]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/rdma.c
5143e2a5d54c5614d22e5afa711d33b5029aab80
[linux.git] / drivers / nvme / host / rdma.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics RDMA host code.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <rdma/mr_pool.h>
11 #include <linux/err.h>
12 #include <linux/string.h>
13 #include <linux/atomic.h>
14 #include <linux/blk-mq.h>
15 #include <linux/blk-mq-rdma.h>
16 #include <linux/types.h>
17 #include <linux/list.h>
18 #include <linux/mutex.h>
19 #include <linux/scatterlist.h>
20 #include <linux/nvme.h>
21 #include <asm/unaligned.h>
22
23 #include <rdma/ib_verbs.h>
24 #include <rdma/rdma_cm.h>
25 #include <linux/nvme-rdma.h>
26
27 #include "nvme.h"
28 #include "fabrics.h"
29
30
31 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
32
33 #define NVME_RDMA_MAX_SEGMENTS          256
34
35 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
36
37 struct nvme_rdma_device {
38         struct ib_device        *dev;
39         struct ib_pd            *pd;
40         struct kref             ref;
41         struct list_head        entry;
42         unsigned int            num_inline_segments;
43 };
44
45 struct nvme_rdma_qe {
46         struct ib_cqe           cqe;
47         void                    *data;
48         u64                     dma;
49 };
50
51 struct nvme_rdma_queue;
52 struct nvme_rdma_request {
53         struct nvme_request     req;
54         struct ib_mr            *mr;
55         struct nvme_rdma_qe     sqe;
56         union nvme_result       result;
57         __le16                  status;
58         refcount_t              ref;
59         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
60         u32                     num_sge;
61         int                     nents;
62         struct ib_reg_wr        reg_wr;
63         struct ib_cqe           reg_cqe;
64         struct nvme_rdma_queue  *queue;
65         struct sg_table         sg_table;
66         struct scatterlist      first_sgl[];
67 };
68
69 enum nvme_rdma_queue_flags {
70         NVME_RDMA_Q_ALLOCATED           = 0,
71         NVME_RDMA_Q_LIVE                = 1,
72         NVME_RDMA_Q_TR_READY            = 2,
73 };
74
75 struct nvme_rdma_queue {
76         struct nvme_rdma_qe     *rsp_ring;
77         int                     queue_size;
78         size_t                  cmnd_capsule_len;
79         struct nvme_rdma_ctrl   *ctrl;
80         struct nvme_rdma_device *device;
81         struct ib_cq            *ib_cq;
82         struct ib_qp            *qp;
83
84         unsigned long           flags;
85         struct rdma_cm_id       *cm_id;
86         int                     cm_error;
87         struct completion       cm_done;
88 };
89
90 struct nvme_rdma_ctrl {
91         /* read only in the hot path */
92         struct nvme_rdma_queue  *queues;
93
94         /* other member variables */
95         struct blk_mq_tag_set   tag_set;
96         struct work_struct      err_work;
97
98         struct nvme_rdma_qe     async_event_sqe;
99
100         struct delayed_work     reconnect_work;
101
102         struct list_head        list;
103
104         struct blk_mq_tag_set   admin_tag_set;
105         struct nvme_rdma_device *device;
106
107         u32                     max_fr_pages;
108
109         struct sockaddr_storage addr;
110         struct sockaddr_storage src_addr;
111
112         struct nvme_ctrl        ctrl;
113         bool                    use_inline_data;
114         u32                     io_queues[HCTX_MAX_TYPES];
115 };
116
117 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
118 {
119         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
120 }
121
122 static LIST_HEAD(device_list);
123 static DEFINE_MUTEX(device_list_mutex);
124
125 static LIST_HEAD(nvme_rdma_ctrl_list);
126 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
127
128 /*
129  * Disabling this option makes small I/O goes faster, but is fundamentally
130  * unsafe.  With it turned off we will have to register a global rkey that
131  * allows read and write access to all physical memory.
132  */
133 static bool register_always = true;
134 module_param(register_always, bool, 0444);
135 MODULE_PARM_DESC(register_always,
136          "Use memory registration even for contiguous memory regions");
137
138 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
139                 struct rdma_cm_event *event);
140 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
141
142 static const struct blk_mq_ops nvme_rdma_mq_ops;
143 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
144
145 /* XXX: really should move to a generic header sooner or later.. */
146 static inline void put_unaligned_le24(u32 val, u8 *p)
147 {
148         *p++ = val;
149         *p++ = val >> 8;
150         *p++ = val >> 16;
151 }
152
153 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
154 {
155         return queue - queue->ctrl->queues;
156 }
157
158 static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
159 {
160         return nvme_rdma_queue_idx(queue) >
161                 queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
162                 queue->ctrl->io_queues[HCTX_TYPE_READ];
163 }
164
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171                 size_t capsule_size, enum dma_data_direction dir)
172 {
173         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174         kfree(qe->data);
175 }
176
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178                 size_t capsule_size, enum dma_data_direction dir)
179 {
180         qe->data = kzalloc(capsule_size, GFP_KERNEL);
181         if (!qe->data)
182                 return -ENOMEM;
183
184         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185         if (ib_dma_mapping_error(ibdev, qe->dma)) {
186                 kfree(qe->data);
187                 qe->data = NULL;
188                 return -ENOMEM;
189         }
190
191         return 0;
192 }
193
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
196                 size_t capsule_size, enum dma_data_direction dir)
197 {
198         int i;
199
200         for (i = 0; i < ib_queue_size; i++)
201                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202         kfree(ring);
203 }
204
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206                 size_t ib_queue_size, size_t capsule_size,
207                 enum dma_data_direction dir)
208 {
209         struct nvme_rdma_qe *ring;
210         int i;
211
212         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213         if (!ring)
214                 return NULL;
215
216         /*
217          * Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
218          * lifetime. It's safe, since any chage in the underlying RDMA device
219          * will issue error recovery and queue re-creation.
220          */
221         for (i = 0; i < ib_queue_size; i++) {
222                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
223                         goto out_free_ring;
224         }
225
226         return ring;
227
228 out_free_ring:
229         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
230         return NULL;
231 }
232
233 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
234 {
235         pr_debug("QP event %s (%d)\n",
236                  ib_event_msg(event->event), event->event);
237
238 }
239
240 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
241 {
242         int ret;
243
244         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
245                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
246         if (ret < 0)
247                 return ret;
248         if (ret == 0)
249                 return -ETIMEDOUT;
250         WARN_ON_ONCE(queue->cm_error > 0);
251         return queue->cm_error;
252 }
253
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
255 {
256         struct nvme_rdma_device *dev = queue->device;
257         struct ib_qp_init_attr init_attr;
258         int ret;
259
260         memset(&init_attr, 0, sizeof(init_attr));
261         init_attr.event_handler = nvme_rdma_qp_event;
262         /* +1 for drain */
263         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
264         /* +1 for drain */
265         init_attr.cap.max_recv_wr = queue->queue_size + 1;
266         init_attr.cap.max_recv_sge = 1;
267         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
268         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269         init_attr.qp_type = IB_QPT_RC;
270         init_attr.send_cq = queue->ib_cq;
271         init_attr.recv_cq = queue->ib_cq;
272
273         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
274
275         queue->qp = queue->cm_id->qp;
276         return ret;
277 }
278
279 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
280                 struct request *rq, unsigned int hctx_idx)
281 {
282         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
283
284         kfree(req->sqe.data);
285 }
286
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288                 struct request *rq, unsigned int hctx_idx,
289                 unsigned int numa_node)
290 {
291         struct nvme_rdma_ctrl *ctrl = set->driver_data;
292         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295
296         nvme_req(rq)->ctrl = &ctrl->ctrl;
297         req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
298         if (!req->sqe.data)
299                 return -ENOMEM;
300
301         req->queue = queue;
302
303         return 0;
304 }
305
306 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
307                 unsigned int hctx_idx)
308 {
309         struct nvme_rdma_ctrl *ctrl = data;
310         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
311
312         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
313
314         hctx->driver_data = queue;
315         return 0;
316 }
317
318 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
319                 unsigned int hctx_idx)
320 {
321         struct nvme_rdma_ctrl *ctrl = data;
322         struct nvme_rdma_queue *queue = &ctrl->queues[0];
323
324         BUG_ON(hctx_idx != 0);
325
326         hctx->driver_data = queue;
327         return 0;
328 }
329
330 static void nvme_rdma_free_dev(struct kref *ref)
331 {
332         struct nvme_rdma_device *ndev =
333                 container_of(ref, struct nvme_rdma_device, ref);
334
335         mutex_lock(&device_list_mutex);
336         list_del(&ndev->entry);
337         mutex_unlock(&device_list_mutex);
338
339         ib_dealloc_pd(ndev->pd);
340         kfree(ndev);
341 }
342
343 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
344 {
345         kref_put(&dev->ref, nvme_rdma_free_dev);
346 }
347
348 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
349 {
350         return kref_get_unless_zero(&dev->ref);
351 }
352
353 static struct nvme_rdma_device *
354 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
355 {
356         struct nvme_rdma_device *ndev;
357
358         mutex_lock(&device_list_mutex);
359         list_for_each_entry(ndev, &device_list, entry) {
360                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
361                     nvme_rdma_dev_get(ndev))
362                         goto out_unlock;
363         }
364
365         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
366         if (!ndev)
367                 goto out_err;
368
369         ndev->dev = cm_id->device;
370         kref_init(&ndev->ref);
371
372         ndev->pd = ib_alloc_pd(ndev->dev,
373                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
374         if (IS_ERR(ndev->pd))
375                 goto out_free_dev;
376
377         if (!(ndev->dev->attrs.device_cap_flags &
378               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
379                 dev_err(&ndev->dev->dev,
380                         "Memory registrations not supported.\n");
381                 goto out_free_pd;
382         }
383
384         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
385                                         ndev->dev->attrs.max_send_sge - 1);
386         list_add(&ndev->entry, &device_list);
387 out_unlock:
388         mutex_unlock(&device_list_mutex);
389         return ndev;
390
391 out_free_pd:
392         ib_dealloc_pd(ndev->pd);
393 out_free_dev:
394         kfree(ndev);
395 out_err:
396         mutex_unlock(&device_list_mutex);
397         return NULL;
398 }
399
400 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
401 {
402         struct nvme_rdma_device *dev;
403         struct ib_device *ibdev;
404
405         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
406                 return;
407
408         dev = queue->device;
409         ibdev = dev->dev;
410
411         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
412
413         /*
414          * The cm_id object might have been destroyed during RDMA connection
415          * establishment error flow to avoid getting other cma events, thus
416          * the destruction of the QP shouldn't use rdma_cm API.
417          */
418         ib_destroy_qp(queue->qp);
419         ib_free_cq(queue->ib_cq);
420
421         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
422                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
423
424         nvme_rdma_dev_put(dev);
425 }
426
427 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
428 {
429         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
430                      ibdev->attrs.max_fast_reg_page_list_len);
431 }
432
433 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
434 {
435         struct ib_device *ibdev;
436         const int send_wr_factor = 3;                   /* MR, SEND, INV */
437         const int cq_factor = send_wr_factor + 1;       /* + RECV */
438         int comp_vector, idx = nvme_rdma_queue_idx(queue);
439         enum ib_poll_context poll_ctx;
440         int ret;
441
442         queue->device = nvme_rdma_find_get_device(queue->cm_id);
443         if (!queue->device) {
444                 dev_err(queue->cm_id->device->dev.parent,
445                         "no client data found!\n");
446                 return -ECONNREFUSED;
447         }
448         ibdev = queue->device->dev;
449
450         /*
451          * Spread I/O queues completion vectors according their queue index.
452          * Admin queues can always go on completion vector 0.
453          */
454         comp_vector = idx == 0 ? idx : idx - 1;
455
456         /* Polling queues need direct cq polling context */
457         if (nvme_rdma_poll_queue(queue))
458                 poll_ctx = IB_POLL_DIRECT;
459         else
460                 poll_ctx = IB_POLL_SOFTIRQ;
461
462         /* +1 for ib_stop_cq */
463         queue->ib_cq = ib_alloc_cq(ibdev, queue,
464                                 cq_factor * queue->queue_size + 1,
465                                 comp_vector, poll_ctx);
466         if (IS_ERR(queue->ib_cq)) {
467                 ret = PTR_ERR(queue->ib_cq);
468                 goto out_put_dev;
469         }
470
471         ret = nvme_rdma_create_qp(queue, send_wr_factor);
472         if (ret)
473                 goto out_destroy_ib_cq;
474
475         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
476                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
477         if (!queue->rsp_ring) {
478                 ret = -ENOMEM;
479                 goto out_destroy_qp;
480         }
481
482         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
483                               queue->queue_size,
484                               IB_MR_TYPE_MEM_REG,
485                               nvme_rdma_get_max_fr_pages(ibdev), 0);
486         if (ret) {
487                 dev_err(queue->ctrl->ctrl.device,
488                         "failed to initialize MR pool sized %d for QID %d\n",
489                         queue->queue_size, idx);
490                 goto out_destroy_ring;
491         }
492
493         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
494
495         return 0;
496
497 out_destroy_ring:
498         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
499                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
500 out_destroy_qp:
501         rdma_destroy_qp(queue->cm_id);
502 out_destroy_ib_cq:
503         ib_free_cq(queue->ib_cq);
504 out_put_dev:
505         nvme_rdma_dev_put(queue->device);
506         return ret;
507 }
508
509 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
510                 int idx, size_t queue_size)
511 {
512         struct nvme_rdma_queue *queue;
513         struct sockaddr *src_addr = NULL;
514         int ret;
515
516         queue = &ctrl->queues[idx];
517         queue->ctrl = ctrl;
518         init_completion(&queue->cm_done);
519
520         if (idx > 0)
521                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
522         else
523                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
524
525         queue->queue_size = queue_size;
526
527         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
528                         RDMA_PS_TCP, IB_QPT_RC);
529         if (IS_ERR(queue->cm_id)) {
530                 dev_info(ctrl->ctrl.device,
531                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
532                 return PTR_ERR(queue->cm_id);
533         }
534
535         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
536                 src_addr = (struct sockaddr *)&ctrl->src_addr;
537
538         queue->cm_error = -ETIMEDOUT;
539         ret = rdma_resolve_addr(queue->cm_id, src_addr,
540                         (struct sockaddr *)&ctrl->addr,
541                         NVME_RDMA_CONNECT_TIMEOUT_MS);
542         if (ret) {
543                 dev_info(ctrl->ctrl.device,
544                         "rdma_resolve_addr failed (%d).\n", ret);
545                 goto out_destroy_cm_id;
546         }
547
548         ret = nvme_rdma_wait_for_cm(queue);
549         if (ret) {
550                 dev_info(ctrl->ctrl.device,
551                         "rdma connection establishment failed (%d)\n", ret);
552                 goto out_destroy_cm_id;
553         }
554
555         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
556
557         return 0;
558
559 out_destroy_cm_id:
560         rdma_destroy_id(queue->cm_id);
561         nvme_rdma_destroy_queue_ib(queue);
562         return ret;
563 }
564
565 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
566 {
567         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
568                 return;
569
570         rdma_disconnect(queue->cm_id);
571         ib_drain_qp(queue->qp);
572 }
573
574 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
575 {
576         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
577                 return;
578
579         nvme_rdma_destroy_queue_ib(queue);
580         rdma_destroy_id(queue->cm_id);
581 }
582
583 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
584 {
585         int i;
586
587         for (i = 1; i < ctrl->ctrl.queue_count; i++)
588                 nvme_rdma_free_queue(&ctrl->queues[i]);
589 }
590
591 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
592 {
593         int i;
594
595         for (i = 1; i < ctrl->ctrl.queue_count; i++)
596                 nvme_rdma_stop_queue(&ctrl->queues[i]);
597 }
598
599 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
600 {
601         struct nvme_rdma_queue *queue = &ctrl->queues[idx];
602         bool poll = nvme_rdma_poll_queue(queue);
603         int ret;
604
605         if (idx)
606                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
607         else
608                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
609
610         if (!ret)
611                 set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
612         else
613                 dev_info(ctrl->ctrl.device,
614                         "failed to connect queue: %d ret=%d\n", idx, ret);
615         return ret;
616 }
617
618 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
619 {
620         int i, ret = 0;
621
622         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
623                 ret = nvme_rdma_start_queue(ctrl, i);
624                 if (ret)
625                         goto out_stop_queues;
626         }
627
628         return 0;
629
630 out_stop_queues:
631         for (i--; i >= 1; i--)
632                 nvme_rdma_stop_queue(&ctrl->queues[i]);
633         return ret;
634 }
635
636 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
637 {
638         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
639         struct ib_device *ibdev = ctrl->device->dev;
640         unsigned int nr_io_queues, nr_default_queues;
641         unsigned int nr_read_queues, nr_poll_queues;
642         int i, ret;
643
644         nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
645                                 min(opts->nr_io_queues, num_online_cpus()));
646         nr_default_queues =  min_t(unsigned int, ibdev->num_comp_vectors,
647                                 min(opts->nr_write_queues, num_online_cpus()));
648         nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
649         nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
650
651         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
652         if (ret)
653                 return ret;
654
655         ctrl->ctrl.queue_count = nr_io_queues + 1;
656         if (ctrl->ctrl.queue_count < 2)
657                 return 0;
658
659         dev_info(ctrl->ctrl.device,
660                 "creating %d I/O queues.\n", nr_io_queues);
661
662         if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
663                 /*
664                  * separate read/write queues
665                  * hand out dedicated default queues only after we have
666                  * sufficient read queues.
667                  */
668                 ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
669                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
670                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
671                         min(nr_default_queues, nr_io_queues);
672                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
673         } else {
674                 /*
675                  * shared read/write queues
676                  * either no write queues were requested, or we don't have
677                  * sufficient queue count to have dedicated default queues.
678                  */
679                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
680                         min(nr_read_queues, nr_io_queues);
681                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
682         }
683
684         if (opts->nr_poll_queues && nr_io_queues) {
685                 /* map dedicated poll queues only if we have queues left */
686                 ctrl->io_queues[HCTX_TYPE_POLL] =
687                         min(nr_poll_queues, nr_io_queues);
688         }
689
690         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
691                 ret = nvme_rdma_alloc_queue(ctrl, i,
692                                 ctrl->ctrl.sqsize + 1);
693                 if (ret)
694                         goto out_free_queues;
695         }
696
697         return 0;
698
699 out_free_queues:
700         for (i--; i >= 1; i--)
701                 nvme_rdma_free_queue(&ctrl->queues[i]);
702
703         return ret;
704 }
705
706 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
707                 bool admin)
708 {
709         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
710         struct blk_mq_tag_set *set;
711         int ret;
712
713         if (admin) {
714                 set = &ctrl->admin_tag_set;
715                 memset(set, 0, sizeof(*set));
716                 set->ops = &nvme_rdma_admin_mq_ops;
717                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
718                 set->reserved_tags = 2; /* connect + keep-alive */
719                 set->numa_node = nctrl->numa_node;
720                 set->cmd_size = sizeof(struct nvme_rdma_request) +
721                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
722                 set->driver_data = ctrl;
723                 set->nr_hw_queues = 1;
724                 set->timeout = ADMIN_TIMEOUT;
725                 set->flags = BLK_MQ_F_NO_SCHED;
726         } else {
727                 set = &ctrl->tag_set;
728                 memset(set, 0, sizeof(*set));
729                 set->ops = &nvme_rdma_mq_ops;
730                 set->queue_depth = nctrl->sqsize + 1;
731                 set->reserved_tags = 1; /* fabric connect */
732                 set->numa_node = nctrl->numa_node;
733                 set->flags = BLK_MQ_F_SHOULD_MERGE;
734                 set->cmd_size = sizeof(struct nvme_rdma_request) +
735                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
736                 set->driver_data = ctrl;
737                 set->nr_hw_queues = nctrl->queue_count - 1;
738                 set->timeout = NVME_IO_TIMEOUT;
739                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
740         }
741
742         ret = blk_mq_alloc_tag_set(set);
743         if (ret)
744                 return ERR_PTR(ret);
745
746         return set;
747 }
748
749 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
750                 bool remove)
751 {
752         if (remove) {
753                 blk_cleanup_queue(ctrl->ctrl.admin_q);
754                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
755         }
756         if (ctrl->async_event_sqe.data) {
757                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
758                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
759                 ctrl->async_event_sqe.data = NULL;
760         }
761         nvme_rdma_free_queue(&ctrl->queues[0]);
762 }
763
764 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
765                 bool new)
766 {
767         int error;
768
769         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
770         if (error)
771                 return error;
772
773         ctrl->device = ctrl->queues[0].device;
774         ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
775
776         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
777
778         /*
779          * Bind the async event SQE DMA mapping to the admin queue lifetime.
780          * It's safe, since any chage in the underlying RDMA device will issue
781          * error recovery and queue re-creation.
782          */
783         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
784                         sizeof(struct nvme_command), DMA_TO_DEVICE);
785         if (error)
786                 goto out_free_queue;
787
788         if (new) {
789                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
790                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
791                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
792                         goto out_free_async_qe;
793                 }
794
795                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
796                 if (IS_ERR(ctrl->ctrl.admin_q)) {
797                         error = PTR_ERR(ctrl->ctrl.admin_q);
798                         goto out_free_tagset;
799                 }
800         }
801
802         error = nvme_rdma_start_queue(ctrl, 0);
803         if (error)
804                 goto out_cleanup_queue;
805
806         error = nvme_enable_ctrl(&ctrl->ctrl);
807         if (error)
808                 goto out_stop_queue;
809
810         ctrl->ctrl.max_hw_sectors =
811                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
812
813         error = nvme_init_identify(&ctrl->ctrl);
814         if (error)
815                 goto out_stop_queue;
816
817         return 0;
818
819 out_stop_queue:
820         nvme_rdma_stop_queue(&ctrl->queues[0]);
821 out_cleanup_queue:
822         if (new)
823                 blk_cleanup_queue(ctrl->ctrl.admin_q);
824 out_free_tagset:
825         if (new)
826                 blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
827 out_free_async_qe:
828         nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
829                 sizeof(struct nvme_command), DMA_TO_DEVICE);
830         ctrl->async_event_sqe.data = NULL;
831 out_free_queue:
832         nvme_rdma_free_queue(&ctrl->queues[0]);
833         return error;
834 }
835
836 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
837                 bool remove)
838 {
839         if (remove) {
840                 blk_cleanup_queue(ctrl->ctrl.connect_q);
841                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
842         }
843         nvme_rdma_free_io_queues(ctrl);
844 }
845
846 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
847 {
848         int ret;
849
850         ret = nvme_rdma_alloc_io_queues(ctrl);
851         if (ret)
852                 return ret;
853
854         if (new) {
855                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
856                 if (IS_ERR(ctrl->ctrl.tagset)) {
857                         ret = PTR_ERR(ctrl->ctrl.tagset);
858                         goto out_free_io_queues;
859                 }
860
861                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
862                 if (IS_ERR(ctrl->ctrl.connect_q)) {
863                         ret = PTR_ERR(ctrl->ctrl.connect_q);
864                         goto out_free_tag_set;
865                 }
866         } else {
867                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
868                         ctrl->ctrl.queue_count - 1);
869         }
870
871         ret = nvme_rdma_start_io_queues(ctrl);
872         if (ret)
873                 goto out_cleanup_connect_q;
874
875         return 0;
876
877 out_cleanup_connect_q:
878         if (new)
879                 blk_cleanup_queue(ctrl->ctrl.connect_q);
880 out_free_tag_set:
881         if (new)
882                 blk_mq_free_tag_set(ctrl->ctrl.tagset);
883 out_free_io_queues:
884         nvme_rdma_free_io_queues(ctrl);
885         return ret;
886 }
887
888 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
889                 bool remove)
890 {
891         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
892         nvme_rdma_stop_queue(&ctrl->queues[0]);
893         if (ctrl->ctrl.admin_tagset) {
894                 blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
895                         nvme_cancel_request, &ctrl->ctrl);
896                 blk_mq_tagset_wait_completed_request(ctrl->ctrl.admin_tagset);
897         }
898         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
899         nvme_rdma_destroy_admin_queue(ctrl, remove);
900 }
901
902 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
903                 bool remove)
904 {
905         if (ctrl->ctrl.queue_count > 1) {
906                 nvme_stop_queues(&ctrl->ctrl);
907                 nvme_rdma_stop_io_queues(ctrl);
908                 if (ctrl->ctrl.tagset) {
909                         blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
910                                 nvme_cancel_request, &ctrl->ctrl);
911                         blk_mq_tagset_wait_completed_request(ctrl->ctrl.tagset);
912                 }
913                 if (remove)
914                         nvme_start_queues(&ctrl->ctrl);
915                 nvme_rdma_destroy_io_queues(ctrl, remove);
916         }
917 }
918
919 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
920 {
921         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
922
923         if (list_empty(&ctrl->list))
924                 goto free_ctrl;
925
926         mutex_lock(&nvme_rdma_ctrl_mutex);
927         list_del(&ctrl->list);
928         mutex_unlock(&nvme_rdma_ctrl_mutex);
929
930         nvmf_free_options(nctrl->opts);
931 free_ctrl:
932         kfree(ctrl->queues);
933         kfree(ctrl);
934 }
935
936 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
937 {
938         /* If we are resetting/deleting then do nothing */
939         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
940                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
941                         ctrl->ctrl.state == NVME_CTRL_LIVE);
942                 return;
943         }
944
945         if (nvmf_should_reconnect(&ctrl->ctrl)) {
946                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
947                         ctrl->ctrl.opts->reconnect_delay);
948                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
949                                 ctrl->ctrl.opts->reconnect_delay * HZ);
950         } else {
951                 nvme_delete_ctrl(&ctrl->ctrl);
952         }
953 }
954
955 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
956 {
957         int ret = -EINVAL;
958         bool changed;
959
960         ret = nvme_rdma_configure_admin_queue(ctrl, new);
961         if (ret)
962                 return ret;
963
964         if (ctrl->ctrl.icdoff) {
965                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
966                 goto destroy_admin;
967         }
968
969         if (!(ctrl->ctrl.sgls & (1 << 2))) {
970                 dev_err(ctrl->ctrl.device,
971                         "Mandatory keyed sgls are not supported!\n");
972                 goto destroy_admin;
973         }
974
975         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
976                 dev_warn(ctrl->ctrl.device,
977                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
978                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
979         }
980
981         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
982                 dev_warn(ctrl->ctrl.device,
983                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
984                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
985                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
986         }
987
988         if (ctrl->ctrl.sgls & (1 << 20))
989                 ctrl->use_inline_data = true;
990
991         if (ctrl->ctrl.queue_count > 1) {
992                 ret = nvme_rdma_configure_io_queues(ctrl, new);
993                 if (ret)
994                         goto destroy_admin;
995         }
996
997         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
998         if (!changed) {
999                 /* state change failure is ok if we're in DELETING state */
1000                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1001                 ret = -EINVAL;
1002                 goto destroy_io;
1003         }
1004
1005         nvme_start_ctrl(&ctrl->ctrl);
1006         return 0;
1007
1008 destroy_io:
1009         if (ctrl->ctrl.queue_count > 1)
1010                 nvme_rdma_destroy_io_queues(ctrl, new);
1011 destroy_admin:
1012         nvme_rdma_stop_queue(&ctrl->queues[0]);
1013         nvme_rdma_destroy_admin_queue(ctrl, new);
1014         return ret;
1015 }
1016
1017 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1018 {
1019         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1020                         struct nvme_rdma_ctrl, reconnect_work);
1021
1022         ++ctrl->ctrl.nr_reconnects;
1023
1024         if (nvme_rdma_setup_ctrl(ctrl, false))
1025                 goto requeue;
1026
1027         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1028                         ctrl->ctrl.nr_reconnects);
1029
1030         ctrl->ctrl.nr_reconnects = 0;
1031
1032         return;
1033
1034 requeue:
1035         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1036                         ctrl->ctrl.nr_reconnects);
1037         nvme_rdma_reconnect_or_remove(ctrl);
1038 }
1039
1040 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1041 {
1042         struct nvme_rdma_ctrl *ctrl = container_of(work,
1043                         struct nvme_rdma_ctrl, err_work);
1044
1045         nvme_stop_keep_alive(&ctrl->ctrl);
1046         nvme_rdma_teardown_io_queues(ctrl, false);
1047         nvme_start_queues(&ctrl->ctrl);
1048         nvme_rdma_teardown_admin_queue(ctrl, false);
1049
1050         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1051                 /* state change failure is ok if we're in DELETING state */
1052                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1053                 return;
1054         }
1055
1056         nvme_rdma_reconnect_or_remove(ctrl);
1057 }
1058
1059 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1060 {
1061         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1062                 return;
1063
1064         queue_work(nvme_wq, &ctrl->err_work);
1065 }
1066
1067 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1068                 const char *op)
1069 {
1070         struct nvme_rdma_queue *queue = cq->cq_context;
1071         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1072
1073         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1074                 dev_info(ctrl->ctrl.device,
1075                              "%s for CQE 0x%p failed with status %s (%d)\n",
1076                              op, wc->wr_cqe,
1077                              ib_wc_status_msg(wc->status), wc->status);
1078         nvme_rdma_error_recovery(ctrl);
1079 }
1080
1081 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1082 {
1083         if (unlikely(wc->status != IB_WC_SUCCESS))
1084                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1085 }
1086
1087 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1088 {
1089         struct nvme_rdma_request *req =
1090                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1091         struct request *rq = blk_mq_rq_from_pdu(req);
1092
1093         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1094                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1095                 return;
1096         }
1097
1098         if (refcount_dec_and_test(&req->ref))
1099                 nvme_end_request(rq, req->status, req->result);
1100
1101 }
1102
1103 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1104                 struct nvme_rdma_request *req)
1105 {
1106         struct ib_send_wr wr = {
1107                 .opcode             = IB_WR_LOCAL_INV,
1108                 .next               = NULL,
1109                 .num_sge            = 0,
1110                 .send_flags         = IB_SEND_SIGNALED,
1111                 .ex.invalidate_rkey = req->mr->rkey,
1112         };
1113
1114         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1115         wr.wr_cqe = &req->reg_cqe;
1116
1117         return ib_post_send(queue->qp, &wr, NULL);
1118 }
1119
1120 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1121                 struct request *rq)
1122 {
1123         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1124         struct nvme_rdma_device *dev = queue->device;
1125         struct ib_device *ibdev = dev->dev;
1126
1127         if (!blk_rq_nr_phys_segments(rq))
1128                 return;
1129
1130         if (req->mr) {
1131                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1132                 req->mr = NULL;
1133         }
1134
1135         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1136                         req->nents, rq_data_dir(rq) ==
1137                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1138
1139         nvme_cleanup_cmd(rq);
1140         sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1141 }
1142
1143 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1144 {
1145         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1146
1147         sg->addr = 0;
1148         put_unaligned_le24(0, sg->length);
1149         put_unaligned_le32(0, sg->key);
1150         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1151         return 0;
1152 }
1153
1154 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1155                 struct nvme_rdma_request *req, struct nvme_command *c,
1156                 int count)
1157 {
1158         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1159         struct scatterlist *sgl = req->sg_table.sgl;
1160         struct ib_sge *sge = &req->sge[1];
1161         u32 len = 0;
1162         int i;
1163
1164         for (i = 0; i < count; i++, sgl++, sge++) {
1165                 sge->addr = sg_dma_address(sgl);
1166                 sge->length = sg_dma_len(sgl);
1167                 sge->lkey = queue->device->pd->local_dma_lkey;
1168                 len += sge->length;
1169         }
1170
1171         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1172         sg->length = cpu_to_le32(len);
1173         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1174
1175         req->num_sge += count;
1176         return 0;
1177 }
1178
1179 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1180                 struct nvme_rdma_request *req, struct nvme_command *c)
1181 {
1182         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1183
1184         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1185         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1186         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1187         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1188         return 0;
1189 }
1190
1191 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1192                 struct nvme_rdma_request *req, struct nvme_command *c,
1193                 int count)
1194 {
1195         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1196         int nr;
1197
1198         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1199         if (WARN_ON_ONCE(!req->mr))
1200                 return -EAGAIN;
1201
1202         /*
1203          * Align the MR to a 4K page size to match the ctrl page size and
1204          * the block virtual boundary.
1205          */
1206         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1207         if (unlikely(nr < count)) {
1208                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1209                 req->mr = NULL;
1210                 if (nr < 0)
1211                         return nr;
1212                 return -EINVAL;
1213         }
1214
1215         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1216
1217         req->reg_cqe.done = nvme_rdma_memreg_done;
1218         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1219         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1220         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1221         req->reg_wr.wr.num_sge = 0;
1222         req->reg_wr.mr = req->mr;
1223         req->reg_wr.key = req->mr->rkey;
1224         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1225                              IB_ACCESS_REMOTE_READ |
1226                              IB_ACCESS_REMOTE_WRITE;
1227
1228         sg->addr = cpu_to_le64(req->mr->iova);
1229         put_unaligned_le24(req->mr->length, sg->length);
1230         put_unaligned_le32(req->mr->rkey, sg->key);
1231         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1232                         NVME_SGL_FMT_INVALIDATE;
1233
1234         return 0;
1235 }
1236
1237 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1238                 struct request *rq, struct nvme_command *c)
1239 {
1240         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1241         struct nvme_rdma_device *dev = queue->device;
1242         struct ib_device *ibdev = dev->dev;
1243         int count, ret;
1244
1245         req->num_sge = 1;
1246         refcount_set(&req->ref, 2); /* send and recv completions */
1247
1248         c->common.flags |= NVME_CMD_SGL_METABUF;
1249
1250         if (!blk_rq_nr_phys_segments(rq))
1251                 return nvme_rdma_set_sg_null(c);
1252
1253         req->sg_table.sgl = req->first_sgl;
1254         ret = sg_alloc_table_chained(&req->sg_table,
1255                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
1256                         SG_CHUNK_SIZE);
1257         if (ret)
1258                 return -ENOMEM;
1259
1260         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1261
1262         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1263                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1264         if (unlikely(count <= 0)) {
1265                 ret = -EIO;
1266                 goto out_free_table;
1267         }
1268
1269         if (count <= dev->num_inline_segments) {
1270                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1271                     queue->ctrl->use_inline_data &&
1272                     blk_rq_payload_bytes(rq) <=
1273                                 nvme_rdma_inline_data_size(queue)) {
1274                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1275                         goto out;
1276                 }
1277
1278                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1279                         ret = nvme_rdma_map_sg_single(queue, req, c);
1280                         goto out;
1281                 }
1282         }
1283
1284         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1285 out:
1286         if (unlikely(ret))
1287                 goto out_unmap_sg;
1288
1289         return 0;
1290
1291 out_unmap_sg:
1292         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1293                         req->nents, rq_data_dir(rq) ==
1294                         WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1295 out_free_table:
1296         sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
1297         return ret;
1298 }
1299
1300 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1301 {
1302         struct nvme_rdma_qe *qe =
1303                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1304         struct nvme_rdma_request *req =
1305                 container_of(qe, struct nvme_rdma_request, sqe);
1306         struct request *rq = blk_mq_rq_from_pdu(req);
1307
1308         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1309                 nvme_rdma_wr_error(cq, wc, "SEND");
1310                 return;
1311         }
1312
1313         if (refcount_dec_and_test(&req->ref))
1314                 nvme_end_request(rq, req->status, req->result);
1315 }
1316
1317 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1318                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1319                 struct ib_send_wr *first)
1320 {
1321         struct ib_send_wr wr;
1322         int ret;
1323
1324         sge->addr   = qe->dma;
1325         sge->length = sizeof(struct nvme_command),
1326         sge->lkey   = queue->device->pd->local_dma_lkey;
1327
1328         wr.next       = NULL;
1329         wr.wr_cqe     = &qe->cqe;
1330         wr.sg_list    = sge;
1331         wr.num_sge    = num_sge;
1332         wr.opcode     = IB_WR_SEND;
1333         wr.send_flags = IB_SEND_SIGNALED;
1334
1335         if (first)
1336                 first->next = &wr;
1337         else
1338                 first = &wr;
1339
1340         ret = ib_post_send(queue->qp, first, NULL);
1341         if (unlikely(ret)) {
1342                 dev_err(queue->ctrl->ctrl.device,
1343                              "%s failed with error code %d\n", __func__, ret);
1344         }
1345         return ret;
1346 }
1347
1348 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1349                 struct nvme_rdma_qe *qe)
1350 {
1351         struct ib_recv_wr wr;
1352         struct ib_sge list;
1353         int ret;
1354
1355         list.addr   = qe->dma;
1356         list.length = sizeof(struct nvme_completion);
1357         list.lkey   = queue->device->pd->local_dma_lkey;
1358
1359         qe->cqe.done = nvme_rdma_recv_done;
1360
1361         wr.next     = NULL;
1362         wr.wr_cqe   = &qe->cqe;
1363         wr.sg_list  = &list;
1364         wr.num_sge  = 1;
1365
1366         ret = ib_post_recv(queue->qp, &wr, NULL);
1367         if (unlikely(ret)) {
1368                 dev_err(queue->ctrl->ctrl.device,
1369                         "%s failed with error code %d\n", __func__, ret);
1370         }
1371         return ret;
1372 }
1373
1374 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1375 {
1376         u32 queue_idx = nvme_rdma_queue_idx(queue);
1377
1378         if (queue_idx == 0)
1379                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1380         return queue->ctrl->tag_set.tags[queue_idx - 1];
1381 }
1382
1383 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1384 {
1385         if (unlikely(wc->status != IB_WC_SUCCESS))
1386                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1387 }
1388
1389 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1390 {
1391         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1392         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1393         struct ib_device *dev = queue->device->dev;
1394         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1395         struct nvme_command *cmd = sqe->data;
1396         struct ib_sge sge;
1397         int ret;
1398
1399         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1400
1401         memset(cmd, 0, sizeof(*cmd));
1402         cmd->common.opcode = nvme_admin_async_event;
1403         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1404         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1405         nvme_rdma_set_sg_null(cmd);
1406
1407         sqe->cqe.done = nvme_rdma_async_done;
1408
1409         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1410                         DMA_TO_DEVICE);
1411
1412         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1413         WARN_ON_ONCE(ret);
1414 }
1415
1416 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1417                 struct nvme_completion *cqe, struct ib_wc *wc)
1418 {
1419         struct request *rq;
1420         struct nvme_rdma_request *req;
1421
1422         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1423         if (!rq) {
1424                 dev_err(queue->ctrl->ctrl.device,
1425                         "tag 0x%x on QP %#x not found\n",
1426                         cqe->command_id, queue->qp->qp_num);
1427                 nvme_rdma_error_recovery(queue->ctrl);
1428                 return;
1429         }
1430         req = blk_mq_rq_to_pdu(rq);
1431
1432         req->status = cqe->status;
1433         req->result = cqe->result;
1434
1435         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1436                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1437                         dev_err(queue->ctrl->ctrl.device,
1438                                 "Bogus remote invalidation for rkey %#x\n",
1439                                 req->mr->rkey);
1440                         nvme_rdma_error_recovery(queue->ctrl);
1441                 }
1442         } else if (req->mr) {
1443                 int ret;
1444
1445                 ret = nvme_rdma_inv_rkey(queue, req);
1446                 if (unlikely(ret < 0)) {
1447                         dev_err(queue->ctrl->ctrl.device,
1448                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1449                                 req->mr->rkey, ret);
1450                         nvme_rdma_error_recovery(queue->ctrl);
1451                 }
1452                 /* the local invalidation completion will end the request */
1453                 return;
1454         }
1455
1456         if (refcount_dec_and_test(&req->ref))
1457                 nvme_end_request(rq, req->status, req->result);
1458 }
1459
1460 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1461 {
1462         struct nvme_rdma_qe *qe =
1463                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1464         struct nvme_rdma_queue *queue = cq->cq_context;
1465         struct ib_device *ibdev = queue->device->dev;
1466         struct nvme_completion *cqe = qe->data;
1467         const size_t len = sizeof(struct nvme_completion);
1468
1469         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1470                 nvme_rdma_wr_error(cq, wc, "RECV");
1471                 return;
1472         }
1473
1474         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1475         /*
1476          * AEN requests are special as they don't time out and can
1477          * survive any kind of queue freeze and often don't respond to
1478          * aborts.  We don't even bother to allocate a struct request
1479          * for them but rather special case them here.
1480          */
1481         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1482                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1483                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1484                                 &cqe->result);
1485         else
1486                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1487         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1488
1489         nvme_rdma_post_recv(queue, qe);
1490 }
1491
1492 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1493 {
1494         int ret, i;
1495
1496         for (i = 0; i < queue->queue_size; i++) {
1497                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1498                 if (ret)
1499                         goto out_destroy_queue_ib;
1500         }
1501
1502         return 0;
1503
1504 out_destroy_queue_ib:
1505         nvme_rdma_destroy_queue_ib(queue);
1506         return ret;
1507 }
1508
1509 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1510                 struct rdma_cm_event *ev)
1511 {
1512         struct rdma_cm_id *cm_id = queue->cm_id;
1513         int status = ev->status;
1514         const char *rej_msg;
1515         const struct nvme_rdma_cm_rej *rej_data;
1516         u8 rej_data_len;
1517
1518         rej_msg = rdma_reject_msg(cm_id, status);
1519         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1520
1521         if (rej_data && rej_data_len >= sizeof(u16)) {
1522                 u16 sts = le16_to_cpu(rej_data->sts);
1523
1524                 dev_err(queue->ctrl->ctrl.device,
1525                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1526                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1527         } else {
1528                 dev_err(queue->ctrl->ctrl.device,
1529                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1530         }
1531
1532         return -ECONNRESET;
1533 }
1534
1535 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1536 {
1537         struct nvme_ctrl *ctrl = &queue->ctrl->ctrl;
1538         int ret;
1539
1540         ret = nvme_rdma_create_queue_ib(queue);
1541         if (ret)
1542                 return ret;
1543
1544         if (ctrl->opts->tos >= 0)
1545                 rdma_set_service_type(queue->cm_id, ctrl->opts->tos);
1546         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1547         if (ret) {
1548                 dev_err(ctrl->device, "rdma_resolve_route failed (%d).\n",
1549                         queue->cm_error);
1550                 goto out_destroy_queue;
1551         }
1552
1553         return 0;
1554
1555 out_destroy_queue:
1556         nvme_rdma_destroy_queue_ib(queue);
1557         return ret;
1558 }
1559
1560 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1561 {
1562         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1563         struct rdma_conn_param param = { };
1564         struct nvme_rdma_cm_req priv = { };
1565         int ret;
1566
1567         param.qp_num = queue->qp->qp_num;
1568         param.flow_control = 1;
1569
1570         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1571         /* maximum retry count */
1572         param.retry_count = 7;
1573         param.rnr_retry_count = 7;
1574         param.private_data = &priv;
1575         param.private_data_len = sizeof(priv);
1576
1577         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1578         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1579         /*
1580          * set the admin queue depth to the minimum size
1581          * specified by the Fabrics standard.
1582          */
1583         if (priv.qid == 0) {
1584                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1585                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1586         } else {
1587                 /*
1588                  * current interpretation of the fabrics spec
1589                  * is at minimum you make hrqsize sqsize+1, or a
1590                  * 1's based representation of sqsize.
1591                  */
1592                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1593                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1594         }
1595
1596         ret = rdma_connect(queue->cm_id, &param);
1597         if (ret) {
1598                 dev_err(ctrl->ctrl.device,
1599                         "rdma_connect failed (%d).\n", ret);
1600                 goto out_destroy_queue_ib;
1601         }
1602
1603         return 0;
1604
1605 out_destroy_queue_ib:
1606         nvme_rdma_destroy_queue_ib(queue);
1607         return ret;
1608 }
1609
1610 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1611                 struct rdma_cm_event *ev)
1612 {
1613         struct nvme_rdma_queue *queue = cm_id->context;
1614         int cm_error = 0;
1615
1616         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1617                 rdma_event_msg(ev->event), ev->event,
1618                 ev->status, cm_id);
1619
1620         switch (ev->event) {
1621         case RDMA_CM_EVENT_ADDR_RESOLVED:
1622                 cm_error = nvme_rdma_addr_resolved(queue);
1623                 break;
1624         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1625                 cm_error = nvme_rdma_route_resolved(queue);
1626                 break;
1627         case RDMA_CM_EVENT_ESTABLISHED:
1628                 queue->cm_error = nvme_rdma_conn_established(queue);
1629                 /* complete cm_done regardless of success/failure */
1630                 complete(&queue->cm_done);
1631                 return 0;
1632         case RDMA_CM_EVENT_REJECTED:
1633                 nvme_rdma_destroy_queue_ib(queue);
1634                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1635                 break;
1636         case RDMA_CM_EVENT_ROUTE_ERROR:
1637         case RDMA_CM_EVENT_CONNECT_ERROR:
1638         case RDMA_CM_EVENT_UNREACHABLE:
1639                 nvme_rdma_destroy_queue_ib(queue);
1640                 /* fall through */
1641         case RDMA_CM_EVENT_ADDR_ERROR:
1642                 dev_dbg(queue->ctrl->ctrl.device,
1643                         "CM error event %d\n", ev->event);
1644                 cm_error = -ECONNRESET;
1645                 break;
1646         case RDMA_CM_EVENT_DISCONNECTED:
1647         case RDMA_CM_EVENT_ADDR_CHANGE:
1648         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1649                 dev_dbg(queue->ctrl->ctrl.device,
1650                         "disconnect received - connection closed\n");
1651                 nvme_rdma_error_recovery(queue->ctrl);
1652                 break;
1653         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1654                 /* device removal is handled via the ib_client API */
1655                 break;
1656         default:
1657                 dev_err(queue->ctrl->ctrl.device,
1658                         "Unexpected RDMA CM event (%d)\n", ev->event);
1659                 nvme_rdma_error_recovery(queue->ctrl);
1660                 break;
1661         }
1662
1663         if (cm_error) {
1664                 queue->cm_error = cm_error;
1665                 complete(&queue->cm_done);
1666         }
1667
1668         return 0;
1669 }
1670
1671 static enum blk_eh_timer_return
1672 nvme_rdma_timeout(struct request *rq, bool reserved)
1673 {
1674         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1675         struct nvme_rdma_queue *queue = req->queue;
1676         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1677
1678         dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
1679                  rq->tag, nvme_rdma_queue_idx(queue));
1680
1681         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1682                 /*
1683                  * Teardown immediately if controller times out while starting
1684                  * or we are already started error recovery. all outstanding
1685                  * requests are completed on shutdown, so we return BLK_EH_DONE.
1686                  */
1687                 flush_work(&ctrl->err_work);
1688                 nvme_rdma_teardown_io_queues(ctrl, false);
1689                 nvme_rdma_teardown_admin_queue(ctrl, false);
1690                 return BLK_EH_DONE;
1691         }
1692
1693         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1694         nvme_rdma_error_recovery(ctrl);
1695
1696         return BLK_EH_RESET_TIMER;
1697 }
1698
1699 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1700                 const struct blk_mq_queue_data *bd)
1701 {
1702         struct nvme_ns *ns = hctx->queue->queuedata;
1703         struct nvme_rdma_queue *queue = hctx->driver_data;
1704         struct request *rq = bd->rq;
1705         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1706         struct nvme_rdma_qe *sqe = &req->sqe;
1707         struct nvme_command *c = sqe->data;
1708         struct ib_device *dev;
1709         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1710         blk_status_t ret;
1711         int err;
1712
1713         WARN_ON_ONCE(rq->tag < 0);
1714
1715         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1716                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1717
1718         dev = queue->device->dev;
1719
1720         req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
1721                                          sizeof(struct nvme_command),
1722                                          DMA_TO_DEVICE);
1723         err = ib_dma_mapping_error(dev, req->sqe.dma);
1724         if (unlikely(err))
1725                 return BLK_STS_RESOURCE;
1726
1727         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1728                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1729
1730         ret = nvme_setup_cmd(ns, rq, c);
1731         if (ret)
1732                 goto unmap_qe;
1733
1734         blk_mq_start_request(rq);
1735
1736         err = nvme_rdma_map_data(queue, rq, c);
1737         if (unlikely(err < 0)) {
1738                 dev_err(queue->ctrl->ctrl.device,
1739                              "Failed to map data (%d)\n", err);
1740                 nvme_cleanup_cmd(rq);
1741                 goto err;
1742         }
1743
1744         sqe->cqe.done = nvme_rdma_send_done;
1745
1746         ib_dma_sync_single_for_device(dev, sqe->dma,
1747                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1748
1749         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1750                         req->mr ? &req->reg_wr.wr : NULL);
1751         if (unlikely(err)) {
1752                 nvme_rdma_unmap_data(queue, rq);
1753                 goto err;
1754         }
1755
1756         return BLK_STS_OK;
1757
1758 err:
1759         if (err == -ENOMEM || err == -EAGAIN)
1760                 ret = BLK_STS_RESOURCE;
1761         else
1762                 ret = BLK_STS_IOERR;
1763 unmap_qe:
1764         ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
1765                             DMA_TO_DEVICE);
1766         return ret;
1767 }
1768
1769 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
1770 {
1771         struct nvme_rdma_queue *queue = hctx->driver_data;
1772
1773         return ib_process_cq_direct(queue->ib_cq, -1);
1774 }
1775
1776 static void nvme_rdma_complete_rq(struct request *rq)
1777 {
1778         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1779         struct nvme_rdma_queue *queue = req->queue;
1780         struct ib_device *ibdev = queue->device->dev;
1781
1782         nvme_rdma_unmap_data(queue, rq);
1783         ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
1784                             DMA_TO_DEVICE);
1785         nvme_complete_rq(rq);
1786 }
1787
1788 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1789 {
1790         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1791         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1792
1793         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
1794                 /* separate read/write queues */
1795                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1796                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1797                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1798                 set->map[HCTX_TYPE_READ].nr_queues =
1799                         ctrl->io_queues[HCTX_TYPE_READ];
1800                 set->map[HCTX_TYPE_READ].queue_offset =
1801                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1802         } else {
1803                 /* shared read/write queues */
1804                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1805                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1806                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1807                 set->map[HCTX_TYPE_READ].nr_queues =
1808                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
1809                 set->map[HCTX_TYPE_READ].queue_offset = 0;
1810         }
1811         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1812                         ctrl->device->dev, 0);
1813         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1814                         ctrl->device->dev, 0);
1815
1816         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
1817                 /* map dedicated poll queues only if we have queues left */
1818                 set->map[HCTX_TYPE_POLL].nr_queues =
1819                                 ctrl->io_queues[HCTX_TYPE_POLL];
1820                 set->map[HCTX_TYPE_POLL].queue_offset =
1821                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1822                         ctrl->io_queues[HCTX_TYPE_READ];
1823                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
1824         }
1825
1826         dev_info(ctrl->ctrl.device,
1827                 "mapped %d/%d/%d default/read/poll queues.\n",
1828                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
1829                 ctrl->io_queues[HCTX_TYPE_READ],
1830                 ctrl->io_queues[HCTX_TYPE_POLL]);
1831
1832         return 0;
1833 }
1834
1835 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1836         .queue_rq       = nvme_rdma_queue_rq,
1837         .complete       = nvme_rdma_complete_rq,
1838         .init_request   = nvme_rdma_init_request,
1839         .exit_request   = nvme_rdma_exit_request,
1840         .init_hctx      = nvme_rdma_init_hctx,
1841         .timeout        = nvme_rdma_timeout,
1842         .map_queues     = nvme_rdma_map_queues,
1843         .poll           = nvme_rdma_poll,
1844 };
1845
1846 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1847         .queue_rq       = nvme_rdma_queue_rq,
1848         .complete       = nvme_rdma_complete_rq,
1849         .init_request   = nvme_rdma_init_request,
1850         .exit_request   = nvme_rdma_exit_request,
1851         .init_hctx      = nvme_rdma_init_admin_hctx,
1852         .timeout        = nvme_rdma_timeout,
1853 };
1854
1855 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1856 {
1857         cancel_work_sync(&ctrl->err_work);
1858         cancel_delayed_work_sync(&ctrl->reconnect_work);
1859
1860         nvme_rdma_teardown_io_queues(ctrl, shutdown);
1861         if (shutdown)
1862                 nvme_shutdown_ctrl(&ctrl->ctrl);
1863         else
1864                 nvme_disable_ctrl(&ctrl->ctrl);
1865         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1866 }
1867
1868 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1869 {
1870         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1871 }
1872
1873 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1874 {
1875         struct nvme_rdma_ctrl *ctrl =
1876                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1877
1878         nvme_stop_ctrl(&ctrl->ctrl);
1879         nvme_rdma_shutdown_ctrl(ctrl, false);
1880
1881         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1882                 /* state change failure should never happen */
1883                 WARN_ON_ONCE(1);
1884                 return;
1885         }
1886
1887         if (nvme_rdma_setup_ctrl(ctrl, false))
1888                 goto out_fail;
1889
1890         return;
1891
1892 out_fail:
1893         ++ctrl->ctrl.nr_reconnects;
1894         nvme_rdma_reconnect_or_remove(ctrl);
1895 }
1896
1897 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1898         .name                   = "rdma",
1899         .module                 = THIS_MODULE,
1900         .flags                  = NVME_F_FABRICS,
1901         .reg_read32             = nvmf_reg_read32,
1902         .reg_read64             = nvmf_reg_read64,
1903         .reg_write32            = nvmf_reg_write32,
1904         .free_ctrl              = nvme_rdma_free_ctrl,
1905         .submit_async_event     = nvme_rdma_submit_async_event,
1906         .delete_ctrl            = nvme_rdma_delete_ctrl,
1907         .get_address            = nvmf_get_address,
1908 };
1909
1910 /*
1911  * Fails a connection request if it matches an existing controller
1912  * (association) with the same tuple:
1913  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1914  *
1915  * if local address is not specified in the request, it will match an
1916  * existing controller with all the other parameters the same and no
1917  * local port address specified as well.
1918  *
1919  * The ports don't need to be compared as they are intrinsically
1920  * already matched by the port pointers supplied.
1921  */
1922 static bool
1923 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1924 {
1925         struct nvme_rdma_ctrl *ctrl;
1926         bool found = false;
1927
1928         mutex_lock(&nvme_rdma_ctrl_mutex);
1929         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1930                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1931                 if (found)
1932                         break;
1933         }
1934         mutex_unlock(&nvme_rdma_ctrl_mutex);
1935
1936         return found;
1937 }
1938
1939 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1940                 struct nvmf_ctrl_options *opts)
1941 {
1942         struct nvme_rdma_ctrl *ctrl;
1943         int ret;
1944         bool changed;
1945
1946         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1947         if (!ctrl)
1948                 return ERR_PTR(-ENOMEM);
1949         ctrl->ctrl.opts = opts;
1950         INIT_LIST_HEAD(&ctrl->list);
1951
1952         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1953                 opts->trsvcid =
1954                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1955                 if (!opts->trsvcid) {
1956                         ret = -ENOMEM;
1957                         goto out_free_ctrl;
1958                 }
1959                 opts->mask |= NVMF_OPT_TRSVCID;
1960         }
1961
1962         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1963                         opts->traddr, opts->trsvcid, &ctrl->addr);
1964         if (ret) {
1965                 pr_err("malformed address passed: %s:%s\n",
1966                         opts->traddr, opts->trsvcid);
1967                 goto out_free_ctrl;
1968         }
1969
1970         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1971                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1972                         opts->host_traddr, NULL, &ctrl->src_addr);
1973                 if (ret) {
1974                         pr_err("malformed src address passed: %s\n",
1975                                opts->host_traddr);
1976                         goto out_free_ctrl;
1977                 }
1978         }
1979
1980         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1981                 ret = -EALREADY;
1982                 goto out_free_ctrl;
1983         }
1984
1985         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1986                         nvme_rdma_reconnect_ctrl_work);
1987         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1988         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1989
1990         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
1991                                 opts->nr_poll_queues + 1;
1992         ctrl->ctrl.sqsize = opts->queue_size - 1;
1993         ctrl->ctrl.kato = opts->kato;
1994
1995         ret = -ENOMEM;
1996         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1997                                 GFP_KERNEL);
1998         if (!ctrl->queues)
1999                 goto out_free_ctrl;
2000
2001         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
2002                                 0 /* no quirks, we're perfect! */);
2003         if (ret)
2004                 goto out_kfree_queues;
2005
2006         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
2007         WARN_ON_ONCE(!changed);
2008
2009         ret = nvme_rdma_setup_ctrl(ctrl, true);
2010         if (ret)
2011                 goto out_uninit_ctrl;
2012
2013         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
2014                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2015
2016         nvme_get_ctrl(&ctrl->ctrl);
2017
2018         mutex_lock(&nvme_rdma_ctrl_mutex);
2019         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
2020         mutex_unlock(&nvme_rdma_ctrl_mutex);
2021
2022         return &ctrl->ctrl;
2023
2024 out_uninit_ctrl:
2025         nvme_uninit_ctrl(&ctrl->ctrl);
2026         nvme_put_ctrl(&ctrl->ctrl);
2027         if (ret > 0)
2028                 ret = -EIO;
2029         return ERR_PTR(ret);
2030 out_kfree_queues:
2031         kfree(ctrl->queues);
2032 out_free_ctrl:
2033         kfree(ctrl);
2034         return ERR_PTR(ret);
2035 }
2036
2037 static struct nvmf_transport_ops nvme_rdma_transport = {
2038         .name           = "rdma",
2039         .module         = THIS_MODULE,
2040         .required_opts  = NVMF_OPT_TRADDR,
2041         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2042                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2043                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2044                           NVMF_OPT_TOS,
2045         .create_ctrl    = nvme_rdma_create_ctrl,
2046 };
2047
2048 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2049 {
2050         struct nvme_rdma_ctrl *ctrl;
2051         struct nvme_rdma_device *ndev;
2052         bool found = false;
2053
2054         mutex_lock(&device_list_mutex);
2055         list_for_each_entry(ndev, &device_list, entry) {
2056                 if (ndev->dev == ib_device) {
2057                         found = true;
2058                         break;
2059                 }
2060         }
2061         mutex_unlock(&device_list_mutex);
2062
2063         if (!found)
2064                 return;
2065
2066         /* Delete all controllers using this device */
2067         mutex_lock(&nvme_rdma_ctrl_mutex);
2068         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2069                 if (ctrl->device->dev != ib_device)
2070                         continue;
2071                 nvme_delete_ctrl(&ctrl->ctrl);
2072         }
2073         mutex_unlock(&nvme_rdma_ctrl_mutex);
2074
2075         flush_workqueue(nvme_delete_wq);
2076 }
2077
2078 static struct ib_client nvme_rdma_ib_client = {
2079         .name   = "nvme_rdma",
2080         .remove = nvme_rdma_remove_one
2081 };
2082
2083 static int __init nvme_rdma_init_module(void)
2084 {
2085         int ret;
2086
2087         ret = ib_register_client(&nvme_rdma_ib_client);
2088         if (ret)
2089                 return ret;
2090
2091         ret = nvmf_register_transport(&nvme_rdma_transport);
2092         if (ret)
2093                 goto err_unreg_client;
2094
2095         return 0;
2096
2097 err_unreg_client:
2098         ib_unregister_client(&nvme_rdma_ib_client);
2099         return ret;
2100 }
2101
2102 static void __exit nvme_rdma_cleanup_module(void)
2103 {
2104         nvmf_unregister_transport(&nvme_rdma_transport);
2105         ib_unregister_client(&nvme_rdma_ib_client);
2106 }
2107
2108 module_init(nvme_rdma_init_module);
2109 module_exit(nvme_rdma_cleanup_module);
2110
2111 MODULE_LICENSE("GPL v2");