]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/rdma.c
nvme-rdma: always have a valid trsvcid
[linux.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
44
45 struct nvme_rdma_device {
46         struct ib_device        *dev;
47         struct ib_pd            *pd;
48         struct kref             ref;
49         struct list_head        entry;
50         unsigned int            num_inline_segments;
51 };
52
53 struct nvme_rdma_qe {
54         struct ib_cqe           cqe;
55         void                    *data;
56         u64                     dma;
57 };
58
59 struct nvme_rdma_queue;
60 struct nvme_rdma_request {
61         struct nvme_request     req;
62         struct ib_mr            *mr;
63         struct nvme_rdma_qe     sqe;
64         union nvme_result       result;
65         __le16                  status;
66         refcount_t              ref;
67         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68         u32                     num_sge;
69         int                     nents;
70         struct ib_reg_wr        reg_wr;
71         struct ib_cqe           reg_cqe;
72         struct nvme_rdma_queue  *queue;
73         struct sg_table         sg_table;
74         struct scatterlist      first_sgl[];
75 };
76
77 enum nvme_rdma_queue_flags {
78         NVME_RDMA_Q_ALLOCATED           = 0,
79         NVME_RDMA_Q_LIVE                = 1,
80         NVME_RDMA_Q_TR_READY            = 2,
81 };
82
83 struct nvme_rdma_queue {
84         struct nvme_rdma_qe     *rsp_ring;
85         int                     queue_size;
86         size_t                  cmnd_capsule_len;
87         struct nvme_rdma_ctrl   *ctrl;
88         struct nvme_rdma_device *device;
89         struct ib_cq            *ib_cq;
90         struct ib_qp            *qp;
91
92         unsigned long           flags;
93         struct rdma_cm_id       *cm_id;
94         int                     cm_error;
95         struct completion       cm_done;
96 };
97
98 struct nvme_rdma_ctrl {
99         /* read only in the hot path */
100         struct nvme_rdma_queue  *queues;
101
102         /* other member variables */
103         struct blk_mq_tag_set   tag_set;
104         struct work_struct      err_work;
105
106         struct nvme_rdma_qe     async_event_sqe;
107
108         struct delayed_work     reconnect_work;
109
110         struct list_head        list;
111
112         struct blk_mq_tag_set   admin_tag_set;
113         struct nvme_rdma_device *device;
114
115         u32                     max_fr_pages;
116
117         struct sockaddr_storage addr;
118         struct sockaddr_storage src_addr;
119
120         struct nvme_ctrl        ctrl;
121         bool                    use_inline_data;
122 };
123
124 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
125 {
126         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
127 }
128
129 static LIST_HEAD(device_list);
130 static DEFINE_MUTEX(device_list_mutex);
131
132 static LIST_HEAD(nvme_rdma_ctrl_list);
133 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
134
135 /*
136  * Disabling this option makes small I/O goes faster, but is fundamentally
137  * unsafe.  With it turned off we will have to register a global rkey that
138  * allows read and write access to all physical memory.
139  */
140 static bool register_always = true;
141 module_param(register_always, bool, 0444);
142 MODULE_PARM_DESC(register_always,
143          "Use memory registration even for contiguous memory regions");
144
145 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
146                 struct rdma_cm_event *event);
147 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148
149 static const struct blk_mq_ops nvme_rdma_mq_ops;
150 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
151
152 /* XXX: really should move to a generic header sooner or later.. */
153 static inline void put_unaligned_le24(u32 val, u8 *p)
154 {
155         *p++ = val;
156         *p++ = val >> 8;
157         *p++ = val >> 16;
158 }
159
160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162         return queue - queue->ctrl->queues;
163 }
164
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171                 size_t capsule_size, enum dma_data_direction dir)
172 {
173         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174         kfree(qe->data);
175 }
176
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178                 size_t capsule_size, enum dma_data_direction dir)
179 {
180         qe->data = kzalloc(capsule_size, GFP_KERNEL);
181         if (!qe->data)
182                 return -ENOMEM;
183
184         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185         if (ib_dma_mapping_error(ibdev, qe->dma)) {
186                 kfree(qe->data);
187                 return -ENOMEM;
188         }
189
190         return 0;
191 }
192
193 static void nvme_rdma_free_ring(struct ib_device *ibdev,
194                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
195                 size_t capsule_size, enum dma_data_direction dir)
196 {
197         int i;
198
199         for (i = 0; i < ib_queue_size; i++)
200                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
201         kfree(ring);
202 }
203
204 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
205                 size_t ib_queue_size, size_t capsule_size,
206                 enum dma_data_direction dir)
207 {
208         struct nvme_rdma_qe *ring;
209         int i;
210
211         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
212         if (!ring)
213                 return NULL;
214
215         for (i = 0; i < ib_queue_size; i++) {
216                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
217                         goto out_free_ring;
218         }
219
220         return ring;
221
222 out_free_ring:
223         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
224         return NULL;
225 }
226
227 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
228 {
229         pr_debug("QP event %s (%d)\n",
230                  ib_event_msg(event->event), event->event);
231
232 }
233
234 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
235 {
236         int ret;
237
238         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
239                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
240         if (ret < 0)
241                 return ret;
242         if (ret == 0)
243                 return -ETIMEDOUT;
244         WARN_ON_ONCE(queue->cm_error > 0);
245         return queue->cm_error;
246 }
247
248 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
249 {
250         struct nvme_rdma_device *dev = queue->device;
251         struct ib_qp_init_attr init_attr;
252         int ret;
253
254         memset(&init_attr, 0, sizeof(init_attr));
255         init_attr.event_handler = nvme_rdma_qp_event;
256         /* +1 for drain */
257         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
258         /* +1 for drain */
259         init_attr.cap.max_recv_wr = queue->queue_size + 1;
260         init_attr.cap.max_recv_sge = 1;
261         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
262         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
263         init_attr.qp_type = IB_QPT_RC;
264         init_attr.send_cq = queue->ib_cq;
265         init_attr.recv_cq = queue->ib_cq;
266
267         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
268
269         queue->qp = queue->cm_id->qp;
270         return ret;
271 }
272
273 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
274                 struct request *rq, unsigned int hctx_idx)
275 {
276         struct nvme_rdma_ctrl *ctrl = set->driver_data;
277         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
278         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
279         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
280         struct nvme_rdma_device *dev = queue->device;
281
282         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
283                         DMA_TO_DEVICE);
284 }
285
286 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
287                 struct request *rq, unsigned int hctx_idx,
288                 unsigned int numa_node)
289 {
290         struct nvme_rdma_ctrl *ctrl = set->driver_data;
291         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
292         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
293         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
294         struct nvme_rdma_device *dev = queue->device;
295         struct ib_device *ibdev = dev->dev;
296         int ret;
297
298         nvme_req(rq)->ctrl = &ctrl->ctrl;
299         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
300                         DMA_TO_DEVICE);
301         if (ret)
302                 return ret;
303
304         req->queue = queue;
305
306         return 0;
307 }
308
309 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
310                 unsigned int hctx_idx)
311 {
312         struct nvme_rdma_ctrl *ctrl = data;
313         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
314
315         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
316
317         hctx->driver_data = queue;
318         return 0;
319 }
320
321 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
322                 unsigned int hctx_idx)
323 {
324         struct nvme_rdma_ctrl *ctrl = data;
325         struct nvme_rdma_queue *queue = &ctrl->queues[0];
326
327         BUG_ON(hctx_idx != 0);
328
329         hctx->driver_data = queue;
330         return 0;
331 }
332
333 static void nvme_rdma_free_dev(struct kref *ref)
334 {
335         struct nvme_rdma_device *ndev =
336                 container_of(ref, struct nvme_rdma_device, ref);
337
338         mutex_lock(&device_list_mutex);
339         list_del(&ndev->entry);
340         mutex_unlock(&device_list_mutex);
341
342         ib_dealloc_pd(ndev->pd);
343         kfree(ndev);
344 }
345
346 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
347 {
348         kref_put(&dev->ref, nvme_rdma_free_dev);
349 }
350
351 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
352 {
353         return kref_get_unless_zero(&dev->ref);
354 }
355
356 static struct nvme_rdma_device *
357 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
358 {
359         struct nvme_rdma_device *ndev;
360
361         mutex_lock(&device_list_mutex);
362         list_for_each_entry(ndev, &device_list, entry) {
363                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
364                     nvme_rdma_dev_get(ndev))
365                         goto out_unlock;
366         }
367
368         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
369         if (!ndev)
370                 goto out_err;
371
372         ndev->dev = cm_id->device;
373         kref_init(&ndev->ref);
374
375         ndev->pd = ib_alloc_pd(ndev->dev,
376                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
377         if (IS_ERR(ndev->pd))
378                 goto out_free_dev;
379
380         if (!(ndev->dev->attrs.device_cap_flags &
381               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
382                 dev_err(&ndev->dev->dev,
383                         "Memory registrations not supported.\n");
384                 goto out_free_pd;
385         }
386
387         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
388                                         ndev->dev->attrs.max_send_sge - 1);
389         list_add(&ndev->entry, &device_list);
390 out_unlock:
391         mutex_unlock(&device_list_mutex);
392         return ndev;
393
394 out_free_pd:
395         ib_dealloc_pd(ndev->pd);
396 out_free_dev:
397         kfree(ndev);
398 out_err:
399         mutex_unlock(&device_list_mutex);
400         return NULL;
401 }
402
403 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
404 {
405         struct nvme_rdma_device *dev;
406         struct ib_device *ibdev;
407
408         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
409                 return;
410
411         dev = queue->device;
412         ibdev = dev->dev;
413
414         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
415
416         /*
417          * The cm_id object might have been destroyed during RDMA connection
418          * establishment error flow to avoid getting other cma events, thus
419          * the destruction of the QP shouldn't use rdma_cm API.
420          */
421         ib_destroy_qp(queue->qp);
422         ib_free_cq(queue->ib_cq);
423
424         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
425                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
426
427         nvme_rdma_dev_put(dev);
428 }
429
430 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
431 {
432         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
433                      ibdev->attrs.max_fast_reg_page_list_len);
434 }
435
436 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
437 {
438         struct ib_device *ibdev;
439         const int send_wr_factor = 3;                   /* MR, SEND, INV */
440         const int cq_factor = send_wr_factor + 1;       /* + RECV */
441         int comp_vector, idx = nvme_rdma_queue_idx(queue);
442         int ret;
443
444         queue->device = nvme_rdma_find_get_device(queue->cm_id);
445         if (!queue->device) {
446                 dev_err(queue->cm_id->device->dev.parent,
447                         "no client data found!\n");
448                 return -ECONNREFUSED;
449         }
450         ibdev = queue->device->dev;
451
452         /*
453          * Spread I/O queues completion vectors according their queue index.
454          * Admin queues can always go on completion vector 0.
455          */
456         comp_vector = idx == 0 ? idx : idx - 1;
457
458         /* +1 for ib_stop_cq */
459         queue->ib_cq = ib_alloc_cq(ibdev, queue,
460                                 cq_factor * queue->queue_size + 1,
461                                 comp_vector, IB_POLL_SOFTIRQ);
462         if (IS_ERR(queue->ib_cq)) {
463                 ret = PTR_ERR(queue->ib_cq);
464                 goto out_put_dev;
465         }
466
467         ret = nvme_rdma_create_qp(queue, send_wr_factor);
468         if (ret)
469                 goto out_destroy_ib_cq;
470
471         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
472                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
473         if (!queue->rsp_ring) {
474                 ret = -ENOMEM;
475                 goto out_destroy_qp;
476         }
477
478         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
479                               queue->queue_size,
480                               IB_MR_TYPE_MEM_REG,
481                               nvme_rdma_get_max_fr_pages(ibdev));
482         if (ret) {
483                 dev_err(queue->ctrl->ctrl.device,
484                         "failed to initialize MR pool sized %d for QID %d\n",
485                         queue->queue_size, idx);
486                 goto out_destroy_ring;
487         }
488
489         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
490
491         return 0;
492
493 out_destroy_ring:
494         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
495                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
496 out_destroy_qp:
497         rdma_destroy_qp(queue->cm_id);
498 out_destroy_ib_cq:
499         ib_free_cq(queue->ib_cq);
500 out_put_dev:
501         nvme_rdma_dev_put(queue->device);
502         return ret;
503 }
504
505 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
506                 int idx, size_t queue_size)
507 {
508         struct nvme_rdma_queue *queue;
509         struct sockaddr *src_addr = NULL;
510         int ret;
511
512         queue = &ctrl->queues[idx];
513         queue->ctrl = ctrl;
514         init_completion(&queue->cm_done);
515
516         if (idx > 0)
517                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
518         else
519                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
520
521         queue->queue_size = queue_size;
522
523         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
524                         RDMA_PS_TCP, IB_QPT_RC);
525         if (IS_ERR(queue->cm_id)) {
526                 dev_info(ctrl->ctrl.device,
527                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
528                 return PTR_ERR(queue->cm_id);
529         }
530
531         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
532                 src_addr = (struct sockaddr *)&ctrl->src_addr;
533
534         queue->cm_error = -ETIMEDOUT;
535         ret = rdma_resolve_addr(queue->cm_id, src_addr,
536                         (struct sockaddr *)&ctrl->addr,
537                         NVME_RDMA_CONNECT_TIMEOUT_MS);
538         if (ret) {
539                 dev_info(ctrl->ctrl.device,
540                         "rdma_resolve_addr failed (%d).\n", ret);
541                 goto out_destroy_cm_id;
542         }
543
544         ret = nvme_rdma_wait_for_cm(queue);
545         if (ret) {
546                 dev_info(ctrl->ctrl.device,
547                         "rdma connection establishment failed (%d)\n", ret);
548                 goto out_destroy_cm_id;
549         }
550
551         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
552
553         return 0;
554
555 out_destroy_cm_id:
556         rdma_destroy_id(queue->cm_id);
557         nvme_rdma_destroy_queue_ib(queue);
558         return ret;
559 }
560
561 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
562 {
563         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
564                 return;
565
566         rdma_disconnect(queue->cm_id);
567         ib_drain_qp(queue->qp);
568 }
569
570 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
571 {
572         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
573                 return;
574
575         nvme_rdma_destroy_queue_ib(queue);
576         rdma_destroy_id(queue->cm_id);
577 }
578
579 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
580 {
581         int i;
582
583         for (i = 1; i < ctrl->ctrl.queue_count; i++)
584                 nvme_rdma_free_queue(&ctrl->queues[i]);
585 }
586
587 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
588 {
589         int i;
590
591         for (i = 1; i < ctrl->ctrl.queue_count; i++)
592                 nvme_rdma_stop_queue(&ctrl->queues[i]);
593 }
594
595 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
596 {
597         int ret;
598
599         if (idx)
600                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
601         else
602                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
603
604         if (!ret)
605                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
606         else
607                 dev_info(ctrl->ctrl.device,
608                         "failed to connect queue: %d ret=%d\n", idx, ret);
609         return ret;
610 }
611
612 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
613 {
614         int i, ret = 0;
615
616         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
617                 ret = nvme_rdma_start_queue(ctrl, i);
618                 if (ret)
619                         goto out_stop_queues;
620         }
621
622         return 0;
623
624 out_stop_queues:
625         for (i--; i >= 1; i--)
626                 nvme_rdma_stop_queue(&ctrl->queues[i]);
627         return ret;
628 }
629
630 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
631 {
632         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
633         struct ib_device *ibdev = ctrl->device->dev;
634         unsigned int nr_io_queues;
635         int i, ret;
636
637         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
638
639         /*
640          * we map queues according to the device irq vectors for
641          * optimal locality so we don't need more queues than
642          * completion vectors.
643          */
644         nr_io_queues = min_t(unsigned int, nr_io_queues,
645                                 ibdev->num_comp_vectors);
646
647         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
648         if (ret)
649                 return ret;
650
651         ctrl->ctrl.queue_count = nr_io_queues + 1;
652         if (ctrl->ctrl.queue_count < 2)
653                 return 0;
654
655         dev_info(ctrl->ctrl.device,
656                 "creating %d I/O queues.\n", nr_io_queues);
657
658         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
659                 ret = nvme_rdma_alloc_queue(ctrl, i,
660                                 ctrl->ctrl.sqsize + 1);
661                 if (ret)
662                         goto out_free_queues;
663         }
664
665         return 0;
666
667 out_free_queues:
668         for (i--; i >= 1; i--)
669                 nvme_rdma_free_queue(&ctrl->queues[i]);
670
671         return ret;
672 }
673
674 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
675                 struct blk_mq_tag_set *set)
676 {
677         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
678
679         blk_mq_free_tag_set(set);
680         nvme_rdma_dev_put(ctrl->device);
681 }
682
683 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
684                 bool admin)
685 {
686         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
687         struct blk_mq_tag_set *set;
688         int ret;
689
690         if (admin) {
691                 set = &ctrl->admin_tag_set;
692                 memset(set, 0, sizeof(*set));
693                 set->ops = &nvme_rdma_admin_mq_ops;
694                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
695                 set->reserved_tags = 2; /* connect + keep-alive */
696                 set->numa_node = NUMA_NO_NODE;
697                 set->cmd_size = sizeof(struct nvme_rdma_request) +
698                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
699                 set->driver_data = ctrl;
700                 set->nr_hw_queues = 1;
701                 set->timeout = ADMIN_TIMEOUT;
702                 set->flags = BLK_MQ_F_NO_SCHED;
703         } else {
704                 set = &ctrl->tag_set;
705                 memset(set, 0, sizeof(*set));
706                 set->ops = &nvme_rdma_mq_ops;
707                 set->queue_depth = nctrl->sqsize + 1;
708                 set->reserved_tags = 1; /* fabric connect */
709                 set->numa_node = NUMA_NO_NODE;
710                 set->flags = BLK_MQ_F_SHOULD_MERGE;
711                 set->cmd_size = sizeof(struct nvme_rdma_request) +
712                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
713                 set->driver_data = ctrl;
714                 set->nr_hw_queues = nctrl->queue_count - 1;
715                 set->timeout = NVME_IO_TIMEOUT;
716         }
717
718         ret = blk_mq_alloc_tag_set(set);
719         if (ret)
720                 goto out;
721
722         /*
723          * We need a reference on the device as long as the tag_set is alive,
724          * as the MRs in the request structures need a valid ib_device.
725          */
726         ret = nvme_rdma_dev_get(ctrl->device);
727         if (!ret) {
728                 ret = -EINVAL;
729                 goto out_free_tagset;
730         }
731
732         return set;
733
734 out_free_tagset:
735         blk_mq_free_tag_set(set);
736 out:
737         return ERR_PTR(ret);
738 }
739
740 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
741                 bool remove)
742 {
743         if (remove) {
744                 blk_cleanup_queue(ctrl->ctrl.admin_q);
745                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
746         }
747         if (ctrl->async_event_sqe.data) {
748                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
749                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
750                 ctrl->async_event_sqe.data = NULL;
751         }
752         nvme_rdma_free_queue(&ctrl->queues[0]);
753 }
754
755 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
756                 bool new)
757 {
758         int error;
759
760         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
761         if (error)
762                 return error;
763
764         ctrl->device = ctrl->queues[0].device;
765
766         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
767
768         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
769                         sizeof(struct nvme_command), DMA_TO_DEVICE);
770         if (error)
771                 goto out_free_queue;
772
773         if (new) {
774                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
775                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
776                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
777                         goto out_free_async_qe;
778                 }
779
780                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
781                 if (IS_ERR(ctrl->ctrl.admin_q)) {
782                         error = PTR_ERR(ctrl->ctrl.admin_q);
783                         goto out_free_tagset;
784                 }
785         }
786
787         error = nvme_rdma_start_queue(ctrl, 0);
788         if (error)
789                 goto out_cleanup_queue;
790
791         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
792                         &ctrl->ctrl.cap);
793         if (error) {
794                 dev_err(ctrl->ctrl.device,
795                         "prop_get NVME_REG_CAP failed\n");
796                 goto out_stop_queue;
797         }
798
799         ctrl->ctrl.sqsize =
800                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
801
802         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
803         if (error)
804                 goto out_stop_queue;
805
806         ctrl->ctrl.max_hw_sectors =
807                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
808
809         error = nvme_init_identify(&ctrl->ctrl);
810         if (error)
811                 goto out_stop_queue;
812
813         return 0;
814
815 out_stop_queue:
816         nvme_rdma_stop_queue(&ctrl->queues[0]);
817 out_cleanup_queue:
818         if (new)
819                 blk_cleanup_queue(ctrl->ctrl.admin_q);
820 out_free_tagset:
821         if (new)
822                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
823 out_free_async_qe:
824         nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
825                 sizeof(struct nvme_command), DMA_TO_DEVICE);
826 out_free_queue:
827         nvme_rdma_free_queue(&ctrl->queues[0]);
828         return error;
829 }
830
831 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
832                 bool remove)
833 {
834         if (remove) {
835                 blk_cleanup_queue(ctrl->ctrl.connect_q);
836                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
837         }
838         nvme_rdma_free_io_queues(ctrl);
839 }
840
841 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
842 {
843         int ret;
844
845         ret = nvme_rdma_alloc_io_queues(ctrl);
846         if (ret)
847                 return ret;
848
849         if (new) {
850                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
851                 if (IS_ERR(ctrl->ctrl.tagset)) {
852                         ret = PTR_ERR(ctrl->ctrl.tagset);
853                         goto out_free_io_queues;
854                 }
855
856                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
857                 if (IS_ERR(ctrl->ctrl.connect_q)) {
858                         ret = PTR_ERR(ctrl->ctrl.connect_q);
859                         goto out_free_tag_set;
860                 }
861         } else {
862                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
863                         ctrl->ctrl.queue_count - 1);
864         }
865
866         ret = nvme_rdma_start_io_queues(ctrl);
867         if (ret)
868                 goto out_cleanup_connect_q;
869
870         return 0;
871
872 out_cleanup_connect_q:
873         if (new)
874                 blk_cleanup_queue(ctrl->ctrl.connect_q);
875 out_free_tag_set:
876         if (new)
877                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
878 out_free_io_queues:
879         nvme_rdma_free_io_queues(ctrl);
880         return ret;
881 }
882
883 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
884                 bool remove)
885 {
886         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
887         nvme_rdma_stop_queue(&ctrl->queues[0]);
888         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
889                         &ctrl->ctrl);
890         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
891         nvme_rdma_destroy_admin_queue(ctrl, remove);
892 }
893
894 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
895                 bool remove)
896 {
897         if (ctrl->ctrl.queue_count > 1) {
898                 nvme_stop_queues(&ctrl->ctrl);
899                 nvme_rdma_stop_io_queues(ctrl);
900                 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
901                                 &ctrl->ctrl);
902                 if (remove)
903                         nvme_start_queues(&ctrl->ctrl);
904                 nvme_rdma_destroy_io_queues(ctrl, remove);
905         }
906 }
907
908 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
909 {
910         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
911
912         cancel_work_sync(&ctrl->err_work);
913         cancel_delayed_work_sync(&ctrl->reconnect_work);
914 }
915
916 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
917 {
918         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
919
920         if (list_empty(&ctrl->list))
921                 goto free_ctrl;
922
923         mutex_lock(&nvme_rdma_ctrl_mutex);
924         list_del(&ctrl->list);
925         mutex_unlock(&nvme_rdma_ctrl_mutex);
926
927         nvmf_free_options(nctrl->opts);
928 free_ctrl:
929         kfree(ctrl->queues);
930         kfree(ctrl);
931 }
932
933 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
934 {
935         /* If we are resetting/deleting then do nothing */
936         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
937                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
938                         ctrl->ctrl.state == NVME_CTRL_LIVE);
939                 return;
940         }
941
942         if (nvmf_should_reconnect(&ctrl->ctrl)) {
943                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
944                         ctrl->ctrl.opts->reconnect_delay);
945                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
946                                 ctrl->ctrl.opts->reconnect_delay * HZ);
947         } else {
948                 nvme_delete_ctrl(&ctrl->ctrl);
949         }
950 }
951
952 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
953 {
954         int ret = -EINVAL;
955         bool changed;
956
957         ret = nvme_rdma_configure_admin_queue(ctrl, new);
958         if (ret)
959                 return ret;
960
961         if (ctrl->ctrl.icdoff) {
962                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
963                 goto destroy_admin;
964         }
965
966         if (!(ctrl->ctrl.sgls & (1 << 2))) {
967                 dev_err(ctrl->ctrl.device,
968                         "Mandatory keyed sgls are not supported!\n");
969                 goto destroy_admin;
970         }
971
972         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
973                 dev_warn(ctrl->ctrl.device,
974                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
975                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
976         }
977
978         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
979                 dev_warn(ctrl->ctrl.device,
980                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
981                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
982                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
983         }
984
985         if (ctrl->ctrl.sgls & (1 << 20))
986                 ctrl->use_inline_data = true;
987
988         if (ctrl->ctrl.queue_count > 1) {
989                 ret = nvme_rdma_configure_io_queues(ctrl, new);
990                 if (ret)
991                         goto destroy_admin;
992         }
993
994         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
995         if (!changed) {
996                 /* state change failure is ok if we're in DELETING state */
997                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
998                 ret = -EINVAL;
999                 goto destroy_io;
1000         }
1001
1002         nvme_start_ctrl(&ctrl->ctrl);
1003         return 0;
1004
1005 destroy_io:
1006         if (ctrl->ctrl.queue_count > 1)
1007                 nvme_rdma_destroy_io_queues(ctrl, new);
1008 destroy_admin:
1009         nvme_rdma_stop_queue(&ctrl->queues[0]);
1010         nvme_rdma_destroy_admin_queue(ctrl, new);
1011         return ret;
1012 }
1013
1014 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1015 {
1016         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1017                         struct nvme_rdma_ctrl, reconnect_work);
1018
1019         ++ctrl->ctrl.nr_reconnects;
1020
1021         if (nvme_rdma_setup_ctrl(ctrl, false))
1022                 goto requeue;
1023
1024         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1025                         ctrl->ctrl.nr_reconnects);
1026
1027         ctrl->ctrl.nr_reconnects = 0;
1028
1029         return;
1030
1031 requeue:
1032         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1033                         ctrl->ctrl.nr_reconnects);
1034         nvme_rdma_reconnect_or_remove(ctrl);
1035 }
1036
1037 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1038 {
1039         struct nvme_rdma_ctrl *ctrl = container_of(work,
1040                         struct nvme_rdma_ctrl, err_work);
1041
1042         nvme_stop_keep_alive(&ctrl->ctrl);
1043         nvme_rdma_teardown_io_queues(ctrl, false);
1044         nvme_start_queues(&ctrl->ctrl);
1045         nvme_rdma_teardown_admin_queue(ctrl, false);
1046
1047         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1048                 /* state change failure is ok if we're in DELETING state */
1049                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1050                 return;
1051         }
1052
1053         nvme_rdma_reconnect_or_remove(ctrl);
1054 }
1055
1056 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1057 {
1058         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1059                 return;
1060
1061         queue_work(nvme_wq, &ctrl->err_work);
1062 }
1063
1064 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1065                 const char *op)
1066 {
1067         struct nvme_rdma_queue *queue = cq->cq_context;
1068         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1069
1070         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1071                 dev_info(ctrl->ctrl.device,
1072                              "%s for CQE 0x%p failed with status %s (%d)\n",
1073                              op, wc->wr_cqe,
1074                              ib_wc_status_msg(wc->status), wc->status);
1075         nvme_rdma_error_recovery(ctrl);
1076 }
1077
1078 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1079 {
1080         if (unlikely(wc->status != IB_WC_SUCCESS))
1081                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1082 }
1083
1084 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1085 {
1086         struct nvme_rdma_request *req =
1087                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1088         struct request *rq = blk_mq_rq_from_pdu(req);
1089
1090         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1091                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1092                 return;
1093         }
1094
1095         if (refcount_dec_and_test(&req->ref))
1096                 nvme_end_request(rq, req->status, req->result);
1097
1098 }
1099
1100 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1101                 struct nvme_rdma_request *req)
1102 {
1103         struct ib_send_wr wr = {
1104                 .opcode             = IB_WR_LOCAL_INV,
1105                 .next               = NULL,
1106                 .num_sge            = 0,
1107                 .send_flags         = IB_SEND_SIGNALED,
1108                 .ex.invalidate_rkey = req->mr->rkey,
1109         };
1110
1111         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1112         wr.wr_cqe = &req->reg_cqe;
1113
1114         return ib_post_send(queue->qp, &wr, NULL);
1115 }
1116
1117 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1118                 struct request *rq)
1119 {
1120         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1121         struct nvme_rdma_device *dev = queue->device;
1122         struct ib_device *ibdev = dev->dev;
1123
1124         if (!blk_rq_payload_bytes(rq))
1125                 return;
1126
1127         if (req->mr) {
1128                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1129                 req->mr = NULL;
1130         }
1131
1132         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1133                         req->nents, rq_data_dir(rq) ==
1134                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1135
1136         nvme_cleanup_cmd(rq);
1137         sg_free_table_chained(&req->sg_table, true);
1138 }
1139
1140 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1141 {
1142         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1143
1144         sg->addr = 0;
1145         put_unaligned_le24(0, sg->length);
1146         put_unaligned_le32(0, sg->key);
1147         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1148         return 0;
1149 }
1150
1151 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1152                 struct nvme_rdma_request *req, struct nvme_command *c,
1153                 int count)
1154 {
1155         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1156         struct scatterlist *sgl = req->sg_table.sgl;
1157         struct ib_sge *sge = &req->sge[1];
1158         u32 len = 0;
1159         int i;
1160
1161         for (i = 0; i < count; i++, sgl++, sge++) {
1162                 sge->addr = sg_dma_address(sgl);
1163                 sge->length = sg_dma_len(sgl);
1164                 sge->lkey = queue->device->pd->local_dma_lkey;
1165                 len += sge->length;
1166         }
1167
1168         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1169         sg->length = cpu_to_le32(len);
1170         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1171
1172         req->num_sge += count;
1173         return 0;
1174 }
1175
1176 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1177                 struct nvme_rdma_request *req, struct nvme_command *c)
1178 {
1179         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1180
1181         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1182         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1183         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1184         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1185         return 0;
1186 }
1187
1188 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1189                 struct nvme_rdma_request *req, struct nvme_command *c,
1190                 int count)
1191 {
1192         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1193         int nr;
1194
1195         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1196         if (WARN_ON_ONCE(!req->mr))
1197                 return -EAGAIN;
1198
1199         /*
1200          * Align the MR to a 4K page size to match the ctrl page size and
1201          * the block virtual boundary.
1202          */
1203         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1204         if (unlikely(nr < count)) {
1205                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1206                 req->mr = NULL;
1207                 if (nr < 0)
1208                         return nr;
1209                 return -EINVAL;
1210         }
1211
1212         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1213
1214         req->reg_cqe.done = nvme_rdma_memreg_done;
1215         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1216         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1217         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1218         req->reg_wr.wr.num_sge = 0;
1219         req->reg_wr.mr = req->mr;
1220         req->reg_wr.key = req->mr->rkey;
1221         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1222                              IB_ACCESS_REMOTE_READ |
1223                              IB_ACCESS_REMOTE_WRITE;
1224
1225         sg->addr = cpu_to_le64(req->mr->iova);
1226         put_unaligned_le24(req->mr->length, sg->length);
1227         put_unaligned_le32(req->mr->rkey, sg->key);
1228         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1229                         NVME_SGL_FMT_INVALIDATE;
1230
1231         return 0;
1232 }
1233
1234 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1235                 struct request *rq, struct nvme_command *c)
1236 {
1237         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1238         struct nvme_rdma_device *dev = queue->device;
1239         struct ib_device *ibdev = dev->dev;
1240         int count, ret;
1241
1242         req->num_sge = 1;
1243         refcount_set(&req->ref, 2); /* send and recv completions */
1244
1245         c->common.flags |= NVME_CMD_SGL_METABUF;
1246
1247         if (!blk_rq_payload_bytes(rq))
1248                 return nvme_rdma_set_sg_null(c);
1249
1250         req->sg_table.sgl = req->first_sgl;
1251         ret = sg_alloc_table_chained(&req->sg_table,
1252                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1253         if (ret)
1254                 return -ENOMEM;
1255
1256         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1257
1258         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1259                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1260         if (unlikely(count <= 0)) {
1261                 ret = -EIO;
1262                 goto out_free_table;
1263         }
1264
1265         if (count <= dev->num_inline_segments) {
1266                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1267                     queue->ctrl->use_inline_data &&
1268                     blk_rq_payload_bytes(rq) <=
1269                                 nvme_rdma_inline_data_size(queue)) {
1270                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1271                         goto out;
1272                 }
1273
1274                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1275                         ret = nvme_rdma_map_sg_single(queue, req, c);
1276                         goto out;
1277                 }
1278         }
1279
1280         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1281 out:
1282         if (unlikely(ret))
1283                 goto out_unmap_sg;
1284
1285         return 0;
1286
1287 out_unmap_sg:
1288         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1289                         req->nents, rq_data_dir(rq) ==
1290                         WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1291 out_free_table:
1292         sg_free_table_chained(&req->sg_table, true);
1293         return ret;
1294 }
1295
1296 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1297 {
1298         struct nvme_rdma_qe *qe =
1299                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1300         struct nvme_rdma_request *req =
1301                 container_of(qe, struct nvme_rdma_request, sqe);
1302         struct request *rq = blk_mq_rq_from_pdu(req);
1303
1304         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1305                 nvme_rdma_wr_error(cq, wc, "SEND");
1306                 return;
1307         }
1308
1309         if (refcount_dec_and_test(&req->ref))
1310                 nvme_end_request(rq, req->status, req->result);
1311 }
1312
1313 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1314                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1315                 struct ib_send_wr *first)
1316 {
1317         struct ib_send_wr wr;
1318         int ret;
1319
1320         sge->addr   = qe->dma;
1321         sge->length = sizeof(struct nvme_command),
1322         sge->lkey   = queue->device->pd->local_dma_lkey;
1323
1324         wr.next       = NULL;
1325         wr.wr_cqe     = &qe->cqe;
1326         wr.sg_list    = sge;
1327         wr.num_sge    = num_sge;
1328         wr.opcode     = IB_WR_SEND;
1329         wr.send_flags = IB_SEND_SIGNALED;
1330
1331         if (first)
1332                 first->next = &wr;
1333         else
1334                 first = &wr;
1335
1336         ret = ib_post_send(queue->qp, first, NULL);
1337         if (unlikely(ret)) {
1338                 dev_err(queue->ctrl->ctrl.device,
1339                              "%s failed with error code %d\n", __func__, ret);
1340         }
1341         return ret;
1342 }
1343
1344 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1345                 struct nvme_rdma_qe *qe)
1346 {
1347         struct ib_recv_wr wr;
1348         struct ib_sge list;
1349         int ret;
1350
1351         list.addr   = qe->dma;
1352         list.length = sizeof(struct nvme_completion);
1353         list.lkey   = queue->device->pd->local_dma_lkey;
1354
1355         qe->cqe.done = nvme_rdma_recv_done;
1356
1357         wr.next     = NULL;
1358         wr.wr_cqe   = &qe->cqe;
1359         wr.sg_list  = &list;
1360         wr.num_sge  = 1;
1361
1362         ret = ib_post_recv(queue->qp, &wr, NULL);
1363         if (unlikely(ret)) {
1364                 dev_err(queue->ctrl->ctrl.device,
1365                         "%s failed with error code %d\n", __func__, ret);
1366         }
1367         return ret;
1368 }
1369
1370 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1371 {
1372         u32 queue_idx = nvme_rdma_queue_idx(queue);
1373
1374         if (queue_idx == 0)
1375                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1376         return queue->ctrl->tag_set.tags[queue_idx - 1];
1377 }
1378
1379 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1380 {
1381         if (unlikely(wc->status != IB_WC_SUCCESS))
1382                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1383 }
1384
1385 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1386 {
1387         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1388         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1389         struct ib_device *dev = queue->device->dev;
1390         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1391         struct nvme_command *cmd = sqe->data;
1392         struct ib_sge sge;
1393         int ret;
1394
1395         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1396
1397         memset(cmd, 0, sizeof(*cmd));
1398         cmd->common.opcode = nvme_admin_async_event;
1399         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1400         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1401         nvme_rdma_set_sg_null(cmd);
1402
1403         sqe->cqe.done = nvme_rdma_async_done;
1404
1405         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1406                         DMA_TO_DEVICE);
1407
1408         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1409         WARN_ON_ONCE(ret);
1410 }
1411
1412 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1413                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1414 {
1415         struct request *rq;
1416         struct nvme_rdma_request *req;
1417         int ret = 0;
1418
1419         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1420         if (!rq) {
1421                 dev_err(queue->ctrl->ctrl.device,
1422                         "tag 0x%x on QP %#x not found\n",
1423                         cqe->command_id, queue->qp->qp_num);
1424                 nvme_rdma_error_recovery(queue->ctrl);
1425                 return ret;
1426         }
1427         req = blk_mq_rq_to_pdu(rq);
1428
1429         req->status = cqe->status;
1430         req->result = cqe->result;
1431
1432         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1433                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1434                         dev_err(queue->ctrl->ctrl.device,
1435                                 "Bogus remote invalidation for rkey %#x\n",
1436                                 req->mr->rkey);
1437                         nvme_rdma_error_recovery(queue->ctrl);
1438                 }
1439         } else if (req->mr) {
1440                 ret = nvme_rdma_inv_rkey(queue, req);
1441                 if (unlikely(ret < 0)) {
1442                         dev_err(queue->ctrl->ctrl.device,
1443                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1444                                 req->mr->rkey, ret);
1445                         nvme_rdma_error_recovery(queue->ctrl);
1446                 }
1447                 /* the local invalidation completion will end the request */
1448                 return 0;
1449         }
1450
1451         if (refcount_dec_and_test(&req->ref)) {
1452                 if (rq->tag == tag)
1453                         ret = 1;
1454                 nvme_end_request(rq, req->status, req->result);
1455         }
1456
1457         return ret;
1458 }
1459
1460 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1461 {
1462         struct nvme_rdma_qe *qe =
1463                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1464         struct nvme_rdma_queue *queue = cq->cq_context;
1465         struct ib_device *ibdev = queue->device->dev;
1466         struct nvme_completion *cqe = qe->data;
1467         const size_t len = sizeof(struct nvme_completion);
1468         int ret = 0;
1469
1470         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1471                 nvme_rdma_wr_error(cq, wc, "RECV");
1472                 return 0;
1473         }
1474
1475         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1476         /*
1477          * AEN requests are special as they don't time out and can
1478          * survive any kind of queue freeze and often don't respond to
1479          * aborts.  We don't even bother to allocate a struct request
1480          * for them but rather special case them here.
1481          */
1482         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1483                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1484                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1485                                 &cqe->result);
1486         else
1487                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1488         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1489
1490         nvme_rdma_post_recv(queue, qe);
1491         return ret;
1492 }
1493
1494 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1495 {
1496         __nvme_rdma_recv_done(cq, wc, -1);
1497 }
1498
1499 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1500 {
1501         int ret, i;
1502
1503         for (i = 0; i < queue->queue_size; i++) {
1504                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1505                 if (ret)
1506                         goto out_destroy_queue_ib;
1507         }
1508
1509         return 0;
1510
1511 out_destroy_queue_ib:
1512         nvme_rdma_destroy_queue_ib(queue);
1513         return ret;
1514 }
1515
1516 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1517                 struct rdma_cm_event *ev)
1518 {
1519         struct rdma_cm_id *cm_id = queue->cm_id;
1520         int status = ev->status;
1521         const char *rej_msg;
1522         const struct nvme_rdma_cm_rej *rej_data;
1523         u8 rej_data_len;
1524
1525         rej_msg = rdma_reject_msg(cm_id, status);
1526         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1527
1528         if (rej_data && rej_data_len >= sizeof(u16)) {
1529                 u16 sts = le16_to_cpu(rej_data->sts);
1530
1531                 dev_err(queue->ctrl->ctrl.device,
1532                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1533                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1534         } else {
1535                 dev_err(queue->ctrl->ctrl.device,
1536                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1537         }
1538
1539         return -ECONNRESET;
1540 }
1541
1542 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1543 {
1544         int ret;
1545
1546         ret = nvme_rdma_create_queue_ib(queue);
1547         if (ret)
1548                 return ret;
1549
1550         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1551         if (ret) {
1552                 dev_err(queue->ctrl->ctrl.device,
1553                         "rdma_resolve_route failed (%d).\n",
1554                         queue->cm_error);
1555                 goto out_destroy_queue;
1556         }
1557
1558         return 0;
1559
1560 out_destroy_queue:
1561         nvme_rdma_destroy_queue_ib(queue);
1562         return ret;
1563 }
1564
1565 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1566 {
1567         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1568         struct rdma_conn_param param = { };
1569         struct nvme_rdma_cm_req priv = { };
1570         int ret;
1571
1572         param.qp_num = queue->qp->qp_num;
1573         param.flow_control = 1;
1574
1575         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1576         /* maximum retry count */
1577         param.retry_count = 7;
1578         param.rnr_retry_count = 7;
1579         param.private_data = &priv;
1580         param.private_data_len = sizeof(priv);
1581
1582         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1583         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1584         /*
1585          * set the admin queue depth to the minimum size
1586          * specified by the Fabrics standard.
1587          */
1588         if (priv.qid == 0) {
1589                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1590                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1591         } else {
1592                 /*
1593                  * current interpretation of the fabrics spec
1594                  * is at minimum you make hrqsize sqsize+1, or a
1595                  * 1's based representation of sqsize.
1596                  */
1597                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1598                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1599         }
1600
1601         ret = rdma_connect(queue->cm_id, &param);
1602         if (ret) {
1603                 dev_err(ctrl->ctrl.device,
1604                         "rdma_connect failed (%d).\n", ret);
1605                 goto out_destroy_queue_ib;
1606         }
1607
1608         return 0;
1609
1610 out_destroy_queue_ib:
1611         nvme_rdma_destroy_queue_ib(queue);
1612         return ret;
1613 }
1614
1615 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1616                 struct rdma_cm_event *ev)
1617 {
1618         struct nvme_rdma_queue *queue = cm_id->context;
1619         int cm_error = 0;
1620
1621         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1622                 rdma_event_msg(ev->event), ev->event,
1623                 ev->status, cm_id);
1624
1625         switch (ev->event) {
1626         case RDMA_CM_EVENT_ADDR_RESOLVED:
1627                 cm_error = nvme_rdma_addr_resolved(queue);
1628                 break;
1629         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1630                 cm_error = nvme_rdma_route_resolved(queue);
1631                 break;
1632         case RDMA_CM_EVENT_ESTABLISHED:
1633                 queue->cm_error = nvme_rdma_conn_established(queue);
1634                 /* complete cm_done regardless of success/failure */
1635                 complete(&queue->cm_done);
1636                 return 0;
1637         case RDMA_CM_EVENT_REJECTED:
1638                 nvme_rdma_destroy_queue_ib(queue);
1639                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1640                 break;
1641         case RDMA_CM_EVENT_ROUTE_ERROR:
1642         case RDMA_CM_EVENT_CONNECT_ERROR:
1643         case RDMA_CM_EVENT_UNREACHABLE:
1644                 nvme_rdma_destroy_queue_ib(queue);
1645                 /* fall through */
1646         case RDMA_CM_EVENT_ADDR_ERROR:
1647                 dev_dbg(queue->ctrl->ctrl.device,
1648                         "CM error event %d\n", ev->event);
1649                 cm_error = -ECONNRESET;
1650                 break;
1651         case RDMA_CM_EVENT_DISCONNECTED:
1652         case RDMA_CM_EVENT_ADDR_CHANGE:
1653         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1654                 dev_dbg(queue->ctrl->ctrl.device,
1655                         "disconnect received - connection closed\n");
1656                 nvme_rdma_error_recovery(queue->ctrl);
1657                 break;
1658         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1659                 /* device removal is handled via the ib_client API */
1660                 break;
1661         default:
1662                 dev_err(queue->ctrl->ctrl.device,
1663                         "Unexpected RDMA CM event (%d)\n", ev->event);
1664                 nvme_rdma_error_recovery(queue->ctrl);
1665                 break;
1666         }
1667
1668         if (cm_error) {
1669                 queue->cm_error = cm_error;
1670                 complete(&queue->cm_done);
1671         }
1672
1673         return 0;
1674 }
1675
1676 static enum blk_eh_timer_return
1677 nvme_rdma_timeout(struct request *rq, bool reserved)
1678 {
1679         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1680
1681         dev_warn(req->queue->ctrl->ctrl.device,
1682                  "I/O %d QID %d timeout, reset controller\n",
1683                  rq->tag, nvme_rdma_queue_idx(req->queue));
1684
1685         /* queue error recovery */
1686         nvme_rdma_error_recovery(req->queue->ctrl);
1687
1688         /* fail with DNR on cmd timeout */
1689         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1690
1691         return BLK_EH_DONE;
1692 }
1693
1694 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1695                 const struct blk_mq_queue_data *bd)
1696 {
1697         struct nvme_ns *ns = hctx->queue->queuedata;
1698         struct nvme_rdma_queue *queue = hctx->driver_data;
1699         struct request *rq = bd->rq;
1700         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1701         struct nvme_rdma_qe *sqe = &req->sqe;
1702         struct nvme_command *c = sqe->data;
1703         struct ib_device *dev;
1704         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1705         blk_status_t ret;
1706         int err;
1707
1708         WARN_ON_ONCE(rq->tag < 0);
1709
1710         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1711                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1712
1713         dev = queue->device->dev;
1714         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1715                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1716
1717         ret = nvme_setup_cmd(ns, rq, c);
1718         if (ret)
1719                 return ret;
1720
1721         blk_mq_start_request(rq);
1722
1723         err = nvme_rdma_map_data(queue, rq, c);
1724         if (unlikely(err < 0)) {
1725                 dev_err(queue->ctrl->ctrl.device,
1726                              "Failed to map data (%d)\n", err);
1727                 nvme_cleanup_cmd(rq);
1728                 goto err;
1729         }
1730
1731         sqe->cqe.done = nvme_rdma_send_done;
1732
1733         ib_dma_sync_single_for_device(dev, sqe->dma,
1734                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1735
1736         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1737                         req->mr ? &req->reg_wr.wr : NULL);
1738         if (unlikely(err)) {
1739                 nvme_rdma_unmap_data(queue, rq);
1740                 goto err;
1741         }
1742
1743         return BLK_STS_OK;
1744 err:
1745         if (err == -ENOMEM || err == -EAGAIN)
1746                 return BLK_STS_RESOURCE;
1747         return BLK_STS_IOERR;
1748 }
1749
1750 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1751 {
1752         struct nvme_rdma_queue *queue = hctx->driver_data;
1753         struct ib_cq *cq = queue->ib_cq;
1754         struct ib_wc wc;
1755         int found = 0;
1756
1757         while (ib_poll_cq(cq, 1, &wc) > 0) {
1758                 struct ib_cqe *cqe = wc.wr_cqe;
1759
1760                 if (cqe) {
1761                         if (cqe->done == nvme_rdma_recv_done)
1762                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1763                         else
1764                                 cqe->done(cq, &wc);
1765                 }
1766         }
1767
1768         return found;
1769 }
1770
1771 static void nvme_rdma_complete_rq(struct request *rq)
1772 {
1773         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1774
1775         nvme_rdma_unmap_data(req->queue, rq);
1776         nvme_complete_rq(rq);
1777 }
1778
1779 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1780 {
1781         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1782
1783         return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1784 }
1785
1786 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1787         .queue_rq       = nvme_rdma_queue_rq,
1788         .complete       = nvme_rdma_complete_rq,
1789         .init_request   = nvme_rdma_init_request,
1790         .exit_request   = nvme_rdma_exit_request,
1791         .init_hctx      = nvme_rdma_init_hctx,
1792         .poll           = nvme_rdma_poll,
1793         .timeout        = nvme_rdma_timeout,
1794         .map_queues     = nvme_rdma_map_queues,
1795 };
1796
1797 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1798         .queue_rq       = nvme_rdma_queue_rq,
1799         .complete       = nvme_rdma_complete_rq,
1800         .init_request   = nvme_rdma_init_request,
1801         .exit_request   = nvme_rdma_exit_request,
1802         .init_hctx      = nvme_rdma_init_admin_hctx,
1803         .timeout        = nvme_rdma_timeout,
1804 };
1805
1806 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1807 {
1808         nvme_rdma_teardown_io_queues(ctrl, shutdown);
1809         if (shutdown)
1810                 nvme_shutdown_ctrl(&ctrl->ctrl);
1811         else
1812                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1813         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1814 }
1815
1816 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1817 {
1818         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1819 }
1820
1821 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1822 {
1823         struct nvme_rdma_ctrl *ctrl =
1824                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1825
1826         nvme_stop_ctrl(&ctrl->ctrl);
1827         nvme_rdma_shutdown_ctrl(ctrl, false);
1828
1829         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1830                 /* state change failure should never happen */
1831                 WARN_ON_ONCE(1);
1832                 return;
1833         }
1834
1835         if (nvme_rdma_setup_ctrl(ctrl, false))
1836                 goto out_fail;
1837
1838         return;
1839
1840 out_fail:
1841         ++ctrl->ctrl.nr_reconnects;
1842         nvme_rdma_reconnect_or_remove(ctrl);
1843 }
1844
1845 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1846         .name                   = "rdma",
1847         .module                 = THIS_MODULE,
1848         .flags                  = NVME_F_FABRICS,
1849         .reg_read32             = nvmf_reg_read32,
1850         .reg_read64             = nvmf_reg_read64,
1851         .reg_write32            = nvmf_reg_write32,
1852         .free_ctrl              = nvme_rdma_free_ctrl,
1853         .submit_async_event     = nvme_rdma_submit_async_event,
1854         .delete_ctrl            = nvme_rdma_delete_ctrl,
1855         .get_address            = nvmf_get_address,
1856         .stop_ctrl              = nvme_rdma_stop_ctrl,
1857 };
1858
1859 static inline bool
1860 __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl,
1861         struct nvmf_ctrl_options *opts)
1862 {
1863         if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) ||
1864             strcmp(opts->traddr, ctrl->ctrl.opts->traddr) ||
1865             strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid))
1866                 return false;
1867
1868         /*
1869          * checking the local address is rough. In most cases, one
1870          * is not specified and the host port is selected by the stack.
1871          *
1872          * Assume no match if:
1873          *  local address is specified and address is not the same
1874          *  local address is not specified but remote is, or vice versa
1875          *    (admin using specific host_traddr when it matters).
1876          */
1877         if (opts->mask & NVMF_OPT_HOST_TRADDR &&
1878             ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1879                 if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr))
1880                         return false;
1881         } else if (opts->mask & NVMF_OPT_HOST_TRADDR ||
1882                    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
1883                 return false;
1884         /*
1885          * if neither controller had an host port specified, assume it's
1886          * a match as everything else matched.
1887          */
1888
1889         return true;
1890 }
1891
1892 /*
1893  * Fails a connection request if it matches an existing controller
1894  * (association) with the same tuple:
1895  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1896  *
1897  * if local address is not specified in the request, it will match an
1898  * existing controller with all the other parameters the same and no
1899  * local port address specified as well.
1900  *
1901  * The ports don't need to be compared as they are intrinsically
1902  * already matched by the port pointers supplied.
1903  */
1904 static bool
1905 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1906 {
1907         struct nvme_rdma_ctrl *ctrl;
1908         bool found = false;
1909
1910         mutex_lock(&nvme_rdma_ctrl_mutex);
1911         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1912                 found = __nvme_rdma_options_match(ctrl, opts);
1913                 if (found)
1914                         break;
1915         }
1916         mutex_unlock(&nvme_rdma_ctrl_mutex);
1917
1918         return found;
1919 }
1920
1921 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1922                 struct nvmf_ctrl_options *opts)
1923 {
1924         struct nvme_rdma_ctrl *ctrl;
1925         int ret;
1926         bool changed;
1927
1928         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1929         if (!ctrl)
1930                 return ERR_PTR(-ENOMEM);
1931         ctrl->ctrl.opts = opts;
1932         INIT_LIST_HEAD(&ctrl->list);
1933
1934         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1935                 opts->trsvcid =
1936                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1937                 if (!opts->trsvcid) {
1938                         ret = -ENOMEM;
1939                         goto out_free_ctrl;
1940                 }
1941                 opts->mask |= NVMF_OPT_TRSVCID;
1942         }
1943
1944         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1945                         opts->traddr, opts->trsvcid, &ctrl->addr);
1946         if (ret) {
1947                 pr_err("malformed address passed: %s:%s\n",
1948                         opts->traddr, opts->trsvcid);
1949                 goto out_free_ctrl;
1950         }
1951
1952         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1953                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1954                         opts->host_traddr, NULL, &ctrl->src_addr);
1955                 if (ret) {
1956                         pr_err("malformed src address passed: %s\n",
1957                                opts->host_traddr);
1958                         goto out_free_ctrl;
1959                 }
1960         }
1961
1962         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1963                 ret = -EALREADY;
1964                 goto out_free_ctrl;
1965         }
1966
1967         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1968                         nvme_rdma_reconnect_ctrl_work);
1969         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1970         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1971
1972         ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1973         ctrl->ctrl.sqsize = opts->queue_size - 1;
1974         ctrl->ctrl.kato = opts->kato;
1975
1976         ret = -ENOMEM;
1977         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1978                                 GFP_KERNEL);
1979         if (!ctrl->queues)
1980                 goto out_free_ctrl;
1981
1982         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1983                                 0 /* no quirks, we're perfect! */);
1984         if (ret)
1985                 goto out_kfree_queues;
1986
1987         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1988         WARN_ON_ONCE(!changed);
1989
1990         ret = nvme_rdma_setup_ctrl(ctrl, true);
1991         if (ret)
1992                 goto out_uninit_ctrl;
1993
1994         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1995                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1996
1997         nvme_get_ctrl(&ctrl->ctrl);
1998
1999         mutex_lock(&nvme_rdma_ctrl_mutex);
2000         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2001         mutex_unlock(&nvme_rdma_ctrl_mutex);
2002
2003         return &ctrl->ctrl;
2004
2005 out_uninit_ctrl:
2006         nvme_uninit_ctrl(&ctrl->ctrl);
2007         nvme_put_ctrl(&ctrl->ctrl);
2008         if (ret > 0)
2009                 ret = -EIO;
2010         return ERR_PTR(ret);
2011 out_kfree_queues:
2012         kfree(ctrl->queues);
2013 out_free_ctrl:
2014         kfree(ctrl);
2015         return ERR_PTR(ret);
2016 }
2017
2018 static struct nvmf_transport_ops nvme_rdma_transport = {
2019         .name           = "rdma",
2020         .module         = THIS_MODULE,
2021         .required_opts  = NVMF_OPT_TRADDR,
2022         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2023                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
2024         .create_ctrl    = nvme_rdma_create_ctrl,
2025 };
2026
2027 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2028 {
2029         struct nvme_rdma_ctrl *ctrl;
2030         struct nvme_rdma_device *ndev;
2031         bool found = false;
2032
2033         mutex_lock(&device_list_mutex);
2034         list_for_each_entry(ndev, &device_list, entry) {
2035                 if (ndev->dev == ib_device) {
2036                         found = true;
2037                         break;
2038                 }
2039         }
2040         mutex_unlock(&device_list_mutex);
2041
2042         if (!found)
2043                 return;
2044
2045         /* Delete all controllers using this device */
2046         mutex_lock(&nvme_rdma_ctrl_mutex);
2047         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2048                 if (ctrl->device->dev != ib_device)
2049                         continue;
2050                 nvme_delete_ctrl(&ctrl->ctrl);
2051         }
2052         mutex_unlock(&nvme_rdma_ctrl_mutex);
2053
2054         flush_workqueue(nvme_delete_wq);
2055 }
2056
2057 static struct ib_client nvme_rdma_ib_client = {
2058         .name   = "nvme_rdma",
2059         .remove = nvme_rdma_remove_one
2060 };
2061
2062 static int __init nvme_rdma_init_module(void)
2063 {
2064         int ret;
2065
2066         ret = ib_register_client(&nvme_rdma_ib_client);
2067         if (ret)
2068                 return ret;
2069
2070         ret = nvmf_register_transport(&nvme_rdma_transport);
2071         if (ret)
2072                 goto err_unreg_client;
2073
2074         return 0;
2075
2076 err_unreg_client:
2077         ib_unregister_client(&nvme_rdma_ib_client);
2078         return ret;
2079 }
2080
2081 static void __exit nvme_rdma_cleanup_module(void)
2082 {
2083         nvmf_unregister_transport(&nvme_rdma_transport);
2084         ib_unregister_client(&nvme_rdma_ib_client);
2085 }
2086
2087 module_init(nvme_rdma_init_module);
2088 module_exit(nvme_rdma_cleanup_module);
2089
2090 MODULE_LICENSE("GPL v2");