 }
1632
1633 static void
1634 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
1635 {
1636         struct nvme_fc_queue *queue = &ctrl->queues[ctrl->queue_count - 1];
1637         int i;
1638
1639         for (i = ctrl->queue_count - 1; i >= 1; i--, queue--)
1640                 __nvme_fc_delete_hw_queue(ctrl, queue, i);
1641 }
1642
1643 static int
1644 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1645 {
1646         struct nvme_fc_queue *queue = &ctrl->queues[1];
1647         int i, ret;
1648
1649         for (i = 1; i < ctrl->queue_count; i++, queue++) {
1650                 ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
1651                 if (ret)
1652                         goto delete_queues;
1653         }
1654
1655         return 0;
1656
1657 delete_queues:
1658         for (; i >= 0; i--)
1659                 __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
1660         return ret;
1661 }
1662
1663 static int
1664 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
1665 {
1666         int i, ret = 0;
1667
1668         for (i = 1; i < ctrl->queue_count; i++) {
1669                 ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
1670                                         (qsize / 5));
1671                 if (ret)
1672                         break;
1673                 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
1674                 if (ret)
1675                         break;
1676         }
1677
1678         return ret;
1679 }
1680
1681 static void
1682 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
1683 {
1684         int i;
1685
1686         for (i = 1; i < ctrl->queue_count; i++)
1687                 nvme_fc_init_queue(ctrl, i, ctrl->ctrl.sqsize);
1688 }
1689
1690 static void
1691 nvme_fc_ctrl_free(struct kref *ref)
1692 {
1693         struct nvme_fc_ctrl *ctrl =
1694                 container_of(ref, struct nvme_fc_ctrl, ref);
1695         unsigned long flags;
1696
1697         if (ctrl->ctrl.tagset) {
1698                 blk_cleanup_queue(ctrl->ctrl.connect_q);
1699                 blk_mq_free_tag_set(&ctrl->tag_set);
1700         }
1701
1702         /* remove from rport list */
1703         spin_lock_irqsave(&ctrl->rport->lock, flags);
1704         list_del(&ctrl->ctrl_list);
1705         spin_unlock_irqrestore(&ctrl->rport->lock, flags);
1706
1707         blk_cleanup_queue(ctrl->ctrl.admin_q);
1708         blk_mq_free_tag_set(&ctrl->admin_tag_set);
1709
1710         kfree(ctrl->queues);
1711
1712         put_device(ctrl->dev);
1713         nvme_fc_rport_put(ctrl->rport);
1714
1715         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
1716         if (ctrl->ctrl.opts)
1717                 nvmf_free_options(ctrl->ctrl.opts);
1718         kfree(ctrl);
1719 }
1720
1721 static void
1722 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
1723 {
1724         kref_put(&ctrl->ref, nvme_fc_ctrl_free);
1725 }
1726
1727 static int
1728 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
1729 {
1730         return kref_get_unless_zero(&ctrl->ref);
1731 }
1732
1733 /*
1734  * All accesses from nvme core layer done - can now free the
1735  * controller. Called after last nvme_put_ctrl() call
1736  */
1737 static void
1738 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
1739 {
1740         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
1741
1742         WARN_ON(nctrl != &ctrl->ctrl);
1743
1744         nvme_fc_ctrl_put(ctrl);
1745 }
1746
1747 static void
1748 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
1749 {
1750         dev_warn(ctrl->ctrl.device,
1751                 "NVME-FC{%d}: transport association error detected: %s\n",
1752                 ctrl->cnum, errmsg);
1753         dev_warn(ctrl->ctrl.device,
1754                 "NVME-FC{%d}: resetting controller\n", ctrl->cnum);
1755
1756         /* stop the queues on error, cleanup is in reset thread */
1757         if (ctrl->queue_count > 1)
1758                 nvme_stop_queues(&ctrl->ctrl);
1759
1760         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING)) {
1761                 dev_err(ctrl->ctrl.device,
1762                         "NVME-FC{%d}: error_recovery: Couldn't change state "
1763                         "to RECONNECTING\n", ctrl->cnum);
1764                 return;
1765         }
1766
1767         if (!queue_work(nvme_wq, &ctrl->reset_work))
1768                 dev_err(ctrl->ctrl.device,
1769                         "NVME-FC{%d}: error_recovery: Failed to schedule "
1770                         "reset work\n", ctrl->cnum);
1771 }
1772
1773 static enum blk_eh_timer_return
1774 nvme_fc_timeout(struct request *rq, bool reserved)
1775 {
1776         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1777         struct nvme_fc_ctrl *ctrl = op->ctrl;
1778         int ret;
1779
1780         if (reserved)
1781                 return BLK_EH_RESET_TIMER;
1782
1783         ret = __nvme_fc_abort_op(ctrl, op);
1784         if (ret)
1785                 /* io wasn't active to abort consider it done */
1786                 return BLK_EH_HANDLED;
1787
1788         /*
1789          * we can't individually ABTS an io without affecting the queue,
1790          * thus killing the queue, adn thus the association.
1791          * So resolve by performing a controller reset, which will stop
1792          * the host/io stack, terminate the association on the link,
1793          * and recreate an association on the link.
1794          */
1795         nvme_fc_error_recovery(ctrl, "io timeout error");
1796
1797         return BLK_EH_HANDLED;
1798 }
1799
1800 static int
1801 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1802                 struct nvme_fc_fcp_op *op)
1803 {
1804         struct nvmefc_fcp_req *freq = &op->fcp_req;
1805         enum dma_data_direction dir;
1806         int ret;
1807
1808         freq->sg_cnt = 0;
1809
1810         if (!blk_rq_payload_bytes(rq))
1811                 return 0;
1812
1813         freq->sg_table.sgl = freq->first_sgl;
1814         ret = sg_alloc_table_chained(&freq->sg_table,
1815                         blk_rq_nr_phys_segments(rq), freq->sg_table.sgl);
1816         if (ret)
1817                 return -ENOMEM;
1818
1819         op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
1820         WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
1821         dir = (rq_data_dir(rq) == WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
1822         freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
1823                                 op->nents, dir);
1824         if (unlikely(freq->sg_cnt <= 0)) {
1825                 sg_free_table_chained(&freq->sg_table, true);
1826                 freq->sg_cnt = 0;
1827                 return -EFAULT;
1828         }
1829
1830         /*
1831          * TODO: blk_integrity_rq(rq)  for DIF
1832          */
1833         return 0;
1834 }
1835
1836 static void
1837 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
1838                 struct nvme_fc_fcp_op *op)
1839 {
1840         struct nvmefc_fcp_req *freq = &op->fcp_req;
1841
1842         if (!freq->sg_cnt)
1843                 return;
1844
1845         fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
1846                                 ((rq_data_dir(rq) == WRITE) ?
1847                                         DMA_TO_DEVICE : DMA_FROM_DEVICE));
1848
1849         nvme_cleanup_cmd(rq);
1850
1851         sg_free_table_chained(&freq->sg_table, true);
1852
1853         freq->sg_cnt = 0;
1854 }
1855
1856 /*
1857  * In FC, the queue is a logical thing. At transport connect, the target
1858  * creates its "queue" and returns a handle that is to be given to the
1859  * target whenever it posts something to the corresponding SQ.  When an
1860  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
1861  * command contained within the SQE, an io, and assigns a FC exchange
1862  * to it. The SQE and the associated SQ handle are sent in the initial
1863  * CMD IU sents on the exchange. All transfers relative to the io occur
1864  * as part of the exchange.  The CQE is the last thing for the io,
1865  * which is transferred (explicitly or implicitly) with the RSP IU
1866  * sent on the exchange. After the CQE is received, the FC exchange is
1867  * terminaed and the Exchange may be used on a different io.
1868  *
1869  * The transport to LLDD api has the transport making a request for a
1870  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
1871  * resource and transfers the command. The LLDD will then process all
1872  * steps to complete the io. Upon completion, the transport done routine
1873  * is called.
1874  *
1875  * So - while the operation is outstanding to the LLDD, there is a link
1876  * level FC exchange resource that is also outstanding. This must be
1877  * considered in all cleanup operations.
1878  */
1879 static blk_status_t
1880 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1881         struct nvme_fc_fcp_op *op, u32 data_len,
1882         enum nvmefc_fcp_datadir io_dir)
1883 {
1884         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1885         struct nvme_command *sqe = &cmdiu->sqe;
1886         u32 csn;
1887         int ret;
1888
1889         /*
1890          * before attempting to send the io, check to see if we believe
1891          * the target device is present
1892          */
1893         if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1894                 return BLK_STS_IOERR;
1895
1896         if (!nvme_fc_ctrl_get(ctrl))
1897                 return BLK_STS_IOERR;
1898
1899         /* format the FC-NVME CMD IU and fcp_req */
1900         cmdiu->connection_id = cpu_to_be64(queue->connection_id);
1901         csn = atomic_inc_return(&queue->csn);
1902         cmdiu->csn = cpu_to_be32(csn);
1903         cmdiu->data_len = cpu_to_be32(data_len);
1904         switch (io_dir) {
1905         case NVMEFC_FCP_WRITE:
1906                 cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
1907                 break;
1908         case NVMEFC_FCP_READ:
1909                 cmdiu->flags = FCNVME_CMD_FLAGS_READ;
1910                 break;
1911         case NVMEFC_FCP_NODATA:
1912                 cmdiu->flags = 0;
1913                 break;
1914         }
1915         op->fcp_req.payload_length = data_len;
1916         op->fcp_req.io_dir = io_dir;
1917         op->fcp_req.transferred_length = 0;
1918         op->fcp_req.rcv_rsplen = 0;
1919         op->fcp_req.status = NVME_SC_SUCCESS;
1920         op->fcp_req.sqid = cpu_to_le16(queue->qnum);
1921
1922         /*
1923          * validate per fabric rules, set fields mandated by fabric spec
1924          * as well as those by FC-NVME spec.
1925          */
1926         WARN_ON_ONCE(sqe->common.metadata);
1927         WARN_ON_ONCE(sqe->common.dptr.prp1);
1928         WARN_ON_ONCE(sqe->common.dptr.prp2);
1929         sqe->common.flags |= NVME_CMD_SGL_METABUF;
1930
1931         /*
1932          * format SQE DPTR field per FC-NVME rules
1933          *    type=data block descr; subtype=offset;
1934          *    offset is currently 0.
1935          */
1936         sqe->rw.dptr.sgl.type = NVME_SGL_FMT_OFFSET;
1937         sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
1938         sqe->rw.dptr.sgl.addr = 0;
1939
1940         if (!(op->flags & FCOP_FLAGS_AEN)) {
1941                 ret = nvme_fc_map_data(ctrl, op->rq, op);
1942                 if (ret < 0) {
1943                         nvme_cleanup_cmd(op->rq);
1944                         nvme_fc_ctrl_put(ctrl);
1945                         if (ret == -ENOMEM || ret == -EAGAIN)
1946                                 return BLK_STS_RESOURCE;
1947                         return BLK_STS_IOERR;
1948                 }
1949         }
1950
1951         fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
1952                                   sizeof(op->cmd_iu), DMA_TO_DEVICE);
1953
1954         atomic_set(&op->state, FCPOP_STATE_ACTIVE);
1955
1956         if (!(op->flags & FCOP_FLAGS_AEN))
1957                 blk_mq_start_request(op->rq);
1958
1959         ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
1960                                         &ctrl->rport->remoteport,
1961                                         queue->lldd_handle, &op->fcp_req);
1962
1963         if (ret) {
1964                 if (op->rq) {                   /* normal request */
1965                         nvme_fc_unmap_data(ctrl, op->rq, op);
1966                         nvme_cleanup_cmd(op->rq);
1967                 }
1968                 /* else - aen. no cleanup needed */
1969
1970                 nvme_fc_ctrl_put(ctrl);
1971
1972                 if (ret != -EBUSY)
1973                         return BLK_STS_IOERR;
1974
1975                 if (op->rq) {
1976                         blk_mq_stop_hw_queues(op->rq->q);
1977                         blk_mq_delay_queue(queue->hctx, NVMEFC_QUEUE_DELAY);
1978                 }
1979                 return BLK_STS_RESOURCE;
1980         }
1981
1982         return BLK_STS_OK;
1983 }
1984
1985 static blk_status_t
1986 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
1987                         const struct blk_mq_queue_data *bd)
1988 {
1989         struct nvme_ns *ns = hctx->queue->queuedata;
1990         struct nvme_fc_queue *queue = hctx->driver_data;
1991         struct nvme_fc_ctrl *ctrl = queue->ctrl;
1992         struct request *rq = bd->rq;
1993         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1994         struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
1995         struct nvme_command *sqe = &cmdiu->sqe;
1996         enum nvmefc_fcp_datadir io_dir;
1997         u32 data_len;
1998         blk_status_t ret;
1999
2000         ret = nvme_setup_cmd(ns, rq, sqe);
2001         if (ret)
2002                 return ret;
2003
2004         data_len = blk_rq_payload_bytes(rq);
2005         if (data_len)
2006                 io_dir = ((rq_data_dir(rq) == WRITE) ?
2007                                         NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2008         else
2009                 io_dir = NVMEFC_FCP_NODATA;
2010
2011         return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2012 }
2013
2014 static struct blk_mq_tags *
2015 nvme_fc_tagset(struct nvme_fc_queue *queue)
2016 {
2017         if (queue->qnum == 0)
2018                 return queue->ctrl->admin_tag_set.tags[queue->qnum];
2019
2020         return queue->ctrl->tag_set.tags[queue->qnum - 1];
2021 }
2022
2023 static int
2024 nvme_fc_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
2025
2026 {
2027         struct nvme_fc_queue *queue = hctx->driver_data;
2028         struct nvme_fc_ctrl *ctrl = queue->ctrl;
2029         struct request *req;
2030         struct nvme_fc_fcp_op *op;
2031
2032         req = blk_mq_tag_to_rq(nvme_fc_tagset(queue), tag);
2033         if (!req)
2034                 return 0;
2035
2036         op = blk_mq_rq_to_pdu(req);
2037
2038         if ((atomic_read(&op->state) == FCPOP_STATE_ACTIVE) &&
2039                  (ctrl->lport->ops->poll_queue))
2040                 ctrl->lport->ops->poll_queue(&ctrl->lport->localport,
2041                                                  queue->lldd_handle);
2042
2043         return ((atomic_read(&op->state) != FCPOP_STATE_ACTIVE));
2044 }
2045
2046 static void
2047 nvme_fc_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
2048 {
2049         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2050         struct nvme_fc_fcp_op *aen_op;
2051         unsigned long flags;
2052         bool terminating = false;
2053         blk_status_t ret;
2054
2055         if (aer_idx > NVME_FC_NR_AEN_COMMANDS)
2056                 return;
2057
2058         spin_lock_irqsave(&ctrl->lock, flags);
2059         if (ctrl->flags & FCCTRL_TERMIO)
2060                 terminating = true;
2061         spin_unlock_irqrestore(&ctrl->lock, flags);
2062
2063         if (terminating)
2064                 return;
2065
2066         aen_op = &ctrl->aen_ops[aer_idx];
2067
2068         ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2069                                         NVMEFC_FCP_NODATA);
2070         if (ret)
2071                 dev_err(ctrl->ctrl.device,
2072                         "failed async event work [%d]\n", aer_idx);
2073 }
2074
2075 static void
2076 __nvme_fc_final_op_cleanup(struct request *rq)
2077 {
2078         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2079         struct nvme_fc_ctrl *ctrl = op->ctrl;
2080
2081         atomic_set(&op->state, FCPOP_STATE_IDLE);
2082         op->flags &= ~(FCOP_FLAGS_TERMIO | FCOP_FLAGS_RELEASED |
2083                         FCOP_FLAGS_COMPLETE);
2084
2085         nvme_cleanup_cmd(rq);
2086         nvme_fc_unmap_data(ctrl, rq, op);
2087         nvme_complete_rq(rq);
2088         nvme_fc_ctrl_put(ctrl);
2089
2090 }
2091
2092 static void
2093 nvme_fc_complete_rq(struct request *rq)
2094 {
2095         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2096         struct nvme_fc_ctrl *ctrl = op->ctrl;
2097         unsigned long flags;
2098         bool completed = false;
2099
2100         /*
2101          * the core layer, on controller resets after calling
2102          * nvme_shutdown_ctrl(), calls complete_rq without our
2103          * calling blk_mq_complete_request(), thus there may still
2104          * be live i/o outstanding with the LLDD. Means transport has
2105          * to track complete calls vs fcpio_done calls to know what
2106          * path to take on completes and dones.
2107          */
2108         spin_lock_irqsave(&ctrl->lock, flags);
2109         if (op->flags & FCOP_FLAGS_COMPLETE)
2110                 completed = true;
2111         else
2112                 op->flags |= FCOP_FLAGS_RELEASED;
2113         spin_unlock_irqrestore(&ctrl->lock, flags);
2114
2115         if (completed)
2116                 __nvme_fc_final_op_cleanup(rq);
2117 }
2118
2119 /*
2120  * This routine is used by the transport when it needs to find active
2121  * io on a queue that is to be terminated. The transport uses
2122  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2123  * this routine to kill them on a 1 by 1 basis.
2124  *
2125  * As FC allocates FC exchange for each io, the transport must contact
2126  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2127  * After terminating the exchange the LLDD will call the transport's
2128  * normal io done path for the request, but it will have an aborted
2129  * status. The done path will return the io request back to the block
2130  * layer with an error status.
2131  */
2132 static void
2133 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2134 {
2135         struct nvme_ctrl *nctrl = data;
2136         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2137         struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2138         unsigned long flags;
2139         int status;
2140
2141         if (!blk_mq_request_started(req))
2142                 return;
2143
2144         spin_lock_irqsave(&ctrl->lock, flags);
2145         if (ctrl->flags & FCCTRL_TERMIO) {
2146                 ctrl->iocnt++;
2147                 op->flags |= FCOP_FLAGS_TERMIO;
2148         }
2149         spin_unlock_irqrestore(&ctrl->lock, flags);
2150
2151         status = __nvme_fc_abort_op(ctrl, op);
2152         if (status) {
2153                 /*
2154                  * if __nvme_fc_abort_op failed the io wasn't
2155                  * active. Thus this call path is running in
2156                  * parallel to the io complete. Treat as non-error.
2157                  */
2158
2159                 /* back out the flags/counters */
2160                 spin_lock_irqsave(&ctrl->lock, flags);
2161                 if (ctrl->flags & FCCTRL_TERMIO)
2162                         ctrl->iocnt--;
2163                 op->flags &= ~FCOP_FLAGS_TERMIO;
2164                 spin_unlock_irqrestore(&ctrl->lock, flags);
2165                 return;
2166         }
2167 }
2168
2169
2170 static const struct blk_mq_ops nvme_fc_mq_ops = {
2171         .queue_rq       = nvme_fc_queue_rq,
2172         .complete       = nvme_fc_complete_rq,
2173         .init_request   = nvme_fc_init_request,
2174         .exit_request   = nvme_fc_exit_request,
2175         .reinit_request = nvme_fc_reinit_request,
2176         .init_hctx      = nvme_fc_init_hctx,
2177         .poll           = nvme_fc_poll,
2178         .timeout        = nvme_fc_timeout,
2179 };
2180
2181 static int
2182 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2183 {
2184         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2185         int ret;
2186
2187         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2188         if (ret) {
2189                 dev_info(ctrl->ctrl.device,
2190                         "set_queue_count failed: %d\n", ret);
2191                 return ret;
2192         }
2193
2194         ctrl->queue_count = opts->nr_io_queues + 1;
2195         if (!opts->nr_io_queues)
2196                 return 0;
2197
2198         nvme_fc_init_io_queues(ctrl);
2199
2200         memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2201         ctrl->tag_set.ops = &nvme_fc_mq_ops;
2202         ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2203         ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2204         ctrl->tag_set.numa_node = NUMA_NO_NODE;
2205         ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2206         ctrl->tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2207                                         (SG_CHUNK_SIZE *
2208                                                 sizeof(struct scatterlist)) +
2209                                         ctrl->lport->ops->fcprqst_priv_sz;
2210         ctrl->tag_set.driver_data = ctrl;
2211         ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
2212         ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2213
2214         ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2215         if (ret)
2216                 return ret;
2217
2218         ctrl->ctrl.tagset = &ctrl->tag_set;
2219
2220         ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2221         if (IS_ERR(ctrl->ctrl.connect_q)) {
2222                 ret = PTR_ERR(ctrl->ctrl.connect_q);
2223                 goto out_free_tag_set;
2224         }
2225
2226         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2227         if (ret)
2228                 goto out_cleanup_blk_queue;
2229
2230         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2231         if (ret)
2232                 goto out_delete_hw_queues;
2233
2234         return 0;
2235
2236 out_delete_hw_queues:
2237         nvme_fc_delete_hw_io_queues(ctrl);
2238 out_cleanup_blk_queue:
2239         nvme_stop_keep_alive(&ctrl->ctrl);
2240         blk_cleanup_queue(ctrl->ctrl.connect_q);
2241 out_free_tag_set:
2242         blk_mq_free_tag_set(&ctrl->tag_set);
2243         nvme_fc_free_io_queues(ctrl);
2244
2245         /* force put free routine to ignore io queues */
2246         ctrl->ctrl.tagset = NULL;
2247
2248         return ret;
2249 }
2250
2251 static int
2252 nvme_fc_reinit_io_queues(struct nvme_fc_ctrl *ctrl)
2253 {
2254         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2255         int ret;
2256
2257         ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
2258         if (ret) {
2259                 dev_info(ctrl->ctrl.device,
2260                         "set_queue_count failed: %d\n", ret);
2261                 return ret;
2262         }
2263
2264         /* check for io queues existing */
2265         if (ctrl->queue_count == 1)
2266                 return 0;
2267
2268         nvme_fc_init_io_queues(ctrl);
2269
2270         ret = blk_mq_reinit_tagset(&ctrl->tag_set);
2271         if (ret)
2272                 goto out_free_io_queues;
2273
2274         ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2275         if (ret)
2276                 goto out_free_io_queues;
2277
2278         ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.opts->queue_size);
2279         if (ret)
2280                 goto out_delete_hw_queues;
2281
2282         return 0;
2283
2284 out_delete_hw_queues:
2285         nvme_fc_delete_hw_io_queues(ctrl);
2286 out_free_io_queues:
2287         nvme_fc_free_io_queues(ctrl);
2288         return ret;
2289 }
2290
2291 /*
2292  * This routine restarts the controller on the host side, and
2293  * on the link side, recreates the controller association.
2294  */
2295 static int
2296 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2297 {
2298         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2299         u32 segs;
2300         int ret;
2301         bool changed;
2302
2303         ++ctrl->ctrl.nr_reconnects;
2304
2305         /*
2306          * Create the admin queue
2307          */
2308
2309         nvme_fc_init_queue(ctrl, 0, NVME_FC_AQ_BLKMQ_DEPTH);
2310
2311         ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2312                                 NVME_FC_AQ_BLKMQ_DEPTH);
2313         if (ret)
2314                 goto out_free_queue;
2315
2316         ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2317                                 NVME_FC_AQ_BLKMQ_DEPTH,
2318                                 (NVME_FC_AQ_BLKMQ_DEPTH / 4));
2319         if (ret)
2320                 goto out_delete_hw_queue;
2321
2322         if (ctrl->ctrl.state != NVME_CTRL_NEW)
2323                 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
2324
2325         ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2326         if (ret)
2327                 goto out_disconnect_admin_queue;
2328
2329         /*
2330          * Check controller capabilities
2331          *
2332          * todo:- add code to check if ctrl attributes changed from
2333          * prior connection values
2334          */
2335
2336         ret = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
2337         if (ret) {
2338                 dev_err(ctrl->ctrl.device,
2339                         "prop_get NVME_REG_CAP failed\n");
2340                 goto out_disconnect_admin_queue;
2341         }
2342
2343         ctrl->ctrl.sqsize =
2344                 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
2345
2346         ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
2347         if (ret)
2348                 goto out_disconnect_admin_queue;
2349
2350         segs = min_t(u32, NVME_FC_MAX_SEGMENTS,
2351                         ctrl->lport->ops->max_sgl_segments);
2352         ctrl->ctrl.max_hw_sectors = (segs - 1) << (PAGE_SHIFT - 9);
2353
2354         ret = nvme_init_identify(&ctrl->ctrl);
2355         if (ret)
2356                 goto out_disconnect_admin_queue;
2357
2358         /* sanity checks */
2359
2360         /* FC-NVME does not have other data in the capsule */
2361         if (ctrl->ctrl.icdoff) {
2362                 dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
2363                                 ctrl->ctrl.icdoff);
2364                 goto out_disconnect_admin_queue;
2365         }
2366
2367         nvme_start_keep_alive(&ctrl->ctrl);
2368
2369         /* FC-NVME supports normal SGL Data Block Descriptors */
2370
2371         if (opts->queue_size > ctrl->ctrl.maxcmd) {
2372                 /* warn if maxcmd is lower than queue_size */
2373                 dev_warn(ctrl->ctrl.device,
2374                         "queue_size %zu > ctrl maxcmd %u, reducing "
2375                         "to queue_size\n",
2376                         opts->queue_size, ctrl->ctrl.maxcmd);
2377                 opts->queue_size = ctrl->ctrl.maxcmd;
2378         }
2379
2380         ret = nvme_fc_init_aen_ops(ctrl);
2381         if (ret)
2382                 goto out_term_aen_ops;
2383
2384         /*
2385          * Create the io queues
2386          */
2387
2388         if (ctrl->queue_count > 1) {
2389                 if (ctrl->ctrl.state == NVME_CTRL_NEW)
2390                         ret = nvme_fc_create_io_queues(ctrl);
2391                 else
2392                         ret = nvme_fc_reinit_io_queues(ctrl);
2393                 if (ret)
2394                         goto out_term_aen_ops;
2395         }
2396
2397         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
2398         WARN_ON_ONCE(!changed);
2399
2400         ctrl->ctrl.nr_reconnects = 0;
2401
2402         if (ctrl->queue_count > 1) {
2403                 nvme_start_queues(&ctrl->ctrl);
2404                 nvme_queue_scan(&ctrl->ctrl);
2405                 nvme_queue_async_events(&ctrl->ctrl);
2406         }
2407
2408         return 0;       /* Success */
2409
2410 out_term_aen_ops:
2411         nvme_fc_term_aen_ops(ctrl);
2412         nvme_stop_keep_alive(&ctrl->ctrl);
2413 out_disconnect_admin_queue:
2414         /* send a Disconnect(association) LS to fc-nvme target */
2415         nvme_fc_xmt_disconnect_assoc(ctrl);
2416 out_delete_hw_queue:
2417         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2418 out_free_queue:
2419         nvme_fc_free_queue(&ctrl->queues[0]);
2420
2421         return ret;
2422 }
2423
2424 /*
2425  * This routine stops operation of the controller on the host side.
2426  * On the host os stack side: Admin and IO queues are stopped,
2427  *   outstanding ios on them terminated via FC ABTS.
2428  * On the link side: the association is terminated.
2429  */
2430 static void
2431 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
2432 {
2433         unsigned long flags;
2434
2435         nvme_stop_keep_alive(&ctrl->ctrl);
2436
2437         spin_lock_irqsave(&ctrl->lock, flags);
2438         ctrl->flags |= FCCTRL_TERMIO;
2439         ctrl->iocnt = 0;
2440         spin_unlock_irqrestore(&ctrl->lock, flags);
2441
2442         /*
2443          * If io queues are present, stop them and terminate all outstanding
2444          * ios on them. As FC allocates FC exchange for each io, the
2445          * transport must contact the LLDD to terminate the exchange,
2446          * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
2447          * to tell us what io's are busy and invoke a transport routine
2448          * to kill them with the LLDD.  After terminating the exchange
2449          * the LLDD will call the transport's normal io done path, but it
2450          * will have an aborted status. The done path will return the
2451          * io requests back to the block layer as part of normal completions
2452          * (but with error status).
2453          */
2454         if (ctrl->queue_count > 1) {
2455                 nvme_stop_queues(&ctrl->ctrl);
2456                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
2457                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2458         }
2459
2460         /*
2461          * Other transports, which don't have link-level contexts bound
2462          * to sqe's, would try to gracefully shutdown the controller by
2463          * writing the registers for shutdown and polling (call
2464          * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
2465          * just aborted and we will wait on those contexts, and given
2466          * there was no indication of how live the controlelr is on the
2467          * link, don't send more io to create more contexts for the
2468          * shutdown. Let the controller fail via keepalive failure if
2469          * its still present.
2470          */
2471
2472         /*
2473          * clean up the admin queue. Same thing as above.
2474          * use blk_mq_tagset_busy_itr() and the transport routine to
2475          * terminate the exchanges.
2476          */
2477         blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
2478         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
2479                                 nvme_fc_terminate_exchange, &ctrl->ctrl);
2480
2481         /* kill the aens as they are a separate path */
2482         nvme_fc_abort_aen_ops(ctrl);
2483
2484         /* wait for all io that had to be aborted */
2485         spin_lock_irqsave(&ctrl->lock, flags);
2486         while (ctrl->iocnt) {
2487                 spin_unlock_irqrestore(&ctrl->lock, flags);
2488                 msleep(1000);
2489                 spin_lock_irqsave(&ctrl->lock, flags);
2490         }
2491         ctrl->flags &= ~FCCTRL_TERMIO;
2492         spin_unlock_irqrestore(&ctrl->lock, flags);
2493
2494         nvme_fc_term_aen_ops(ctrl);
2495
2496         /*
2497          * send a Disconnect(association) LS to fc-nvme target
2498          * Note: could have been sent at top of process, but
2499          * cleaner on link traffic if after the aborts complete.
2500          * Note: if association doesn't exist, association_id will be 0
2501          */
2502         if (ctrl->association_id)
2503                 nvme_fc_xmt_disconnect_assoc(ctrl);
2504
2505         if (ctrl->ctrl.tagset) {
2506                 nvme_fc_delete_hw_io_queues(ctrl);
2507                 nvme_fc_free_io_queues(ctrl);
2508         }
2509
2510         __nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
2511         nvme_fc_free_queue(&ctrl->queues[0]);
2512 }
2513
2514 static void
2515 nvme_fc_delete_ctrl_work(struct work_struct *work)
2516 {
2517         struct nvme_fc_ctrl *ctrl =
2518                 container_of(work, struct nvme_fc_ctrl, delete_work);
2519
2520         cancel_work_sync(&ctrl->reset_work);
2521         cancel_delayed_work_sync(&ctrl->connect_work);
2522
2523         /*
2524          * kill the association on the link side.  this will block
2525          * waiting for io to terminate
2526          */
2527         nvme_fc_delete_association(ctrl);
2528
2529         /*
2530          * tear down the controller
2531          * After the last reference on the nvme ctrl is removed,
2532          * the transport nvme_fc_nvme_ctrl_freed() callback will be
2533          * invoked. From there, the transport will tear down it's
2534          * logical queues and association.
2535          */
2536         nvme_uninit_ctrl(&ctrl->ctrl);
2537
2538         nvme_put_ctrl(&ctrl->ctrl);
2539 }
2540
2541 static bool
2542 __nvme_fc_schedule_delete_work(struct nvme_fc_ctrl *ctrl)
2543 {
2544         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
2545                 return true;
2546
2547         if (!queue_work(nvme_wq, &ctrl->delete_work))
2548                 return true;
2549
2550         return false;
2551 }
2552
2553 static int
2554 __nvme_fc_del_ctrl(struct nvme_fc_ctrl *ctrl)
2555 {
2556         return __nvme_fc_schedule_delete_work(ctrl) ? -EBUSY : 0;
2557 }
2558
2559 /*
2560  * Request from nvme core layer to delete the controller
2561  */
2562 static int
2563 nvme_fc_del_nvme_ctrl(struct nvme_ctrl *nctrl)
2564 {
2565         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2566         int ret;
2567
2568         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
2569                 return -EBUSY;
2570
2571         ret = __nvme_fc_del_ctrl(ctrl);
2572
2573         if (!ret)
2574                 flush_workqueue(nvme_wq);
2575
2576         nvme_put_ctrl(&ctrl->ctrl);
2577
2578         return ret;
2579 }
2580
2581 static void
2582 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
2583 {
2584         /* If we are resetting/deleting then do nothing */
2585         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
2586                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
2587                         ctrl->ctrl.state == NVME_CTRL_LIVE);
2588                 return;
2589         }
2590
2591         dev_info(ctrl->ctrl.device,
2592                 "NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
2593                 ctrl->cnum, status);
2594
2595         if (nvmf_should_reconnect(&ctrl->ctrl)) {
2596                 dev_info(ctrl->ctrl.device,
2597                         "NVME-FC{%d}: Reconnect attempt in %d seconds.\n",
2598                         ctrl->cnum, ctrl->ctrl.opts->reconnect_delay);
2599                 queue_delayed_work(nvme_wq, &ctrl->connect_work,
2600                                 ctrl->ctrl.opts->reconnect_delay * HZ);
2601         } else {
2602                 dev_warn(ctrl->ctrl.device,
2603                                 "NVME-FC{%d}: Max reconnect attempts (%d) "
2604                                 "reached. Removing controller\n",
2605                                 ctrl->cnum, ctrl->ctrl.nr_reconnects);
2606                 WARN_ON(__nvme_fc_schedule_delete_work(ctrl));
2607         }
2608 }
2609
2610 static void
2611 nvme_fc_reset_ctrl_work(struct work_struct *work)
2612 {
2613         struct nvme_fc_ctrl *ctrl =
2614                         container_of(work, struct nvme_fc_ctrl, reset_work);
2615         int ret;
2616
2617         /* will block will waiting for io to terminate */
2618         nvme_fc_delete_association(ctrl);
2619
2620         ret = nvme_fc_create_association(ctrl);
2621         if (ret)
2622                 nvme_fc_reconnect_or_delete(ctrl, ret);
2623         else
2624                 dev_info(ctrl->ctrl.device,
2625                         "NVME-FC{%d}: controller reset complete\n", ctrl->cnum);
2626 }
2627
2628 /*
2629  * called by the nvme core layer, for sysfs interface that requests
2630  * a reset of the nvme controller
2631  */
2632 static int
2633 nvme_fc_reset_nvme_ctrl(struct nvme_ctrl *nctrl)
2634 {
2635         struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2636
2637         dev_info(ctrl->ctrl.device,
2638                 "NVME-FC{%d}: admin requested controller reset\n", ctrl->cnum);
2639
2640         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
2641                 return -EBUSY;
2642
2643         if (!queue_work(nvme_wq, &ctrl->reset_work))
2644                 return -EBUSY;
2645
2646         flush_work(&ctrl->reset_work);
2647
2648         return 0;
2649 }
2650
2651 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
2652         .name                   = "fc",
2653         .module                 = THIS_MODULE,
2654         .flags                  = NVME_F_FABRICS,
2655         .reg_read32             = nvmf_reg_read32,
2656         .reg_read64             = nvmf_reg_read64,
2657         .reg_write32            = nvmf_reg_write32,
2658         .reset_ctrl             = nvme_fc_reset_nvme_ctrl,
2659         .free_ctrl              = nvme_fc_nvme_ctrl_freed,
2660         .submit_async_event     = nvme_fc_submit_async_event,
2661         .delete_ctrl            = nvme_fc_del_nvme_ctrl,
2662         .get_subsysnqn          = nvmf_get_subsysnqn,
2663         .get_address            = nvmf_get_address,
2664 };
2665
2666 static void
2667 nvme_fc_connect_ctrl_work(struct work_struct *work)
2668 {
2669         int ret;
2670
2671         struct nvme_fc_ctrl *ctrl =
2672                         container_of(to_delayed_work(work),
2673                                 struct nvme_fc_ctrl, connect_work);
2674
2675         ret = nvme_fc_create_association(ctrl);
2676         if (ret)
2677                 nvme_fc_reconnect_or_delete(ctrl, ret);
2678         else
2679                 dev_info(ctrl->ctrl.device,
2680                         "NVME-FC{%d}: controller reconnect complete\n",
2681                         ctrl->cnum);
2682 }
2683
2684
2685 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
2686         .queue_rq       = nvme_fc_queue_rq,
2687         .complete       = nvme_fc_complete_rq,
2688         .init_request   = nvme_fc_init_request,
2689         .exit_request   = nvme_fc_exit_request,
2690         .reinit_request = nvme_fc_reinit_request,
2691         .init_hctx      = nvme_fc_init_admin_hctx,
2692         .timeout        = nvme_fc_timeout,
2693 };
2694
2695
2696 static struct nvme_ctrl *
2697 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
2698         struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
2699 {
2700         struct nvme_fc_ctrl *ctrl;
2701         unsigned long flags;
2702         int ret, idx;
2703
2704         if (!(rport->remoteport.port_role &
2705             (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
2706                 ret = -EBADR;
2707                 goto out_fail;
2708         }
2709
2710         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2711         if (!ctrl) {
2712                 ret = -ENOMEM;
2713                 goto out_fail;
2714         }
2715
2716         idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
2717         if (idx < 0) {
2718                 ret = -ENOSPC;
2719                 goto out_free_ctrl;
2720         }
2721
2722         ctrl->ctrl.opts = opts;
2723         INIT_LIST_HEAD(&ctrl->ctrl_list);
2724         ctrl->lport = lport;
2725         ctrl->rport = rport;
2726         ctrl->dev = lport->dev;
2727         ctrl->cnum = idx;
2728
2729         get_device(ctrl->dev);
2730         kref_init(&ctrl->ref);
2731
2732         INIT_WORK(&ctrl->delete_work, nvme_fc_delete_ctrl_work);
2733         INIT_WORK(&ctrl->reset_work, nvme_fc_reset_ctrl_work);
2734         INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
2735         spin_lock_init(&ctrl->lock);
2736
2737         /* io queue count */
2738         ctrl->queue_count = min_t(unsigned int,
2739                                 opts->nr_io_queues,
2740                                 lport->ops->max_hw_queues);
2741         opts->nr_io_queues = ctrl->queue_count; /* so opts has valid value */
2742         ctrl->queue_count++;    /* +1 for admin queue */
2743
2744         ctrl->ctrl.sqsize = opts->queue_size - 1;
2745         ctrl->ctrl.kato = opts->kato;
2746
2747         ret = -ENOMEM;
2748         ctrl->queues = kcalloc(ctrl->queue_count, sizeof(struct nvme_fc_queue),
2749                                 GFP_KERNEL);
2750         if (!ctrl->queues)
2751                 goto out_free_ida;
2752
2753         memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
2754         ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
2755         ctrl->admin_tag_set.queue_depth = NVME_FC_AQ_BLKMQ_DEPTH;
2756         ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
2757         ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
2758         ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_fc_fcp_op) +
2759                                         (SG_CHUNK_SIZE *
2760                                                 sizeof(struct scatterlist)) +
2761                                         ctrl->lport->ops->fcprqst_priv_sz;
2762         ctrl->admin_tag_set.driver_data = ctrl;
2763         ctrl->admin_tag_set.nr_hw_queues = 1;
2764         ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
2765
2766         ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
2767         if (ret)
2768                 goto out_free_queues;
2769
2770         ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
2771         if (IS_ERR(ctrl->ctrl.admin_q)) {
2772                 ret = PTR_ERR(ctrl->ctrl.admin_q);
2773                 goto out_free_admin_tag_set;
2774         }
2775
2776         /*
2777          * Would have been nice to init io queues tag set as well.
2778          * However, we require interaction from the controller
2779          * for max io queue count before we can do so.
2780          * Defer this to the connect path.
2781          */
2782
2783         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
2784         if (ret)
2785                 goto out_cleanup_admin_q;
2786
2787         /* at this point, teardown path changes to ref counting on nvme ctrl */
2788
2789         spin_lock_irqsave(&rport->lock, flags);
2790         list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
2791         spin_unlock_irqrestore(&rport->lock, flags);
2792
2793         ret = nvme_fc_create_association(ctrl);
2794         if (ret) {
2795                 ctrl->ctrl.opts = NULL;
2796                 /* initiate nvme ctrl ref counting teardown */
2797                 nvme_uninit_ctrl(&ctrl->ctrl);
2798                 nvme_put_ctrl(&ctrl->ctrl);
2799
2800                 /* as we're past the point where we transition to the ref
2801                  * counting teardown path, if we return a bad pointer here,
2802                  * the calling routine, thinking it's prior to the
2803                  * transition, will do an rport put. Since the teardown
2804                  * path also does a rport put, we do an extra get here to
2805                  * so proper order/teardown happens.
2806                  */
2807                 nvme_fc_rport_get(rport);
2808
2809                 if (ret > 0)
2810                         ret = -EIO;
2811                 return ERR_PTR(ret);
2812         }
2813
2814         kref_get(&ctrl->ctrl.kref);
2815
2816         dev_info(ctrl->ctrl.device,
2817                 "NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
2818                 ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
2819
2820         return &ctrl->ctrl;
2821
2822 out_cleanup_admin_q:
2823         blk_cleanup_queue(ctrl->ctrl.admin_q);
2824 out_free_admin_tag_set:
2825         blk_mq_free_tag_set(&ctrl->admin_tag_set);
2826 out_free_queues:
2827         kfree(ctrl->queues);
2828 out_free_ida:
2829         put_device(ctrl->dev);
2830         ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2831 out_free_ctrl:
2832         kfree(ctrl);
2833 out_fail:
2834         /* exit via here doesn't follow ctlr ref points */
2835         return ERR_PTR(ret);
2836 }
2837
2838 enum {
2839         FCT_TRADDR_ERR          = 0,
2840         FCT_TRADDR_WWNN         = 1 << 0,
2841         FCT_TRADDR_WWPN         = 1 << 1,
2842 };
2843
2844 struct nvmet_fc_traddr {
2845         u64     nn;
2846         u64     pn;
2847 };
2848
2849 static const match_table_t traddr_opt_tokens = {
2850         { FCT_TRADDR_WWNN,      "nn-%s"         },
2851         { FCT_TRADDR_WWPN,      "pn-%s"         },
2852         { FCT_TRADDR_ERR,       NULL            }
2853 };
2854
2855 static int
2856 nvme_fc_parse_address(struct nvmet_fc_traddr *traddr, char *buf)
2857 {
2858         substring_t args[MAX_OPT_ARGS];
2859         char *options, *o, *p;
2860         int token, ret = 0;
2861         u64 token64;
2862
2863         options = o = kstrdup(buf, GFP_KERNEL);
2864         if (!options)
2865                 return -ENOMEM;
2866
2867         while ((p = strsep(&o, ":\n")) != NULL) {
2868                 if (!*p)
2869                         continue;
2870
2871                 token = match_token(p, traddr_opt_tokens, args);
2872                 switch (token) {
2873                 case FCT_TRADDR_WWNN:
2874                         if (match_u64(args, &token64)) {
2875                                 ret = -EINVAL;
2876                                 goto out;
2877                         }
2878                         traddr->nn = token64;
2879                         break;
2880                 case FCT_TRADDR_WWPN:
2881                         if (match_u64(args, &token64)) {
2882                                 ret = -EINVAL;
2883                                 goto out;
2884                         }
2885                         traddr->pn = token64;
2886                         break;
2887                 default:
2888                         pr_warn("unknown traddr token or missing value '%s'\n",
2889                                         p);
2890                         ret = -EINVAL;
2891                         goto out;
2892                 }
2893         }
2894
2895 out:
2896         kfree(options);
2897         return ret;
2898 }
2899
2900 static struct nvme_ctrl *
2901 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
2902 {
2903         struct nvme_fc_lport *lport;
2904         struct nvme_fc_rport *rport;
2905         struct nvme_ctrl *ctrl;
2906         struct nvmet_fc_traddr laddr = { 0L, 0L };
2907         struct nvmet_fc_traddr raddr = { 0L, 0L };
2908         unsigned long flags;
2909         int ret;
2910
2911         ret = nvme_fc_parse_address(&raddr, opts->traddr);
2912         if (ret || !raddr.nn || !raddr.pn)
2913                 return ERR_PTR(-EINVAL);
2914
2915         ret = nvme_fc_parse_address(&laddr, opts->host_traddr);
2916         if (ret || !laddr.nn || !laddr.pn)
2917                 return ERR_PTR(-EINVAL);
2918
2919         /* find the host and remote ports to connect together */
2920         spin_lock_irqsave(&nvme_fc_lock, flags);
2921         list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
2922                 if (lport->localport.node_name != laddr.nn ||
2923                     lport->localport.port_name != laddr.pn)
2924                         continue;
2925
2926                 list_for_each_entry(rport, &lport->endp_list, endp_list) {
2927                         if (rport->remoteport.node_name != raddr.nn ||
2928                             rport->remoteport.port_name != raddr.pn)
2929                                 continue;
2930
2931                         /* if fail to get reference fall through. Will error */
2932                         if (!nvme_fc_rport_get(rport))
2933                                 break;
2934
2935                         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2936
2937                         ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
2938                         if (IS_ERR(ctrl))
2939                                 nvme_fc_rport_put(rport);
2940                         return ctrl;
2941                 }
2942         }
2943         spin_unlock_irqrestore(&nvme_fc_lock, flags);
2944
2945         return ERR_PTR(-ENOENT);
2946 }
2947
2948
2949 static struct nvmf_transport_ops nvme_fc_transport = {
2950         .name           = "fc",
2951         .required_opts  = NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
2952         .allowed_opts   = NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
2953         .create_ctrl    = nvme_fc_create_ctrl,
2954 };
2955
2956 static int __init nvme_fc_init_module(void)
2957 {
2958         return nvmf_register_transport(&nvme_fc_transport);
2959 }
2960
2961 static void __exit nvme_fc_exit_module(void)
2962 {
2963         /* sanity check - all lports should be removed */
2964         if (!list_empty(&nvme_fc_lport_list))
2965                 pr_warn("%s: localport list not empty\n", __func__);
2966
2967         nvmf_unregister_transport(&nvme_fc_transport);
2968
2969         ida_destroy(&nvme_fc_local_port_cnt);
2970         ida_destroy(&nvme_fc_ctrl_cnt);
2971 }
2972
2973 module_init(nvme_fc_init_module);
2974 module_exit(nvme_fc_exit_module);
2975
2976 MODULE_LICENSE("GPL v2");