]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/tcp.c
nvme-tcp: rename function to have nvme_tcp prefix
[linux.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16
17 #include "nvme.h"
18 #include "fabrics.h"
19
20 struct nvme_tcp_queue;
21
22 enum nvme_tcp_send_state {
23         NVME_TCP_SEND_CMD_PDU = 0,
24         NVME_TCP_SEND_H2C_PDU,
25         NVME_TCP_SEND_DATA,
26         NVME_TCP_SEND_DDGST,
27 };
28
29 struct nvme_tcp_request {
30         struct nvme_request     req;
31         void                    *pdu;
32         struct nvme_tcp_queue   *queue;
33         u32                     data_len;
34         u32                     pdu_len;
35         u32                     pdu_sent;
36         u16                     ttag;
37         struct list_head        entry;
38         __le32                  ddgst;
39
40         struct bio              *curr_bio;
41         struct iov_iter         iter;
42
43         /* send state */
44         size_t                  offset;
45         size_t                  data_sent;
46         enum nvme_tcp_send_state state;
47 };
48
49 enum nvme_tcp_queue_flags {
50         NVME_TCP_Q_ALLOCATED    = 0,
51         NVME_TCP_Q_LIVE         = 1,
52 };
53
54 enum nvme_tcp_recv_state {
55         NVME_TCP_RECV_PDU = 0,
56         NVME_TCP_RECV_DATA,
57         NVME_TCP_RECV_DDGST,
58 };
59
60 struct nvme_tcp_ctrl;
61 struct nvme_tcp_queue {
62         struct socket           *sock;
63         struct work_struct      io_work;
64         int                     io_cpu;
65
66         spinlock_t              lock;
67         struct list_head        send_list;
68
69         /* recv state */
70         void                    *pdu;
71         int                     pdu_remaining;
72         int                     pdu_offset;
73         size_t                  data_remaining;
74         size_t                  ddgst_remaining;
75
76         /* send state */
77         struct nvme_tcp_request *request;
78
79         int                     queue_size;
80         size_t                  cmnd_capsule_len;
81         struct nvme_tcp_ctrl    *ctrl;
82         unsigned long           flags;
83         bool                    rd_enabled;
84
85         bool                    hdr_digest;
86         bool                    data_digest;
87         struct ahash_request    *rcv_hash;
88         struct ahash_request    *snd_hash;
89         __le32                  exp_ddgst;
90         __le32                  recv_ddgst;
91
92         struct page_frag_cache  pf_cache;
93
94         void (*state_change)(struct sock *);
95         void (*data_ready)(struct sock *);
96         void (*write_space)(struct sock *);
97 };
98
99 struct nvme_tcp_ctrl {
100         /* read only in the hot path */
101         struct nvme_tcp_queue   *queues;
102         struct blk_mq_tag_set   tag_set;
103
104         /* other member variables */
105         struct list_head        list;
106         struct blk_mq_tag_set   admin_tag_set;
107         struct sockaddr_storage addr;
108         struct sockaddr_storage src_addr;
109         struct nvme_ctrl        ctrl;
110
111         struct work_struct      err_work;
112         struct delayed_work     connect_work;
113         struct nvme_tcp_request async_req;
114 };
115
116 static LIST_HEAD(nvme_tcp_ctrl_list);
117 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
118 static struct workqueue_struct *nvme_tcp_wq;
119 static struct blk_mq_ops nvme_tcp_mq_ops;
120 static struct blk_mq_ops nvme_tcp_admin_mq_ops;
121
122 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
123 {
124         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
125 }
126
127 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
128 {
129         return queue - queue->ctrl->queues;
130 }
131
132 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
133 {
134         u32 queue_idx = nvme_tcp_queue_id(queue);
135
136         if (queue_idx == 0)
137                 return queue->ctrl->admin_tag_set.tags[queue_idx];
138         return queue->ctrl->tag_set.tags[queue_idx - 1];
139 }
140
141 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
142 {
143         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
144 }
145
146 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
147 {
148         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
149 }
150
151 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
152 {
153         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
154 }
155
156 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
157 {
158         return req == &req->queue->ctrl->async_req;
159 }
160
161 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
162 {
163         struct request *rq;
164         unsigned int bytes;
165
166         if (unlikely(nvme_tcp_async_req(req)))
167                 return false; /* async events don't have a request */
168
169         rq = blk_mq_rq_from_pdu(req);
170         bytes = blk_rq_payload_bytes(rq);
171
172         return rq_data_dir(rq) == WRITE && bytes &&
173                 bytes <= nvme_tcp_inline_data_size(req->queue);
174 }
175
176 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
177 {
178         return req->iter.bvec->bv_page;
179 }
180
181 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
182 {
183         return req->iter.bvec->bv_offset + req->iter.iov_offset;
184 }
185
186 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
187 {
188         return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
189                         req->pdu_len - req->pdu_sent);
190 }
191
192 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
193 {
194         return req->iter.iov_offset;
195 }
196
197 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
198 {
199         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
200                         req->pdu_len - req->pdu_sent : 0;
201 }
202
203 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
204                 int len)
205 {
206         return nvme_tcp_pdu_data_left(req) <= len;
207 }
208
209 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
210                 unsigned int dir)
211 {
212         struct request *rq = blk_mq_rq_from_pdu(req);
213         struct bio_vec *vec;
214         unsigned int size;
215         int nsegs;
216         size_t offset;
217
218         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
219                 vec = &rq->special_vec;
220                 nsegs = 1;
221                 size = blk_rq_payload_bytes(rq);
222                 offset = 0;
223         } else {
224                 struct bio *bio = req->curr_bio;
225
226                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
227                 nsegs = bio_segments(bio);
228                 size = bio->bi_iter.bi_size;
229                 offset = bio->bi_iter.bi_bvec_done;
230         }
231
232         iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
233         req->iter.iov_offset = offset;
234 }
235
236 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
237                 int len)
238 {
239         req->data_sent += len;
240         req->pdu_sent += len;
241         iov_iter_advance(&req->iter, len);
242         if (!iov_iter_count(&req->iter) &&
243             req->data_sent < req->data_len) {
244                 req->curr_bio = req->curr_bio->bi_next;
245                 nvme_tcp_init_iter(req, WRITE);
246         }
247 }
248
249 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req)
250 {
251         struct nvme_tcp_queue *queue = req->queue;
252
253         spin_lock(&queue->lock);
254         list_add_tail(&req->entry, &queue->send_list);
255         spin_unlock(&queue->lock);
256
257         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
258 }
259
260 static inline struct nvme_tcp_request *
261 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
262 {
263         struct nvme_tcp_request *req;
264
265         spin_lock(&queue->lock);
266         req = list_first_entry_or_null(&queue->send_list,
267                         struct nvme_tcp_request, entry);
268         if (req)
269                 list_del(&req->entry);
270         spin_unlock(&queue->lock);
271
272         return req;
273 }
274
275 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
276                 __le32 *dgst)
277 {
278         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
279         crypto_ahash_final(hash);
280 }
281
282 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
283                 struct page *page, off_t off, size_t len)
284 {
285         struct scatterlist sg;
286
287         sg_init_marker(&sg, 1);
288         sg_set_page(&sg, page, len, off);
289         ahash_request_set_crypt(hash, &sg, NULL, len);
290         crypto_ahash_update(hash);
291 }
292
293 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
294                 void *pdu, size_t len)
295 {
296         struct scatterlist sg;
297
298         sg_init_one(&sg, pdu, len);
299         ahash_request_set_crypt(hash, &sg, pdu + len, len);
300         crypto_ahash_digest(hash);
301 }
302
303 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
304                 void *pdu, size_t pdu_len)
305 {
306         struct nvme_tcp_hdr *hdr = pdu;
307         __le32 recv_digest;
308         __le32 exp_digest;
309
310         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
311                 dev_err(queue->ctrl->ctrl.device,
312                         "queue %d: header digest flag is cleared\n",
313                         nvme_tcp_queue_id(queue));
314                 return -EPROTO;
315         }
316
317         recv_digest = *(__le32 *)(pdu + hdr->hlen);
318         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
319         exp_digest = *(__le32 *)(pdu + hdr->hlen);
320         if (recv_digest != exp_digest) {
321                 dev_err(queue->ctrl->ctrl.device,
322                         "header digest error: recv %#x expected %#x\n",
323                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
324                 return -EIO;
325         }
326
327         return 0;
328 }
329
330 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
331 {
332         struct nvme_tcp_hdr *hdr = pdu;
333         u8 digest_len = nvme_tcp_hdgst_len(queue);
334         u32 len;
335
336         len = le32_to_cpu(hdr->plen) - hdr->hlen -
337                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
338
339         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
340                 dev_err(queue->ctrl->ctrl.device,
341                         "queue %d: data digest flag is cleared\n",
342                 nvme_tcp_queue_id(queue));
343                 return -EPROTO;
344         }
345         crypto_ahash_init(queue->rcv_hash);
346
347         return 0;
348 }
349
350 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
351                 struct request *rq, unsigned int hctx_idx)
352 {
353         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
354
355         page_frag_free(req->pdu);
356 }
357
358 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
359                 struct request *rq, unsigned int hctx_idx,
360                 unsigned int numa_node)
361 {
362         struct nvme_tcp_ctrl *ctrl = set->driver_data;
363         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
364         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
365         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
366         u8 hdgst = nvme_tcp_hdgst_len(queue);
367
368         req->pdu = page_frag_alloc(&queue->pf_cache,
369                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
370                 GFP_KERNEL | __GFP_ZERO);
371         if (!req->pdu)
372                 return -ENOMEM;
373
374         req->queue = queue;
375         nvme_req(rq)->ctrl = &ctrl->ctrl;
376
377         return 0;
378 }
379
380 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
381                 unsigned int hctx_idx)
382 {
383         struct nvme_tcp_ctrl *ctrl = data;
384         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
385
386         hctx->driver_data = queue;
387         return 0;
388 }
389
390 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
391                 unsigned int hctx_idx)
392 {
393         struct nvme_tcp_ctrl *ctrl = data;
394         struct nvme_tcp_queue *queue = &ctrl->queues[0];
395
396         hctx->driver_data = queue;
397         return 0;
398 }
399
400 static enum nvme_tcp_recv_state
401 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
402 {
403         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
404                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
405                 NVME_TCP_RECV_DATA;
406 }
407
408 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
409 {
410         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
411                                 nvme_tcp_hdgst_len(queue);
412         queue->pdu_offset = 0;
413         queue->data_remaining = -1;
414         queue->ddgst_remaining = 0;
415 }
416
417 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
418 {
419         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
420                 return;
421
422         queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work);
423 }
424
425 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
426                 struct nvme_completion *cqe)
427 {
428         struct request *rq;
429
430         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
431         if (!rq) {
432                 dev_err(queue->ctrl->ctrl.device,
433                         "queue %d tag 0x%x not found\n",
434                         nvme_tcp_queue_id(queue), cqe->command_id);
435                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
436                 return -EINVAL;
437         }
438
439         nvme_end_request(rq, cqe->status, cqe->result);
440
441         return 0;
442 }
443
444 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
445                 struct nvme_tcp_data_pdu *pdu)
446 {
447         struct request *rq;
448
449         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
450         if (!rq) {
451                 dev_err(queue->ctrl->ctrl.device,
452                         "queue %d tag %#x not found\n",
453                         nvme_tcp_queue_id(queue), pdu->command_id);
454                 return -ENOENT;
455         }
456
457         if (!blk_rq_payload_bytes(rq)) {
458                 dev_err(queue->ctrl->ctrl.device,
459                         "queue %d tag %#x unexpected data\n",
460                         nvme_tcp_queue_id(queue), rq->tag);
461                 return -EIO;
462         }
463
464         queue->data_remaining = le32_to_cpu(pdu->data_length);
465
466         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
467             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
468                 dev_err(queue->ctrl->ctrl.device,
469                         "queue %d tag %#x SUCCESS set but not last PDU\n",
470                         nvme_tcp_queue_id(queue), rq->tag);
471                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
472                 return -EPROTO;
473         }
474
475         return 0;
476 }
477
478 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
479                 struct nvme_tcp_rsp_pdu *pdu)
480 {
481         struct nvme_completion *cqe = &pdu->cqe;
482         int ret = 0;
483
484         /*
485          * AEN requests are special as they don't time out and can
486          * survive any kind of queue freeze and often don't respond to
487          * aborts.  We don't even bother to allocate a struct request
488          * for them but rather special case them here.
489          */
490         if (unlikely(nvme_tcp_queue_id(queue) == 0 &&
491             cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
492                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
493                                 &cqe->result);
494         else
495                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
496
497         return ret;
498 }
499
500 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
501                 struct nvme_tcp_r2t_pdu *pdu)
502 {
503         struct nvme_tcp_data_pdu *data = req->pdu;
504         struct nvme_tcp_queue *queue = req->queue;
505         struct request *rq = blk_mq_rq_from_pdu(req);
506         u8 hdgst = nvme_tcp_hdgst_len(queue);
507         u8 ddgst = nvme_tcp_ddgst_len(queue);
508
509         req->pdu_len = le32_to_cpu(pdu->r2t_length);
510         req->pdu_sent = 0;
511
512         if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
513                 dev_err(queue->ctrl->ctrl.device,
514                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
515                         rq->tag, req->pdu_len, req->data_len,
516                         req->data_sent);
517                 return -EPROTO;
518         }
519
520         if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
521                 dev_err(queue->ctrl->ctrl.device,
522                         "req %d unexpected r2t offset %u (expected %zu)\n",
523                         rq->tag, le32_to_cpu(pdu->r2t_offset),
524                         req->data_sent);
525                 return -EPROTO;
526         }
527
528         memset(data, 0, sizeof(*data));
529         data->hdr.type = nvme_tcp_h2c_data;
530         data->hdr.flags = NVME_TCP_F_DATA_LAST;
531         if (queue->hdr_digest)
532                 data->hdr.flags |= NVME_TCP_F_HDGST;
533         if (queue->data_digest)
534                 data->hdr.flags |= NVME_TCP_F_DDGST;
535         data->hdr.hlen = sizeof(*data);
536         data->hdr.pdo = data->hdr.hlen + hdgst;
537         data->hdr.plen =
538                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
539         data->ttag = pdu->ttag;
540         data->command_id = rq->tag;
541         data->data_offset = cpu_to_le32(req->data_sent);
542         data->data_length = cpu_to_le32(req->pdu_len);
543         return 0;
544 }
545
546 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
547                 struct nvme_tcp_r2t_pdu *pdu)
548 {
549         struct nvme_tcp_request *req;
550         struct request *rq;
551         int ret;
552
553         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
554         if (!rq) {
555                 dev_err(queue->ctrl->ctrl.device,
556                         "queue %d tag %#x not found\n",
557                         nvme_tcp_queue_id(queue), pdu->command_id);
558                 return -ENOENT;
559         }
560         req = blk_mq_rq_to_pdu(rq);
561
562         ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
563         if (unlikely(ret))
564                 return ret;
565
566         req->state = NVME_TCP_SEND_H2C_PDU;
567         req->offset = 0;
568
569         nvme_tcp_queue_request(req);
570
571         return 0;
572 }
573
574 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
575                 unsigned int *offset, size_t *len)
576 {
577         struct nvme_tcp_hdr *hdr;
578         char *pdu = queue->pdu;
579         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
580         int ret;
581
582         ret = skb_copy_bits(skb, *offset,
583                 &pdu[queue->pdu_offset], rcv_len);
584         if (unlikely(ret))
585                 return ret;
586
587         queue->pdu_remaining -= rcv_len;
588         queue->pdu_offset += rcv_len;
589         *offset += rcv_len;
590         *len -= rcv_len;
591         if (queue->pdu_remaining)
592                 return 0;
593
594         hdr = queue->pdu;
595         if (queue->hdr_digest) {
596                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
597                 if (unlikely(ret))
598                         return ret;
599         }
600
601
602         if (queue->data_digest) {
603                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
604                 if (unlikely(ret))
605                         return ret;
606         }
607
608         switch (hdr->type) {
609         case nvme_tcp_c2h_data:
610                 ret = nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
611                 break;
612         case nvme_tcp_rsp:
613                 nvme_tcp_init_recv_ctx(queue);
614                 ret = nvme_tcp_handle_comp(queue, (void *)queue->pdu);
615                 break;
616         case nvme_tcp_r2t:
617                 nvme_tcp_init_recv_ctx(queue);
618                 ret = nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
619                 break;
620         default:
621                 dev_err(queue->ctrl->ctrl.device,
622                         "unsupported pdu type (%d)\n", hdr->type);
623                 return -EINVAL;
624         }
625
626         return ret;
627 }
628
629 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
630 {
631         union nvme_result res = {};
632
633         nvme_end_request(rq, cpu_to_le16(status << 1), res);
634 }
635
636 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
637                               unsigned int *offset, size_t *len)
638 {
639         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
640         struct nvme_tcp_request *req;
641         struct request *rq;
642
643         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
644         if (!rq) {
645                 dev_err(queue->ctrl->ctrl.device,
646                         "queue %d tag %#x not found\n",
647                         nvme_tcp_queue_id(queue), pdu->command_id);
648                 return -ENOENT;
649         }
650         req = blk_mq_rq_to_pdu(rq);
651
652         while (true) {
653                 int recv_len, ret;
654
655                 recv_len = min_t(size_t, *len, queue->data_remaining);
656                 if (!recv_len)
657                         break;
658
659                 if (!iov_iter_count(&req->iter)) {
660                         req->curr_bio = req->curr_bio->bi_next;
661
662                         /*
663                          * If we don`t have any bios it means that controller
664                          * sent more data than we requested, hence error
665                          */
666                         if (!req->curr_bio) {
667                                 dev_err(queue->ctrl->ctrl.device,
668                                         "queue %d no space in request %#x",
669                                         nvme_tcp_queue_id(queue), rq->tag);
670                                 nvme_tcp_init_recv_ctx(queue);
671                                 return -EIO;
672                         }
673                         nvme_tcp_init_iter(req, READ);
674                 }
675
676                 /* we can read only from what is left in this bio */
677                 recv_len = min_t(size_t, recv_len,
678                                 iov_iter_count(&req->iter));
679
680                 if (queue->data_digest)
681                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
682                                 &req->iter, recv_len, queue->rcv_hash);
683                 else
684                         ret = skb_copy_datagram_iter(skb, *offset,
685                                         &req->iter, recv_len);
686                 if (ret) {
687                         dev_err(queue->ctrl->ctrl.device,
688                                 "queue %d failed to copy request %#x data",
689                                 nvme_tcp_queue_id(queue), rq->tag);
690                         return ret;
691                 }
692
693                 *len -= recv_len;
694                 *offset += recv_len;
695                 queue->data_remaining -= recv_len;
696         }
697
698         if (!queue->data_remaining) {
699                 if (queue->data_digest) {
700                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
701                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
702                 } else {
703                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS)
704                                 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
705                         nvme_tcp_init_recv_ctx(queue);
706                 }
707         }
708
709         return 0;
710 }
711
712 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
713                 struct sk_buff *skb, unsigned int *offset, size_t *len)
714 {
715         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
716         char *ddgst = (char *)&queue->recv_ddgst;
717         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
718         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
719         int ret;
720
721         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
722         if (unlikely(ret))
723                 return ret;
724
725         queue->ddgst_remaining -= recv_len;
726         *offset += recv_len;
727         *len -= recv_len;
728         if (queue->ddgst_remaining)
729                 return 0;
730
731         if (queue->recv_ddgst != queue->exp_ddgst) {
732                 dev_err(queue->ctrl->ctrl.device,
733                         "data digest error: recv %#x expected %#x\n",
734                         le32_to_cpu(queue->recv_ddgst),
735                         le32_to_cpu(queue->exp_ddgst));
736                 return -EIO;
737         }
738
739         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
740                 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
741                                                 pdu->command_id);
742
743                 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
744         }
745
746         nvme_tcp_init_recv_ctx(queue);
747         return 0;
748 }
749
750 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
751                              unsigned int offset, size_t len)
752 {
753         struct nvme_tcp_queue *queue = desc->arg.data;
754         size_t consumed = len;
755         int result;
756
757         while (len) {
758                 switch (nvme_tcp_recv_state(queue)) {
759                 case NVME_TCP_RECV_PDU:
760                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
761                         break;
762                 case NVME_TCP_RECV_DATA:
763                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
764                         break;
765                 case NVME_TCP_RECV_DDGST:
766                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
767                         break;
768                 default:
769                         result = -EFAULT;
770                 }
771                 if (result) {
772                         dev_err(queue->ctrl->ctrl.device,
773                                 "receive failed:  %d\n", result);
774                         queue->rd_enabled = false;
775                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
776                         return result;
777                 }
778         }
779
780         return consumed;
781 }
782
783 static void nvme_tcp_data_ready(struct sock *sk)
784 {
785         struct nvme_tcp_queue *queue;
786
787         read_lock(&sk->sk_callback_lock);
788         queue = sk->sk_user_data;
789         if (likely(queue && queue->rd_enabled))
790                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
791         read_unlock(&sk->sk_callback_lock);
792 }
793
794 static void nvme_tcp_write_space(struct sock *sk)
795 {
796         struct nvme_tcp_queue *queue;
797
798         read_lock_bh(&sk->sk_callback_lock);
799         queue = sk->sk_user_data;
800         if (likely(queue && sk_stream_is_writeable(sk))) {
801                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
802                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
803         }
804         read_unlock_bh(&sk->sk_callback_lock);
805 }
806
807 static void nvme_tcp_state_change(struct sock *sk)
808 {
809         struct nvme_tcp_queue *queue;
810
811         read_lock(&sk->sk_callback_lock);
812         queue = sk->sk_user_data;
813         if (!queue)
814                 goto done;
815
816         switch (sk->sk_state) {
817         case TCP_CLOSE:
818         case TCP_CLOSE_WAIT:
819         case TCP_LAST_ACK:
820         case TCP_FIN_WAIT1:
821         case TCP_FIN_WAIT2:
822                 /* fallthrough */
823                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
824                 break;
825         default:
826                 dev_info(queue->ctrl->ctrl.device,
827                         "queue %d socket state %d\n",
828                         nvme_tcp_queue_id(queue), sk->sk_state);
829         }
830
831         queue->state_change(sk);
832 done:
833         read_unlock(&sk->sk_callback_lock);
834 }
835
836 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
837 {
838         queue->request = NULL;
839 }
840
841 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
842 {
843         nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_DATA_XFER_ERROR);
844 }
845
846 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
847 {
848         struct nvme_tcp_queue *queue = req->queue;
849
850         while (true) {
851                 struct page *page = nvme_tcp_req_cur_page(req);
852                 size_t offset = nvme_tcp_req_cur_offset(req);
853                 size_t len = nvme_tcp_req_cur_length(req);
854                 bool last = nvme_tcp_pdu_last_send(req, len);
855                 int ret, flags = MSG_DONTWAIT;
856
857                 if (last && !queue->data_digest)
858                         flags |= MSG_EOR;
859                 else
860                         flags |= MSG_MORE;
861
862                 ret = kernel_sendpage(queue->sock, page, offset, len, flags);
863                 if (ret <= 0)
864                         return ret;
865
866                 nvme_tcp_advance_req(req, ret);
867                 if (queue->data_digest)
868                         nvme_tcp_ddgst_update(queue->snd_hash, page,
869                                         offset, ret);
870
871                 /* fully successful last write*/
872                 if (last && ret == len) {
873                         if (queue->data_digest) {
874                                 nvme_tcp_ddgst_final(queue->snd_hash,
875                                         &req->ddgst);
876                                 req->state = NVME_TCP_SEND_DDGST;
877                                 req->offset = 0;
878                         } else {
879                                 nvme_tcp_done_send_req(queue);
880                         }
881                         return 1;
882                 }
883         }
884         return -EAGAIN;
885 }
886
887 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
888 {
889         struct nvme_tcp_queue *queue = req->queue;
890         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
891         bool inline_data = nvme_tcp_has_inline_data(req);
892         int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR);
893         u8 hdgst = nvme_tcp_hdgst_len(queue);
894         int len = sizeof(*pdu) + hdgst - req->offset;
895         int ret;
896
897         if (queue->hdr_digest && !req->offset)
898                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
899
900         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
901                         offset_in_page(pdu) + req->offset, len,  flags);
902         if (unlikely(ret <= 0))
903                 return ret;
904
905         len -= ret;
906         if (!len) {
907                 if (inline_data) {
908                         req->state = NVME_TCP_SEND_DATA;
909                         if (queue->data_digest)
910                                 crypto_ahash_init(queue->snd_hash);
911                         nvme_tcp_init_iter(req, WRITE);
912                 } else {
913                         nvme_tcp_done_send_req(queue);
914                 }
915                 return 1;
916         }
917         req->offset += ret;
918
919         return -EAGAIN;
920 }
921
922 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
923 {
924         struct nvme_tcp_queue *queue = req->queue;
925         struct nvme_tcp_data_pdu *pdu = req->pdu;
926         u8 hdgst = nvme_tcp_hdgst_len(queue);
927         int len = sizeof(*pdu) - req->offset + hdgst;
928         int ret;
929
930         if (queue->hdr_digest && !req->offset)
931                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
932
933         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
934                         offset_in_page(pdu) + req->offset, len,
935                         MSG_DONTWAIT | MSG_MORE);
936         if (unlikely(ret <= 0))
937                 return ret;
938
939         len -= ret;
940         if (!len) {
941                 req->state = NVME_TCP_SEND_DATA;
942                 if (queue->data_digest)
943                         crypto_ahash_init(queue->snd_hash);
944                 if (!req->data_sent)
945                         nvme_tcp_init_iter(req, WRITE);
946                 return 1;
947         }
948         req->offset += ret;
949
950         return -EAGAIN;
951 }
952
953 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
954 {
955         struct nvme_tcp_queue *queue = req->queue;
956         int ret;
957         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
958         struct kvec iov = {
959                 .iov_base = &req->ddgst + req->offset,
960                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
961         };
962
963         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
964         if (unlikely(ret <= 0))
965                 return ret;
966
967         if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
968                 nvme_tcp_done_send_req(queue);
969                 return 1;
970         }
971
972         req->offset += ret;
973         return -EAGAIN;
974 }
975
976 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
977 {
978         struct nvme_tcp_request *req;
979         int ret = 1;
980
981         if (!queue->request) {
982                 queue->request = nvme_tcp_fetch_request(queue);
983                 if (!queue->request)
984                         return 0;
985         }
986         req = queue->request;
987
988         if (req->state == NVME_TCP_SEND_CMD_PDU) {
989                 ret = nvme_tcp_try_send_cmd_pdu(req);
990                 if (ret <= 0)
991                         goto done;
992                 if (!nvme_tcp_has_inline_data(req))
993                         return ret;
994         }
995
996         if (req->state == NVME_TCP_SEND_H2C_PDU) {
997                 ret = nvme_tcp_try_send_data_pdu(req);
998                 if (ret <= 0)
999                         goto done;
1000         }
1001
1002         if (req->state == NVME_TCP_SEND_DATA) {
1003                 ret = nvme_tcp_try_send_data(req);
1004                 if (ret <= 0)
1005                         goto done;
1006         }
1007
1008         if (req->state == NVME_TCP_SEND_DDGST)
1009                 ret = nvme_tcp_try_send_ddgst(req);
1010 done:
1011         if (ret == -EAGAIN)
1012                 ret = 0;
1013         return ret;
1014 }
1015
1016 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1017 {
1018         struct sock *sk = queue->sock->sk;
1019         read_descriptor_t rd_desc;
1020         int consumed;
1021
1022         rd_desc.arg.data = queue;
1023         rd_desc.count = 1;
1024         lock_sock(sk);
1025         consumed = tcp_read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1026         release_sock(sk);
1027         return consumed;
1028 }
1029
1030 static void nvme_tcp_io_work(struct work_struct *w)
1031 {
1032         struct nvme_tcp_queue *queue =
1033                 container_of(w, struct nvme_tcp_queue, io_work);
1034         unsigned long start = jiffies + msecs_to_jiffies(1);
1035
1036         do {
1037                 bool pending = false;
1038                 int result;
1039
1040                 result = nvme_tcp_try_send(queue);
1041                 if (result > 0) {
1042                         pending = true;
1043                 } else if (unlikely(result < 0)) {
1044                         dev_err(queue->ctrl->ctrl.device,
1045                                 "failed to send request %d\n", result);
1046                         if (result != -EPIPE)
1047                                 nvme_tcp_fail_request(queue->request);
1048                         nvme_tcp_done_send_req(queue);
1049                         return;
1050                 }
1051
1052                 result = nvme_tcp_try_recv(queue);
1053                 if (result > 0)
1054                         pending = true;
1055
1056                 if (!pending)
1057                         return;
1058
1059         } while (time_after(jiffies, start)); /* quota is exhausted */
1060
1061         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1062 }
1063
1064 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1065 {
1066         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1067
1068         ahash_request_free(queue->rcv_hash);
1069         ahash_request_free(queue->snd_hash);
1070         crypto_free_ahash(tfm);
1071 }
1072
1073 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1074 {
1075         struct crypto_ahash *tfm;
1076
1077         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1078         if (IS_ERR(tfm))
1079                 return PTR_ERR(tfm);
1080
1081         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1082         if (!queue->snd_hash)
1083                 goto free_tfm;
1084         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1085
1086         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1087         if (!queue->rcv_hash)
1088                 goto free_snd_hash;
1089         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1090
1091         return 0;
1092 free_snd_hash:
1093         ahash_request_free(queue->snd_hash);
1094 free_tfm:
1095         crypto_free_ahash(tfm);
1096         return -ENOMEM;
1097 }
1098
1099 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1100 {
1101         struct nvme_tcp_request *async = &ctrl->async_req;
1102
1103         page_frag_free(async->pdu);
1104 }
1105
1106 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1107 {
1108         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1109         struct nvme_tcp_request *async = &ctrl->async_req;
1110         u8 hdgst = nvme_tcp_hdgst_len(queue);
1111
1112         async->pdu = page_frag_alloc(&queue->pf_cache,
1113                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1114                 GFP_KERNEL | __GFP_ZERO);
1115         if (!async->pdu)
1116                 return -ENOMEM;
1117
1118         async->queue = &ctrl->queues[0];
1119         return 0;
1120 }
1121
1122 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1123 {
1124         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1125         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1126
1127         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1128                 return;
1129
1130         if (queue->hdr_digest || queue->data_digest)
1131                 nvme_tcp_free_crypto(queue);
1132
1133         sock_release(queue->sock);
1134         kfree(queue->pdu);
1135 }
1136
1137 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1138 {
1139         struct nvme_tcp_icreq_pdu *icreq;
1140         struct nvme_tcp_icresp_pdu *icresp;
1141         struct msghdr msg = {};
1142         struct kvec iov;
1143         bool ctrl_hdgst, ctrl_ddgst;
1144         int ret;
1145
1146         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1147         if (!icreq)
1148                 return -ENOMEM;
1149
1150         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1151         if (!icresp) {
1152                 ret = -ENOMEM;
1153                 goto free_icreq;
1154         }
1155
1156         icreq->hdr.type = nvme_tcp_icreq;
1157         icreq->hdr.hlen = sizeof(*icreq);
1158         icreq->hdr.pdo = 0;
1159         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1160         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1161         icreq->maxr2t = 0; /* single inflight r2t supported */
1162         icreq->hpda = 0; /* no alignment constraint */
1163         if (queue->hdr_digest)
1164                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1165         if (queue->data_digest)
1166                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1167
1168         iov.iov_base = icreq;
1169         iov.iov_len = sizeof(*icreq);
1170         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1171         if (ret < 0)
1172                 goto free_icresp;
1173
1174         memset(&msg, 0, sizeof(msg));
1175         iov.iov_base = icresp;
1176         iov.iov_len = sizeof(*icresp);
1177         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1178                         iov.iov_len, msg.msg_flags);
1179         if (ret < 0)
1180                 goto free_icresp;
1181
1182         ret = -EINVAL;
1183         if (icresp->hdr.type != nvme_tcp_icresp) {
1184                 pr_err("queue %d: bad type returned %d\n",
1185                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1186                 goto free_icresp;
1187         }
1188
1189         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1190                 pr_err("queue %d: bad pdu length returned %d\n",
1191                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1192                 goto free_icresp;
1193         }
1194
1195         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1196                 pr_err("queue %d: bad pfv returned %d\n",
1197                         nvme_tcp_queue_id(queue), icresp->pfv);
1198                 goto free_icresp;
1199         }
1200
1201         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1202         if ((queue->data_digest && !ctrl_ddgst) ||
1203             (!queue->data_digest && ctrl_ddgst)) {
1204                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1205                         nvme_tcp_queue_id(queue),
1206                         queue->data_digest ? "enabled" : "disabled",
1207                         ctrl_ddgst ? "enabled" : "disabled");
1208                 goto free_icresp;
1209         }
1210
1211         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1212         if ((queue->hdr_digest && !ctrl_hdgst) ||
1213             (!queue->hdr_digest && ctrl_hdgst)) {
1214                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1215                         nvme_tcp_queue_id(queue),
1216                         queue->hdr_digest ? "enabled" : "disabled",
1217                         ctrl_hdgst ? "enabled" : "disabled");
1218                 goto free_icresp;
1219         }
1220
1221         if (icresp->cpda != 0) {
1222                 pr_err("queue %d: unsupported cpda returned %d\n",
1223                         nvme_tcp_queue_id(queue), icresp->cpda);
1224                 goto free_icresp;
1225         }
1226
1227         ret = 0;
1228 free_icresp:
1229         kfree(icresp);
1230 free_icreq:
1231         kfree(icreq);
1232         return ret;
1233 }
1234
1235 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1236                 int qid, size_t queue_size)
1237 {
1238         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1239         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1240         struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1241         int ret, opt, rcv_pdu_size, n;
1242
1243         queue->ctrl = ctrl;
1244         INIT_LIST_HEAD(&queue->send_list);
1245         spin_lock_init(&queue->lock);
1246         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1247         queue->queue_size = queue_size;
1248
1249         if (qid > 0)
1250                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
1251         else
1252                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1253                                                 NVME_TCP_ADMIN_CCSZ;
1254
1255         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1256                         IPPROTO_TCP, &queue->sock);
1257         if (ret) {
1258                 dev_err(ctrl->ctrl.device,
1259                         "failed to create socket: %d\n", ret);
1260                 return ret;
1261         }
1262
1263         /* Single syn retry */
1264         opt = 1;
1265         ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT,
1266                         (char *)&opt, sizeof(opt));
1267         if (ret) {
1268                 dev_err(ctrl->ctrl.device,
1269                         "failed to set TCP_SYNCNT sock opt %d\n", ret);
1270                 goto err_sock;
1271         }
1272
1273         /* Set TCP no delay */
1274         opt = 1;
1275         ret = kernel_setsockopt(queue->sock, IPPROTO_TCP,
1276                         TCP_NODELAY, (char *)&opt, sizeof(opt));
1277         if (ret) {
1278                 dev_err(ctrl->ctrl.device,
1279                         "failed to set TCP_NODELAY sock opt %d\n", ret);
1280                 goto err_sock;
1281         }
1282
1283         /*
1284          * Cleanup whatever is sitting in the TCP transmit queue on socket
1285          * close. This is done to prevent stale data from being sent should
1286          * the network connection be restored before TCP times out.
1287          */
1288         ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER,
1289                         (char *)&sol, sizeof(sol));
1290         if (ret) {
1291                 dev_err(ctrl->ctrl.device,
1292                         "failed to set SO_LINGER sock opt %d\n", ret);
1293                 goto err_sock;
1294         }
1295
1296         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1297         if (!qid)
1298                 n = 0;
1299         else
1300                 n = (qid - 1) % num_online_cpus();
1301         queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1302         queue->request = NULL;
1303         queue->data_remaining = 0;
1304         queue->ddgst_remaining = 0;
1305         queue->pdu_remaining = 0;
1306         queue->pdu_offset = 0;
1307         sk_set_memalloc(queue->sock->sk);
1308
1309         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) {
1310                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1311                         sizeof(ctrl->src_addr));
1312                 if (ret) {
1313                         dev_err(ctrl->ctrl.device,
1314                                 "failed to bind queue %d socket %d\n",
1315                                 qid, ret);
1316                         goto err_sock;
1317                 }
1318         }
1319
1320         queue->hdr_digest = nctrl->opts->hdr_digest;
1321         queue->data_digest = nctrl->opts->data_digest;
1322         if (queue->hdr_digest || queue->data_digest) {
1323                 ret = nvme_tcp_alloc_crypto(queue);
1324                 if (ret) {
1325                         dev_err(ctrl->ctrl.device,
1326                                 "failed to allocate queue %d crypto\n", qid);
1327                         goto err_sock;
1328                 }
1329         }
1330
1331         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1332                         nvme_tcp_hdgst_len(queue);
1333         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1334         if (!queue->pdu) {
1335                 ret = -ENOMEM;
1336                 goto err_crypto;
1337         }
1338
1339         dev_dbg(ctrl->ctrl.device, "connecting queue %d\n",
1340                         nvme_tcp_queue_id(queue));
1341
1342         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1343                 sizeof(ctrl->addr), 0);
1344         if (ret) {
1345                 dev_err(ctrl->ctrl.device,
1346                         "failed to connect socket: %d\n", ret);
1347                 goto err_rcv_pdu;
1348         }
1349
1350         ret = nvme_tcp_init_connection(queue);
1351         if (ret)
1352                 goto err_init_connect;
1353
1354         queue->rd_enabled = true;
1355         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1356         nvme_tcp_init_recv_ctx(queue);
1357
1358         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1359         queue->sock->sk->sk_user_data = queue;
1360         queue->state_change = queue->sock->sk->sk_state_change;
1361         queue->data_ready = queue->sock->sk->sk_data_ready;
1362         queue->write_space = queue->sock->sk->sk_write_space;
1363         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1364         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1365         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1366         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1367
1368         return 0;
1369
1370 err_init_connect:
1371         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1372 err_rcv_pdu:
1373         kfree(queue->pdu);
1374 err_crypto:
1375         if (queue->hdr_digest || queue->data_digest)
1376                 nvme_tcp_free_crypto(queue);
1377 err_sock:
1378         sock_release(queue->sock);
1379         queue->sock = NULL;
1380         return ret;
1381 }
1382
1383 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1384 {
1385         struct socket *sock = queue->sock;
1386
1387         write_lock_bh(&sock->sk->sk_callback_lock);
1388         sock->sk->sk_user_data  = NULL;
1389         sock->sk->sk_data_ready = queue->data_ready;
1390         sock->sk->sk_state_change = queue->state_change;
1391         sock->sk->sk_write_space  = queue->write_space;
1392         write_unlock_bh(&sock->sk->sk_callback_lock);
1393 }
1394
1395 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1396 {
1397         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1398         nvme_tcp_restore_sock_calls(queue);
1399         cancel_work_sync(&queue->io_work);
1400 }
1401
1402 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1403 {
1404         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1405         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1406
1407         if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1408                 return;
1409
1410         __nvme_tcp_stop_queue(queue);
1411 }
1412
1413 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1414 {
1415         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1416         int ret;
1417
1418         if (idx)
1419                 ret = nvmf_connect_io_queue(nctrl, idx, false);
1420         else
1421                 ret = nvmf_connect_admin_queue(nctrl);
1422
1423         if (!ret) {
1424                 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1425         } else {
1426                 __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1427                 dev_err(nctrl->device,
1428                         "failed to connect queue: %d ret=%d\n", idx, ret);
1429         }
1430         return ret;
1431 }
1432
1433 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1434                 bool admin)
1435 {
1436         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1437         struct blk_mq_tag_set *set;
1438         int ret;
1439
1440         if (admin) {
1441                 set = &ctrl->admin_tag_set;
1442                 memset(set, 0, sizeof(*set));
1443                 set->ops = &nvme_tcp_admin_mq_ops;
1444                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1445                 set->reserved_tags = 2; /* connect + keep-alive */
1446                 set->numa_node = NUMA_NO_NODE;
1447                 set->cmd_size = sizeof(struct nvme_tcp_request);
1448                 set->driver_data = ctrl;
1449                 set->nr_hw_queues = 1;
1450                 set->timeout = ADMIN_TIMEOUT;
1451         } else {
1452                 set = &ctrl->tag_set;
1453                 memset(set, 0, sizeof(*set));
1454                 set->ops = &nvme_tcp_mq_ops;
1455                 set->queue_depth = nctrl->sqsize + 1;
1456                 set->reserved_tags = 1; /* fabric connect */
1457                 set->numa_node = NUMA_NO_NODE;
1458                 set->flags = BLK_MQ_F_SHOULD_MERGE;
1459                 set->cmd_size = sizeof(struct nvme_tcp_request);
1460                 set->driver_data = ctrl;
1461                 set->nr_hw_queues = nctrl->queue_count - 1;
1462                 set->timeout = NVME_IO_TIMEOUT;
1463                 set->nr_maps = 2 /* default + read */;
1464         }
1465
1466         ret = blk_mq_alloc_tag_set(set);
1467         if (ret)
1468                 return ERR_PTR(ret);
1469
1470         return set;
1471 }
1472
1473 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1474 {
1475         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1476                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1477                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1478         }
1479
1480         nvme_tcp_free_queue(ctrl, 0);
1481 }
1482
1483 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1484 {
1485         int i;
1486
1487         for (i = 1; i < ctrl->queue_count; i++)
1488                 nvme_tcp_free_queue(ctrl, i);
1489 }
1490
1491 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1492 {
1493         int i;
1494
1495         for (i = 1; i < ctrl->queue_count; i++)
1496                 nvme_tcp_stop_queue(ctrl, i);
1497 }
1498
1499 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1500 {
1501         int i, ret = 0;
1502
1503         for (i = 1; i < ctrl->queue_count; i++) {
1504                 ret = nvme_tcp_start_queue(ctrl, i);
1505                 if (ret)
1506                         goto out_stop_queues;
1507         }
1508
1509         return 0;
1510
1511 out_stop_queues:
1512         for (i--; i >= 1; i--)
1513                 nvme_tcp_stop_queue(ctrl, i);
1514         return ret;
1515 }
1516
1517 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1518 {
1519         int ret;
1520
1521         ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1522         if (ret)
1523                 return ret;
1524
1525         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1526         if (ret)
1527                 goto out_free_queue;
1528
1529         return 0;
1530
1531 out_free_queue:
1532         nvme_tcp_free_queue(ctrl, 0);
1533         return ret;
1534 }
1535
1536 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1537 {
1538         int i, ret;
1539
1540         for (i = 1; i < ctrl->queue_count; i++) {
1541                 ret = nvme_tcp_alloc_queue(ctrl, i,
1542                                 ctrl->sqsize + 1);
1543                 if (ret)
1544                         goto out_free_queues;
1545         }
1546
1547         return 0;
1548
1549 out_free_queues:
1550         for (i--; i >= 1; i--)
1551                 nvme_tcp_free_queue(ctrl, i);
1552
1553         return ret;
1554 }
1555
1556 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1557 {
1558         unsigned int nr_io_queues;
1559
1560         nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1561         nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1562
1563         return nr_io_queues;
1564 }
1565
1566 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1567 {
1568         unsigned int nr_io_queues;
1569         int ret;
1570
1571         nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1572         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1573         if (ret)
1574                 return ret;
1575
1576         ctrl->queue_count = nr_io_queues + 1;
1577         if (ctrl->queue_count < 2)
1578                 return 0;
1579
1580         dev_info(ctrl->device,
1581                 "creating %d I/O queues.\n", nr_io_queues);
1582
1583         return __nvme_tcp_alloc_io_queues(ctrl);
1584 }
1585
1586 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1587 {
1588         nvme_tcp_stop_io_queues(ctrl);
1589         if (remove) {
1590                 blk_cleanup_queue(ctrl->connect_q);
1591                 blk_mq_free_tag_set(ctrl->tagset);
1592         }
1593         nvme_tcp_free_io_queues(ctrl);
1594 }
1595
1596 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1597 {
1598         int ret;
1599
1600         ret = nvme_tcp_alloc_io_queues(ctrl);
1601         if (ret)
1602                 return ret;
1603
1604         if (new) {
1605                 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1606                 if (IS_ERR(ctrl->tagset)) {
1607                         ret = PTR_ERR(ctrl->tagset);
1608                         goto out_free_io_queues;
1609                 }
1610
1611                 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1612                 if (IS_ERR(ctrl->connect_q)) {
1613                         ret = PTR_ERR(ctrl->connect_q);
1614                         goto out_free_tag_set;
1615                 }
1616         } else {
1617                 blk_mq_update_nr_hw_queues(ctrl->tagset,
1618                         ctrl->queue_count - 1);
1619         }
1620
1621         ret = nvme_tcp_start_io_queues(ctrl);
1622         if (ret)
1623                 goto out_cleanup_connect_q;
1624
1625         return 0;
1626
1627 out_cleanup_connect_q:
1628         if (new)
1629                 blk_cleanup_queue(ctrl->connect_q);
1630 out_free_tag_set:
1631         if (new)
1632                 blk_mq_free_tag_set(ctrl->tagset);
1633 out_free_io_queues:
1634         nvme_tcp_free_io_queues(ctrl);
1635         return ret;
1636 }
1637
1638 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1639 {
1640         nvme_tcp_stop_queue(ctrl, 0);
1641         if (remove) {
1642                 blk_cleanup_queue(ctrl->admin_q);
1643                 blk_mq_free_tag_set(ctrl->admin_tagset);
1644         }
1645         nvme_tcp_free_admin_queue(ctrl);
1646 }
1647
1648 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1649 {
1650         int error;
1651
1652         error = nvme_tcp_alloc_admin_queue(ctrl);
1653         if (error)
1654                 return error;
1655
1656         if (new) {
1657                 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1658                 if (IS_ERR(ctrl->admin_tagset)) {
1659                         error = PTR_ERR(ctrl->admin_tagset);
1660                         goto out_free_queue;
1661                 }
1662
1663                 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1664                 if (IS_ERR(ctrl->admin_q)) {
1665                         error = PTR_ERR(ctrl->admin_q);
1666                         goto out_free_tagset;
1667                 }
1668         }
1669
1670         error = nvme_tcp_start_queue(ctrl, 0);
1671         if (error)
1672                 goto out_cleanup_queue;
1673
1674         error = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
1675         if (error) {
1676                 dev_err(ctrl->device,
1677                         "prop_get NVME_REG_CAP failed\n");
1678                 goto out_stop_queue;
1679         }
1680
1681         ctrl->sqsize = min_t(int, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
1682
1683         error = nvme_enable_ctrl(ctrl, ctrl->cap);
1684         if (error)
1685                 goto out_stop_queue;
1686
1687         error = nvme_init_identify(ctrl);
1688         if (error)
1689                 goto out_stop_queue;
1690
1691         return 0;
1692
1693 out_stop_queue:
1694         nvme_tcp_stop_queue(ctrl, 0);
1695 out_cleanup_queue:
1696         if (new)
1697                 blk_cleanup_queue(ctrl->admin_q);
1698 out_free_tagset:
1699         if (new)
1700                 blk_mq_free_tag_set(ctrl->admin_tagset);
1701 out_free_queue:
1702         nvme_tcp_free_admin_queue(ctrl);
1703         return error;
1704 }
1705
1706 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1707                 bool remove)
1708 {
1709         blk_mq_quiesce_queue(ctrl->admin_q);
1710         nvme_tcp_stop_queue(ctrl, 0);
1711         if (ctrl->admin_tagset)
1712                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1713                         nvme_cancel_request, ctrl);
1714         blk_mq_unquiesce_queue(ctrl->admin_q);
1715         nvme_tcp_destroy_admin_queue(ctrl, remove);
1716 }
1717
1718 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1719                 bool remove)
1720 {
1721         if (ctrl->queue_count <= 1)
1722                 return;
1723         nvme_stop_queues(ctrl);
1724         nvme_tcp_stop_io_queues(ctrl);
1725         if (ctrl->tagset)
1726                 blk_mq_tagset_busy_iter(ctrl->tagset,
1727                         nvme_cancel_request, ctrl);
1728         if (remove)
1729                 nvme_start_queues(ctrl);
1730         nvme_tcp_destroy_io_queues(ctrl, remove);
1731 }
1732
1733 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1734 {
1735         /* If we are resetting/deleting then do nothing */
1736         if (ctrl->state != NVME_CTRL_CONNECTING) {
1737                 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1738                         ctrl->state == NVME_CTRL_LIVE);
1739                 return;
1740         }
1741
1742         if (nvmf_should_reconnect(ctrl)) {
1743                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1744                         ctrl->opts->reconnect_delay);
1745                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1746                                 ctrl->opts->reconnect_delay * HZ);
1747         } else {
1748                 dev_info(ctrl->device, "Removing controller...\n");
1749                 nvme_delete_ctrl(ctrl);
1750         }
1751 }
1752
1753 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1754 {
1755         struct nvmf_ctrl_options *opts = ctrl->opts;
1756         int ret = -EINVAL;
1757
1758         ret = nvme_tcp_configure_admin_queue(ctrl, new);
1759         if (ret)
1760                 return ret;
1761
1762         if (ctrl->icdoff) {
1763                 dev_err(ctrl->device, "icdoff is not supported!\n");
1764                 goto destroy_admin;
1765         }
1766
1767         if (opts->queue_size > ctrl->sqsize + 1)
1768                 dev_warn(ctrl->device,
1769                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1770                         opts->queue_size, ctrl->sqsize + 1);
1771
1772         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1773                 dev_warn(ctrl->device,
1774                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1775                         ctrl->sqsize + 1, ctrl->maxcmd);
1776                 ctrl->sqsize = ctrl->maxcmd - 1;
1777         }
1778
1779         if (ctrl->queue_count > 1) {
1780                 ret = nvme_tcp_configure_io_queues(ctrl, new);
1781                 if (ret)
1782                         goto destroy_admin;
1783         }
1784
1785         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1786                 /* state change failure is ok if we're in DELETING state */
1787                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1788                 ret = -EINVAL;
1789                 goto destroy_io;
1790         }
1791
1792         nvme_start_ctrl(ctrl);
1793         return 0;
1794
1795 destroy_io:
1796         if (ctrl->queue_count > 1)
1797                 nvme_tcp_destroy_io_queues(ctrl, new);
1798 destroy_admin:
1799         nvme_tcp_stop_queue(ctrl, 0);
1800         nvme_tcp_destroy_admin_queue(ctrl, new);
1801         return ret;
1802 }
1803
1804 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1805 {
1806         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1807                         struct nvme_tcp_ctrl, connect_work);
1808         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1809
1810         ++ctrl->nr_reconnects;
1811
1812         if (nvme_tcp_setup_ctrl(ctrl, false))
1813                 goto requeue;
1814
1815         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1816                         ctrl->nr_reconnects);
1817
1818         ctrl->nr_reconnects = 0;
1819
1820         return;
1821
1822 requeue:
1823         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1824                         ctrl->nr_reconnects);
1825         nvme_tcp_reconnect_or_remove(ctrl);
1826 }
1827
1828 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1829 {
1830         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1831                                 struct nvme_tcp_ctrl, err_work);
1832         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1833
1834         nvme_stop_keep_alive(ctrl);
1835         nvme_tcp_teardown_io_queues(ctrl, false);
1836         /* unquiesce to fail fast pending requests */
1837         nvme_start_queues(ctrl);
1838         nvme_tcp_teardown_admin_queue(ctrl, false);
1839
1840         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1841                 /* state change failure is ok if we're in DELETING state */
1842                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1843                 return;
1844         }
1845
1846         nvme_tcp_reconnect_or_remove(ctrl);
1847 }
1848
1849 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
1850 {
1851         cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
1852         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
1853
1854         nvme_tcp_teardown_io_queues(ctrl, shutdown);
1855         if (shutdown)
1856                 nvme_shutdown_ctrl(ctrl);
1857         else
1858                 nvme_disable_ctrl(ctrl, ctrl->cap);
1859         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
1860 }
1861
1862 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
1863 {
1864         nvme_tcp_teardown_ctrl(ctrl, true);
1865 }
1866
1867 static void nvme_reset_ctrl_work(struct work_struct *work)
1868 {
1869         struct nvme_ctrl *ctrl =
1870                 container_of(work, struct nvme_ctrl, reset_work);
1871
1872         nvme_stop_ctrl(ctrl);
1873         nvme_tcp_teardown_ctrl(ctrl, false);
1874
1875         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1876                 /* state change failure is ok if we're in DELETING state */
1877                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1878                 return;
1879         }
1880
1881         if (nvme_tcp_setup_ctrl(ctrl, false))
1882                 goto out_fail;
1883
1884         return;
1885
1886 out_fail:
1887         ++ctrl->nr_reconnects;
1888         nvme_tcp_reconnect_or_remove(ctrl);
1889 }
1890
1891 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
1892 {
1893         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1894
1895         if (list_empty(&ctrl->list))
1896                 goto free_ctrl;
1897
1898         mutex_lock(&nvme_tcp_ctrl_mutex);
1899         list_del(&ctrl->list);
1900         mutex_unlock(&nvme_tcp_ctrl_mutex);
1901
1902         nvmf_free_options(nctrl->opts);
1903 free_ctrl:
1904         kfree(ctrl->queues);
1905         kfree(ctrl);
1906 }
1907
1908 static void nvme_tcp_set_sg_null(struct nvme_command *c)
1909 {
1910         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1911
1912         sg->addr = 0;
1913         sg->length = 0;
1914         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1915                         NVME_SGL_FMT_TRANSPORT_A;
1916 }
1917
1918 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
1919                 struct nvme_command *c, u32 data_len)
1920 {
1921         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1922
1923         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1924         sg->length = cpu_to_le32(data_len);
1925         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1926 }
1927
1928 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
1929                 u32 data_len)
1930 {
1931         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1932
1933         sg->addr = 0;
1934         sg->length = cpu_to_le32(data_len);
1935         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1936                         NVME_SGL_FMT_TRANSPORT_A;
1937 }
1938
1939 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
1940 {
1941         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
1942         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1943         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
1944         struct nvme_command *cmd = &pdu->cmd;
1945         u8 hdgst = nvme_tcp_hdgst_len(queue);
1946
1947         memset(pdu, 0, sizeof(*pdu));
1948         pdu->hdr.type = nvme_tcp_cmd;
1949         if (queue->hdr_digest)
1950                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
1951         pdu->hdr.hlen = sizeof(*pdu);
1952         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
1953
1954         cmd->common.opcode = nvme_admin_async_event;
1955         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1956         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1957         nvme_tcp_set_sg_null(cmd);
1958
1959         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
1960         ctrl->async_req.offset = 0;
1961         ctrl->async_req.curr_bio = NULL;
1962         ctrl->async_req.data_len = 0;
1963
1964         nvme_tcp_queue_request(&ctrl->async_req);
1965 }
1966
1967 static enum blk_eh_timer_return
1968 nvme_tcp_timeout(struct request *rq, bool reserved)
1969 {
1970         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
1971         struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
1972         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
1973
1974         dev_warn(ctrl->ctrl.device,
1975                 "queue %d: timeout request %#x type %d\n",
1976                 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
1977
1978         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
1979                 /*
1980                  * Teardown immediately if controller times out while starting
1981                  * or we are already started error recovery. all outstanding
1982                  * requests are completed on shutdown, so we return BLK_EH_DONE.
1983                  */
1984                 flush_work(&ctrl->err_work);
1985                 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
1986                 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
1987                 return BLK_EH_DONE;
1988         }
1989
1990         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
1991         nvme_tcp_error_recovery(&ctrl->ctrl);
1992
1993         return BLK_EH_RESET_TIMER;
1994 }
1995
1996 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
1997                         struct request *rq)
1998 {
1999         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2000         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2001         struct nvme_command *c = &pdu->cmd;
2002
2003         c->common.flags |= NVME_CMD_SGL_METABUF;
2004
2005         if (rq_data_dir(rq) == WRITE && req->data_len &&
2006             req->data_len <= nvme_tcp_inline_data_size(queue))
2007                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2008         else
2009                 nvme_tcp_set_sg_host_data(c, req->data_len);
2010
2011         return 0;
2012 }
2013
2014 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2015                 struct request *rq)
2016 {
2017         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2018         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2019         struct nvme_tcp_queue *queue = req->queue;
2020         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2021         blk_status_t ret;
2022
2023         ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2024         if (ret)
2025                 return ret;
2026
2027         req->state = NVME_TCP_SEND_CMD_PDU;
2028         req->offset = 0;
2029         req->data_sent = 0;
2030         req->pdu_len = 0;
2031         req->pdu_sent = 0;
2032         req->data_len = blk_rq_payload_bytes(rq);
2033         req->curr_bio = rq->bio;
2034
2035         if (rq_data_dir(rq) == WRITE &&
2036             req->data_len <= nvme_tcp_inline_data_size(queue))
2037                 req->pdu_len = req->data_len;
2038         else if (req->curr_bio)
2039                 nvme_tcp_init_iter(req, READ);
2040
2041         pdu->hdr.type = nvme_tcp_cmd;
2042         pdu->hdr.flags = 0;
2043         if (queue->hdr_digest)
2044                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2045         if (queue->data_digest && req->pdu_len) {
2046                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2047                 ddgst = nvme_tcp_ddgst_len(queue);
2048         }
2049         pdu->hdr.hlen = sizeof(*pdu);
2050         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2051         pdu->hdr.plen =
2052                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2053
2054         ret = nvme_tcp_map_data(queue, rq);
2055         if (unlikely(ret)) {
2056                 dev_err(queue->ctrl->ctrl.device,
2057                         "Failed to map data (%d)\n", ret);
2058                 return ret;
2059         }
2060
2061         return 0;
2062 }
2063
2064 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2065                 const struct blk_mq_queue_data *bd)
2066 {
2067         struct nvme_ns *ns = hctx->queue->queuedata;
2068         struct nvme_tcp_queue *queue = hctx->driver_data;
2069         struct request *rq = bd->rq;
2070         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2071         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2072         blk_status_t ret;
2073
2074         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2075                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2076
2077         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2078         if (unlikely(ret))
2079                 return ret;
2080
2081         blk_mq_start_request(rq);
2082
2083         nvme_tcp_queue_request(req);
2084
2085         return BLK_STS_OK;
2086 }
2087
2088 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2089 {
2090         struct nvme_tcp_ctrl *ctrl = set->driver_data;
2091
2092         set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2093         set->map[HCTX_TYPE_READ].nr_queues = ctrl->ctrl.opts->nr_io_queues;
2094         if (ctrl->ctrl.opts->nr_write_queues) {
2095                 /* separate read/write queues */
2096                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2097                                 ctrl->ctrl.opts->nr_write_queues;
2098                 set->map[HCTX_TYPE_READ].queue_offset =
2099                                 ctrl->ctrl.opts->nr_write_queues;
2100         } else {
2101                 /* mixed read/write queues */
2102                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2103                                 ctrl->ctrl.opts->nr_io_queues;
2104                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2105         }
2106         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2107         blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2108         return 0;
2109 }
2110
2111 static struct blk_mq_ops nvme_tcp_mq_ops = {
2112         .queue_rq       = nvme_tcp_queue_rq,
2113         .complete       = nvme_complete_rq,
2114         .init_request   = nvme_tcp_init_request,
2115         .exit_request   = nvme_tcp_exit_request,
2116         .init_hctx      = nvme_tcp_init_hctx,
2117         .timeout        = nvme_tcp_timeout,
2118         .map_queues     = nvme_tcp_map_queues,
2119 };
2120
2121 static struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2122         .queue_rq       = nvme_tcp_queue_rq,
2123         .complete       = nvme_complete_rq,
2124         .init_request   = nvme_tcp_init_request,
2125         .exit_request   = nvme_tcp_exit_request,
2126         .init_hctx      = nvme_tcp_init_admin_hctx,
2127         .timeout        = nvme_tcp_timeout,
2128 };
2129
2130 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2131         .name                   = "tcp",
2132         .module                 = THIS_MODULE,
2133         .flags                  = NVME_F_FABRICS,
2134         .reg_read32             = nvmf_reg_read32,
2135         .reg_read64             = nvmf_reg_read64,
2136         .reg_write32            = nvmf_reg_write32,
2137         .free_ctrl              = nvme_tcp_free_ctrl,
2138         .submit_async_event     = nvme_tcp_submit_async_event,
2139         .delete_ctrl            = nvme_tcp_delete_ctrl,
2140         .get_address            = nvmf_get_address,
2141 };
2142
2143 static bool
2144 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2145 {
2146         struct nvme_tcp_ctrl *ctrl;
2147         bool found = false;
2148
2149         mutex_lock(&nvme_tcp_ctrl_mutex);
2150         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2151                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2152                 if (found)
2153                         break;
2154         }
2155         mutex_unlock(&nvme_tcp_ctrl_mutex);
2156
2157         return found;
2158 }
2159
2160 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2161                 struct nvmf_ctrl_options *opts)
2162 {
2163         struct nvme_tcp_ctrl *ctrl;
2164         int ret;
2165
2166         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2167         if (!ctrl)
2168                 return ERR_PTR(-ENOMEM);
2169
2170         INIT_LIST_HEAD(&ctrl->list);
2171         ctrl->ctrl.opts = opts;
2172         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues + 1;
2173         ctrl->ctrl.sqsize = opts->queue_size - 1;
2174         ctrl->ctrl.kato = opts->kato;
2175
2176         INIT_DELAYED_WORK(&ctrl->connect_work,
2177                         nvme_tcp_reconnect_ctrl_work);
2178         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2179         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2180
2181         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2182                 opts->trsvcid =
2183                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2184                 if (!opts->trsvcid) {
2185                         ret = -ENOMEM;
2186                         goto out_free_ctrl;
2187                 }
2188                 opts->mask |= NVMF_OPT_TRSVCID;
2189         }
2190
2191         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2192                         opts->traddr, opts->trsvcid, &ctrl->addr);
2193         if (ret) {
2194                 pr_err("malformed address passed: %s:%s\n",
2195                         opts->traddr, opts->trsvcid);
2196                 goto out_free_ctrl;
2197         }
2198
2199         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2200                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2201                         opts->host_traddr, NULL, &ctrl->src_addr);
2202                 if (ret) {
2203                         pr_err("malformed src address passed: %s\n",
2204                                opts->host_traddr);
2205                         goto out_free_ctrl;
2206                 }
2207         }
2208
2209         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2210                 ret = -EALREADY;
2211                 goto out_free_ctrl;
2212         }
2213
2214         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2215                                 GFP_KERNEL);
2216         if (!ctrl->queues) {
2217                 ret = -ENOMEM;
2218                 goto out_free_ctrl;
2219         }
2220
2221         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2222         if (ret)
2223                 goto out_kfree_queues;
2224
2225         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2226                 WARN_ON_ONCE(1);
2227                 ret = -EINTR;
2228                 goto out_uninit_ctrl;
2229         }
2230
2231         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2232         if (ret)
2233                 goto out_uninit_ctrl;
2234
2235         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2236                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2237
2238         nvme_get_ctrl(&ctrl->ctrl);
2239
2240         mutex_lock(&nvme_tcp_ctrl_mutex);
2241         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2242         mutex_unlock(&nvme_tcp_ctrl_mutex);
2243
2244         return &ctrl->ctrl;
2245
2246 out_uninit_ctrl:
2247         nvme_uninit_ctrl(&ctrl->ctrl);
2248         nvme_put_ctrl(&ctrl->ctrl);
2249         if (ret > 0)
2250                 ret = -EIO;
2251         return ERR_PTR(ret);
2252 out_kfree_queues:
2253         kfree(ctrl->queues);
2254 out_free_ctrl:
2255         kfree(ctrl);
2256         return ERR_PTR(ret);
2257 }
2258
2259 static struct nvmf_transport_ops nvme_tcp_transport = {
2260         .name           = "tcp",
2261         .module         = THIS_MODULE,
2262         .required_opts  = NVMF_OPT_TRADDR,
2263         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2264                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2265                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2266                           NVMF_OPT_NR_WRITE_QUEUES,
2267         .create_ctrl    = nvme_tcp_create_ctrl,
2268 };
2269
2270 static int __init nvme_tcp_init_module(void)
2271 {
2272         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2273                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2274         if (!nvme_tcp_wq)
2275                 return -ENOMEM;
2276
2277         nvmf_register_transport(&nvme_tcp_transport);
2278         return 0;
2279 }
2280
2281 static void __exit nvme_tcp_cleanup_module(void)
2282 {
2283         struct nvme_tcp_ctrl *ctrl;
2284
2285         nvmf_unregister_transport(&nvme_tcp_transport);
2286
2287         mutex_lock(&nvme_tcp_ctrl_mutex);
2288         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2289                 nvme_delete_ctrl(&ctrl->ctrl);
2290         mutex_unlock(&nvme_tcp_ctrl_mutex);
2291         flush_workqueue(nvme_delete_wq);
2292
2293         destroy_workqueue(nvme_tcp_wq);
2294 }
2295
2296 module_init(nvme_tcp_init_module);
2297 module_exit(nvme_tcp_cleanup_module);
2298
2299 MODULE_LICENSE("GPL v2");