]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/rdma.c
ed726da77b5b48f2ecab2e8830ef35a279a9d830
[linux.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <rdma/mr_pool.h>
19 #include <linux/err.h>
20 #include <linux/string.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/blk-mq-rdma.h>
24 #include <linux/types.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/scatterlist.h>
28 #include <linux/nvme.h>
29 #include <asm/unaligned.h>
30
31 #include <rdma/ib_verbs.h>
32 #include <rdma/rdma_cm.h>
33 #include <linux/nvme-rdma.h>
34
35 #include "nvme.h"
36 #include "fabrics.h"
37
38
39 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
40
41 #define NVME_RDMA_MAX_SEGMENTS          256
42
43 #define NVME_RDMA_MAX_INLINE_SEGMENTS   4
44
45 struct nvme_rdma_device {
46         struct ib_device        *dev;
47         struct ib_pd            *pd;
48         struct kref             ref;
49         struct list_head        entry;
50         unsigned int            num_inline_segments;
51 };
52
53 struct nvme_rdma_qe {
54         struct ib_cqe           cqe;
55         void                    *data;
56         u64                     dma;
57 };
58
59 struct nvme_rdma_queue;
60 struct nvme_rdma_request {
61         struct nvme_request     req;
62         struct ib_mr            *mr;
63         struct nvme_rdma_qe     sqe;
64         union nvme_result       result;
65         __le16                  status;
66         refcount_t              ref;
67         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
68         u32                     num_sge;
69         int                     nents;
70         struct ib_reg_wr        reg_wr;
71         struct ib_cqe           reg_cqe;
72         struct nvme_rdma_queue  *queue;
73         struct sg_table         sg_table;
74         struct scatterlist      first_sgl[];
75 };
76
77 enum nvme_rdma_queue_flags {
78         NVME_RDMA_Q_ALLOCATED           = 0,
79         NVME_RDMA_Q_LIVE                = 1,
80         NVME_RDMA_Q_TR_READY            = 2,
81 };
82
83 struct nvme_rdma_queue {
84         struct nvme_rdma_qe     *rsp_ring;
85         int                     queue_size;
86         size_t                  cmnd_capsule_len;
87         struct nvme_rdma_ctrl   *ctrl;
88         struct nvme_rdma_device *device;
89         struct ib_cq            *ib_cq;
90         struct ib_qp            *qp;
91
92         unsigned long           flags;
93         struct rdma_cm_id       *cm_id;
94         int                     cm_error;
95         struct completion       cm_done;
96 };
97
98 struct nvme_rdma_ctrl {
99         /* read only in the hot path */
100         struct nvme_rdma_queue  *queues;
101
102         /* other member variables */
103         struct blk_mq_tag_set   tag_set;
104         struct work_struct      err_work;
105
106         struct nvme_rdma_qe     async_event_sqe;
107
108         struct delayed_work     reconnect_work;
109
110         struct list_head        list;
111
112         struct blk_mq_tag_set   admin_tag_set;
113         struct nvme_rdma_device *device;
114
115         u32                     max_fr_pages;
116
117         struct sockaddr_storage addr;
118         struct sockaddr_storage src_addr;
119
120         struct nvme_ctrl        ctrl;
121         bool                    use_inline_data;
122 };
123
124 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
125 {
126         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
127 }
128
129 static LIST_HEAD(device_list);
130 static DEFINE_MUTEX(device_list_mutex);
131
132 static LIST_HEAD(nvme_rdma_ctrl_list);
133 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
134
135 /*
136  * Disabling this option makes small I/O goes faster, but is fundamentally
137  * unsafe.  With it turned off we will have to register a global rkey that
138  * allows read and write access to all physical memory.
139  */
140 static bool register_always = true;
141 module_param(register_always, bool, 0444);
142 MODULE_PARM_DESC(register_always,
143          "Use memory registration even for contiguous memory regions");
144
145 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
146                 struct rdma_cm_event *event);
147 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
148
149 static const struct blk_mq_ops nvme_rdma_mq_ops;
150 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
151
152 /* XXX: really should move to a generic header sooner or later.. */
153 static inline void put_unaligned_le24(u32 val, u8 *p)
154 {
155         *p++ = val;
156         *p++ = val >> 8;
157         *p++ = val >> 16;
158 }
159
160 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
161 {
162         return queue - queue->ctrl->queues;
163 }
164
165 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
166 {
167         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
168 }
169
170 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
171                 size_t capsule_size, enum dma_data_direction dir)
172 {
173         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
174         kfree(qe->data);
175 }
176
177 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
178                 size_t capsule_size, enum dma_data_direction dir)
179 {
180         qe->data = kzalloc(capsule_size, GFP_KERNEL);
181         if (!qe->data)
182                 return -ENOMEM;
183
184         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
185         if (ib_dma_mapping_error(ibdev, qe->dma)) {
186                 kfree(qe->data);
187                 qe->data = NULL;
188                 return -ENOMEM;
189         }
190
191         return 0;
192 }
193
194 static void nvme_rdma_free_ring(struct ib_device *ibdev,
195                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
196                 size_t capsule_size, enum dma_data_direction dir)
197 {
198         int i;
199
200         for (i = 0; i < ib_queue_size; i++)
201                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
202         kfree(ring);
203 }
204
205 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
206                 size_t ib_queue_size, size_t capsule_size,
207                 enum dma_data_direction dir)
208 {
209         struct nvme_rdma_qe *ring;
210         int i;
211
212         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
213         if (!ring)
214                 return NULL;
215
216         for (i = 0; i < ib_queue_size; i++) {
217                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
218                         goto out_free_ring;
219         }
220
221         return ring;
222
223 out_free_ring:
224         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
225         return NULL;
226 }
227
228 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
229 {
230         pr_debug("QP event %s (%d)\n",
231                  ib_event_msg(event->event), event->event);
232
233 }
234
235 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
236 {
237         int ret;
238
239         ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
240                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
241         if (ret < 0)
242                 return ret;
243         if (ret == 0)
244                 return -ETIMEDOUT;
245         WARN_ON_ONCE(queue->cm_error > 0);
246         return queue->cm_error;
247 }
248
249 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
250 {
251         struct nvme_rdma_device *dev = queue->device;
252         struct ib_qp_init_attr init_attr;
253         int ret;
254
255         memset(&init_attr, 0, sizeof(init_attr));
256         init_attr.event_handler = nvme_rdma_qp_event;
257         /* +1 for drain */
258         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
259         /* +1 for drain */
260         init_attr.cap.max_recv_wr = queue->queue_size + 1;
261         init_attr.cap.max_recv_sge = 1;
262         init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
263         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
264         init_attr.qp_type = IB_QPT_RC;
265         init_attr.send_cq = queue->ib_cq;
266         init_attr.recv_cq = queue->ib_cq;
267
268         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
269
270         queue->qp = queue->cm_id->qp;
271         return ret;
272 }
273
274 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
275                 struct request *rq, unsigned int hctx_idx)
276 {
277         struct nvme_rdma_ctrl *ctrl = set->driver_data;
278         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
279         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
280         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
281         struct nvme_rdma_device *dev = queue->device;
282
283         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
284                         DMA_TO_DEVICE);
285 }
286
287 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
288                 struct request *rq, unsigned int hctx_idx,
289                 unsigned int numa_node)
290 {
291         struct nvme_rdma_ctrl *ctrl = set->driver_data;
292         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
293         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
294         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
295         struct nvme_rdma_device *dev = queue->device;
296         struct ib_device *ibdev = dev->dev;
297         int ret;
298
299         nvme_req(rq)->ctrl = &ctrl->ctrl;
300         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
301                         DMA_TO_DEVICE);
302         if (ret)
303                 return ret;
304
305         req->queue = queue;
306
307         return 0;
308 }
309
310 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
311                 unsigned int hctx_idx)
312 {
313         struct nvme_rdma_ctrl *ctrl = data;
314         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
315
316         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
317
318         hctx->driver_data = queue;
319         return 0;
320 }
321
322 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
323                 unsigned int hctx_idx)
324 {
325         struct nvme_rdma_ctrl *ctrl = data;
326         struct nvme_rdma_queue *queue = &ctrl->queues[0];
327
328         BUG_ON(hctx_idx != 0);
329
330         hctx->driver_data = queue;
331         return 0;
332 }
333
334 static void nvme_rdma_free_dev(struct kref *ref)
335 {
336         struct nvme_rdma_device *ndev =
337                 container_of(ref, struct nvme_rdma_device, ref);
338
339         mutex_lock(&device_list_mutex);
340         list_del(&ndev->entry);
341         mutex_unlock(&device_list_mutex);
342
343         ib_dealloc_pd(ndev->pd);
344         kfree(ndev);
345 }
346
347 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
348 {
349         kref_put(&dev->ref, nvme_rdma_free_dev);
350 }
351
352 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
353 {
354         return kref_get_unless_zero(&dev->ref);
355 }
356
357 static struct nvme_rdma_device *
358 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
359 {
360         struct nvme_rdma_device *ndev;
361
362         mutex_lock(&device_list_mutex);
363         list_for_each_entry(ndev, &device_list, entry) {
364                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
365                     nvme_rdma_dev_get(ndev))
366                         goto out_unlock;
367         }
368
369         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
370         if (!ndev)
371                 goto out_err;
372
373         ndev->dev = cm_id->device;
374         kref_init(&ndev->ref);
375
376         ndev->pd = ib_alloc_pd(ndev->dev,
377                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
378         if (IS_ERR(ndev->pd))
379                 goto out_free_dev;
380
381         if (!(ndev->dev->attrs.device_cap_flags &
382               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
383                 dev_err(&ndev->dev->dev,
384                         "Memory registrations not supported.\n");
385                 goto out_free_pd;
386         }
387
388         ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
389                                         ndev->dev->attrs.max_send_sge - 1);
390         list_add(&ndev->entry, &device_list);
391 out_unlock:
392         mutex_unlock(&device_list_mutex);
393         return ndev;
394
395 out_free_pd:
396         ib_dealloc_pd(ndev->pd);
397 out_free_dev:
398         kfree(ndev);
399 out_err:
400         mutex_unlock(&device_list_mutex);
401         return NULL;
402 }
403
404 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
405 {
406         struct nvme_rdma_device *dev;
407         struct ib_device *ibdev;
408
409         if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
410                 return;
411
412         dev = queue->device;
413         ibdev = dev->dev;
414
415         ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
416
417         /*
418          * The cm_id object might have been destroyed during RDMA connection
419          * establishment error flow to avoid getting other cma events, thus
420          * the destruction of the QP shouldn't use rdma_cm API.
421          */
422         ib_destroy_qp(queue->qp);
423         ib_free_cq(queue->ib_cq);
424
425         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
426                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
427
428         nvme_rdma_dev_put(dev);
429 }
430
431 static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
432 {
433         return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
434                      ibdev->attrs.max_fast_reg_page_list_len);
435 }
436
437 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
438 {
439         struct ib_device *ibdev;
440         const int send_wr_factor = 3;                   /* MR, SEND, INV */
441         const int cq_factor = send_wr_factor + 1;       /* + RECV */
442         int comp_vector, idx = nvme_rdma_queue_idx(queue);
443         int ret;
444
445         queue->device = nvme_rdma_find_get_device(queue->cm_id);
446         if (!queue->device) {
447                 dev_err(queue->cm_id->device->dev.parent,
448                         "no client data found!\n");
449                 return -ECONNREFUSED;
450         }
451         ibdev = queue->device->dev;
452
453         /*
454          * Spread I/O queues completion vectors according their queue index.
455          * Admin queues can always go on completion vector 0.
456          */
457         comp_vector = idx == 0 ? idx : idx - 1;
458
459         /* +1 for ib_stop_cq */
460         queue->ib_cq = ib_alloc_cq(ibdev, queue,
461                                 cq_factor * queue->queue_size + 1,
462                                 comp_vector, IB_POLL_SOFTIRQ);
463         if (IS_ERR(queue->ib_cq)) {
464                 ret = PTR_ERR(queue->ib_cq);
465                 goto out_put_dev;
466         }
467
468         ret = nvme_rdma_create_qp(queue, send_wr_factor);
469         if (ret)
470                 goto out_destroy_ib_cq;
471
472         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
473                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
474         if (!queue->rsp_ring) {
475                 ret = -ENOMEM;
476                 goto out_destroy_qp;
477         }
478
479         ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
480                               queue->queue_size,
481                               IB_MR_TYPE_MEM_REG,
482                               nvme_rdma_get_max_fr_pages(ibdev));
483         if (ret) {
484                 dev_err(queue->ctrl->ctrl.device,
485                         "failed to initialize MR pool sized %d for QID %d\n",
486                         queue->queue_size, idx);
487                 goto out_destroy_ring;
488         }
489
490         set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
491
492         return 0;
493
494 out_destroy_ring:
495         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
496                             sizeof(struct nvme_completion), DMA_FROM_DEVICE);
497 out_destroy_qp:
498         rdma_destroy_qp(queue->cm_id);
499 out_destroy_ib_cq:
500         ib_free_cq(queue->ib_cq);
501 out_put_dev:
502         nvme_rdma_dev_put(queue->device);
503         return ret;
504 }
505
506 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
507                 int idx, size_t queue_size)
508 {
509         struct nvme_rdma_queue *queue;
510         struct sockaddr *src_addr = NULL;
511         int ret;
512
513         queue = &ctrl->queues[idx];
514         queue->ctrl = ctrl;
515         init_completion(&queue->cm_done);
516
517         if (idx > 0)
518                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
519         else
520                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
521
522         queue->queue_size = queue_size;
523
524         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
525                         RDMA_PS_TCP, IB_QPT_RC);
526         if (IS_ERR(queue->cm_id)) {
527                 dev_info(ctrl->ctrl.device,
528                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
529                 return PTR_ERR(queue->cm_id);
530         }
531
532         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
533                 src_addr = (struct sockaddr *)&ctrl->src_addr;
534
535         queue->cm_error = -ETIMEDOUT;
536         ret = rdma_resolve_addr(queue->cm_id, src_addr,
537                         (struct sockaddr *)&ctrl->addr,
538                         NVME_RDMA_CONNECT_TIMEOUT_MS);
539         if (ret) {
540                 dev_info(ctrl->ctrl.device,
541                         "rdma_resolve_addr failed (%d).\n", ret);
542                 goto out_destroy_cm_id;
543         }
544
545         ret = nvme_rdma_wait_for_cm(queue);
546         if (ret) {
547                 dev_info(ctrl->ctrl.device,
548                         "rdma connection establishment failed (%d)\n", ret);
549                 goto out_destroy_cm_id;
550         }
551
552         set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
553
554         return 0;
555
556 out_destroy_cm_id:
557         rdma_destroy_id(queue->cm_id);
558         nvme_rdma_destroy_queue_ib(queue);
559         return ret;
560 }
561
562 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
563 {
564         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
565                 return;
566
567         rdma_disconnect(queue->cm_id);
568         ib_drain_qp(queue->qp);
569 }
570
571 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
572 {
573         if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
574                 return;
575
576         nvme_rdma_destroy_queue_ib(queue);
577         rdma_destroy_id(queue->cm_id);
578 }
579
580 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
581 {
582         int i;
583
584         for (i = 1; i < ctrl->ctrl.queue_count; i++)
585                 nvme_rdma_free_queue(&ctrl->queues[i]);
586 }
587
588 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
589 {
590         int i;
591
592         for (i = 1; i < ctrl->ctrl.queue_count; i++)
593                 nvme_rdma_stop_queue(&ctrl->queues[i]);
594 }
595
596 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
597 {
598         int ret;
599
600         if (idx)
601                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
602         else
603                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
604
605         if (!ret)
606                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
607         else
608                 dev_info(ctrl->ctrl.device,
609                         "failed to connect queue: %d ret=%d\n", idx, ret);
610         return ret;
611 }
612
613 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
614 {
615         int i, ret = 0;
616
617         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
618                 ret = nvme_rdma_start_queue(ctrl, i);
619                 if (ret)
620                         goto out_stop_queues;
621         }
622
623         return 0;
624
625 out_stop_queues:
626         for (i--; i >= 1; i--)
627                 nvme_rdma_stop_queue(&ctrl->queues[i]);
628         return ret;
629 }
630
631 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
632 {
633         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
634         struct ib_device *ibdev = ctrl->device->dev;
635         unsigned int nr_io_queues;
636         int i, ret;
637
638         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
639
640         /*
641          * we map queues according to the device irq vectors for
642          * optimal locality so we don't need more queues than
643          * completion vectors.
644          */
645         nr_io_queues = min_t(unsigned int, nr_io_queues,
646                                 ibdev->num_comp_vectors);
647
648         nr_io_queues += min(opts->nr_write_queues, num_online_cpus());
649
650         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
651         if (ret)
652                 return ret;
653
654         ctrl->ctrl.queue_count = nr_io_queues + 1;
655         if (ctrl->ctrl.queue_count < 2)
656                 return 0;
657
658         dev_info(ctrl->ctrl.device,
659                 "creating %d I/O queues.\n", nr_io_queues);
660
661         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
662                 ret = nvme_rdma_alloc_queue(ctrl, i,
663                                 ctrl->ctrl.sqsize + 1);
664                 if (ret)
665                         goto out_free_queues;
666         }
667
668         return 0;
669
670 out_free_queues:
671         for (i--; i >= 1; i--)
672                 nvme_rdma_free_queue(&ctrl->queues[i]);
673
674         return ret;
675 }
676
677 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl,
678                 struct blk_mq_tag_set *set)
679 {
680         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
681
682         blk_mq_free_tag_set(set);
683         nvme_rdma_dev_put(ctrl->device);
684 }
685
686 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
687                 bool admin)
688 {
689         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
690         struct blk_mq_tag_set *set;
691         int ret;
692
693         if (admin) {
694                 set = &ctrl->admin_tag_set;
695                 memset(set, 0, sizeof(*set));
696                 set->ops = &nvme_rdma_admin_mq_ops;
697                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
698                 set->reserved_tags = 2; /* connect + keep-alive */
699                 set->numa_node = nctrl->numa_node;
700                 set->cmd_size = sizeof(struct nvme_rdma_request) +
701                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
702                 set->driver_data = ctrl;
703                 set->nr_hw_queues = 1;
704                 set->timeout = ADMIN_TIMEOUT;
705                 set->flags = BLK_MQ_F_NO_SCHED;
706         } else {
707                 set = &ctrl->tag_set;
708                 memset(set, 0, sizeof(*set));
709                 set->ops = &nvme_rdma_mq_ops;
710                 set->queue_depth = nctrl->sqsize + 1;
711                 set->reserved_tags = 1; /* fabric connect */
712                 set->numa_node = nctrl->numa_node;
713                 set->flags = BLK_MQ_F_SHOULD_MERGE;
714                 set->cmd_size = sizeof(struct nvme_rdma_request) +
715                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
716                 set->driver_data = ctrl;
717                 set->nr_hw_queues = nctrl->queue_count - 1;
718                 set->timeout = NVME_IO_TIMEOUT;
719                 set->nr_maps = 2 /* default + read */;
720         }
721
722         ret = blk_mq_alloc_tag_set(set);
723         if (ret)
724                 goto out;
725
726         /*
727          * We need a reference on the device as long as the tag_set is alive,
728          * as the MRs in the request structures need a valid ib_device.
729          */
730         ret = nvme_rdma_dev_get(ctrl->device);
731         if (!ret) {
732                 ret = -EINVAL;
733                 goto out_free_tagset;
734         }
735
736         return set;
737
738 out_free_tagset:
739         blk_mq_free_tag_set(set);
740 out:
741         return ERR_PTR(ret);
742 }
743
744 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
745                 bool remove)
746 {
747         if (remove) {
748                 blk_cleanup_queue(ctrl->ctrl.admin_q);
749                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
750         }
751         if (ctrl->async_event_sqe.data) {
752                 nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
753                                 sizeof(struct nvme_command), DMA_TO_DEVICE);
754                 ctrl->async_event_sqe.data = NULL;
755         }
756         nvme_rdma_free_queue(&ctrl->queues[0]);
757 }
758
759 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
760                 bool new)
761 {
762         int error;
763
764         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
765         if (error)
766                 return error;
767
768         ctrl->device = ctrl->queues[0].device;
769         ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
770
771         ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
772
773         error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
774                         sizeof(struct nvme_command), DMA_TO_DEVICE);
775         if (error)
776                 goto out_free_queue;
777
778         if (new) {
779                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
780                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
781                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
782                         goto out_free_async_qe;
783                 }
784
785                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
786                 if (IS_ERR(ctrl->ctrl.admin_q)) {
787                         error = PTR_ERR(ctrl->ctrl.admin_q);
788                         goto out_free_tagset;
789                 }
790         }
791
792         error = nvme_rdma_start_queue(ctrl, 0);
793         if (error)
794                 goto out_cleanup_queue;
795
796         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
797                         &ctrl->ctrl.cap);
798         if (error) {
799                 dev_err(ctrl->ctrl.device,
800                         "prop_get NVME_REG_CAP failed\n");
801                 goto out_stop_queue;
802         }
803
804         ctrl->ctrl.sqsize =
805                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
806
807         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
808         if (error)
809                 goto out_stop_queue;
810
811         ctrl->ctrl.max_hw_sectors =
812                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
813
814         error = nvme_init_identify(&ctrl->ctrl);
815         if (error)
816                 goto out_stop_queue;
817
818         return 0;
819
820 out_stop_queue:
821         nvme_rdma_stop_queue(&ctrl->queues[0]);
822 out_cleanup_queue:
823         if (new)
824                 blk_cleanup_queue(ctrl->ctrl.admin_q);
825 out_free_tagset:
826         if (new)
827                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset);
828 out_free_async_qe:
829         nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
830                 sizeof(struct nvme_command), DMA_TO_DEVICE);
831         ctrl->async_event_sqe.data = NULL;
832 out_free_queue:
833         nvme_rdma_free_queue(&ctrl->queues[0]);
834         return error;
835 }
836
837 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
838                 bool remove)
839 {
840         if (remove) {
841                 blk_cleanup_queue(ctrl->ctrl.connect_q);
842                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
843         }
844         nvme_rdma_free_io_queues(ctrl);
845 }
846
847 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
848 {
849         int ret;
850
851         ret = nvme_rdma_alloc_io_queues(ctrl);
852         if (ret)
853                 return ret;
854
855         if (new) {
856                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
857                 if (IS_ERR(ctrl->ctrl.tagset)) {
858                         ret = PTR_ERR(ctrl->ctrl.tagset);
859                         goto out_free_io_queues;
860                 }
861
862                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
863                 if (IS_ERR(ctrl->ctrl.connect_q)) {
864                         ret = PTR_ERR(ctrl->ctrl.connect_q);
865                         goto out_free_tag_set;
866                 }
867         } else {
868                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
869                         ctrl->ctrl.queue_count - 1);
870         }
871
872         ret = nvme_rdma_start_io_queues(ctrl);
873         if (ret)
874                 goto out_cleanup_connect_q;
875
876         return 0;
877
878 out_cleanup_connect_q:
879         if (new)
880                 blk_cleanup_queue(ctrl->ctrl.connect_q);
881 out_free_tag_set:
882         if (new)
883                 nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset);
884 out_free_io_queues:
885         nvme_rdma_free_io_queues(ctrl);
886         return ret;
887 }
888
889 static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
890                 bool remove)
891 {
892         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
893         nvme_rdma_stop_queue(&ctrl->queues[0]);
894         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set, nvme_cancel_request,
895                         &ctrl->ctrl);
896         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
897         nvme_rdma_destroy_admin_queue(ctrl, remove);
898 }
899
900 static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
901                 bool remove)
902 {
903         if (ctrl->ctrl.queue_count > 1) {
904                 nvme_stop_queues(&ctrl->ctrl);
905                 nvme_rdma_stop_io_queues(ctrl);
906                 blk_mq_tagset_busy_iter(&ctrl->tag_set, nvme_cancel_request,
907                                 &ctrl->ctrl);
908                 if (remove)
909                         nvme_start_queues(&ctrl->ctrl);
910                 nvme_rdma_destroy_io_queues(ctrl, remove);
911         }
912 }
913
914 static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl)
915 {
916         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
917
918         cancel_work_sync(&ctrl->err_work);
919         cancel_delayed_work_sync(&ctrl->reconnect_work);
920 }
921
922 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
923 {
924         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
925
926         if (list_empty(&ctrl->list))
927                 goto free_ctrl;
928
929         mutex_lock(&nvme_rdma_ctrl_mutex);
930         list_del(&ctrl->list);
931         mutex_unlock(&nvme_rdma_ctrl_mutex);
932
933         nvmf_free_options(nctrl->opts);
934 free_ctrl:
935         kfree(ctrl->queues);
936         kfree(ctrl);
937 }
938
939 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
940 {
941         /* If we are resetting/deleting then do nothing */
942         if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
943                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
944                         ctrl->ctrl.state == NVME_CTRL_LIVE);
945                 return;
946         }
947
948         if (nvmf_should_reconnect(&ctrl->ctrl)) {
949                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
950                         ctrl->ctrl.opts->reconnect_delay);
951                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
952                                 ctrl->ctrl.opts->reconnect_delay * HZ);
953         } else {
954                 nvme_delete_ctrl(&ctrl->ctrl);
955         }
956 }
957
958 static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
959 {
960         int ret = -EINVAL;
961         bool changed;
962
963         ret = nvme_rdma_configure_admin_queue(ctrl, new);
964         if (ret)
965                 return ret;
966
967         if (ctrl->ctrl.icdoff) {
968                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
969                 goto destroy_admin;
970         }
971
972         if (!(ctrl->ctrl.sgls & (1 << 2))) {
973                 dev_err(ctrl->ctrl.device,
974                         "Mandatory keyed sgls are not supported!\n");
975                 goto destroy_admin;
976         }
977
978         if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
979                 dev_warn(ctrl->ctrl.device,
980                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
981                         ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
982         }
983
984         if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
985                 dev_warn(ctrl->ctrl.device,
986                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
987                         ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
988                 ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
989         }
990
991         if (ctrl->ctrl.sgls & (1 << 20))
992                 ctrl->use_inline_data = true;
993
994         if (ctrl->ctrl.queue_count > 1) {
995                 ret = nvme_rdma_configure_io_queues(ctrl, new);
996                 if (ret)
997                         goto destroy_admin;
998         }
999
1000         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1001         if (!changed) {
1002                 /* state change failure is ok if we're in DELETING state */
1003                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1004                 ret = -EINVAL;
1005                 goto destroy_io;
1006         }
1007
1008         nvme_start_ctrl(&ctrl->ctrl);
1009         return 0;
1010
1011 destroy_io:
1012         if (ctrl->ctrl.queue_count > 1)
1013                 nvme_rdma_destroy_io_queues(ctrl, new);
1014 destroy_admin:
1015         nvme_rdma_stop_queue(&ctrl->queues[0]);
1016         nvme_rdma_destroy_admin_queue(ctrl, new);
1017         return ret;
1018 }
1019
1020 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
1021 {
1022         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
1023                         struct nvme_rdma_ctrl, reconnect_work);
1024
1025         ++ctrl->ctrl.nr_reconnects;
1026
1027         if (nvme_rdma_setup_ctrl(ctrl, false))
1028                 goto requeue;
1029
1030         dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
1031                         ctrl->ctrl.nr_reconnects);
1032
1033         ctrl->ctrl.nr_reconnects = 0;
1034
1035         return;
1036
1037 requeue:
1038         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
1039                         ctrl->ctrl.nr_reconnects);
1040         nvme_rdma_reconnect_or_remove(ctrl);
1041 }
1042
1043 static void nvme_rdma_error_recovery_work(struct work_struct *work)
1044 {
1045         struct nvme_rdma_ctrl *ctrl = container_of(work,
1046                         struct nvme_rdma_ctrl, err_work);
1047
1048         nvme_stop_keep_alive(&ctrl->ctrl);
1049         nvme_rdma_teardown_io_queues(ctrl, false);
1050         nvme_start_queues(&ctrl->ctrl);
1051         nvme_rdma_teardown_admin_queue(ctrl, false);
1052
1053         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1054                 /* state change failure is ok if we're in DELETING state */
1055                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
1056                 return;
1057         }
1058
1059         nvme_rdma_reconnect_or_remove(ctrl);
1060 }
1061
1062 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1063 {
1064         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1065                 return;
1066
1067         queue_work(nvme_wq, &ctrl->err_work);
1068 }
1069
1070 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1071                 const char *op)
1072 {
1073         struct nvme_rdma_queue *queue = cq->cq_context;
1074         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1075
1076         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1077                 dev_info(ctrl->ctrl.device,
1078                              "%s for CQE 0x%p failed with status %s (%d)\n",
1079                              op, wc->wr_cqe,
1080                              ib_wc_status_msg(wc->status), wc->status);
1081         nvme_rdma_error_recovery(ctrl);
1082 }
1083
1084 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1085 {
1086         if (unlikely(wc->status != IB_WC_SUCCESS))
1087                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1088 }
1089
1090 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1091 {
1092         struct nvme_rdma_request *req =
1093                 container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
1094         struct request *rq = blk_mq_rq_from_pdu(req);
1095
1096         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1097                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1098                 return;
1099         }
1100
1101         if (refcount_dec_and_test(&req->ref))
1102                 nvme_end_request(rq, req->status, req->result);
1103
1104 }
1105
1106 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1107                 struct nvme_rdma_request *req)
1108 {
1109         struct ib_send_wr wr = {
1110                 .opcode             = IB_WR_LOCAL_INV,
1111                 .next               = NULL,
1112                 .num_sge            = 0,
1113                 .send_flags         = IB_SEND_SIGNALED,
1114                 .ex.invalidate_rkey = req->mr->rkey,
1115         };
1116
1117         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1118         wr.wr_cqe = &req->reg_cqe;
1119
1120         return ib_post_send(queue->qp, &wr, NULL);
1121 }
1122
1123 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1124                 struct request *rq)
1125 {
1126         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1127         struct nvme_rdma_device *dev = queue->device;
1128         struct ib_device *ibdev = dev->dev;
1129
1130         if (!blk_rq_payload_bytes(rq))
1131                 return;
1132
1133         if (req->mr) {
1134                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1135                 req->mr = NULL;
1136         }
1137
1138         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1139                         req->nents, rq_data_dir(rq) ==
1140                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1141
1142         nvme_cleanup_cmd(rq);
1143         sg_free_table_chained(&req->sg_table, true);
1144 }
1145
1146 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1147 {
1148         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1149
1150         sg->addr = 0;
1151         put_unaligned_le24(0, sg->length);
1152         put_unaligned_le32(0, sg->key);
1153         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1154         return 0;
1155 }
1156
1157 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1158                 struct nvme_rdma_request *req, struct nvme_command *c,
1159                 int count)
1160 {
1161         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1162         struct scatterlist *sgl = req->sg_table.sgl;
1163         struct ib_sge *sge = &req->sge[1];
1164         u32 len = 0;
1165         int i;
1166
1167         for (i = 0; i < count; i++, sgl++, sge++) {
1168                 sge->addr = sg_dma_address(sgl);
1169                 sge->length = sg_dma_len(sgl);
1170                 sge->lkey = queue->device->pd->local_dma_lkey;
1171                 len += sge->length;
1172         }
1173
1174         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1175         sg->length = cpu_to_le32(len);
1176         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1177
1178         req->num_sge += count;
1179         return 0;
1180 }
1181
1182 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1183                 struct nvme_rdma_request *req, struct nvme_command *c)
1184 {
1185         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1186
1187         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1188         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1189         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1190         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1191         return 0;
1192 }
1193
1194 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1195                 struct nvme_rdma_request *req, struct nvme_command *c,
1196                 int count)
1197 {
1198         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1199         int nr;
1200
1201         req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
1202         if (WARN_ON_ONCE(!req->mr))
1203                 return -EAGAIN;
1204
1205         /*
1206          * Align the MR to a 4K page size to match the ctrl page size and
1207          * the block virtual boundary.
1208          */
1209         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1210         if (unlikely(nr < count)) {
1211                 ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
1212                 req->mr = NULL;
1213                 if (nr < 0)
1214                         return nr;
1215                 return -EINVAL;
1216         }
1217
1218         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1219
1220         req->reg_cqe.done = nvme_rdma_memreg_done;
1221         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1222         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1223         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1224         req->reg_wr.wr.num_sge = 0;
1225         req->reg_wr.mr = req->mr;
1226         req->reg_wr.key = req->mr->rkey;
1227         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1228                              IB_ACCESS_REMOTE_READ |
1229                              IB_ACCESS_REMOTE_WRITE;
1230
1231         sg->addr = cpu_to_le64(req->mr->iova);
1232         put_unaligned_le24(req->mr->length, sg->length);
1233         put_unaligned_le32(req->mr->rkey, sg->key);
1234         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1235                         NVME_SGL_FMT_INVALIDATE;
1236
1237         return 0;
1238 }
1239
1240 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1241                 struct request *rq, struct nvme_command *c)
1242 {
1243         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1244         struct nvme_rdma_device *dev = queue->device;
1245         struct ib_device *ibdev = dev->dev;
1246         int count, ret;
1247
1248         req->num_sge = 1;
1249         refcount_set(&req->ref, 2); /* send and recv completions */
1250
1251         c->common.flags |= NVME_CMD_SGL_METABUF;
1252
1253         if (!blk_rq_payload_bytes(rq))
1254                 return nvme_rdma_set_sg_null(c);
1255
1256         req->sg_table.sgl = req->first_sgl;
1257         ret = sg_alloc_table_chained(&req->sg_table,
1258                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1259         if (ret)
1260                 return -ENOMEM;
1261
1262         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1263
1264         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1265                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1266         if (unlikely(count <= 0)) {
1267                 ret = -EIO;
1268                 goto out_free_table;
1269         }
1270
1271         if (count <= dev->num_inline_segments) {
1272                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1273                     queue->ctrl->use_inline_data &&
1274                     blk_rq_payload_bytes(rq) <=
1275                                 nvme_rdma_inline_data_size(queue)) {
1276                         ret = nvme_rdma_map_sg_inline(queue, req, c, count);
1277                         goto out;
1278                 }
1279
1280                 if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
1281                         ret = nvme_rdma_map_sg_single(queue, req, c);
1282                         goto out;
1283                 }
1284         }
1285
1286         ret = nvme_rdma_map_sg_fr(queue, req, c, count);
1287 out:
1288         if (unlikely(ret))
1289                 goto out_unmap_sg;
1290
1291         return 0;
1292
1293 out_unmap_sg:
1294         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1295                         req->nents, rq_data_dir(rq) ==
1296                         WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1297 out_free_table:
1298         sg_free_table_chained(&req->sg_table, true);
1299         return ret;
1300 }
1301
1302 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1303 {
1304         struct nvme_rdma_qe *qe =
1305                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1306         struct nvme_rdma_request *req =
1307                 container_of(qe, struct nvme_rdma_request, sqe);
1308         struct request *rq = blk_mq_rq_from_pdu(req);
1309
1310         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1311                 nvme_rdma_wr_error(cq, wc, "SEND");
1312                 return;
1313         }
1314
1315         if (refcount_dec_and_test(&req->ref))
1316                 nvme_end_request(rq, req->status, req->result);
1317 }
1318
1319 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1320                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1321                 struct ib_send_wr *first)
1322 {
1323         struct ib_send_wr wr;
1324         int ret;
1325
1326         sge->addr   = qe->dma;
1327         sge->length = sizeof(struct nvme_command),
1328         sge->lkey   = queue->device->pd->local_dma_lkey;
1329
1330         wr.next       = NULL;
1331         wr.wr_cqe     = &qe->cqe;
1332         wr.sg_list    = sge;
1333         wr.num_sge    = num_sge;
1334         wr.opcode     = IB_WR_SEND;
1335         wr.send_flags = IB_SEND_SIGNALED;
1336
1337         if (first)
1338                 first->next = &wr;
1339         else
1340                 first = &wr;
1341
1342         ret = ib_post_send(queue->qp, first, NULL);
1343         if (unlikely(ret)) {
1344                 dev_err(queue->ctrl->ctrl.device,
1345                              "%s failed with error code %d\n", __func__, ret);
1346         }
1347         return ret;
1348 }
1349
1350 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1351                 struct nvme_rdma_qe *qe)
1352 {
1353         struct ib_recv_wr wr;
1354         struct ib_sge list;
1355         int ret;
1356
1357         list.addr   = qe->dma;
1358         list.length = sizeof(struct nvme_completion);
1359         list.lkey   = queue->device->pd->local_dma_lkey;
1360
1361         qe->cqe.done = nvme_rdma_recv_done;
1362
1363         wr.next     = NULL;
1364         wr.wr_cqe   = &qe->cqe;
1365         wr.sg_list  = &list;
1366         wr.num_sge  = 1;
1367
1368         ret = ib_post_recv(queue->qp, &wr, NULL);
1369         if (unlikely(ret)) {
1370                 dev_err(queue->ctrl->ctrl.device,
1371                         "%s failed with error code %d\n", __func__, ret);
1372         }
1373         return ret;
1374 }
1375
1376 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1377 {
1378         u32 queue_idx = nvme_rdma_queue_idx(queue);
1379
1380         if (queue_idx == 0)
1381                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1382         return queue->ctrl->tag_set.tags[queue_idx - 1];
1383 }
1384
1385 static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
1386 {
1387         if (unlikely(wc->status != IB_WC_SUCCESS))
1388                 nvme_rdma_wr_error(cq, wc, "ASYNC");
1389 }
1390
1391 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
1392 {
1393         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1394         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1395         struct ib_device *dev = queue->device->dev;
1396         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1397         struct nvme_command *cmd = sqe->data;
1398         struct ib_sge sge;
1399         int ret;
1400
1401         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1402
1403         memset(cmd, 0, sizeof(*cmd));
1404         cmd->common.opcode = nvme_admin_async_event;
1405         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1406         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1407         nvme_rdma_set_sg_null(cmd);
1408
1409         sqe->cqe.done = nvme_rdma_async_done;
1410
1411         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1412                         DMA_TO_DEVICE);
1413
1414         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
1415         WARN_ON_ONCE(ret);
1416 }
1417
1418 static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1419                 struct nvme_completion *cqe, struct ib_wc *wc)
1420 {
1421         struct request *rq;
1422         struct nvme_rdma_request *req;
1423
1424         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1425         if (!rq) {
1426                 dev_err(queue->ctrl->ctrl.device,
1427                         "tag 0x%x on QP %#x not found\n",
1428                         cqe->command_id, queue->qp->qp_num);
1429                 nvme_rdma_error_recovery(queue->ctrl);
1430                 return;
1431         }
1432         req = blk_mq_rq_to_pdu(rq);
1433
1434         req->status = cqe->status;
1435         req->result = cqe->result;
1436
1437         if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
1438                 if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
1439                         dev_err(queue->ctrl->ctrl.device,
1440                                 "Bogus remote invalidation for rkey %#x\n",
1441                                 req->mr->rkey);
1442                         nvme_rdma_error_recovery(queue->ctrl);
1443                 }
1444         } else if (req->mr) {
1445                 int ret;
1446
1447                 ret = nvme_rdma_inv_rkey(queue, req);
1448                 if (unlikely(ret < 0)) {
1449                         dev_err(queue->ctrl->ctrl.device,
1450                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1451                                 req->mr->rkey, ret);
1452                         nvme_rdma_error_recovery(queue->ctrl);
1453                 }
1454                 /* the local invalidation completion will end the request */
1455                 return;
1456         }
1457
1458         if (refcount_dec_and_test(&req->ref))
1459                 nvme_end_request(rq, req->status, req->result);
1460 }
1461
1462 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1463 {
1464         struct nvme_rdma_qe *qe =
1465                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1466         struct nvme_rdma_queue *queue = cq->cq_context;
1467         struct ib_device *ibdev = queue->device->dev;
1468         struct nvme_completion *cqe = qe->data;
1469         const size_t len = sizeof(struct nvme_completion);
1470
1471         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1472                 nvme_rdma_wr_error(cq, wc, "RECV");
1473                 return;
1474         }
1475
1476         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1477         /*
1478          * AEN requests are special as they don't time out and can
1479          * survive any kind of queue freeze and often don't respond to
1480          * aborts.  We don't even bother to allocate a struct request
1481          * for them but rather special case them here.
1482          */
1483         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1484                         cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
1485                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1486                                 &cqe->result);
1487         else
1488                 nvme_rdma_process_nvme_rsp(queue, cqe, wc);
1489         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1490
1491         nvme_rdma_post_recv(queue, qe);
1492 }
1493
1494 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1495 {
1496         int ret, i;
1497
1498         for (i = 0; i < queue->queue_size; i++) {
1499                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1500                 if (ret)
1501                         goto out_destroy_queue_ib;
1502         }
1503
1504         return 0;
1505
1506 out_destroy_queue_ib:
1507         nvme_rdma_destroy_queue_ib(queue);
1508         return ret;
1509 }
1510
1511 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1512                 struct rdma_cm_event *ev)
1513 {
1514         struct rdma_cm_id *cm_id = queue->cm_id;
1515         int status = ev->status;
1516         const char *rej_msg;
1517         const struct nvme_rdma_cm_rej *rej_data;
1518         u8 rej_data_len;
1519
1520         rej_msg = rdma_reject_msg(cm_id, status);
1521         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1522
1523         if (rej_data && rej_data_len >= sizeof(u16)) {
1524                 u16 sts = le16_to_cpu(rej_data->sts);
1525
1526                 dev_err(queue->ctrl->ctrl.device,
1527                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1528                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1529         } else {
1530                 dev_err(queue->ctrl->ctrl.device,
1531                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1532         }
1533
1534         return -ECONNRESET;
1535 }
1536
1537 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1538 {
1539         int ret;
1540
1541         ret = nvme_rdma_create_queue_ib(queue);
1542         if (ret)
1543                 return ret;
1544
1545         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1546         if (ret) {
1547                 dev_err(queue->ctrl->ctrl.device,
1548                         "rdma_resolve_route failed (%d).\n",
1549                         queue->cm_error);
1550                 goto out_destroy_queue;
1551         }
1552
1553         return 0;
1554
1555 out_destroy_queue:
1556         nvme_rdma_destroy_queue_ib(queue);
1557         return ret;
1558 }
1559
1560 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1561 {
1562         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1563         struct rdma_conn_param param = { };
1564         struct nvme_rdma_cm_req priv = { };
1565         int ret;
1566
1567         param.qp_num = queue->qp->qp_num;
1568         param.flow_control = 1;
1569
1570         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1571         /* maximum retry count */
1572         param.retry_count = 7;
1573         param.rnr_retry_count = 7;
1574         param.private_data = &priv;
1575         param.private_data_len = sizeof(priv);
1576
1577         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1578         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1579         /*
1580          * set the admin queue depth to the minimum size
1581          * specified by the Fabrics standard.
1582          */
1583         if (priv.qid == 0) {
1584                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1585                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1586         } else {
1587                 /*
1588                  * current interpretation of the fabrics spec
1589                  * is at minimum you make hrqsize sqsize+1, or a
1590                  * 1's based representation of sqsize.
1591                  */
1592                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1593                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1594         }
1595
1596         ret = rdma_connect(queue->cm_id, &param);
1597         if (ret) {
1598                 dev_err(ctrl->ctrl.device,
1599                         "rdma_connect failed (%d).\n", ret);
1600                 goto out_destroy_queue_ib;
1601         }
1602
1603         return 0;
1604
1605 out_destroy_queue_ib:
1606         nvme_rdma_destroy_queue_ib(queue);
1607         return ret;
1608 }
1609
1610 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1611                 struct rdma_cm_event *ev)
1612 {
1613         struct nvme_rdma_queue *queue = cm_id->context;
1614         int cm_error = 0;
1615
1616         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1617                 rdma_event_msg(ev->event), ev->event,
1618                 ev->status, cm_id);
1619
1620         switch (ev->event) {
1621         case RDMA_CM_EVENT_ADDR_RESOLVED:
1622                 cm_error = nvme_rdma_addr_resolved(queue);
1623                 break;
1624         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1625                 cm_error = nvme_rdma_route_resolved(queue);
1626                 break;
1627         case RDMA_CM_EVENT_ESTABLISHED:
1628                 queue->cm_error = nvme_rdma_conn_established(queue);
1629                 /* complete cm_done regardless of success/failure */
1630                 complete(&queue->cm_done);
1631                 return 0;
1632         case RDMA_CM_EVENT_REJECTED:
1633                 nvme_rdma_destroy_queue_ib(queue);
1634                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1635                 break;
1636         case RDMA_CM_EVENT_ROUTE_ERROR:
1637         case RDMA_CM_EVENT_CONNECT_ERROR:
1638         case RDMA_CM_EVENT_UNREACHABLE:
1639                 nvme_rdma_destroy_queue_ib(queue);
1640                 /* fall through */
1641         case RDMA_CM_EVENT_ADDR_ERROR:
1642                 dev_dbg(queue->ctrl->ctrl.device,
1643                         "CM error event %d\n", ev->event);
1644                 cm_error = -ECONNRESET;
1645                 break;
1646         case RDMA_CM_EVENT_DISCONNECTED:
1647         case RDMA_CM_EVENT_ADDR_CHANGE:
1648         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1649                 dev_dbg(queue->ctrl->ctrl.device,
1650                         "disconnect received - connection closed\n");
1651                 nvme_rdma_error_recovery(queue->ctrl);
1652                 break;
1653         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1654                 /* device removal is handled via the ib_client API */
1655                 break;
1656         default:
1657                 dev_err(queue->ctrl->ctrl.device,
1658                         "Unexpected RDMA CM event (%d)\n", ev->event);
1659                 nvme_rdma_error_recovery(queue->ctrl);
1660                 break;
1661         }
1662
1663         if (cm_error) {
1664                 queue->cm_error = cm_error;
1665                 complete(&queue->cm_done);
1666         }
1667
1668         return 0;
1669 }
1670
1671 static enum blk_eh_timer_return
1672 nvme_rdma_timeout(struct request *rq, bool reserved)
1673 {
1674         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1675
1676         dev_warn(req->queue->ctrl->ctrl.device,
1677                  "I/O %d QID %d timeout, reset controller\n",
1678                  rq->tag, nvme_rdma_queue_idx(req->queue));
1679
1680         /* queue error recovery */
1681         nvme_rdma_error_recovery(req->queue->ctrl);
1682
1683         /* fail with DNR on cmd timeout */
1684         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1685
1686         return BLK_EH_DONE;
1687 }
1688
1689 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1690                 const struct blk_mq_queue_data *bd)
1691 {
1692         struct nvme_ns *ns = hctx->queue->queuedata;
1693         struct nvme_rdma_queue *queue = hctx->driver_data;
1694         struct request *rq = bd->rq;
1695         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1696         struct nvme_rdma_qe *sqe = &req->sqe;
1697         struct nvme_command *c = sqe->data;
1698         struct ib_device *dev;
1699         bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
1700         blk_status_t ret;
1701         int err;
1702
1703         WARN_ON_ONCE(rq->tag < 0);
1704
1705         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
1706                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
1707
1708         dev = queue->device->dev;
1709         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1710                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1711
1712         ret = nvme_setup_cmd(ns, rq, c);
1713         if (ret)
1714                 return ret;
1715
1716         blk_mq_start_request(rq);
1717
1718         err = nvme_rdma_map_data(queue, rq, c);
1719         if (unlikely(err < 0)) {
1720                 dev_err(queue->ctrl->ctrl.device,
1721                              "Failed to map data (%d)\n", err);
1722                 nvme_cleanup_cmd(rq);
1723                 goto err;
1724         }
1725
1726         sqe->cqe.done = nvme_rdma_send_done;
1727
1728         ib_dma_sync_single_for_device(dev, sqe->dma,
1729                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1730
1731         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1732                         req->mr ? &req->reg_wr.wr : NULL);
1733         if (unlikely(err)) {
1734                 nvme_rdma_unmap_data(queue, rq);
1735                 goto err;
1736         }
1737
1738         return BLK_STS_OK;
1739 err:
1740         if (err == -ENOMEM || err == -EAGAIN)
1741                 return BLK_STS_RESOURCE;
1742         return BLK_STS_IOERR;
1743 }
1744
1745 static void nvme_rdma_complete_rq(struct request *rq)
1746 {
1747         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1748
1749         nvme_rdma_unmap_data(req->queue, rq);
1750         nvme_complete_rq(rq);
1751 }
1752
1753 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1754 {
1755         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1756
1757         set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
1758         set->map[HCTX_TYPE_READ].nr_queues = ctrl->ctrl.opts->nr_io_queues;
1759         if (ctrl->ctrl.opts->nr_write_queues) {
1760                 /* separate read/write queues */
1761                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1762                                 ctrl->ctrl.opts->nr_write_queues;
1763                 set->map[HCTX_TYPE_READ].queue_offset =
1764                                 ctrl->ctrl.opts->nr_write_queues;
1765         } else {
1766                 /* mixed read/write queues */
1767                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
1768                                 ctrl->ctrl.opts->nr_io_queues;
1769                 set->map[HCTX_TYPE_READ].queue_offset = 0;
1770         }
1771         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
1772                         ctrl->device->dev, 0);
1773         blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
1774                         ctrl->device->dev, 0);
1775         return 0;
1776 }
1777
1778 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1779         .queue_rq       = nvme_rdma_queue_rq,
1780         .complete       = nvme_rdma_complete_rq,
1781         .init_request   = nvme_rdma_init_request,
1782         .exit_request   = nvme_rdma_exit_request,
1783         .init_hctx      = nvme_rdma_init_hctx,
1784         .timeout        = nvme_rdma_timeout,
1785         .map_queues     = nvme_rdma_map_queues,
1786 };
1787
1788 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1789         .queue_rq       = nvme_rdma_queue_rq,
1790         .complete       = nvme_rdma_complete_rq,
1791         .init_request   = nvme_rdma_init_request,
1792         .exit_request   = nvme_rdma_exit_request,
1793         .init_hctx      = nvme_rdma_init_admin_hctx,
1794         .timeout        = nvme_rdma_timeout,
1795 };
1796
1797 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1798 {
1799         nvme_rdma_teardown_io_queues(ctrl, shutdown);
1800         if (shutdown)
1801                 nvme_shutdown_ctrl(&ctrl->ctrl);
1802         else
1803                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1804         nvme_rdma_teardown_admin_queue(ctrl, shutdown);
1805 }
1806
1807 static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
1808 {
1809         nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
1810 }
1811
1812 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1813 {
1814         struct nvme_rdma_ctrl *ctrl =
1815                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1816
1817         nvme_stop_ctrl(&ctrl->ctrl);
1818         nvme_rdma_shutdown_ctrl(ctrl, false);
1819
1820         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
1821                 /* state change failure should never happen */
1822                 WARN_ON_ONCE(1);
1823                 return;
1824         }
1825
1826         if (nvme_rdma_setup_ctrl(ctrl, false))
1827                 goto out_fail;
1828
1829         return;
1830
1831 out_fail:
1832         ++ctrl->ctrl.nr_reconnects;
1833         nvme_rdma_reconnect_or_remove(ctrl);
1834 }
1835
1836 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1837         .name                   = "rdma",
1838         .module                 = THIS_MODULE,
1839         .flags                  = NVME_F_FABRICS,
1840         .reg_read32             = nvmf_reg_read32,
1841         .reg_read64             = nvmf_reg_read64,
1842         .reg_write32            = nvmf_reg_write32,
1843         .free_ctrl              = nvme_rdma_free_ctrl,
1844         .submit_async_event     = nvme_rdma_submit_async_event,
1845         .delete_ctrl            = nvme_rdma_delete_ctrl,
1846         .get_address            = nvmf_get_address,
1847         .stop_ctrl              = nvme_rdma_stop_ctrl,
1848 };
1849
1850 /*
1851  * Fails a connection request if it matches an existing controller
1852  * (association) with the same tuple:
1853  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
1854  *
1855  * if local address is not specified in the request, it will match an
1856  * existing controller with all the other parameters the same and no
1857  * local port address specified as well.
1858  *
1859  * The ports don't need to be compared as they are intrinsically
1860  * already matched by the port pointers supplied.
1861  */
1862 static bool
1863 nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
1864 {
1865         struct nvme_rdma_ctrl *ctrl;
1866         bool found = false;
1867
1868         mutex_lock(&nvme_rdma_ctrl_mutex);
1869         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
1870                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
1871                 if (found)
1872                         break;
1873         }
1874         mutex_unlock(&nvme_rdma_ctrl_mutex);
1875
1876         return found;
1877 }
1878
1879 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1880                 struct nvmf_ctrl_options *opts)
1881 {
1882         struct nvme_rdma_ctrl *ctrl;
1883         int ret;
1884         bool changed;
1885
1886         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1887         if (!ctrl)
1888                 return ERR_PTR(-ENOMEM);
1889         ctrl->ctrl.opts = opts;
1890         INIT_LIST_HEAD(&ctrl->list);
1891
1892         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
1893                 opts->trsvcid =
1894                         kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
1895                 if (!opts->trsvcid) {
1896                         ret = -ENOMEM;
1897                         goto out_free_ctrl;
1898                 }
1899                 opts->mask |= NVMF_OPT_TRSVCID;
1900         }
1901
1902         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1903                         opts->traddr, opts->trsvcid, &ctrl->addr);
1904         if (ret) {
1905                 pr_err("malformed address passed: %s:%s\n",
1906                         opts->traddr, opts->trsvcid);
1907                 goto out_free_ctrl;
1908         }
1909
1910         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1911                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1912                         opts->host_traddr, NULL, &ctrl->src_addr);
1913                 if (ret) {
1914                         pr_err("malformed src address passed: %s\n",
1915                                opts->host_traddr);
1916                         goto out_free_ctrl;
1917                 }
1918         }
1919
1920         if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
1921                 ret = -EALREADY;
1922                 goto out_free_ctrl;
1923         }
1924
1925         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1926                         nvme_rdma_reconnect_ctrl_work);
1927         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1928         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1929
1930         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1;
1931         ctrl->ctrl.sqsize = opts->queue_size - 1;
1932         ctrl->ctrl.kato = opts->kato;
1933
1934         ret = -ENOMEM;
1935         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1936                                 GFP_KERNEL);
1937         if (!ctrl->queues)
1938                 goto out_free_ctrl;
1939
1940         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1941                                 0 /* no quirks, we're perfect! */);
1942         if (ret)
1943                 goto out_kfree_queues;
1944
1945         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
1946         WARN_ON_ONCE(!changed);
1947
1948         ret = nvme_rdma_setup_ctrl(ctrl, true);
1949         if (ret)
1950                 goto out_uninit_ctrl;
1951
1952         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1953                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1954
1955         nvme_get_ctrl(&ctrl->ctrl);
1956
1957         mutex_lock(&nvme_rdma_ctrl_mutex);
1958         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1959         mutex_unlock(&nvme_rdma_ctrl_mutex);
1960
1961         return &ctrl->ctrl;
1962
1963 out_uninit_ctrl:
1964         nvme_uninit_ctrl(&ctrl->ctrl);
1965         nvme_put_ctrl(&ctrl->ctrl);
1966         if (ret > 0)
1967                 ret = -EIO;
1968         return ERR_PTR(ret);
1969 out_kfree_queues:
1970         kfree(ctrl->queues);
1971 out_free_ctrl:
1972         kfree(ctrl);
1973         return ERR_PTR(ret);
1974 }
1975
1976 static struct nvmf_transport_ops nvme_rdma_transport = {
1977         .name           = "rdma",
1978         .module         = THIS_MODULE,
1979         .required_opts  = NVMF_OPT_TRADDR,
1980         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1981                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
1982                           NVMF_OPT_NR_WRITE_QUEUES,
1983         .create_ctrl    = nvme_rdma_create_ctrl,
1984 };
1985
1986 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1987 {
1988         struct nvme_rdma_ctrl *ctrl;
1989         struct nvme_rdma_device *ndev;
1990         bool found = false;
1991
1992         mutex_lock(&device_list_mutex);
1993         list_for_each_entry(ndev, &device_list, entry) {
1994                 if (ndev->dev == ib_device) {
1995                         found = true;
1996                         break;
1997                 }
1998         }
1999         mutex_unlock(&device_list_mutex);
2000
2001         if (!found)
2002                 return;
2003
2004         /* Delete all controllers using this device */
2005         mutex_lock(&nvme_rdma_ctrl_mutex);
2006         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2007                 if (ctrl->device->dev != ib_device)
2008                         continue;
2009                 nvme_delete_ctrl(&ctrl->ctrl);
2010         }
2011         mutex_unlock(&nvme_rdma_ctrl_mutex);
2012
2013         flush_workqueue(nvme_delete_wq);
2014 }
2015
2016 static struct ib_client nvme_rdma_ib_client = {
2017         .name   = "nvme_rdma",
2018         .remove = nvme_rdma_remove_one
2019 };
2020
2021 static int __init nvme_rdma_init_module(void)
2022 {
2023         int ret;
2024
2025         ret = ib_register_client(&nvme_rdma_ib_client);
2026         if (ret)
2027                 return ret;
2028
2029         ret = nvmf_register_transport(&nvme_rdma_transport);
2030         if (ret)
2031                 goto err_unreg_client;
2032
2033         return 0;
2034
2035 err_unreg_client:
2036         ib_unregister_client(&nvme_rdma_ib_client);
2037         return ret;
2038 }
2039
2040 static void __exit nvme_rdma_cleanup_module(void)
2041 {
2042         nvmf_unregister_transport(&nvme_rdma_transport);
2043         ib_unregister_client(&nvme_rdma_ib_client);
2044 }
2045
2046 module_init(nvme_rdma_init_module);
2047 module_exit(nvme_rdma_cleanup_module);
2048
2049 MODULE_LICENSE("GPL v2");