]> asedeno.scripts.mit.edu Git - linux.git/blob - drivers/nvme/host/tcp.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux.git] / drivers / nvme / host / tcp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVMe over Fabrics TCP host.
4  * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 enum nvme_tcp_send_state {
24         NVME_TCP_SEND_CMD_PDU = 0,
25         NVME_TCP_SEND_H2C_PDU,
26         NVME_TCP_SEND_DATA,
27         NVME_TCP_SEND_DDGST,
28 };
29
30 struct nvme_tcp_request {
31         struct nvme_request     req;
32         void                    *pdu;
33         struct nvme_tcp_queue   *queue;
34         u32                     data_len;
35         u32                     pdu_len;
36         u32                     pdu_sent;
37         u16                     ttag;
38         struct list_head        entry;
39         __le32                  ddgst;
40
41         struct bio              *curr_bio;
42         struct iov_iter         iter;
43
44         /* send state */
45         size_t                  offset;
46         size_t                  data_sent;
47         enum nvme_tcp_send_state state;
48 };
49
50 enum nvme_tcp_queue_flags {
51         NVME_TCP_Q_ALLOCATED    = 0,
52         NVME_TCP_Q_LIVE         = 1,
53 };
54
55 enum nvme_tcp_recv_state {
56         NVME_TCP_RECV_PDU = 0,
57         NVME_TCP_RECV_DATA,
58         NVME_TCP_RECV_DDGST,
59 };
60
61 struct nvme_tcp_ctrl;
62 struct nvme_tcp_queue {
63         struct socket           *sock;
64         struct work_struct      io_work;
65         int                     io_cpu;
66
67         spinlock_t              lock;
68         struct list_head        send_list;
69
70         /* recv state */
71         void                    *pdu;
72         int                     pdu_remaining;
73         int                     pdu_offset;
74         size_t                  data_remaining;
75         size_t                  ddgst_remaining;
76         unsigned int            nr_cqe;
77
78         /* send state */
79         struct nvme_tcp_request *request;
80
81         int                     queue_size;
82         size_t                  cmnd_capsule_len;
83         struct nvme_tcp_ctrl    *ctrl;
84         unsigned long           flags;
85         bool                    rd_enabled;
86
87         bool                    hdr_digest;
88         bool                    data_digest;
89         struct ahash_request    *rcv_hash;
90         struct ahash_request    *snd_hash;
91         __le32                  exp_ddgst;
92         __le32                  recv_ddgst;
93
94         struct page_frag_cache  pf_cache;
95
96         void (*state_change)(struct sock *);
97         void (*data_ready)(struct sock *);
98         void (*write_space)(struct sock *);
99 };
100
101 struct nvme_tcp_ctrl {
102         /* read only in the hot path */
103         struct nvme_tcp_queue   *queues;
104         struct blk_mq_tag_set   tag_set;
105
106         /* other member variables */
107         struct list_head        list;
108         struct blk_mq_tag_set   admin_tag_set;
109         struct sockaddr_storage addr;
110         struct sockaddr_storage src_addr;
111         struct nvme_ctrl        ctrl;
112
113         struct work_struct      err_work;
114         struct delayed_work     connect_work;
115         struct nvme_tcp_request async_req;
116         u32                     io_queues[HCTX_MAX_TYPES];
117 };
118
119 static LIST_HEAD(nvme_tcp_ctrl_list);
120 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
121 static struct workqueue_struct *nvme_tcp_wq;
122 static struct blk_mq_ops nvme_tcp_mq_ops;
123 static struct blk_mq_ops nvme_tcp_admin_mq_ops;
124
125 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
126 {
127         return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
128 }
129
130 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
131 {
132         return queue - queue->ctrl->queues;
133 }
134
135 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
136 {
137         u32 queue_idx = nvme_tcp_queue_id(queue);
138
139         if (queue_idx == 0)
140                 return queue->ctrl->admin_tag_set.tags[queue_idx];
141         return queue->ctrl->tag_set.tags[queue_idx - 1];
142 }
143
144 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
145 {
146         return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
147 }
148
149 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
150 {
151         return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
152 }
153
154 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
155 {
156         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
157 }
158
159 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
160 {
161         return req == &req->queue->ctrl->async_req;
162 }
163
164 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
165 {
166         struct request *rq;
167         unsigned int bytes;
168
169         if (unlikely(nvme_tcp_async_req(req)))
170                 return false; /* async events don't have a request */
171
172         rq = blk_mq_rq_from_pdu(req);
173         bytes = blk_rq_payload_bytes(rq);
174
175         return rq_data_dir(rq) == WRITE && bytes &&
176                 bytes <= nvme_tcp_inline_data_size(req->queue);
177 }
178
179 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
180 {
181         return req->iter.bvec->bv_page;
182 }
183
184 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
185 {
186         return req->iter.bvec->bv_offset + req->iter.iov_offset;
187 }
188
189 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
190 {
191         return min_t(size_t, req->iter.bvec->bv_len - req->iter.iov_offset,
192                         req->pdu_len - req->pdu_sent);
193 }
194
195 static inline size_t nvme_tcp_req_offset(struct nvme_tcp_request *req)
196 {
197         return req->iter.iov_offset;
198 }
199
200 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
201 {
202         return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
203                         req->pdu_len - req->pdu_sent : 0;
204 }
205
206 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
207                 int len)
208 {
209         return nvme_tcp_pdu_data_left(req) <= len;
210 }
211
212 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
213                 unsigned int dir)
214 {
215         struct request *rq = blk_mq_rq_from_pdu(req);
216         struct bio_vec *vec;
217         unsigned int size;
218         int nsegs;
219         size_t offset;
220
221         if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
222                 vec = &rq->special_vec;
223                 nsegs = 1;
224                 size = blk_rq_payload_bytes(rq);
225                 offset = 0;
226         } else {
227                 struct bio *bio = req->curr_bio;
228
229                 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
230                 nsegs = bio_segments(bio);
231                 size = bio->bi_iter.bi_size;
232                 offset = bio->bi_iter.bi_bvec_done;
233         }
234
235         iov_iter_bvec(&req->iter, dir, vec, nsegs, size);
236         req->iter.iov_offset = offset;
237 }
238
239 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
240                 int len)
241 {
242         req->data_sent += len;
243         req->pdu_sent += len;
244         iov_iter_advance(&req->iter, len);
245         if (!iov_iter_count(&req->iter) &&
246             req->data_sent < req->data_len) {
247                 req->curr_bio = req->curr_bio->bi_next;
248                 nvme_tcp_init_iter(req, WRITE);
249         }
250 }
251
252 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req)
253 {
254         struct nvme_tcp_queue *queue = req->queue;
255
256         spin_lock(&queue->lock);
257         list_add_tail(&req->entry, &queue->send_list);
258         spin_unlock(&queue->lock);
259
260         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
261 }
262
263 static inline struct nvme_tcp_request *
264 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
265 {
266         struct nvme_tcp_request *req;
267
268         spin_lock(&queue->lock);
269         req = list_first_entry_or_null(&queue->send_list,
270                         struct nvme_tcp_request, entry);
271         if (req)
272                 list_del(&req->entry);
273         spin_unlock(&queue->lock);
274
275         return req;
276 }
277
278 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
279                 __le32 *dgst)
280 {
281         ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
282         crypto_ahash_final(hash);
283 }
284
285 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
286                 struct page *page, off_t off, size_t len)
287 {
288         struct scatterlist sg;
289
290         sg_init_marker(&sg, 1);
291         sg_set_page(&sg, page, len, off);
292         ahash_request_set_crypt(hash, &sg, NULL, len);
293         crypto_ahash_update(hash);
294 }
295
296 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
297                 void *pdu, size_t len)
298 {
299         struct scatterlist sg;
300
301         sg_init_one(&sg, pdu, len);
302         ahash_request_set_crypt(hash, &sg, pdu + len, len);
303         crypto_ahash_digest(hash);
304 }
305
306 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
307                 void *pdu, size_t pdu_len)
308 {
309         struct nvme_tcp_hdr *hdr = pdu;
310         __le32 recv_digest;
311         __le32 exp_digest;
312
313         if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
314                 dev_err(queue->ctrl->ctrl.device,
315                         "queue %d: header digest flag is cleared\n",
316                         nvme_tcp_queue_id(queue));
317                 return -EPROTO;
318         }
319
320         recv_digest = *(__le32 *)(pdu + hdr->hlen);
321         nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
322         exp_digest = *(__le32 *)(pdu + hdr->hlen);
323         if (recv_digest != exp_digest) {
324                 dev_err(queue->ctrl->ctrl.device,
325                         "header digest error: recv %#x expected %#x\n",
326                         le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
327                 return -EIO;
328         }
329
330         return 0;
331 }
332
333 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
334 {
335         struct nvme_tcp_hdr *hdr = pdu;
336         u8 digest_len = nvme_tcp_hdgst_len(queue);
337         u32 len;
338
339         len = le32_to_cpu(hdr->plen) - hdr->hlen -
340                 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
341
342         if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
343                 dev_err(queue->ctrl->ctrl.device,
344                         "queue %d: data digest flag is cleared\n",
345                 nvme_tcp_queue_id(queue));
346                 return -EPROTO;
347         }
348         crypto_ahash_init(queue->rcv_hash);
349
350         return 0;
351 }
352
353 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
354                 struct request *rq, unsigned int hctx_idx)
355 {
356         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
357
358         page_frag_free(req->pdu);
359 }
360
361 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
362                 struct request *rq, unsigned int hctx_idx,
363                 unsigned int numa_node)
364 {
365         struct nvme_tcp_ctrl *ctrl = set->driver_data;
366         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
367         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
368         struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
369         u8 hdgst = nvme_tcp_hdgst_len(queue);
370
371         req->pdu = page_frag_alloc(&queue->pf_cache,
372                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
373                 GFP_KERNEL | __GFP_ZERO);
374         if (!req->pdu)
375                 return -ENOMEM;
376
377         req->queue = queue;
378         nvme_req(rq)->ctrl = &ctrl->ctrl;
379
380         return 0;
381 }
382
383 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
384                 unsigned int hctx_idx)
385 {
386         struct nvme_tcp_ctrl *ctrl = data;
387         struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
388
389         hctx->driver_data = queue;
390         return 0;
391 }
392
393 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
394                 unsigned int hctx_idx)
395 {
396         struct nvme_tcp_ctrl *ctrl = data;
397         struct nvme_tcp_queue *queue = &ctrl->queues[0];
398
399         hctx->driver_data = queue;
400         return 0;
401 }
402
403 static enum nvme_tcp_recv_state
404 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
405 {
406         return  (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
407                 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
408                 NVME_TCP_RECV_DATA;
409 }
410
411 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
412 {
413         queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
414                                 nvme_tcp_hdgst_len(queue);
415         queue->pdu_offset = 0;
416         queue->data_remaining = -1;
417         queue->ddgst_remaining = 0;
418 }
419
420 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
421 {
422         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
423                 return;
424
425         queue_work(nvme_wq, &to_tcp_ctrl(ctrl)->err_work);
426 }
427
428 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
429                 struct nvme_completion *cqe)
430 {
431         struct request *rq;
432
433         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), cqe->command_id);
434         if (!rq) {
435                 dev_err(queue->ctrl->ctrl.device,
436                         "queue %d tag 0x%x not found\n",
437                         nvme_tcp_queue_id(queue), cqe->command_id);
438                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
439                 return -EINVAL;
440         }
441
442         nvme_end_request(rq, cqe->status, cqe->result);
443         queue->nr_cqe++;
444
445         return 0;
446 }
447
448 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
449                 struct nvme_tcp_data_pdu *pdu)
450 {
451         struct request *rq;
452
453         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
454         if (!rq) {
455                 dev_err(queue->ctrl->ctrl.device,
456                         "queue %d tag %#x not found\n",
457                         nvme_tcp_queue_id(queue), pdu->command_id);
458                 return -ENOENT;
459         }
460
461         if (!blk_rq_payload_bytes(rq)) {
462                 dev_err(queue->ctrl->ctrl.device,
463                         "queue %d tag %#x unexpected data\n",
464                         nvme_tcp_queue_id(queue), rq->tag);
465                 return -EIO;
466         }
467
468         queue->data_remaining = le32_to_cpu(pdu->data_length);
469
470         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
471             unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
472                 dev_err(queue->ctrl->ctrl.device,
473                         "queue %d tag %#x SUCCESS set but not last PDU\n",
474                         nvme_tcp_queue_id(queue), rq->tag);
475                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
476                 return -EPROTO;
477         }
478
479         return 0;
480 }
481
482 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
483                 struct nvme_tcp_rsp_pdu *pdu)
484 {
485         struct nvme_completion *cqe = &pdu->cqe;
486         int ret = 0;
487
488         /*
489          * AEN requests are special as they don't time out and can
490          * survive any kind of queue freeze and often don't respond to
491          * aborts.  We don't even bother to allocate a struct request
492          * for them but rather special case them here.
493          */
494         if (unlikely(nvme_tcp_queue_id(queue) == 0 &&
495             cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
496                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
497                                 &cqe->result);
498         else
499                 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
500
501         return ret;
502 }
503
504 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
505                 struct nvme_tcp_r2t_pdu *pdu)
506 {
507         struct nvme_tcp_data_pdu *data = req->pdu;
508         struct nvme_tcp_queue *queue = req->queue;
509         struct request *rq = blk_mq_rq_from_pdu(req);
510         u8 hdgst = nvme_tcp_hdgst_len(queue);
511         u8 ddgst = nvme_tcp_ddgst_len(queue);
512
513         req->pdu_len = le32_to_cpu(pdu->r2t_length);
514         req->pdu_sent = 0;
515
516         if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
517                 dev_err(queue->ctrl->ctrl.device,
518                         "req %d r2t len %u exceeded data len %u (%zu sent)\n",
519                         rq->tag, req->pdu_len, req->data_len,
520                         req->data_sent);
521                 return -EPROTO;
522         }
523
524         if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
525                 dev_err(queue->ctrl->ctrl.device,
526                         "req %d unexpected r2t offset %u (expected %zu)\n",
527                         rq->tag, le32_to_cpu(pdu->r2t_offset),
528                         req->data_sent);
529                 return -EPROTO;
530         }
531
532         memset(data, 0, sizeof(*data));
533         data->hdr.type = nvme_tcp_h2c_data;
534         data->hdr.flags = NVME_TCP_F_DATA_LAST;
535         if (queue->hdr_digest)
536                 data->hdr.flags |= NVME_TCP_F_HDGST;
537         if (queue->data_digest)
538                 data->hdr.flags |= NVME_TCP_F_DDGST;
539         data->hdr.hlen = sizeof(*data);
540         data->hdr.pdo = data->hdr.hlen + hdgst;
541         data->hdr.plen =
542                 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
543         data->ttag = pdu->ttag;
544         data->command_id = rq->tag;
545         data->data_offset = cpu_to_le32(req->data_sent);
546         data->data_length = cpu_to_le32(req->pdu_len);
547         return 0;
548 }
549
550 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
551                 struct nvme_tcp_r2t_pdu *pdu)
552 {
553         struct nvme_tcp_request *req;
554         struct request *rq;
555         int ret;
556
557         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
558         if (!rq) {
559                 dev_err(queue->ctrl->ctrl.device,
560                         "queue %d tag %#x not found\n",
561                         nvme_tcp_queue_id(queue), pdu->command_id);
562                 return -ENOENT;
563         }
564         req = blk_mq_rq_to_pdu(rq);
565
566         ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
567         if (unlikely(ret))
568                 return ret;
569
570         req->state = NVME_TCP_SEND_H2C_PDU;
571         req->offset = 0;
572
573         nvme_tcp_queue_request(req);
574
575         return 0;
576 }
577
578 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
579                 unsigned int *offset, size_t *len)
580 {
581         struct nvme_tcp_hdr *hdr;
582         char *pdu = queue->pdu;
583         size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
584         int ret;
585
586         ret = skb_copy_bits(skb, *offset,
587                 &pdu[queue->pdu_offset], rcv_len);
588         if (unlikely(ret))
589                 return ret;
590
591         queue->pdu_remaining -= rcv_len;
592         queue->pdu_offset += rcv_len;
593         *offset += rcv_len;
594         *len -= rcv_len;
595         if (queue->pdu_remaining)
596                 return 0;
597
598         hdr = queue->pdu;
599         if (queue->hdr_digest) {
600                 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
601                 if (unlikely(ret))
602                         return ret;
603         }
604
605
606         if (queue->data_digest) {
607                 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
608                 if (unlikely(ret))
609                         return ret;
610         }
611
612         switch (hdr->type) {
613         case nvme_tcp_c2h_data:
614                 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
615         case nvme_tcp_rsp:
616                 nvme_tcp_init_recv_ctx(queue);
617                 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
618         case nvme_tcp_r2t:
619                 nvme_tcp_init_recv_ctx(queue);
620                 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
621         default:
622                 dev_err(queue->ctrl->ctrl.device,
623                         "unsupported pdu type (%d)\n", hdr->type);
624                 return -EINVAL;
625         }
626 }
627
628 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
629 {
630         union nvme_result res = {};
631
632         nvme_end_request(rq, cpu_to_le16(status << 1), res);
633 }
634
635 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
636                               unsigned int *offset, size_t *len)
637 {
638         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
639         struct nvme_tcp_request *req;
640         struct request *rq;
641
642         rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
643         if (!rq) {
644                 dev_err(queue->ctrl->ctrl.device,
645                         "queue %d tag %#x not found\n",
646                         nvme_tcp_queue_id(queue), pdu->command_id);
647                 return -ENOENT;
648         }
649         req = blk_mq_rq_to_pdu(rq);
650
651         while (true) {
652                 int recv_len, ret;
653
654                 recv_len = min_t(size_t, *len, queue->data_remaining);
655                 if (!recv_len)
656                         break;
657
658                 if (!iov_iter_count(&req->iter)) {
659                         req->curr_bio = req->curr_bio->bi_next;
660
661                         /*
662                          * If we don`t have any bios it means that controller
663                          * sent more data than we requested, hence error
664                          */
665                         if (!req->curr_bio) {
666                                 dev_err(queue->ctrl->ctrl.device,
667                                         "queue %d no space in request %#x",
668                                         nvme_tcp_queue_id(queue), rq->tag);
669                                 nvme_tcp_init_recv_ctx(queue);
670                                 return -EIO;
671                         }
672                         nvme_tcp_init_iter(req, READ);
673                 }
674
675                 /* we can read only from what is left in this bio */
676                 recv_len = min_t(size_t, recv_len,
677                                 iov_iter_count(&req->iter));
678
679                 if (queue->data_digest)
680                         ret = skb_copy_and_hash_datagram_iter(skb, *offset,
681                                 &req->iter, recv_len, queue->rcv_hash);
682                 else
683                         ret = skb_copy_datagram_iter(skb, *offset,
684                                         &req->iter, recv_len);
685                 if (ret) {
686                         dev_err(queue->ctrl->ctrl.device,
687                                 "queue %d failed to copy request %#x data",
688                                 nvme_tcp_queue_id(queue), rq->tag);
689                         return ret;
690                 }
691
692                 *len -= recv_len;
693                 *offset += recv_len;
694                 queue->data_remaining -= recv_len;
695         }
696
697         if (!queue->data_remaining) {
698                 if (queue->data_digest) {
699                         nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
700                         queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
701                 } else {
702                         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
703                                 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
704                                 queue->nr_cqe++;
705                         }
706                         nvme_tcp_init_recv_ctx(queue);
707                 }
708         }
709
710         return 0;
711 }
712
713 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
714                 struct sk_buff *skb, unsigned int *offset, size_t *len)
715 {
716         struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
717         char *ddgst = (char *)&queue->recv_ddgst;
718         size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
719         off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
720         int ret;
721
722         ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
723         if (unlikely(ret))
724                 return ret;
725
726         queue->ddgst_remaining -= recv_len;
727         *offset += recv_len;
728         *len -= recv_len;
729         if (queue->ddgst_remaining)
730                 return 0;
731
732         if (queue->recv_ddgst != queue->exp_ddgst) {
733                 dev_err(queue->ctrl->ctrl.device,
734                         "data digest error: recv %#x expected %#x\n",
735                         le32_to_cpu(queue->recv_ddgst),
736                         le32_to_cpu(queue->exp_ddgst));
737                 return -EIO;
738         }
739
740         if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
741                 struct request *rq = blk_mq_tag_to_rq(nvme_tcp_tagset(queue),
742                                                 pdu->command_id);
743
744                 nvme_tcp_end_request(rq, NVME_SC_SUCCESS);
745                 queue->nr_cqe++;
746         }
747
748         nvme_tcp_init_recv_ctx(queue);
749         return 0;
750 }
751
752 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
753                              unsigned int offset, size_t len)
754 {
755         struct nvme_tcp_queue *queue = desc->arg.data;
756         size_t consumed = len;
757         int result;
758
759         while (len) {
760                 switch (nvme_tcp_recv_state(queue)) {
761                 case NVME_TCP_RECV_PDU:
762                         result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
763                         break;
764                 case NVME_TCP_RECV_DATA:
765                         result = nvme_tcp_recv_data(queue, skb, &offset, &len);
766                         break;
767                 case NVME_TCP_RECV_DDGST:
768                         result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
769                         break;
770                 default:
771                         result = -EFAULT;
772                 }
773                 if (result) {
774                         dev_err(queue->ctrl->ctrl.device,
775                                 "receive failed:  %d\n", result);
776                         queue->rd_enabled = false;
777                         nvme_tcp_error_recovery(&queue->ctrl->ctrl);
778                         return result;
779                 }
780         }
781
782         return consumed;
783 }
784
785 static void nvme_tcp_data_ready(struct sock *sk)
786 {
787         struct nvme_tcp_queue *queue;
788
789         read_lock(&sk->sk_callback_lock);
790         queue = sk->sk_user_data;
791         if (likely(queue && queue->rd_enabled))
792                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
793         read_unlock(&sk->sk_callback_lock);
794 }
795
796 static void nvme_tcp_write_space(struct sock *sk)
797 {
798         struct nvme_tcp_queue *queue;
799
800         read_lock_bh(&sk->sk_callback_lock);
801         queue = sk->sk_user_data;
802         if (likely(queue && sk_stream_is_writeable(sk))) {
803                 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
804                 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
805         }
806         read_unlock_bh(&sk->sk_callback_lock);
807 }
808
809 static void nvme_tcp_state_change(struct sock *sk)
810 {
811         struct nvme_tcp_queue *queue;
812
813         read_lock(&sk->sk_callback_lock);
814         queue = sk->sk_user_data;
815         if (!queue)
816                 goto done;
817
818         switch (sk->sk_state) {
819         case TCP_CLOSE:
820         case TCP_CLOSE_WAIT:
821         case TCP_LAST_ACK:
822         case TCP_FIN_WAIT1:
823         case TCP_FIN_WAIT2:
824                 /* fallthrough */
825                 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
826                 break;
827         default:
828                 dev_info(queue->ctrl->ctrl.device,
829                         "queue %d socket state %d\n",
830                         nvme_tcp_queue_id(queue), sk->sk_state);
831         }
832
833         queue->state_change(sk);
834 done:
835         read_unlock(&sk->sk_callback_lock);
836 }
837
838 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
839 {
840         queue->request = NULL;
841 }
842
843 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
844 {
845         nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
846 }
847
848 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
849 {
850         struct nvme_tcp_queue *queue = req->queue;
851
852         while (true) {
853                 struct page *page = nvme_tcp_req_cur_page(req);
854                 size_t offset = nvme_tcp_req_cur_offset(req);
855                 size_t len = nvme_tcp_req_cur_length(req);
856                 bool last = nvme_tcp_pdu_last_send(req, len);
857                 int ret, flags = MSG_DONTWAIT;
858
859                 if (last && !queue->data_digest)
860                         flags |= MSG_EOR;
861                 else
862                         flags |= MSG_MORE;
863
864                 /* can't zcopy slab pages */
865                 if (unlikely(PageSlab(page))) {
866                         ret = sock_no_sendpage(queue->sock, page, offset, len,
867                                         flags);
868                 } else {
869                         ret = kernel_sendpage(queue->sock, page, offset, len,
870                                         flags);
871                 }
872                 if (ret <= 0)
873                         return ret;
874
875                 nvme_tcp_advance_req(req, ret);
876                 if (queue->data_digest)
877                         nvme_tcp_ddgst_update(queue->snd_hash, page,
878                                         offset, ret);
879
880                 /* fully successful last write*/
881                 if (last && ret == len) {
882                         if (queue->data_digest) {
883                                 nvme_tcp_ddgst_final(queue->snd_hash,
884                                         &req->ddgst);
885                                 req->state = NVME_TCP_SEND_DDGST;
886                                 req->offset = 0;
887                         } else {
888                                 nvme_tcp_done_send_req(queue);
889                         }
890                         return 1;
891                 }
892         }
893         return -EAGAIN;
894 }
895
896 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
897 {
898         struct nvme_tcp_queue *queue = req->queue;
899         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
900         bool inline_data = nvme_tcp_has_inline_data(req);
901         int flags = MSG_DONTWAIT | (inline_data ? MSG_MORE : MSG_EOR);
902         u8 hdgst = nvme_tcp_hdgst_len(queue);
903         int len = sizeof(*pdu) + hdgst - req->offset;
904         int ret;
905
906         if (queue->hdr_digest && !req->offset)
907                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
908
909         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
910                         offset_in_page(pdu) + req->offset, len,  flags);
911         if (unlikely(ret <= 0))
912                 return ret;
913
914         len -= ret;
915         if (!len) {
916                 if (inline_data) {
917                         req->state = NVME_TCP_SEND_DATA;
918                         if (queue->data_digest)
919                                 crypto_ahash_init(queue->snd_hash);
920                         nvme_tcp_init_iter(req, WRITE);
921                 } else {
922                         nvme_tcp_done_send_req(queue);
923                 }
924                 return 1;
925         }
926         req->offset += ret;
927
928         return -EAGAIN;
929 }
930
931 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
932 {
933         struct nvme_tcp_queue *queue = req->queue;
934         struct nvme_tcp_data_pdu *pdu = req->pdu;
935         u8 hdgst = nvme_tcp_hdgst_len(queue);
936         int len = sizeof(*pdu) - req->offset + hdgst;
937         int ret;
938
939         if (queue->hdr_digest && !req->offset)
940                 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
941
942         ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
943                         offset_in_page(pdu) + req->offset, len,
944                         MSG_DONTWAIT | MSG_MORE);
945         if (unlikely(ret <= 0))
946                 return ret;
947
948         len -= ret;
949         if (!len) {
950                 req->state = NVME_TCP_SEND_DATA;
951                 if (queue->data_digest)
952                         crypto_ahash_init(queue->snd_hash);
953                 if (!req->data_sent)
954                         nvme_tcp_init_iter(req, WRITE);
955                 return 1;
956         }
957         req->offset += ret;
958
959         return -EAGAIN;
960 }
961
962 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
963 {
964         struct nvme_tcp_queue *queue = req->queue;
965         int ret;
966         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR };
967         struct kvec iov = {
968                 .iov_base = &req->ddgst + req->offset,
969                 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
970         };
971
972         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
973         if (unlikely(ret <= 0))
974                 return ret;
975
976         if (req->offset + ret == NVME_TCP_DIGEST_LENGTH) {
977                 nvme_tcp_done_send_req(queue);
978                 return 1;
979         }
980
981         req->offset += ret;
982         return -EAGAIN;
983 }
984
985 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
986 {
987         struct nvme_tcp_request *req;
988         int ret = 1;
989
990         if (!queue->request) {
991                 queue->request = nvme_tcp_fetch_request(queue);
992                 if (!queue->request)
993                         return 0;
994         }
995         req = queue->request;
996
997         if (req->state == NVME_TCP_SEND_CMD_PDU) {
998                 ret = nvme_tcp_try_send_cmd_pdu(req);
999                 if (ret <= 0)
1000                         goto done;
1001                 if (!nvme_tcp_has_inline_data(req))
1002                         return ret;
1003         }
1004
1005         if (req->state == NVME_TCP_SEND_H2C_PDU) {
1006                 ret = nvme_tcp_try_send_data_pdu(req);
1007                 if (ret <= 0)
1008                         goto done;
1009         }
1010
1011         if (req->state == NVME_TCP_SEND_DATA) {
1012                 ret = nvme_tcp_try_send_data(req);
1013                 if (ret <= 0)
1014                         goto done;
1015         }
1016
1017         if (req->state == NVME_TCP_SEND_DDGST)
1018                 ret = nvme_tcp_try_send_ddgst(req);
1019 done:
1020         if (ret == -EAGAIN)
1021                 ret = 0;
1022         return ret;
1023 }
1024
1025 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1026 {
1027         struct socket *sock = queue->sock;
1028         struct sock *sk = sock->sk;
1029         read_descriptor_t rd_desc;
1030         int consumed;
1031
1032         rd_desc.arg.data = queue;
1033         rd_desc.count = 1;
1034         lock_sock(sk);
1035         queue->nr_cqe = 0;
1036         consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1037         release_sock(sk);
1038         return consumed;
1039 }
1040
1041 static void nvme_tcp_io_work(struct work_struct *w)
1042 {
1043         struct nvme_tcp_queue *queue =
1044                 container_of(w, struct nvme_tcp_queue, io_work);
1045         unsigned long deadline = jiffies + msecs_to_jiffies(1);
1046
1047         do {
1048                 bool pending = false;
1049                 int result;
1050
1051                 result = nvme_tcp_try_send(queue);
1052                 if (result > 0) {
1053                         pending = true;
1054                 } else if (unlikely(result < 0)) {
1055                         dev_err(queue->ctrl->ctrl.device,
1056                                 "failed to send request %d\n", result);
1057                         if (result != -EPIPE)
1058                                 nvme_tcp_fail_request(queue->request);
1059                         nvme_tcp_done_send_req(queue);
1060                         return;
1061                 }
1062
1063                 result = nvme_tcp_try_recv(queue);
1064                 if (result > 0)
1065                         pending = true;
1066
1067                 if (!pending)
1068                         return;
1069
1070         } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1071
1072         queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1073 }
1074
1075 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1076 {
1077         struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1078
1079         ahash_request_free(queue->rcv_hash);
1080         ahash_request_free(queue->snd_hash);
1081         crypto_free_ahash(tfm);
1082 }
1083
1084 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1085 {
1086         struct crypto_ahash *tfm;
1087
1088         tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1089         if (IS_ERR(tfm))
1090                 return PTR_ERR(tfm);
1091
1092         queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1093         if (!queue->snd_hash)
1094                 goto free_tfm;
1095         ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1096
1097         queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1098         if (!queue->rcv_hash)
1099                 goto free_snd_hash;
1100         ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1101
1102         return 0;
1103 free_snd_hash:
1104         ahash_request_free(queue->snd_hash);
1105 free_tfm:
1106         crypto_free_ahash(tfm);
1107         return -ENOMEM;
1108 }
1109
1110 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1111 {
1112         struct nvme_tcp_request *async = &ctrl->async_req;
1113
1114         page_frag_free(async->pdu);
1115 }
1116
1117 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1118 {
1119         struct nvme_tcp_queue *queue = &ctrl->queues[0];
1120         struct nvme_tcp_request *async = &ctrl->async_req;
1121         u8 hdgst = nvme_tcp_hdgst_len(queue);
1122
1123         async->pdu = page_frag_alloc(&queue->pf_cache,
1124                 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1125                 GFP_KERNEL | __GFP_ZERO);
1126         if (!async->pdu)
1127                 return -ENOMEM;
1128
1129         async->queue = &ctrl->queues[0];
1130         return 0;
1131 }
1132
1133 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1134 {
1135         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1136         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1137
1138         if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1139                 return;
1140
1141         if (queue->hdr_digest || queue->data_digest)
1142                 nvme_tcp_free_crypto(queue);
1143
1144         sock_release(queue->sock);
1145         kfree(queue->pdu);
1146 }
1147
1148 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1149 {
1150         struct nvme_tcp_icreq_pdu *icreq;
1151         struct nvme_tcp_icresp_pdu *icresp;
1152         struct msghdr msg = {};
1153         struct kvec iov;
1154         bool ctrl_hdgst, ctrl_ddgst;
1155         int ret;
1156
1157         icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1158         if (!icreq)
1159                 return -ENOMEM;
1160
1161         icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1162         if (!icresp) {
1163                 ret = -ENOMEM;
1164                 goto free_icreq;
1165         }
1166
1167         icreq->hdr.type = nvme_tcp_icreq;
1168         icreq->hdr.hlen = sizeof(*icreq);
1169         icreq->hdr.pdo = 0;
1170         icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1171         icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1172         icreq->maxr2t = 0; /* single inflight r2t supported */
1173         icreq->hpda = 0; /* no alignment constraint */
1174         if (queue->hdr_digest)
1175                 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1176         if (queue->data_digest)
1177                 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1178
1179         iov.iov_base = icreq;
1180         iov.iov_len = sizeof(*icreq);
1181         ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1182         if (ret < 0)
1183                 goto free_icresp;
1184
1185         memset(&msg, 0, sizeof(msg));
1186         iov.iov_base = icresp;
1187         iov.iov_len = sizeof(*icresp);
1188         ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1189                         iov.iov_len, msg.msg_flags);
1190         if (ret < 0)
1191                 goto free_icresp;
1192
1193         ret = -EINVAL;
1194         if (icresp->hdr.type != nvme_tcp_icresp) {
1195                 pr_err("queue %d: bad type returned %d\n",
1196                         nvme_tcp_queue_id(queue), icresp->hdr.type);
1197                 goto free_icresp;
1198         }
1199
1200         if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1201                 pr_err("queue %d: bad pdu length returned %d\n",
1202                         nvme_tcp_queue_id(queue), icresp->hdr.plen);
1203                 goto free_icresp;
1204         }
1205
1206         if (icresp->pfv != NVME_TCP_PFV_1_0) {
1207                 pr_err("queue %d: bad pfv returned %d\n",
1208                         nvme_tcp_queue_id(queue), icresp->pfv);
1209                 goto free_icresp;
1210         }
1211
1212         ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1213         if ((queue->data_digest && !ctrl_ddgst) ||
1214             (!queue->data_digest && ctrl_ddgst)) {
1215                 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1216                         nvme_tcp_queue_id(queue),
1217                         queue->data_digest ? "enabled" : "disabled",
1218                         ctrl_ddgst ? "enabled" : "disabled");
1219                 goto free_icresp;
1220         }
1221
1222         ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1223         if ((queue->hdr_digest && !ctrl_hdgst) ||
1224             (!queue->hdr_digest && ctrl_hdgst)) {
1225                 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1226                         nvme_tcp_queue_id(queue),
1227                         queue->hdr_digest ? "enabled" : "disabled",
1228                         ctrl_hdgst ? "enabled" : "disabled");
1229                 goto free_icresp;
1230         }
1231
1232         if (icresp->cpda != 0) {
1233                 pr_err("queue %d: unsupported cpda returned %d\n",
1234                         nvme_tcp_queue_id(queue), icresp->cpda);
1235                 goto free_icresp;
1236         }
1237
1238         ret = 0;
1239 free_icresp:
1240         kfree(icresp);
1241 free_icreq:
1242         kfree(icreq);
1243         return ret;
1244 }
1245
1246 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1247                 int qid, size_t queue_size)
1248 {
1249         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1250         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1251         struct linger sol = { .l_onoff = 1, .l_linger = 0 };
1252         int ret, opt, rcv_pdu_size, n;
1253
1254         queue->ctrl = ctrl;
1255         INIT_LIST_HEAD(&queue->send_list);
1256         spin_lock_init(&queue->lock);
1257         INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1258         queue->queue_size = queue_size;
1259
1260         if (qid > 0)
1261                 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1262         else
1263                 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1264                                                 NVME_TCP_ADMIN_CCSZ;
1265
1266         ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1267                         IPPROTO_TCP, &queue->sock);
1268         if (ret) {
1269                 dev_err(nctrl->device,
1270                         "failed to create socket: %d\n", ret);
1271                 return ret;
1272         }
1273
1274         /* Single syn retry */
1275         opt = 1;
1276         ret = kernel_setsockopt(queue->sock, IPPROTO_TCP, TCP_SYNCNT,
1277                         (char *)&opt, sizeof(opt));
1278         if (ret) {
1279                 dev_err(nctrl->device,
1280                         "failed to set TCP_SYNCNT sock opt %d\n", ret);
1281                 goto err_sock;
1282         }
1283
1284         /* Set TCP no delay */
1285         opt = 1;
1286         ret = kernel_setsockopt(queue->sock, IPPROTO_TCP,
1287                         TCP_NODELAY, (char *)&opt, sizeof(opt));
1288         if (ret) {
1289                 dev_err(nctrl->device,
1290                         "failed to set TCP_NODELAY sock opt %d\n", ret);
1291                 goto err_sock;
1292         }
1293
1294         /*
1295          * Cleanup whatever is sitting in the TCP transmit queue on socket
1296          * close. This is done to prevent stale data from being sent should
1297          * the network connection be restored before TCP times out.
1298          */
1299         ret = kernel_setsockopt(queue->sock, SOL_SOCKET, SO_LINGER,
1300                         (char *)&sol, sizeof(sol));
1301         if (ret) {
1302                 dev_err(nctrl->device,
1303                         "failed to set SO_LINGER sock opt %d\n", ret);
1304                 goto err_sock;
1305         }
1306
1307         /* Set socket type of service */
1308         if (nctrl->opts->tos >= 0) {
1309                 opt = nctrl->opts->tos;
1310                 ret = kernel_setsockopt(queue->sock, SOL_IP, IP_TOS,
1311                                 (char *)&opt, sizeof(opt));
1312                 if (ret) {
1313                         dev_err(nctrl->device,
1314                                 "failed to set IP_TOS sock opt %d\n", ret);
1315                         goto err_sock;
1316                 }
1317         }
1318
1319         queue->sock->sk->sk_allocation = GFP_ATOMIC;
1320         if (!qid)
1321                 n = 0;
1322         else
1323                 n = (qid - 1) % num_online_cpus();
1324         queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1325         queue->request = NULL;
1326         queue->data_remaining = 0;
1327         queue->ddgst_remaining = 0;
1328         queue->pdu_remaining = 0;
1329         queue->pdu_offset = 0;
1330         sk_set_memalloc(queue->sock->sk);
1331
1332         if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1333                 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1334                         sizeof(ctrl->src_addr));
1335                 if (ret) {
1336                         dev_err(nctrl->device,
1337                                 "failed to bind queue %d socket %d\n",
1338                                 qid, ret);
1339                         goto err_sock;
1340                 }
1341         }
1342
1343         queue->hdr_digest = nctrl->opts->hdr_digest;
1344         queue->data_digest = nctrl->opts->data_digest;
1345         if (queue->hdr_digest || queue->data_digest) {
1346                 ret = nvme_tcp_alloc_crypto(queue);
1347                 if (ret) {
1348                         dev_err(nctrl->device,
1349                                 "failed to allocate queue %d crypto\n", qid);
1350                         goto err_sock;
1351                 }
1352         }
1353
1354         rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1355                         nvme_tcp_hdgst_len(queue);
1356         queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1357         if (!queue->pdu) {
1358                 ret = -ENOMEM;
1359                 goto err_crypto;
1360         }
1361
1362         dev_dbg(nctrl->device, "connecting queue %d\n",
1363                         nvme_tcp_queue_id(queue));
1364
1365         ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1366                 sizeof(ctrl->addr), 0);
1367         if (ret) {
1368                 dev_err(nctrl->device,
1369                         "failed to connect socket: %d\n", ret);
1370                 goto err_rcv_pdu;
1371         }
1372
1373         ret = nvme_tcp_init_connection(queue);
1374         if (ret)
1375                 goto err_init_connect;
1376
1377         queue->rd_enabled = true;
1378         set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1379         nvme_tcp_init_recv_ctx(queue);
1380
1381         write_lock_bh(&queue->sock->sk->sk_callback_lock);
1382         queue->sock->sk->sk_user_data = queue;
1383         queue->state_change = queue->sock->sk->sk_state_change;
1384         queue->data_ready = queue->sock->sk->sk_data_ready;
1385         queue->write_space = queue->sock->sk->sk_write_space;
1386         queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1387         queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1388         queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1389         queue->sock->sk->sk_ll_usec = 1;
1390         write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1391
1392         return 0;
1393
1394 err_init_connect:
1395         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1396 err_rcv_pdu:
1397         kfree(queue->pdu);
1398 err_crypto:
1399         if (queue->hdr_digest || queue->data_digest)
1400                 nvme_tcp_free_crypto(queue);
1401 err_sock:
1402         sock_release(queue->sock);
1403         queue->sock = NULL;
1404         return ret;
1405 }
1406
1407 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1408 {
1409         struct socket *sock = queue->sock;
1410
1411         write_lock_bh(&sock->sk->sk_callback_lock);
1412         sock->sk->sk_user_data  = NULL;
1413         sock->sk->sk_data_ready = queue->data_ready;
1414         sock->sk->sk_state_change = queue->state_change;
1415         sock->sk->sk_write_space  = queue->write_space;
1416         write_unlock_bh(&sock->sk->sk_callback_lock);
1417 }
1418
1419 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1420 {
1421         kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1422         nvme_tcp_restore_sock_calls(queue);
1423         cancel_work_sync(&queue->io_work);
1424 }
1425
1426 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1427 {
1428         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1429         struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1430
1431         if (!test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1432                 return;
1433
1434         __nvme_tcp_stop_queue(queue);
1435 }
1436
1437 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1438 {
1439         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1440         int ret;
1441
1442         if (idx)
1443                 ret = nvmf_connect_io_queue(nctrl, idx, false);
1444         else
1445                 ret = nvmf_connect_admin_queue(nctrl);
1446
1447         if (!ret) {
1448                 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1449         } else {
1450                 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1451                         __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1452                 dev_err(nctrl->device,
1453                         "failed to connect queue: %d ret=%d\n", idx, ret);
1454         }
1455         return ret;
1456 }
1457
1458 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1459                 bool admin)
1460 {
1461         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1462         struct blk_mq_tag_set *set;
1463         int ret;
1464
1465         if (admin) {
1466                 set = &ctrl->admin_tag_set;
1467                 memset(set, 0, sizeof(*set));
1468                 set->ops = &nvme_tcp_admin_mq_ops;
1469                 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1470                 set->reserved_tags = 2; /* connect + keep-alive */
1471                 set->numa_node = NUMA_NO_NODE;
1472                 set->cmd_size = sizeof(struct nvme_tcp_request);
1473                 set->driver_data = ctrl;
1474                 set->nr_hw_queues = 1;
1475                 set->timeout = ADMIN_TIMEOUT;
1476         } else {
1477                 set = &ctrl->tag_set;
1478                 memset(set, 0, sizeof(*set));
1479                 set->ops = &nvme_tcp_mq_ops;
1480                 set->queue_depth = nctrl->sqsize + 1;
1481                 set->reserved_tags = 1; /* fabric connect */
1482                 set->numa_node = NUMA_NO_NODE;
1483                 set->flags = BLK_MQ_F_SHOULD_MERGE;
1484                 set->cmd_size = sizeof(struct nvme_tcp_request);
1485                 set->driver_data = ctrl;
1486                 set->nr_hw_queues = nctrl->queue_count - 1;
1487                 set->timeout = NVME_IO_TIMEOUT;
1488                 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1489         }
1490
1491         ret = blk_mq_alloc_tag_set(set);
1492         if (ret)
1493                 return ERR_PTR(ret);
1494
1495         return set;
1496 }
1497
1498 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1499 {
1500         if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1501                 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1502                 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1503         }
1504
1505         nvme_tcp_free_queue(ctrl, 0);
1506 }
1507
1508 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1509 {
1510         int i;
1511
1512         for (i = 1; i < ctrl->queue_count; i++)
1513                 nvme_tcp_free_queue(ctrl, i);
1514 }
1515
1516 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1517 {
1518         int i;
1519
1520         for (i = 1; i < ctrl->queue_count; i++)
1521                 nvme_tcp_stop_queue(ctrl, i);
1522 }
1523
1524 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1525 {
1526         int i, ret = 0;
1527
1528         for (i = 1; i < ctrl->queue_count; i++) {
1529                 ret = nvme_tcp_start_queue(ctrl, i);
1530                 if (ret)
1531                         goto out_stop_queues;
1532         }
1533
1534         return 0;
1535
1536 out_stop_queues:
1537         for (i--; i >= 1; i--)
1538                 nvme_tcp_stop_queue(ctrl, i);
1539         return ret;
1540 }
1541
1542 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1543 {
1544         int ret;
1545
1546         ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1547         if (ret)
1548                 return ret;
1549
1550         ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1551         if (ret)
1552                 goto out_free_queue;
1553
1554         return 0;
1555
1556 out_free_queue:
1557         nvme_tcp_free_queue(ctrl, 0);
1558         return ret;
1559 }
1560
1561 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1562 {
1563         int i, ret;
1564
1565         for (i = 1; i < ctrl->queue_count; i++) {
1566                 ret = nvme_tcp_alloc_queue(ctrl, i,
1567                                 ctrl->sqsize + 1);
1568                 if (ret)
1569                         goto out_free_queues;
1570         }
1571
1572         return 0;
1573
1574 out_free_queues:
1575         for (i--; i >= 1; i--)
1576                 nvme_tcp_free_queue(ctrl, i);
1577
1578         return ret;
1579 }
1580
1581 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1582 {
1583         unsigned int nr_io_queues;
1584
1585         nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1586         nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1587         nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1588
1589         return nr_io_queues;
1590 }
1591
1592 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1593                 unsigned int nr_io_queues)
1594 {
1595         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1596         struct nvmf_ctrl_options *opts = nctrl->opts;
1597
1598         if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1599                 /*
1600                  * separate read/write queues
1601                  * hand out dedicated default queues only after we have
1602                  * sufficient read queues.
1603                  */
1604                 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1605                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1606                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1607                         min(opts->nr_write_queues, nr_io_queues);
1608                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1609         } else {
1610                 /*
1611                  * shared read/write queues
1612                  * either no write queues were requested, or we don't have
1613                  * sufficient queue count to have dedicated default queues.
1614                  */
1615                 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1616                         min(opts->nr_io_queues, nr_io_queues);
1617                 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1618         }
1619
1620         if (opts->nr_poll_queues && nr_io_queues) {
1621                 /* map dedicated poll queues only if we have queues left */
1622                 ctrl->io_queues[HCTX_TYPE_POLL] =
1623                         min(opts->nr_poll_queues, nr_io_queues);
1624         }
1625 }
1626
1627 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1628 {
1629         unsigned int nr_io_queues;
1630         int ret;
1631
1632         nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1633         ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1634         if (ret)
1635                 return ret;
1636
1637         ctrl->queue_count = nr_io_queues + 1;
1638         if (ctrl->queue_count < 2)
1639                 return 0;
1640
1641         dev_info(ctrl->device,
1642                 "creating %d I/O queues.\n", nr_io_queues);
1643
1644         nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1645
1646         return __nvme_tcp_alloc_io_queues(ctrl);
1647 }
1648
1649 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1650 {
1651         nvme_tcp_stop_io_queues(ctrl);
1652         if (remove) {
1653                 blk_cleanup_queue(ctrl->connect_q);
1654                 blk_mq_free_tag_set(ctrl->tagset);
1655         }
1656         nvme_tcp_free_io_queues(ctrl);
1657 }
1658
1659 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1660 {
1661         int ret;
1662
1663         ret = nvme_tcp_alloc_io_queues(ctrl);
1664         if (ret)
1665                 return ret;
1666
1667         if (new) {
1668                 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1669                 if (IS_ERR(ctrl->tagset)) {
1670                         ret = PTR_ERR(ctrl->tagset);
1671                         goto out_free_io_queues;
1672                 }
1673
1674                 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1675                 if (IS_ERR(ctrl->connect_q)) {
1676                         ret = PTR_ERR(ctrl->connect_q);
1677                         goto out_free_tag_set;
1678                 }
1679         } else {
1680                 blk_mq_update_nr_hw_queues(ctrl->tagset,
1681                         ctrl->queue_count - 1);
1682         }
1683
1684         ret = nvme_tcp_start_io_queues(ctrl);
1685         if (ret)
1686                 goto out_cleanup_connect_q;
1687
1688         return 0;
1689
1690 out_cleanup_connect_q:
1691         if (new)
1692                 blk_cleanup_queue(ctrl->connect_q);
1693 out_free_tag_set:
1694         if (new)
1695                 blk_mq_free_tag_set(ctrl->tagset);
1696 out_free_io_queues:
1697         nvme_tcp_free_io_queues(ctrl);
1698         return ret;
1699 }
1700
1701 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1702 {
1703         nvme_tcp_stop_queue(ctrl, 0);
1704         if (remove) {
1705                 blk_cleanup_queue(ctrl->admin_q);
1706                 blk_cleanup_queue(ctrl->fabrics_q);
1707                 blk_mq_free_tag_set(ctrl->admin_tagset);
1708         }
1709         nvme_tcp_free_admin_queue(ctrl);
1710 }
1711
1712 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1713 {
1714         int error;
1715
1716         error = nvme_tcp_alloc_admin_queue(ctrl);
1717         if (error)
1718                 return error;
1719
1720         if (new) {
1721                 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1722                 if (IS_ERR(ctrl->admin_tagset)) {
1723                         error = PTR_ERR(ctrl->admin_tagset);
1724                         goto out_free_queue;
1725                 }
1726
1727                 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1728                 if (IS_ERR(ctrl->fabrics_q)) {
1729                         error = PTR_ERR(ctrl->fabrics_q);
1730                         goto out_free_tagset;
1731                 }
1732
1733                 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1734                 if (IS_ERR(ctrl->admin_q)) {
1735                         error = PTR_ERR(ctrl->admin_q);
1736                         goto out_cleanup_fabrics_q;
1737                 }
1738         }
1739
1740         error = nvme_tcp_start_queue(ctrl, 0);
1741         if (error)
1742                 goto out_cleanup_queue;
1743
1744         error = nvme_enable_ctrl(ctrl);
1745         if (error)
1746                 goto out_stop_queue;
1747
1748         blk_mq_unquiesce_queue(ctrl->admin_q);
1749
1750         error = nvme_init_identify(ctrl);
1751         if (error)
1752                 goto out_stop_queue;
1753
1754         return 0;
1755
1756 out_stop_queue:
1757         nvme_tcp_stop_queue(ctrl, 0);
1758 out_cleanup_queue:
1759         if (new)
1760                 blk_cleanup_queue(ctrl->admin_q);
1761 out_cleanup_fabrics_q:
1762         if (new)
1763                 blk_cleanup_queue(ctrl->fabrics_q);
1764 out_free_tagset:
1765         if (new)
1766                 blk_mq_free_tag_set(ctrl->admin_tagset);
1767 out_free_queue:
1768         nvme_tcp_free_admin_queue(ctrl);
1769         return error;
1770 }
1771
1772 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1773                 bool remove)
1774 {
1775         blk_mq_quiesce_queue(ctrl->admin_q);
1776         nvme_tcp_stop_queue(ctrl, 0);
1777         if (ctrl->admin_tagset) {
1778                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
1779                         nvme_cancel_request, ctrl);
1780                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
1781         }
1782         if (remove)
1783                 blk_mq_unquiesce_queue(ctrl->admin_q);
1784         nvme_tcp_destroy_admin_queue(ctrl, remove);
1785 }
1786
1787 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1788                 bool remove)
1789 {
1790         if (ctrl->queue_count <= 1)
1791                 return;
1792         nvme_stop_queues(ctrl);
1793         nvme_tcp_stop_io_queues(ctrl);
1794         if (ctrl->tagset) {
1795                 blk_mq_tagset_busy_iter(ctrl->tagset,
1796                         nvme_cancel_request, ctrl);
1797                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
1798         }
1799         if (remove)
1800                 nvme_start_queues(ctrl);
1801         nvme_tcp_destroy_io_queues(ctrl, remove);
1802 }
1803
1804 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1805 {
1806         /* If we are resetting/deleting then do nothing */
1807         if (ctrl->state != NVME_CTRL_CONNECTING) {
1808                 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1809                         ctrl->state == NVME_CTRL_LIVE);
1810                 return;
1811         }
1812
1813         if (nvmf_should_reconnect(ctrl)) {
1814                 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1815                         ctrl->opts->reconnect_delay);
1816                 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1817                                 ctrl->opts->reconnect_delay * HZ);
1818         } else {
1819                 dev_info(ctrl->device, "Removing controller...\n");
1820                 nvme_delete_ctrl(ctrl);
1821         }
1822 }
1823
1824 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1825 {
1826         struct nvmf_ctrl_options *opts = ctrl->opts;
1827         int ret;
1828
1829         ret = nvme_tcp_configure_admin_queue(ctrl, new);
1830         if (ret)
1831                 return ret;
1832
1833         if (ctrl->icdoff) {
1834                 dev_err(ctrl->device, "icdoff is not supported!\n");
1835                 goto destroy_admin;
1836         }
1837
1838         if (opts->queue_size > ctrl->sqsize + 1)
1839                 dev_warn(ctrl->device,
1840                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1841                         opts->queue_size, ctrl->sqsize + 1);
1842
1843         if (ctrl->sqsize + 1 > ctrl->maxcmd) {
1844                 dev_warn(ctrl->device,
1845                         "sqsize %u > ctrl maxcmd %u, clamping down\n",
1846                         ctrl->sqsize + 1, ctrl->maxcmd);
1847                 ctrl->sqsize = ctrl->maxcmd - 1;
1848         }
1849
1850         if (ctrl->queue_count > 1) {
1851                 ret = nvme_tcp_configure_io_queues(ctrl, new);
1852                 if (ret)
1853                         goto destroy_admin;
1854         }
1855
1856         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
1857                 /* state change failure is ok if we're in DELETING state */
1858                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1859                 ret = -EINVAL;
1860                 goto destroy_io;
1861         }
1862
1863         nvme_start_ctrl(ctrl);
1864         return 0;
1865
1866 destroy_io:
1867         if (ctrl->queue_count > 1)
1868                 nvme_tcp_destroy_io_queues(ctrl, new);
1869 destroy_admin:
1870         nvme_tcp_stop_queue(ctrl, 0);
1871         nvme_tcp_destroy_admin_queue(ctrl, new);
1872         return ret;
1873 }
1874
1875 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
1876 {
1877         struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
1878                         struct nvme_tcp_ctrl, connect_work);
1879         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1880
1881         ++ctrl->nr_reconnects;
1882
1883         if (nvme_tcp_setup_ctrl(ctrl, false))
1884                 goto requeue;
1885
1886         dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
1887                         ctrl->nr_reconnects);
1888
1889         ctrl->nr_reconnects = 0;
1890
1891         return;
1892
1893 requeue:
1894         dev_info(ctrl->device, "Failed reconnect attempt %d\n",
1895                         ctrl->nr_reconnects);
1896         nvme_tcp_reconnect_or_remove(ctrl);
1897 }
1898
1899 static void nvme_tcp_error_recovery_work(struct work_struct *work)
1900 {
1901         struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
1902                                 struct nvme_tcp_ctrl, err_work);
1903         struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
1904
1905         nvme_stop_keep_alive(ctrl);
1906         nvme_tcp_teardown_io_queues(ctrl, false);
1907         /* unquiesce to fail fast pending requests */
1908         nvme_start_queues(ctrl);
1909         nvme_tcp_teardown_admin_queue(ctrl, false);
1910         blk_mq_unquiesce_queue(ctrl->admin_q);
1911
1912         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1913                 /* state change failure is ok if we're in DELETING state */
1914                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1915                 return;
1916         }
1917
1918         nvme_tcp_reconnect_or_remove(ctrl);
1919 }
1920
1921 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
1922 {
1923         cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
1924         cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
1925
1926         nvme_tcp_teardown_io_queues(ctrl, shutdown);
1927         blk_mq_quiesce_queue(ctrl->admin_q);
1928         if (shutdown)
1929                 nvme_shutdown_ctrl(ctrl);
1930         else
1931                 nvme_disable_ctrl(ctrl);
1932         nvme_tcp_teardown_admin_queue(ctrl, shutdown);
1933 }
1934
1935 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
1936 {
1937         nvme_tcp_teardown_ctrl(ctrl, true);
1938 }
1939
1940 static void nvme_reset_ctrl_work(struct work_struct *work)
1941 {
1942         struct nvme_ctrl *ctrl =
1943                 container_of(work, struct nvme_ctrl, reset_work);
1944
1945         nvme_stop_ctrl(ctrl);
1946         nvme_tcp_teardown_ctrl(ctrl, false);
1947
1948         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
1949                 /* state change failure is ok if we're in DELETING state */
1950                 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING);
1951                 return;
1952         }
1953
1954         if (nvme_tcp_setup_ctrl(ctrl, false))
1955                 goto out_fail;
1956
1957         return;
1958
1959 out_fail:
1960         ++ctrl->nr_reconnects;
1961         nvme_tcp_reconnect_or_remove(ctrl);
1962 }
1963
1964 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
1965 {
1966         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1967
1968         if (list_empty(&ctrl->list))
1969                 goto free_ctrl;
1970
1971         mutex_lock(&nvme_tcp_ctrl_mutex);
1972         list_del(&ctrl->list);
1973         mutex_unlock(&nvme_tcp_ctrl_mutex);
1974
1975         nvmf_free_options(nctrl->opts);
1976 free_ctrl:
1977         kfree(ctrl->queues);
1978         kfree(ctrl);
1979 }
1980
1981 static void nvme_tcp_set_sg_null(struct nvme_command *c)
1982 {
1983         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1984
1985         sg->addr = 0;
1986         sg->length = 0;
1987         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
1988                         NVME_SGL_FMT_TRANSPORT_A;
1989 }
1990
1991 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
1992                 struct nvme_command *c, u32 data_len)
1993 {
1994         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1995
1996         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1997         sg->length = cpu_to_le32(data_len);
1998         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1999 }
2000
2001 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2002                 u32 data_len)
2003 {
2004         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2005
2006         sg->addr = 0;
2007         sg->length = cpu_to_le32(data_len);
2008         sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2009                         NVME_SGL_FMT_TRANSPORT_A;
2010 }
2011
2012 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2013 {
2014         struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2015         struct nvme_tcp_queue *queue = &ctrl->queues[0];
2016         struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2017         struct nvme_command *cmd = &pdu->cmd;
2018         u8 hdgst = nvme_tcp_hdgst_len(queue);
2019
2020         memset(pdu, 0, sizeof(*pdu));
2021         pdu->hdr.type = nvme_tcp_cmd;
2022         if (queue->hdr_digest)
2023                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2024         pdu->hdr.hlen = sizeof(*pdu);
2025         pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2026
2027         cmd->common.opcode = nvme_admin_async_event;
2028         cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2029         cmd->common.flags |= NVME_CMD_SGL_METABUF;
2030         nvme_tcp_set_sg_null(cmd);
2031
2032         ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2033         ctrl->async_req.offset = 0;
2034         ctrl->async_req.curr_bio = NULL;
2035         ctrl->async_req.data_len = 0;
2036
2037         nvme_tcp_queue_request(&ctrl->async_req);
2038 }
2039
2040 static enum blk_eh_timer_return
2041 nvme_tcp_timeout(struct request *rq, bool reserved)
2042 {
2043         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2044         struct nvme_tcp_ctrl *ctrl = req->queue->ctrl;
2045         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2046
2047         dev_warn(ctrl->ctrl.device,
2048                 "queue %d: timeout request %#x type %d\n",
2049                 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2050
2051         if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
2052                 /*
2053                  * Teardown immediately if controller times out while starting
2054                  * or we are already started error recovery. all outstanding
2055                  * requests are completed on shutdown, so we return BLK_EH_DONE.
2056                  */
2057                 flush_work(&ctrl->err_work);
2058                 nvme_tcp_teardown_io_queues(&ctrl->ctrl, false);
2059                 nvme_tcp_teardown_admin_queue(&ctrl->ctrl, false);
2060                 return BLK_EH_DONE;
2061         }
2062
2063         dev_warn(ctrl->ctrl.device, "starting error recovery\n");
2064         nvme_tcp_error_recovery(&ctrl->ctrl);
2065
2066         return BLK_EH_RESET_TIMER;
2067 }
2068
2069 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2070                         struct request *rq)
2071 {
2072         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2073         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2074         struct nvme_command *c = &pdu->cmd;
2075
2076         c->common.flags |= NVME_CMD_SGL_METABUF;
2077
2078         if (rq_data_dir(rq) == WRITE && req->data_len &&
2079             req->data_len <= nvme_tcp_inline_data_size(queue))
2080                 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2081         else
2082                 nvme_tcp_set_sg_host_data(c, req->data_len);
2083
2084         return 0;
2085 }
2086
2087 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2088                 struct request *rq)
2089 {
2090         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2091         struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2092         struct nvme_tcp_queue *queue = req->queue;
2093         u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2094         blk_status_t ret;
2095
2096         ret = nvme_setup_cmd(ns, rq, &pdu->cmd);
2097         if (ret)
2098                 return ret;
2099
2100         req->state = NVME_TCP_SEND_CMD_PDU;
2101         req->offset = 0;
2102         req->data_sent = 0;
2103         req->pdu_len = 0;
2104         req->pdu_sent = 0;
2105         req->data_len = blk_rq_payload_bytes(rq);
2106         req->curr_bio = rq->bio;
2107
2108         if (rq_data_dir(rq) == WRITE &&
2109             req->data_len <= nvme_tcp_inline_data_size(queue))
2110                 req->pdu_len = req->data_len;
2111         else if (req->curr_bio)
2112                 nvme_tcp_init_iter(req, READ);
2113
2114         pdu->hdr.type = nvme_tcp_cmd;
2115         pdu->hdr.flags = 0;
2116         if (queue->hdr_digest)
2117                 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2118         if (queue->data_digest && req->pdu_len) {
2119                 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2120                 ddgst = nvme_tcp_ddgst_len(queue);
2121         }
2122         pdu->hdr.hlen = sizeof(*pdu);
2123         pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2124         pdu->hdr.plen =
2125                 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2126
2127         ret = nvme_tcp_map_data(queue, rq);
2128         if (unlikely(ret)) {
2129                 dev_err(queue->ctrl->ctrl.device,
2130                         "Failed to map data (%d)\n", ret);
2131                 return ret;
2132         }
2133
2134         return 0;
2135 }
2136
2137 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2138                 const struct blk_mq_queue_data *bd)
2139 {
2140         struct nvme_ns *ns = hctx->queue->queuedata;
2141         struct nvme_tcp_queue *queue = hctx->driver_data;
2142         struct request *rq = bd->rq;
2143         struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2144         bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2145         blk_status_t ret;
2146
2147         if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2148                 return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2149
2150         ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2151         if (unlikely(ret))
2152                 return ret;
2153
2154         blk_mq_start_request(rq);
2155
2156         nvme_tcp_queue_request(req);
2157
2158         return BLK_STS_OK;
2159 }
2160
2161 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2162 {
2163         struct nvme_tcp_ctrl *ctrl = set->driver_data;
2164         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2165
2166         if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2167                 /* separate read/write queues */
2168                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2169                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2170                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2171                 set->map[HCTX_TYPE_READ].nr_queues =
2172                         ctrl->io_queues[HCTX_TYPE_READ];
2173                 set->map[HCTX_TYPE_READ].queue_offset =
2174                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2175         } else {
2176                 /* shared read/write queues */
2177                 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2178                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2179                 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2180                 set->map[HCTX_TYPE_READ].nr_queues =
2181                         ctrl->io_queues[HCTX_TYPE_DEFAULT];
2182                 set->map[HCTX_TYPE_READ].queue_offset = 0;
2183         }
2184         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2185         blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2186
2187         if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2188                 /* map dedicated poll queues only if we have queues left */
2189                 set->map[HCTX_TYPE_POLL].nr_queues =
2190                                 ctrl->io_queues[HCTX_TYPE_POLL];
2191                 set->map[HCTX_TYPE_POLL].queue_offset =
2192                         ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2193                         ctrl->io_queues[HCTX_TYPE_READ];
2194                 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2195         }
2196
2197         dev_info(ctrl->ctrl.device,
2198                 "mapped %d/%d/%d default/read/poll queues.\n",
2199                 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2200                 ctrl->io_queues[HCTX_TYPE_READ],
2201                 ctrl->io_queues[HCTX_TYPE_POLL]);
2202
2203         return 0;
2204 }
2205
2206 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2207 {
2208         struct nvme_tcp_queue *queue = hctx->driver_data;
2209         struct sock *sk = queue->sock->sk;
2210
2211         if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue))
2212                 sk_busy_loop(sk, true);
2213         nvme_tcp_try_recv(queue);
2214         return queue->nr_cqe;
2215 }
2216
2217 static struct blk_mq_ops nvme_tcp_mq_ops = {
2218         .queue_rq       = nvme_tcp_queue_rq,
2219         .complete       = nvme_complete_rq,
2220         .init_request   = nvme_tcp_init_request,
2221         .exit_request   = nvme_tcp_exit_request,
2222         .init_hctx      = nvme_tcp_init_hctx,
2223         .timeout        = nvme_tcp_timeout,
2224         .map_queues     = nvme_tcp_map_queues,
2225         .poll           = nvme_tcp_poll,
2226 };
2227
2228 static struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2229         .queue_rq       = nvme_tcp_queue_rq,
2230         .complete       = nvme_complete_rq,
2231         .init_request   = nvme_tcp_init_request,
2232         .exit_request   = nvme_tcp_exit_request,
2233         .init_hctx      = nvme_tcp_init_admin_hctx,
2234         .timeout        = nvme_tcp_timeout,
2235 };
2236
2237 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2238         .name                   = "tcp",
2239         .module                 = THIS_MODULE,
2240         .flags                  = NVME_F_FABRICS,
2241         .reg_read32             = nvmf_reg_read32,
2242         .reg_read64             = nvmf_reg_read64,
2243         .reg_write32            = nvmf_reg_write32,
2244         .free_ctrl              = nvme_tcp_free_ctrl,
2245         .submit_async_event     = nvme_tcp_submit_async_event,
2246         .delete_ctrl            = nvme_tcp_delete_ctrl,
2247         .get_address            = nvmf_get_address,
2248 };
2249
2250 static bool
2251 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2252 {
2253         struct nvme_tcp_ctrl *ctrl;
2254         bool found = false;
2255
2256         mutex_lock(&nvme_tcp_ctrl_mutex);
2257         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2258                 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2259                 if (found)
2260                         break;
2261         }
2262         mutex_unlock(&nvme_tcp_ctrl_mutex);
2263
2264         return found;
2265 }
2266
2267 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2268                 struct nvmf_ctrl_options *opts)
2269 {
2270         struct nvme_tcp_ctrl *ctrl;
2271         int ret;
2272
2273         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2274         if (!ctrl)
2275                 return ERR_PTR(-ENOMEM);
2276
2277         INIT_LIST_HEAD(&ctrl->list);
2278         ctrl->ctrl.opts = opts;
2279         ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2280                                 opts->nr_poll_queues + 1;
2281         ctrl->ctrl.sqsize = opts->queue_size - 1;
2282         ctrl->ctrl.kato = opts->kato;
2283
2284         INIT_DELAYED_WORK(&ctrl->connect_work,
2285                         nvme_tcp_reconnect_ctrl_work);
2286         INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2287         INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2288
2289         if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2290                 opts->trsvcid =
2291                         kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2292                 if (!opts->trsvcid) {
2293                         ret = -ENOMEM;
2294                         goto out_free_ctrl;
2295                 }
2296                 opts->mask |= NVMF_OPT_TRSVCID;
2297         }
2298
2299         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2300                         opts->traddr, opts->trsvcid, &ctrl->addr);
2301         if (ret) {
2302                 pr_err("malformed address passed: %s:%s\n",
2303                         opts->traddr, opts->trsvcid);
2304                 goto out_free_ctrl;
2305         }
2306
2307         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2308                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2309                         opts->host_traddr, NULL, &ctrl->src_addr);
2310                 if (ret) {
2311                         pr_err("malformed src address passed: %s\n",
2312                                opts->host_traddr);
2313                         goto out_free_ctrl;
2314                 }
2315         }
2316
2317         if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2318                 ret = -EALREADY;
2319                 goto out_free_ctrl;
2320         }
2321
2322         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2323                                 GFP_KERNEL);
2324         if (!ctrl->queues) {
2325                 ret = -ENOMEM;
2326                 goto out_free_ctrl;
2327         }
2328
2329         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2330         if (ret)
2331                 goto out_kfree_queues;
2332
2333         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2334                 WARN_ON_ONCE(1);
2335                 ret = -EINTR;
2336                 goto out_uninit_ctrl;
2337         }
2338
2339         ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2340         if (ret)
2341                 goto out_uninit_ctrl;
2342
2343         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2344                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2345
2346         nvme_get_ctrl(&ctrl->ctrl);
2347
2348         mutex_lock(&nvme_tcp_ctrl_mutex);
2349         list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2350         mutex_unlock(&nvme_tcp_ctrl_mutex);
2351
2352         return &ctrl->ctrl;
2353
2354 out_uninit_ctrl:
2355         nvme_uninit_ctrl(&ctrl->ctrl);
2356         nvme_put_ctrl(&ctrl->ctrl);
2357         if (ret > 0)
2358                 ret = -EIO;
2359         return ERR_PTR(ret);
2360 out_kfree_queues:
2361         kfree(ctrl->queues);
2362 out_free_ctrl:
2363         kfree(ctrl);
2364         return ERR_PTR(ret);
2365 }
2366
2367 static struct nvmf_transport_ops nvme_tcp_transport = {
2368         .name           = "tcp",
2369         .module         = THIS_MODULE,
2370         .required_opts  = NVMF_OPT_TRADDR,
2371         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2372                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2373                           NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2374                           NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2375                           NVMF_OPT_TOS,
2376         .create_ctrl    = nvme_tcp_create_ctrl,
2377 };
2378
2379 static int __init nvme_tcp_init_module(void)
2380 {
2381         nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2382                         WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2383         if (!nvme_tcp_wq)
2384                 return -ENOMEM;
2385
2386         nvmf_register_transport(&nvme_tcp_transport);
2387         return 0;
2388 }
2389
2390 static void __exit nvme_tcp_cleanup_module(void)
2391 {
2392         struct nvme_tcp_ctrl *ctrl;
2393
2394         nvmf_unregister_transport(&nvme_tcp_transport);
2395
2396         mutex_lock(&nvme_tcp_ctrl_mutex);
2397         list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2398                 nvme_delete_ctrl(&ctrl->ctrl);
2399         mutex_unlock(&nvme_tcp_ctrl_mutex);
2400         flush_workqueue(nvme_delete_wq);
2401
2402         destroy_workqueue(nvme_tcp_wq);
2403 }
2404
2405 module_init(nvme_tcp_init_module);
2406 module_exit(nvme_tcp_cleanup_module);
2407
2408 MODULE_LICENSE("GPL v2");