]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/pci.c
Merge ath-next from git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/ath.git
[linux.git] / drivers / nvme / host / pci.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011-2014, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14
15 #include <linux/aer.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/blk-mq-pci.h>
19 #include <linux/dmi.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/once.h>
27 #include <linux/pci.h>
28 #include <linux/t10-pi.h>
29 #include <linux/types.h>
30 #include <linux/io-64-nonatomic-lo-hi.h>
31 #include <linux/sed-opal.h>
32
33 #include "nvme.h"
34
35 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
36 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
37
38 #define SGES_PER_PAGE   (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40 static int use_threaded_interrupts;
41 module_param(use_threaded_interrupts, int, 0);
42
43 static bool use_cmb_sqes = true;
44 module_param(use_cmb_sqes, bool, 0644);
45 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
46
47 static unsigned int max_host_mem_size_mb = 128;
48 module_param(max_host_mem_size_mb, uint, 0444);
49 MODULE_PARM_DESC(max_host_mem_size_mb,
50         "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
51
52 static unsigned int sgl_threshold = SZ_32K;
53 module_param(sgl_threshold, uint, 0644);
54 MODULE_PARM_DESC(sgl_threshold,
55                 "Use SGLs when average request segment size is larger or equal to "
56                 "this size. Use 0 to disable SGLs.");
57
58 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
59 static const struct kernel_param_ops io_queue_depth_ops = {
60         .set = io_queue_depth_set,
61         .get = param_get_int,
62 };
63
64 static int io_queue_depth = 1024;
65 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
66 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
67
68 struct nvme_dev;
69 struct nvme_queue;
70
71 static void nvme_process_cq(struct nvme_queue *nvmeq);
72 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
73
74 /*
75  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
76  */
77 struct nvme_dev {
78         struct nvme_queue *queues;
79         struct blk_mq_tag_set tagset;
80         struct blk_mq_tag_set admin_tagset;
81         u32 __iomem *dbs;
82         struct device *dev;
83         struct dma_pool *prp_page_pool;
84         struct dma_pool *prp_small_pool;
85         unsigned online_queues;
86         unsigned max_qid;
87         unsigned int num_vecs;
88         int q_depth;
89         u32 db_stride;
90         void __iomem *bar;
91         unsigned long bar_mapped_size;
92         struct work_struct remove_work;
93         struct mutex shutdown_lock;
94         bool subsystem;
95         void __iomem *cmb;
96         pci_bus_addr_t cmb_bus_addr;
97         u64 cmb_size;
98         u32 cmbsz;
99         u32 cmbloc;
100         struct nvme_ctrl ctrl;
101         struct completion ioq_wait;
102
103         /* shadow doorbell buffer support: */
104         u32 *dbbuf_dbs;
105         dma_addr_t dbbuf_dbs_dma_addr;
106         u32 *dbbuf_eis;
107         dma_addr_t dbbuf_eis_dma_addr;
108
109         /* host memory buffer support: */
110         u64 host_mem_size;
111         u32 nr_host_mem_descs;
112         dma_addr_t host_mem_descs_dma;
113         struct nvme_host_mem_buf_desc *host_mem_descs;
114         void **host_mem_desc_bufs;
115 };
116
117 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
118 {
119         int n = 0, ret;
120
121         ret = kstrtoint(val, 10, &n);
122         if (ret != 0 || n < 2)
123                 return -EINVAL;
124
125         return param_set_int(val, kp);
126 }
127
128 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
129 {
130         return qid * 2 * stride;
131 }
132
133 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
134 {
135         return (qid * 2 + 1) * stride;
136 }
137
138 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
139 {
140         return container_of(ctrl, struct nvme_dev, ctrl);
141 }
142
143 /*
144  * An NVM Express queue.  Each device has at least two (one for admin
145  * commands and one for I/O commands).
146  */
147 struct nvme_queue {
148         struct device *q_dmadev;
149         struct nvme_dev *dev;
150         spinlock_t q_lock;
151         struct nvme_command *sq_cmds;
152         struct nvme_command __iomem *sq_cmds_io;
153         volatile struct nvme_completion *cqes;
154         struct blk_mq_tags **tags;
155         dma_addr_t sq_dma_addr;
156         dma_addr_t cq_dma_addr;
157         u32 __iomem *q_db;
158         u16 q_depth;
159         s16 cq_vector;
160         u16 sq_tail;
161         u16 cq_head;
162         u16 qid;
163         u8 cq_phase;
164         u8 cqe_seen;
165         u32 *dbbuf_sq_db;
166         u32 *dbbuf_cq_db;
167         u32 *dbbuf_sq_ei;
168         u32 *dbbuf_cq_ei;
169 };
170
171 /*
172  * The nvme_iod describes the data in an I/O, including the list of PRP
173  * entries.  You can't see it in this data structure because C doesn't let
174  * me express that.  Use nvme_init_iod to ensure there's enough space
175  * allocated to store the PRP list.
176  */
177 struct nvme_iod {
178         struct nvme_request req;
179         struct nvme_queue *nvmeq;
180         bool use_sgl;
181         int aborted;
182         int npages;             /* In the PRP list. 0 means small pool in use */
183         int nents;              /* Used in scatterlist */
184         int length;             /* Of data, in bytes */
185         dma_addr_t first_dma;
186         struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
187         struct scatterlist *sg;
188         struct scatterlist inline_sg[0];
189 };
190
191 /*
192  * Check we didin't inadvertently grow the command struct
193  */
194 static inline void _nvme_check_size(void)
195 {
196         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
197         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
198         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
199         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
200         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
201         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
202         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
203         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
204         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
205         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
206         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
207         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
208         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
209 }
210
211 static inline unsigned int nvme_dbbuf_size(u32 stride)
212 {
213         return ((num_possible_cpus() + 1) * 8 * stride);
214 }
215
216 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
217 {
218         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
219
220         if (dev->dbbuf_dbs)
221                 return 0;
222
223         dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
224                                             &dev->dbbuf_dbs_dma_addr,
225                                             GFP_KERNEL);
226         if (!dev->dbbuf_dbs)
227                 return -ENOMEM;
228         dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
229                                             &dev->dbbuf_eis_dma_addr,
230                                             GFP_KERNEL);
231         if (!dev->dbbuf_eis) {
232                 dma_free_coherent(dev->dev, mem_size,
233                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
234                 dev->dbbuf_dbs = NULL;
235                 return -ENOMEM;
236         }
237
238         return 0;
239 }
240
241 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
242 {
243         unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
244
245         if (dev->dbbuf_dbs) {
246                 dma_free_coherent(dev->dev, mem_size,
247                                   dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
248                 dev->dbbuf_dbs = NULL;
249         }
250         if (dev->dbbuf_eis) {
251                 dma_free_coherent(dev->dev, mem_size,
252                                   dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
253                 dev->dbbuf_eis = NULL;
254         }
255 }
256
257 static void nvme_dbbuf_init(struct nvme_dev *dev,
258                             struct nvme_queue *nvmeq, int qid)
259 {
260         if (!dev->dbbuf_dbs || !qid)
261                 return;
262
263         nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
264         nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
265         nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
266         nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
267 }
268
269 static void nvme_dbbuf_set(struct nvme_dev *dev)
270 {
271         struct nvme_command c;
272
273         if (!dev->dbbuf_dbs)
274                 return;
275
276         memset(&c, 0, sizeof(c));
277         c.dbbuf.opcode = nvme_admin_dbbuf;
278         c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
279         c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
280
281         if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
282                 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
283                 /* Free memory and continue on */
284                 nvme_dbbuf_dma_free(dev);
285         }
286 }
287
288 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
289 {
290         return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
291 }
292
293 /* Update dbbuf and return true if an MMIO is required */
294 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
295                                               volatile u32 *dbbuf_ei)
296 {
297         if (dbbuf_db) {
298                 u16 old_value;
299
300                 /*
301                  * Ensure that the queue is written before updating
302                  * the doorbell in memory
303                  */
304                 wmb();
305
306                 old_value = *dbbuf_db;
307                 *dbbuf_db = value;
308
309                 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
310                         return false;
311         }
312
313         return true;
314 }
315
316 /*
317  * Max size of iod being embedded in the request payload
318  */
319 #define NVME_INT_PAGES          2
320 #define NVME_INT_BYTES(dev)     (NVME_INT_PAGES * (dev)->ctrl.page_size)
321
322 /*
323  * Will slightly overestimate the number of pages needed.  This is OK
324  * as it only leads to a small amount of wasted memory for the lifetime of
325  * the I/O.
326  */
327 static int nvme_npages(unsigned size, struct nvme_dev *dev)
328 {
329         unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
330                                       dev->ctrl.page_size);
331         return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
332 }
333
334 /*
335  * Calculates the number of pages needed for the SGL segments. For example a 4k
336  * page can accommodate 256 SGL descriptors.
337  */
338 static int nvme_pci_npages_sgl(unsigned int num_seg)
339 {
340         return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
341 }
342
343 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
344                 unsigned int size, unsigned int nseg, bool use_sgl)
345 {
346         size_t alloc_size;
347
348         if (use_sgl)
349                 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
350         else
351                 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
352
353         return alloc_size + sizeof(struct scatterlist) * nseg;
354 }
355
356 static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl)
357 {
358         unsigned int alloc_size = nvme_pci_iod_alloc_size(dev,
359                                     NVME_INT_BYTES(dev), NVME_INT_PAGES,
360                                     use_sgl);
361
362         return sizeof(struct nvme_iod) + alloc_size;
363 }
364
365 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
366                                 unsigned int hctx_idx)
367 {
368         struct nvme_dev *dev = data;
369         struct nvme_queue *nvmeq = &dev->queues[0];
370
371         WARN_ON(hctx_idx != 0);
372         WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
373         WARN_ON(nvmeq->tags);
374
375         hctx->driver_data = nvmeq;
376         nvmeq->tags = &dev->admin_tagset.tags[0];
377         return 0;
378 }
379
380 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
381 {
382         struct nvme_queue *nvmeq = hctx->driver_data;
383
384         nvmeq->tags = NULL;
385 }
386
387 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
388                           unsigned int hctx_idx)
389 {
390         struct nvme_dev *dev = data;
391         struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
392
393         if (!nvmeq->tags)
394                 nvmeq->tags = &dev->tagset.tags[hctx_idx];
395
396         WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
397         hctx->driver_data = nvmeq;
398         return 0;
399 }
400
401 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
402                 unsigned int hctx_idx, unsigned int numa_node)
403 {
404         struct nvme_dev *dev = set->driver_data;
405         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
406         int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
407         struct nvme_queue *nvmeq = &dev->queues[queue_idx];
408
409         BUG_ON(!nvmeq);
410         iod->nvmeq = nvmeq;
411         return 0;
412 }
413
414 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
415 {
416         struct nvme_dev *dev = set->driver_data;
417
418         return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev),
419                         dev->num_vecs > 1 ? 1 /* admin queue */ : 0);
420 }
421
422 /**
423  * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
424  * @nvmeq: The queue to use
425  * @cmd: The command to send
426  *
427  * Safe to use from interrupt context
428  */
429 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
430                                                 struct nvme_command *cmd)
431 {
432         u16 tail = nvmeq->sq_tail;
433
434         if (nvmeq->sq_cmds_io)
435                 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
436         else
437                 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
438
439         if (++tail == nvmeq->q_depth)
440                 tail = 0;
441         if (nvme_dbbuf_update_and_check_event(tail, nvmeq->dbbuf_sq_db,
442                                               nvmeq->dbbuf_sq_ei))
443                 writel(tail, nvmeq->q_db);
444         nvmeq->sq_tail = tail;
445 }
446
447 static void **nvme_pci_iod_list(struct request *req)
448 {
449         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
450         return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
451 }
452
453 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
454 {
455         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
456         int nseg = blk_rq_nr_phys_segments(req);
457         unsigned int avg_seg_size;
458
459         if (nseg == 0)
460                 return false;
461
462         avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
463
464         if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
465                 return false;
466         if (!iod->nvmeq->qid)
467                 return false;
468         if (!sgl_threshold || avg_seg_size < sgl_threshold)
469                 return false;
470         return true;
471 }
472
473 static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev)
474 {
475         struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
476         int nseg = blk_rq_nr_phys_segments(rq);
477         unsigned int size = blk_rq_payload_bytes(rq);
478
479         iod->use_sgl = nvme_pci_use_sgls(dev, rq);
480
481         if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
482                 size_t alloc_size = nvme_pci_iod_alloc_size(dev, size, nseg,
483                                 iod->use_sgl);
484
485                 iod->sg = kmalloc(alloc_size, GFP_ATOMIC);
486                 if (!iod->sg)
487                         return BLK_STS_RESOURCE;
488         } else {
489                 iod->sg = iod->inline_sg;
490         }
491
492         iod->aborted = 0;
493         iod->npages = -1;
494         iod->nents = 0;
495         iod->length = size;
496
497         return BLK_STS_OK;
498 }
499
500 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
501 {
502         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
503         const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
504         dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
505
506         int i;
507
508         if (iod->npages == 0)
509                 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
510                         dma_addr);
511
512         for (i = 0; i < iod->npages; i++) {
513                 void *addr = nvme_pci_iod_list(req)[i];
514
515                 if (iod->use_sgl) {
516                         struct nvme_sgl_desc *sg_list = addr;
517
518                         next_dma_addr =
519                             le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
520                 } else {
521                         __le64 *prp_list = addr;
522
523                         next_dma_addr = le64_to_cpu(prp_list[last_prp]);
524                 }
525
526                 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
527                 dma_addr = next_dma_addr;
528         }
529
530         if (iod->sg != iod->inline_sg)
531                 kfree(iod->sg);
532 }
533
534 #ifdef CONFIG_BLK_DEV_INTEGRITY
535 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
536 {
537         if (be32_to_cpu(pi->ref_tag) == v)
538                 pi->ref_tag = cpu_to_be32(p);
539 }
540
541 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
542 {
543         if (be32_to_cpu(pi->ref_tag) == p)
544                 pi->ref_tag = cpu_to_be32(v);
545 }
546
547 /**
548  * nvme_dif_remap - remaps ref tags to bip seed and physical lba
549  *
550  * The virtual start sector is the one that was originally submitted by the
551  * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
552  * start sector may be different. Remap protection information to match the
553  * physical LBA on writes, and back to the original seed on reads.
554  *
555  * Type 0 and 3 do not have a ref tag, so no remapping required.
556  */
557 static void nvme_dif_remap(struct request *req,
558                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
559 {
560         struct nvme_ns *ns = req->rq_disk->private_data;
561         struct bio_integrity_payload *bip;
562         struct t10_pi_tuple *pi;
563         void *p, *pmap;
564         u32 i, nlb, ts, phys, virt;
565
566         if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
567                 return;
568
569         bip = bio_integrity(req->bio);
570         if (!bip)
571                 return;
572
573         pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
574
575         p = pmap;
576         virt = bip_get_seed(bip);
577         phys = nvme_block_nr(ns, blk_rq_pos(req));
578         nlb = (blk_rq_bytes(req) >> ns->lba_shift);
579         ts = ns->disk->queue->integrity.tuple_size;
580
581         for (i = 0; i < nlb; i++, virt++, phys++) {
582                 pi = (struct t10_pi_tuple *)p;
583                 dif_swap(phys, virt, pi);
584                 p += ts;
585         }
586         kunmap_atomic(pmap);
587 }
588 #else /* CONFIG_BLK_DEV_INTEGRITY */
589 static void nvme_dif_remap(struct request *req,
590                         void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
591 {
592 }
593 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
594 {
595 }
596 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
597 {
598 }
599 #endif
600
601 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
602 {
603         int i;
604         struct scatterlist *sg;
605
606         for_each_sg(sgl, sg, nents, i) {
607                 dma_addr_t phys = sg_phys(sg);
608                 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
609                         "dma_address:%pad dma_length:%d\n",
610                         i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
611                         sg_dma_len(sg));
612         }
613 }
614
615 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
616                 struct request *req, struct nvme_rw_command *cmnd)
617 {
618         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
619         struct dma_pool *pool;
620         int length = blk_rq_payload_bytes(req);
621         struct scatterlist *sg = iod->sg;
622         int dma_len = sg_dma_len(sg);
623         u64 dma_addr = sg_dma_address(sg);
624         u32 page_size = dev->ctrl.page_size;
625         int offset = dma_addr & (page_size - 1);
626         __le64 *prp_list;
627         void **list = nvme_pci_iod_list(req);
628         dma_addr_t prp_dma;
629         int nprps, i;
630
631         length -= (page_size - offset);
632         if (length <= 0) {
633                 iod->first_dma = 0;
634                 goto done;
635         }
636
637         dma_len -= (page_size - offset);
638         if (dma_len) {
639                 dma_addr += (page_size - offset);
640         } else {
641                 sg = sg_next(sg);
642                 dma_addr = sg_dma_address(sg);
643                 dma_len = sg_dma_len(sg);
644         }
645
646         if (length <= page_size) {
647                 iod->first_dma = dma_addr;
648                 goto done;
649         }
650
651         nprps = DIV_ROUND_UP(length, page_size);
652         if (nprps <= (256 / 8)) {
653                 pool = dev->prp_small_pool;
654                 iod->npages = 0;
655         } else {
656                 pool = dev->prp_page_pool;
657                 iod->npages = 1;
658         }
659
660         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
661         if (!prp_list) {
662                 iod->first_dma = dma_addr;
663                 iod->npages = -1;
664                 return BLK_STS_RESOURCE;
665         }
666         list[0] = prp_list;
667         iod->first_dma = prp_dma;
668         i = 0;
669         for (;;) {
670                 if (i == page_size >> 3) {
671                         __le64 *old_prp_list = prp_list;
672                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
673                         if (!prp_list)
674                                 return BLK_STS_RESOURCE;
675                         list[iod->npages++] = prp_list;
676                         prp_list[0] = old_prp_list[i - 1];
677                         old_prp_list[i - 1] = cpu_to_le64(prp_dma);
678                         i = 1;
679                 }
680                 prp_list[i++] = cpu_to_le64(dma_addr);
681                 dma_len -= page_size;
682                 dma_addr += page_size;
683                 length -= page_size;
684                 if (length <= 0)
685                         break;
686                 if (dma_len > 0)
687                         continue;
688                 if (unlikely(dma_len < 0))
689                         goto bad_sgl;
690                 sg = sg_next(sg);
691                 dma_addr = sg_dma_address(sg);
692                 dma_len = sg_dma_len(sg);
693         }
694
695 done:
696         cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
697         cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
698
699         return BLK_STS_OK;
700
701  bad_sgl:
702         WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
703                         "Invalid SGL for payload:%d nents:%d\n",
704                         blk_rq_payload_bytes(req), iod->nents);
705         return BLK_STS_IOERR;
706 }
707
708 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
709                 struct scatterlist *sg)
710 {
711         sge->addr = cpu_to_le64(sg_dma_address(sg));
712         sge->length = cpu_to_le32(sg_dma_len(sg));
713         sge->type = NVME_SGL_FMT_DATA_DESC << 4;
714 }
715
716 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
717                 dma_addr_t dma_addr, int entries)
718 {
719         sge->addr = cpu_to_le64(dma_addr);
720         if (entries < SGES_PER_PAGE) {
721                 sge->length = cpu_to_le32(entries * sizeof(*sge));
722                 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
723         } else {
724                 sge->length = cpu_to_le32(PAGE_SIZE);
725                 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
726         }
727 }
728
729 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
730                 struct request *req, struct nvme_rw_command *cmd, int entries)
731 {
732         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
733         struct dma_pool *pool;
734         struct nvme_sgl_desc *sg_list;
735         struct scatterlist *sg = iod->sg;
736         dma_addr_t sgl_dma;
737         int i = 0;
738
739         /* setting the transfer type as SGL */
740         cmd->flags = NVME_CMD_SGL_METABUF;
741
742         if (entries == 1) {
743                 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
744                 return BLK_STS_OK;
745         }
746
747         if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
748                 pool = dev->prp_small_pool;
749                 iod->npages = 0;
750         } else {
751                 pool = dev->prp_page_pool;
752                 iod->npages = 1;
753         }
754
755         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
756         if (!sg_list) {
757                 iod->npages = -1;
758                 return BLK_STS_RESOURCE;
759         }
760
761         nvme_pci_iod_list(req)[0] = sg_list;
762         iod->first_dma = sgl_dma;
763
764         nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
765
766         do {
767                 if (i == SGES_PER_PAGE) {
768                         struct nvme_sgl_desc *old_sg_desc = sg_list;
769                         struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
770
771                         sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
772                         if (!sg_list)
773                                 return BLK_STS_RESOURCE;
774
775                         i = 0;
776                         nvme_pci_iod_list(req)[iod->npages++] = sg_list;
777                         sg_list[i++] = *link;
778                         nvme_pci_sgl_set_seg(link, sgl_dma, entries);
779                 }
780
781                 nvme_pci_sgl_set_data(&sg_list[i++], sg);
782                 sg = sg_next(sg);
783         } while (--entries > 0);
784
785         return BLK_STS_OK;
786 }
787
788 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
789                 struct nvme_command *cmnd)
790 {
791         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
792         struct request_queue *q = req->q;
793         enum dma_data_direction dma_dir = rq_data_dir(req) ?
794                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
795         blk_status_t ret = BLK_STS_IOERR;
796         int nr_mapped;
797
798         sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
799         iod->nents = blk_rq_map_sg(q, req, iod->sg);
800         if (!iod->nents)
801                 goto out;
802
803         ret = BLK_STS_RESOURCE;
804         nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir,
805                         DMA_ATTR_NO_WARN);
806         if (!nr_mapped)
807                 goto out;
808
809         if (iod->use_sgl)
810                 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
811         else
812                 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
813
814         if (ret != BLK_STS_OK)
815                 goto out_unmap;
816
817         ret = BLK_STS_IOERR;
818         if (blk_integrity_rq(req)) {
819                 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
820                         goto out_unmap;
821
822                 sg_init_table(&iod->meta_sg, 1);
823                 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
824                         goto out_unmap;
825
826                 if (req_op(req) == REQ_OP_WRITE)
827                         nvme_dif_remap(req, nvme_dif_prep);
828
829                 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
830                         goto out_unmap;
831         }
832
833         if (blk_integrity_rq(req))
834                 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
835         return BLK_STS_OK;
836
837 out_unmap:
838         dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
839 out:
840         return ret;
841 }
842
843 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
844 {
845         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
846         enum dma_data_direction dma_dir = rq_data_dir(req) ?
847                         DMA_TO_DEVICE : DMA_FROM_DEVICE;
848
849         if (iod->nents) {
850                 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
851                 if (blk_integrity_rq(req)) {
852                         if (req_op(req) == REQ_OP_READ)
853                                 nvme_dif_remap(req, nvme_dif_complete);
854                         dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
855                 }
856         }
857
858         nvme_cleanup_cmd(req);
859         nvme_free_iod(dev, req);
860 }
861
862 /*
863  * NOTE: ns is NULL when called on the admin queue.
864  */
865 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
866                          const struct blk_mq_queue_data *bd)
867 {
868         struct nvme_ns *ns = hctx->queue->queuedata;
869         struct nvme_queue *nvmeq = hctx->driver_data;
870         struct nvme_dev *dev = nvmeq->dev;
871         struct request *req = bd->rq;
872         struct nvme_command cmnd;
873         blk_status_t ret;
874
875         ret = nvme_setup_cmd(ns, req, &cmnd);
876         if (ret)
877                 return ret;
878
879         ret = nvme_init_iod(req, dev);
880         if (ret)
881                 goto out_free_cmd;
882
883         if (blk_rq_nr_phys_segments(req)) {
884                 ret = nvme_map_data(dev, req, &cmnd);
885                 if (ret)
886                         goto out_cleanup_iod;
887         }
888
889         blk_mq_start_request(req);
890
891         spin_lock_irq(&nvmeq->q_lock);
892         if (unlikely(nvmeq->cq_vector < 0)) {
893                 ret = BLK_STS_IOERR;
894                 spin_unlock_irq(&nvmeq->q_lock);
895                 goto out_cleanup_iod;
896         }
897         __nvme_submit_cmd(nvmeq, &cmnd);
898         nvme_process_cq(nvmeq);
899         spin_unlock_irq(&nvmeq->q_lock);
900         return BLK_STS_OK;
901 out_cleanup_iod:
902         nvme_free_iod(dev, req);
903 out_free_cmd:
904         nvme_cleanup_cmd(req);
905         return ret;
906 }
907
908 static void nvme_pci_complete_rq(struct request *req)
909 {
910         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
911
912         nvme_unmap_data(iod->nvmeq->dev, req);
913         nvme_complete_rq(req);
914 }
915
916 /* We read the CQE phase first to check if the rest of the entry is valid */
917 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
918                 u16 phase)
919 {
920         return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
921 }
922
923 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
924 {
925         u16 head = nvmeq->cq_head;
926
927         if (likely(nvmeq->cq_vector >= 0)) {
928                 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
929                                                       nvmeq->dbbuf_cq_ei))
930                         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
931         }
932 }
933
934 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
935                 struct nvme_completion *cqe)
936 {
937         struct request *req;
938
939         if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
940                 dev_warn(nvmeq->dev->ctrl.device,
941                         "invalid id %d completed on queue %d\n",
942                         cqe->command_id, le16_to_cpu(cqe->sq_id));
943                 return;
944         }
945
946         /*
947          * AEN requests are special as they don't time out and can
948          * survive any kind of queue freeze and often don't respond to
949          * aborts.  We don't even bother to allocate a struct request
950          * for them but rather special case them here.
951          */
952         if (unlikely(nvmeq->qid == 0 &&
953                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
954                 nvme_complete_async_event(&nvmeq->dev->ctrl,
955                                 cqe->status, &cqe->result);
956                 return;
957         }
958
959         nvmeq->cqe_seen = 1;
960         req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
961         nvme_end_request(req, cqe->status, cqe->result);
962 }
963
964 static inline bool nvme_read_cqe(struct nvme_queue *nvmeq,
965                 struct nvme_completion *cqe)
966 {
967         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
968                 *cqe = nvmeq->cqes[nvmeq->cq_head];
969
970                 if (++nvmeq->cq_head == nvmeq->q_depth) {
971                         nvmeq->cq_head = 0;
972                         nvmeq->cq_phase = !nvmeq->cq_phase;
973                 }
974                 return true;
975         }
976         return false;
977 }
978
979 static void nvme_process_cq(struct nvme_queue *nvmeq)
980 {
981         struct nvme_completion cqe;
982         int consumed = 0;
983
984         while (nvme_read_cqe(nvmeq, &cqe)) {
985                 nvme_handle_cqe(nvmeq, &cqe);
986                 consumed++;
987         }
988
989         if (consumed)
990                 nvme_ring_cq_doorbell(nvmeq);
991 }
992
993 static irqreturn_t nvme_irq(int irq, void *data)
994 {
995         irqreturn_t result;
996         struct nvme_queue *nvmeq = data;
997         spin_lock(&nvmeq->q_lock);
998         nvme_process_cq(nvmeq);
999         result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1000         nvmeq->cqe_seen = 0;
1001         spin_unlock(&nvmeq->q_lock);
1002         return result;
1003 }
1004
1005 static irqreturn_t nvme_irq_check(int irq, void *data)
1006 {
1007         struct nvme_queue *nvmeq = data;
1008         if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1009                 return IRQ_WAKE_THREAD;
1010         return IRQ_NONE;
1011 }
1012
1013 static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag)
1014 {
1015         struct nvme_completion cqe;
1016         int found = 0, consumed = 0;
1017
1018         if (!nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
1019                 return 0;
1020
1021         spin_lock_irq(&nvmeq->q_lock);
1022         while (nvme_read_cqe(nvmeq, &cqe)) {
1023                 nvme_handle_cqe(nvmeq, &cqe);
1024                 consumed++;
1025
1026                 if (tag == cqe.command_id) {
1027                         found = 1;
1028                         break;
1029                 }
1030        }
1031
1032         if (consumed)
1033                 nvme_ring_cq_doorbell(nvmeq);
1034         spin_unlock_irq(&nvmeq->q_lock);
1035
1036         return found;
1037 }
1038
1039 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1040 {
1041         struct nvme_queue *nvmeq = hctx->driver_data;
1042
1043         return __nvme_poll(nvmeq, tag);
1044 }
1045
1046 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1047 {
1048         struct nvme_dev *dev = to_nvme_dev(ctrl);
1049         struct nvme_queue *nvmeq = &dev->queues[0];
1050         struct nvme_command c;
1051
1052         memset(&c, 0, sizeof(c));
1053         c.common.opcode = nvme_admin_async_event;
1054         c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1055
1056         spin_lock_irq(&nvmeq->q_lock);
1057         __nvme_submit_cmd(nvmeq, &c);
1058         spin_unlock_irq(&nvmeq->q_lock);
1059 }
1060
1061 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1062 {
1063         struct nvme_command c;
1064
1065         memset(&c, 0, sizeof(c));
1066         c.delete_queue.opcode = opcode;
1067         c.delete_queue.qid = cpu_to_le16(id);
1068
1069         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1070 }
1071
1072 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1073                                                 struct nvme_queue *nvmeq)
1074 {
1075         struct nvme_command c;
1076         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1077
1078         /*
1079          * Note: we (ab)use the fact that the prp fields survive if no data
1080          * is attached to the request.
1081          */
1082         memset(&c, 0, sizeof(c));
1083         c.create_cq.opcode = nvme_admin_create_cq;
1084         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1085         c.create_cq.cqid = cpu_to_le16(qid);
1086         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1087         c.create_cq.cq_flags = cpu_to_le16(flags);
1088         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1089
1090         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1091 }
1092
1093 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1094                                                 struct nvme_queue *nvmeq)
1095 {
1096         struct nvme_ctrl *ctrl = &dev->ctrl;
1097         struct nvme_command c;
1098         int flags = NVME_QUEUE_PHYS_CONTIG;
1099
1100         /*
1101          * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1102          * set. Since URGENT priority is zeroes, it makes all queues
1103          * URGENT.
1104          */
1105         if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1106                 flags |= NVME_SQ_PRIO_MEDIUM;
1107
1108         /*
1109          * Note: we (ab)use the fact that the prp fields survive if no data
1110          * is attached to the request.
1111          */
1112         memset(&c, 0, sizeof(c));
1113         c.create_sq.opcode = nvme_admin_create_sq;
1114         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1115         c.create_sq.sqid = cpu_to_le16(qid);
1116         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1117         c.create_sq.sq_flags = cpu_to_le16(flags);
1118         c.create_sq.cqid = cpu_to_le16(qid);
1119
1120         return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1121 }
1122
1123 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1124 {
1125         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1126 }
1127
1128 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1129 {
1130         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1131 }
1132
1133 static void abort_endio(struct request *req, blk_status_t error)
1134 {
1135         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1136         struct nvme_queue *nvmeq = iod->nvmeq;
1137
1138         dev_warn(nvmeq->dev->ctrl.device,
1139                  "Abort status: 0x%x", nvme_req(req)->status);
1140         atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1141         blk_mq_free_request(req);
1142 }
1143
1144 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1145 {
1146
1147         /* If true, indicates loss of adapter communication, possibly by a
1148          * NVMe Subsystem reset.
1149          */
1150         bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1151
1152         /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1153         switch (dev->ctrl.state) {
1154         case NVME_CTRL_RESETTING:
1155         case NVME_CTRL_CONNECTING:
1156                 return false;
1157         default:
1158                 break;
1159         }
1160
1161         /* We shouldn't reset unless the controller is on fatal error state
1162          * _or_ if we lost the communication with it.
1163          */
1164         if (!(csts & NVME_CSTS_CFS) && !nssro)
1165                 return false;
1166
1167         return true;
1168 }
1169
1170 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1171 {
1172         /* Read a config register to help see what died. */
1173         u16 pci_status;
1174         int result;
1175
1176         result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1177                                       &pci_status);
1178         if (result == PCIBIOS_SUCCESSFUL)
1179                 dev_warn(dev->ctrl.device,
1180                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1181                          csts, pci_status);
1182         else
1183                 dev_warn(dev->ctrl.device,
1184                          "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1185                          csts, result);
1186 }
1187
1188 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1189 {
1190         struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1191         struct nvme_queue *nvmeq = iod->nvmeq;
1192         struct nvme_dev *dev = nvmeq->dev;
1193         struct request *abort_req;
1194         struct nvme_command cmd;
1195         u32 csts = readl(dev->bar + NVME_REG_CSTS);
1196
1197         /* If PCI error recovery process is happening, we cannot reset or
1198          * the recovery mechanism will surely fail.
1199          */
1200         mb();
1201         if (pci_channel_offline(to_pci_dev(dev->dev)))
1202                 return BLK_EH_RESET_TIMER;
1203
1204         /*
1205          * Reset immediately if the controller is failed
1206          */
1207         if (nvme_should_reset(dev, csts)) {
1208                 nvme_warn_reset(dev, csts);
1209                 nvme_dev_disable(dev, false);
1210                 nvme_reset_ctrl(&dev->ctrl);
1211                 return BLK_EH_HANDLED;
1212         }
1213
1214         /*
1215          * Did we miss an interrupt?
1216          */
1217         if (__nvme_poll(nvmeq, req->tag)) {
1218                 dev_warn(dev->ctrl.device,
1219                          "I/O %d QID %d timeout, completion polled\n",
1220                          req->tag, nvmeq->qid);
1221                 return BLK_EH_HANDLED;
1222         }
1223
1224         /*
1225          * Shutdown immediately if controller times out while starting. The
1226          * reset work will see the pci device disabled when it gets the forced
1227          * cancellation error. All outstanding requests are completed on
1228          * shutdown, so we return BLK_EH_HANDLED.
1229          */
1230         switch (dev->ctrl.state) {
1231         case NVME_CTRL_CONNECTING:
1232         case NVME_CTRL_RESETTING:
1233                 dev_warn(dev->ctrl.device,
1234                          "I/O %d QID %d timeout, disable controller\n",
1235                          req->tag, nvmeq->qid);
1236                 nvme_dev_disable(dev, false);
1237                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1238                 return BLK_EH_HANDLED;
1239         default:
1240                 break;
1241         }
1242
1243         /*
1244          * Shutdown the controller immediately and schedule a reset if the
1245          * command was already aborted once before and still hasn't been
1246          * returned to the driver, or if this is the admin queue.
1247          */
1248         if (!nvmeq->qid || iod->aborted) {
1249                 dev_warn(dev->ctrl.device,
1250                          "I/O %d QID %d timeout, reset controller\n",
1251                          req->tag, nvmeq->qid);
1252                 nvme_dev_disable(dev, false);
1253                 nvme_reset_ctrl(&dev->ctrl);
1254
1255                 /*
1256                  * Mark the request as handled, since the inline shutdown
1257                  * forces all outstanding requests to complete.
1258                  */
1259                 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1260                 return BLK_EH_HANDLED;
1261         }
1262
1263         if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1264                 atomic_inc(&dev->ctrl.abort_limit);
1265                 return BLK_EH_RESET_TIMER;
1266         }
1267         iod->aborted = 1;
1268
1269         memset(&cmd, 0, sizeof(cmd));
1270         cmd.abort.opcode = nvme_admin_abort_cmd;
1271         cmd.abort.cid = req->tag;
1272         cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1273
1274         dev_warn(nvmeq->dev->ctrl.device,
1275                 "I/O %d QID %d timeout, aborting\n",
1276                  req->tag, nvmeq->qid);
1277
1278         abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1279                         BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1280         if (IS_ERR(abort_req)) {
1281                 atomic_inc(&dev->ctrl.abort_limit);
1282                 return BLK_EH_RESET_TIMER;
1283         }
1284
1285         abort_req->timeout = ADMIN_TIMEOUT;
1286         abort_req->end_io_data = NULL;
1287         blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1288
1289         /*
1290          * The aborted req will be completed on receiving the abort req.
1291          * We enable the timer again. If hit twice, it'll cause a device reset,
1292          * as the device then is in a faulty state.
1293          */
1294         return BLK_EH_RESET_TIMER;
1295 }
1296
1297 static void nvme_free_queue(struct nvme_queue *nvmeq)
1298 {
1299         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1300                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1301         if (nvmeq->sq_cmds)
1302                 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1303                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1304 }
1305
1306 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1307 {
1308         int i;
1309
1310         for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1311                 dev->ctrl.queue_count--;
1312                 nvme_free_queue(&dev->queues[i]);
1313         }
1314 }
1315
1316 /**
1317  * nvme_suspend_queue - put queue into suspended state
1318  * @nvmeq - queue to suspend
1319  */
1320 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1321 {
1322         int vector;
1323
1324         spin_lock_irq(&nvmeq->q_lock);
1325         if (nvmeq->cq_vector == -1) {
1326                 spin_unlock_irq(&nvmeq->q_lock);
1327                 return 1;
1328         }
1329         vector = nvmeq->cq_vector;
1330         nvmeq->dev->online_queues--;
1331         nvmeq->cq_vector = -1;
1332         spin_unlock_irq(&nvmeq->q_lock);
1333
1334         if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1335                 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1336
1337         pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq);
1338
1339         return 0;
1340 }
1341
1342 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1343 {
1344         struct nvme_queue *nvmeq = &dev->queues[0];
1345
1346         if (shutdown)
1347                 nvme_shutdown_ctrl(&dev->ctrl);
1348         else
1349                 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1350
1351         spin_lock_irq(&nvmeq->q_lock);
1352         nvme_process_cq(nvmeq);
1353         spin_unlock_irq(&nvmeq->q_lock);
1354 }
1355
1356 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1357                                 int entry_size)
1358 {
1359         int q_depth = dev->q_depth;
1360         unsigned q_size_aligned = roundup(q_depth * entry_size,
1361                                           dev->ctrl.page_size);
1362
1363         if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1364                 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1365                 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1366                 q_depth = div_u64(mem_per_q, entry_size);
1367
1368                 /*
1369                  * Ensure the reduced q_depth is above some threshold where it
1370                  * would be better to map queues in system memory with the
1371                  * original depth
1372                  */
1373                 if (q_depth < 64)
1374                         return -ENOMEM;
1375         }
1376
1377         return q_depth;
1378 }
1379
1380 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1381                                 int qid, int depth)
1382 {
1383         /* CMB SQEs will be mapped before creation */
1384         if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS))
1385                 return 0;
1386
1387         nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1388                                             &nvmeq->sq_dma_addr, GFP_KERNEL);
1389         if (!nvmeq->sq_cmds)
1390                 return -ENOMEM;
1391         return 0;
1392 }
1393
1394 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1395 {
1396         struct nvme_queue *nvmeq = &dev->queues[qid];
1397
1398         if (dev->ctrl.queue_count > qid)
1399                 return 0;
1400
1401         nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1402                                           &nvmeq->cq_dma_addr, GFP_KERNEL);
1403         if (!nvmeq->cqes)
1404                 goto free_nvmeq;
1405
1406         if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1407                 goto free_cqdma;
1408
1409         nvmeq->q_dmadev = dev->dev;
1410         nvmeq->dev = dev;
1411         spin_lock_init(&nvmeq->q_lock);
1412         nvmeq->cq_head = 0;
1413         nvmeq->cq_phase = 1;
1414         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1415         nvmeq->q_depth = depth;
1416         nvmeq->qid = qid;
1417         nvmeq->cq_vector = -1;
1418         dev->ctrl.queue_count++;
1419
1420         return 0;
1421
1422  free_cqdma:
1423         dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1424                                                         nvmeq->cq_dma_addr);
1425  free_nvmeq:
1426         return -ENOMEM;
1427 }
1428
1429 static int queue_request_irq(struct nvme_queue *nvmeq)
1430 {
1431         struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1432         int nr = nvmeq->dev->ctrl.instance;
1433
1434         if (use_threaded_interrupts) {
1435                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1436                                 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1437         } else {
1438                 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1439                                 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1440         }
1441 }
1442
1443 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1444 {
1445         struct nvme_dev *dev = nvmeq->dev;
1446
1447         spin_lock_irq(&nvmeq->q_lock);
1448         nvmeq->sq_tail = 0;
1449         nvmeq->cq_head = 0;
1450         nvmeq->cq_phase = 1;
1451         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1452         memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1453         nvme_dbbuf_init(dev, nvmeq, qid);
1454         dev->online_queues++;
1455         spin_unlock_irq(&nvmeq->q_lock);
1456 }
1457
1458 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1459 {
1460         struct nvme_dev *dev = nvmeq->dev;
1461         int result;
1462
1463         if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1464                 unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth),
1465                                                       dev->ctrl.page_size);
1466                 nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset;
1467                 nvmeq->sq_cmds_io = dev->cmb + offset;
1468         }
1469
1470         /*
1471          * A queue's vector matches the queue identifier unless the controller
1472          * has only one vector available.
1473          */
1474         nvmeq->cq_vector = dev->num_vecs == 1 ? 0 : qid;
1475         result = adapter_alloc_cq(dev, qid, nvmeq);
1476         if (result < 0)
1477                 goto release_vector;
1478
1479         result = adapter_alloc_sq(dev, qid, nvmeq);
1480         if (result < 0)
1481                 goto release_cq;
1482
1483         nvme_init_queue(nvmeq, qid);
1484         result = queue_request_irq(nvmeq);
1485         if (result < 0)
1486                 goto release_sq;
1487
1488         return result;
1489
1490  release_sq:
1491         dev->online_queues--;
1492         adapter_delete_sq(dev, qid);
1493  release_cq:
1494         adapter_delete_cq(dev, qid);
1495  release_vector:
1496         nvmeq->cq_vector = -1;
1497         return result;
1498 }
1499
1500 static const struct blk_mq_ops nvme_mq_admin_ops = {
1501         .queue_rq       = nvme_queue_rq,
1502         .complete       = nvme_pci_complete_rq,
1503         .init_hctx      = nvme_admin_init_hctx,
1504         .exit_hctx      = nvme_admin_exit_hctx,
1505         .init_request   = nvme_init_request,
1506         .timeout        = nvme_timeout,
1507 };
1508
1509 static const struct blk_mq_ops nvme_mq_ops = {
1510         .queue_rq       = nvme_queue_rq,
1511         .complete       = nvme_pci_complete_rq,
1512         .init_hctx      = nvme_init_hctx,
1513         .init_request   = nvme_init_request,
1514         .map_queues     = nvme_pci_map_queues,
1515         .timeout        = nvme_timeout,
1516         .poll           = nvme_poll,
1517 };
1518
1519 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1520 {
1521         if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1522                 /*
1523                  * If the controller was reset during removal, it's possible
1524                  * user requests may be waiting on a stopped queue. Start the
1525                  * queue to flush these to completion.
1526                  */
1527                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1528                 blk_cleanup_queue(dev->ctrl.admin_q);
1529                 blk_mq_free_tag_set(&dev->admin_tagset);
1530         }
1531 }
1532
1533 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1534 {
1535         if (!dev->ctrl.admin_q) {
1536                 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1537                 dev->admin_tagset.nr_hw_queues = 1;
1538
1539                 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1540                 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1541                 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1542                 dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false);
1543                 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1544                 dev->admin_tagset.driver_data = dev;
1545
1546                 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1547                         return -ENOMEM;
1548                 dev->ctrl.admin_tagset = &dev->admin_tagset;
1549
1550                 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1551                 if (IS_ERR(dev->ctrl.admin_q)) {
1552                         blk_mq_free_tag_set(&dev->admin_tagset);
1553                         return -ENOMEM;
1554                 }
1555                 if (!blk_get_queue(dev->ctrl.admin_q)) {
1556                         nvme_dev_remove_admin(dev);
1557                         dev->ctrl.admin_q = NULL;
1558                         return -ENODEV;
1559                 }
1560         } else
1561                 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1562
1563         return 0;
1564 }
1565
1566 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1567 {
1568         return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1569 }
1570
1571 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1572 {
1573         struct pci_dev *pdev = to_pci_dev(dev->dev);
1574
1575         if (size <= dev->bar_mapped_size)
1576                 return 0;
1577         if (size > pci_resource_len(pdev, 0))
1578                 return -ENOMEM;
1579         if (dev->bar)
1580                 iounmap(dev->bar);
1581         dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1582         if (!dev->bar) {
1583                 dev->bar_mapped_size = 0;
1584                 return -ENOMEM;
1585         }
1586         dev->bar_mapped_size = size;
1587         dev->dbs = dev->bar + NVME_REG_DBS;
1588
1589         return 0;
1590 }
1591
1592 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1593 {
1594         int result;
1595         u32 aqa;
1596         struct nvme_queue *nvmeq;
1597
1598         result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1599         if (result < 0)
1600                 return result;
1601
1602         dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1603                                 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1604
1605         if (dev->subsystem &&
1606             (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1607                 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1608
1609         result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1610         if (result < 0)
1611                 return result;
1612
1613         result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1614         if (result)
1615                 return result;
1616
1617         nvmeq = &dev->queues[0];
1618         aqa = nvmeq->q_depth - 1;
1619         aqa |= aqa << 16;
1620
1621         writel(aqa, dev->bar + NVME_REG_AQA);
1622         lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1623         lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1624
1625         result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1626         if (result)
1627                 return result;
1628
1629         nvmeq->cq_vector = 0;
1630         nvme_init_queue(nvmeq, 0);
1631         result = queue_request_irq(nvmeq);
1632         if (result) {
1633                 nvmeq->cq_vector = -1;
1634                 return result;
1635         }
1636
1637         return result;
1638 }
1639
1640 static int nvme_create_io_queues(struct nvme_dev *dev)
1641 {
1642         unsigned i, max;
1643         int ret = 0;
1644
1645         for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1646                 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1647                         ret = -ENOMEM;
1648                         break;
1649                 }
1650         }
1651
1652         max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1653         for (i = dev->online_queues; i <= max; i++) {
1654                 ret = nvme_create_queue(&dev->queues[i], i);
1655                 if (ret)
1656                         break;
1657         }
1658
1659         /*
1660          * Ignore failing Create SQ/CQ commands, we can continue with less
1661          * than the desired amount of queues, and even a controller without
1662          * I/O queues can still be used to issue admin commands.  This might
1663          * be useful to upgrade a buggy firmware for example.
1664          */
1665         return ret >= 0 ? 0 : ret;
1666 }
1667
1668 static ssize_t nvme_cmb_show(struct device *dev,
1669                              struct device_attribute *attr,
1670                              char *buf)
1671 {
1672         struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1673
1674         return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1675                        ndev->cmbloc, ndev->cmbsz);
1676 }
1677 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1678
1679 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1680 {
1681         u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1682
1683         return 1ULL << (12 + 4 * szu);
1684 }
1685
1686 static u32 nvme_cmb_size(struct nvme_dev *dev)
1687 {
1688         return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1689 }
1690
1691 static void nvme_map_cmb(struct nvme_dev *dev)
1692 {
1693         u64 size, offset;
1694         resource_size_t bar_size;
1695         struct pci_dev *pdev = to_pci_dev(dev->dev);
1696         int bar;
1697
1698         dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1699         if (!dev->cmbsz)
1700                 return;
1701         dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1702
1703         if (!use_cmb_sqes)
1704                 return;
1705
1706         size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1707         offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1708         bar = NVME_CMB_BIR(dev->cmbloc);
1709         bar_size = pci_resource_len(pdev, bar);
1710
1711         if (offset > bar_size)
1712                 return;
1713
1714         /*
1715          * Controllers may support a CMB size larger than their BAR,
1716          * for example, due to being behind a bridge. Reduce the CMB to
1717          * the reported size of the BAR
1718          */
1719         if (size > bar_size - offset)
1720                 size = bar_size - offset;
1721
1722         dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size);
1723         if (!dev->cmb)
1724                 return;
1725         dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset;
1726         dev->cmb_size = size;
1727
1728         if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1729                                     &dev_attr_cmb.attr, NULL))
1730                 dev_warn(dev->ctrl.device,
1731                          "failed to add sysfs attribute for CMB\n");
1732 }
1733
1734 static inline void nvme_release_cmb(struct nvme_dev *dev)
1735 {
1736         if (dev->cmb) {
1737                 iounmap(dev->cmb);
1738                 dev->cmb = NULL;
1739                 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1740                                              &dev_attr_cmb.attr, NULL);
1741                 dev->cmbsz = 0;
1742         }
1743 }
1744
1745 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1746 {
1747         u64 dma_addr = dev->host_mem_descs_dma;
1748         struct nvme_command c;
1749         int ret;
1750
1751         memset(&c, 0, sizeof(c));
1752         c.features.opcode       = nvme_admin_set_features;
1753         c.features.fid          = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1754         c.features.dword11      = cpu_to_le32(bits);
1755         c.features.dword12      = cpu_to_le32(dev->host_mem_size >>
1756                                               ilog2(dev->ctrl.page_size));
1757         c.features.dword13      = cpu_to_le32(lower_32_bits(dma_addr));
1758         c.features.dword14      = cpu_to_le32(upper_32_bits(dma_addr));
1759         c.features.dword15      = cpu_to_le32(dev->nr_host_mem_descs);
1760
1761         ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1762         if (ret) {
1763                 dev_warn(dev->ctrl.device,
1764                          "failed to set host mem (err %d, flags %#x).\n",
1765                          ret, bits);
1766         }
1767         return ret;
1768 }
1769
1770 static void nvme_free_host_mem(struct nvme_dev *dev)
1771 {
1772         int i;
1773
1774         for (i = 0; i < dev->nr_host_mem_descs; i++) {
1775                 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1776                 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1777
1778                 dma_free_coherent(dev->dev, size, dev->host_mem_desc_bufs[i],
1779                                 le64_to_cpu(desc->addr));
1780         }
1781
1782         kfree(dev->host_mem_desc_bufs);
1783         dev->host_mem_desc_bufs = NULL;
1784         dma_free_coherent(dev->dev,
1785                         dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1786                         dev->host_mem_descs, dev->host_mem_descs_dma);
1787         dev->host_mem_descs = NULL;
1788         dev->nr_host_mem_descs = 0;
1789 }
1790
1791 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1792                 u32 chunk_size)
1793 {
1794         struct nvme_host_mem_buf_desc *descs;
1795         u32 max_entries, len;
1796         dma_addr_t descs_dma;
1797         int i = 0;
1798         void **bufs;
1799         u64 size, tmp;
1800
1801         tmp = (preferred + chunk_size - 1);
1802         do_div(tmp, chunk_size);
1803         max_entries = tmp;
1804
1805         if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1806                 max_entries = dev->ctrl.hmmaxd;
1807
1808         descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs),
1809                         &descs_dma, GFP_KERNEL);
1810         if (!descs)
1811                 goto out;
1812
1813         bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1814         if (!bufs)
1815                 goto out_free_descs;
1816
1817         for (size = 0; size < preferred && i < max_entries; size += len) {
1818                 dma_addr_t dma_addr;
1819
1820                 len = min_t(u64, chunk_size, preferred - size);
1821                 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1822                                 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1823                 if (!bufs[i])
1824                         break;
1825
1826                 descs[i].addr = cpu_to_le64(dma_addr);
1827                 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1828                 i++;
1829         }
1830
1831         if (!size)
1832                 goto out_free_bufs;
1833
1834         dev->nr_host_mem_descs = i;
1835         dev->host_mem_size = size;
1836         dev->host_mem_descs = descs;
1837         dev->host_mem_descs_dma = descs_dma;
1838         dev->host_mem_desc_bufs = bufs;
1839         return 0;
1840
1841 out_free_bufs:
1842         while (--i >= 0) {
1843                 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1844
1845                 dma_free_coherent(dev->dev, size, bufs[i],
1846                                 le64_to_cpu(descs[i].addr));
1847         }
1848
1849         kfree(bufs);
1850 out_free_descs:
1851         dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1852                         descs_dma);
1853 out:
1854         dev->host_mem_descs = NULL;
1855         return -ENOMEM;
1856 }
1857
1858 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1859 {
1860         u32 chunk_size;
1861
1862         /* start big and work our way down */
1863         for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1864              chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1865              chunk_size /= 2) {
1866                 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1867                         if (!min || dev->host_mem_size >= min)
1868                                 return 0;
1869                         nvme_free_host_mem(dev);
1870                 }
1871         }
1872
1873         return -ENOMEM;
1874 }
1875
1876 static int nvme_setup_host_mem(struct nvme_dev *dev)
1877 {
1878         u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1879         u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1880         u64 min = (u64)dev->ctrl.hmmin * 4096;
1881         u32 enable_bits = NVME_HOST_MEM_ENABLE;
1882         int ret;
1883
1884         preferred = min(preferred, max);
1885         if (min > max) {
1886                 dev_warn(dev->ctrl.device,
1887                         "min host memory (%lld MiB) above limit (%d MiB).\n",
1888                         min >> ilog2(SZ_1M), max_host_mem_size_mb);
1889                 nvme_free_host_mem(dev);
1890                 return 0;
1891         }
1892
1893         /*
1894          * If we already have a buffer allocated check if we can reuse it.
1895          */
1896         if (dev->host_mem_descs) {
1897                 if (dev->host_mem_size >= min)
1898                         enable_bits |= NVME_HOST_MEM_RETURN;
1899                 else
1900                         nvme_free_host_mem(dev);
1901         }
1902
1903         if (!dev->host_mem_descs) {
1904                 if (nvme_alloc_host_mem(dev, min, preferred)) {
1905                         dev_warn(dev->ctrl.device,
1906                                 "failed to allocate host memory buffer.\n");
1907                         return 0; /* controller must work without HMB */
1908                 }
1909
1910                 dev_info(dev->ctrl.device,
1911                         "allocated %lld MiB host memory buffer.\n",
1912                         dev->host_mem_size >> ilog2(SZ_1M));
1913         }
1914
1915         ret = nvme_set_host_mem(dev, enable_bits);
1916         if (ret)
1917                 nvme_free_host_mem(dev);
1918         return ret;
1919 }
1920
1921 static int nvme_setup_io_queues(struct nvme_dev *dev)
1922 {
1923         struct nvme_queue *adminq = &dev->queues[0];
1924         struct pci_dev *pdev = to_pci_dev(dev->dev);
1925         int result, nr_io_queues;
1926         unsigned long size;
1927
1928         struct irq_affinity affd = {
1929                 .pre_vectors = 1
1930         };
1931
1932         nr_io_queues = num_possible_cpus();
1933         result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1934         if (result < 0)
1935                 return result;
1936
1937         if (nr_io_queues == 0)
1938                 return 0;
1939
1940         if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1941                 result = nvme_cmb_qdepth(dev, nr_io_queues,
1942                                 sizeof(struct nvme_command));
1943                 if (result > 0)
1944                         dev->q_depth = result;
1945                 else
1946                         nvme_release_cmb(dev);
1947         }
1948
1949         do {
1950                 size = db_bar_size(dev, nr_io_queues);
1951                 result = nvme_remap_bar(dev, size);
1952                 if (!result)
1953                         break;
1954                 if (!--nr_io_queues)
1955                         return -ENOMEM;
1956         } while (1);
1957         adminq->q_db = dev->dbs;
1958
1959         /* Deregister the admin queue's interrupt */
1960         pci_free_irq(pdev, 0, adminq);
1961
1962         /*
1963          * If we enable msix early due to not intx, disable it again before
1964          * setting up the full range we need.
1965          */
1966         pci_free_irq_vectors(pdev);
1967         result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1,
1968                         PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
1969         if (result <= 0)
1970                 return -EIO;
1971         dev->num_vecs = result;
1972         dev->max_qid = max(result - 1, 1);
1973
1974         /*
1975          * Should investigate if there's a performance win from allocating
1976          * more queues than interrupt vectors; it might allow the submission
1977          * path to scale better, even if the receive path is limited by the
1978          * number of interrupts.
1979          */
1980
1981         result = queue_request_irq(adminq);
1982         if (result) {
1983                 adminq->cq_vector = -1;
1984                 return result;
1985         }
1986         return nvme_create_io_queues(dev);
1987 }
1988
1989 static void nvme_del_queue_end(struct request *req, blk_status_t error)
1990 {
1991         struct nvme_queue *nvmeq = req->end_io_data;
1992
1993         blk_mq_free_request(req);
1994         complete(&nvmeq->dev->ioq_wait);
1995 }
1996
1997 static void nvme_del_cq_end(struct request *req, blk_status_t error)
1998 {
1999         struct nvme_queue *nvmeq = req->end_io_data;
2000
2001         if (!error) {
2002                 unsigned long flags;
2003
2004                 /*
2005                  * We might be called with the AQ q_lock held
2006                  * and the I/O queue q_lock should always
2007                  * nest inside the AQ one.
2008                  */
2009                 spin_lock_irqsave_nested(&nvmeq->q_lock, flags,
2010                                         SINGLE_DEPTH_NESTING);
2011                 nvme_process_cq(nvmeq);
2012                 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
2013         }
2014
2015         nvme_del_queue_end(req, error);
2016 }
2017
2018 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2019 {
2020         struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2021         struct request *req;
2022         struct nvme_command cmd;
2023
2024         memset(&cmd, 0, sizeof(cmd));
2025         cmd.delete_queue.opcode = opcode;
2026         cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2027
2028         req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2029         if (IS_ERR(req))
2030                 return PTR_ERR(req);
2031
2032         req->timeout = ADMIN_TIMEOUT;
2033         req->end_io_data = nvmeq;
2034
2035         blk_execute_rq_nowait(q, NULL, req, false,
2036                         opcode == nvme_admin_delete_cq ?
2037                                 nvme_del_cq_end : nvme_del_queue_end);
2038         return 0;
2039 }
2040
2041 static void nvme_disable_io_queues(struct nvme_dev *dev)
2042 {
2043         int pass, queues = dev->online_queues - 1;
2044         unsigned long timeout;
2045         u8 opcode = nvme_admin_delete_sq;
2046
2047         for (pass = 0; pass < 2; pass++) {
2048                 int sent = 0, i = queues;
2049
2050                 reinit_completion(&dev->ioq_wait);
2051  retry:
2052                 timeout = ADMIN_TIMEOUT;
2053                 for (; i > 0; i--, sent++)
2054                         if (nvme_delete_queue(&dev->queues[i], opcode))
2055                                 break;
2056
2057                 while (sent--) {
2058                         timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
2059                         if (timeout == 0)
2060                                 return;
2061                         if (i)
2062                                 goto retry;
2063                 }
2064                 opcode = nvme_admin_delete_cq;
2065         }
2066 }
2067
2068 /*
2069  * return error value only when tagset allocation failed
2070  */
2071 static int nvme_dev_add(struct nvme_dev *dev)
2072 {
2073         int ret;
2074
2075         if (!dev->ctrl.tagset) {
2076                 dev->tagset.ops = &nvme_mq_ops;
2077                 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2078                 dev->tagset.timeout = NVME_IO_TIMEOUT;
2079                 dev->tagset.numa_node = dev_to_node(dev->dev);
2080                 dev->tagset.queue_depth =
2081                                 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2082                 dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false);
2083                 if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) {
2084                         dev->tagset.cmd_size = max(dev->tagset.cmd_size,
2085                                         nvme_pci_cmd_size(dev, true));
2086                 }
2087                 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2088                 dev->tagset.driver_data = dev;
2089
2090                 ret = blk_mq_alloc_tag_set(&dev->tagset);
2091                 if (ret) {
2092                         dev_warn(dev->ctrl.device,
2093                                 "IO queues tagset allocation failed %d\n", ret);
2094                         return ret;
2095                 }
2096                 dev->ctrl.tagset = &dev->tagset;
2097
2098                 nvme_dbbuf_set(dev);
2099         } else {
2100                 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2101
2102                 /* Free previously allocated queues that are no longer usable */
2103                 nvme_free_queues(dev, dev->online_queues);
2104         }
2105
2106         return 0;
2107 }
2108
2109 static int nvme_pci_enable(struct nvme_dev *dev)
2110 {
2111         int result = -ENOMEM;
2112         struct pci_dev *pdev = to_pci_dev(dev->dev);
2113
2114         if (pci_enable_device_mem(pdev))
2115                 return result;
2116
2117         pci_set_master(pdev);
2118
2119         if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2120             dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
2121                 goto disable;
2122
2123         if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2124                 result = -ENODEV;
2125                 goto disable;
2126         }
2127
2128         /*
2129          * Some devices and/or platforms don't advertise or work with INTx
2130          * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2131          * adjust this later.
2132          */
2133         result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2134         if (result < 0)
2135                 return result;
2136
2137         dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2138
2139         dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2140                                 io_queue_depth);
2141         dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2142         dev->dbs = dev->bar + 4096;
2143
2144         /*
2145          * Temporary fix for the Apple controller found in the MacBook8,1 and
2146          * some MacBook7,1 to avoid controller resets and data loss.
2147          */
2148         if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2149                 dev->q_depth = 2;
2150                 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2151                         "set queue depth=%u to work around controller resets\n",
2152                         dev->q_depth);
2153         } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2154                    (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2155                    NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2156                 dev->q_depth = 64;
2157                 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2158                         "set queue depth=%u\n", dev->q_depth);
2159         }
2160
2161         nvme_map_cmb(dev);
2162
2163         pci_enable_pcie_error_reporting(pdev);
2164         pci_save_state(pdev);
2165         return 0;
2166
2167  disable:
2168         pci_disable_device(pdev);
2169         return result;
2170 }
2171
2172 static void nvme_dev_unmap(struct nvme_dev *dev)
2173 {
2174         if (dev->bar)
2175                 iounmap(dev->bar);
2176         pci_release_mem_regions(to_pci_dev(dev->dev));
2177 }
2178
2179 static void nvme_pci_disable(struct nvme_dev *dev)
2180 {
2181         struct pci_dev *pdev = to_pci_dev(dev->dev);
2182
2183         nvme_release_cmb(dev);
2184         pci_free_irq_vectors(pdev);
2185
2186         if (pci_is_enabled(pdev)) {
2187                 pci_disable_pcie_error_reporting(pdev);
2188                 pci_disable_device(pdev);
2189         }
2190 }
2191
2192 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2193 {
2194         int i;
2195         bool dead = true;
2196         struct pci_dev *pdev = to_pci_dev(dev->dev);
2197
2198         mutex_lock(&dev->shutdown_lock);
2199         if (pci_is_enabled(pdev)) {
2200                 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2201
2202                 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2203                     dev->ctrl.state == NVME_CTRL_RESETTING)
2204                         nvme_start_freeze(&dev->ctrl);
2205                 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2206                         pdev->error_state  != pci_channel_io_normal);
2207         }
2208
2209         /*
2210          * Give the controller a chance to complete all entered requests if
2211          * doing a safe shutdown.
2212          */
2213         if (!dead) {
2214                 if (shutdown)
2215                         nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2216         }
2217
2218         nvme_stop_queues(&dev->ctrl);
2219
2220         if (!dead && dev->ctrl.queue_count > 0) {
2221                 /*
2222                  * If the controller is still alive tell it to stop using the
2223                  * host memory buffer.  In theory the shutdown / reset should
2224                  * make sure that it doesn't access the host memoery anymore,
2225                  * but I'd rather be safe than sorry..
2226                  */
2227                 if (dev->host_mem_descs)
2228                         nvme_set_host_mem(dev, 0);
2229                 nvme_disable_io_queues(dev);
2230                 nvme_disable_admin_queue(dev, shutdown);
2231         }
2232         for (i = dev->ctrl.queue_count - 1; i >= 0; i--)
2233                 nvme_suspend_queue(&dev->queues[i]);
2234
2235         nvme_pci_disable(dev);
2236
2237         blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2238         blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2239
2240         /*
2241          * The driver will not be starting up queues again if shutting down so
2242          * must flush all entered requests to their failed completion to avoid
2243          * deadlocking blk-mq hot-cpu notifier.
2244          */
2245         if (shutdown)
2246                 nvme_start_queues(&dev->ctrl);
2247         mutex_unlock(&dev->shutdown_lock);
2248 }
2249
2250 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2251 {
2252         dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2253                                                 PAGE_SIZE, PAGE_SIZE, 0);
2254         if (!dev->prp_page_pool)
2255                 return -ENOMEM;
2256
2257         /* Optimisation for I/Os between 4k and 128k */
2258         dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2259                                                 256, 256, 0);
2260         if (!dev->prp_small_pool) {
2261                 dma_pool_destroy(dev->prp_page_pool);
2262                 return -ENOMEM;
2263         }
2264         return 0;
2265 }
2266
2267 static void nvme_release_prp_pools(struct nvme_dev *dev)
2268 {
2269         dma_pool_destroy(dev->prp_page_pool);
2270         dma_pool_destroy(dev->prp_small_pool);
2271 }
2272
2273 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2274 {
2275         struct nvme_dev *dev = to_nvme_dev(ctrl);
2276
2277         nvme_dbbuf_dma_free(dev);
2278         put_device(dev->dev);
2279         if (dev->tagset.tags)
2280                 blk_mq_free_tag_set(&dev->tagset);
2281         if (dev->ctrl.admin_q)
2282                 blk_put_queue(dev->ctrl.admin_q);
2283         kfree(dev->queues);
2284         free_opal_dev(dev->ctrl.opal_dev);
2285         kfree(dev);
2286 }
2287
2288 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
2289 {
2290         dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
2291
2292         nvme_get_ctrl(&dev->ctrl);
2293         nvme_dev_disable(dev, false);
2294         if (!queue_work(nvme_wq, &dev->remove_work))
2295                 nvme_put_ctrl(&dev->ctrl);
2296 }
2297
2298 static void nvme_reset_work(struct work_struct *work)
2299 {
2300         struct nvme_dev *dev =
2301                 container_of(work, struct nvme_dev, ctrl.reset_work);
2302         bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2303         int result = -ENODEV;
2304         enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2305
2306         if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING))
2307                 goto out;
2308
2309         /*
2310          * If we're called to reset a live controller first shut it down before
2311          * moving on.
2312          */
2313         if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2314                 nvme_dev_disable(dev, false);
2315
2316         /*
2317          * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2318          * initializing procedure here.
2319          */
2320         if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2321                 dev_warn(dev->ctrl.device,
2322                         "failed to mark controller CONNECTING\n");
2323                 goto out;
2324         }
2325
2326         result = nvme_pci_enable(dev);
2327         if (result)
2328                 goto out;
2329
2330         result = nvme_pci_configure_admin_queue(dev);
2331         if (result)
2332                 goto out;
2333
2334         result = nvme_alloc_admin_tags(dev);
2335         if (result)
2336                 goto out;
2337
2338         result = nvme_init_identify(&dev->ctrl);
2339         if (result)
2340                 goto out;
2341
2342         if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2343                 if (!dev->ctrl.opal_dev)
2344                         dev->ctrl.opal_dev =
2345                                 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2346                 else if (was_suspend)
2347                         opal_unlock_from_suspend(dev->ctrl.opal_dev);
2348         } else {
2349                 free_opal_dev(dev->ctrl.opal_dev);
2350                 dev->ctrl.opal_dev = NULL;
2351         }
2352
2353         if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2354                 result = nvme_dbbuf_dma_alloc(dev);
2355                 if (result)
2356                         dev_warn(dev->dev,
2357                                  "unable to allocate dma for dbbuf\n");
2358         }
2359
2360         if (dev->ctrl.hmpre) {
2361                 result = nvme_setup_host_mem(dev);
2362                 if (result < 0)
2363                         goto out;
2364         }
2365
2366         result = nvme_setup_io_queues(dev);
2367         if (result)
2368                 goto out;
2369
2370         /*
2371          * Keep the controller around but remove all namespaces if we don't have
2372          * any working I/O queue.
2373          */
2374         if (dev->online_queues < 2) {
2375                 dev_warn(dev->ctrl.device, "IO queues not created\n");
2376                 nvme_kill_queues(&dev->ctrl);
2377                 nvme_remove_namespaces(&dev->ctrl);
2378                 new_state = NVME_CTRL_ADMIN_ONLY;
2379         } else {
2380                 nvme_start_queues(&dev->ctrl);
2381                 nvme_wait_freeze(&dev->ctrl);
2382                 /* hit this only when allocate tagset fails */
2383                 if (nvme_dev_add(dev))
2384                         new_state = NVME_CTRL_ADMIN_ONLY;
2385                 nvme_unfreeze(&dev->ctrl);
2386         }
2387
2388         /*
2389          * If only admin queue live, keep it to do further investigation or
2390          * recovery.
2391          */
2392         if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2393                 dev_warn(dev->ctrl.device,
2394                         "failed to mark controller state %d\n", new_state);
2395                 goto out;
2396         }
2397
2398         nvme_start_ctrl(&dev->ctrl);
2399         return;
2400
2401  out:
2402         nvme_remove_dead_ctrl(dev, result);
2403 }
2404
2405 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2406 {
2407         struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2408         struct pci_dev *pdev = to_pci_dev(dev->dev);
2409
2410         nvme_kill_queues(&dev->ctrl);
2411         if (pci_get_drvdata(pdev))
2412                 device_release_driver(&pdev->dev);
2413         nvme_put_ctrl(&dev->ctrl);
2414 }
2415
2416 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2417 {
2418         *val = readl(to_nvme_dev(ctrl)->bar + off);
2419         return 0;
2420 }
2421
2422 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2423 {
2424         writel(val, to_nvme_dev(ctrl)->bar + off);
2425         return 0;
2426 }
2427
2428 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2429 {
2430         *val = readq(to_nvme_dev(ctrl)->bar + off);
2431         return 0;
2432 }
2433
2434 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2435 {
2436         struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2437
2438         return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2439 }
2440
2441 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2442         .name                   = "pcie",
2443         .module                 = THIS_MODULE,
2444         .flags                  = NVME_F_METADATA_SUPPORTED,
2445         .reg_read32             = nvme_pci_reg_read32,
2446         .reg_write32            = nvme_pci_reg_write32,
2447         .reg_read64             = nvme_pci_reg_read64,
2448         .free_ctrl              = nvme_pci_free_ctrl,
2449         .submit_async_event     = nvme_pci_submit_async_event,
2450         .get_address            = nvme_pci_get_address,
2451 };
2452
2453 static int nvme_dev_map(struct nvme_dev *dev)
2454 {
2455         struct pci_dev *pdev = to_pci_dev(dev->dev);
2456
2457         if (pci_request_mem_regions(pdev, "nvme"))
2458                 return -ENODEV;
2459
2460         if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2461                 goto release;
2462
2463         return 0;
2464   release:
2465         pci_release_mem_regions(pdev);
2466         return -ENODEV;
2467 }
2468
2469 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2470 {
2471         if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2472                 /*
2473                  * Several Samsung devices seem to drop off the PCIe bus
2474                  * randomly when APST is on and uses the deepest sleep state.
2475                  * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2476                  * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2477                  * 950 PRO 256GB", but it seems to be restricted to two Dell
2478                  * laptops.
2479                  */
2480                 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2481                     (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2482                      dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2483                         return NVME_QUIRK_NO_DEEPEST_PS;
2484         } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2485                 /*
2486                  * Samsung SSD 960 EVO drops off the PCIe bus after system
2487                  * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2488                  * within few minutes after bootup on a Coffee Lake board -
2489                  * ASUS PRIME Z370-A
2490                  */
2491                 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2492                     (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2493                      dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2494                         return NVME_QUIRK_NO_APST;
2495         }
2496
2497         return 0;
2498 }
2499
2500 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2501 {
2502         int node, result = -ENOMEM;
2503         struct nvme_dev *dev;
2504         unsigned long quirks = id->driver_data;
2505
2506         node = dev_to_node(&pdev->dev);
2507         if (node == NUMA_NO_NODE)
2508                 set_dev_node(&pdev->dev, first_memory_node);
2509
2510         dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2511         if (!dev)
2512                 return -ENOMEM;
2513
2514         dev->queues = kcalloc_node(num_possible_cpus() + 1,
2515                         sizeof(struct nvme_queue), GFP_KERNEL, node);
2516         if (!dev->queues)
2517                 goto free;
2518
2519         dev->dev = get_device(&pdev->dev);
2520         pci_set_drvdata(pdev, dev);
2521
2522         result = nvme_dev_map(dev);
2523         if (result)
2524                 goto put_pci;
2525
2526         INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2527         INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2528         mutex_init(&dev->shutdown_lock);
2529         init_completion(&dev->ioq_wait);
2530
2531         result = nvme_setup_prp_pools(dev);
2532         if (result)
2533                 goto unmap;
2534
2535         quirks |= check_vendor_combination_bug(pdev);
2536
2537         result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2538                         quirks);
2539         if (result)
2540                 goto release_pools;
2541
2542         dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2543
2544         nvme_reset_ctrl(&dev->ctrl);
2545
2546         return 0;
2547
2548  release_pools:
2549         nvme_release_prp_pools(dev);
2550  unmap:
2551         nvme_dev_unmap(dev);
2552  put_pci:
2553         put_device(dev->dev);
2554  free:
2555         kfree(dev->queues);
2556         kfree(dev);
2557         return result;
2558 }
2559
2560 static void nvme_reset_prepare(struct pci_dev *pdev)
2561 {
2562         struct nvme_dev *dev = pci_get_drvdata(pdev);
2563         nvme_dev_disable(dev, false);
2564 }
2565
2566 static void nvme_reset_done(struct pci_dev *pdev)
2567 {
2568         struct nvme_dev *dev = pci_get_drvdata(pdev);
2569         nvme_reset_ctrl_sync(&dev->ctrl);
2570 }
2571
2572 static void nvme_shutdown(struct pci_dev *pdev)
2573 {
2574         struct nvme_dev *dev = pci_get_drvdata(pdev);
2575         nvme_dev_disable(dev, true);
2576 }
2577
2578 /*
2579  * The driver's remove may be called on a device in a partially initialized
2580  * state. This function must not have any dependencies on the device state in
2581  * order to proceed.
2582  */
2583 static void nvme_remove(struct pci_dev *pdev)
2584 {
2585         struct nvme_dev *dev = pci_get_drvdata(pdev);
2586
2587         nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2588
2589         cancel_work_sync(&dev->ctrl.reset_work);
2590         pci_set_drvdata(pdev, NULL);
2591
2592         if (!pci_device_is_present(pdev)) {
2593                 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2594                 nvme_dev_disable(dev, false);
2595         }
2596
2597         flush_work(&dev->ctrl.reset_work);
2598         nvme_stop_ctrl(&dev->ctrl);
2599         nvme_remove_namespaces(&dev->ctrl);
2600         nvme_dev_disable(dev, true);
2601         nvme_free_host_mem(dev);
2602         nvme_dev_remove_admin(dev);
2603         nvme_free_queues(dev, 0);
2604         nvme_uninit_ctrl(&dev->ctrl);
2605         nvme_release_prp_pools(dev);
2606         nvme_dev_unmap(dev);
2607         nvme_put_ctrl(&dev->ctrl);
2608 }
2609
2610 static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs)
2611 {
2612         int ret = 0;
2613
2614         if (numvfs == 0) {
2615                 if (pci_vfs_assigned(pdev)) {
2616                         dev_warn(&pdev->dev,
2617                                 "Cannot disable SR-IOV VFs while assigned\n");
2618                         return -EPERM;
2619                 }
2620                 pci_disable_sriov(pdev);
2621                 return 0;
2622         }
2623
2624         ret = pci_enable_sriov(pdev, numvfs);
2625         return ret ? ret : numvfs;
2626 }
2627
2628 #ifdef CONFIG_PM_SLEEP
2629 static int nvme_suspend(struct device *dev)
2630 {
2631         struct pci_dev *pdev = to_pci_dev(dev);
2632         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2633
2634         nvme_dev_disable(ndev, true);
2635         return 0;
2636 }
2637
2638 static int nvme_resume(struct device *dev)
2639 {
2640         struct pci_dev *pdev = to_pci_dev(dev);
2641         struct nvme_dev *ndev = pci_get_drvdata(pdev);
2642
2643         nvme_reset_ctrl(&ndev->ctrl);
2644         return 0;
2645 }
2646 #endif
2647
2648 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2649
2650 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2651                                                 pci_channel_state_t state)
2652 {
2653         struct nvme_dev *dev = pci_get_drvdata(pdev);
2654
2655         /*
2656          * A frozen channel requires a reset. When detected, this method will
2657          * shutdown the controller to quiesce. The controller will be restarted
2658          * after the slot reset through driver's slot_reset callback.
2659          */
2660         switch (state) {
2661         case pci_channel_io_normal:
2662                 return PCI_ERS_RESULT_CAN_RECOVER;
2663         case pci_channel_io_frozen:
2664                 dev_warn(dev->ctrl.device,
2665                         "frozen state error detected, reset controller\n");
2666                 nvme_dev_disable(dev, false);
2667                 return PCI_ERS_RESULT_NEED_RESET;
2668         case pci_channel_io_perm_failure:
2669                 dev_warn(dev->ctrl.device,
2670                         "failure state error detected, request disconnect\n");
2671                 return PCI_ERS_RESULT_DISCONNECT;
2672         }
2673         return PCI_ERS_RESULT_NEED_RESET;
2674 }
2675
2676 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2677 {
2678         struct nvme_dev *dev = pci_get_drvdata(pdev);
2679
2680         dev_info(dev->ctrl.device, "restart after slot reset\n");
2681         pci_restore_state(pdev);
2682         nvme_reset_ctrl(&dev->ctrl);
2683         return PCI_ERS_RESULT_RECOVERED;
2684 }
2685
2686 static void nvme_error_resume(struct pci_dev *pdev)
2687 {
2688         pci_cleanup_aer_uncorrect_error_status(pdev);
2689 }
2690
2691 static const struct pci_error_handlers nvme_err_handler = {
2692         .error_detected = nvme_error_detected,
2693         .slot_reset     = nvme_slot_reset,
2694         .resume         = nvme_error_resume,
2695         .reset_prepare  = nvme_reset_prepare,
2696         .reset_done     = nvme_reset_done,
2697 };
2698
2699 static const struct pci_device_id nvme_id_table[] = {
2700         { PCI_VDEVICE(INTEL, 0x0953),
2701                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2702                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2703         { PCI_VDEVICE(INTEL, 0x0a53),
2704                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2705                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2706         { PCI_VDEVICE(INTEL, 0x0a54),
2707                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2708                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2709         { PCI_VDEVICE(INTEL, 0x0a55),
2710                 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2711                                 NVME_QUIRK_DEALLOCATE_ZEROES, },
2712         { PCI_VDEVICE(INTEL, 0xf1a5),   /* Intel 600P/P3100 */
2713                 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
2714                                 NVME_QUIRK_MEDIUM_PRIO_SQ },
2715         { PCI_VDEVICE(INTEL, 0x5845),   /* Qemu emulated controller */
2716                 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2717         { PCI_DEVICE(0x1c58, 0x0003),   /* HGST adapter */
2718                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2719         { PCI_DEVICE(0x1c58, 0x0023),   /* WDC SN200 adapter */
2720                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2721         { PCI_DEVICE(0x1c5f, 0x0540),   /* Memblaze Pblaze4 adapter */
2722                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2723         { PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
2724                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2725         { PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
2726                 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
2727         { PCI_DEVICE(0x1d1d, 0x1f1f),   /* LighNVM qemu device */
2728                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2729         { PCI_DEVICE(0x1d1d, 0x2807),   /* CNEX WL */
2730                 .driver_data = NVME_QUIRK_LIGHTNVM, },
2731         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2732         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2733         { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
2734         { 0, }
2735 };
2736 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2737
2738 static struct pci_driver nvme_driver = {
2739         .name           = "nvme",
2740         .id_table       = nvme_id_table,
2741         .probe          = nvme_probe,
2742         .remove         = nvme_remove,
2743         .shutdown       = nvme_shutdown,
2744         .driver         = {
2745                 .pm     = &nvme_dev_pm_ops,
2746         },
2747         .sriov_configure = nvme_pci_sriov_configure,
2748         .err_handler    = &nvme_err_handler,
2749 };
2750
2751 static int __init nvme_init(void)
2752 {
2753         return pci_register_driver(&nvme_driver);
2754 }
2755
2756 static void __exit nvme_exit(void)
2757 {
2758         pci_unregister_driver(&nvme_driver);
2759         flush_workqueue(nvme_wq);
2760         _nvme_check_size();
2761 }
2762
2763 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2764 MODULE_LICENSE("GPL");
2765 MODULE_VERSION("1.0");
2766 module_init(nvme_init);
2767 module_exit(nvme_exit);