]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/multipath.c
Merge tag 'asoc-fix-v5.5-rc5' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / nvme / host / multipath.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5
6 #include <linux/moduleparam.h>
7 #include <trace/events/block.h>
8 #include "nvme.h"
9
10 static bool multipath = true;
11 module_param(multipath, bool, 0444);
12 MODULE_PARM_DESC(multipath,
13         "turn on native support for multiple controllers per subsystem");
14
15 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
16 {
17         struct nvme_ns_head *h;
18
19         lockdep_assert_held(&subsys->lock);
20         list_for_each_entry(h, &subsys->nsheads, entry)
21                 if (h->disk)
22                         blk_mq_unfreeze_queue(h->disk->queue);
23 }
24
25 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
26 {
27         struct nvme_ns_head *h;
28
29         lockdep_assert_held(&subsys->lock);
30         list_for_each_entry(h, &subsys->nsheads, entry)
31                 if (h->disk)
32                         blk_mq_freeze_queue_wait(h->disk->queue);
33 }
34
35 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
36 {
37         struct nvme_ns_head *h;
38
39         lockdep_assert_held(&subsys->lock);
40         list_for_each_entry(h, &subsys->nsheads, entry)
41                 if (h->disk)
42                         blk_freeze_queue_start(h->disk->queue);
43 }
44
45 /*
46  * If multipathing is enabled we need to always use the subsystem instance
47  * number for numbering our devices to avoid conflicts between subsystems that
48  * have multiple controllers and thus use the multipath-aware subsystem node
49  * and those that have a single controller and use the controller node
50  * directly.
51  */
52 void nvme_set_disk_name(char *disk_name, struct nvme_ns *ns,
53                         struct nvme_ctrl *ctrl, int *flags)
54 {
55         if (!multipath) {
56                 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
57         } else if (ns->head->disk) {
58                 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
59                                 ctrl->instance, ns->head->instance);
60                 *flags = GENHD_FL_HIDDEN;
61         } else {
62                 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
63                                 ns->head->instance);
64         }
65 }
66
67 void nvme_failover_req(struct request *req)
68 {
69         struct nvme_ns *ns = req->q->queuedata;
70         u16 status = nvme_req(req)->status;
71         unsigned long flags;
72
73         spin_lock_irqsave(&ns->head->requeue_lock, flags);
74         blk_steal_bios(&ns->head->requeue_list, req);
75         spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
76         blk_mq_end_request(req, 0);
77
78         switch (status & 0x7ff) {
79         case NVME_SC_ANA_TRANSITION:
80         case NVME_SC_ANA_INACCESSIBLE:
81         case NVME_SC_ANA_PERSISTENT_LOSS:
82                 /*
83                  * If we got back an ANA error we know the controller is alive,
84                  * but not ready to serve this namespaces.  The spec suggests
85                  * we should update our general state here, but due to the fact
86                  * that the admin and I/O queues are not serialized that is
87                  * fundamentally racy.  So instead just clear the current path,
88                  * mark the the path as pending and kick of a re-read of the ANA
89                  * log page ASAP.
90                  */
91                 nvme_mpath_clear_current_path(ns);
92                 if (ns->ctrl->ana_log_buf) {
93                         set_bit(NVME_NS_ANA_PENDING, &ns->flags);
94                         queue_work(nvme_wq, &ns->ctrl->ana_work);
95                 }
96                 break;
97         case NVME_SC_HOST_PATH_ERROR:
98                 /*
99                  * Temporary transport disruption in talking to the controller.
100                  * Try to send on a new path.
101                  */
102                 nvme_mpath_clear_current_path(ns);
103                 break;
104         default:
105                 /*
106                  * Reset the controller for any non-ANA error as we don't know
107                  * what caused the error.
108                  */
109                 nvme_reset_ctrl(ns->ctrl);
110                 break;
111         }
112
113         kblockd_schedule_work(&ns->head->requeue_work);
114 }
115
116 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
117 {
118         struct nvme_ns *ns;
119
120         down_read(&ctrl->namespaces_rwsem);
121         list_for_each_entry(ns, &ctrl->namespaces, list) {
122                 if (ns->head->disk)
123                         kblockd_schedule_work(&ns->head->requeue_work);
124         }
125         up_read(&ctrl->namespaces_rwsem);
126 }
127
128 static const char *nvme_ana_state_names[] = {
129         [0]                             = "invalid state",
130         [NVME_ANA_OPTIMIZED]            = "optimized",
131         [NVME_ANA_NONOPTIMIZED]         = "non-optimized",
132         [NVME_ANA_INACCESSIBLE]         = "inaccessible",
133         [NVME_ANA_PERSISTENT_LOSS]      = "persistent-loss",
134         [NVME_ANA_CHANGE]               = "change",
135 };
136
137 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
138 {
139         struct nvme_ns_head *head = ns->head;
140         bool changed = false;
141         int node;
142
143         if (!head)
144                 goto out;
145
146         for_each_node(node) {
147                 if (ns == rcu_access_pointer(head->current_path[node])) {
148                         rcu_assign_pointer(head->current_path[node], NULL);
149                         changed = true;
150                 }
151         }
152 out:
153         return changed;
154 }
155
156 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
157 {
158         struct nvme_ns *ns;
159
160         mutex_lock(&ctrl->scan_lock);
161         down_read(&ctrl->namespaces_rwsem);
162         list_for_each_entry(ns, &ctrl->namespaces, list)
163                 if (nvme_mpath_clear_current_path(ns))
164                         kblockd_schedule_work(&ns->head->requeue_work);
165         up_read(&ctrl->namespaces_rwsem);
166         mutex_unlock(&ctrl->scan_lock);
167 }
168
169 static bool nvme_path_is_disabled(struct nvme_ns *ns)
170 {
171         return ns->ctrl->state != NVME_CTRL_LIVE ||
172                 test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
173                 test_bit(NVME_NS_REMOVING, &ns->flags);
174 }
175
176 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
177 {
178         int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
179         struct nvme_ns *found = NULL, *fallback = NULL, *ns;
180
181         list_for_each_entry_rcu(ns, &head->list, siblings) {
182                 if (nvme_path_is_disabled(ns))
183                         continue;
184
185                 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
186                         distance = node_distance(node, ns->ctrl->numa_node);
187                 else
188                         distance = LOCAL_DISTANCE;
189
190                 switch (ns->ana_state) {
191                 case NVME_ANA_OPTIMIZED:
192                         if (distance < found_distance) {
193                                 found_distance = distance;
194                                 found = ns;
195                         }
196                         break;
197                 case NVME_ANA_NONOPTIMIZED:
198                         if (distance < fallback_distance) {
199                                 fallback_distance = distance;
200                                 fallback = ns;
201                         }
202                         break;
203                 default:
204                         break;
205                 }
206         }
207
208         if (!found)
209                 found = fallback;
210         if (found)
211                 rcu_assign_pointer(head->current_path[node], found);
212         return found;
213 }
214
215 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
216                 struct nvme_ns *ns)
217 {
218         ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
219                         siblings);
220         if (ns)
221                 return ns;
222         return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
223 }
224
225 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
226                 int node, struct nvme_ns *old)
227 {
228         struct nvme_ns *ns, *found, *fallback = NULL;
229
230         if (list_is_singular(&head->list)) {
231                 if (nvme_path_is_disabled(old))
232                         return NULL;
233                 return old;
234         }
235
236         for (ns = nvme_next_ns(head, old);
237              ns != old;
238              ns = nvme_next_ns(head, ns)) {
239                 if (nvme_path_is_disabled(ns))
240                         continue;
241
242                 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
243                         found = ns;
244                         goto out;
245                 }
246                 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
247                         fallback = ns;
248         }
249
250         if (!fallback)
251                 return NULL;
252         found = fallback;
253 out:
254         rcu_assign_pointer(head->current_path[node], found);
255         return found;
256 }
257
258 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
259 {
260         return ns->ctrl->state == NVME_CTRL_LIVE &&
261                 ns->ana_state == NVME_ANA_OPTIMIZED;
262 }
263
264 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
265 {
266         int node = numa_node_id();
267         struct nvme_ns *ns;
268
269         ns = srcu_dereference(head->current_path[node], &head->srcu);
270         if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR && ns)
271                 ns = nvme_round_robin_path(head, node, ns);
272         if (unlikely(!ns || !nvme_path_is_optimized(ns)))
273                 ns = __nvme_find_path(head, node);
274         return ns;
275 }
276
277 static bool nvme_available_path(struct nvme_ns_head *head)
278 {
279         struct nvme_ns *ns;
280
281         list_for_each_entry_rcu(ns, &head->list, siblings) {
282                 switch (ns->ctrl->state) {
283                 case NVME_CTRL_LIVE:
284                 case NVME_CTRL_RESETTING:
285                 case NVME_CTRL_CONNECTING:
286                         /* fallthru */
287                         return true;
288                 default:
289                         break;
290                 }
291         }
292         return false;
293 }
294
295 static blk_qc_t nvme_ns_head_make_request(struct request_queue *q,
296                 struct bio *bio)
297 {
298         struct nvme_ns_head *head = q->queuedata;
299         struct device *dev = disk_to_dev(head->disk);
300         struct nvme_ns *ns;
301         blk_qc_t ret = BLK_QC_T_NONE;
302         int srcu_idx;
303
304         /*
305          * The namespace might be going away and the bio might
306          * be moved to a different queue via blk_steal_bios(),
307          * so we need to use the bio_split pool from the original
308          * queue to allocate the bvecs from.
309          */
310         blk_queue_split(q, &bio);
311
312         srcu_idx = srcu_read_lock(&head->srcu);
313         ns = nvme_find_path(head);
314         if (likely(ns)) {
315                 bio->bi_disk = ns->disk;
316                 bio->bi_opf |= REQ_NVME_MPATH;
317                 trace_block_bio_remap(bio->bi_disk->queue, bio,
318                                       disk_devt(ns->head->disk),
319                                       bio->bi_iter.bi_sector);
320                 ret = direct_make_request(bio);
321         } else if (nvme_available_path(head)) {
322                 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
323
324                 spin_lock_irq(&head->requeue_lock);
325                 bio_list_add(&head->requeue_list, bio);
326                 spin_unlock_irq(&head->requeue_lock);
327         } else {
328                 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
329
330                 bio->bi_status = BLK_STS_IOERR;
331                 bio_endio(bio);
332         }
333
334         srcu_read_unlock(&head->srcu, srcu_idx);
335         return ret;
336 }
337
338 static void nvme_requeue_work(struct work_struct *work)
339 {
340         struct nvme_ns_head *head =
341                 container_of(work, struct nvme_ns_head, requeue_work);
342         struct bio *bio, *next;
343
344         spin_lock_irq(&head->requeue_lock);
345         next = bio_list_get(&head->requeue_list);
346         spin_unlock_irq(&head->requeue_lock);
347
348         while ((bio = next) != NULL) {
349                 next = bio->bi_next;
350                 bio->bi_next = NULL;
351
352                 /*
353                  * Reset disk to the mpath node and resubmit to select a new
354                  * path.
355                  */
356                 bio->bi_disk = head->disk;
357                 generic_make_request(bio);
358         }
359 }
360
361 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
362 {
363         struct request_queue *q;
364         bool vwc = false;
365
366         mutex_init(&head->lock);
367         bio_list_init(&head->requeue_list);
368         spin_lock_init(&head->requeue_lock);
369         INIT_WORK(&head->requeue_work, nvme_requeue_work);
370
371         /*
372          * Add a multipath node if the subsystems supports multiple controllers.
373          * We also do this for private namespaces as the namespace sharing data could
374          * change after a rescan.
375          */
376         if (!(ctrl->subsys->cmic & (1 << 1)) || !multipath)
377                 return 0;
378
379         q = blk_alloc_queue_node(GFP_KERNEL, ctrl->numa_node);
380         if (!q)
381                 goto out;
382         q->queuedata = head;
383         blk_queue_make_request(q, nvme_ns_head_make_request);
384         blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
385         /* set to a default value for 512 until disk is validated */
386         blk_queue_logical_block_size(q, 512);
387         blk_set_stacking_limits(&q->limits);
388
389         /* we need to propagate up the VMC settings */
390         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
391                 vwc = true;
392         blk_queue_write_cache(q, vwc, vwc);
393
394         head->disk = alloc_disk(0);
395         if (!head->disk)
396                 goto out_cleanup_queue;
397         head->disk->fops = &nvme_ns_head_ops;
398         head->disk->private_data = head;
399         head->disk->queue = q;
400         head->disk->flags = GENHD_FL_EXT_DEVT;
401         sprintf(head->disk->disk_name, "nvme%dn%d",
402                         ctrl->subsys->instance, head->instance);
403         return 0;
404
405 out_cleanup_queue:
406         blk_cleanup_queue(q);
407 out:
408         return -ENOMEM;
409 }
410
411 static void nvme_mpath_set_live(struct nvme_ns *ns)
412 {
413         struct nvme_ns_head *head = ns->head;
414
415         lockdep_assert_held(&ns->head->lock);
416
417         if (!head->disk)
418                 return;
419
420         if (!(head->disk->flags & GENHD_FL_UP))
421                 device_add_disk(&head->subsys->dev, head->disk,
422                                 nvme_ns_id_attr_groups);
423
424         if (nvme_path_is_optimized(ns)) {
425                 int node, srcu_idx;
426
427                 srcu_idx = srcu_read_lock(&head->srcu);
428                 for_each_node(node)
429                         __nvme_find_path(head, node);
430                 srcu_read_unlock(&head->srcu, srcu_idx);
431         }
432
433         synchronize_srcu(&ns->head->srcu);
434         kblockd_schedule_work(&ns->head->requeue_work);
435 }
436
437 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
438                 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
439                         void *))
440 {
441         void *base = ctrl->ana_log_buf;
442         size_t offset = sizeof(struct nvme_ana_rsp_hdr);
443         int error, i;
444
445         lockdep_assert_held(&ctrl->ana_lock);
446
447         for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
448                 struct nvme_ana_group_desc *desc = base + offset;
449                 u32 nr_nsids = le32_to_cpu(desc->nnsids);
450                 size_t nsid_buf_size = nr_nsids * sizeof(__le32);
451
452                 if (WARN_ON_ONCE(desc->grpid == 0))
453                         return -EINVAL;
454                 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
455                         return -EINVAL;
456                 if (WARN_ON_ONCE(desc->state == 0))
457                         return -EINVAL;
458                 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
459                         return -EINVAL;
460
461                 offset += sizeof(*desc);
462                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
463                         return -EINVAL;
464
465                 error = cb(ctrl, desc, data);
466                 if (error)
467                         return error;
468
469                 offset += nsid_buf_size;
470                 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
471                         return -EINVAL;
472         }
473
474         return 0;
475 }
476
477 static inline bool nvme_state_is_live(enum nvme_ana_state state)
478 {
479         return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
480 }
481
482 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
483                 struct nvme_ns *ns)
484 {
485         mutex_lock(&ns->head->lock);
486         ns->ana_grpid = le32_to_cpu(desc->grpid);
487         ns->ana_state = desc->state;
488         clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
489
490         if (nvme_state_is_live(ns->ana_state))
491                 nvme_mpath_set_live(ns);
492         mutex_unlock(&ns->head->lock);
493 }
494
495 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
496                 struct nvme_ana_group_desc *desc, void *data)
497 {
498         u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
499         unsigned *nr_change_groups = data;
500         struct nvme_ns *ns;
501
502         dev_dbg(ctrl->device, "ANA group %d: %s.\n",
503                         le32_to_cpu(desc->grpid),
504                         nvme_ana_state_names[desc->state]);
505
506         if (desc->state == NVME_ANA_CHANGE)
507                 (*nr_change_groups)++;
508
509         if (!nr_nsids)
510                 return 0;
511
512         down_write(&ctrl->namespaces_rwsem);
513         list_for_each_entry(ns, &ctrl->namespaces, list) {
514                 unsigned nsid = le32_to_cpu(desc->nsids[n]);
515
516                 if (ns->head->ns_id < nsid)
517                         continue;
518                 if (ns->head->ns_id == nsid)
519                         nvme_update_ns_ana_state(desc, ns);
520                 if (++n == nr_nsids)
521                         break;
522         }
523         up_write(&ctrl->namespaces_rwsem);
524         return 0;
525 }
526
527 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
528 {
529         u32 nr_change_groups = 0;
530         int error;
531
532         mutex_lock(&ctrl->ana_lock);
533         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0,
534                         ctrl->ana_log_buf, ctrl->ana_log_size, 0);
535         if (error) {
536                 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
537                 goto out_unlock;
538         }
539
540         error = nvme_parse_ana_log(ctrl, &nr_change_groups,
541                         nvme_update_ana_state);
542         if (error)
543                 goto out_unlock;
544
545         /*
546          * In theory we should have an ANATT timer per group as they might enter
547          * the change state at different times.  But that is a lot of overhead
548          * just to protect against a target that keeps entering new changes
549          * states while never finishing previous ones.  But we'll still
550          * eventually time out once all groups are in change state, so this
551          * isn't a big deal.
552          *
553          * We also double the ANATT value to provide some slack for transports
554          * or AEN processing overhead.
555          */
556         if (nr_change_groups)
557                 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
558         else
559                 del_timer_sync(&ctrl->anatt_timer);
560 out_unlock:
561         mutex_unlock(&ctrl->ana_lock);
562         return error;
563 }
564
565 static void nvme_ana_work(struct work_struct *work)
566 {
567         struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
568
569         nvme_read_ana_log(ctrl);
570 }
571
572 static void nvme_anatt_timeout(struct timer_list *t)
573 {
574         struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
575
576         dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
577         nvme_reset_ctrl(ctrl);
578 }
579
580 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
581 {
582         if (!nvme_ctrl_use_ana(ctrl))
583                 return;
584         del_timer_sync(&ctrl->anatt_timer);
585         cancel_work_sync(&ctrl->ana_work);
586 }
587
588 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
589         struct device_attribute subsys_attr_##_name =   \
590                 __ATTR(_name, _mode, _show, _store)
591
592 static const char *nvme_iopolicy_names[] = {
593         [NVME_IOPOLICY_NUMA]    = "numa",
594         [NVME_IOPOLICY_RR]      = "round-robin",
595 };
596
597 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
598                 struct device_attribute *attr, char *buf)
599 {
600         struct nvme_subsystem *subsys =
601                 container_of(dev, struct nvme_subsystem, dev);
602
603         return sprintf(buf, "%s\n",
604                         nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
605 }
606
607 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
608                 struct device_attribute *attr, const char *buf, size_t count)
609 {
610         struct nvme_subsystem *subsys =
611                 container_of(dev, struct nvme_subsystem, dev);
612         int i;
613
614         for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
615                 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
616                         WRITE_ONCE(subsys->iopolicy, i);
617                         return count;
618                 }
619         }
620
621         return -EINVAL;
622 }
623 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
624                       nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
625
626 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
627                 char *buf)
628 {
629         return sprintf(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
630 }
631 DEVICE_ATTR_RO(ana_grpid);
632
633 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
634                 char *buf)
635 {
636         struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
637
638         return sprintf(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
639 }
640 DEVICE_ATTR_RO(ana_state);
641
642 static int nvme_set_ns_ana_state(struct nvme_ctrl *ctrl,
643                 struct nvme_ana_group_desc *desc, void *data)
644 {
645         struct nvme_ns *ns = data;
646
647         if (ns->ana_grpid == le32_to_cpu(desc->grpid)) {
648                 nvme_update_ns_ana_state(desc, ns);
649                 return -ENXIO; /* just break out of the loop */
650         }
651
652         return 0;
653 }
654
655 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
656 {
657         if (nvme_ctrl_use_ana(ns->ctrl)) {
658                 mutex_lock(&ns->ctrl->ana_lock);
659                 ns->ana_grpid = le32_to_cpu(id->anagrpid);
660                 nvme_parse_ana_log(ns->ctrl, ns, nvme_set_ns_ana_state);
661                 mutex_unlock(&ns->ctrl->ana_lock);
662         } else {
663                 mutex_lock(&ns->head->lock);
664                 ns->ana_state = NVME_ANA_OPTIMIZED; 
665                 nvme_mpath_set_live(ns);
666                 mutex_unlock(&ns->head->lock);
667         }
668 }
669
670 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
671 {
672         if (!head->disk)
673                 return;
674         if (head->disk->flags & GENHD_FL_UP)
675                 del_gendisk(head->disk);
676         blk_set_queue_dying(head->disk->queue);
677         /* make sure all pending bios are cleaned up */
678         kblockd_schedule_work(&head->requeue_work);
679         flush_work(&head->requeue_work);
680         blk_cleanup_queue(head->disk->queue);
681         put_disk(head->disk);
682 }
683
684 int nvme_mpath_init(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
685 {
686         int error;
687
688         /* check if multipath is enabled and we have the capability */
689         if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & (1 << 3)))
690                 return 0;
691
692         ctrl->anacap = id->anacap;
693         ctrl->anatt = id->anatt;
694         ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
695         ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
696
697         mutex_init(&ctrl->ana_lock);
698         timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
699         ctrl->ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
700                 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc);
701         ctrl->ana_log_size += ctrl->max_namespaces * sizeof(__le32);
702
703         if (ctrl->ana_log_size > ctrl->max_hw_sectors << SECTOR_SHIFT) {
704                 dev_err(ctrl->device,
705                         "ANA log page size (%zd) larger than MDTS (%d).\n",
706                         ctrl->ana_log_size,
707                         ctrl->max_hw_sectors << SECTOR_SHIFT);
708                 dev_err(ctrl->device, "disabling ANA support.\n");
709                 return 0;
710         }
711
712         INIT_WORK(&ctrl->ana_work, nvme_ana_work);
713         ctrl->ana_log_buf = kmalloc(ctrl->ana_log_size, GFP_KERNEL);
714         if (!ctrl->ana_log_buf) {
715                 error = -ENOMEM;
716                 goto out;
717         }
718
719         error = nvme_read_ana_log(ctrl);
720         if (error)
721                 goto out_free_ana_log_buf;
722         return 0;
723 out_free_ana_log_buf:
724         kfree(ctrl->ana_log_buf);
725         ctrl->ana_log_buf = NULL;
726 out:
727         return error;
728 }
729
730 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
731 {
732         kfree(ctrl->ana_log_buf);
733         ctrl->ana_log_buf = NULL;
734 }
735